

ATL INTERNALS
SECOND EDITION

Ahmed/Umrysh, Developing Enterprise Java Applications with J2EE™
and UML

Arlow/Neustadt, Enterprise Patterns and MDA: Building Better Software
with Archetype Patterns and UML

Arlow/Neustadt, UML 2 and the Unified Process, Second Edition

Armour/Miller, Advanced Use Case Modeling: Software Systems

Bellin/Simone, The CRC Card Book

Bergström/Råberg, Adopting the Rational Unified Process: Success with
the RUP

Binder, Testing Object-Oriented Systems: Models, Patterns, and Tools

Bittner/Spence, Managing Iterative Software Development Projects

Bittner/Spence, Use Case Modeling

Booch, Object Solutions: Managing the Object-Oriented Project

Booch, Object-Oriented Analysis and Design with Applications, 2E

Booch/Bryan, Software Engineering with ADA, 3E

Booch/Rumbaugh/Jacobson, The Unified Modeling Language User
Guide, Second Edition

Box et al., Effective COM: 50 Ways to Improve Your COM and
MTS-based Applications

Buckley/Pulsipher, The Art of ClearCase® Deployment

Carlson, Modeling XML Applications with UML: Practical e-Business
Applications

Clarke/Baniassad, Aspect-Oriented Analysis and Design

Collins, Designing Object-Oriented User Interfaces

Conallen, Building Web Applications with UML, 2E

Denney, Succeeding with Use Cases

D’Souza/Wills, Objects, Components, and Frameworks with UML:
The Catalysis(SM) Approach

Douglass, Doing Hard Time: Developing Real-Time Systems with UML,
Objects, Frameworks, and Patterns

Douglass, Real-Time Design Patterns: Robust Scalable Architecture for
Real-Time Systems

Douglass, Real Time UML, 3E: Advances in The UML for Real-Time
Systems

Eeles et al., Building J2EE™Applications with the Rational Unified Process

Fowler, Analysis Patterns: Reusable Object Models

Fowler, UML Distilled, 3E: A Brief Guide to the Standard Object
Modeling Language

Fowler et al., Refactoring: Improving the Design of Existing Code

Gomaa, Designing Concurrent, Distributed, and Real-Time Applications
with UML

Gomaa, Designing Software Product Lines with UML

Heinckiens, Building Scalable Database Applications: Object-Oriented
Design, Architectures, and Implementations

Hofmeister/Nord/Dilip, Applied Software Architecture

Jacobson/Booch/Rumbaugh, The Unified Software Development Process

Jacobson/Ng, Aspect-Oriented Software Development with Use Cases

Jordan, C++ Object Databases: Programming with the ODMG Standard

Kleppe/Warmer/Bast, MDA Explained: The Model Driven
Architecture™: Practice and Promise

Kroll/Kruchten, The Rational Unified Process Made Easy:
A Practitioner’s Guide to the RUP

Kroll/MacIsaac, Agility and Discipline Made Easy: Practices from
OpenUP and RUP

Kruchten, The Rational Unified Process, 3E: An Introduction

LaLonde, Discovering Smalltalk

Lau, The Art of Objects: Object-Oriented Design and Architecture

Leffingwell/Widrig, Managing Software Requirements, 2E:
A Use Case Approach

Manassis, Practical Software Engineering: Analysis and Design for the
.NET Platform

Marshall, Enterprise Modeling with UML: Designing Successful Software
through Business Analysis

McGregor/Sykes, A Practical Guide to Testing Object-Oriented Software

Mellor/Balcer, Executable UML: A Foundation for Model-Driven
Architecture

Mellor et al., MDA Distilled: Principles of Model-Driven Architecture

Naiburg/Maksimchuk, UML for Database Design

Oestereich, Developing Software with UML, 2E: Object-Oriented
Analysis and Design in Practice

Page-Jones, Fundamentals of Object-Oriented Design in UML

Pohl, Object-Oriented Programming Using C++, 2E

Quatrani, Visual Modeling with Rational Rose 2002 and UML

Rector/Sells, ATL Internals

Reed, Developing Applications with Visual Basic and UML

Rosenberg/Scott, Applying Use Case Driven Object Modeling with UML:
An Annotated e-Commerce Example

Rosenberg/Scott, Use Case Driven Object Modeling with UML:
A Practical Approach

Royce, Software Project Management: A Unified Framework

Rumbaugh/Jacobson/Booch, The Unified Modeling Language Reference
Manual

Schneider/Winters, Applying Use Cases, 2E: A Practical Guide

Smith, IBM Smalltalk

Smith/Williams, Performance Solutions: A Practical Guide to Creating
Responsive, Scalable Software

Tavares/Fertitta/Rector/Sells, ATL Internals, Second Edition

Tkach/Fang/So, Visual Modeling Technique

Unhelkar, Process Quality Assurance for UML-Based Projects

Warmer/Kleppe, The Object Constraint Language, 2E: Getting Your
Models Ready for MDA

White, Software Configuration Management Strategies and Rational
ClearCase®: A Practical Introduction

The Component Software Series
Clemens Szyperski, Series Editor
For more information, check out the series web site at
www.awprofessional.com/csseries.

Cheesman/Daniels, UML Components: A Simple Process for Specifying
Component-Based Software

Szyperski, Component Software, 2E: Beyond Object-Oriented
Programming

The Addison-Wesley Object Technology Series
Grady Booch, Ivar Jacobson, and James Rumbaugh, Series Editors
For more information, check out the series web site at www.awprofessional.com/otseries.

www.awprofessional.com/otseries
www.awprofessional.com/csseries

ATL Internals
Second Edition

Working with ATL 8

Christopher Tavares
Kirk Fertitta
Brent Rector
Chris Sells

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and the publisher was
aware of a trademark claim, the designations have been printed with initial capital letters or in
all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions.
No liability is assumed for incidental or consequential damages in connection with or arising out
of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales, which may include electronic versions and/or custom covers and content
particular to your business, training goals, marketing focus, and branding interests. For more
information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States please contact:

International Sales
international@pearsoned.com

This Book Is Safari Enabled

The Safari Enabled icon on the cover of your favorite technology book means the
book is available through Safari Bookshelf. When you buy this book, you get free

access to the online edition for 45 days.

Safari Bookshelf is an electronic reference library that lets you easily search thousands of tech-
nical books, find code samples, download chapters, and access technical information whenever
and wherever you need it.

To gain 45-day Safari Enabled access to this book:

• Go to http://www.awprofessional.com/safarienabled
• Complete the brief registration form
• Enter the coupon code QLCN-98WD-9EFH-UTD1-T4P8

If you have difficulty registering on Safari Bookshelf or accessing the online edition, please e-
mail customer-service@safaribooksonline.com.

Visit us on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

ATL internals : working with ATL 8 / Chris Tavares... [et al.]. — 2nd ed.
p. cm.

Previous ed. by Brent Rector.
ISBN 0-321-15962-4 (pbk. : alk. paper) 1. Application software—Development. 2. Active tem-

plate library. I. Tavares, Chris. II. Rector, Brent. ATL internals.

QA76.76.D47R43 2006
005.3—dc22

2006008998

Copyright © 2007 by Christopher Tavares, Kirk Fertitta, Brent Rector, and Chris Sells

All rights reserved. Printed in the United States of America. This publication is protected by copy-
right, and permission must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechani-
cal, photocopying, recording, or likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0-321-15962-4
Text printed in the United States on recycled paper at Edwards Brothers in Ann Arbor, Michigan.
First printing, July 2006

http://www.awprofessional.com/safarienabled
www.awprofessional.com

Chris Tavares:

For Wendy, who believed in me even when I didn’t believe in myself.

Kirk Fertitta:

To Mom and Ed, for their unwavering faith and encouragement.

Brent Rector:

To Lisa, for being there from the start and providing encouragement

constantly, for nearly three decades now.

To Carly and Sean, who don’t think it’s that big of a deal that

their dad writes books; it’s all they’ve ever known.

Chris Sells:

This edition is dedicated to the native Windows programmers

that .NET has left behind. I hope that .NET will serve your needs

in the future, but until then, this book is for you.

This page intentionally left blank

Foreword to the Second Edition xiii

Foreword to the First Edition xv

Preface xvii

Chapter 1: Hello, ATL 1
What Is ATL? 1
Creating a COM Server 2
Inserting a COM Class 6
Adding Properties and Methods 12
Implementing Additional Interfaces 15
Support for Scripting 18
Adding Persistence 19
Adding and Firing Events 21
Using a Window 23
COM Controls 26
Hosting a Control 28
ATL Server Web Projects 32
Summary 42

Chapter 2: Strings and Text 43
String Data Types, Conversion Classes, and Helper

Functions 43
The CComBSTR Smart BSTR Class 56
The CComBSTR Class 57
The CString Class 75
Summary 97

Chapter 3: ATL Smart Types 99
The CComVariant Smart VARIANT Class 99
The CComSafeArray Smart SAFEARRAY Class 114
The CComPtr and CComQIPtr Smart Pointer Classes 137

Contents

vii

The CAutoPtr and CAutoVectorPtr Smart Pointer Classes 160
ATL Memory Managers 167
Summary 174

Chapter 4: Objects in ATL 175
Implementing IUnknown 175
The Layers of ATL 177
Threading Model Support 179
The Core of IUnknown 190
Your Class 199
CComObject Et Al 205
ATL Creators 220
Debugging 235
Summary 242

Chapter 5: COM Servers 243
A Review of COM Servers 243
The Object Map and the CAtlModule Class 245
The Object Map 246
Methods Required of an Object Map Class 252
The CAtlModule Class 287
CComCoClass Revisited 293
ATL and the C Runtime Library 296
Summary 298

Chapter 6: Interface Maps 299
Recall: COM Identity 299
Table-Driven QueryInterface 301
Multiple Inheritance 308
Tear-Off Interfaces 319
Aggregation: The Controlling Outer 328
Interface Map Chaining 337
Just Say “No” 338
Debugging 339
Extensibility 340
Summary 344

viii A T L I N T E R N A L S

Chapter 7: Persistence in ATL 345
A Review of COM Persistence 345
ATL Persistence Implementation Classes 355
The Property Map 356
The Persistence Implementations 358
Additional Persistence Implementations 372
Adding Marshal-by-Value Semantics Using Persistence 376
Summary 379

Chapter 8: Collections and Enumerators 381
COM Collection and Enumeration Interfaces 381
Enumerating Arrays 394
Enumerating Standard C++ Collections 405
Collections 416
Standard C++ Collections of ATL Data Types 421
ATL Collections 427
Object Models 435
Summary 440

Chapter 9: Connection Points 441
A Review of Connection Points 441
Creating an ATL-Based Connectable Object 445
Creating an Object That Is an Event Recipient 457
How It All Works: The Messy Implementation Details 468
Summary 488

Chapter 10: Windowing 489
The Structure of a Windows Application 489
CWindow 492
CWindowImpl 498
CDialogImpl 542
Window Control Wrappers 553
CContainedWindow 559
Summary 565

Chapter 11: ActiveX Controls 567
A Review of ActiveX Controls 567
The BullsEye Control Requirements 569

P E R S I S T E N C E I N A T L ix

Creating the Initial Control Using the ATL Wizard 577
The Initial BullsEye Source Files 583
Developing the BullsEye Control Step by Step 589
Summary 630

Chapter 12: Control Containment 631
How Controls Are Contained 631
Basic Control Containment 632
Hosting a Control in a Dialog 670
Composite Controls 679
HTML Controls 683
ATL’s Control Containment Limitations 695
Summary 696

Chapter 13: Hello, ATL Server: A Modern C++
Web Platform 699
The Microsoft Web Platform (Internet Information

Services) 699
The Simplest ISAPI Extension That Could Possibly Work 702
Wrapping ISAPI 709
ATL Server 717
Web Services in ATL Server 730
Summary 737

Chapter 14: ATL Server Internals 739
Implementing ISAPI in ATL Server 739
Server Response Files 748
An Example Request Handler 755
Handling Input 758
Session Management 777
Data Caching 783
Summary 786

Appendix A C++ Templates by Example 787
The Need for Templates 787
Template Basics 789
A Different Kind of Polymorphism 791
Function Templates 796

x A T L I N T E R N A L S

Member Function Templates 797
Summary 798

Appendix B: ATL Header Files 799

Appendix C: Moving to ATL 8 803
Strings, Character Sets, and Conversions 803
Shared Classes with MFC 806
Implementing COM Servers 807
ActiveX Controls and Control Hosting 813
ATL_MIN_CRT Changes 813
Summary 814

Appendix D: Attributed ATL 815
Fundamentals of ATL Attributes 815
The Future of Attributed ATL 824
Summary 825

Index 827

P E R S I S T E N C E I N A T L xi

This page intentionally left blank

Wow. It has been a long time since I wrote the foreword for the first edition of ATL

Internals. Reading through the old introduction really takes me down memory
lane; I can hardly believe that it has been almost eight years. Not long after I wrote
it, I moved on to the Windows team at Microsoft and then on out of Microsoft a year
later. I came back to Microsoft (and the Visual C++ team) a few years ago, and I am
now managing several development teams in Visual C++. One of these is the
libraries team, of which ATL is a part, and it is fun to be involved in ATL again. Jan
and Christian have both moved on, although Nenad expanded the windowing
classes from ATL that I mentioned in the first introduction into a separate library
called WTL (Windows Template Library1). WTL is now a Microsoft open-source
project that Nenad manages.

ATL has changed in ways I never could have predicted, and it has been bitter-
sweet to see it continue to grow without being personally involved. There have
been many great people who have worked on ATL over the years. Some of them I
have known quite well and others I never knew.

When I mentioned “some new ways of accessing the ATL functionality” in the
first foreword, I was referring to attributes. This technology was delivered in Visual
Studio .NET 2002, but it never really developed into what we envisioned. ATL
attributes still work in the current release and they can be quite powerful, but there
are no plans to expand their use. This new version of ATL Internals provides lots of
updates and does cover attributes, but doesn’t assume that you’re going to depend
on this feature. This edition also includes a very nice introduction to ATL Server,
which provides a flexible, high-performance way to create web applications. If per-
formance is a critical requirement, ATL Server was built for you. Other ATL 8
improvements include better security, full 64-bit support, better scalability, debug-
ging improvements, support for C++/CLI, and managed ATL components.

What has become the .NET ecosystem was just getting underway back in 1998.
It has revolutionized programming for many developers and will continue to
deliver improvements in the years to come. However, COM programming (and

Foreword to the
Second Edition

xiii

1 http://wtl.sourceforge.net

http://wtl.sourceforge.net

ATL) is still very much alive and is very important to many developers both inside
and outside of Microsoft. The second edition of this book, like the first, provides
the details you need to maximize your investment in those technologies.

Jim Springfield

April, 2006

xiv A T L I N T E R N A L S

When I first saw the title of this book, I told Chris Sells that it sounded like the book
I always wanted to write. Ever since we released ATL, some of us have been saying,
“We should write a book on how ATL works.” After reading ATL Internals, I don’t
think there would be much left for me to write about. Actually, this is kind of a
relief. At this point, I think most aspects of ATL have been covered, and ATL Inter-

nals provides an excellent source of information of the inner workings of ATL. So,
Chris asked me to provide some information that can’t be deduced by looking at
the ATL source code.

A Brief History of ATL

I first got into templates in late 1995, while I was a developer on the MFC team.
A friend of mine here was evaluating various STL vendors for the Visual C++ prod-
uct, and he talked to me a lot about templates. I played around with templates a bit,
but didn’t do much with them. Soon after, the VC team split off an enterprise team
to focus solely on Visual C++ 4.2 Enterprise (our first VC enterprise product). I
moved over to head up the libraries work for VCEE. At the time, we explored sev-
eral different ideas. Microsoft Transaction Server was just getting started then, and
we talked a lot with them about COM, transactions, databases, and middle-tier
business objects. Pretty quickly, we realized that we needed a better mechanism
for creating COM objects from C++. Jan Falkin and Christian Beaumont were
working for me at that time. Jan was working on an automation interface to ODBC
data sources, and Christian was working on a template-based access method to
ODBC data sources (a forerunner of our current OLEDB consumer templates). I
was working on the COM infrastructure, since everything was already pointing to
COM back then.

