

SQL for MySQL
Developers

This page intentionally left blank This page intentionally left blank

SQL for MySQL
Developers
A Comprehensive Tutorial
and Reference

Rick F. van der Lans
Translated by Diane Cools

Upper Saddle River, NJ ■ Boston ■ Indianapolis ■ San Francisco

New York ■ Toronto ■ Montreal ■ London ■ Munich ■ Paris ■ Madrid

Cape Town ■ Sydney ■ Tokyo ■ Singapore ■ Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of
any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

The Safari® Enabled icon on the cover of your favorite technology book means the book is available
through Safari Bookshelf. When you buy this book, you get free access to the online edition for 45 days.
Safari Bookshelf is an electronic reference library that lets you easily search thousands of technical
books, find code samples, download chapters, and access technical information whenever and wherever
you need it.

To gain 45-day Safari Enabled access to this book:

• Go to http://www.awprofessional.com/safarienabled
• Complete the brief registration form
• Enter the coupon code FFJ5-JWCL-7C3G-CUKJ-89CM

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-mail customer-
service@safaribooksonline.com.

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Lans, Rick F. van der.
SQL for MySQL developers : a comprehensive tutorial and reference / Rick F. van der Lans.

p. cm.
ISBN 978-0-13-149735-1 (pbk. : alk. paper) 1. SQL (Computer program language) 2. MySQL
(Electronic resource) I. Title.
QA76.73.S67L345 2007
005.13’3—dc22

2007000578

Copyright © 2007 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0131497359
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, April 2007

www.awprofessional.com
http://www.awprofessional.com/safarienabled

Dedicated to Alyssa.

This page intentionally left blank This page intentionally left blank

vii

Contents

PART I Introduction. 1

CHAPTER 1 Introduction to MySQL . 3
1.1 Introduction . 3

1.2 Database, Database Server, and Database Language. 4

1.3 The Relational Model . 6

1.4 What Is SQL? . 11

1.5 The History of SQL . 16

1.6 From Monolithic via Client/Server to the Internet 18

1.7 Standardization of SQL . 21

1.8 What Is Open Source Software? . 25

1.9 The History of MySQL . 26

1.10 The Structure of This Book . 27

CHAPTER 2 The Tennis Club Sample Database 29
2.1 Introduction . 29

2.2 Description of the Tennis Club . 29

2.3 The Contents of the Tables. 33

2.4 Integrity Constraints. 35

CHAPTER 3 Installing the Software . 37
3.1 Introduction . 37

3.2 Downloading MySQL . 37

3.3 Installation of MySQL. 38

3.4 Installing a Query Tool . 38

3.5 Downloading SQL Statements from the Web Site 38

3.6 Ready? . 39

CHAPTER 4 SQL in a Nutshell . 41
4.1 Introduction . 41

4.2 Logging On to the MySQL Database Server 41

4.3 Creating New SQL Users . 43

4.4 Creating Databases . 45

4.5 Selecting the Current Database . 45

4.6 Creating Tables. 46

4.7 Populating Tables with Data . 48

4.8 Querying Tables . 49

4.9 Updating and Deleting Rows . 52

4.10 Optimizing Query Processing with Indexes. 54

4.11 Views. 55

4.12 Users and Data Security . 57

4.13 Deleting Database Objects . 57

4.14 System Variables . 58

4.15 Grouping of SQL Statements . 59

4.16 The Catalog Tables . 60

4.17 Retrieving Errors and Warnings . 68

4.18 Definitions of SQL Statements . 69

PART II Querying and Updating Data 71

CHAPTER 5 SELECT Statement: Common Elements 73
5.1 Introduction . 73

5.2 Literals and Their Data Types . 74

5.3 Expressions. 88

5.4 Assigning Names to Result Columns . 92

5.5 The Column Specification. 94

5.6 The User Variable and the SET Statement 95

5.7 The System Variable . 97

5.8 The Case Expression . 101

5.9 The Scalar Expression Between Brackets 106

vii i Contents

5.10 The Scalar Function . 107

5.11 Casting of Expressions . 111

5.12 The Null Value as an Expression . 114

5.13 The Compound Scalar Expression . 115

5.14 The Aggregation Function and the Scalar Subquery 136

5.15 The Row Expression . 137

5.16 The Table Expression . 139

5.17 Answers . 140

CHAPTER 6 SELECT Statements, Table Expressions,
and Subqueries . 145
6.1 Introduction . 145

6.2 The Definition of the SELECT Statement 145

6.3 Processing the Clauses in a Select Block. 150

6.4 Possible Forms of a Table Expression 156

6.5 What Is a SELECT Statement? . 159

6.6 What Is a Subquery?. 160

6.7 Answers . 166

CHAPTER 7 SELECT Statement:The FROM Clause. 171
7.1 Introduction . 171

7.2 Table Specifications in the FROM Clause 171

7.3 Again, the Column Specification. 173

7.4 Multiple Table Specifications in the FROM Clause 174

7.5 Pseudonyms for Table Names. 178

7.6 Various Examples of Joins . 179

7.7 Mandatory Use of Pseudonyms . 183

7.8 Tables of Different Databases . 185

7.9 Explicit Joins in the FROM Clause. 185

7.10 Outer Joins . 189

7.11 The Natural Join . 195

7.12 Additional Conditions in the Join Condition. 196

7.13 The Cross Join. 199

7.14 Replacing Join Conditions with USING. 199

7.15 The FROM Clause with Table Expressions 200

7.16 Answers . 208

ixContents

CHAPTER 8 SELECT Statement: The WHERE Clause 213
8.1 Introduction . 213

8.2 Conditions Using Comparison Operators 215

8.3 Comparison Operators with Subqueries 222

8.4 Comparison Operators with Correlated Subqueries. 227

8.5 Conditions Without a Comparison Operator. 229

8.6 Conditions Coupled with AND, OR, XOR, and NOT 231

8.7 The IN Operator with Expression List. 235

8.8 The IN Operator with Subquery . 241

8.9 The BETWEEN Operator . 250

8.10 The LIKE Operator . 252

8.11 The REGEXP Operator . 255

8.12 The MATCH Operator . 264

8.13 The IS NULL Operator . 276

8.14 The EXISTS Operator . 278

8.15 The ALL and ANY Operators . 281

8.16 Scope of Columns in Subqueries . 289

8.17 More Examples with Correlated Subqueries 294

8.18 Conditions with Negation. 299

8.19 Answers . 302

CHAPTER 9 SELECT Statement: SELECT Clause and
Aggregation Functions . 315
9.1 Introduction . 315

9.2 Selecting All Columns (*) . 316

9.3 Expressions in the SELECT Clause . 317

9.4 Removing Duplicate Rows with DISTINCT. 318

9.5 When Are Two Rows Equal?. 321

9.6 More Select Options. 323

9.7 An Introduction to Aggregation Functions. 324

9.8 COUNT Function . 327

9.9 MAX and MIN Functions . 331

9.10 The SUM and AVG Function. 336

9.11 The VARIANCE and STDDEV Functions. 341

9.12 The VAR_SAMP and STDDEV_SAMP Functions 343

9.13 The BIT_AND, BIT_OR, and BIT_XOR Functions 343

9.14 Answers . 345

x Contents

CHAPTER 10 SELECT Statement: The GROUP BY Clause 349
10.1 Introduction . 349

10.2 Grouping on One Column . 350

10.3 Grouping on Two or More Columns 353

10.4 Grouping on Expressions . 356

10.5 Grouping of Null Values . 357

10.6 Grouping with Sorting . 358

10.7 General Rules for the GROUP BY Clause 359

10.8 The GROUP_CONCAT Function . 362

10.9 Complex Examples with GROUP BY. 363

10.10 Grouping with WITH ROLLUP . 369

10.11 Answers . 372

CHAPTER 11 SELECT Statement: The HAVING Clause 375
11.1 Introduction . 375

11.2 Examples of the HAVING Clause . 376

11.3 A HAVING Clause but not a GROUP BY Clause 378

11.4 General Rule for the HAVING Clause 379

11.5 Answers . 381

CHAPTER 12 SELECT Statement: The ORDER BY Clause 383
12.1 Introduction . 383

12.2 Sorting on Column Names . 383

12.3 Sorting on Expressions . 385

12.4 Sorting with Sequence Numbers . 387

12.5 Sorting in Ascending and Descending Order 389

12.6 Sorting Null Values . 392

12.7 Answers . 393

CHAPTER 13 SELECT Statement: The LIMIT Clause. 395
13.1 Introduction . 395

13.2 Get the Top… . 398

13.3 Subqueries with a LIMIT Clause . 402

13.4 Limit with an Offset . 404

13.5 The Select Option SQL_CALC_FOUND_ROWS 405

13.6 Answers . 406

xiContents

CHAPTER 14 Combining Table Expressions 409
14.1 Introduction . 409

14.2 Combining with UNION. 410

14.3 Rules for Using UNION . 413

14.4 Keeping Duplicate Rows. 416

14.5 Set Operators and the Null Value. 417

14.6 Answers . 418

CHAPTER 15 The User Variable and the SET Statement 421
15.1 Introduction . 421

15.2 Defining Variables with the SET Statement 421

15.3 Defining Variables with the SELECT Statement 423

15.4 Application Areas for User Variables 425

15.5 Life Span of User Variables . 426

15.6 The DO Statement . 428

15.7 Answers . 428

CHAPTER 16 The HANDLER Statement. 429
16.1 Introduction . 429

16.2 A Simple Example of the HANDLER Statement 429

16.3 Opening a Handler . 430

16.4 Browsing the Rows of a Handler . 431

16.5 Closing a Handler . 435

16.6 Answers . 435

CHAPTER 17 Updating Tables . 437
17.1 Introduction . 437

17.2 Inserting New Rows . 437

17.3 Populating a Table with Rows from Another Table 442

17.4 Updating Values in Rows . 444

17.5 Updating Values in Multiple Tables 450

17.6 Substituting Existing Rows . 452

17.7 Deleting Rows from a Table . 454

17.8 Deleting Rows from Multiple Tables. 456

17.9 The TRUNCATE Statement . 458

17.10 Answers . 458

xii Contents

CHAPTER 18 Loading and Unloading Data 461
18.1 Introduction . 461

18.2 Unloading Data . 461

18.3 Loading Data . 465

CHAPTER 19 Working with XML Documents 471
19.1 XML in a Nutshell . 471

19.2 Storing XML Documents . 473

19.3 Querying XML Documents . 476

19.4 Querying Using Positions . 484

19.5 The Extended Notation of XPath . 486

19.6 XPath Expressions with Conditions 488

19.7 Changing XML Documents. 489

PART III Creating Database Objects. 491

CHAPTER 20 Creating Tables . 493
20.1 Introduction . 493

20.2 Creating New Tables. 493

20.3 Data Types of Columns . 496

20.4 Adding Data Type Options. 508

20.5 Creating Temporary Tables . 514

20.6 What If the Table Already Exists? . 515

20.7 Copying Tables . 516

20.8 Naming Tables and Columns . 521

20.9 Column Options: Default and Comment 522

20.10 Table Options. 524

20.11 The CSV Storage Engine . 532

20.12 Tables and the Catalog. 534

20.13 Answers . 537

CHAPTER 21 Specifying Integrity Constraints. 539
21.1 Introduction . 539

21.2 Primary Keys. 541

21.3 Alternate Keys. 544

21.4 Foreign Keys . 546

21.5 The Referencing Action. 550

21.6 Check Integrity Constraints . 553

xii iContents

21.7 Naming Integrity Constraints . 556

21.8 Deleting Integrity Constraints. 557

21.9 Integrity Constraints and the Catalog 557

21.10 Answers . 558

CHAPTER 22 Character Sets and Collations 561
22.1 Introduction . 561

22.2 Available Character Sets and Collations 563

22.3 Assigning Character Sets to Columns. 564

22.4 Assigning Collations to Columns . 566

22.5 Expressions with Character Sets and Collations 568

22.6 Sorting and Grouping with Collations 571

22.7 The Coercibility of Expressions. 573

22.8 Related System Variables . 574

22.9 Character Sets and the Catalog . 576

22.10 Answers . 576

CHAPTER 23 The ENUM and SET Types . 577
23.1 Introduction . 577

23.2 The ENUM Data Type . 578

23.3 The SET Data Type . 582

23.4 Answers . 589

CHAPTER 24 Changing and Dropping Tables 591
24.1 Introduction . 591

24.2 Deleting Entire Tables. 591

24.3 Renaming Tables . 593

24.4 Changing the Table Structure . 593

24.5 Changing Columns . 595

24.6 Changing Integrity Constraints. 599

24.7 Answers . 602

CHAPTER 25 Using Indexes . 603
25.1 Introduction . 603

25.2 Rows, Tables, and Files. 604

25.3 How Does an Index Work?. 605

25.4 Processing a SELECT Statement: The Steps 610

25.5 Creating Indexes . 614

xiv Contents

25.6 Defining Indexes Together with the Tables 617

25.7 Dropping Indexes . 618

25.8 Indexes and Primary Keys . 619

25.9 The Big PLAYERS_XXL Table . 620

25.10 Choosing Columns for Indexes . 622

25.11 Indexes and the Catalog . 627

25.12 Answers . 630

CHAPTER 26 Views . 631
26.1 Introduction . 631

26.2 Creating Views . 631

26.3 The Column Names of Views . 635

26.4 Updating Views: WITH CHECK OPTION. 636

26.5 Options of Views . 638

26.6 Deleting Views . 639

26.7 Views and the Catalog . 640

26.8 Restrictions on Updating Views . 641

26.9 Processing View Statements . 642

26.10 Application Areas for Views . 645

26.11 Answers . 650

CHAPTER 27 Creating Databases. 653
27.1 Introduction . 653

27.2 Databases and the Catalog. 653

27.3 Creating Databases . 654

27.4 Changing Databases. 655

27.5 Dropping Databases. 656

CHAPTER 28 Users and Data Security . 659
28.1 Introduction . 659

28.2 Adding and Removing Users . 660

28.3 Changing the Names of Users . 662

28.4 Changing Passwords . 663

28.5 Granting Table and Column Privileges 664

28.6 Granting Database Privileges . 667

28.7 Granting User Privileges . 670

28.8 Passing on Privileges: WITH GRANT OPTION 673

28.9 Restricting Privileges. 674

xvContents

28.10 Recording Privileges in the Catalog 675

28.11 Revoking Privileges . 677

28.12 Security of and Through Views . 680

28.13 Answers . 682

CHAPTER 29 Statements for Table Maintenance 683
29.1 Introduction . 683

29.2 The ANALYZE TABLE Statement . 684

29.3 The CHECKSUM TABLE Statement 685

29.4 The OPTIMIZE TABLE Statement. 686

29.5 The CHECK TABLE Statement . 687

29.6 The REPAIR TABLE Statement . 689

29.7 The BACKUP TABLE Statement . 690

29.8 The RESTORE TABLE Statement . 691

CHAPTER 30 The SHOW, DESCRIBE, and HELP Statements 693
30.1 Introduction . 693

30.2 Overview of SHOW Statements . 693

30.3 Additional SHOW Statements . 698

30.4 The DESCRIBE Statement . 699

30.5 The HELP Statement . 699

PART IV Procedural Database Objects. 701

CHAPTER 31 Stored Procedures. 703
31.1 Introduction . 703

31.2 An Example of a Stored Procedure . 704

31.3 The Parameters of a Stored Procedure 706

31.4 The Body of a Stored Procedure. 707

31.5 Local Variables . 709

31.6 The SET Statement . 712

31.7 Flow-Control Statements . 712

31.8 Calling Stored Procedures . 719

31.9 Querying Data with SELECT INTO. 722

31.10 Error Messages, Handlers, and Conditions 726

31.11 Retrieving Data with a Cursor. 731

31.12 Including SELECT Statements Without Cursors 736

31.13 Stored Procedures and User Variables 737

31.14 Characteristics of Stored Procedures 737

xvi Contents

31.15 Stored Procedures and the Catalog 740

31.16 Removing Stored Procedures . 741

31.17 Security with Stored Procedures . 742

31.18 Advantages of Stored Procedures . 743

CHAPTER 32 Stored Functions . 745
32.1 Introduction . 745

32.2 Examples of Stored Functions . 746

32.3 More on Stored Functions . 752

32.4 Removing Stored Functions . 753

CHAPTER 33 Triggers. 755
33.1 Introduction . 755

33.2 An Example of a Trigger . 756

33.3 More Complex Examples . 759

33.4 Triggers as Integrity Constraints. 763

33.5 Removing Triggers . 765

33.6 Triggers and the Catalog . 765

33.7 Answers . 765

CHAPTER 34 Events . 767
34.1 What Is an Event? . 767

34.2 Creating Events. 768

34.3 Properties of Events . 777

34.4 Changing Events . 778

34.5 Removing Events . 779

34.6 Events and Privileges . 779

34.7 Events and the Catalog. 780

PART V Programming with SQL 783

CHAPTER 35 MySQL and PHP. 785
35.1 Introduction . 785

35.2 Logging On to MySQL . 786

35.3 Selecting a Database . 787

35.4 Creating an Index . 788

35.5 Retrieving Error Messages . 790

35.6 Multiple Connections Within One Session 791

35.7 SQL Statements with Parameters . 793

35.8 SELECT Statement with One Row . 794

xviiContents

35.9 SELECT Statement with Multiple Rows 796
35.10 SELECT Statement with Null Values 800
35.11 Querying Data About Expressions 801
35.12 Querying the Catalog . 803
35.13 Remaining MYSQL Functions . 805

CHAPTER 36 Dynamic SQL with Prepared Statement. 807
36.1 Introduction . 807
36.2 Working with Prepared SQL Statements 807
36.3 Prepared Statements with User Variables. 810
36.4 Prepared Statements with Parameters 810
36.5 Prepared Statements in Stored Procedures 811

CHAPTER 37 Transactions and Multiuser Usage. 815
37.1 Introduction . 815
37.2 What Is a Transaction? . 815
37.3 Starting Transactions . 821
37.4 Savepoints . 822
37.5 Stored Procedures and Transactions 824
37.6 Problems with Multiuser Usage . 825
37.7 Locking . 829
37.8 Deadlocks . 830
37.9 The LOCK TABLE and UNLOCK TABLE Statements 830
37.10 The Isolation Level . 832
37.11 Waiting for a Lock . 834
37.12 Moment of Processing Statements 834
37.13 Working with Application Locks . 835
37.14 Answers . 837

APPENDIX A Syntax of SQL . 839
A.1 Introduction . 839
A.2 The BNF Notation . 839
A.3 Reserved Words in SQL . 843
A.4 Syntax Definitions of SQL Statements 845

APPENDIX B Scalar Functions . 903

APPENDIX C System Variables . 953

APPENDIX D Bibliography . 963

Index . 967

xvii i Contents

xix

About the Author

Rick F. van der Lans is author of the classic Introduction to SQL, the definitive
SQL guide that database developers have relied on for more than 20 years. This
book has been translated into various languages and has sold more than 100,000
copies.

