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Preface 

Connectionist modeling has had a vast impact throughout cognitive science, 
and has been both highly productive and highly controversial in the area of 
natural language processing and acquisition. The decade and a half after the 
publication of David Rumelhart and Jay McClelland's seminal Parallel Dis­
tributed Processing volumes has seen an explosive growth of connectionist 
modeling of natural language. During this period the field has matured and 
is moving away from abstract "existence-proof" models toward making close 
contact with a range of psycholinguistic data. This book offers the first 
comprehensive treatment of this emergent area of research, demonstrating 
the current state of the art (Part I) and appraising the prospects for future 
development (Part II) of "connectionist psycholinguistics." 

The book is based on a special issue of Cognitive Science, "Connectionist 
models of human language processing: Progress and prospects," Vol. 23, 
no. 4, edited by Morten H. Christiansen, Nick Chater, and Mark S. Seidenberg. 
The papers in the special issue were solicited from an outstanding group of 
connectionist language researchers, specifically to address the key subareas 
in connectionist language research and to discuss the future prospects of 
connectionist psycholinguistics. For the purpose of this book, each paper has 
been updated, including the addition of a descriptive list of further readings. 
In most cases the papers have also been substantially revised. 
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Part I, The State of the Art, brings us to the forefront of current 
connectionist modeling of psycholinguistic processing, with individual chap­
ters on speech perception, morphology, sentential recursion, sentence pro­
cessing, language production, and reading, beginning with an in-depth 
perspective on the breadth and variety of work in connectionist modeling of 
language. Part II, Future Prospects, provides a multifaceted discussion of 
the prospects for future research within connectionist psycholinguistics. 

Each chapter is written by leading researchers who are defining the cur­
rent state of the art within the connectionist approach to language. The book 
should therefore provide both a summary of where the field stands and a 
stimulus to future research in connectionist psycholinguistics. More gener­
ally, the book is aimed at researchers, scholars, and advanced students in 
psychology, linguistics, psycholinguistics, cognitive neuroscience, cogni­
tive science, philosophy, or computer science with interest in the psychol­
ogy of language and in computational approaches to the understanding of 
psycholinguistic processing. 



1 
Connectionist Psycholinguistics: 
The Very Idea 

Morten H. Christiansen and Nick Chater 

What is the significance of connectionist models of language processing? 
Will connectionism ultimately replace, complement, or simply implement 
the symbolic approach to language? Early connectionist models attempted 
to address this issue by showing that connectionist models could, in prin­
ciple, capture aspects of language processing and linguistic structure. Little 
attention was generally paid to the modeling of data from psycholinguistic 
experiments. However, we suggest that connectionist language processing 
has matured and that the field is now moving forward into a new phase in 
which closer attention is paid to detailed psycholinguistic data. This book 
provides the first comprehensive overview of work within the emergent 
field of "connectionist psycholinguistics," connectionist models that make 
close contact with psycholinguistic results. 

But how are we to assess the models within this emerging new area of 
research? We suggest that computational models of psycholinguistic pro­
cessing, whether connectionist or symbolic, should attempt to fulfill three 
criteria: (1) data contact, (2) task veridicality, and (3) input representative­
ness (Christiansen & Chater, 2001). Data contact refers to the degree to 
which a model provides a fit with psycholinguistic data. We distinguish 
here between primary and secondary data contact. Primary data contact 
involves fitting results from specific psycholinguistic experiments (e.g., 
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reaction-time data), whereas secondary data contact involves fitting general 
patterns of behavior (e.g., experimentally attested developmental changes 
in language processing) rather than specific results. Task veridicality refers 
to the degree of match between the task facing people and the task given to 
the model. Although a precise match is typically difficult to obtain, it is 
important to minimize the discrepancy. For example, much early work on 
modeling the English past tense suffers from low task veridicality (e.g., 
Rumelhart & McClelland, 1986, but see, e.g., Hoeffner, 1997, for an ex­
ception) because models are trained to map verb stems to past-tense forms, 
a task unlikely to be relevant to children's language acquisition. Input rep­
resentativeness refers to the degree to which the information given to the 
model reflects what is available to a person or child. For example, the 
computational modeling of morphology suffers from the lack of good train­
ing corpora of high input representativeness with which to train the models. 
This problem is most serious for non-English morphology, making it prob­
lematic to make a priori conclusions about the feasibility of connectionist 
accounts in the area (e.g., Berent, Pinker, & Shimron, 1999). 