Initially, I was just playing around with COM and templates, but slowly it
started to stabilize around a few important concepts. From the beginning I wanted
to support all threading models, but I didn’t want to pay for it unless it was needed.
The same was true for aggregation. I didn’t want anyone to have an excuse not to
use ATL. (I didn’t want to hear, “Well, ATL is cool, but I can save a couple of bytes if
I do this myself.”) So, performance and flexibility came before ease of use when

Foreword to the
First Edition

xv

F O R E W O R D xv

that decision had to be made. One of the main concepts that came out of this was
that the class a user writes is not the class that was actually instantiated. This
allowed many optimizations that otherwise could not have occurred. Some of the
other concepts were multiple inheritance for interfaces, “creator” functions, and a
data-driven COM map. We started to show this around and got a lot of good feed-
back on it. Several people thought we should get this out to customers as soon as
possible, so we decided to RTW (release to the web) in the early summer of ‘96.
That was ATL 1.0. Our working name for our libraries was MEC (Microsoft Enter-
prise Classes), but our marketing person thought we should have something that
more reflected what we were doing. Because of our COM focus and the fact that at
the time, everything was being called “Active” something or other, we selected the
name Active Template Library. We got a good reception for it and in late summer
of ‘96 we released ATL 1.1. By this time, Jan and Christian had started working
directly on ATL. ATL 1.1 had bug fixes and support for a few more features such as
connection points, NT services, RGS registry support, and security.

After ATL 1.1, we started working on ATL 2.0. Its primary focus was the cre-
ation of ActiveX controls. Jan and Christian did much of the work on this, while I
still focused on the core stuff (such as rewriting the connection points to make
them smaller). Nenad Stefanovic also joined us at that time and started work on the
windowing support in ATL, as well as doing the composite control support in
VC 6.0. We were originally planning on ATL 2.0 to be shipped on the web targeting
VC 4.2. However, our plans changed and we changed ATL 2.0 to ship in VC 5.0
(12/96), and shipped ATL 2.1 with the Alpha version of Visual C++ 5.0. The only dif-
ference between ATL 2.0 and 2.1 were some bug fixes for Alpha, MIPS, and Pow-
erPC. We also simultaneously shipped ATL 2.1 on the web with AppWizard and
ObjectWizard support for VC 4.2. After a couple of months of working on ATL 3.0
(called ATL 2.5 at the time), Christian and I were burned out and took some time off
from ATL, while Jan took over as ATL lead. A few months later, we came back, and
Christian became the ATL lead while I moved on to explore some other things for
Visual C++, although I do still get into the source code every now and then.

We shipped VC 6.0 in June ’98 and are currently working on the next release.
Expect to see lots of cool new stuff in ATL as well as some new ways of accessing
the ATL functionality. I am glad to see ATL continue to evolve, while at the same
time maintaining the original goals of generating small, efficient code. So, take a
look at this book, learn some new tricks, and gain a deeper understanding of how it
all works.

Jim Springfield

October, 1998

xvi A T L I N T E R N A L S

.NET has hit the Windows programmer community like a tornado, tipping over the
trailer homes of the ways that we used to do things. It’s pretty much swept up
the needs of most web applications and service applications, as well of most of the
line-of-business applications for which we previously used Visual Basic and MFC.

However, a few stubborn hold-outs in their root cellars will give up their native
code only at the end of a gun. These are the folks with years of investment in C++
code who don’t trust some new-fangled compiler switches to make their native code
“managed.” Those folks won’t ever move their code, whether there are benefits to
be gained or not. This book is partially for them, if they can be talked into moving
their ATL 3/Visual C++ 6 projects forward to ATL 8 and Visual Studio 2005.

Another class of developers that inhabit downtown Windows city aren’t
touched by tornados and barely notice them when they happen. These are the ones
shipping applications that have to run fast and well on Windows 95 on up, that don’t
have the CPU or the memory to run a .NET application or the bandwidth to down-
load the .NET Framework even if they wanted to. These are the ones who also have
to squeeze the maximum out of server machines, to take advantage of every
resource that’s available. These are the ones who don’t have the luxury of the CPU,
memory or storage resources provided by the clear weather of modern machines
needed for garbage collection, just-in-time compilation, or a giant class library
filled with things they don’t need. These developers value load time, execution
speed, and direct access to the platform in rain, sleet, or dark of night. For them,
any framework they use must have a strict policy when it comes to zero-overhead
for features they don’t use, maximum flexibility for customization, and hard-core
performance. For these developers, there’s ATL 8, the last, best native framework
for the Windows platform.

For clients, ATL provides windowing, COM client smart types, extensive COM
control and control hosting, MFC integration (including several MFC classes that
no longer require the rest of MFC), and web service proxy generation. For servers,
ATL provides full COM server and object services, and extensive support for high-
throughput, high-concurrency web applications and services. For both clients and
services, ATL makes aggressive use of macros and templates to give you maximum
flexibility and low overhead, making sure you pay for only the features you use and
giving you full transparency via the source code into how those classes map their

Preface

xvii

functions to the platform. For productivity, ATL provides a full set of wizards for
starting and building client and server projects.

Attributes

Pushing the productivity idea, in ATL 7 and Visual Studio 2003, the ATL team intro-
duced attributed ATL, allowing ATL programmers to annotate their code using the
same techniques that you would use to add metadata to IDL interfaces and
coclasses (such as the uuid attribute). In fact, the wizards were so happy to show
you this style of code that, in VS03, the Attributed option was on by default. How-
ever, all is not sunshine and bluebirds with attributes. In .NET and IDL, attributes
are a real part of the programming model; support for them exists all the way
down. In ATL, attributes are more of a compiler trick, like super-macros, generating
base classes, macro maps, Registry scripts, and IDL files.

Unlike macros, however, ATL attributes are not transparent—you can’t see
what is going on very well. A compiler switch is included to show a representation
of generated code, such as what base classes were added, but it has regressed in
VS05. This has led to problems in understanding and debugging issues, which was
not helped by bugs in the attribute-generated code. That’s not to say that the rest of
ATL is bug free (or that any software is bug free), but when it comes to problems in
base classes or macros, ATL has always enabled you to replace problem function-
ality in several ways. In fact, code to work around problems was a big part of the
first edition of this book because you could so easily sidestep problems.

Cues in VS05 indicate that attributes are no longer a major part of the ATL
team’s focus. For example, the compiler switch shows less information, not more,
about what attributes generate. Most telling, however, is that the Attributed option
in the VS05 wizards is no longer checked by default.1 For that reason, although we
cover the principles of ATL attributes in Appendix D, “Attributed ATL,” you won’t
find them sprinkled throughout the book. We believe that half-hearted attributes
won’t make ATL 8 programmers the happiest with their native framework of
choice.

Audience

This book is for the C++/COM programmer moving to ATL 8, as provided with
Visual Studio 2005. ATL was built with a set of assumptions, so to be an effective
ATL programmer, you need to understand not only how ATL is built, but also why.

xviii A T L I N T E R N A L S

1 Except for when generating an ATL Server Web Service project, when the Attributed Code option is
checked and disabled so that you can’t uncheck it.

Of course, to understand the why of ATL, you must understand the environment in
which ATL was developed: COM. Instead of attempting to compress all required
COM knowledge into one or two chapters, this book assumes that you already
know COM and spends all its time showing you the design, use, and internals of
ATL. Don Box’s Essential COM (Addison-Wesley Professional, 1997) is a good
source of COM knowledge, if you’d like to brush up before diving into ATL.

Outline

With the exception of the first chapter, this book is arranged from the lowest levels
of ATL to the highest; each chapter builds on knowledge in previous chapters. The
first chapter is a brief overview of some of the more common uses for ATL and the
wizards that aid in those uses. Whenever things get too detailed in the first chapter,
however, we refer you to a subsequent chapter that provides more in depth cover-
age.

Chapters 2 through 5 present the core of ATL. Chapter 2, “Strings and Text,”
covers the messy world of string handling in C++, COM, and ATL. Chapter 3, “ATL
Smart Types,” discusses ATL smart types, such as CComPtr, CComQIPtr, CComBSTR,
and CComVariant. Chapter 4, “Objects in ATL,” discusses how objects are imple-
mented in ATL and concentrates on the great range of choices you have when
implementing IUnknown. Chapter 5, “COM Servers,” discusses the glue code
required to expose COM objects from COM servers. Chapter 6, “Interface Maps,”
delves into the implementation of IUnknown again, this time concentrating on how
to implement QueryInterface; this chapter shows techniques such as tear-off inter-
faces and aggregation. Chapters 7, “Persistence in ATL”; 8, “Collections and Enu-
merators”; and 9, “Connection Points,” discuss canned interface implementations
that ATL provides to support object persistence, COM collections and enumera-
tors, and connection points, respectively. These services can be used by compo-
nents that might or might not provide a user interface. Chapters 10, “Windowing”;
11, “ActiveX Controls”; and 12, “Control Containment,” concentrate on building
both standalone applications and user interface components. These chapters cover
the ATL window classes, controls, and control containment, respectively. Finally,
Chapters 13, “Hello, ATL Server,” and 14, “ATL Server Internals,” cover ATL Server,
which lets you build web applications on IIS. Chapter 13 introduces ISAPI and ATL
Server, and Chapter 14 looks under the hood of ATL Server.

P R E F A C E xix

Much of what makes the ATL source difficult to read is its advanced use of tem-
plates. Appendix A, “C++ Templates by Example,” provides a set of examples that
illustrate how templates are used and built. If you’ve seen ATL source code and
wondered why you pass the name of a deriving class to a base class template, you
will find this appendix useful. Appendix B, “ATL Header Files,” provides a list of the
ATL header files, along with descriptions to help you track down your favorite
parts of the ATL implementation. If you’re already an ATL 3 programmer and you
want to hit the ground running on what’s new in ATL 8, Appendix C, “Moving to ATL
8,” is for you. Finally, if you’d like an introduction to attributes (and a bit more
information about why we’ve relegated attribute coverage to a lowly appendix),
you’ll want to read Appendix D, “Attributed ATL.”

Conventions

When writing these chapters, it became necessary to show you not only diagrams
and sample code, but also internal ATL implementation code. This book often
becomes your personal tour guide through the ATL source code. To help you dis-
tinguish author-generated code from Microsoft-employee-generated code, we’ve
adopted the following convention:

// This code is author-generated and is an example of what you’d type.

// Bold-faced code requires your particular attention.

CComBSTR bstr = OLESTR(“Hello, World.”);

// Code with a gray background is part of ATL or Windows.

CComBSTR(LPCOLESTR pSrc) { m_str = ::SysAllocString(pSrc); }

Because the ATL team didn’t write its code to be published in book form, we
often had to reformat it or even abbreviate it. Every effort has been made to retain
the essence of the original code, but, as always, the ATL source code is the final
arbiter.

Sample Code and Further Information

More information about this book, including the sample source code, is available at
www.sellsbrothers.com/writing/atlbook. On that site, you’ll also find contact infor-
mation so that you can report errors or give feedback.

xx A T L I N T E R N A L S

www.sellsbrothers.com/writing/atlbook

We have a large number of people to thank for their contributions to this book.
Chris Sells would like to thank his wife, Melissa, and his boys, John and Tom, for
sparing him countless evenings and weekends to work on this project. Chris would
also like to thank Brent Rector for letting him horn in on the first edition of this
book, Kirk Fertitta for updating a large portion of this book to ATL 7, and Chris
Tavares for bringing this project home.

Brent would like to thank his wife, Lisa, and his children, Carly and Sean, for
delaying the delivery of this book significantly. If it weren’t for them, he would
never have left the computer some days. Brent would also like to thank Chris Sells
for his intelligence, patience, and general good looks.2

Kirk Fertitta would like to thank the following: the readers, who, after all,
make book writing a worthwhile and rewarding endeavor; Chris Sells, for getting
him involved in this book project and for his insights into ATL and into the writing
process itself; Brad Handa and Hugues Valois, for countless hours working on real
projects unraveling COM and ATL mysteries; all the subscribers to DevelopMen-
tor’s ATL discussion list for their sharing their perspectives and experiences with
many of the new ATL features; MusicMatch (now Yahoo!) employees and contrac-
tors for all their feedback on using ATL in a very large commercial application
(many of the caveats of using some of the attributed ATL features were exposed by
this talented and patient group of developers); and Stephane Thomas, of Addison-
Wesley, for her patience in getting this project started.

Chris Tavares would like to thank his long-suffering wife, Wendy, for her under-
standing, love, and support. The late-night glasses of water and bowls of ice cream
were instrumental in finishing this book and keeping Chris sane. Thanks also go to
his son, Matthew, who didn’t mind too much when Daddy disappeared into his
office for days at a time. Chris would also like to thank Chris Sells for the opportu-
nity to help get the second edition out to the ATL community.

Chris, Kirk, Brent, and Chris would like to thank several folks together, starting
first with the reviewers: Bill Craun, Johan Ericsson, Igor Tandetnik, Kim Gräsman,

Acknowledgments

xxi

2 You get only one guess as to who wrote that part, and he doesn’t have my initials or my good looks.
BER

Jeff Galinovsky, Igor Tandetnik, and Nenad Stefanovic. Special thanks go to the
members of the ATL team, including Christian Beaumont, Jim Springfield, Walter
Sullivan, and Mark Kramer, for suffering nagging questions and taking the time to
answer them. More special thanks to Don Box for his MSJ ATL feature, which so
heavily influenced the ATL short-course and, in turn, this book. Thanks to review-
ers Don Box, Keith Brown, Jon Flanders, Mike Francis, Kevin Jones, Stanley Lipp-
man, Dharma Shukla, Jim Springfield, Jeff Stalls, Jaganathan Thangavelu, and
Jason Whittington. Special thanks go to Dharma for his especially thorough and
educational reviews. Thanks to Fritz Onion for his groundbreaking work delving
into the depths of ATL control containment. Thanks to a former student, Valdan
Vidakovic, for inspiring Chris to delve a bit more into the HTML control. Thanks to
Tim Ewald, Jim Springfield, and Don Box for their help in developing the forward-
ing shims trick. Thanks to the members of the ATL and DCOM mailing lists, espe-
cially Don Box, Tim Ewald, Charlie Kindel, Valery Pryamikov, Mark Ryland, and
Zane Thomas. Also, we’d like to thank George Shepherd for his initial research and
even a little writing for the ATL Server chapters. And last, but not least, thanks to
Addison-Wesley, especially Karen Gettman, Lori Lyons, and Kim Boedigheimer, for
providing an environment in which we actually want to write (although not as
quickly or as concisely as they might prefer. . .).

xxii A T L I N T E R N A L S

Chris Tavares is currently a software development engineer in the Microsoft pat-
terns and practices group, where he strives to help developers learn the best way to
develop on the Microsoft platform. He first touched a computer in third grade,
doing hand-assembly of machine code on an Intel 8080 machine with 512 bytes
(yes, bytes) of memory, a hex keypad, and 7 segment LCD display. He’s been dig-
ging into computers and software ever since.

Kirk Fertitta is CTO of Pacific MindWorks, a leading provider of tools and ser-
vices for electronic test and measurement. With his team at Pacific MindWorks,
Kirk works extensively on code generation technology and Visual Studio extensi-
bility. He is also a .NET/C# instructor for Pluralsight.

Brent Rector, president and founder of Wise Owl Consulting, is a noted speaker,
consultant, and author, specializing in .NET, ASP.NET, XML, COM+, and ATL.

Chris Sells is a program manager for the Connected Systems Division. He’s writ-
ten several books, including Programming Windows Presentation Foundation,

Windows Forms Programming in C#, and ATL Internals. In his free time, Chris
hosts various conferences and makes a pest of himself on Microsoft internal prod-
uct team discussion lists. More information about Chris, and his various projects, is
available at http://www.sellsbrothers.com

About the Authors

xxiii

http://www.sellsbrothers.com

This page intentionally left blank

Welcome to the Active Template Library (hereafter referred to as ATL). In this
chapter, I present a few of the tasks that you’ll probably want to perform using ATL
and the integrated wizards. This is by no means all of what ATL can accomplish,
nor is it meant to be exhaustive coverage of the wizards or their output. In fact, the
rest of this book focuses on how ATL is implemented to provide the Component
Object Model (COM) glue that holds together this example (as well as several oth-
ers). This chapter is actually just a warm-up to get you familiar with the support
that the Visual Studio environment provides the ATL programmer.