He is an independent consultant, author, and lecturer specializing in database
technology, development tools, data warehousing, and XML. As managing director
of the Netherlands-based R20/Consultancy, he has advised many large companies
on defining their IT architectures.

Rick is an internationally acclaimed lecturer. Throughout his career, he has
lectured in many European countries, South America, USA, and Australia. He
chairs the European Meta Data Conference and DB2 Symposium, and writes
columns for several magazines. He was a member of the Dutch ISO committee
responsible for the ISO SQL Standard for seven years.

You can contact Rick via email at sql@r20.nl.

xx

Preface

INTRODUCTION

Many books have been written about MySQL, the best-known open source database
server. Then why another book? Most books about MySQL discuss a wide variety of
topics, such as the installation of MySQL, using MySQL from PHP, and security. As
a result, each topic cannot be explained in detail, and many questions of readers
cannot be answered. This book focuses on one aspect of MySQL: the language that
drives MySQL, which is SQL (Structured Query Language). Every developer work-
ing with MySQL should master this language thoroughly.

Especially in the more recent versions, SQL has been extended considerably.
Unfortunately, many developers still limit themselves to those features that were
available in the first versions. Not all the features of MySQL are fully used, which
means that the product is not employed in the best way possible. The result is that
complex statements and programs must be built needlessly. When you buy a house,
you also do not restrict yourself to 20 percent of the rooms, do you? That is why this
book contains a complete and detailed description of the SQL dialect as imple-
mented in MySQL version 5.0.18. It should be seen primarily as a textbook rather
than as a reference book; it will teach you the language, and you can complete the
exercises to test your knowledge. After reading this book, you should be familiar
with all the statements and features and some idiosyncrasies of MySQL’s SQL, and
you should be able to use it efficiently and effectively.

TOPICS

This book is completely devoted to the SQL dialect as implemented in MySQL. It
discusses every aspect of the language thoroughly and critically. These aspects of
SQL among others, are covered:

■ Querying data (joins, functions, and subqueries)

■ Updating data

■ Creating tables and views

■ Specifying primary and foreign keys and other integrity constraints

■ Using indexes

■ Considering data security

■ Developing stored procedures and triggers

■ Developing programs with PHP

■ Working with transactions

■ Using the catalog

FOR WHOM IS THIS BOOK INTENDED?
We recommend this book on MySQL’s SQL dialect to those who want to use the full
power of MySQL effectively and efficiently in practice. This book is therefore suit-
able for the following groups of people:

■ Developers who develop applications with the help of MySQL

■ Database managers who have to know the possibilities and impossibilities
of SQL

■ Students in higher education, including those in technical colleges, poly-
technics, universities, and sixth-form colleges

■ Designers, analysts, and consultants who have to deal, directly or indi-
rectly, with MySQL and/or SQL and want to know about its possibilities and
impossibilities

■ Home students who are interested in MySQL and/or SQL

■ Users who have the authority to use SQL to query the MySQL database of
the company or institute for which they are working

xxiPreface

■ Web site developers who are creating web sites with the help of MySQL
and languages such as PHP and Python

■ IT hobbyists who are interested in MySQL and want to develop an SQL
application using MySQL themselves

A PRACTICAL BOOK

This book should be seen primarily as a textbook and less as a reference work. To
this end, it contains many examples and exercises (with answers). Do not ignore the
exercises. Experience shows that you will learn the language more thoroughly and
more quickly by practicing often and doing many exercises.

THE BOOK’S WEB SITE

When you leaf through the book, you will come across numerous SQL statements.
Sometimes these are examples, and sometimes they are answers to questions. After
you have installed MySQL, you can run through these statements to see whether
they work and see their effects. You could type in all the statements again like a real
Spartan, but you can also make life easy for yourself by downloading all the state-
ments from the Internet. A special web site for this book, www.r20.nl, includes all
the SQL statements.

We also have used the web site for these purposes:

■ The web site includes an installation process and instructions for MySQL.
You will find useful tips for installing MySQL under Windows. The site also
explains the installation process of the example database.

■ If an error is found in the book, the web site will rectify the mistake.

■ Reader comments that could be of interest to others will be added periodi-
cally to site.

■ We even will consider making additional chapters available on the web site
in the future.

Therefore, keep an eye on this web site.

xxii Preface

www.r20.nl

PREREQUISITE KNOWLEDGE

Some general knowledge of programming languages and database servers is
required.

THE HISTORY OF THIS BOOK

It was 1984, and the database world was under the spell of a revolution. SQL had
started its triumphal procession. Vendors such as IBM and Oracle had introduced
the commercial versions of their SQL database servers, and the marketing machine
went at full speed. The market reacted positively to this rise of first-generation SQL
database servers. Many organizations decided to buy such a database server and
gradually phase out their existing products.

My employer at that time had decided to get involved in this tumult as well. The
company also wanted to make money with this new database language, and the plan
was to start organizing SQL courses. Because of my background knowledge, I was
charged with this task. That SQL would become such a success and that my agree-
ment to present the courses would have far- reaching consequences (personally as
well as professionally) never entered my mind.

After studying SQL closely, I started to develop the material for the course.
After teaching SQL for two years with great pleasure, I got an idea to write a book
about SQL. It would have to be a book completely dedicated to this language, with
its many possibilities and idiosyncrasies.

After producing gallons of blood, sweat, and tears, I completed the first Dutch
edition in 1986, entitled Het SQL Leerboek. The book did not focus on a specific
SQL database server, but on the SQL standard. Barely before the book was pub-
lished, I was asked to write an English version. That book, Introduction to SQL, was
published in 1987 as the first English book completely devoted to SQL. After that,
I wrote versions in German and Italian. Obviously, a need existed for information
about SQL. Everyone wanted to learn about SQL, but not much information was
available.

Because SQL was still young, development went fast. Statements were added,
extended, and improved. New implementations became available, new application
areas were discovered, and new versions of the SQL standard appeared. Soon a new
edition of the book had to be written. And more was to come. And this will not be
the last because SQL has gloriously won the revolution in the database world, and
no competition is in sight on the horizon.

xxii iPreface

Through the years, many vendors have implemented SQL. At first, all these
products had much in common, but slowly the number of differences increased. For
that reason, I decided in 2003 to write a book specifically dedicated to the SQL
dialect of MySQL. I thought it would be a piece of cake. I would use Introduction to
SQL as an example, add some details of MySQL, and remove a few general aspects.
How long could that take? Two weeks of hard work and some speed typing, and I’d
have the book ready. However, that appeared to be a serious underestimation. To
give a complete view of all the features, I had to dive deeply into the SQL dialect of
MySQL. This book, which definitely took more than two weeks of writing, is the
result of that time-consuming effort. Obviously, it is related to the book from which
it is derived; however, it contains many MySQL-related details not included in
Introduction to SQL.

AND FINALLY…
Writing this book was not a solo project. Many people have contributed to this book
or previous editions. I would like to use this preface to thank them for their help,
contributions, ideas, comments, mental support, and patience.

It does not matter how many times a writer reads his own work; editors remain
indispensable. A writer reads not what he has written, but what he thinks he has
written. In this respect, writing is like programming. That is why I owe a great deal
to the following persons for making critical comments and giving very helpful
advice: Klaas Brant, Marc van Cappellen, Ian Cargill, Corine Cools, Richard van
Dijk, Rose Endres, Wim Frederiks, Andrea Gray, Ed Jedeloo, Josien van der Laan,
Oda van der Lans, Deborah Leendertse, Arjen Lentz, Onno de Maar, Andrea Mau-
rino, Sandor Nieuwenhuijs, Henk Schreij, Dave Slayton, Aad Speksnijder, Nok van
Veen, John Vicherek, and David van der Waaij. They all have read this manuscript
(or parts of it) or the manuscript of a previous edition, a translation of it, or an
adjusted version.

I would like to thank Wim Frederiks and Roland Bouman separately for all the
hours they spent editing this book. Both patiently studied each page and pointed
out the errors and inconsistencies. I am very grateful to them for all the work they
put into this project.

I would also like to thank the thousands of students across the world whom I
have taught SQL over the past years. Their comments and recommendations have
been invaluable in revising this book. In addition, a large number of readers of the
previous edition responded to my request to send comments and suggestions. I want
to thank them for the trouble they took to put these in writing.

xxiv Preface

From the first day I started working on the project, I had the support of the
MySQL organization. They helped me by making the required software available. I
want to thank this group very much for the support and help.

Again, I owe Diane Cools many thanks. As an editor, she made this book read-
able to others. For a writer, it is also reassuring to find someone who, especially in
difficult times, keeps stimulating and motivating you. Thanks, Diane!

Finally, again I would like to ask readers to send comments, opinions, ideas,
and suggestions concerning the contents of the book to sql@r20.nl, referencing SQL
for MySQL Developers. Many thanks, in anticipation of your cooperation.

Rick F. van der Lans
Den Haag, The Netherlands, March 2007

xxvPreface

This page intentionally left blank This page intentionally left blank

Part I
Introduction

SQL is a compact and powerful language for working with databases.
Despite this compactness, it cannot be described simply in a few chap-
ters. We would do the language no justice then. And that certainly applies
to MySQL’s SQL dialect, which has many, many possibilities. For this rea-
son, we start this book with a number of introductory chapters that form
the first part.

In Chapter 1, “Introduction to MySQL,” we provide an overall
description of SQL, including its background and history, and the history
of MySQL. MySQL is open source software; in Section 1.8, we explain
what that really means. We also describe a number of concepts in the
relational model (the theory behind SQL).

This book contains many examples and exercises. So that you do not
have to learn a new database for each example, we use the same database
for most of these examples and exercises. This database forms the basis
for the administration of an international tennis league. Chapter 2, “The
Tennis Club Sample Database,” describes the structure of this database.
Look closely at this before you begin the exercises.

S Q L F O R M Y S Q L D E V E L O P E R S

1

We strongly recommend that you use MySQL when doing the exercises and get
some hands-on experience. For this, you have to download and install the software,
and create the example database. Chapter 3, “Installing the Software,” describes
how to do that. Note that for several aspects, we refer to the web site of the book.

This part closes with Chapter 4, “SQL in a Nutshell,” which reviews all the
important SQL statements. After reading this part, you should have both a general
idea of what SQL offers as a language and an overall impression of what this book
discusses.

2 SQL For My SQL Developers

3

Introduction to MySQL
C H A P T E R 1

1.1 INTRODUCTION

MySQL is a relational database server that supports the well-known SQL (Struc-
tured Query Language) database language. Therefore, MySQL is named after the
language that developers use to store, query, and later update data in a MySQL
database. In short, SQL is the native language of MySQL.

This chapter discusses the following topics. None of these topics is really
important for studying MySQL’s SQL. When you are familiar with these background
topics, you can jump to the next chapter.

■ The chapter starts with an explanation of basic subjects, such as the data-
base, database server, and database language.

■ SQL is based on theories of the relational model. To use SQL, some knowl-
edge of this model is invaluable. Therefore, Section 1.3 describes the rela-
tional model.

■ Section 1.4 briefly describes what SQL is, what can be done with the lan-
guage, and how it differs from other languages (such as Java, Visual Basic,
or PHP).

■ Section 1.5 covers the history of SQL.

■ Section 1.7 presents the most important current standards for SQL.

■ MySQL is open source software. Section 1.8 explains what that really means.

■ Section 1.9 discusses the history of MySQL and its vendors.

■ The chapter closes with a description of the structure of the book. The book
consists of several parts, with each part summarized in a few sentences.

1.2 DATABASE, DATABASE SERVER, AND DATABASE
LANGUAGE

SQL (Structured Query Language) is a database language used for formulating
statements processed by a database server. In this case, the database server is
MySQL. The first sentence of this paragraph contains three important concepts:
database, database server, and database language. We begin with an explanation of
each of these terms.

What is a database? This book uses a definition derived from Chris J. Date’s
definition (see [DATE95]):

A database consists of some collection of persistent data that is used by
the application systems of some given enterprise and managed by a data-
base-management system.

Therefore, card index files do not constitute a database. On the other hand, the
large files of banks, insurance companies, telephone companies, and the state
transport department can be considered databases. These databases contain data
about addresses, account balances, car registration plates, weights of vehicles, and
so on. For example, the company you work for probably has its own computers,
which are used to store salary-related data.

Data in a database becomes useful only if something is done with it. According
to the definition, data in the database is managed by a separate programming sys-
tem. This system is called a database server or database management system
(DBMS). MySQL is such a database server. A database server enables users to
process data stored in a database. Without a database server, it is impossible to look
at data in the database or to update or delete obsolete data. The database server
alone knows where and how data is stored. A definition of a database server appears
in [ELMA06], by R. Elmasri:

A database server is a collection of programs that enables users to create
and maintain a database.

A database server never changes or deletes the data in a database by itself;
someone or something has to give the command for this to happen. Examples of
commands that a user could give to the database server are ‘delete all data about
the vehicle with the registration plate number DR-12-DP’ or ‘give the names of all
the companies that haven’t paid the invoices of last March.’ However, users cannot
communicate with the database server directly; an application must present the

4 SQL for MySQL Developers

commands to a database server. An application always exists between the user and
the database server. Section 1.4 discusses this in more detail.

The definition of the term database also contains the word persistent. This
means that data in a database remains there permanently until it is changed or
deleted explicitly. If you store new data in a database and the database server sends
back the message that the storage operation was successful, you can be sure that
the data will still be there tomorrow (even if you switch off your computer). This is
unlike the data stored in the internal memory of a computer. If the computer is
switched off, that data is lost forever; it is not persistent.

Commands are relayed to a database server with the help of special languages,
called database languages. Users enter commands, also known as statements, that
are formulated according to the rules of the database language, using special soft-
ware; the database server then processes these commands. Every database server,
regardless of manufacturer, possesses a database language. Some systems support
more than one. All these languages are different, which makes it possible to divide
them into groups. The relational database languages form one of these groups. An
example of such a language is SQL.

How does a database server store data in a database? A database server uses
neither a chest of drawers nor a filing cabinet to hold information; instead, comput-
ers work with storage media such as tapes, floppy disks, and magnetic and optical
disks. The manner in which a database server stores information on these media is
very complex and technical, and this book does not explain the details. In fact, you
do not need this technical knowledge because one of the most important tasks of a
database server is to offer data independence. This means that users do not need to
know how or where data is stored. To users, a database is simply a large reservoir of
information. Storage methods are also completely independent of the database lan-
guage being used. In a way, this resembles the process of checking in luggage at an
airport. Travelers do not care where and how the airline stores their luggage; they
are interested only in whether the luggage arrives at their destinations.

Another important task of a database server is to maintain the integrity of the
data stored in a database. This means, first, that the database server has to make
sure that database data always satisfies the rules that apply in the real world. Take,
for example, the case of an employee who is allowed to work for one department
only. In a database managed by a database server, the database should not permit
any employee to be registered as working for two or more departments. Second,
integrity means that two different pieces of database data do not contradict one
another. This is also known as data consistency. (As an example, in one place in a
database, Mr. Johnson might be recorded as being born on August 4, 1964, and in
another place he might have a birth date of December 14, 1946. These two pieces

5CHAPTER 1 Introduction to MySQL

of data are obviously inconsistent.) Each database server is designed to recognize
statements that can be used to specify constraints. After these rules are entered, the
database server takes care of their implementation.