What Is ATL?

Expanding the acronym doesn’t completely describe what ATL is or why we have
it. The Active part is actually residue from the marketing age at Microsoft, when
“ActiveX”1 meant all of COM. As of this writing, “ActiveX” means controls. And
although ATL does provide extensive support for building controls, it offers much
more than that.

ATL provides:

n Class wrappers around high-maintenance data types such as interface point-
ers, VARIANTs, BSTRs, and HWNDs

n Classes that provide implementations of basic COM interfaces such as IUn-
known, IClassFactory, IDispatch, IPersistXxx, IConnectionPointContainer,
and IEnumXxx

n Classes for managing COM servers—that is, for exposing class objects, per-
forming self-registration, and managing the server lifetime

n Classes for building COM controls and COM control containers, as well as for
building plain old Windows applications

C H A P T E R

1 Hello, ATL

1

1 The original expansion of ATL was ActiveX Template Library.

n An enormous library of classes for building web applications and XML web
services

n Wizards, to save you typing

ATL was inspired by the current model citizen in the world of C++ class libraries,
the C++ Standard Library. ATL is meant to be a set of small, efficient, and flexible
classes. However, all this power requires a bit of skill to fully harness. As with the
standard C++ library, only an experienced C++ programmer can use ATL effec-
tively.

Of course, because we’ll be programming COM, experience using and imple-
menting COM objects and servers is absolutely required. For those of you hoping
for a way to build your COM objects without COM knowledge, ATL is not for you
(nor is Visual Basic, MFC, or anything else, for that matter). In fact, using ATL
means being intimately familiar with COM in C++, as well as with some of the
implementation details of ATL itself.

Still, ATL is packaged with several wizards that are helpful for generating the
initial code. In the rest of this chapter, I present the various wizards available for
ATL programmers as of Visual Studio 2005. Feel free to follow along.

Creating a COM Server

Creating an ATL Project

The first step in any Visual Studio development endeavor is to build the solution
and the initial project. Choosing File, New Project displays the New Project dialog
box shown in Figure 1.1, which focuses on Visual C++ projects.

Selecting the Visual C++ Projects folder displays the various types of C++ proj-
ect templates available. The name of the project (shown in the figure as PiSvr) is
the name of your generated DLL or EXE server.

The job of the ATL Project Template is to build a project for your COM server.
A COM server is either a dynamic link library (DLL) or an executable (EXE).
Furthermore, the EXE can be a standalone application or an NT service. The ATL
Project Template supports all three of these server types. By default, a DLL server
is selected as shown in Figure 1.2.

2 A T L I N T E R N A L S

Figure 1.1 Creating a new Visual Studio project

H E L L O , A T L 3

Figure 1.2 Project settings for an ATL project

ATL Project Wizard Options

The ATL Project Wizard in Figure 1.2 lists several options that merit discussion.
The first option sets up the project to use ATL attributes. As described in the Pref-
ace, nonattributed projects are preferred in ATL 8, so we concentrate on nonattrib-
uted projects in this book. If you decide to use attributes anyway, see Appendix D,
“Attributed ATL,” for coverage of attributed projects.

In the Additional Options section, the first option enables you to bundle your
custom proxy/stub code with your DLL server. By default, this option is not
selected. As a result, Visual Studio generates a separate project named <project-
name>PS.vcproj for the proxy/stub and adds it to the solution for your server. This
project is for building a separate proxy/stub DLL to distribute to all client and
server machines that need to marshal and unmarshal your custom interfaces. How-
ever, the proxy/stub project is not selected to be built in either of the default build
configurations (Debug, Release) for the solution, as you can see from the property
pages for the solution in Figure 1.3. Checking the Build check box next to the
proxy/stub project causes this project to be built along with the main server when-
ever the solution is built.

4 A T L I N T E R N A L S

Figure 1.3 Application settings for a new ATL COM server

If you want to bundle the proxy/stub DLL into the server DLL (requiring the
server to be installed on the client machine), you can check the Allow Merging of
Proxy/Stub Code option (for nonattributed projects). Doing so results in a solution
with only a single project (the one for your main server), with a bunch of condition-
ally compiled statements inserted into your server code to merge the proxy/stub
code. The preprocessor definition _MERGE_PROXYSTUB controls whether the
proxy/stub code is compiled into the server; this definition is added to all project
configurations by default.

Unless you have a good reason (which is beyond the scope of this book), you’ll
want to avoid the option to merge the proxy/stub code into your server, instead
preferring dual or oleautomation-compatible custom interfaces.

The second ATL Project Wizard option enables you to use the Microsoft Foun-
dation Classes (MFC). Frankly, you should avoid this option. The following are a
few common objections developers have to turning off this check box:

n “I can’t live without CString (or CMap, CList, and so on).” The MFC utility
classes were built as a stopgap until the C++ standards committee defined a
standard library. They’ve done it, so we can stop using the MFC versions. The
classes string, map, list, and so on provided in the standard library are more
flexible and more robust than their MFC equivalents. Moreover, CString is now
a shared class between MFC and ATL, and thus is available in ATL projects
without having to include the rest of MFC and link to the MFC library. Other
MFC utility classes have also been made shared, including CPoint and CRect.
And for those who liked the MFC collections classes, ATL now includes MFC
style collections (CAtlMap, CAtlList, and so on).

n “I can’t live without the wizards.” This chapter is all about the wizards that
Visual Studio provides for ATL programmers. The ATL wizards are arguably as
extensive as the ones MFC provides.

n “I already know MFC, and I can’t learn anything new.” Luckily, none of
these people are reading this book.

The third ATL COM AppWizard option, Support COM+, causes your project to
link to the COM+ component services library comsvcs.dll and includes the appro-
priate header file comsvcs.h so that your server can access the various interfaces
that comprise COM+. With Support COM+ selected, you can also check the option
Support Component Registrar, which generates an additional coclass in your proj-
ect that implements the IComponentRegistrar interface.2

Results of the ATL Project Wizard

With or without these three options, every COM server that the ATL Project Wizard
generates supports the three jobs of every COM server: self-registration, server life-
time control, and class objects exposure. As an additional convenience, the wizard
adds a post-build event that registers the COM server upon each successful build.
This step runs either regsvr32.exe <project>.dll or <project>.exe /regserver,
depending on whether it is a DLL or EXE server.

H E L L O , A T L 5

2 The IComponentRegistrar interface was thrown in for early implementations of COM+ but isn’t
actually used, as far as we know.

For more information about ATL’s support for the three jobs of every COM
server, as well as how you can extend it for more advanced concurrency and life-
time needs, see Chapter 5, “COM Servers.”

Inserting a COM Class

Adding an ATL Simple Object

When you have an ATL COM server, you’ll probably want to insert a new COM
class. This is accomplished by selecting the Add Class item in the Project menu.
When inserting an ATL class, you first have to choose the type of class you want, as
shown in Figure 1.4.

6 A T L I N T E R N A L S

Figure 1.4 Adding an ATL COM class

If you’re following along, you might want to take a moment to explore the var-
ious types of classes available. Each of these classes results in a specific set of code
being generated, using the ATL base classes to provide most of the functionality
and then generating the skeleton for your own custom functionality. The wizard for
a particular class type is your chance to decide which interfaces you want your
COM class to implement. Unfortunately, the wizard doesn’t provide access to all
the functionality of ATL (or even most of it), but the generated code is designed to
be easy for you to add or subtract functionality after it has gotten you started.
Experimentation is the best way to get familiar with the various wizard-generated
class types and their options.

After you choose one of the class types (and press OK), Visual Studio generally
asks for some specific information from you. Some of the classes have more
options than the ATL Simple Object (as selected in Figure 1.4), but most of the
COM classes require at least the information shown in Figures 1.5 and 1.6.3

H E L L O , A T L 7

3 I should note that the ATL team got the terminology wrong here. The ATL Simple Object Wizard inserts
a “class,” not an “object.”

Figure 1.5 Setting COM class names

The Names tab of the ATL Simple Object Wizard dialog box requires you to
type in only the short name, such as CalcPi. This short name is used to compose
the rest of the information in this dialog box (which you can override, if you
choose). The information is divided into two categories. The necessary C++ infor-
mation is the name of the C++ class and the names of the header and implementa-
tion files. The necessary COM information is the coclass name (for the Interface
Definition Language [IDL]); the name of the default interface (also for the IDL); the
friendly name, called the Type (for the IDL and the registration settings); and finally
the version-independent programmatic identifier (for the registration settings).
The versioned ProgID is just the version-independent ProgID with the “.1” suffix.
Note that the Attributed option is not selected. In a nonattributed project, we have
the option of selectively adding attributed classes to our project via the Attributed
check box in Figure 1.5.

Figure 1.6 Setting COM class attributes

The Options page is your chance to make some lower-level COM decisions. The
Threading model setting describes the kind of apartment where you want instances
of this new class to live: a single-threaded apartment (STA, also known as the
Apartment model), or a multithreaded apartment (MTA, also known as the Free-
Threaded model). The Single model is for the rare class that requires all its objects
to share the application’s main STA, regardless of the client’s apartment type. The
Both model is for objects that you want to live in the same apartment as their
clients, to avoid the overhead of a proxy/stub pair. The Neutral threading model is
available only on Windows 2000 (and later) and is useful for objects that can safely
execute on the thread of the caller. Calls to components marked as Neutral often
execute more quickly because a thread switch is not required, whereas a thread
switch always occurs with cross-apartment calls between other types of apart-
ments. The Threading model setting that you choose determines the value for the
ThreadingModel named value placed in the Registry for your server; it determines
just how thread safe you need your object’s implementation of AddRef and Release

to be.
The Interface setting enables you to determine the kind of interface you want

the class’s default interface to be: Custom (it needs a custom proxy/stub and does
not derive from IDispatch) or Dual (it uses the type library marshaler and derives
from IDispatch). This setting determines how the IDL that defines your default
interface is generated. Custom interfaces can further be qualified by selecting the
Automation Compatible option. This option adorns the IDL interface definition
with the [oleautomation] attribute, which restricts the variable types that your

8 A T L I N T E R N A L S

interface’s methods can use to OLE Automation-compatible types. For instance,
[oleautomation] interface methods must use the SAFEARRAY type instead of con-
ventional C-style arrays. If you plan to use your ATL COM object from several dif-
ferent client environments, such as Visual Basic, it is a good idea to check this
option. Moreover, accessing COM objects from code running in the Microsoft
.NET framework is much simpler if [oleautomation] interfaces are used. Deploy-
ing your COM object might also be simpler with the use of [oleautomation] inter-
faces because these interfaces always use the universal marshaler to pass
interface references across apartments. The type library marshaler always is pres-
ent on a machine that supports COM, so you don’t need to distribute a proxy/stub
DLL with your component.

The Aggregation setting enables you to determine whether you want your
objects to be aggregatable—that is, whether to participate in aggregation as the
controlled inner. This setting does not affect whether objects of your new class can
use aggregation as the controlling outer. See Chapter 4, “Objects in ATL,” for more
details about being aggregated, and Chapter 6, “Interface Maps,” about aggregating
other objects.

The Support ISupportErrorInfo setting directs the wizard to generate an imple-
mentation of ISupportErrorInfo. This is necessary if you want to throw COM
exceptions. COM exceptions (also called COM Error Information objects) enable
you to pass more detailed error information across languages and apartment
boundaries than can be provided with an HRESULT alone. See Chapter 5, “COM
Servers,” for more information about raising and catching COM exceptions.

The Support Connection Points setting directs the wizard to generate an imple-
mentation of IConnectionPoint, which allows your object to fire events into script-
ing environments such as those hosted by Internet Explorer. Controls also use
connection points to fire events into control containers, as discussed in Chapter 9,
“Connection Points.”

The Help information for the Free-Threaded Marshaler setting reads as fol-
lows: “Allows clients in the same interface to get a raw interface even if their
threading model doesn’t match.” This description doesn’t begin to describe how
dangerous it is for you to choose it. Unfortunately, the Free Threaded Marshaler
(FTM) is like an expensive car: If you have to ask, you can’t afford it. See Chapter 6,
“Interface Maps,” for a description of the FTM before checking this box.

The Support IObjectWithSite setting directs the wizard to generate an imple-
mentation of IObjectWithSite. Objects being hosted inside containers such as
Internet Explorer use this interface. Containers use this interface to pass interface
pointers to the objects they host so that these objects can directly communicate
with their container.

H E L L O , A T L 9

Results of the ATL Simple Object Wizard

After you specify the options, the Simple Object Wizard generates the skeleton files
for you to start adding your implementation. For the class, there is a newly gener-
ated header file containing the class definition, a .cpp file for the implementation,
and an .RGS file containing registration information.4 In addition, the IDL file is
updated to contain the new interface definition.

The generated class definition looks like this:

// CalcPi.h : Declaration of the CCalcPi

#pragma once

#include "resource.h" // main symbols

#include "PiSvr.h"

#include "_ICalcPiEvents_CP.h"

// CCalcPi

class ATL_NO_VTABLE CCalcPi :

public CComObjectRootEx<CComSingleThreadModel>,

public CComCoClass<CCalcPi, &CLSID_CalcPi>,

public ISupportErrorInfo,

public IConnectionPointContainerImpl<CCalcPi>,

public CProxy_ICalcPiEvents<CCalcPi>,

public IDispatchImpl<ICalcPi, &IID_ICalcPi, &LIBID_PiSvrLib,

/*wMajor =*/ 1, /*wMinor =*/ 0>

{

public:

CCalcPi() { }

DECLARE_REGISTRY_RESOURCEID(IDR_CALCPI)

BEGIN_COM_MAP(CCalcPi)

COM_INTERFACE_ENTRY(ICalcPi)

COM_INTERFACE_ENTRY(IDispatch)

COM_INTERFACE_ENTRY(ISupportErrorInfo)

COM_INTERFACE_ENTRY(IConnectionPointContainer)

END_COM_MAP()

BEGIN_CONNECTION_POINT_MAP(CCalcPi)

CONNECTION_POINT_ENTRY(__uuidof(_ICalcPiEvents))

10 A T L I N T E R N A L S

4 See Chapters 4 and 5 for more information on COM class registration.

END_CONNECTION_POINT_MAP()

// ISupportsErrorInfo

STDMETHOD(InterfaceSupportsErrorInfo)(REFIID riid);

DECLARE_PROTECT_FINAL_CONSTRUCT()

HRESULT FinalConstruct() {

return S_OK;

}

void FinalRelease() {

}

public:

};

OBJECT_ENTRY_AUTO(__uuidof(CalcPi), CCalcPi)

The first thing to notice is the list of base classes. In this instance, ATL takes
advantage of both templates and multiple inheritance. Each base class provides a
separate piece of the common code needed for a COM object:

n CComObjectRootEx provides the implementation of the IUnknown interface.

n CComCoClass provides the class factory implementation.

n ISupportErrorInfo is the interface; implementation for the one method is in
the .cpp file.

n IConnectionPointContainerImpl provides the implementation I requested by
checking the Support Connection Points check box.

n CProxy_ICalcPiEvents is part of the connection point implementation.

n IDispatchImpl provides the implementation of IDispatch needed for the
object’s dual interface.

The other important thing to note here is the COM_MAP macros. This is an
instance of an ATL map: a set of macros that generate code (typically to fill in a
lookup table). The COM_MAP, in particular, is used to implement the QueryInterface
method that all COM objects are required to support.

For more information about the base classes that ATL uses to implement basic
COM functionality and how you can leverage this implementation for building ob-
ject hierarchies and properly synchronizing multithreaded objects, see Chapter 4,
“Objects in ATL.” For more information about how to make full use of the COM_MAP,
see Chapter 6, “Interface Maps.”