1.3 THE RELATIONAL MODEL

SQL is based on a formal and mathematical theory. This theory, which consists of a
set of concepts and definitions, is called the relational model. E. F. Codd defined
the relational model in 1970 while at IBM. He introduced the relational model in
the almost legendary article entitled “A Relational Model of Data for Large Shared
Data Banks” (see [CODD70]). This relational model provides a theoretical basis for
database languages. It consists of a small number of simple concepts for recording
data in a database, together with a number of operators to manipulate the data.
These concepts and operators are principally borrowed from set theory and predi-
cate logic. Later, in 1979, Codd presented his ideas for an improved version of the
model; see [CODD79] and [CODD90].

The relational model has served as an example for the development of various
database languages, including QUEL (see [STON86]), SQUARE (see [BOYC73a]),
and, of course, SQL. These database languages are based on the concepts and ideas
of that relational model and, therefore, are called relational database languages;
SQL is an example. The rest of this part concentrates on the following terms used in
the relational model, which appear extensively in this book:

■ Table

■ Column

■ Row

■ Null value

■ Constraint or integrity constraint

■ Primary key

■ Candidate key

■ Alternate key

■ Foreign key or referential key

Note that this is not a complete list of all the terms the relational model uses.
Part III, “Creating Database Objects,” discusses most of these terms. For more
extensive descriptions, see [CODD90] and [DATE95].

6 SQL for MySQL Developers

1.3.1 Table, Column, and Row
Data can be stored in a relational database in only one format: in tables. The official
name for a table is actually relation, and the term relational model stems from this
name. We have chosen to use the term table because SQL uses that word.

Informally, a table is a set of rows, with each row consisting of a set of values.
All the rows in a certain table have the same number of values. Figure 1.1 shows an
example of a table called the PLAYERS table. This table contains data about five
players who are members of a tennis club.

7CHAPTER 1 Introduction to MySQL

row PLAYERS tablecolumn value

PLAYERNO NAME INITIALS TOWN

Parmenter

Baker

Hope

Parmenter

Collins

Stratford

Stratford

Stratford

Inglewood

Eltham

R

E

PK

P

DD

6

44

83

100

27

FIGURE 1.1 The concepts value, row, column, and table

This PLAYERS table has five rows, one for each player. A row with values can
be considered a set of data elements that belong together. For example, in this
table, the first row consists of the values 6, Parmenter, R, and Stratford. This infor-
mation tells us that there is a player with number 6, that his last name is Parmenter
and his initial is R, and that he lives in the town Stratford.

PLAYERNO, NAME, INITIALS, and TOWN are the names of the columns in
the table. The PLAYERNO column contains the values 6, 44, 83, 100, and 27. This
set of values is also known as the population of the PLAYERNO column. Each
row has a value for each column. Therefore, the first row contains a value for the
PLAYERNO column and a value for the NAME column, and so on.

A table has two special properties:

■ The intersection of a row and a column can consist of only one value, an
atomic value. An atomic value is an indivisible unit. The database server can
deal with such a value only in its entirety.

■ The rows in a table have no specific order; you should not think in terms of
the first row, the last three rows, or the next row. Instead, consider the con-
tents of a table to be a set of rows in the true sense of the word.

1.3.2 Null Value
Columns are filled with atomic values. For example, such a value can be a number,
a word, or a date. A special value is the null value. The null value is comparable to
“value unknown” or “value not present.” Consider Figure 1.1 as an example again.
If we do not know the town of player 27, we could store the null value in the TOWN
column for the row belonging to player 27.

A null value must not be confused with the number zero or spaces. It should be
seen as a missing value. A null value is never equal to another null value, so two
null values are not equal to each other, but they are also not unequal. If we knew
whether two null values were equal or unequal, we would know something about
those null values. Then we could not say that the two values were (completely)
unknown. We discuss this later in more detail.

The term null value is, in fact, not entirely correct; we should be using the term
null instead. The reason is that it is not a value, but rather a gap in a table or a sig-
nal indicating that the value is missing. However, this book uses that term to stay in
line with various standards and products.

1.3.3 Constraints
The first section of this chapter described the integrity of the data stored in tables,
the database data. The contents of a table must satisfy certain rules, the so-called
integrity constraints (integrity rules). Two examples of integrity constraints are that
the player number of a player may not be negative, and two different players may
not have the same player number. Integrity constraints can be compared to road
signs. They also indicate what is allowed and what is not allowed.

A relational database server should enforce integrity constraints. Each time a
table is updated, the database server has to check whether the new data satisfies
the relevant integrity constraints. This is a task of the database server. The integrity
constraints must be specified first so that the database server knows what they are.

Integrity constraints can have several forms. Because some are used so fre-
quently, they have special names, such as primary key, candidate key, alternate
key, and foreign key. The analogy with the road signs applies here as well. Special
symbols have been invented for frequently used road signs, and these also have
been given names, such as a right-of-way sign or a stop sign. We explain those
named integrity constraints in the following sections.

8 SQL for MySQL Developers

FIGURE 1.2 Integrity constraints are the road signs of a database

1.3.4 Primary Key
The primary key of a table is a column (or a combination of columns) used as a
unique identification of rows in that table. In other words, two different rows in a
table may never have the same value in their primary key, and for every row in the
table, the primary key must always have one value. The PLAYERNO column in the
PLAYERS table is the primary key for this table. Therefore, two players may never
have the same number, and a player may never lack a number. The latter means
that null values are not allowed in a primary key.

We come across primary keys everywhere. For example, the table in which a
bank stores data about bank accounts has the column bank account number as pri-
mary key. Similarly, a table in which different cars are registered uses the license
plate as primary key (see Figure 1.3).

9CHAPTER 1 Introduction to MySQL

FIGURE 1.3 License plate as possible primary key

1.3.5 Candidate Key
Some tables contain more than one column (or combination of columns) that can act
as a primary key. These columns all possess the uniqueness property of a primary
key. Here, also, null values are not allowed. These columns are called candidate
keys. However, only one is designated as the primary key. Therefore, a table always
has at least one candidate key.

If we assume that passport numbers are also included in the PLAYERS table,
that column will be used as the candidate key because passport numbers are
unique. Two players can never have the same passport number. This column could
also be designated as the primary key.

1.3.6 Alternate Key
A candidate key that is not the primary key of a table is called an alternate key. Zero
or more alternate keys can be defined for a specific table. The term candidate key is
a general term for all primary and alternate keys. If every player is required to have
a passport, and if we would store that passport number in the PLAYERS table,
PASSPORTNO would be an alternate key.

1.3.7 Foreign Key
A foreign key is a column (or combination of columns) in a table in which the popu-
lation is a subset of the population of the primary key of a table (this does not have
to be another table). Foreign keys are sometimes called referential keys.

Imagine that, in addition to the PLAYERS table, a TEAMS table exists; see Fig-
ure 1.4. The TEAMNO column is the primary key of this table. The PLAYERNO
column in this table represents the captain of each particular team. This has to be
an existing player number, occurring in the PLAYERS table. The population of this
column represents a subset of the population of the PLAYERNO column in the
PLAYERS table. PLAYERNO in the TEAMS table is called a foreign key.

Now you can see that we can combine two tables. We do this by including
the PLAYERNO column in the TEAMS table, thus establishing a link with the
PLAYERNO column of the PLAYERS table.

10 SQL for MySQL Developers

FIGURE 1.4 The foreign key

1.4 WHAT IS SQL?
As already stated, SQL (Structured Query Language) is a relational database lan-
guage. Among other things, the language consists of statements to insert, update,
delete, query, and protect data. The following statements can be formulated
with SQL:

■ Insert the address of a new employee.

■ Delete all the stock data for product ABC.

■ Show the address of employee Johnson.

■ Show the sales figures of shoes for every region and for every month.

■ Show how many products have been sold in London the last three months.

■ Make sure that Mr. Johnson cannot see the salary data any longer.

11CHAPTER 1 Introduction to MySQL

NAME INITIALS TOWN

Parmenter

Baker

Hope

Parmenter

Col l ins

Strat ford

Strat ford

Strat ford

Ing lewood

Eltham

R

E

PK

P

DD

PLAYERNO

6

44
83

100

27

PLAYERS table

foreign key

TEAMS table

DIVISION

first

second

PLAYERNO

6

27

TEAMNO

1

2

Many vendors already have implemented SQL as the database language for
their database server. MySQL is not the only available database server in which
SQL has been implemented as database language. IBM, Microsoft, Oracle, and
Sybase have manufactured SQL products as well. Thus, SQL is not the name of a
certain product that has been brought to market only by MySQL.

We call SQL a relational database language because it is associated with data
that has been defined according to the rules of the relational model. (However, we
must note that, on particular points, the theory and SQL differ; see [CODD90].)
Because SQL is a relational database language, for a long time it has been grouped
with the declarative or nonprocedural database languages. By declarative and non-
procedural, we mean that users (with the help of statements) have to specify only
which data elements they want, not how they must be accessed one by one. Well-
known languages such as C, C++, Java, PHP, Pascal, and Visual Basic are exam-
ples of procedural languages.

Nowadays, however, SQL can no longer be called a pure declarative language.
Since the early 1990s, many vendors have added procedural extensions to SQL.
These make it possible to create procedural database objects such as triggers and
stored procedures; see Part IV, “Procedural Database Objects.” Traditional state-
ments such as IF-THEN-ELSE and WHILE-DO have also been added. Although most of
the well-known SQL statements are still not procedural by nature, SQL has changed
into a hybrid language consisting of procedural and nonprocedural statements.
Recently, MySQL has also been extended with these procedural database objects.

SQL can be used in two ways. First, SQL can be used interactively. For exam-
ple, a user enters an SQL statement on the spot, and the database server processes
it immediately. The result is also immediately visible. Interactive SQL is intended
for application developers and for end users who want to create reports themselves.

The products that support interactive SQL can be split in two groups: the some-
what old-fashioned products with a terminal-like interface and those with a modern
graphical interface. MySQL includes a product with a terminal-like interface that
bears the same name as the database server: mysql. Figure 1.5 shows this program.
First, an SQL statement is entered (SELECT * FROM PLAYERS); the result is shown
underneath as a table.

12 SQL for MySQL Developers

FIGURE 1.5 An example of the query program called mysql that can be used to
specify the SQL statements interactively

13CHAPTER 1 Introduction to MySQL

However, some products have a more graphical interface available for interac-
tive use, such as MySQL Query Browser from MySQL, SQLyog from Webyog, php-
MyAdmin, Navicat from PremiumSoft (see Figure 1.6), and WinSQL from
Synametrics (see Figure 1.7).

FIGURE 1.6 An example of the query program Navicat

FIGURE 1.7 An example of the query program WinSQL

The second way in which SQL can be used is called preprogrammed SQL. Here,
the SQL statements are embedded in an application that is written in another pro-
gramming language. Results from these statements are not immediately visible to
the user but are processed by the enveloping application. Preprogrammed SQL
appears mainly in applications developed for end users. These end users do not
need to learn SQL to access the data, but they work from simple screens and menus
designed for their applications. Examples are applications to record customer infor-
mation and applications to handle stock management. Figure 1.8 shows an example
of a screen with fields in which the user can enter the address without any know-
ledge of SQL. The application behind this screen has been programmed to pass cer-
tain SQL statements to the database server. The application therefore uses SQL
statements to transfer the information that has been entered into the database.

In the early stages of the development of SQL, only one method existed for pre-
programmed SQL, called embedded SQL. In the 1980s, other methods appeared.
The most important is called call level interface SQL (CLI SQL). Many variations of
CLI SQL exist, such as ODBC (Open Database Connectivity) and JDBC (Java Data-
base Connectivity). The most important ones are described in this book. The differ-
ent methods of preprogrammed SQL are also called the binding styles.

14 SQL for MySQL Developers

FIGURE 1.8 SQL is shielded in many applications; users can see only the input
fields.

The statements and features of interactive and preprogrammed SQL are virtu-
ally the same. By this, we mean that most statements that can be entered and
processed interactively can also be included (embedded) in an SQL application.
Preprogrammed SQL has been extended with a number of statements that were
added only to make it possible to merge the SQL statements with the non-SQL
statements. This book is primarily focused on interactive SQL. Preprogrammed
SQL is dealt with later in the book.

Three important components are involved in the interactive and prepro-
grammed processing of SQL statements: the user, the application, and the database
server (see Figure 1.9). The database server is responsible for storing and accessing
data on disk; the application and the user have nothing to do with this. The data-
base server processes the SQL statements that the application delivers. In a defined
way, the application and the database server can send SQL statements between
them. The result of an SQL statement is then returned to the user.

MySQL does not support embedded SQL. A CLI must be used to be capable of
working with preprogrammed SQL. MySQL has a CLI for all modern programming
languages, such as Java, PHP, Python, Perl, Ruby, and Visual Basic. Therefore, the
lack of embedded SQL is not a real problem.

15CHAPTER 1 Introduction to MySQL

FIGURE 1.9 The user, the application, and the database server are pivotal for the
processing of SQL.

1.5 THE HISTORY OF SQL
The history of SQL is closely tied to the history of an IBM project called System R.
The purpose of this project was to develop an experimental relational database
server that bore the same name as the project: System R. This system was built in
the IBM research laboratory in San Jose, California. The project was intended to
demonstrate that the positive usability features of the relational model could be
implemented in a system that satisfied the demands of a modern database server.

The System R project had to solve the problem that no relational database lan-
guages existed. A language called Sequel was developed as the database language
for System R. Designers R. F. Boyce and D. D. Chamberlin wrote the first articles
about this language; see [BOYC73a] and [CHAM76]. During the project, the lan-
guage was renamed SQL because the name Sequel conflicted with an existing trade-
mark. (However, the language is still often pronounced as ‘sequel’).

16 SQL for MySQL Developers

programprogramprogram

SQLSQLSQL

database server

The System R project was carried out in three phases. In the first phase, phase
zero (from 1974 to 1975), only a part of SQL was implemented. For example, the
join (for linking data from various tables) was not implemented yet, and only a sin-
gle-user version of the system was built. The purpose of this phase was to see
whether implementation of such a system was possible. This phase ended success-
fully; see [ASTR80].

Phase 1 started in 1976. All the program code written for Phase 0 was put aside
for a fresh start. Phase 1 comprised the total system. This meant, among other
things, incorporating the multiuser capability and the join. Development of Phase 1
took place between 1976 and 1977.

The final phase evaluated System R. The system was installed at various places
within IBM and with a large number of major IBM clients. The evaluation took
place in 1978 and 1979. The results of this evaluation are described in [CHAM80],
as well as in other publications. The System R project was finished in 1979.

Developers used the knowledge acquired and the technology developed in
these three phases to build SQL/DS. SQL/DS was the first commercially available
IBM relational database server. In 1981, SQL/DS came onto the market for the
operating system DOS/VSE, and the VM/CMS version arrived in 1983. In that same
year, DB2 was announced. Currently, DB2 is available for many operating systems.

IBM has published a great deal about the development of System R, which hap-
pened at a time when conferences and seminars focused greatly on relational data-
base servers. Therefore, it is not surprising that other companies began to build

17CHAPTER 1 Introduction to MySQL

FIGURE 1.10
Don Chamberlin, one
of the designers of SQL

relational systems as well. Some of them, such as Oracle, implemented SQL as the
database language. In the last few years, many SQL products have appeared. As a
result, SQL is now available for every possible system, large or small. Existing data-
base servers have also been extended to include SQL support.

1.6 FROM MONOLITHIC VIA CLIENT/SERVER
TO THE INTERNET

Section 1.4 describes the relationship between the database server MySQL and the
calling application. Applications send SQL statements to MySQL to have them
processed. The latter processes the statements and returns the results to the appli-
cation. Finally, the results are presented to the users. It is not necessary for MySQL
and the applications to run on the same machine for them to communicate with
each other. Roughly, three solutions or architectures are available; among them are
the client/server and Internet architectures.

The most simple architecture is the monolithic architecture (see Figure 1.11). In
a monolithic architecture, everything runs on the same machine. This machine can
be a large mainframe, a small PC, or a midrange computer with an operating system
such as UNIX or Windows. Because both the application and MySQL run on the
same computer, communication is possible through very fast internal communica-
tion lines. In fact, this involves two processes that communicate internally.

18 SQL for MySQL Developers

appl icat ion

SQL resul t

machine 1

MySQL

FIGURE 1.11
The monolithic
architecture

The second architecture is the client/server architecture. Several subforms of
this architecture exists, but we will not discuss them all here. It is important to real-
ize that in a client/server architecture, the application runs on a different machine
than MySQL (see Figure 1.12). This is called working with a remote database server.
Internal communication usually takes place through a local area network (LAN)
and occasionally through a wide area network (WAN). A user could start an appli-
cation on a PC in Paris and retrieve data from a database located in Sydney. Com-
munication would then probably take place through a satellite link.

19CHAPTER 1 Introduction to MySQL

cl ient machine

appl icat ion

SQL

MySQL

resul t

server
machine

FIGURE 1.12
The client/server
architecture

The third architecture is the Internet architecture. In this architecture, the
application running in a client/server architecture on the client machine is divided
into two parts (see the left part of Figure 1.13). The part that deals with the user, or
the user interface, runs on the client machine. The part that communicates with the
database server, also called the application logic, runs on the server machine. In this
book, these two parts are called, respectively, the client and the server application.