H E L L O , A T L 11

Adding Properties and Methods

One of the things that make a C++ programmer’s life hard is the separation of the
class declaration (usually in the .h file) and the class definition (usually in the .cpp
file). This can be a pain because of the maintenance required between the two. Any
time a member function is added in one, it has to be replicated in the other. Manu-
ally, this can be a tedious process, and it is made even more tedious for a C++ COM
programmer who must maintain the same definitions in an .idl file. When I’m
adding properties and methods to my interfaces, I’d like my C++ development envi-
ronment to help translate an IDL method definition into C++ (with the appropriate
ATL attributes, if necessary) and drop it into my .h and .cpp files for me, leaving me
a nice place to provide my implementation. That’s just what Visual Studio provides.

By right-clicking on a COM interface in Class view, you can choose to add a
new property or method from the Add submenu of the context menu that appears.
Figure 1.7 shows the dialog box that enables you to add a property to a COM inter-
face. Parameters to the property can be added by specifying the parameter data
type and the parameter direction (for example, [in] or [out]).

12 A T L I N T E R N A L S

Figure 1.7 Adding a property

Figure 1.8 shows the options available on the IDL Attributes tab for the Add
Property Wizard. Selected attributes are inserted into the appropriate interface def-
inition, in your project’s IDL file. In either case, the effect on the type library is iden-
tical. Many of these attributes apply in rare circumstances, so the default selections
and values shown in the figure are often suitable. In any event, adding, deleting, or
modifying these attributes directly in the IDL file afterward is a simple matter.

H E L L O , A T L 13

Figure 1.8 IDL attributes for a property

The following shaded code shows the implementation skeleton that the wizard
generates. We have to provide only the appropriate behavior (shown as unshaded
code).

STDMETHODIMP CCalcPi::get_Digits(LONG* pVal) {

*pVal = m_nDigits;

return S_OK;

}

STDMETHODIMP CCalcPi::put_Digits(LONG newVal) {

if(newVal < 0)

return Error(L"Can't calculate negative digits of PI");

m_nDigits = newVal;

return S_OK;

}

Similarly, we can add a method by right-clicking an interface in Class view and
choosing Add Method. Figure 1.9 shows the Add Method Wizard. Input and output
parameters are added individually using the Parameter Type combo box, the Para-
meter Name text box, and the Add/Remove buttons.

Figure 1.9 Adding a method

Again, the wizard updates the interface definition in either the IDL file or the
header file, generates the appropriate C++ code, and places us in the implementa-
tion skeleton to do our job. The shaded code is what remains of the wizard-
generated C++ code after I added the code to implement the method:

STDMETHODIMP CCalcPi::CalcPi(BSTR* pbstrPi) {

_ASSERTE(m_nDigits >= 0);

if(m_nDigits) {

*pbstrPi = SysAllocStringLen(L"3.", m_nDigits+2);

if(*pbstrPi) {

for(int i = 0; i < m_nDigits; i += 9) {

long nNineDigits = NineDigitsOfPiStartingAt(i+1);

swprintf(*pbstrPi + i+2, 10, L"%09d", nNineDigits);

}

// Truncate to number of digits

(*pbstrPi)[m_nDigits+2] = 0;

}

}

else {

*pbstrPi = SysAllocString(L"3");

}

return *pbstrPi ? S_OK : E_OUTOFMEMORY;

}

14 A T L I N T E R N A L S

For a description of COM exceptions and the ATL Error function (used in the
put_Digits member function), see Chapter 4, “Objects in ATL.”

Implementing Additional Interfaces

Interfaces are the core of COM, and most COM objects implement more than one.
Even the wizard-generated ATL Simple Object, shown earlier, implements four
interfaces (one custom interface and three standard interfaces). If you want your
ATL-based COM class to implement another interface, you must first have a defini-
tion of it. For example, you can add the following interface definition to your pro-
ject’s IDL file:

[

object,

uuid("27ABEF5D-654F-4D85-81C7-CC3F06AC5693"),

helpstring("IAdvertiseMyself Interface"),

pointer_default(unique)

]

interface IAdvertiseMyself : IUnknown {

[helpstring("method ShowAd")]

HRESULT ShowAd(BSTR bstrClient);

};

To implement this interface in your project, you simply add the new interface
to your C++ class inheritance list and add the interface to the COM_MAP:

class ATL_NO_VTABLE CCalcPi :

public ICalcPi,

public IAdvertiseMyself {

BEGIN_COM_MAP(CCalcPi)

COM_INTERFACE_ENTRY(ICalcPi)

COM_INTERFACE_ENTRY(IAdvertiseMyself)

...

END_COM_MAP()

If methods in the IAdvertiseMyself interface need to throw COM exceptions,
the generated implementation of ISupportErrorInfo must be modified as well.
This is accomplished by simply adding the IID to the array in the generated imple-
mentation:

H E L L O , A T L 15

STDMETHODIMP CCalcPi::InterfaceSupportsErrorInfo(REFIID riid) {

static const IID* arr[] = {

&IID_ICalcPi,

&IID_IAdvertiseMyself

};

for (int i=0; i < sizeof(arr) / sizeof(arr[0]); i++) {

if (InlineIsEqualGUID(*arr[i],riid))

return S_OK;

}

return S_FALSE;

}

After you make the updates, you have to implement the new interface’s
methods.

STDMETHODIMP CCalcPi::ShowAd(BSTR bstrClient) {

CComBSTR bstrCaption = OLESTR("CalcPi hosted by ");

bstrCaption += (bstrClient && *bstrClient ?

bstrClient : OLESTR("no one"));

CComBSTR bstrText =

OLESTR("These digits of pi brought to you by CalcPi!");

MessageBox(0, COLE2CT(bstrText), COLE2CT(bstrCaption),

MB_SETFOREGROUND);

return S_OK;

}

VS provides a convenient wizard to make this process simpler. Right-clicking
the class from Class View and selecting Implement Interface from the Add sub-
menu brings up the Implement Interface Wizard, shown in Figure 1.10. This wizard
enables you to implement interfaces defined in an existing type library. The wizard
is smart enough to pull type libraries from the current project. Alternatively, you
can define interfaces in IDL, compile them using MIDL, and implement those inter-
faces by referencing the resulting type library. The radio buttons enable you to use
the type library from the current project, registered type libraries (Registry), or
unregistered type libraries (File) that you locate with the Browse button. For our
PiSvr project, the type library built from the generated IDL makes the interfaces
we’ve defined available to the Implement Interface Wizard.

16 A T L I N T E R N A L S

Figure 1.10 The Implement Interface Wizard

Note that interfaces that have already been implemented (ICalcPi, in our case)
do not appear in the list of implementable interfaces. Unfortunately, the Implement
Interface Wizard does not support interfaces that don’t exist in type libraries; this
leaves out most of the standard COM interfaces, such as IPersist, IMarshal, and
IOleItemContainer.

Unfortunately, there’s a bug in this wizard. The wizard did this to our base class
list:

class ATL_NO_VTABLE CCalcPi :

... the usual stuff …

public IDispatchImpl<ICalcPi, &IID_ICalcPi, &LIBID_PiSvrLib,

/*wMajor =*/ 1, /*wMinor =*/ 0>,

public IDispatchImpl<IAdvertiseMyself,

&__uuidof(IAdvertiseMyself), &LIBID_PiSvrLib,

/* wMajor = */ 1, /* wMinor = */ 0>

{

...

The added code is in bold. The wizard added the IDispatchImpl template as a
base class. This is used when implementing dual interfaces. IAdvertiseMyself is
not a dual interface. The wizard should have just derived from the interface
directly. The fix is easy: Change the previous bold line to this:

public IAdvertiseMyself

H E L L O , A T L 17

Even with this bug, the Implement Interface Wizard is still worth using for large
interfaces. In addition to updating the base class list and the COM_MAP, the wizard
provides skeleton implementation for all the methods in the interface; for a large
interface, this can save a ton of typing. Unfortunately, the skeletons are added only
to the header file, not to the .cpp file.

For more information about the various ways that ATL allows your COM
classes to implement interfaces, see Chapter 6, “Interface Maps.” For more infor-
mation about CCom-BSTR and the string-conversion routines used in the ShowAd
method, see Chapter 2, “Strings and Text.”

Support for Scripting

Any time you run the ATL Simple Object Wizard and choose Dual as the interface
type, ATL generates an interface definition for the default interface that derives
from IDispatch and is marked with the dual attribute, and places it in the IDL file.
Because it derives from IDispatch, our dual interface can be used by scripting
clients such as Active Server Pages (ASP), Internet Explorer (IE), and Windows
Script Host (WSH). When our COM class supports IDispatch, we can use objects of
that class from scripting environments. Here’s an example HTML page that uses an
instance of the CalcPi object:

<object classid="clsid:859512CF-E4D8-450C-AF09-6578FE2F6DC2"

id=objPiCalculator>

</object>

<script language=vbscript>

' Set the digits property

objPiCalculator.digits = 5

' Calculate pi

dim pi

pi = objPiCalculator.CalcPi

' Tell the world!

document.write "Pi to " & objPiCalculator.digits & _

" digits is " & pi

</script>

For more information about how to handle the inconvenient data types associ-
ated with scripting—namely, BSTRs and VARIANTs—see Chapter 2, “Text and
Strings,” and Chapter 3, “ATL Smart Types.”

18 A T L I N T E R N A L S

Adding Persistence

ATL provides base classes for objects that want to be persistent—that is, saved to
some persistence medium (such as a disk) and restored later. COM objects expose
this support by implementing one of the COM persistence interfaces, such as IPer-
sistStreamInit, IPersistStorage, or IPersistPropertyBag. ATL provides imple-
mentation of these three persistence interfaces—namely, IPersistStreamInitImpl,
IPersistStorageImpl, and IPersistPropertyBagImpl. Your COM object supports
persistence by deriving from any of these base classes, adding the interface to your
COM_MAP, and adding a data member called m_bRequiresSave that each of these
base classes expects.

class ATL_NO_VTABLE CCalcPi :

public ICalcPi,

public IAdvertiseMyself,

public IPersistPropertyBagImpl<CCalcPi> {

public:

...

// ICalcPi

public:

STDMETHOD(CalcPi)(/*[out, retval]*/ BSTR* pbstrPi);

STDMETHOD(get_Digits)(/*[out, retval]*/ long *pVal);

STDMETHOD(put_Digits)(/*[in]*/ long newVal);

public:

BOOL m_bRequiresSave; // Used by persistence base classes

private:

long m_nDigits;

};

However, that’s not quite all there is to it. ATL’s implementation of persistence
needs to know which parts of your object need to be saved and restored. For that
information, ATL’s implementations of the persistent interfaces rely on a table of
object properties that you want to persist between sessions. This table, called a
PROP_MAP, contains a mapping of property names and dispatch identifiers (as
defined in the IDL file). So, given the following interface:

[

object,

...

]

H E L L O , A T L 19

interface ICalcPi : IDispatch {

[propget, id(1)] HRESULT Digits([out, retval] LONG* pVal);

[propput, id(1)] HRESULT Digits([in] LONG newVal);

};

the PROP_MAP would be contained inside our implementation of ICalcPi like this:

class ATL_NO_VTABLE CCalcPi : ...

{

...

public:

BEGIN_PROP_MAP(CCalcPi)

PROP_ENTRY("Digits", 1, CLSID_NULL)

END_PROP_MAP()

};

Given an implementation of IPersistPropertyBag, our IE sample code can be
expanded to support initialization of object properties via persistence using the
<param> tag:

<object classid="clsid:E5F91723-E7AD-4596-AC90-17586D400BF7"

id=objPiCalculator>

<param name=digits value=5>

</object>

<script language=vbscript>

' Calculate pi

dim pi

pi = objPiCalculator.CalcPi

' Tell the world!

document.write "Pi to " & objPiCalculator.digits & _

" digits is " & pi

</script>

For more information about ATL’s implementation of persistence, see Chapter 7,
“Persistence in ATL.”

20 A T L I N T E R N A L S

Adding and Firing Events

When something interesting happens in a COM object, we’d like to be able to spon-
taneously notify its client without the client polling the object. COM provides a
standard mechanism for sending these notifications to clients (normally called “fir-
ing an event”) using the connection-point architecture.

Connection-point events are actually methods on an interface. To support the
widest variety of clients, an event interface is often defined as a dispinterface.
Choosing Support Connection Points in the ATL Simple Object Wizard generates an
event in our IDL file. The following is an example of the wizard-generated code
augmented with a single event method (shown in bold):

[

uuid(B830F523-D87B-434F-933A-623CEF6FC4AA),

helpstring("_ICalcPiEvents Interface")

]

dispinterface _ICalcPiEvents {

properties:

methods:

[id(1)] void OnDigit([in] short nIndex,

[in] short nDigit);

};

In addition to changing the IDL file, the Support Connection Points option
makes several changes to the class definition. The IConnectionPointContainerImpl
base class is added. This class implements the IConnectionPointContainer inter-
face, providing functionality for managing multiple event interfaces on the class.
The IConnectionPointImpl base class implements a connection point for a specific
event interface: _ICalcPiEvents, in this case. The COM_MAP is also modified to
include an entry for IConnectionPointContainer, and a new map, the
CONNECTION_MAP, is added to the class.

The wizard also generates a proxy class for the connection point. This proxy
class is added to the base class list and provides a convenient way to actually fire
the events (that is, call the methods on the connection point). This is very helpful
because the typical connection point is a dispinterface.

For example:

STDMETHODIMP CCalcPi::CalcPi(BSTR *pbstrPi) {

// (code to calculate pi removed for clarity)

...

H E L L O , A T L 21

// Fire each digit

for(short j = 0; j != m_nDigits; ++j) {

Fire_OnDigit(j, (*pbstrPi)[j+2] - L'0');

}

...

}

Objects of the CCalcPi class can now send events that can be handled in a page
of HTML:

<object classid="clsid:E5F91723-E7AD-4596-AC90-17586D400BF7"

id=objPiCalculator>

<param name=digits value=50>

</object>

<input type=button name=cmdCalcPi value="Pi to 50 Digits:">

unknown

<p>Distribution of first 50 digits in pi:

<table border cellpadding=4>

... <!- table code removed for clarity —>

</table>

<script language=vbscript>

' Handle button click event

sub cmdCalcPi_onClick

spanPi.innerText = objPiCalculator.CalcPi

end sub

' Handle calculator digit event

sub objPiCalculator_onDigit(index, digit)

select case digit

case 0: span0.innerText = span0.innerText + 1

case 1: span1.innerText = span1.innerText + 1

... <!— etc —>

end select

spanTotal.innerText = spanTotal.innerText + 1

end sub

</script>

The sample HTML page handles these events to provide the first 50 digits of pi
and their distribution, as shown in Figure 1.11.

22 A T L I N T E R N A L S

Figure 1.11 Pi to 50 digits

For more information about ATL’s support for connection points, see Chapter 9,
“Connection Points.”

Using a Window

Because this is Microsoft Windows we’re developing for, sometimes it’s handy to be
able to put up a window or a dialog box. For example, the MessageBox call we made
earlier yielded a somewhat boring advertisement, as shown in Figure 1.12.

H E L L O , A T L 23

Figure 1.12 Boring message box

Normally, putting up a custom dialog box is kind of a pain. For the average
Win32 programmer, either it involves lots of procedural code, which we don’t like,
or it involves building a bunch of forwarding code to map Windows messages to
member functions (a dialog box is an object, after all). As with MFC, ATL has a
great deal of functionality for building windows and dialog boxes. To add a new
dialog box, select Add Class from the Project menu and then select ATL Dialog
from the list of available templates, as shown in Figure 1.13.

Figure 1.13 Inserting a dialog box class

The ATL Dialog Wizard (see Figure 1.14) is much simpler than many other ATL
class templates. It allows you to enter only C++ name information because a dialog
box is a Win32 object, not a COM object.

24 A T L I N T E R N A L S

Figure 1.14 ATL Dialog Wizard

H E L L O , A T L 25

The generated code creates a class that derives from CAxDialogImpl and uses a
new dialog box resource, also provided by the wizard. The derived class routes
messages to handlers using the MSG_MAP macros, as shown here:

class CAdvert : public CAxDialogImpl<CAdvert> {

public:

CAdvert() {}

~CAdvert() {}

enum { IDD = IDD_ADVERT };

BEGIN_MSG_MAP(CAdvert)

MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)

COMMAND_HANDLER(IDOK, BN_CLICKED, OnClickedOK)

COMMAND_HANDLER(IDCANCEL, BN_CLICKED, OnClickedCancel)

CHAIN_MSG_MAP(CAxDialogImpl<CAdvert>)

END_MSG_MAP()

LRESULT OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM lParam,

BOOL& bHandled) {

if(m_bstrClient.Length()) {

CComBSTR bstrCaption = OLESTR("CalcPi sponsored by ");

bstrCaption += m_bstrClient;

USES_CONVERSION;

SetWindowText(OLE2CT(bstrCaption));

}

return 1; // Let the system set the focus

}

LRESULT OnClickedOK(WORD wNotifyCode, WORD wID, HWND hWndCtl,

BOOL& bHandled) {

EndDialog(wID);

return 0;

}

LRESULT OnClickedCancel(WORD wNotifyCode, WORD wID,

HWND hWndCtl, BOOL& bHandled) {

EndDialog(wID);

return 0;

}

CComBSTR m_bstrClient;

};

If you want to handle another message, you can add the appropriate entries to
the message map and add the handler member functions by hand. If you prefer, you
can add a message handler by right-clicking the name of the CAxDialogImpl-based
class in Class view, choosing Properties, and clicking the Messages toolbar button.
Figure 1.15 shows the resulting window.

26 A T L I N T E R N A L S

Figure 1.15 Adding a Windows message handler

For more information on ATL’s extensive support for windowing, including
building standalone Windows applications, see Chapter 10, “Windowing.”

COM Controls

COM controls are objects that provide their own user interface (UI), which is
closely integrated with that of their container. ATL provides extensive support for
COM controls via the CComControl base class, as well as various other base
IXxxImpl classes. These base classes handle most of the details of being a basic
control (although there’s plenty of room for advanced features, as shown in Chap-
ter 11, “ActiveX Controls”). Had you chosen ATL Control from the Add Class dialog
box when generating the CalcPi class, you could have provided the UI merely by
implementing the OnDraw function:

HRESULT CCalcPi::OnDraw(ATL_DRAWINFO& di) {

CComBSTR bstrPi;

if(SUCCEEDED(this->CalcPi(&bstrPi))) {

H E L L O , A T L 27

DrawText(di.hdcDraw, COLE2CT(bstrPi), -1,

(RECT*)di.prcBounds,

DT_SINGLELINE | DT_CENTER | DT_VCENTER);

}

return S_OK;

}

The wizard would also have generated a sample HTML page, which I’ve aug-
mented to take up the entire browser window and to set the initial number of digits
to 50:

<HTML>

<HEAD>

<TITLE>ATL 8.0 test page for object CalcPiControl</TITLE>

</HEAD>

<BODY>

<OBJECT ID="CalcPi"

CLASSID="CLSID:9E7ABA7A-C106-4813-A50C-B15C967264B6"

height="100%" width="100%">

<param name="Digits" value="50">

</OBJECT>

</BODY>

</HTML>

Displaying this sample page in Internet Explorer yields a view of a control (see
Figure 1.16). For more information about building controls in ATL, see Chapter 11,
“ActiveX Controls.”

Figure 1.16 The CalcPi control hosted in Internet Explorer

Figure 1.18 Control Properties dialog box

Hosting a Control

If you want to host a control, you can do so with ATL’s control-hosting support. For
example, the Ax in CAxDialogImpl stands for ActiveX control and indicates that the
dialog box is capable of hosting controls. To host a control in a dialog box, right-
click the dialog box resource and choose Insert ActiveX Control.5 This produces a
dialog box that lists the controls installed on your system, as shown in Figure 1.17.

28 A T L I N T E R N A L S

Figure 1.17 Insert ActiveX Control dialog box

After you insert the control, you can click on it and set its properties in the
Properties window, as shown in Figure 1.18.

5 For commonly used ActiveX controls, it’s usually easier to add them to your Visual Studio toolbox than
to go through this dialog box every time. Right-click the toolbox, select Choose Items, wait approxi-
mately 37 minutes for the dialog box to appear, select the COM Components tab, and select the controls
you want on your toolbox.

H E L L O , A T L 29

By clicking the Control Events toolbar button, you also can choose to handle a
control’s events, as shown in Figure 1.19.

Figure 1.19 Choosing which control events to handle

When the dialog box is shown, the control is created and initialized based on
the properties set at development time. Figure 1.20 shows an example of a dialog
box hosting a control.

Figure 1.20 A dialog box hosting a COM control

ATL provides support for hosting ATL controls not only in dialog boxes, but
also in other windows, in controls that have a UI declared as a dialog box resource
(called composite controls), and in controls that have a UI declared as an HTML
resource (called HTML controls). For more information about control contain-
ment, see Chapter 12, “Control Containment.”

Being a C++ COM Client

COM and C++ go hand in hand—at least, theoretically. A COM interface maps
directly to a C++ abstract class. All you need to do to use a COM object is run
its IDL file through the MIDL compiler, and you’ve got a header file with all the
information you need.

30 A T L I N T E R N A L S

This worked well until the VB team asked if it could play with this COM stuff,
too.

VB developers generally neither know nor want to know C++. And IDL is a lan-
guage that’s very much in the C++ tradition, with lots of support for C/C++-specific
things in it (such as arrays and pointers) VB needed a way to store type information
about COM objects that VB developers could use and understand easily.

Thus was born the type library (a.k.a. typelib). A typelib stores information
about a COM object: The classid, the interfaces that the object supports, the meth-
ods on those interfaces, and so on—just about everything you’d find in an IDL file
(with some unfortunate exceptions, mostly having to do with C-style arrays). The
COM system includes a set of COM objects that lets you programmatically walk
through the contents of a typelib. Best of all, the typelib can be embedded into a
DLL or EXE file directly, so you never have to worry about the type information
getting lost.

The typelib was so successful for VB developers that many COM components
these days aren’t shipped with an IDL file; the type library includes everything
needed to use the components. Only one thing is missing: How do we use typelibs
in C++?

The C++ language doesn’t understand typelibs. It wants header files. This was
such a serious problem that, back in Visual Studio 6, Microsoft extended the com-
piler so that it could use type libraries in much the same way that you use header
files. This extension was the #import statement.

#import is used much like #include is. The general form is shown here:

#import "pisvr.dll" <options>

The #import statement generates either one or two C++ header files, depend-
ing on the options you use. These header files have the extensions .tlh (for “type-
lib header”) and .tli (for “typelib inline”) and are generated into your project
output directory (by default, Debug for a debug build, Release for a release build).

The options on the #import line give you a great deal of control over the con-
tents of the generated files. Check the Visual Studio documentation for the full list;
we talk about some of the more commonly used options here.

The no_namespace option tells the compiler that we don’t want the contents of
the generated files to be placed into a C++ namespace. By default, the contents of
the generated files are placed in a C++ namespace named after the type library.

named_guids instructs the compiler that we want to have named symbols for
the GUIDs in the type library. By default, this would not compile because the name
CLSID_PISvr would not be defined:

::CoCreateInstance(CLSID_PISvr, ...);

Instead, you have to do this:

::CoCreateInstance(__uuidof(PISvr), ...);

You also need to use __uuidof() to get the IID for interfaces.
The raw_interfaces_only option requires the most explanation. By default,

when the #import statement generates the header file, it doesn’t just spit out class
definitions for interfaces. It actually generates wrapper classes that attempt to
make a COM interface easier to use. For example, given the interface:

interface ICalcPi : IDispatch {

[propget, id(1), helpstring("property Digits")]

HRESULT Digits([out, retval] LONG* pVal);

[propput, id(1), helpstring("property Digits")]

HRESULT Digits([in] LONG newVal);

[id(2), helpstring("method CalcPi")]

HRESULT CalcPi([out,retval] BSTR* pbstrPi);

};

Normal use of this interface would be something like this:

HRESULT DoStuff(long nDigits, ICalcPi *pCalc) {

HRESULT hr = pCalc->put_Digits(nDigits);

if(FAILED(hr)) return hr;

BSTR bstrResult;

hr = pCalc->CalcPi(&bstrResult);

if(FAILED(hr)) return hr;

std::cout << "PI to " << nDigits << " digits is "

<< CW2A(bstrResult);

::SysFreeString(bstrResult);

return S_OK;

}

When using the #import statement, on the other hand, using this interface looks
like this:

void DoStuff(long nDigits, ICalcPiPtr spCalc) {

spCalc->Digits = nDigits;

_bstr_t bstrResults = spCalc->CalcPi();

std::cout << "PI to " << spCalc->Digits << " digits is "

<< (char *)bstrResults;

}

H E L L O , A T L 31

The ICalcPiPtr type is a smart pointer expressed as a typedef for the
_com_ptr_t class. This class is not part of ATL; it’s part of the Direct-To-COM exten-
sions to the compiler and is defined in the system header file comdef.h (along with
all the other types used by the wrapper classes). The smart pointer automatically
manages the reference counting, and the _bstr_t type manages the memory for a
BSTR (which we discuss in Chapter 2, “Strings and Text”).

The most remarkable thing about the wrapper classes is that the HRESULT test-
ing is gone. Instead, the wrapper class translates any failed HRESULTs into a C++
exception (the _com_error class, to be precise). This lets the generated code use
the method’s [retval] variable as the actual return value, which eliminates a lot of
temporary variables and output parameters.

The wrapper classes can immensely simplify writing COM clients, but they
have their downsides. The biggest is that they require the use of C++ exceptions.
Some projects aren’t willing to pay the performance penalties that exception han-
dling brings, and throwing exceptions means that developers have to pay very care-
ful attention to exception safety.

Another downside to the wrappers for ATL developers is that ATL also has
wrapper classes for COM interfaces (see Chapter 3, “ATL Smart Types”) and BSTRs
(see Chapter 2). The ATL wrappers are arguably better than the ones defined in
comdef.h; for example, you can accidentally call the Release() method on an ICal-
cPiPtr, but if you use the ATL wrapper, that would be a compile error.

By default, you get the wrappers when you use #import. If you decide that you
don’t want them, or if for some reason they don’t compile (which has been known
to happen to at least one of your humble authors on very complex and strange type-
libs), you can turn off the wrapper classes and just get straight interface definitions
by using the raw_interfaces_only option.

ATL Server Web Projects

Without a doubt, the most dramatic recent addition to the ATL library is a suite of
classes and tools collectively termed ATL Server. ATL Server accounts for nearly all
of the fourfold increase in the overall size of ATL from ATL 3. This extensive class
library provides comprehensive support for building web applications and XML
web services. Although traditional ASP and the ASP.NET platform offer compelling
and easy-to-use frameworks for web-based development, many application devel-
opers must still resort to raw ISAPI programming for applications that demand
low-level control and maximum performance. ATL Server is designed to provide
the performance and control of ISAPI with the feel and productivity of ASP. To that
end, ATL Server follows the design model that has made conventional ATL develop-
ment so effective over the years: namely small, fast, flexible code.

32 A T L I N T E R N A L S

VS provides excellent wizard support for building web applications and web
services. Walking through the numerous options available for ATL Server projects
is actually quite insightful in understanding both the architecture and the sheer
scope of the support provided. VS provides a wizard to help you get started build-
ing a web application with ATL Server. You launch this wizard by selecting the ATL
Server Project option from the Visual C++ folder of the New Project dialog box.

The Project Settings tab shown in Figure 1.21 displays the selected options for
generating and deploying the DLLs that comprise our web application.

H E L L O , A T L 33

Figure 1.21 Project settings for ATL Server project

By default, ATL Server generates two projects in your solution: a web applica-
tion DLL and an ISAPI extension DLL. ISAPI extension DLLs are loaded into the IIS
process (inetinfo.exe) and logically sit between IIS and your web application DLL.
Although ISAPI extensions can handle HTTP requests themselves, it is more com-
mon for them to provide generic infrastructure services such as thread pooling and
caching, leaving web application DLLs to provide the real HTTP response logic.
The ATL Server Project Wizard generates an ISAPI extension implementation that
communicates with special functions in your web application called handlers.
Figure 1.22 depicts this arrangement.

34 A T L I N T E R N A L S

Figure 1.22 Basic ISAPI architecture

The Generate Combined DLL check box enables you to combine everything
into a single DLL. This might be an appropriate option if the ISAPI extension is not
intended to be used in other web applications. Conversely, developers can opt to
leverage ATL Server’s extensibility features by creating specialized ISAPI exten-
sions with such options as custom thread pooling, highly tuned caching schemes,
or optimized state management. These ISAPI extensions would then likely be
reused across multiple web applications. Furthermore, keeping the ISAPI exten-
sion as a separate DLL gives us the flexibility to add handlers to our web applica-
tion without restarting the web server (handler classes are discussed shortly). We’ll
leave the box unchecked for our first web application and allow VS to generate sep-
arate projects.

The Deployment Support check box enables the VS web-deployment tool. With
this option selected, the Visual Studio build process automatically performs addi-
tional steps for properly deploying your web application so that it is served by IIS.
You’ll see in a moment how convenient these integrated deployment features can
be. A brief word of caution at this point is in order, however. The default setting to
enable deployment support causes VS to deploy the built project files in a subdirec-
tory of your default web site, typically <drive>:\inetpub\wwwroot. In a real-world
development scenario, it might be more desirable to deploy in a different directory
on the machine (such as the project directory). Several steps are required to
accomplish this, so for now, we’re sticking with the default setting just so that we
can focus on developing our application.

Inetinfo.exe

ISAPI
Extension

HTTP Request

HTTP Response

Handler

Handler

The Server Options tab shown in Figure 1.23 enables you to select various per-
formance-oriented options for your web application. Several types of caching are
supported, including support for arbitrary binary data (Blob cache), file caching,
and database connection caching (Data source cache). Additionally, high-availabil-
ity sites rely upon robust session-state management. ATL Server provides two
mechanisms for persisting session state. The OLE DB-backed session-state serv-
ices radio button includes support for persisting session state in a database (or
other OLE DB data source), which is an option suited to applications running on
web farms.

H E L L O , A T L 35

Figure 1.23 Server Options tab for ATL Server project

Figure 1.24 shows the selections available under the Application Options tab.
Validation Support generates the necessary code for validating items in the HTTP
request from the client, such as query parameters and form variables. Stencil Pro-
cessing Support generates skeleton code for using HTML code templates known as
server response files (SRF). These text files (also known as stencils) end with an
.srf extension and intermix static HTML content with special replacement tags
that your code processes to generate dynamic content at runtime. With stencil pro-
cessing enabled, the wizard also allows you to select the locale and codepage for
properly localizing responses. This simply inserts locale and codepage tags into the
generated SRF file. (More on using SRF files comes shortly.) The Create as Web
Service option also is discussed further in the following section. Because we’re
developing a web application, we leave this box unchecked for now.

Figure 1.24 ATL Server Application Options tab

The remaining set of options for your ATL Server project appears under the
Developer Support Options tab, shown in Figure 1.25. Generating TODO comments
simply helps alert the developer to regions of code where additional implementa-
tion should be provided. If you select Custom Assert and Trace Handling Support,
debug builds of your project will include an instance of the CDebugReportHook class,
which can greatly simplify the process of debugging your web application—even
from a remote machine.