Probably no SQL statements exist in the client application, but there are state-
ments that call the server application. Languages such as HTML, JavaScript, and
VBScript are often used for the client application. The call goes via the Internet or
an intranet to the second machine; the well-known HyperText Transport Protocol

(HTTP) is mostly used for this. The call comes in at a web server. The web server
acts as a kind of switchboard operator and knows which call has been sent to which
server application.

Next, the call arrives at the server application. The server application sends the
needed SQL statements to MySQL. Many server applications run under the super-
vision of Java application servers, such as WebLogic from Bea Systems and Web-
Sphere from IBM.

MySQL returns the results of the SQL statements. In some way, the server
application translates this SQL result to an HTML page and returns the page to the
web server. As the switchboard operator, the web server knows the client applica-
tion to which the HTML answer must be returned.

The right part of Figure 1.13 shows a variant of the Internet architecture in which
the server application and MySQL have also been placed on different machines.

20 SQL for MySQL Developers

cl ient machine

cl ient
appl icat ion

HTTP HTML

web server

cal l HTML

server
appl icat ion

SQL resul t

MySQL

server
machine

cl ient machine

cl ient
appl icat ion

HTTP HTML

web server

cal l HTML

server
appl icat ion

SQL resul t

MySQL

server
machine

server
machine

FIGURE 1.13 The Internet architecture

The fact that MySQL and the database are remote is completely transparent to
the programmer who is responsible for writing the application and the SQL state-
ments. However, it is not irrelevant. Regarding the language and efficiency aspects
of SQL, it is important to know which architecture is used: monolithic, client/server,
or Internet. In this book, we will use the first one, but where relevant, we discuss
the effect of client/server or Internet architectures.

1.7 STANDARDIZATION OF SQL
As mentioned before, each SQL database server has its own dialect. All these
dialects resemble each other, but they are not completely identical. They differ in
the statements they support, or some products contain more SQL statements than
others; the possibilities of statements can vary as well. Sometimes two products sup-
port the same statement, but the result of that statement might vary among products.

To avoid differences among the many database servers from several vendors, it
was decided early to define a standard for SQL. The idea was that when the data-
base servers grew too much apart, acceptance by the SQL market would diminish.
A standard would ensure that an application with SQL statements would be easier
to transfer from one database server to another.

In about 1983, the International Standardization Organization (ISO) and the
American National Standards Institute (ANSI) started work on the development of
an SQL standard. The ISO is the leading internationally oriented normalization and
standardization organization; its objectives include the promotion of international,
regional, and national normalization. Many countries have local representatives of
the ISO. ANSI is the American branch of the ISO.

After many meetings and several false starts, the first ANSI edition of the SQL
standard appeared in 1986. This is described in the document ANSI X3.135-1986,
“Database Language SQL.” This SQL-86 standard is unofficially called SQL1. One
year later, the ISO edition, called ISO 9075-1987, “Database Language SQL,” was
completed; see [ISO87]. This report was developed under the auspices of Technical
Committee TC97. The area of activity of TC97 is described as Computing and Infor-
mation Processing. Its Subcommittee SC21 caused the standard to be developed.
This means that the standards of ISO and ANSI for SQL1 or SQL-86 are identical.

SQL1 consists of two levels. Level 2 comprises the complete document, and
Level 1 is a subset of Level 2. This implies that not all specifications of SQL1
belong to Level 1. If a vendor claims that its database server complies with the stan-
dard, the supporting level must be stated as well. This is done to improve the sup-
port and adoption of SQL1. It means that vendors can support the standard in two
phases, first Level 1 and then Level 2.

21CHAPTER 1 Introduction to MySQL

The SQL1 standard is very moderate with respect to integrity. For this reason, it
was extended in 1989 by including, among other things, the concepts of primary and
foreign keys. This version of the SQL standard is called SQL89. The companion ISO
document is called, appropriately, ISO 9075:1989, “Database Language SQL with
Integrity Enhancements.” The ANSI version was completed simultaneously.

Immediately after the completion of SQL1 in 1987, the development of a new
SQL standard began; see [ISO92]. This planned successor to SQL89 was called
SQL2 because the date of publication was not known at the start. In fact, SQL89
and SQL2 were developed simultaneously. Finally, SQL2 was published in 1992
and replaced SQL89, the current standard at that time. The new SQL92 standard is
an expansion of the SQL1 standard. Many new statements and extensions to exist-
ing statements have been added. For a complete description of SQL92, see
[DATE97].

Just like SQL1, SQL92 has levels. The levels have names instead of numbers:
entry, intermediate, and full. Full SQL is the complete standard. In terms of func-
tionality, intermediate SQL is a subset of full SQL, and entry SQL is a subset of
intermediate SQL. Entry SQL can roughly be compared to SQL1 Level 2, although
with some specifications extended. All the levels together can be seen as the rings
of an onion; see Figure 1.14. A ring represents a certain amount of functionality.
The bigger the ring, the more functionality is defined within that level. When a ring
falls within the other ring, it defines a subset of functionality.

22 SQL for MySQL Developers

SQL-92 ful l

SQL-92 intermediate

SQL-92 entry

SQL1 level 2

SQL1 level 1

FIGURE 1.14 The various levels of SQL1 and SQL92 represented as rings

At the time of this writing, many available products support entry SQL92. Some
even claim to support intermediate SQL92, but not one product supports full
SQL92. Hopefully, the support of the SQL92 levels will improve in the coming
years.

Since the publication of SQL92, several additional documents have been added
that extend the capabilities of the language. In 1995, SQL/CLI (Call Level Inter-
face) was published. Later the name was changed to CLI95; the end of this section
includes more about CLI95. The following year, SQL/PSM (Persistent Stored Mod-
ules), or PSM-96, appeared. The most recent addition, PSM96, describes function-
ality for creating so-called stored procedures. Chapter 31, “Stored Procedures,”
deals with this concept extensively. Two years after PSM96, SQL/OLB (Object Lan-
guage Bindings), or OLB-98, was published. This document describes how SQL
statements had to be included within the programming language Java.

Even before the completion of SQL92, the development of its successor began:
SQL3. In 1999, the standard was published and bore the name SQL:1999. To be
more in line with the names of other ISO standards, the hyphen that was used in the
names of the previous editions was replaced by a colon. And because of the prob-
lems around the year 2000, it was decided that 1999 would not be shortened to 99.
See [GULU99], [MELT01], and [MELT03] for more detailed descriptions of this
standard.

When SQL:1999 was completed, it consisted of five parts: SQL/Framework,
SQL/Foundation, SQL/CLI, SQL/PSM, and SQL/Bindings. SQL/OLAP, SQL/MED
(Management of External Data), SQL/OLB, SQL/Schemata and SQL/JRT (Routines
and Types using the Java Programming Language), and SQL/XML(XML-Related
Specifications) were added later, among other things. Thus, the current SQL stan-
dard of ISO consists of a series of documents. They all begin with the ISO code
9075. For example, the complete designation of the SQL/Framework is ISO/IEC
9075-1:2003.

Besides the 9075 documents, another group of documents focuses on SQL. The
term used for this group is usually SQL/MM, short for SQL Multimedia and Appli-
cation Packages. All these documents bear the ISO code 13249. SQL/MM consists
of five parts. SQL/MM Part 1 is the SQL/MM Framework, Part 2 focuses on text
retrieval (working with text), Part 3 is dedicated to spatial applications, Part 4
involves still images (such as photos), and Part 5 deals with data mining (looking for
trends and patterns in data).

In 2003, a new edition of SQL/Foundation appeared, along with new editions of
some other documents, such as SQL/JRT and SQL/Schemata. At this moment, this
group of documents can be seen as the most recent version of the international SQL
standard. We refer to it by the abbreviation SQL:2003.

23CHAPTER 1 Introduction to MySQL

Other organizations previously worked on the standardization of SQL, including
The Open Group (then called the X/Open Group) and the SQL Access Group. The
first does not get much attention any longer, so this book does not discuss it.

In July 1989, a number of mainly American vendors of SQL database servers
(among them Informix, Ingres, and Oracle) set up a committee called the SQL
Access Group. The objective of the SQL Access Group is to define standards for the
interoperability of SQL applications. This means that SQL applications developed
using those specifications are portable between the database servers of the associ-
ated vendors and that these applications can simultaneously access a number of
different database servers. At the end of 1990, the first report of the SQL Access
Group was published and defined the syntax of a so-called SQL application inter-
face. The first demonstrations in this field emerged in 1991. Eventually, the ISO
adopted the resulting document, and it was published under the name SQL/CLI.
This document was mentioned earlier.

The most important technology that is derived from the work of the Open SQL
Access Group—and, therefore from SQL/CLI—is Open Database Connectivity
(ODBC), from Microsoft.

Finally, an organization called the Object Database Management Group
(ODMG) is aimed at the creation of standards for object-oriented databases; see
[CATT97]. Part of these standards is a declarative language to query and update
databases, called Object Query Language (OQL). It is claimed that SQL has served
as a foundation for OQL and, although the languages are not the same, they have a
lot in common.

It is correct to say that a lot of time and money has been invested in the stan-
dardization of SQL. But is a standard that important? The following practical
advantages would accrue if all database servers supported exactly the same stan-
dardized database language.

■ Increased portability—An application could be developed for one data-
base server and could run at another without many changes.

■ Improved interchangeability—Because database servers speak the same
language, they could communicate internally with each other. Applications
also could access different databases more simply.

■ Reduced training costs—Programmers could switch faster from one data-
base server to another because the language would remain the same; they
would not have to learn a new database language.

■ Extended life span—Standardized languages tend to survive longer, and
this also applies to the applications written in such languages. COBOL is a
good example of this.

24 SQL for MySQL Developers

MySQL supports a considerable part of the SQL92 standard. Especially since
Version 4, MySQL has been extended considerably in this field. Currently, the
objective seems to be to develop MySQL more according to the standard. In other
words, when the MySQL organization wants to add something new to MySQL and
something is written about it in the standard, the group keeps to that standard.

1.8 WHAT IS OPEN SOURCE SOFTWARE?
MySQL is open source software. But what is open source software? Most software
products that we buy and use could be called closed source software. The source
code of this software cannot be adjusted. We do not have access to the source code;
what we buy is compiled code. For example, we cannot modify the hyphenation
algorithm of Microsoft Word. This code was written by a Microsoft programmer
somewhere in Seattle and cannot be changed; it is blocked for everyone. When you
want to change something, you have to pass on your demands to Microsoft.

The opposite applies to the source code of open source software. Open source
code can actually be modified because the vendor includes the source code. This
also applies to the source code of MySQL. When you think that you can improve
MySQL or extend its functionality, you go ahead and try. You try to find the part in
the source code that you want to improve and apply the desired changes. Next you
compile and link the existing code to the code that you just wrote, and you have cre-
ated an improved version. In short, the source code is open and accessible to you.

You can even go further. When you think your improved code is really good and
useful, you can send it to the vendor of the open source software product. The
developers then decide whether they want to add your code to the standard code. If
they do, others can enjoy your work in the future. If they don’t, you can become
such a vendor yourself, as long as you provide your new source code publicly. So
either way, an open source license ensures that open source software is improved
and is spread into the world.

In short, open source software—therefore, also MySQL—is changeable. That is
easy to understand. Most open source software is also free to use. However, when
we talk about selling software that includes open source software, it becomes a dif-
ferent story. MySQL is supplied according to the use and payment rules recorded in
the GNU General Public License (GPL). For details, refer to the documentation of
MySQL; we recommend that you study this carefully.

25CHAPTER 1 Introduction to MySQL

1.9 THE HISTORY OF MYSQL
At first, MySQL was not intended to be a commercial product. A new application
had to be written that would access index sequential files. Normally, a programmer
has to use a very simplistic interface to manipulate the data in such files. Much
code has to be written, and that surely does not help the productivity of the pro-
grammers. The developers of this application wanted to use an SQL interface as
interface to these files.

This need faced the final founders of MySQL: David Axmark, Allan Larsson,
and Michael “Monty” Widenius. They decided to search the market for a product
that already offered that SQL interface. They found a product called Mini SQL,
often shortened to mSQL. This product still is supplied by the Australian Hughes
Technologies.

After trying out this product, the developers felt that Mini SQL was not power-
ful enough for their application. They decided to develop a product comparable to
Mini SQL themselves. With that, MySQL was born. However, they liked the inter-
face of Mini SQL, which is why the interfaces of MySQL and Mini SQL still resem-
ble each other.

Initially, the company MySQL AB was founded in Sweden, and the initial
development was done there as well. Nowadays, the developers can be found all
over the world, from the United States to Russia. This is an example of a modern
company that relies heavily on technologies such as the Internet and e-mail and on
the advantages of open source software to develop its database server.

Version 3.11.0, the first version shown to the outside world, was launched in
1996. Before that, only the developers themselves used MySQL. From the begin-
ning, it was an open source product. Since 2000, the product has been released
according to the rules specified in the GPL.

Only three years after the introduction, in 1999, the company MySQL AB was
founded. Before that, a somewhat informally operating group of developers man-
aged the software.

This book describes Version 5.0.18 of MySQL, which was released in the sum-
mer of 2006. Much has changed since that first commercial version—in particular,
the SQL dialect has been extended considerably. For years, much has been done to
bring MySQL more in line with the SQL92 standard. That also has increased the
portability between MySQL on one hand and other SQL database servers, such as
DB2 from IBM, SQL Server from Microsoft, and Oracle10g from Oracle, on the
other hand.

26 SQL for MySQL Developers

Despite the extensions, many customers still use the SQL dialect of Version 3,
even when they run Versions 4 or 5. The consequence of this restriction is that they
do not use the full power of MySQL. Restricting yourself with respect to SQL leads
to unnecessarily complex applications. Many lines of code can be reduced to one
simple SQL statement.

Finally, how MySQL got its name has remained a mystery for a long time. How-
ever, Monty, one of the founders, has admitted that his eldest daughter is called My.

1.10 THE STRUCTURE OF THIS BOOK

This chapter concludes by describing the structure of this book. Because of the
many chapters in the book, we divided it into sections.

Part I, “Introduction,” consists of several introductory topics and includes this
chapter. Chapter 2, “The Tennis Club Sample Database,” contains a detailed
description of the database used in most of the examples and exercises. This data-
base is modeled on the administration of a tennis club’s competitions. Chapter 4,
“SQL in a Nutshell,” gives a general overview of SQL. After reading this chapter,
you should have a general overview of the capabilities of SQL and a good idea of
what awaits you in the rest of this book

Part II, “Querying and Updating Data,” focuses completely on querying and
updating tables. It is largely devoted to the SELECT statement. Many examples illus-
trate all its features. We devote a great deal of space to this SELECT statement
because this is the statement most often used and because many other statements
are based on it. Chapter 19, “Working with XML Documents,” describes how exist-
ing database data can be updated and deleted, and how new rows can be added to
tables.

Part III, “Creating Database Objects,” describes the creation of database
objects. The term database object is the generic name for all objects from which a
database is built. For instance, this chapter discusses tables; primary, alternate,
and foreign keys; indexes; and views. This part also describes data security.

Part IV, “Procedural Database Objects,” describes stored procedures, stored
functions, triggers, and events. Stored procedures and stored functions are pieces of
code stored in the database that can be called from applications. Triggers are pieces
of code as well, but they are invoked by MySQL itself, for example, to perform
checks or to update data automatically. Informally, events are triggers that are auto-
matically started on a certain time of the day.

27CHAPTER 1 Introduction to MySQL

Part V, “Programming with SQL,” deals with programming in SQL. MySQL can
be called from many programming languages; those used most are PHP, Python,
and Perl. This part uses PHP to illustrate how SQL statements are embedded inside
a programming language. The following concepts are explained in this part: trans-
action, savepoint, rollback of transactions, isolation level, and repeatable read.

The book ends with a number of appendices and an index. Appendix A, “Syn-
tax of SQL,” contains the definitions of all the SQL statements discussed in the
book. Appendix B, “Scalar Functions,” describes all the functions that SQL sup-
ports. Appendix C, “System Variables,” lists all the system variables, and Appen-
dix D, “Bibliography,” contains a list of references.

28 SQL for MySQL Developers

29

The Tennis Club Sample
Database

C H A P T E R 2

2.1 INTRODUCTION

This chapter describes a database that a tennis club could use to record its players’
progress in a competition. Most of the examples and exercises in this book are
based on this database, so you should study it carefully.

2.2 DESCRIPTION OF THE TENNIS CLUB

The tennis club was founded in 1970. From the beginning, some administrative
data was stored in a database. This database consists of the following tables:

■ PLAYERS

■ TEAMS

■ MATCHES

■ PENALTIES

■ COMMITTEE_MEMBERS

The PLAYERS table contains data about players who are members of the club,
such as names, addresses, and dates of birth. Players can join the club only at the
first of January of a year. Players cannot join the club in the middle of the year.

The PLAYERS table contains no historical data. Any player who gives up mem-
bership disappears from the table. If a player moves, the new address overwrites the
old address. In other words, the old address is not retained anywhere.

The tennis club has two types of members: recreational players and competition
players. The first group plays matches only among themselves (that is, no matches

against players from other clubs). The results of these friendly matches are not
recorded. Competition players play in teams against other clubs, and the results of
these matches are recorded. Regardless of whether he or she plays competitively,
each player has a unique number assigned by the club. Each competition player
must also be registered with the tennis league, and this national organization gives
each player a unique league number. This league number usually contains digits,
but it can also consist of letters. If a competition player stops playing in the compe-
tition and becomes a recreational player, his or her league number correspondingly
disappears. Therefore, recreational players have no league number, but they do
have a player number.

The club has a number of teams taking part in competitions. The captain of
each team and the division in which it is currently competing are recorded. It is not
necessary for the captain to have played a match for the team. It is possible for a
certain player to be a captain of two or more teams at a certain time. Again, this
table records no historical data. If a team is promoted or relegated to another divi-
sion, the new information simply overwrites the record. The same goes for the cap-
tain of the team; when a new captain is appointed, the number of the former captain
is overwritten.

A team consists of a number of players. When a team plays against a team from
another tennis club, each player of that team plays against a player of the opposing
team (for the sake of simplicity, assume that matches in which couples play against
each other, the so-called doubles and mixes, do not occur). The team for which the
most players win their matches is the winner.

A team does not always consist of the same people, and reserves are sometimes
needed when the regular players are sick or on vacation. A player can play matches
for several teams. So when we say “the players of a team,” we mean the players who
have played at least one match in that team. Again, only players with league num-
bers are allowed to play official matches.

Each match consists of a number of sets. The player who wins the most sets is
the winner. Before the match begins, it is agreed how many sets must be won to win
the match. Generally, the match stops after one of the two players has won two or
three sets. Possible end results of a tennis match are 2–1 or 2–0 if play continues
until one player wins two sets (best of three), or 3–2, 3–1, or 3–0 if three sets need
to be won (best of five). A player either wins or loses a match; a draw is not possi-
ble. The MATCHES table records for each match separately which player was in
the match and for which team he played. In addition, it records how many sets the
player won and lost. From this, we can conclude whether the player won the match.

If a player behaves badly (arrives late, behaves aggressively, or does not show
up) the league imposes a penalty in the form of a fine. The club pays these fines and

30 SQL for MySQL Developers

records them in a PENALTIES table. As long as the player continues to play com-
petitively, the record of all his or her penalties remains in this table.

If a player leaves the club, all his or her data in the five tables is destroyed. If
the club withdraws a team, all data for that team is removed from the TEAMS and
MATCHES tables. If a competition player stops playing matches and becomes a
recreational player again, all matches and penalty data is deleted from the relevant
tables.

Since January 1, 1990, a COMMITTEE_MEMBERS table has kept information
about who is on the committee. Four positions exist: chairman, treasurer, secretary,
and general member. On January 1 of each year, a new committee is elected. If a
player is on the committee, the beginning and ending dates of his or her committee
are recorded. If someone is still active, the end date remains open. Figure 2.1 shows
which player was on the committee in which period.

31CHAPTER 2 The Tennis Club Sample Database

P
L

A
Y

E
R

secretary

secretary

secretary

secretary

chairman

chairmanmember

member

member

member

member

membertreasurer

treasurer

treasurer

treasurer

treasurer

1
-1

-1
9

9
1

1
-1

-1
9

9
2

1
-1

-1
9

9
3

1
-1

-1
9

9
4

1
-1

-1
9

9
0

n
o

w

2

6

8

27

57

95

112

FIGURE 2.1 Which player occupied which position on the committee in which
period?

Following is a description of the columns in each of the tables.

PLAYERS

PLAYERNO Unique player number assigned by the club.
NAME Surname of the player, without initials.
INITIALS Initials of the player. (No full stops or spaces are used.)
BIRTH_DATE Date on which the player was born.
SEX Sex of the player: M(ale) or F(emale).

continues

32 SQL for MySQL Developers

JOINED Year in which the player joined the club. (This value cannot be
smaller than 1970, the year in which the club was founded.)

STREET Name of the street on which the player lives.
HOUSENO Number of the house.
POSTCODE Postcode.
TOWN Town or city in which the player lives. Assume in this example that

place-names are unique for town or cities; in other words, there can
never be two towns with the same name.

PHONENO Area code followed by a hyphen and then the subscriber’s number.
LEAGUENO League number assigned by the league; a league number is unique.

TEAMS

TEAMNO Unique team number assigned by the club.
PLAYERNO Player number of the player who captains the team. In principle a

player may captain several teams.
DIVISION Division in which the league has placed the team.

MATCHES

MATCHNO Unique match number assigned by the club.
TEAMNO Number of the team.
PLAYERNO Number of the player.
WON Number of sets that the player won in the match.
LOST Number of sets that the player lost in the match.

PENALTIES

PAYMENTNO Unique number for each penalty the club has paid. The club
assigns this number.

PLAYERNO Number of the player who has incurred the penalty.
PAYMENT_DATE Date on which the penalty was paid. The year of this date should

not be earlier than 1970, the year in which the club was founded.
AMOUNT Amount in dollars incurred for the penalty.

COMMITTEE_MEMBERS

PLAYERNO Number of the player.
BEGIN_DATE Date on which the player became an active member of the commit-

tee. This date should not be earlier than January 1, 1990, because
this is the date on which the club started to record this data.

END_DATE Date on which the player resigned his position in the committee.
This date should not be earlier than the BEGIN_DATE but can be
absent.

POSITION Name of the position.

2.3 THE CONTENTS OF THE TABLES

The contents of the tables are shown here. These rows of data form the basis of most
of the examples and exercises. Some of the column names in the PLAYERS table
have been shortened because of space constraints.

The PLAYERS table:

PLAYERNO NAME INIT BIRTH_DATE SEX JOINED STREET ...
-------- --------- ---- ---------- --- ------ -------------- ---

2 Everett R 1948-09-01 M 1975 Stoney Road ...
6 Parmenter R 1964-06-25 M 1977 Haseltine Lane ...
7 Wise GWS 1963-05-11 M 1981 Edgecombe Way ...
8 Newcastle B 1962-07-08 F 1980 Station Road ...
27 Collins DD 1964-12-28 F 1983 Long Drive ...
28 Collins C 1963-06-22 F 1983 Old Main Road ...
39 Bishop D 1956-10-29 M 1980 Eaton Square ...
44 Baker E 1963-01-09 M 1980 Lewis Street ...
57 Brown M 1971-08-17 M 1985 Edgecombe Way ...
83 Hope PK 1956-11-11 M 1982 Magdalene Road ...
95 Miller P 1963-05-14 M 1972 High Street ...
100 Parmenter P 1963-02-28 M 1979 Haseltine Lane ...
104 Moorman D 1970-05-10 F 1984 Stout Street ...
112 Bailey IP 1963-10-01 F 1984 Vixen Road ...

The PLAYERS table (continued):

PLAYERNO ... HOUSENO POSTCODE TOWN PHONENO LEAGUENO
-------- --- ------- -------- --------- ---------- --------

2 ... 43 3575NH Stratford 070-237893 2411
6 ... 80 1234KK Stratford 070-476537 8467
7 ... 39 9758VB Stratford 070-347689 ?
8 ... 4 6584RO Inglewood 070-458458 2983
27 ... 804 8457DK Eltham 079-234857 2513
28 ... 10 1294QK Midhurst 071-659599 ?
39 ... 78 9629CD Stratford 070-393435 ?
44 ... 23 4444LJ Inglewood 070-368753 1124
57 ... 16 4377CB Stratford 070-473458 6409
83 ... 16A 1812UP Stratford 070-353548 1608
95 ... 33A 5746OP Douglas 070-867564 ?
100 ... 80 1234KK Stratford 070-494593 6524
104 ... 65 9437AO Eltham 079-987571 7060
112 ... 8 6392LK Plymouth 010-548745 1319

The TEAMS table:

TEAMNO PLAYERNO DIVISION
------ -------- --------

1 6 first
2 27 second

33CHAPTER 2 The Tennis Club Sample Database

The MATCHES table:

MATCHNO TEAMNO PLAYERNO WON LOST
------- ------ -------- --- ----

1 1 6 3 1
2 1 6 2 3
3 1 6 3 0
4 1 44 3 2
5 1 83 0 3
6 1 2 1 3
7 1 57 3 0
8 1 8 0 3
9 2 27 3 2
10 2 104 3 2
11 2 112 2 3
12 2 112 1 3
13 2 8 0 3

The PENALTIES table:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

1 6 1980-12-08 100.00
2 44 1981-05-05 75.00
3 27 1983-09-10 100.00
4 104 1984-12-08 50.00
5 44 1980-12-08 25.00
6 8 1980-12-08 25.00
7 44 1982-12-30 30.00
8 27 1984-11-12 75.00

The COMMITTEE_MEMBERS table:

PLAYERNO BEGIN_DATE END_DATE POSITION
-------- ---------- ---------- ---------

2 1990-01-01 1992-12-31 Chairman
2 1994-01-01 ? Member
6 1990-01-01 1990-12-31 Secretary
6 1991-01-01 1992-12-31 Member
6 1992-01-01 1993-12-31 Treasurer
6 1993-01-01 ? Chairman
8 1990-01-01 1990-12-31 Treasurer
8 1991-01-01 1991-12-31 Secretary
8 1993-01-01 1993-12-31 Member
8 1994-01-01 ? Member
27 1990-01-01 1990-12-31 Member
27 1991-01-01 1991-12-31 Treasurer
27 1993-01-01 1993-12-31 Treasurer
57 1992-01-01 1992-12-31 Secretary
95 1994-01-01 ? Treasurer
112 1992-01-01 1992-12-31 Member
112 1994-01-01 ? Secretary

34 SQL for MySQL Developers

2.4 INTEGRITY CONSTRAINTS

Of course, the contents of the tables must satisfy a number of integrity constraints.
For example, two players may not have the same player number, and every player
number in the PENALTIES table must also appear in the MATCHES table. This
section lists all the applicable integrity constraints.

35CHAPTER 2 The Tennis Club Sample Database

PENALTIES table

PAYMENTNO

PLAYERNO

PAYMENT_DATE

AMOUNT

COMMITTEE_MEMBER table

PLAYERNO

BEGIN_DATE

END_DATE (NULL)

POSITION (NULL)

PLAYERS table

PLAYERNO

NAME

INITIALS

BIRTH_DATE (NULL)

SEX

JOINED

STREET

HOUSENO (NULL)

TOWN

PHONENO (NULL)

LEAGUENO (NULL)

TEAMS table

TEAMNO

PLAYERNO

DIVISION

MATCHES table

MATCHNO

TEAMNO

PLAYERNO

WON

LOST

POSTCODE (NULL)

FIGURE 2.2 Diagram of the relationships between the tennis club database tables

A primary key has been defined for each table. The following columns are the
primary keys for their respective tables. Figure 2.2 contains a diagram of the data-
base. A double-headed arrow at the side of a column (or combination of columns)
indicates the primary key of a table:

■ PLAYERNO of PLAYERS

■ TEAMNO of TEAMS

■ MATCHNO of MATCHES

■ PAYMENTNO of PENALTIES

■ PLAYERNO plus BEGIN_DATE of COMMITTEE_MEMBERS

The example database has no alternate keys. The LEAGUENO column in the
PLAYERS table looks like one but isn’t. All the values are unique, but the column
also allows null values and, therefore, can be no alternate key.

The database supports five foreign keys. In Figure 2.2, single-headed arrows
show the foreign keys; these run from one table to another (this notation, in which
the arrows point to the primary key, is used in [DATE95] and elsewhere). The for-
eign keys are as follows:

■ From TEAMS to PLAYERS—Each captain of a team is also a player. The
set of player numbers from the TEAMS table is a subset of the set of player
numbers from the PLAYERS table.

■ From MATCHES to PLAYERS—Each player who competes for a particu-
lar team must appear in the PLAYERS table. The set of player numbers from
the MATCHES table is a subset of the set of player numbers from the
PLAYERS table.

■ From MATCHES to TEAMS—Each team that appears in the MATCHES
table must also be present in the TEAMS table because a player can compete
for only a registered team. The set of team numbers from the MATCHES
table is a subset of the set of team numbers from the TEAMS table.

■ From PENALTIES to PLAYERS—A penalty can be imposed on only
players appearing in the PLAYERS table. The set of player numbers from
the PENALTIES table is a subset of the set of player numbers from the
PLAYERS table.

■ From COMMITTEE_MEMBERS to PLAYERS—Each player who is or
was a member of the committee must also be present in the PLAYERS table.
The set of player numbers from the COMMITTEE_MEMBERS table is a sub-
set of the set of player numbers from the PLAYERS table.

The following integrity constraints also hold:

■ Two players cannot have identical league numbers.

■ The year of birth of a player must be earlier than the year in which he or she
joined the club.

■ The sex of a player should always be M or F.

■ The year in which the player joined the club should be greater than 1969
because the tennis club was founded in 1970.

■ The postcode must always be a code of six characters.

■ The division of a team can be nothing but first or second.

■ Both the columns WON and LOST must have a value between 0 and 3.

■ The payment date should be January 1, 1970, or later.

■ Each penalty amount must always be greater than zero.

■ The begin date in the COMMITTEE_MEMBERS table should always be
later than or equal to January 1, 1990, because recording of this data was
started on that day.

■ The end date on which the player ended service as a committee member
must always be later than the begin date.

36 SQL for MySQL Developers

37

Installing the Software
C H A P T E R 3

3.1 INTRODUCTION

As already mentioned in the preface, we advise that you replay the examples in this
book and do the exercises. This will definitely improve your knowledge of MySQL
and pleasure in reading this book.

This chapter describes where to find the required software and the information
needed to install all the software necessary. It also indicates how to download the
code for the many examples. For practical reasons, we refer frequently to the book’s
web site. Here you will find useful information.

3.2 DOWNLOADING MYSQL
You can download MySQL free from the web site of the vendor, www.mysql.com,
where you will find the software for many different operating systems. Choose the
version that suits you best. This book assumes that you will be using Version 5.0 or
higher. Of course, you can also process the SQL statements in this book with newer
versions of MySQL.

This book deliberately does not indicate where on the web site you can find the
software and the documentation. The structure of this web site changes rather fre-
quently, so this book would contain out-of-date descriptions too quickly.

www.mysql.com

3.3 INSTALLATION OF MYSQL
On the vendor’s web site, you will find documentation describing how to install
MySQL. You can use this documentation or visit the book’s web site: www.r20.nl.
Here you will find a detailed plan that describes the installation step by step,
including many screen shots. This plan might be easier to understand than the ven-
dor’s documentation.

If you have comments on the installation description, please let me know so we
can improve the web site if necessary.

38 SQL for MySQL Developers

N O T E
We have deliberately chosen not to include the installation process in this
book because it differs for each operating system and can change with
every new version of MySQL.

3.4 INSTALLING A QUERY TOOL

This book assumes that you will use a query tool such as MySQL Query Browser,
SQLyog, or WinSQL to process your SQL statements. However, these are not data-
base servers, but programs that enable you to simply enter SQL statements interac-
tively under Windows or Linux. They work together with MySQL and most other
database servers. You also can download most of these query tools for free from the
vendor’s web site. Again, as with MySQL, we strongly recommend that you install
one of those query tools.

3.5 DOWNLOADING SQL STATEMENTS FROM THE

WEB SITE

As mentioned in the preface, the accompanying web site contains all the SQL state-
ments used in this book. This section briefly describes how you can download them.
This is a good time to do so because you’ll need these statements to create the sam-
ple database.

The URL of the book’s web site is www.r20.nl. The statements are stored in sim-
ple text files; by cutting and pasting, you can easily copy them to any product. You
can open them with any text editor.

www.r20.nl
www.r20.nl

A separate file exists for each chapter, as clearly indicated on the web site. In
the file, you will find in front of each SQL statement an identification to help you
search for them. For example, Example 7.1 (the first example in Chapter 7,
“SELECT Statement: The FROM Clause,”) has this as its identification:

Example 7.1:

Likewise, the following text is included to find Answer 12.6:

Answer 12.6:

3.6 READY?
If all went well, you have now installed MySQL and a query tool. If you want, you
can start to play with SQL. However, the sample database is missing. The next
chapter describes how to create that database.

39CHAPTER 3 Installing the Software

This page intentionally left blank This page intentionally left blank

41

SQL in a Nutshell
C H A P T E R 4

4.1 INTRODUCTION

This chapter uses examples to illustrate the capabilities of the database language
SQL. We discuss most SQL statements briefly; other chapters describe the details
and all the features. The purpose of this chapter is to give you a feeling of what SQL
looks like and what this book covers.

The first sections also explain how to create the sample database. Be sure to
execute the statements from these sections because almost all the examples and
exercises in the rest of this book are based upon this database.

4.2 LOGGING ON TO THE MYSQL DATABASE SERVER

To do anything with SQL (this applies to creating the sample database as well), you
must log on to the MySQL database server. MySQL requires that applications iden-
tify themselves before manipulating the data in the database. In other words, the
user needs to log on by using an application. Identification is done with the help of
a user name and a password. Therefore, this chapter begins by describing how to log
on to MySQL.

First, you need a user name. However, to create a user (with a name and pass-
word), you must log on first—a classic example of a chicken-and-egg problem. To
end this deadlock, most database servers create several users during the installa-
tion procedure. Otherwise, it would be impossible to log on after the installation.
One of these users is called root and has an identical password (if you have followed
the installation procedure described in the previous chapter).

How logging on really takes place depends on the application that is used. For
example, with the query tool WinSQL, the logon screen looks similar to Figure 4.1.