36 A T L I N T E R N A L S

Figure 1.25 ATL Server Developer Support Options tab

Pressing Finish causes the wizard to generate a solution that contains two proj-
ects: one for your web application DLL (with a name matching the <projectname>
entered in the New Project dialog box) and one for your ISAPI extension (with a
name <projectname>Isapi). Let’s take a look at the code generated in the ISAPI
extension project. The generated .cpp file for our ISAPI extension looks like the
following:

class CPiSvrWebAppModule :

public CAtlDllModuleT<CPiSvrWebAppModule> {

public:

};

CPiSvrWebAppModule _AtlModule;

typedef CIsapiExtension<> ExtensionType;

// The ATL Server ISAPI extension

ExtensionType theExtension;

// Delegate ISAPI exports to theExtension

//

extern "C"

DWORD WINAPI HttpExtensionProc(LPEXTENSION_CONTROL_BLOCK lpECB) {

return theExtension.HttpExtensionProc(lpECB);

}

extern "C"

BOOL WINAPI GetExtensionVersion(HSE_VERSION_INFO* pVer) {

return theExtension.GetExtensionVersion(pVer);

}

extern "C" BOOL WINAPI TerminateExtension(DWORD dwFlags) {

return theExtension.TerminateExtension(dwFlags);

}

// DLL Entry Point

//

extern "C"

BOOL WINAPI DllMain(HINSTANCE hInstance, DWORD dwReason,

LPVOID lpReserved) {

hInstance;

return _AtlModule.DllMain(dwReason, lpReserved);

}

H E L L O , A T L 37

Because the ISAPI extension uses the services of ATL for object creation, it
needs an ATL Module object. Also included in the generated code are implementa-
tions of the three well-known entry points IIS uses to communicate HTTP request
information to the ISAPI extension: HttpExtensionProc, GetExtensionVersion, and
TerminateExtension. These implementations simply delegate to a global instance of
CIsapiExtension, whose definition is given here:

template <

class ThreadPoolClass=CThreadPool<CIsapiWorker>,

class CRequestStatClass=CNoRequestStats,

class HttpUserErrorTextProvider=CDefaultErrorProvider,

class WorkerThreadTraits=DefaultThreadTraits,

class CPageCacheStats=CNoStatClass,

class CStencilCacheStats=CNoStatClass

>

class CIsapiExtension :

public IServiceProvider,

public IIsapiExtension,

public IRequestStats

{ ... }

This class provides boilerplate functionality for implementing the ISAPI exten-
sion. The template parameters to this class provide pluggable implementation for
things such as threadpool management, error reporting, and caching statistics. By
replacing this class in the .cpp file with your own CIsapiExtension-derived class
and providing your own classes as template parameters, you can highly customize
the behavior of your ISAPI extension. Techniques for doing this are presented in
Chapter 13, “Hello, ATL Server.” The default implementation of the ISAPI extension
is suitable for our demonstration purposes here.

Most of the action takes place in the web application project. The wizard gen-
erated a skeleton SRF file for us and placed it in the project. The HTML editor inte-
grated into VS provides a convenient means of viewing and manipulating the
contents of this file.

<html>

{{ handler PiSvrWebApp.dll/Default }}

<head>

</head>

<body>

This is a test: {{Hello}}

</body>

</html>

38 A T L I N T E R N A L S

Items that appear within double braces indicate commands that are passed to
the stencil processor. The {{handler}} command specifies the name of the DLL
that houses our handler classes for processing replacement tags that appear in the
SRF file. The /Default specifier identifies the default request-handler class to use
for processing replacement tags. In general, an application DLL can contain multi-
ple handler classes for processing SRF commands, and these classes can even exist
in multiple DLLs. We use only a single handler class in a single application DLL, so
all commands destined for handler classes will be routed to the same handler class.
In the earlier wizard-generated skeleton, the {{Hello}} tag will be passed on to a
handler class and replaced by the HTML produced from that class’s replacement
method.

ATL Server uses several macros to map commands in the SRF file to handler
classes in our application DLL. The class definition generated for us in the <pro-
jectname>.h file shows how these macros are used:

class CPiSvrWebAppHandler

: public CRequestHandlerT<CPiSvrWebAppHandler>

{

public:

BEGIN_REPLACEMENT_METHOD_MAP(CPiSvrWebAppHandler)

REPLACEMENT_METHOD_ENTRY("Hello", OnHello)

END_REPLACEMENT_METHOD_MAP()

HTTP_CODE ValidateAndExchange() {

// Set the content-type

m_HttpResponse.SetContentType("text/html");

return HTTP_SUCCESS;

}

protected:

HTTP_CODE OnHello(void) {

m_HttpResponse << "Hello World!";

return HTTP_SUCCESS;

}

};

The CRequestHandlerT base class provides the implementation for a request-
handler class. It uses the REPLACEMENT_METHOD_MAP to map the strings in replace-
ments in the SRF file to the appropriate functions in the class.

In addition to the request-handler class itself, in the handler DLL’s .cpp file,
you’ll find this additional global map:

H E L L O , A T L 39

BEGIN_HANDLER_MAP()

HANDLER_ENTRY("Default", CPiSvrWebAppHandler)

END_HANDLER_MAP()

The HANDLER_MAP is used to determine which class to use to process substitu-
tions given with a particular name. In this case, the string "Default" as used in the
handler tag in the SRF file is mapped to the CPiSvrWebAppHandler class. When the
{{Hello}} tag is encountered in the SRF file, the OnHello method is invoked (via the
REPLACEMENT_METHOD_MAP). It uses an instance of CHttpResponse declared as a mem-
ber variable of the CRequestHandlerT to generate replacement text for the tag.

Let’s modify the wizard-generated code to display pi to the number of digits
specified in the query string of the HTTP request. First, we modify the SRF file to
the following:

<html>

{{ handler PiSvrWebApp.dll/Default }}

<head>

</head>

<body>

PI = {{Pi}}

</body>

</html>

We then add a replacement method called OnPi to our existing handler class
and apply the [tag_name] attribute to associate this method with the {{Pi}}
replacement tag. In the implementation of the OnPi method, we retrieve the number
of digits requested from the query string. The CHttpRequest class stored in
m_HttpRequest member variable exposes an instance of CHttpRequestParams. This
class provides a simple Lookup method to retrieve individual query parameters
from the query string as name-value pairs, so processing requests such as the fol-
lowing is a simple matter:

http://localhost/PiSvrWebApp/PiSvrWebApp.srf?digits=6

The OnPi method implementation to field such requests follows:

class CPiSvrWebAppHandler {

...

HTTP_CODE OnPi(void) {

LPCSTR pszDigits = m_HttpRequest.m_QueryParams.Lookup("digits");

long nDigits = 0;

if (pszDigits)

40 A T L I N T E R N A L S

http://localhost/PiSvrWebApp/PiSvrWebApp.srf?digits=6

nDigits = atoi(pszDigits);

BSTR bstrPi = NULL;

CalcPi(nDigits, &bstrPi);

m_HttpResponse << CW2A(bstrPi);

return HTTP_SUCCESS;

}

...

};

When we build our solution, VS performs a number of convenient tasks on our
behalf. Because this is a web application, simply compiling the code into DLLs
doesn’t quite do the trick. The application must be properly deployed on our web
server and registered with IIS. This involves creating a virtual directory, specifying
an appropriate level of process isolation, and mapping the .srf file extension to
our ISAPI extension DLL. Recall that when we created the project, we chose to
include deployment support on the Project Settings tab of the ATL Server Project
Wizard, shown previously in Figure 1.25. As a result, VS invokes the VCDeploy.exe
utility to automatically perform all the necessary web-deployment steps for us.
Simply compiling our solution in the normal manner places our application DLL,
our ISAPI extension DLL, and our SRF file in a directory under our default web site,
typically ending up in the directory <drive>:\inetpub\wwwroot\<projectName>. VS
uses our web application project name as the virtual directory name, so browsing
to http://localhost/PiSvrWebApp/PiSvrWebApp.srf?digits=50 produces the result
in Figure 1.26.

H E L L O , A T L 41

Figure 1.26 Web application for displaying pi to 50 digits

For more information about building ISAPI applications, including web serv-
ices, with ATL Server, see Chapter 13, “Hello, ATL Server.”

http://localhost/PiSvrWebApp/PiSvrWebApp.srf?digits=50

Summary

This chapter has been a whirlwind tour through some of the functionality of ATL
that the wizards expose, as well as some of the basic interface implementations of
ATL. Even with the wizards, it should be clear that ATL is no substitute for solid
COM knowledge. You still need to know how to design and implement your inter-
faces. As you’ll see throughout the rest of this book, you still have to know about
interface pointers, reference counting, runtime type discovery, threading, persist-
ence . . . the list goes on. ATL can help, but you still need to know COM.

It should also be clear that the wizard is not a substitute for intimate knowl-
edge of ATL or web application development. For every tidbit of ATL information
shown in this chapter, there are 10 more salient details, extensions, and pitfalls.
And although the wizard saves you typing, it can’t do everything. It can’t make sure
your design and implementation goals are met: That’s up to you.

42 A T L I N T E R N A L S

Strings come in a number of different character sets. COM components often need
to use multiple character sets and occasionally need to convert from one set to
another. ATL provides a number of string conversion classes that convert from one
character set to another, if necessary, and do nothing when they are not needed.

The CComBSTR class is a smart string class. This class properly allocates, copies,
and frees a string according to the BSTR string semantics. CComBSTR instances can be
used in most, but not all, of the places you would use a BSTR.

The CString class is a new addition to ATL, with roots in MFC. This class han-
dles allocation, copying, formatting, and offers a host of advanced string-processing
features. It can manage ANSI and Unicode data, and convert strings to and from
BSTRs for use in processing Automation method parameters. With CString, you can
even control and customize the way memory is managed for the class’s string data.

String Data Types, Conversion Classes,
and Helper Functions

A Review of Text Data Types

The text data type is somewhat of a pain to deal with in C++ programming. The
main problem is that there isn’t just one text data type; there are many of them. I
use the term text data type here in the general sense of an array of characters.
Often, different operating systems and programming languages introduce addi-
tional semantics for an array of characters (for example, NUL character termination
or a length prefix) before they consider an array of characters a text string.

When you select a text data type, you must make a number of decisions. First,
you must decide what type of characters constitute the array. Some operating sys-
tems require you to use ANSI characters when you pass a string (such as a file
name) to the operating system. Some operating systems prefer that you use Uni-
code characters but will accept ANSI characters. Other operating systems require
you to use EBCDIC characters. Stranger character sets are in use as well, such
as the Multi/Double Byte Character Sets (MBCS/DBCS); this book largely doesn’t
discuss those details.

C H A P T E R

2 Strings and Text

43

Second, you must consider what character set you want to use to manipulate
text within your program. No requirement states that your source code must use
the same character set that the operating system running your program prefers.
Clearly, it’s more convenient when both use the same character set, but a program
and the operating system can use different character sets. You “simply” must con-
vert all text strings going to and coming from the operating system.

Third, you must determine the length of a text string. Some languages, such as
C and C++, and some operating systems, such as Windows 9x/NT/XP and UNIX,
use a terminating NUL character to delimit the end of a text string. Other languages,
such as the Microsoft Visual Basic interpreter, Microsoft Java virtual machine, and
Pascal, prefer an explicit length prefix specifying the number of characters in the
text string.

Finally, in practice, a text string presents a resource-management issue. Text
strings typically vary in length. This makes it difficult to allocate memory for the
string on the stack—and the text string might not fit on the stack at all. Therefore,
text strings are often dynamically allocated. Of course, this means that a text string
must be freed eventually. Resource management introduces the idea of an owner of
a text string. Only the owner frees the string—and frees it only once. Ownership
becomes quite important when you pass a text string between components.

To make matters worse, two COM objects can reside on two different comput-
ers running two different operating systems that prefer two different character sets
for a text string. For example, you can write one COM object in Visual Basic and
run it on the Windows XP operating system. You might pass a text string to another
COM object written in C++ running on an IBM mainframe. Clearly, we need some
standard text data type that all COM objects in a heterogeneous environment can
understand.

COM uses the OLECHAR character data type. A COM text string is a NUL-charac-
ter-terminated array of OLECHAR characters; a pointer to such a string is an
LPOLESTR.1 As a rule, a text string parameter to a COM interface method should be
of type LPOLESTR. When a method doesn’t change the string, the parameter should
be of type LPCOLESTR—that is, a constant pointer to an array of OLECHAR characters.

Frequently, though not always, the OLECHAR type isn’t the same as the charac-
ters you use when writing your code. Sometimes, though not always, the OLECHAR
type isn’t the same as the characters you must provide when passing a text string
to the operating system. This means that, depending on context, sometimes you

44 A T L I N T E R N A L S

1 Note that the actual underlying character data type for OLECHAR on one operating system can be dif-
ferent from the underlying character data type for OLECHAR on a different operating system. The COM
remoting infrastructure performs any necessary character set conversion during marshaling and unmar-
shaling. Therefore, a COM component always receives text in its expected OLECHAR format.

need to convert a text string from one character set to another—and sometimes
you won’t.

Unfortunately, a change in compiler options (for example, a Windows XP Uni-
code build or a Windows CE build) can change this context. As a result, code that
previously didn’t need to convert a string might require conversion, or vice versa.
You don’t want to rewrite all string-manipulation code each time you change a com-
piler option. Therefore, ATL provides a number of string-conversion macros that
convert a text string from one character set to another and are sensitive to the con-
text in which you invoke the conversion.

Windows Character Data Types

Now let’s focus specifically on the Windows platform. Windows-based COM com-
ponents typically use a mix of four text data types:

n Unicode. A specification for representing a character as a “wide-character,”
16-bit multilingual character code. The Windows NT/XP operating system uses
the Unicode character set internally. All characters used in modern computing
worldwide, including technical symbols and special publishing characters, can
be represented uniquely in Unicode. The fixed character size simplifies pro-
gramming when using international character sets. In C/C++, you represent a
wide-character string as a wchar_t array; a pointer to such a string is a
wchar_t*.

n MBCS/DBCS. The Multi-Byte Character Set is a mixed-width character set in
which some characters consist of more than 1 byte. The Windows 9x operating
systems, in general, use the MBCS to represent characters. The Double-Byte
Character Set (DBCS) is a specific type of multibyte character set. It includes
some characters that consist of 1 byte and some characters that consist of
2 bytes to represent the symbols for one specific locale, such as the Japanese,
Chinese, and Korean languages.

In C/C++, you represent an MBCS/DBCS string as an unsigned char array; a
pointer to such a string is an unsigned char*. Sometimes a character is one
unsigned char in length; sometimes, it’s more than one. This is loads of fun to
deal with, especially when you’re trying to back up through a string. In Visual
C++, MBCS always means DBCS. Character sets wider than 2 bytes are not
supported.

n ANSI. You can represent all characters in the English language, as well as
many Western European languages, using only 8 bits. Versions of Windows that
support such languages use a degenerate case of MBCS, called the Microsoft
Windows ANSI character set, in which no multibyte characters are present.

S T R I N G S A N D T E X T 45

The Microsoft Windows ANSI character set, which is essentially ISO 8859/x
plus additional characters, was originally based on an ANSI draft standard.

The ANSI character set maps the letters and numerals in the same manner as
ASCII. However, ANSI does not support control characters and maps many
symbols, including accented letters, that are not mapped in standard ASCII. All
Windows fonts are defined in the ANSI character set. This is also called the
Single-Byte Character Set (SBCS), for symmetry.

In C/C++, you represent an ANSI string as a char array; a pointer to such a
string is a char*. A character is always one char in length. By default, a char is
a signed char in Visual C++. Because MBCS characters are unsigned and ANSI
characters are, by default, signed characters, expressions can evaluate differ-
ently when using ANSI characters, compared to using MBCS characters.

n TCHAR/_TCHAR. This is a Microsoft-specific generic-text data type that you can
map to a Unicode character, an MBCS character, or an ANSI character using
compile-time options. You use this character type to write generic code that
can be compiled for any of the three character sets. This simplifies code devel-
opment for international markets. The C runtime library defines the _TCHAR
type, and the Windows operating system defines the TCHAR type; they are syn-
onymous.

tchar.h, a Microsoft-specific C runtime library header file, defines the generic-
text data type _TCHAR. ANSI C/C++ compiler compliance requires implementer-
defined names to be prefixed by an underscore. When you do not define the
__STDC__ preprocessor symbol (by default, this macro is not defined in Visual
C++), you indicate that you don’t require ANSI compliance. In this case, the
tchar.h header file also defines the symbol TCHAR as another alias for the
generic-text data type if it isn’t already defined. winnt.h, a Microsoft-specific
Win32 operating system header file, defines the generic-text data type TCHAR.
This header file is operating system specific, so the symbol names don’t need
the underscore prefix.