42 SQL for MySQL Developers

FIGURE 4.1 The logon screen of WinSQL

The user name is entered in the User ID text box, and the password in the Pass-
word text box. In both cases, you type root. For security reasons, the password char-
acters appear as asterisks. User names and passwords are case sensitive, so be sure
you type them correctly—not with capitals. After you enter the name and password,
you can log on and start entering SQL statements.

When you use the client application called mysql that is included with MySQL,
the process of logging on looks different but is still comparable (see Figure 4.2).
The code –u stands for user, behind which the user name (root) is specified, followed
by the code -p. Next the application wants to know the password. Later sections
explain this in more detail.

The web site of this book contains detailed information about how to log on with
different programs.

After you have logged on successfully with the users that are created during the
installation procedure, you can introduce new users and create new tables.

43CHAPTER 4 SQL in a Nutshell

FIGURE 4.2 Logging on with mysql

4.3 CREATING NEW SQL USERS

Section 1.4 described the concept of a user and also mentioned briefly the respec-
tive roles of users and applications. A user starts up an application. This applica-
tion passes SQL statements to MySQL that processes them. A user can enter these
SQL statements “live” (interactive SQL), or they can be included in the application
code (preprogrammed SQL).

A clear distinction should be made between the real, human user and the user
name used to log on. To avoid confusion, we call the latter the SQL user. SQL users
can be granted privileges. A privilege is a specification indicating what a certain
SQL user can do. For example, one user might be allowed to create new tables,
another might be authorized to update existing tables, and a third might be able to
only query tables.The relationship between human users and SQL users can be
one-to-one, but that is not required. A human user is allowed to log on under differ-
ent SQL user names with different privileges. Additionally, an entire group of
human users is allowed to use the same SQL user name with the same privileges.
Therefore, the relationship between users and SQL users is a many-to-many rela-
tionship. You need to define these relationships.

So to be able to log on, you need to have an SQL user. Several SQL users have
already been created during the installation procedure, to prevent the chicken-and-
egg problem. Therefore, you do not need to create one. However, if you want to cre-
ate your own SQL users, you can do that with a special SQL statement.

Imagine that we log on with the SQL user called root. Next, we can use the
CREATE USER statement to create our own new SQL users. We give a new SQL user a
name and also a password.

Example 4.1: Introduce a new user called BOOKSQL with the password
BOOKSQLPW.

CREATE USER 'BOOKSQL'@'localhost' IDENTIFIED BY 'BOOKSQLPW'

Explanation: The name of the new SQL user is created with the specification
'BOOKSQL'@'localhost'. Another chapter explains the meaning of localhost. The
statement ends with the password, which, in this case, is BOOKSQLPW. Make sure
that quotation marks surround the user name, the term localhost, and the password.

When an application logs on to MySQL with an SQL user name, a so-called connec-
tion is started. A connection is a unique link between the application and the
MySQL database server for the specific SQL user. It is like a telephone cable
between that application and MySQL. The privileges of the SQL user determine
what the user is allowed to send over the cable. Through the connection, the user
has access to all the databases that the database server manages. A new SQL user
is allowed to log on, but this user does not have any other privileges yet. We need to
grant those privileges to BOOKSQL first with the GRANT statement.

The GRANT statement has extensive features. Chapter 28, “Users and Data Secu-
rity,” discusses this statement and related topics.” However, to get you started,
the next example contains the statement that grants the new SQL user called
BOOKSQL enough privileges to create tables and manipulate them afterward.

Example 4.2: Give the SQL user BOOKSQL the privileges to create and manipu-
late tables.

GRANT ALL PRIVILEGES
ON *.*
TO 'BOOKSQL'@'localhost'
WITH GRANT OPTION

BOOKSQL now can log on and execute all the statements in the following
chapters.

Note: The rest of the book assumes that you log on as user BOOKSQL with the
password BOOKSQLPW and that you have sufficient privileges.

44 SQL for MySQL Developers

4.4 CREATING DATABASES

Section 1.2 defined the concept of a database. Using this definition, a database acts
as a container for a set of tables. For MySQL, each table must also be created within
an existing database. Therefore, when you want to build a table, you first need to
create a database.

Example 4.3: Create a database with the name TENNIS for the tables of the ten-
nis club.

CREATE DATABASE TENNIS

Explanation: After this CREATE DATABASE statement is processed, the database
exists but is still empty. This book assumes that you have logged on as BOOKSQL
before you enter this statement.

4.5 SELECTING THE CURRENT DATABASE

A MySQL database server can offer access to more than one database. When a user
has opened a connection with MySQL and wants, for example, to create new tables
or query existing tables, the user must specify the database he wants to work with.
This is called the current database. Only one current database can exist, and

If no current database has been specified, you still can manipulate tables. In
addition, you can access tables from a database other than the current database.
For both situations, you must explicitly specify the database in which those tables
reside.

To make a specific database current, MySQL supports the USE statement.

Example 4.4: Make TENNIS the current database.

USE TENNIS

Explanation: This statement can also be used to “jump” from one database to
another.

After processing a CREATE DATABASE statement (see the earlier section), the created
database does not automatically become the current database—an extra USE state-
ment is needed for that.

45CHAPTER 4 SQL in a Nutshell

No database is current when you log on using the technique described earlier.
As an alternative to the USE statement, you can make a database current by specify-
ing it when you log on.

mysql –u BOOKSQL –p TENNIS

The rest of the book assumes that you log on as user BOOKSQL with the pass-
word BOOKSQLPW, that you have sufficient privileges, and that the TENNIS data-
base is the current database.

4.6 CREATING TABLES

Databases in MySQL are made up of database objects. The best-known and most
important database object is probably the table. The CREATE TABLE statement is
used to develop new tables. The next example contains the CREATE TABLE state-
ments that are needed to create the tables from the sample database.

Example 4.5: Create the five tables that form the sample database.

CREATE TABLE PLAYERS
(PLAYERNO INTEGER NOT NULL,
NAME CHAR(15) NOT NULL,
INITIALS CHAR(3) NOT NULL,
BIRTH_DATE DATE ,
SEX CHAR(1) NOT NULL,
JOINED SMALLINT NOT NULL,
STREET VARCHAR(30) NOT NULL,
HOUSENO CHAR(4) ,
POSTCODE CHAR(6) ,
TOWN VARCHAR(30) NOT NULL,
PHONENO CHAR(13) ,
LEAGUENO CHAR(4) ,
PRIMARY KEY (PLAYERNO))

CREATE TABLE TEAMS
(TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
DIVISION CHAR(6) NOT NULL,
PRIMARY KEY (TEAMNO))

CREATE TABLE MATCHES
(MATCHNO INTEGER NOT NULL,
TEAMNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
WON SMALLINT NOT NULL,
LOST SMALLINT NOT NULL,
PRIMARY KEY (MATCHNO))

46 SQL for MySQL Developers

CREATE TABLE PENALTIES
(PAYMENTNO INTEGER NOT NULL,
PLAYERNO INTEGER NOT NULL,
PAYMENT_DATE DATE NOT NULL,
AMOUNT DECIMAL(7,2) NOT NULL,
PRIMARY KEY (PAYMENTNO))

CREATE TABLE COMMITTEE_MEMBERS
(PLAYERNO INTEGER NOT NULL,
BEGIN_DATE DATE NOT NULL,
END_DATE DATE ,
POSITION CHAR(20) ,
PRIMARY KEY (PLAYERNO, BEGIN_DATE))

Explanation: MySQL does not require the statements to be entered in this exact
way. This book uses a certain layout style for all SQL statements, to make them eas-
ier to read. However, MySQL does not care whether everything is written neatly in
a row (still separated by spaces or commas, of course) or nicely below each other.

As indicated in Chapter 2, “The Tennis Club Sample Database,” several integrity
constraints apply for these tables. We excluded most of them here because we do
not need them in the first two parts of this book. Chapter 21, “Specifying Integrity
Constraints,” explains all the integrity rules in SQL.

With a CREATE TABLE statement, several properties are defined, including the
name of the table, the columns of the table, and the primary key. The name of the
table is specified first: CREATE TABLE PLAYERS. The columns of a table are listed
between brackets. For each column name, a data type is specified, as in CHAR,
SMALLINT, INTEGER, DECIMAL, or DATE. The data type defines the type of value that
may be entered into the specific column. The next section explains the specifica-
tion NOT NULL.

Figure 2.2 shows the primary key of the tables, among other things. A primary
key of a table is a column (or combination of columns) in which every value can
appear only once. By defining the primary key in the PLAYERS table, we indicate
that each player number can appear only once in the PLAYERNO column. A pri-
mary key is a certain type of integrity constraint. In SQL, primary keys are specified
within the CREATE TABLE statement with the words PRIMARY KEY. This is one of two
ways to specify a primary key. After listing all the columns, PRIMARY KEY is speci-
fied followed by the column or columns belonging to that primary key. Chapter 21
discusses the other way to specify a primary key.

It is not always necessary to specify primary keys for a table, but it is important.
Chapter 21 explains why. For now, we advise you to define a primary key for each
table you create.

47CHAPTER 4 SQL in a Nutshell

In the definition of a column, you are allowed to specify NOT NULL. This means
that every row of the column must be filled. In other words, null values are not
allowed in a NOT NULL column. For example, each player must have a NAME, but a
LEAGUENO is not required.

4.7 POPULATING TABLES WITH DATA

The tables have been created and can now be filled with data. For this, we use
INSERT statements.

Example 4.6: Fill all tables from the sample database with data. See Section 2.3
for a listing of all data.

For the sake of convenience, only two examples of INSERT statements are given
for each table. At the web site of the book, you will find all the INSERT statements.

INSERT INTO PLAYERS VALUES
(6, 'Parmenter', 'R', '1964-06-25', 'M', 1977,
'Haseltine Lane', '80', '1234KK', 'Stratford',
'070-476537', '8467')

INSERT INTO PLAYERS VALUES
(7, 'Wise', 'GWS', '1963-05-11', 'M', 1981,
'Edgecombe Way', '39', '9758VB', 'Stratford',
'070-347689', NULL)

INSERT INTO TEAMS VALUES (1, 6, 'first')

INSERT INTO TEAMS VALUES (2, 27, 'second')

INSERT INTO MATCHES VALUES (1, 1, 6, 3, 1)

INSERT INTO MATCHES VALUES (4, 1, 44, 3, 2)

INSERT INTO PENALTIES VALUES (1, 6, '1980-12-08', 100)

INSERT INTO PENALTIES VALUES (2, 44, '1981-05-05', 75)

INSERT INTO COMMITTEE_MEMBERS VALUES
(6, '1990-01-01', '1990-12-31', 'Secretary')

INSERT INTO COMMITTEE_MEMBERS VALUES
(6, '1991-01-01', '1992-12-31', 'Member')

48 SQL for MySQL Developers

Explanation: Each statement corresponds to one (new) row in a table. After the
term INSERT INTO, the table name is specified, and the values for the new row come
after VALUES. Each row consists of one or more values. Different kinds of values may
be used. For example, numeric and alphanumeric values, dates, and times exist.

Each alphanumeric value, such as Parmenter and Stratford (see the first INSERT
statement), must be enclosed in single quotation marks. The (column) values are
separated by commas. Because MySQL remembers the sequence in which the
columns were specified in the CREATE TABLE statement, the system also knows the
column to which every value corresponds. For the PLAYERS table, therefore, the
first value is PLAYERNO, the second value is NAME, and the last value is
LEAGUENO.

Specifying dates and times is more difficult than specifying numeric and
alphanumeric values because they have to adhere to certain rules. A date such as
December 8, 1980, must be specified as '1980-12-08'. This form of expression,
described in detail in Section 5.2.5, turns an alphanumeric value into a correct
date. However, the alphanumeric value must be written correctly. A date consists of
three components: year, month, and day. Hyphens separate the components.

In the second INSERT statement, the word NULL is specified as the twelfth value.
This enables us to enter a null value explicitly. In this case, it means that the league
number of player number 7 is unknown.

4.8 QUERYING TABLES

SELECT statements are used to retrieve data from tables. A number of examples
illustrate the diverse features of this statement.

Example 4.7: Get the number, name, and date of birth of each player resident in
Stratford; sort the result in alphabetical order of name (note that Stratford starts
with a capital letter).

SELECT PLAYERNO, NAME, BIRTH_DATE
FROM PLAYERS
WHERE TOWN = 'Stratford'
ORDER BY NAME

49CHAPTER 4 SQL in a Nutshell

The result is:

PLAYERNO NAME BIRTH_DATE
-------- --------------- ----------

39 Bishop 1956-10-29
57 Brown 1971-08-17
2 Everett 1948-09-01
83 Hope 1956-11-11
6 Parmenter 1964-06-25

100 Parmenter 1963-02-28
7 Wise 1963-05-11

Explanation: This SELECT statement should be read as follows: Get the number,
name, and date of birth (SELECT PLAYERNO, NAME, BIRTH_DATE) of each player (FROM
PLAYERS) resident in Stratford (WHERE TOWN = 'Stratford'); sort the result in alpha-
betical order of name (ORDER BY NAME). After FROM, we specify which table we want
to query. The condition that the requested data must satisfy comes after WHERE.
SELECT enables us to choose which columns we want to see. Figure 4.3 illustrates
this in a graphical way. And after ORDER BY, we specify the column names on which
the final result should be sorted.

50 SQL for MySQL Developers

PLAYERNO NAME INIT BIRTH_DATE STREET TOWN

 2 Everett R 1948-09-01 Stoney Road Stratford
 6 Permenter R 1964-06-25 Haseltine Lane Stratford
 7 Wise GWS 1963-05-11 Edgecombe Way Stratford
 8 Newcastle B 1962-07-08 Station Road Inglewood
 27 Collins DD 1964-12-28 Long Drive Eltham
 28 Collins C 1963-06-22 Old Main Road Midhurst
 39 Bishop D 1956-10-29 Eaton Square Stratford
 44 Baker E 1963-01-09 Lewis Street Inglewood
 57 Brown M 1971-08-17 Edgecombe Way Stratford
 83 Hope PK 1956-11-11 Magdalene Road Stratford
 95 Miller P 1963-05-14 High Street Douglas
 100 Permenter P 1963-02-28 Haseltine Lane Stratford
 104 Moorman D 1970-05-10 Stout Street Eltham
 112 Bailey IP 1963-10-01 Vixen Road Plymouth

SELECT PLAYERNO, NAME, BIRTH_DATE WHERE TOWN = 'Stratford'

FIGURE 4.3 An illustration of a SELECT statement

This book presents the result of a SELECT statement somewhat differently from
the way MySQL does. The “default” layout used throughout this book is as follows.

First, the width of a column is determined by the width of the data type of the col-
umn. Second, the name of a column heading is equal to the name of the column in
the SELECT statement. Third, the values in columns with an alphanumeric data type
are left-justified and those in numeric columns are right-justified. Fourth, two
spaces separate two columns. Fifth, a null value is displayed as a question mark.
Finally, if a result is very long, some rows are left out and colons are presented.

Example 4.8: Get the number of each player who joined the club after 1980 and
is resident in Stratford; order the result by player number.

SELECT PLAYERNO
FROM PLAYERS
WHERE JOINED > 1980
AND TOWN = 'Stratford'
ORDER BY PLAYERNO

The result is:

PLAYERNO

7
57
83

Explanation: Get the number (SELECT PLAYERNO) of each player (FROM PLAYERS)
who joined the club after 1980 (WHERE JOINED > 1980) and is resident in Stratford
(AND TOWN = 'Stratford'); sort the result by player number (ORDER BY PLAYERNO).

Example 4.9: Get all the information about each penalty.

SELECT *
FROM PENALTIES

The result is:

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

1 6 1980-12-08 100.00
2 44 1981-05-05 75.00
3 27 1983-09-10 100.00
4 104 1984-12-08 50.00
5 44 1980-12-08 25.00
6 8 1980-12-08 25.00
7 44 1982-12-30 30.00
8 27 1984-11-12 75.00

51CHAPTER 4 SQL in a Nutshell

Explanation: Get all column values (SELECT *) for each penalty (FROM PENALTIES).
This statement returns the whole PENALTIES table. The * character is a shorthand
notation for “all columns.” In this result, you can also see how dates are presented
in this book.

Example 4.10: How much is 33 times 121?

SELECT 33 * 121

The result is:

33 * 121

3993

Explanation: This example shows that a SELECT statement does not always have
to retrieve data from tables; it can also be used to perform straightforward calcula-
tions. If no tables are specified, the statement returns one row as result. This row
contains the answers to the calculations.

4.9 UPDATING AND DELETING ROWS

Section 4.7 described how to add new rows to a table. This section covers updating
and deleting existing rows.

A warning in advance: If you execute the statements described in this section,
you will change the contents of the database. The subsequent sections assume that
the original contents of the database are intact. You can restore the values by rerun-
ning statements found at www.r20.nl.

The UPDATE statement is used to change values in rows, and the DELETE state-
ment is used to remove complete rows from a table. Let us look at examples of both
statements.

Example 4.11: Change the amount of each penalty incurred by player 44 to $200.

UPDATE PENALTIES
SET AMOUNT = 200
WHERE PLAYERNO = 44

52 SQL for MySQL Developers

www.r20.nl

Explanation: For each penalty (UPDATE PENALTIES) incurred by player 44 (WHERE
PLAYERNO = 44), change the amount to $200 (SET AMOUNT = 200). So the use of the
WHERE clause in the UPDATE statement is equivalent to that of the SELECT state-
ment—it indicates which rows must be changed. After the word SET, the columns
that will have a new value are specified. The change is executed regardless of the
existing value.

Issuing a SELECT statement can show the effect of the change. Before the update, the
next SELECT statement

SELECT PLAYERNO, AMOUNT
FROM PENALTIES
WHERE PLAYERNO = 44

gave the following result:

PLAYERNO AMOUNT
-------- ------

44 75.00
44 25.00
44 30.00

After the change with the UPDATE statement, the result of the previous SELECT
statement is different:

PLAYERNO AMOUNT
-------- ------

44 200.00
44 200.00
44 200.00

Example 4.12: Remove each penalty with an amount greater than $100 (we
assume the changed contents of the PENALTIES table).

DELETE
FROM PENALTIES
WHERE AMOUNT > 100

Explanation: Remove the penalties (DELETE FROM PENALTIES) with an amount
greater than $100 (WHERE AMOUNT > 100). Again, the use of the WHERE clause is
equivalent to that in the SELECT and UPDATE statements.

53CHAPTER 4 SQL in a Nutshell

After this statement, the PENALTIES table looks as follows (shown by issuing a
SELECT statement):

PAYMENTNO PLAYERNO PAYMENT_DATE AMOUNT
--------- -------- ------------ ------

1 6 1980-12-08 100.00
3 27 1983-09-10 100.00
4 104 1984-12-08 50.00
6 8 1980-12-08 25.00
8 27 1984-11-12 75.00

4.10 OPTIMIZING QUERY PROCESSING WITH INDEXES

We now look at how SELECT statements are processed—how MySQL arrives at the
correct answer. The following SELECT statement illustrates this (assume the original
contents of the PENALTIES table).

SELECT *
FROM PENALTIES
WHERE AMOUNT = 25

To process this statement, MySQL scans the entire PENALTIES table row by
row. If the value of AMOUNT equals 25, that row is included in the result. As in this
example, if the table contains only a few rows, MySQL can work quickly. However,
if a table has thousands of rows and each must be checked, this could take a great
deal of time. In such a case, defining an index can speed up the processing. For
now, think of an index created with MySQL as similar to the index of a book. Chap-
ter 25, “Using Indexes,” discusses this topic in more detail.

An index is defined on a column or combination of columns. See the following
example.

Example 4.13: Create an index on the AMOUNT column of the PENALTIES
table.

CREATE INDEX PENALTIES_AMOUNT ON
PENALTIES (AMOUNT)

Explanation: This statement defines an index called PENALTIES_AMOUNT for
the AMOUNT column in the PENALTIES table.

This index ensures that in the earlier example, MySQL needs to look at only rows in
the database that satisfy the WHERE condition. Therefore, it is quicker to produce an

54 SQL for MySQL Developers

answer. The index PENALTIES_AMOUNT provides direct access to these rows.
Keep in mind the following points:

■ Indexes are defined to optimize the processing of SELECT statements.

■ An index is never explicitly referenced in a SELECT statement; the syntax of
SQL does not allow this.

■ During the processing of a statement, the database server itself determines
whether an existing index will be used.

■ An index may be created or deleted at any time.

■ When updating, inserting, or deleting rows, MySQL also maintains the
indexes on the impacted tables. This means that, on one hand, the processing
time for SELECT statements is reduced; on the other hand, the processing
time for update statements (such as INSERT, UPDATE, and DELETE) can
increase.

■ An index is also a database object.

A special type of index is the unique index. SQL also uses unique indexes to
optimize the processing of statements. Unique indexes have another function as
well: They guarantee that a particular column or combination of columns contains
no duplicate values. A unique index is created by placing the word UNIQUE between
the words CREATE and INDEX.

4.11 VIEWS

In a table, rows with data are actually stored. This means that a table occupies a
particular amount of storage space—the more rows, the more storage space is
required. Views are tables visible to users, but they do not occupy any storage
space. A view, therefore, can also be referred to as a virtual or derived table. A view
behaves as though it contains actual rows of data, but it contains none.

Example 4.14: Create a view in which the difference between the number of sets
won and the number of sets lost are recorded for each match.

CREATE VIEW NUMBER_SETS (MATCHNO, DIFFERENCE) AS
SELECT MATCHNO, ABS(WON - LOST)
FROM MATCHES

55CHAPTER 4 SQL in a Nutshell

Explanation: The previous statement defines a view with the name NUMBER_
SETS. A SELECT statement is used to define the contents of the view. This view has
only two columns: MATCHNO and DIFFERENCE. The value of the second column
is determined by subtracting the number of sets lost from the number of sets won.
The ABS function makes the value positive (Appendix B, “Scalar Functions,” dis-
cusses the precise meaning of ABS).

By using the SELECT statement shown here, you can see the (virtual) contents of
the view:

SELECT *
FROM NUMBER_SETS

The result is:

MATCHNO DIFFERENCE
------- ----------

1 2
2 1
3 3
4 1
5 3
6 2
7 3
8 3
9 1
10 1
11 1
12 2
13 3

The contents of the NUMBER_SETS view are not stored in the database but are
derived at the moment a SELECT statement (or another statement) is executed. The
use of views, therefore, costs nothing extra in storage space because the contents of
a view can include only data that is already stored in other tables. Among other
things, views can be used to do the following:

■ Simplify the use of routine or repetitive statements

■ Restructure the way in which tables are seen

■ Develop SELECT statements in several steps

■ Improve the security of data

Chapter 26, “Views,” looks at views more closely.

56 SQL for MySQL Developers

4.12 USERS AND DATA SECURITY

Data in a database should be protected against incorrect use and misuse. In other
words, not everyone should have access to all the data in the database. As already
shown in the beginning of this chapter, MySQL recognizes the concept of SQL user
and privilege. Users need to make themselves known by logging on.

That same section showed an example of granting privileges to users. Here you
will find more examples of the GRANT statement; assume that all the SQL users men-
tioned exist.

Example 4.15: Imagine that two SQL users, DIANE and PAUL, have been cre-
ated. MySQL will reject most of their SQL statements as long as they have not been
granted privileges. The following three statements give them the required privi-
leges. Assume that a third SQL user, such as BOOKSQL, grants these privileges.

GRANT SELECT
ON PLAYERS
TO DIANE

GRANT SELECT, UPDATE
ON PLAYERS
TO PAUL

GRANT SELECT, UPDATE
ON TEAMS
TO PAUL

When PAUL has logged on, he can query the TEAMS table, for example:

SELECT *
FROM TEAMS

4.13 DELETING DATABASE OBJECTS

For each type of database object for which a CREATE statement exists, a correspon-
ding DROP statement with which the object can be deleted also exists. Consider a
few examples.

Example 4.16: Delete the MATCHES table.

DROP TABLE MATCHES

57CHAPTER 4 SQL in a Nutshell

Example 4.17: Delete the view NUMBER_SETS.

DROP VIEW NUMBER_SETS

Example 4.18: Delete the PENALTIES_AMOUNT index.

DROP INDEX PENALTIES_AMOUNT

Example 4.19: Delete the TENNIS database.

DROP DATABASE TENNIS

All dependent objects are also removed. For example, if the PLAYERS table is
deleted, all indexes (which are defined on that table) and all privileges (which are
dependent on that table) are automatically removed.

4.14 SYSTEM VARIABLES

MySQL has certain settings. When the MySQL database server is started, these set-
tings are read to determine the next steps. For example, some settings define how
data must be stored, others affect the processing speed, and still others relate to the
system time and date. These settings are called system variables. Examples of sys-
tem variables are DATADIR (the directory in which MySQL creates the databases),
LOG_WARNINGS, MAX_USER_CONNECTIONS, and TIME_ZONE.

Sometimes it is important to know the value of a certain system variable. With a
simple SELECT statement, you can retrieve its value.

Example 4.20: What is the most recent version of the MySQL database server
that we use now?

SELECT @@VERSION

The result is:

@@VERSION

5.0.7-beta-nt

Explanation: In MySQL, the value of the system variable VERSION is set to the
version number. Specifying two @ symbols before the name of the system variable
returns its value.

58 SQL for MySQL Developers

Many system variables, such as VERSION and the system date, cannot be changed.
However, some, including SQL_MODE, can be. To change system variables, use the
SET statement.

Example 4.21: Change the value of the SQL_MODE parameter to PIPES_AS_CONCAT.

SET @@SQL_MODE = 'PIPES_AS_CONCAT'

Explanation: This change applies only to the current SQL user. In other words,
different users can see different values for certain system variables.

Section 5.7 discusses system variables in detail. Some system variables are also
described together with the SQL statement or clause that they have a relationship
with.

Because the value of the SQL_MODE system variable affects the way of processing
and the features of several SQL statements, we will discuss it in more detail. The
value of SQL_MODE consists of a set of zero, one, or more settings that are separated
by commas. For example, a possible value of SQL_MODE with four settings is shown
here:

REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE

With a normal SET statement, we overwrite all the settings at once. If we want to
add a setting, we can use the following statement.

Example 4.22: Add the setting NO_ZERO_IN_DATE to the SQL_MODE system
variable.

SET @@SQL_MODE = CONCAT(@@SQL_MODE,
CASE @@SQL_MODE WHEN '' THEN '' ELSE ',' END,
'NO_ZERO_IN_DATE')

The meaning of these settings is explained later in this book.

4.15 GROUPING OF SQL STATEMENTS

SQL has many statements, but this chapter briefly describes only a few. In litera-
ture, it is customary to divide that large set of SQL statements into the following
groups: Data Definition Language (DDL), Data Manipulation Language (DML),
Data Control Language (DCL), and procedural statements.

59CHAPTER 4 SQL in a Nutshell

The Data Definition Language (DDL) consists of all the SQL statements that
affect the structure of database objects, such as tables, indexes, and views. The
CREATE TABLE statement is a clear example of a DDL statement, but so are CREATE
INDEX and DROP TABLE.

SQL statements used to query and change the contents of tables belong to the
Data Manipulation Language (DML) group. Examples of DML statements are
SELECT, UPDATE, DELETE, and INSERT.

Data Control Language (DCL) statements relate to the security of data and the
revoking of privileges. This chapter has discussed the GRANT statement; the REVOKE
statement is also a DCL statement.

Examples of procedural statements are IF-THEN-ELSE and WHILE-DO. These clas-
sical statements have been added to SQL to create relatively new database objects,
such as triggers and stored procedures.

The names of these groups sometimes assume that SQL consists of several indi-
vidual languages, but this is incorrect. All SQL statements are part of one language
and are grouped for the sake of clarity.

Appendix A, “Syntax of SQL,” which defines all SQL statements, indicates the
group to which an SQL statement belongs.

4.16 THE CATALOG TABLES

MySQL maintains lists of user names and passwords and the sequence in which
columns in the CREATE TABLE statements have been created (see Section 4.6). How-
ever, where is all this data stored? Where does SQL keep track of all these names,
passwords, tables, columns, sequence numbers, and so on? MySQL has a number of
tables for its own use in which this data is stored. These tables are called catalog
tables or system tables; together they form the catalog.

Each catalog table is an “ordinary” table that can be queried using SELECT
statements. Querying the catalog tables can have many uses, including these:

■ As a help function for new users to determine which tables in the database
are available and which columns the tables contain

■ As a control function so that users can see, for example, which indexes,
views, and privileges would be deleted if a particular table was dropped

■ As a processing function for MySQL itself when it executes statements (as a
help function for MySQL)

Catalog tables cannot be accessed using statements such as UPDATE and
DELETE—the SQL database server maintains these tables itself.

60 SQL for MySQL Developers

MySQL has two databases in which catalog tables are included. The database
called MYSQL contains data on privileges, users, and tables. The structure of these
tables is somewhat cryptic and is unique for MySQL. In addition, the database
called INFORMATION_SCHEMA contains catalog data that partly overlaps the
data in the MYSQL database. The structure of INFORMATION_SCHEMA con-
forms to the SQL standard and looks similar to the structure of other SQL products.

The structure of the catalog tables is not simple. We have defined several sim-
ple views on the catalog tables of MySQL. These views are partly defined on the
tables of the MYSQL database and partly on those of the INFORMATION_
SCHEMA database. So actually, they are not catalog tables, but catalog views. In a
simple and transparent way, they give access to the actual, underlying catalog
tables.

Part III, “Creating Database Objects,” which discusses different database
objects, such as tables and views, describes the different catalog tables that belong
to the INFORMATION_SCHEMA database. In the first two parts of this book, the
catalog views suffice.

If you are familiar with MySQL and have worked your way through most chap-
ters in this book, we recommend that you look at the structure of the actual catalog
tables. They are, after all, just tables that you can access with SELECT statements.
Understanding the catalog will definitely increase your knowledge of MySQL.

In the rest of this book, we use these simple catalog views, so we recommend
that you create these views. You can reference the web site of this book for assis-
tance. You can adjust these catalog views later—you can add new columns and new
catalog views. By studying how these views have been built makes it easier to
understand the real catalog tables later.

Example 4.23: Create the following catalog views. These views must be created
in the sequence specified because of interdependences.

CREATE OR REPLACE VIEW USERS
(USER_NAME) AS

SELECT DISTINCT UPPER(CONCAT('''',USER,'''@''',HOST,''''))
FROM MYSQL.USER

CREATE OR REPLACE VIEW TABLES
(TABLE_CREATOR, TABLE_NAME,
CREATE_TIMESTAMP, COMMENT) AS

SELECT UPPER(TABLE_SCHEMA), UPPER(TABLE_NAME),
CREATE_TIME, TABLE_COMMENT

FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_TYPE IN ('BASE TABLE','TEMPORARY')

61CHAPTER 4 SQL in a Nutshell

CREATE OR REPLACE VIEW COLUMNS
(TABLE_CREATOR, TABLE_NAME, COLUMN_NAME,
COLUMN_NO, DATA_TYPE, CHAR_LENGTH,
'PRECISION', SCALE, NULLABLE, COMMENT) AS

SELECT UPPER(TABLE_SCHEMA), UPPER(TABLE_NAME),
UPPER(COLUMN_NAME), ORDINAL_POSITION,
UPPER(DATA_TYPE), CHARACTER_MAXIMUM_LENGTH,
NUMERIC_PRECISION, NUMERIC_SCALE, IS_NULLABLE,
COLUMN_COMMENT

FROM INFORMATION_SCHEMA.COLUMNS

CREATE OR REPLACE VIEW VIEWS
(VIEW_CREATOR, VIEW_NAME, CREATE_TIMESTAMP,
WITHCHECKOPT, IS_UPDATABLE, VIEWFORMULA, COMMENT) AS

SELECT UPPER(V.TABLE_SCHEMA), UPPER(V.TABLE_NAME),
T.CREATE_TIME,
CASE

WHEN V.CHECK_OPTION = 'None' THEN 'NO'
WHEN V.CHECK_OPTION = 'Cascaded' THEN 'CASCADED'
WHEN V.CHECK_OPTION = 'Local' THEN 'LOCAL'
ELSE 'Yes'

END, V.IS_UPDATABLE, V.VIEW_DEFINITION, T.TABLE_COMMENT
FROM INFORMATION_SCHEMA.VIEWS AS V,

INFORMATION_SCHEMA.TABLES AS T
WHERE V.TABLE_NAME = T.TABLE_NAME
AND V.TABLE_SCHEMA = T.TABLE_SCHEMA

CREATE OR REPLACE VIEW INDEXES
(INDEX_CREATOR, INDEX_NAME, CREATE_TIMESTAMP,
TABLE_CREATOR, TABLE_NAME, UNIQUE_ID, INDEX_TYPE) AS

SELECT DISTINCT UPPER(I.INDEX_SCHEMA), UPPER(I.INDEX_NAME),
T.CREATE_TIME, UPPER(I.TABLE_SCHEMA),
UPPER(I.TABLE_NAME),
CASE

WHEN I.NON_UNIQUE = 0 THEN 'YES'
ELSE 'NO'

END,
I.INDEX_TYPE

FROM INFORMATION_SCHEMA.STATISTICS AS I,
INFORMATION_SCHEMA.TABLES AS T

WHERE I.TABLE_NAME = T.TABLE_NAME
AND I.TABLE_SCHEMA = T.TABLE_SCHEMA

62 SQL for MySQL Developers

CREATE OR REPLACE VIEW COLUMNS_IN_INDEX
(INDEX_CREATOR, INDEX_NAME,
TABLE_CREATOR, TABLE_NAME, COLUMN_NAME,
COLUMN_SEQ, ORDERING) AS

SELECT UPPER(INDEX_SCHEMA), UPPER(INDEX_NAME),
UPPER(TABLE_SCHEMA), UPPER(TABLE_NAME),
UPPER(COLUMN_NAME), SEQ_IN_INDEX,
CASE

WHEN COLLATION = 'A' THEN 'ASCENDING'
WHEN COLLATION = 'D' THEN 'DESCENDING'
ELSE 'OTHER'

END
FROM INFORMATION_SCHEMA.STATISTICS

CREATE OR REPLACE VIEW USER_AUTHS
(GRANTOR, GRANTEE, PRIVILEGE, WITHGRANTOPT) AS

SELECT 'UNKNOWN', UPPER(GRANTEE), PRIVILEGE_TYPE, IS_GRANTABLE
FROM INFORMATION_SCHEMA.USER_PRIVILEGES

CREATE OR REPLACE VIEW DATABASE_AUTHS
(GRANTOR, GRANTEE, DATABASE_NAME, PRIVILEGE,
WITHGRANTOPT) AS

SELECT 'UNKNOWN', UPPER(GRANTEE), UPPER(TABLE_SCHEMA),
PRIVILEGE_TYPE, IS_GRANTABLE

FROM INFORMATION_SCHEMA.SCHEMA_PRIVILEGES

CREATE OR REPLACE VIEW TABLE_AUTHS
(GRANTOR, GRANTEE, TABLE_CREATOR, TABLE_NAME,
PRIVILEGE, WITHGRANTOPT) AS

SELECT 'UNKNOWN', UPPER(GRANTEE), UPPER(TABLE_SCHEMA),
UPPER(TABLE_NAME), PRIVILEGE_TYPE, IS_GRANTABLE

FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES

CREATE OR REPLACE VIEW COLUMN_AUTHS
(GRANTOR, GRANTEE, TABLE_CREATOR, TABLE_NAME,
COLUMN_NAME, PRIVILEGE, WITHGRANTOPT) AS

SELECT 'UNKNOWN', UPPER(GRANTEE), UPPER(TABLE_SCHEMA),
UPPER(TABLE_NAME), UPPER(COLUMN_NAME),
PRIVILEGE_TYPE, IS_GRANTABLE

FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES

63CHAPTER 4 SQL in a Nutshell

Table 4.1 lists the catalog tables (catalog views) that are created.