Win32 APIs and Strings

Each Win32 API that requires a string has two versions: one that requires a Unicode
argument and another that requires an MBCS argument. On a non-MBCS-enabled
version of Windows, the MBCS version of an API expects an ANSI argument. For
example, the SetWindowText API doesn’t really exist. There are actually two func-
tions: SetWindowTextW, which expects a Unicode string argument, and SetWindow-
TextA, which expects an MBCS/ANSI string argument.

The Windows NT/2000/XP operating systems internally use only Unicode
strings. Therefore, when you call SetWindowTextA on Windows NT/2000/XP, the

46 A T L I N T E R N A L S

function translates the specified string to Unicode and then calls SetWindowTextW.
The Windows 9x operating systems do not support Unicode directly. The SetWin-
dowTextA function on the Windows 9x operating systems does the work, while
SetWindowTextW returns an error. The MSLU library from Microsoft2 provides imple-
mentations of almost all the Unicode functions on Win9x.

This gives you a difficult choice. You could write a performance-optimized
component using Unicode character strings that runs on Windows 2000 but not on
Windows 9x. You could use MSLU for Unicode strings on both families and lose
performance on Windows 9x. You could write a more general component using
MBCS/ANSI character strings that runs on both operating systems but not opti-
mally on Windows 2000. Alternatively, you could hedge your bets by writing source
code that enables you to decide at compile time what character set to support.

A little coding discipline and some preprocessor magic let you code as if there
were a single API called SetWindowText that expects a TCHAR string argument. You
specify at compile time which kind of component you want to build. For example,
you write code that calls SetWindowText and specifies a TCHAR buffer. When compil-
ing a component as Unicode, you call SetWindowTextW; the argument is a wchar_t
buffer. When compiling an MBCS/ANSI component, you call SetWindowTextA; the
argument is a char buffer.

When you write a Windows-based COM component, you should typically use
the TCHAR character type to represent characters used by the component internally.
Additionally, you should use it for all characters used in interactions with the oper-
ating system. Similarly, you should use the TEXT or __TEXT macro to surround every
literal character or string.

tchar.h defines the functionally equivalent macros _T , __T, and _TEXT, which
all compile a character or string literal as a generic-text character or literal. winnt.h
also defines the functionally equivalent macros TEXT and __TEXT, which are yet
more synonyms for _T, __T, and _TEXT. (There’s nothing like five ways to do exactly
the same thing.) The examples in this chapter use __TEXT because it’s defined in
winnt.h. I actually prefer _T because it’s less clutter in my source code.

An operating-system-agnostic coding approach favors including tchar.h and
using the _TCHAR generic-text data type because that’s somewhat less tied to the
Windows operating systems. However, we’re discussing building components with
text handling optimized at compile time for specific versions of the Windows oper-
ating systems. This argues that we should use TCHAR, the type defined in winnt.h.
Plus, TCHAR isn’t as jarring to the eyes as _TCHAR and it’s easier to type. Most code
already implicitly includes the winnt.h header file via windows.h, and you must

S T R I N G S A N D T E X T 47

2 More information on MSLU is available at http://www.microsoft.com/globaldev/handson/dev/
mslu_announce.mspx (http://tinysells.com/49).

http://www.microsoft.com/globaldev/handson/dev/mslu_announce.mspx
http://www.microsoft.com/globaldev/handson/dev/mslu_announce.mspx
http://tinysells.com/49

explicitly include tchar.h. All sorts of good reasons support using TCHAR, so the
examples in this book use this as the generic-text data type.

This means that you can compile specialized versions of the component for dif-
ferent markets or for performance reasons. These types and macros are defined in
the winnt.h header file.

You also must use a different set of string runtime library functions when
manipulating strings of TCHAR characters. The familiar functions strlen, strcpy,
and so on operate only on char characters. The less familiar functions wcslen,
wcscpy, and so on work on wchar_t characters. Moreover, the totally strange func-
tions _mbslen, _mbscpy, and so on work on multibyte characters. Because TCHAR
characters are sometimes wchar_t, sometimes char-holding ANSI characters, and
sometimes char-holding (nominally unsigned) multibyte characters, you need an
equivalent set of runtime library functions that work with TCHAR characters.

The tchar.h header file defines a number of useful generic-text mappings for
string-handling functions. These functions expect TCHAR parameters, so all their
function names use the _tcs (the _t character set) prefix. For example, _tcslen is
equivalent to the C runtime library strlen function. The _tcslen function expects
TCHAR characters, whereas the strlen function expects char characters.

Controlling Generic-Text Mapping Using the Preprocessor

Two preprocessor symbols and two macros control the mapping of the TCHAR data
type to the underlying character type the application uses.

n UNICODE/_UNICODE. The header files for the Windows operating system APIs use
the UNICODE preprocessor symbol. The C/C++ runtime library header files use
the _UNICODE preprocessor symbol. Typically, you define either both symbols or
neither of them. When you compile with the symbol _UNICODE defined, tchar.h
maps all TCHAR characters to wchar_t characters. The _T, __T, and _TEXT macros
prefix each character or string literal with a capital L (creating a Unicode char-
acter or literal, respectively). When you compile with the symbol UNICODE
defined, winnt.h maps all TCHAR characters to wchar_t characters. The TEXT and
__TEXT macros prefix each character or string literal with a capital L (creating a
Unicode character or literal, respectively). The _tcsXXX functions are mapped
to the corresponding _wcsXXX functions.

n _MBCS. When you compile with the symbol _MBCS defined, all TCHAR characters
map to char characters, and the preprocessor removes all the _T and __TEXT

macro variations. It leaves the character or literal unchanged (creating an
MBCS character or literal, respectively). The _tcsXXX functions are mapped to
the corresponding _mbsXXX versions.

48 A T L I N T E R N A L S

n None of the above. When you compile with neither symbol defined, all TCHAR
characters map to char characters and the preprocessor removes all the _T and
__TEXT macro variations, leaving the character or literal unchanged (creating
an ANSI character or literal, respectively). The _tcsXXX functions are mapped
to the corresponding strXXX functions.

You write generic-text-compatible code by using the generic-text data types
and functions. An example of reversing and concatenating to a generic-text string
follows:

TCHAR *reversedString, *sourceString, *completeString;

reversedString = _tcsrev (sourceString);

completeString = _tcscat (reversedString, __TEXT("suffix"));

When you compile the code without defining any preprocessor symbols, the
preprocessor produces this output:

char *reversedString, *sourceString, *completeString;

reversedString = _strrev (sourceString);

completeString = strcat (reversedString, "suffix");

When you compile the code after defining the _UNICODE preprocessor symbol,
the preprocessor produces this output:

wchar_t *reversedString, *sourceString, *completeString;

reversedString = _wcsrev (sourceString);

completeString = wcscat (reversedString, L"suffix");

When you compile the code after defining the _MBCS preprocessor symbol, the
preprocessor produces this output:

char *reversedString, *sourceString, *completeString;

reversedString = _mbsrev (sourceString);

completeString = _mbscat (reversedString, "suffix");

COM Character Data Types

COM uses two character types:

n OLECHAR. The character type COM uses on the operating system for which you
compile your source code. For Win32 operating systems, this is the wchar_t

S T R I N G S A N D T E X T 49

character type.3 For Win16 operating systems, this is the char character type.
For the Mac OS, this is the char character type. For the Solaris OS, this is the
wchar_t character type. For the as yet unknown operating system, this is who
knows what. Let’s just pretend there is an abstract data type called OLECHAR.
COM uses it. Don’t rely on it mapping to any specific underlying data type.

n BSTR. A specialized string type some COM components use. A BSTR is a length-
prefixed array of OLECHAR characters with numerous special semantics.

Now let’s complicate things a bit. You want to write code for which you can
select, at compile time, the type of characters it uses. Therefore, you’re manipulat-
ing strictly TCHAR strings internally. You also want to call a COM method and pass it
the same strings. You must pass the method either an OLECHAR string or a BSTR
string, depending on its signature. The strings your component uses might or might
not be in the correct character format, depending on your compilation options.
This is a job for Supermacro!

ATL String-Conversion Classes

ATL provides a number of string-conversion classes that convert, when necessary,
among the various character types described previously. The classes perform no
conversion and, in fact, do nothing, when the compilation options make the source
and destination character types identical. Seven different classes in atlconv.h
implement the real conversion logic, but this header also uses a number of typedefs
and preprocessor #define statements to make using these converter classes syn-
tactically more convenient.

These class names use a number of abbreviations for the various character
data types:

n T represents a pointer to the Win32 TCHAR character type—an LPTSTR parameter.

n W represents a pointer to the Unicode wchar_t character type—an LPWSTR
parameter.

n A represents a pointer to the MBCS/ANSI char character type—an LPSTR
parameter.

n OLE represents a pointer to the COM OLECHAR character type—an LPOLESTR
parameter.

n C represents the C/C++ const modifier.

50 A T L I N T E R N A L S

3 Actually, you can change the Win32 OLECHAR data type from the default wchar_t (which COM uses
internally) to char by defining the preprocessor symbol OLE2ANSI. This lets you pretend that COM uses
ANSI. MFC once used this feature, but it no longer does and neither should you.

All class names use the form C<source-abbreviation>2<destination-abbrevia-
tion>. For example, the CA2W class converts an LPSTR to an LPWSTR. When there is a
C in the name (not including the first C—that stands for “class”), add a const modi-
fication to the following abbreviation; for example, the CT2CW class converts a
LPTSTR to a LPCWSTR.

The actual class behavior depends on which preprocessor symbols you define
(see Table 2.1). Note that the ATL conversion classes and macros treat OLE and W

as equivalent.

Table 2.1. Character Set Preprocessor Symbols

S T R I N G S A N D T E X T 51

Table 2.2 lists the ATL string-conversion macros.

Table 2.2. ATL String-Conversion Classes

Preprocessor Symbol Defined T Becomes . . . OLE Becomes . . .

None A W

_UNICODE W W

CA2W COLE2T CT2CA CT2W CW2T

CA2WEX COLE2TEX CT2CAEX CT2WEX CW2TEX

CA2T COLE2CT CT2OLE CT2CW CW2CT

CA2TEX COLE2CTEX CT2OLEEX CT2CWEX CW2CTEX

CA2CT CT2A CT2COLE CW2A

CA2CTEX CT2AEX CT2COLEEX CW2AEX

As you can see, no BSTR conversion classes are listed in Table 2.2. The next sec-
tion of this chapter introduces the CComBSTR class as the preferred mechanism for
dealing with BSTR-type conversions.

When you look inside the atlconv.h header file, you’ll see that many of the def-
initions distill down to a fairly small set of six actual classes. For instance, when
_UNICODE is defined, CT2A becomes CW2A, which is itself typedef’d to the CW2AEX tem-
plate class. The type definition merely applies the default template parameters to
CW2AEX. Additionally, all the previous class names always map OLE to W, so COLE2T

becomes CW2T, which is defined as CW2W under Unicode builds. Because the source
and destination types for CW2W are the same, this class performs no conversions.
Ultimately, the only six classes defined are the template classes CA2AEX, CA2CAEX,
CA2WEX, CW2AEX, CW2CWEX, and CW2WEX. Only CA2WEX and CW2AEX have different source
and destination types, so these are the only two classes doing any real work. Thus,
our expansive list of conversion classes in Table 2.2 has distilled down to only two
interesting ones. These two classes are both defined and implemented similarly, so
we look at only CA2WEX to glean an understanding of how they both work.

template< int t_nBufferLength = 128 >

class CA2WEX {

CA2WEX(LPCSTR psz);

CA2WEX(LPCSTR psz, UINT nCodePage);

...

public:

LPWSTR m_psz;

wchar_t m_szBuffer[t_nBufferLength];

...

};

The class definition is actually pretty simple. The template parameter specifies
the size of a fixed static buffer to hold the string data. This means that most string-
conversion operations can be performed without allocating any dynamic storage. If
the requested string to convert exceeds the number of characters passed as an
argument to the template, CA2WEX uses malloc to allocate additional storage.

Two constructors are provided for CA2WEX. The first constructor accepts an
LPCSTR and uses the Win32 API function MultiByteToWideChar to perform the con-
version. By default, the class uses the ANSI code page for the current thread’s
locale to perform the conversion. The second constructor can be used to specify an
alternate code page that governs how the conversion is performed. This value is
passed directly to MultiByteToWideChar, so see the online documentation for
details on code pages accepted by the various Win32 character conversion func-
tions.

The simplest way to use this converter class is to accept the default value for
the buffer size parameter. Thus, ATL provides a simple typedef to facilitate this:

typedef CA2WEX<> CA2W;

To use this converter class, you need to write only simple code such as the
following:

52 A T L I N T E R N A L S

void PutName (LPCWSTR lpwszName);

void RegisterName (LPCSTR lpsz) {

PutName (CA2W(lpsz));

}

Two other use cases are also common in practice:

1. Receiving a generic-text string and passing to a method that expects an OLESTR
as input

2. Receiving an OLESTR and passing it to a method that expects a generic-text
string

The conversion classes are easily employed to deal with these cases:

void PutAddress(LPOLESTR lpszAddress);

void RegisterAddress(LPTSTR lpsz) {

PutAddress(CT2OLE(lpsz));

}

void PutNickName(LPTSTR lpszName);

void RegisterAddress(LPOLESTR lpsz) {

PutNickName(COLE2T(lpsz));

}

A Note on Memory Management

As convenient as the conversion classes are, you can run into some nasty pitfalls if
you use them incorrectly. The conversion classes allocate the memory for the con-
verted text automatically and clean it up in the class destructor. This is useful
because you don’t have to worry about buffer management. However, it also means
that code like this is a crash waiting to happen:

LPOLESTR ConvertString(LPTSTR lpsz) {

return CT2OLE(lpsz);

}

You’ve just returned either a pointer to the stack of the called function (which is
trashed when the function returns) if the string was short, or a pointer to an array
on the heap that will be deallocated before the function returns.

S T R I N G S A N D T E X T 53

The worst part is that, depending on your macro selection, the code might
work just fine but will crash when you switch from ANSI to Unicode for the first
time (usually two days before ship). To avoid this, make sure that you copy the
converted string to a separate buffer (or use a string class) first if you need it for
more than a single expression.

ATL String-Helper Functions

Sometimes you want to copy a string of OLECHAR characters. You also happen to
know that OLECHAR characters are wide characters on the Win32 operating system.
When writing a Win32 version of your component, you might call the Win32 operat-
ing system function lstrcpyW, which copies wide characters. Unfortunately, Win-
dows NT/2000, which supports Unicode, implements lstrcpyW, but Windows 95
does not. A component that uses the lstrcpyW API doesn’t work correctly on Win-
dows 95.

Instead of lstrcpyW, use the ATL string-helper function ocscpy to copy an
OLECHAR character string. It works properly on both Windows NT/2000 and Win-
dows 95. The ATL string-helper function ocslen returns the length of an OLECHAR
string. This is nice for symmetry, although the lstrlenW function it replaces does
work on both operating systems.

OLECHAR* ocscpy(LPOLESTR dest, LPCOLESTR src);

size_t ocslen(LPCOLESTR s);

Similarly, the Win32 CharNextW operating system function doesn’t work on Win-
dows 95, so ATL provides a CharNextO string-helper function that increments an
OLECHAR* by one character and returns the next character pointer. It does not incre-
ment the pointer beyond a NUL termination character.

LPOLESTR CharNextO(LPCOLESTR lp);

ATL String-Conversion Macros

The string-conversion classes discussed previously were introduced in ATL 7. ATL
3 (and code written with ATL 3) used a set of macros instead. In fact, these macros
are still in use in the ATL code base. For example, this code is in the atlctl.h
header:

STDMETHOD(Help)(LPCOLESTR pszHelpDir) {

T* pT = static_cast<T*>(this);

USES_CONVERSION;

54 A T L I N T E R N A L S

ATLTRACE(atlTraceControls,2,

_T("IPropertyPageImpl::Help\n"));

CComBSTR szFullFileName(pszHelpDir);

CComHeapPtr<OLECHAR>

pszFileName(LoadStringHelper(pT->m_dwHelpFileID));

if (pszFileName == NULL)

return E_OUTOFMEMORY;

szFullFileName.Append(OLESTR("\\"));

szFullFileName.Append(pszFileName);

WinHelp(pT->m_hWnd, OLE2CT(szFullFileName),

HELP_CONTEXTPOPUP, NULL);

return S_OK;

}

The macros behave much like the conversion classes, minus the leading C in
the macro name. So, to convert from tchar to olechar, you use T2OLE(s).