TABLE 4.1 Examples of Catalog Views

64 SQL for MySQL Developers

TABLE NAME EXPLANATION

USERS Contains for each SQL user the names of the users who
were not created during the installation procedure

TABLES Contains for each table information such as the date and
time the table was created

COLUMNS Contains for each column (belonging to a table or view)
information such as the data type, the table to which the
column belongs, whether the null value is allowed, and the
sequence number of the column in the table

VIEWS Contains for each view information such as the view defi-
nition (the SELECT statement)

INDEXES Contains for each index information such as the table and
the columns on which the index is defined, and the
manner in which the index is ordered

COLUMNS_IN_INDEX Contains for each index the columns on which the index
is defined

DATABASE_AUTHS Contains the database privileges that are granted to users

TABLE_AUTHS Contains the table privileges that are granted to users

COLUMN_AUTHS Contains the column privileges that are granted to users

Consider the following examples of queries on the catalog table.

Example 4.24: Get the name, data type, and sequence number of each column
in the PLAYERS table (which was created in the TENNIS database); order the
result by sequence number.

SELECT COLUMN_NAME, DATA_TYPE, COLUMN_NO
FROM COLUMNS
WHERE TABLE_NAME = 'PLAYERS'
AND TABLE_CREATOR = 'TENNIS'
ORDER BY COLUMN_NO

The result is:

COLUMN_NAME DATA_TYPE COLUMN_NO
----------- --------- ---------
PLAYERNO INT 1
NAME CHAR 2
INITIALS CHAR 3
BIRTH_DATE DATE 4
SEX CHAR 5
JOINED SMALLINT 6
STREET VARCHAR 7
HOUSENO CHAR 8
POSTCODE CHAR 9
TOWN VARCHAR 10
PHONONO CHAR 11
LEAGUENO CHAR 12

Explanation: Get the name, data type, and sequence number (SELECT

COLUMN_NAME, DATA_TYPE, COLUMN_NO) of each column (FROM COLUMNS) in the
PLAYERS table (WHERE TABLE_NAME = 'PLAYERS') that is created in the TENNIS
database (AND TABLE_CREATOR = 'TENNIS'); order the result by sequence number
(ORDER BY COLUMN_NO).

Example 4.25: Get the names of the indexes defined on the PENALTIES table.

SELECT INDEX_NAME
FROM INDEXES
WHERE TABLE_NAME = 'PENALTIES'
AND TABLE_CREATOR = 'TENNIS'

Result (for example):

INDEX_NAME

PRIMARY
PENALTIES_AMOUNT

Explanation: MySQL created the index that is mentioned first, with the name
PRIMARY, because a primary key was specified on the PLAYERS table. Chapter
25 returns to this topic. The second index was created in Example 4.13.

65CHAPTER 4 SQL in a Nutshell

Other chapters describe the effect that processing particular statements can have
on the contents of the catalog tables. The catalog tables are an integral part of SQL.

You can find the original catalog tables that MySQL created in two different
databases, called MYSQL and INFORMATION_SCHEMA. Both were created dur-
ing MySQL installation. You can access the tables of the databases directly, without
the intervention of the catalog views (see the following example).

Example 4.26: Get the names of the indexes that have been defined on the
PENALTIES table.

USE INFORMATION_SCHEMA

SELECT DISTINCT INDEX_NAME
FROM STATISTICS
WHERE TABLE_NAME = 'PENALTIES'

The result is:

INDEX_NAME

PRIMARY
PENALTIES_AMOUNT

Explanation: With the USE statement, we make INFORMATION_SCHEMA the
current database. Then all the tables of the catalog can be accessed.

Example 4.27: Show the names of the tables that are stored in the INFORMA-
TION_SCHEMA database.

SELECT TABLE_NAME
FROM TABLES
WHERE TABLE_SCHEMA = 'INFORMATION_SCHEMA'
ORDER BY TABLE_NAME

The result is:

TABLE_NAME

CHARACTER_SETS
COLLATIONS
COLLATION_CHARACTER_SET_APPLICABILITY
COLUMNS
COLUMN_PRIVILEGES
ENGINES
EVENTS
FILES

66 SQL for MySQL Developers

KEY_COLUMN_USAGE
PARTITIONS
PLUGINS
PROCESSLIST
REFERENTIAL_CONSTRAINTS
ROUTINES
SCHEMATA
SCHEMA_PRIVILEGES
STATISTICS
TABLES
TABLE_CONSTRAINTS
TABLE_PRIVILEGES
TRIGGERS
USER_PRIVILEGES
VIEWS

The special SQL statement called SHOW is another way to get access to all this
descriptive catalog data. See the next two examples.

Example 4.28: Get the descriptive data of the columns belonging to the PLAY-
ERS table.

SHOW COLUMNS FROM PLAYERS

And the result is:

Field Type Null Key Default Extra
------------ ------------ ---- --- ------- -----
PLAYERNO int(11) PRI 0
NAME varchar(15)
INITIALS char(3)
BIRTH_DATE date YES
SEX char(1)
JOINED smallint(6) 0
STREET varchar(30)
HOUSENO varchar(4) YES
POSTCODE varchar(6) YES
TOWN varchar(30)
PHONENO varchar(13) YES
LEAGUENO varchar(4) YES

Example 4.29: Get the descriptive data of the indexes defined on the PENAL-
TIES table.

SHOW INDEX FROM PENALTIES

67CHAPTER 4 SQL in a Nutshell

An example result is:

Table Non-unique Key_name Column_name Collation
--------- ---------- ---------------- ----------- ---------
PENALTIES 0 PRIMARY PAYMENTNO A
PENALTIES 1 PENALTIES_AMOUNT AMOUNT A

Explanation: MySQL created the first index itself because we defined a primary
key on the PENALTIES table. Chapter 25 returns to this. The second index was
created in Example 4.13. This SHOW statement returns more than these columns, but
we omitted them for the sake of convenience.

Try the next statement yourself and look at the result:

SHOW DATABASES
SHOW TABLES
SHOW CREATE TABLE PLAYERS
SHOW INDEX FROM PLAYERS
SHOW GRANTS FOR BOOKSQL@localhost
SHOW PRIVILEGES

4.17 RETRIEVING ERRORS AND WARNINGS

Sometimes things go wrong. If we do something wrong, MySQL presents one or
more error messages. For example, if we make a typo in an SQL statement, we get
an error message. MySQL won’t even try to process the statement. Perhaps a state-
ment is syntactically correct, but we are trying to do something that is impossible,
such as create a table with a name that already exists. In this situation, MySQL also
returns an error message. However, not all the error messages are presented—it
depends on the seriousness of the error message. After an SQL statement has been
processed, we can request all the error messages with the SHOW WARNINGS statement.

Example 4.30: What is the result of the calculation 10 divided by 0?

SELECT 10 / 0

The result of this statement is empty because we cannot divide by zero. But no
error message is given. We can ask for them as follows:

SHOW WARNINGS

68 SQL for MySQL Developers

The result is:

Level Code Message
----- ---- ----------------------------------
Error 1305 FUNCTION tennis.chr does not exist
Error 1105 Unknown error

Before processing the next SQL statement, all these messages are deleted, and
a new list is created.

With the statement SHOW COUNT(*) WARNINGS, we can ask for the number of
error messages. We get the same result if we ask for the value of the system variable
called WARNING_COUNT.

The statement SHOW ERRORS resembles SHOW WARNINGS. The former returns all
the errors, warnings, and notes; the latter returns the errors only. And, of course, a
system COLUMN_AUTHS variable called ERROR_COUNT exists.

4.18 DEFINITIONS OF SQL STATEMENTS

This book uses a particular formal notation to indicate the syntax of certain SQL
statements. In other words, by using this notation, we give a definition of an SQL
statement. These definitions are clearly indicated by enclosing the text in boxes.
For example, the following is part of the definition of the CREATE INDEX statement:

69CHAPTER 4 SQL in a Nutshell

D E F I N I T I O N
<create index statement> ::=

CREATE [UNIQUE] INDEX <index name>
ON <table name> <column list>

<column list> ::=
(<column name> [, <column name>]...)

If you are not familiar with this notation, we advise that you study it before you
continue with the next chapters (see Appendix A).

Because the functionality of certain SQL statements is very extensive, we do
not always show the complete definition in one place, but instead extend it step by
step. We omit the definitions of the syntactically simple statements. Appendix A
includes the complete definitions of all SQL statements.

This page intentionally left blank This page intentionally left blank

Part II
Querying and Updating
Data

One statement in particular forms the core of SQL and clearly represents
the nonprocedural nature of SQL: the SELECT statement. It is the show-
piece of SQL and, consequently, MySQL. This statement is used to query
data in the tables; the result is always a table. Such a result table can be
used as the basis of a report, for example.

This book deals with the SELECT statement in Chapters 5–15. Each
chapter is devoted to one or two clauses of this statement. Several chap-
ters have been added to explain certain concepts in more detail.

Chapter 16, “The HANDLER Statement,” is devoted to the HANDLER
statement, which offers an alternative method to query data. In a more
simple way, rows can be retrieved individually. The features of this state-
ment are much more limited than those of the SELECT statement. However,
for certain applications, HANDLER can be more suitable than SELECT.

Chapter 17 describes how to insert, update, and delete data. The fea-
tures of these statements are strongly based upon those of the SELECT
statement, which makes the latter so important to master.

S Q L F O R M Y S Q L D E V E L O P E R S

71

With MySQL, data can be loaded from files into the database vice versa: Data
can be unloaded to external files. Chapter 18, “Loading and Unloading Data,”
describes the statements and features to do so.

The use of XML documents has become increasingly popular. Because of this,
the need to store these special documents in tables has increased. Chapter 19,
“Working with XML Documents,” describes the functions with which XML docu-
ments can be queried and updated.

72 SQL for MySQL Developers

73

SELECT Statement:
Common Elements

C H A P T E R 5

5.1 INTRODUCTION

This first chapter dealing with the SELECT statement describes a number of common
elements that are important to many SQL statements and certainly crucial to the
SELECT statement. Those who are familiar with programming languages and other
database languages will find most of these concepts familiar.

Among others, this chapter covers the following common elements:

■ Literal

■ Expression

■ Column specification

■ User variable

■ System variable

■ Case expression

■ Scalar function

■ Null value

■ Cast expression

■ Compound expression

■ Row expression

■ Table expression

■ Aggregation function

5.2 LITERALS AND THEIR DATA TYPES

The previous chapter used literals in many examples of SQL statements. A literal is
a fixed or unchanging value. Literals are used, for example, in conditions for select-
ing rows in SELECT statements and for specifying the values for a new row in INSERT
statements; see Figure 5.1.

74 SQL for MySQL Developers

SELECT PLAYERNO

PLAYERNO

FROM PLAYERS

VALUES

WHERE

INSERT INTO TEAMS

1 6

8 literal>

((, , 'first'

FIGURE 5.1 Literals in SQL statements

Each literal has a particular data type, just like a column in a table. The names
of the different types of literals are derived from the names of their respective data
types as we use them in the CREATE TABLE statement.

The literals are divided into several main groups: the numeric, the alphanu-
meric, the temporal, the Boolean, and the hexadecimal literals. They all have their
own properties, idiosyncrasies, and limitations. Here you will find the definitions of
all literals followed by the descriptions.

Each literal always has a data type; however, no literal exists for each data type.
Chapter 20, “Creating Tables, discusses all data types (including the one for which
no literal exists). That chapter also describes the CREATE TABLE statement in detail.

D E F I N I T I O N
<literal> ::=

<numeric literal> |
<alphanumeric literal> |
<temporal literal> |
<boolean literal> |
<hexadecimal literal>

<numeric literal> ::=
<integer literal> |
<decimal literal> |
<float literal> |
<bit literal>

continues

75CHAPTER 5 SELECT Statement: Common Elements

<integer literal> ::= [+ | -] <whole number>

<decimal literal> ::=
[+ | -] <whole number> [.<whole number>] |
[+ | -] <whole number>. |
[+ | -] .<whole number>

<float literal> ::=
<mantissa> { E | e } <exponent>

<bit literal > ::=
{ b | B } ' { 0 | 1 }... '

<alphanumeric literal> ::= <character list>

<temporal literal> ::=
<date literal> |
<time literal> |
<datetime literal> |
<timestamp literal> |
<year literal>

<date literal> ::=
{ ' <years> - <months> - <days> ' } |
{ <years> <months> <days> }

<time literal> ::=
{ ' <hours> : <minutes> [: <seconds>

[. <microseconds>]] ' } |
{ ' [<hours> : <minutes> :] <seconds> ' } |
{ <hours> <minutes> <seconds> } |
{ [[<hours>] <minutes>] <seconds> }

<datetime literal> ;
<timestamp literal> ::=

{ ' <years> - <months> - <days> <space>
[<hours> [: <minutes> [: <seconds>

[. <micro seconds>]]]] ' } |
{ <years> <months> <days> <hours> <minutes> <seconds> }

<year literal> ::= <year>

<hexadecimal literal> ::=
{ X | x } <hexadecimal character>... |
0x <hexadecimal character>...

<hexadecimal character> ::=
<digit> | A | B | C | D | E | F | a | b | c | d | e | f

continues

76 SQL for MySQL Developers

<years> ;
<micro seconds> ;
<year> ::= <whole number>

<months> ;
<days> ;
<hours> ;
<minutes> ;
<seconds> ::= <digit> [<digit>]

<whole number> ::= <digit>...

<boolean literal> ::= TRUE | true | FALSE | false

<mantissa> ::= <decimal literal>

<exponent> ::= <integer literal>

<character list> ::= ' [<character>...] '

<character> ::= <digit> | <letter> | <special character> | ''

<special character> ::=
{ \ { 0 | ' | " | b | n | r | t | z | \ | % } } |
<any other character>

<whole number> ::= <digit>...

5.2.1 The Integer Literal
MySQL has several types of numeric literals. The integer literal is used frequently.
This is a whole number or integer without a decimal point, possibly preceded by a
plus or minus sign. Examples are shown here:

38
+12

-3404
016

The following examples are not correct integer literals:

342.16
-14E5
jan

5.2.2 The Decimal Literal
The second numeric literal is the decimal literal. This is a number with or without a
decimal point, possibly preceded by a plus or minus sign. Each integer literal is, by
definition, a decimal literal. Examples follow:

49
18.47
-3400
17.

0.83459
-.47

The total number of digits is called the precision, and the number of digits after
the decimal point is the scale. The decimal literal 123.45 has a precision of 5 and a
scale of 2. The scale of an integer literal is always 0. The maximum range of a dec-
imal literal is measured by the scale and the precision. The precision must be
greater than 0, and the scale must be between 0 and the precision. For example, a
decimal with a precision of 8 and a scale of 2 is allowed, but not with a precision of
6 and a scale of 8.

In the sample database of the tennis club, only one column has been defined
with this data type, and that is AMOUNT in the PENALTIES table.

5.2.3 Float, Real, and Double Literals
A float literal is a decimal literal followed by an exponent. Float is short for single
precision floating point. These are examples of float literals:

Float literal Value
------------- -----

-34E2 -3400
0.16E4 1600
4E-3 0.004
4e-3 0.004

5.2.4 The Alphanumeric Literal
An alphanumeric literal is a string of zero or more alphanumeric characters
enclosed in quotation marks. This could be double (“) or single (‘) quotation marks.
The quotation marks are not considered to be part of the literal; they define the
beginning and end of the string. The following characters are permitted in an
alphanumeric literal:

77CHAPTER 5 SELECT Statement: Common Elements