Two major differences arise between the macros and the conversion classes.
First, the macros require some local variables to work; the USES_CONVERSION macro
is required in any function that uses the conversion macros. (It declares these local
variables.) The second difference is the location of the conversion buffer.

In the conversion classes, the buffer is stored either as a member variable on
the stack (if the buffer is small) or on the heap (if the buffer is large). The conver-
sion macros always use the stack. They call the runtime function _alloca, which
allocates extra space on the local stack.

Although it is fast, _alloca has some serious downsides. The stack space isn’t
freed until the function exits, which means that if you do conversion in a loop, you
might end up blowing out your stack space. Another nasty problem is that if you
use the conversion macros inside a C++ catch block, the _alloca call messes up the
exception-tracking information on the stack and you crash.4

The ATL team apparently took two swipes at improving the conversion macros.
The final solution is the conversion classes. However, a second set of conversion
macros exists: the _EX flavor. These are used much like the original conversion
macros; you put USES_CONVERSION_EX at the top of the function. The macros have an
_EX suffix, as in T2A_EX. The _EX macros are different, however: They take two
parameters, not one. The first parameter is the buffer to convert from as usual. The
second parameter is a threshold value. If the converted buffer is smaller than this
threshold, the memory is allocated via _alloca. If the buffer is larger, it is allocated
on the heap instead. So, these macros give you a chance to avoid the stack overflow.

S T R I N G S A N D T E X T 55

4 For this reason, the _alloca function is deprecated in favor of _malloca, but ATL still uses
_alloca.

(They still won’t help you in a catch block.) The ATL code uses the _EX macros
extensively; the previous example is the only one left that still uses the old macros.

We don’t go into the details of either macro set here; the conversion classes are
much safer to use and are preferred for new code. We mention them only so that
you know what you’re looking at if you see them in older code or the ATL sources
themselves.

The CComBSTR Smart BSTR Class

A Review of the COM String Data Type: BSTR

COM is a language-neutral, hardware-architecture-neutral model. Therefore, it
needs a language-neutral, hardware-architecture-neutral text data type. COM
defines a generic text data type, OLECHAR, that represents the text data COM uses on
a specific platform. On most platforms, including all 32-bit Windows platforms, the
OLECHAR data type is a typedef for the wchar_t data type. That is, on most platforms,
the COM text data type is equivalent to the C/C++ wide-character data type, which
contains Unicode characters. On some platforms, such as the 16-bit Windows oper-
ating system, OLECHAR is a typedef for the standard C char data type, which con-
tains ANSI characters. Generally, you should define all string parameters used in a
COM interface as OLECHAR* arguments.

COM also defines a text data type called BSTR. A BSTR is a length-prefixed string
of OLECHAR characters. Most interpretive environments prefer length-prefixed
strings for performance reasons. For example, a length-prefixed string does not
require time-consuming scans for a NUL character terminator to determine the
length of a string. Actually, the NUL-character-terminated string is a language-spe-
cific concept that was originally unique to the C/C++ language. The Microsoft
Visual Basic interpreter, the Microsoft Java virtual machine, and most scripting lan-
guages, such as VBScript and JScript, internally represent a string as a BSTR.

Therefore, when you pass a string to or receive a string from a method param-
eter to an interface defined by a C/C++ component, you’ll often use the OLECHAR*
data type. However, if you need to use an interface defined by another language,
frequently string parameters will be the BSTR data type. The BSTR data type has a
number of poorly documented semantics, which makes using BSTRs tedious and
error prone for C++ developers.

A BSTR has the following attributes:

n A BSTR is a pointer to a length-prefixed array of OLECHAR characters.

n A BSTR is a pointer data type. It points at the first character in the array. The
length prefix is stored as an integer immediately preceding the first character
in the array.

56 A T L I N T E R N A L S

n The array of characters is NUL character terminated.

n The length prefix is in bytes, not characters, and does not include the terminat-
ing NUL character.

n The array of characters may contain embedded NUL characters.

n A BSTR must be allocated and freed using the SysAllocString and SysFree-

String family of functions.

n A NULL BSTR pointer implies an empty string.

n A BSTR is not reference counted; therefore, two references to the same string
content must refer to separate BSTRs. In other words, copying a BSTR implies
making a duplicate string, not simply copying the pointer.

With all these special semantics, it would be useful to encapsulate these details
in a reusable class. ATL provides such a class: CComBSTR.

The CComBSTR Class

The CComBSTR class is an ATL utility class that is a useful encapsulation for the COM
string data type, BSTR. The atlcomcli.h file contains the definition of the CComBSTR
class. The only state maintained by the class is a single public member variable,
m_str, of type BSTR.

//

// CComBSTR

class CComBSTR {

public:

BSTR m_str;

...

} ;

Constructors and Destructor

Eight constructors are available for CComBSTR objects. The default constructor sim-
ply initializes the m_str variable to NULL, which is equivalent to a BSTR that repre-
sents an empty string. The destructor destroys any BSTR contained in the m_str
variable by calling SysFreeString. The SysFreeString function explicitly docu-
ments that the function simply returns when the input parameter is NULL so that the
destructor can run on an empty object without a problem.

S T R I N G S A N D T E X T 57

CComBSTR() { m_str = NULL; }

~CComBSTR() { ::SysFreeString(m_str); }

Later in this section, you will learn about numerous convenience methods that
the CComBSTR class provides. However, one of the most compelling reasons for
using the class is so that the destructor frees the internal BSTR at the appropriate
time, so you don’t have to free a BSTR explicitly. This is exceptionally convenient
during times such as stack frame unwinding when locating an exception handler.

Probably the most frequently used constructor initializes a CComBSTR object
from a pointer to a NUL-character-terminated array of OLECHAR characters—or, as it’s
more commonly known, an LPCOLESTR.

CComBSTR(LPCOLESTR pSrc) {

if (pSrc == NULL) m_str = NULL;

else {

m_str = ::SysAllocString(pSrc);

if (m_str == NULL)

AtlThrow(E_OUTOFMEMORY);

}

}

You invoke the preceding constructor when you write code such as the
following:

CComBSTR str1 (OLESTR ("This is a string of OLECHARs")) ;5

The previous constructor copies characters until it finds the end-of-string NULL
character terminator. When you want some lesser number of characters copied,
such as the prefix to a string, or when you want to copy from a string that contains
embedded NULL characters, you must explicitly specify the number of characters to
copy. In this case, use the following constructor:

CComBSTR(int nSize, LPCOLESTR sz);

This constructor creates a BSTR with room for the number of characters speci-
fied by nSize; copies the specified number of characters, including any embedded
NULL characters, from sz; and then appends a terminating NUL character. When sz is

58 A T L I N T E R N A L S

5 The OLESTR macro is similar to the _T macros; it guarantees that the string literal is of the proper type
for an OLE string, depending on compile options.

NULL, SysAllocStringLen skips the copy step, creating an uninitialized BSTR of the
specified size. You invoke the preceding constructor when you write code such as
the following:

// str2 contains "This is a string"

CComBSTR str2 (16, OLESTR ("This is a string of OLECHARs"));

// Allocates an uninitialized BSTR with room for 64 characters

CComBSTR str3 (64, (LPCOLESTR) NULL);

// Allocates an uninitialized BSTR with room for 64 characters

CComBSTR str4 (64);

The CComBSTR class provides a special constructor for the str3 example in the
preceding code, which doesn’t require you to provide the NULL argument. The pre-
ceding str4 example shows its use. Here’s the constructor:

CComBSTR(int nSize) {

...

m_str = ::SysAllocStringLen(NULL, nSize);

...

}

One odd semantic feature of a BSTR is that a NULL pointer is a valid value for an
empty BSTR string. For example, Visual Basic considers a NULL BSTR to be equivalent
to a pointer to an empty string—that is, a string of zero length in which the first char-
acter is the terminating NUL character. To put it symbolically, Visual Basic considers
IF p = "", where p is a BSTR set to NULL, to be true. The SysStringLen API properly
implements the checks; CComBSTR provides the Length method as a wrapper:

unsigned int Length() const { return ::SysStringLen(m_str); }

You can also use the following copy constructor to create and initialize a
CComBSTR object to be equivalent to an already initialized CComBSTR object:

CComBSTR(const CComBSTR& src) {

m_str = src.Copy();

...

}

S T R I N G S A N D T E X T 59

In the following code, creating the str5 variable invokes the preceding copy
constructor to initialize their respective objects:

CComBSTR str1 (OLESTR("This is a string of OLECHARs")) ;

CComBSTR str5 = str1 ;

Note that the preceding copy constructor calls the Copy method on the source
CComBSTR object. The Copy method makes a copy of its string and returns the new
BSTR. Because the Copy method allocates the new BSTR using the length of the exist-
ing BSTR and copies the string contents for the specified length, the Copy method
properly copies a BSTR that contains embedded NUL characters.

BSTR Copy() const {

if (!*this) { return NULL; }

return ::SysAllocStringByteLen((char*)m_str,

::SysStringByteLen(m_str));

}

Two constructors initialize a CComBSTR object from an LPCSTR string. The single
argument constructor expects a NUL-terminated LPCSTR string. The two-argument
constructor permits you to specify the length of the LPCSTR string. These two
constructors are functionally equivalent to the two previously discussed construc-
tors that accept an LPCOLESTR parameter. The following two constructors expect
ANSI characters and create a BSTR that contains the equivalent string in OLECHAR
characters:

CComBSTR(LPCSTR pSrc) {

...

m_str = A2WBSTR(pSrc);

...

}

CComBSTR(int nSize, LPCSTR sz) {

...

m_str = A2WBSTR(sz, nSize);

...

}

The final constructor is an odd one. It takes an argument that is a GUID and
produces a string containing the string representation of the GUID.

CComBSTR(REFGUID src);

60 A T L I N T E R N A L S

This constructor is quite useful when building strings used during component
registration. In a number of situations, you need to write the string representation
of a GUID to the Registry. Some code that uses this constructor follows:

// Define a GUID as a binary constant

static const GUID GUID_Sample = { 0x8a44e110, 0xf134, 0x11d1,

{ 0x96, 0xb1, 0xBA, 0xDB, 0xAD, 0xBA, 0xDB, 0xAD } };

// Convert the binary GUID to its string representation

CComBSTR str6 (GUID_Sample) ;

// str6 contains "{8A44E110-F134-11d1-96B1-BADBADBADBAD}"

Assignment

The CComBSTR class defines three assignment operators. The first one initializes a
CComBSTR object using a different CComBSTR object. The second one initializes a
CComBSTR object using an LPCOLESTR pointer. The third one initializes the object
using a LPCSTR pointer. The following operator=() method initializes one CComBSTR
object from another CComBSTR object:

CComBSTR& operator=(const CComBSTR& src) {

if (m_str != src.m_str) {

::SysFreeString(m_str);

m_str = src.Copy();

if (!!src && !*this) { AtlThrow(E_OUTOFMEMORY); }

}

return *this;

}

Note that this assignment operator uses the Copy method, discussed a little
later in this section, to make an exact copy of the specified CComBSTR instance. You
invoke this operator when you write code such as the following:

CComBSTR str1 (OLESTR("This is a string of OLECHARs"));

CComBSTR str7 ;

str7 = str1; // str7 contains "This is a string of OLECHARs"

str7 = str7; // This is a NOP. Assignment operator

// detects this case

The second operator=() method initializes one CComBSTR object from an
LPCOLESTR pointer to a NUL-character-terminated string.

S T R I N G S A N D T E X T 61

CComBSTR& operator=(LPCOLESTR pSrc) {

if (pSrc != m_str) {

::SysFreeString(m_str);

if (pSrc != NULL) {

m_str = ::SysAllocString(pSrc);

if (!*this) { AtlThrow(E_OUTOFMEMORY); }

} else {

m_str = NULL;

}

}

return *this;

}

Note that this assignment operator uses the SysAllocString function to allo-
cate a BSTR copy of the specified LPCOLESTR argument. You invoke this operator
when you write code such as the following:

CComBSTR str8 ;

str8 = OLESTR ("This is a string of OLECHARs");

It’s quite easy to misuse this assignment operator when you’re dealing with
strings that contain embedded NUL characters. For example, the following code
demonstrates how to use and misuse this method:

CComBSTR str9 ;

str9 = OLESTR ("This works as expected");

// BSTR bstrInput contains "This is part one\0and here's part two"

CComBSTR str10 ;

str10 = bstrInput; // str10 now contains "This is part one"

To properly handle situations such as this one, you should turn to the AssignB-
STR method. This method is implemented very much like operator=(LPCOLESTR),
except that it uses SysAllocStringByteLen.

HRESULT AssignBSTR(const BSTR bstrSrc) {

HRESULT hr = S_OK;

if (m_str != bstrSrc) {

::SysFreeString(m_str);

if (bstrSrc != NULL) {

m_str = ::SysAllocStringByteLen((char*)bstrSrc,

::SysStringByteLen(bstrSrc));

62 A T L I N T E R N A L S

if (!*this) { hr = E_OUTOFMEMORY; }

} else {

m_str = NULL;

}

}

return hr;

}

You can modify the code as follows:

CComBSTR str9 ;

str9 = OLESTR ("This works as expected");

// BSTR bstrInput contains

// "This is part one\0and here's part two"

CComBSTR str10 ;

str10.AssignBSTR(bstrInput); // works properly

// str10 now contains "This is part one\0and here's part two"

The third operator=() method initializes one CComBSTR object using an LPCSTR
pointer to a NUL-character-terminated string. The operator converts the input string,
which is in ANSI characters, to a Unicode string; then it creates a BSTR containing
the Unicode string.

CComBSTR& operator=(LPCSTR pSrc) {

::SysFreeString(m_str);

m_str = A2WBSTR(pSrc);

if (!*this && pSrc != NULL) { AtlThrow(E_OUTOFMEMORY); }

return *this;

}

The final assignment methods are two overloaded methods called LoadString.

bool LoadString(HINSTANCE hInst, UINT nID) ;

bool LoadString(UINT nID) ;

The first loads the specified string resource nID from the specified module
hInst (using the instance handle). The second loads the specified string resource
nID from the current module using the global variable _AtlBaseModule.

S T R I N G S A N D T E X T 63

CComBSTR Operations

Four methods give you access, in varying ways, to the internal BSTR string that is
encapsulated by the CComBSTR class. The operator BSTR() method enables you to
use a CComBSTR object in situations where a raw BSTR pointer is required. You invoke
this method any time you cast a CComBSTR object to a BSTR implicitly or explicitly.

operator BSTR() const { return m_str; }

Frequently, you invoke this operator implicitly when you pass a CComBSTR
object as a parameter to a function that expects a BSTR. The following code demon-
strates this:

HRESULT put_Name (/* [in] */ BSTR pNewValue) ;

CComBSTR bstrName = OLESTR ("Frodo Baggins");

put_Name (bstrName); // Implicit cast to BSTR

The operator&() method returns the address of the internal m_str variable
when you take the address of a CComBSTR object. Use care when taking the address
of a CComBSTR object. Because the operator&() method returns the address of the
internal BSTR variable, you can overwrite the internal variable without first freeing
the string. This causes a memory leak. However, if you define the macro ATL_CCOMB-
STR_ADDRESS_OF_ASSERT in your project settings, you get an assertion to help catch
this error.

#ifndef ATL_CCOMBSTR_ADDRESS_OF_ASSERT

// Temp disable CComBSTR::operator& Assert

#define ATL_NO_CCOMBSTR_ADDRESS_OF_ASSERT

#endif

BSTR* operator&() {

#ifndef ATL_NO_CCOMBSTR_ADDRESS_OF_ASSERT

ATLASSERT(!*this);

#endif

return &m_str;

}

This operator is quite useful when you are receiving a BSTR pointer as the out-
put of some method call. You can store the returned BSTR directly into a CComBSTR
object so that the object manages the lifetime of the string.

64 A T L I N T E R N A L S