It is also important to take stock of where symbolic models stand on our 
three criteria for computational psycholinguistics. Interestingly, few sym­
bolic models make direct contact with psycholinguistic data. Most of the 
exceptions are within the study of sentence processing, where some com­
prehensive models of word-by-word reading times exist (e.g., Gibson, 1998; 
Just & Carpenter, 1992) and have a reasonable degree of task veridicality. 
More generally, however, symbolic models appear to pay little attention to 
task veridicality. Indeed, the rule-based models of the English past tense (e.g., 
Pinker, 1991) involve the same stem-to-past-tense mappings as the early 
connectionist models, and thus suffer from the same low task veridicality. Input 
representativeness is often ignored in symbolic models, in part because learn­
ing plays a minimal role in the performance of these models, and in part 
because symbolic models tend to be focused on more abstract fragments of 
language, rather than the more realistic language input that some connectionist 
models can handle. Low input representativeness may, for these reasons, 
actually inflate performance for many types of symbolic models, whereas 
the opposite tends to be true of connectionist models. 

Currently, then, connectionism appears to provide a better framework for 
detailed psycholinguistic modeling than the symbolic approach. For many connec-
tionists the advantages of this framework for doing computational psycho­
linguistics derive from a number of properties of the connectionist models. 

Learning. Connectionist networks typically learn from experience, rather 
than being fully prespecified by a designer. By contrast, symbolic computa­
tional systems, including those concerned with language processing, are 
typically, but not always, fully specified by the designer. 

Generalization. Few aspects of language are simple enough to be learn-
able by rote. The ability of networks to generalize to cases on which they 
have not been trained is thus a critical test for many connectionist models. 
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Representation. Because they are able to learn, the internal codes used by 
connectionist networks need not be fully specified by a designer, but are 
devised by the network so as to be appropriate for the task. Developing 
methods for understanding the codes that the network develops is an impor­
tant strand of connectionist research. While internal codes may be learned, 
the inputs and outputs to a network generally use a code specified by the 
designer. These codes can be crucial in determining network performance. 
How these codes relate to standard symbolic representations of language in 
linguistics is a major point of contention. 

Rules versus Exceptions. Many aspects of language can be described in 
terms of what have been termed "quasi-regularities," regularities that are 
usually true but admit some exceptions. According to the symbolic descrip­
tions used by modern linguistics, these quasi-regularities may be captured 
in terms of a set of symbolic rules and sets of exceptions to those rules. 
Symbolic models often incorporate this distinction by having separate mecha­
nisms that deal with rule-governed and exceptional cases. It has been ar­
gued that connectionist models provide a single mechanism that can pick up 
general rules while learning the exceptions to those rules. While this issue 
has been a major point of controversy surrounding connectionist models, it 
is important to note that attempting to provide single mechanisms for rules 
and exceptions is not essential to the connectionist approach; one or both 
separate mechanisms for rules and exceptions could themselves be modeled 
in connectionist terms (Coltheart, Curtis, Atkins, & Haller, 1993; Pinker, 
1991; Pinker & Prince, 1988). A further question is whether networks re­
ally learn rules at all, or whether they simply approximate rulelike behav­
ior. Opinions differ concerning whether the latter is an important positive 
proposal, which may lead to a revision of the role of rules in linguistics 
(Rumelhart & McClelland, 1986; see also Smolensky, 1988), or whether it 
is a fatal problem with connectionist models of language processing (Marcus, 
1998; Pinker & Prince, 1988). 

These four properties all play important roles in the models described in 
Part I of this volume, as well as in the appraisals of connectionist psycholin­
guistics presented in Part II. 

ORGANIZATION OF THIS VOLUME 

Part I of this volume, The State of the Art, presents the current state of 
the art in connectionist psycholinguistics with specific models from five key 
areas: speech processing, morphology, sentence processing, language pro­
duction, and reading aloud. Part II, Future Prospects, then provides three 
contrasting perspectives on the field from leading researchers working on 
computational models of human natural language processing. 

Part I begins with Chapter 2, Connectionist Psycholinguistics in Perspec­
tive, by Morten H. Christiansen and Nick Chater. This chapter provides an 
in-depth introduction to the field of connectionist psycholinguistics, and 
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sets the context for the rest of the volume. The historical roots of the 
connectionist approach to language processing are traced and key themes 
that arise throughout different areas of connectionist psycholinguistics are 
highlighted. The chapter also provides a detailed review of the five key 
empirical areas described in the chapters comprising the rest of this part of 
the book, highlighting the interplay between connectionist modeling and 
empirical research. This review indicates that connectionist psycholinguistics 
has already had a significant impact on the psychology of language, and 
suggests that connectionist models are likely to have an important influence 
on future research. With this review in place, the subsequent chapters in 
this part of the book present central recent developments in the field. 

Chapter 3, Simulating Parallel Activation in Spoken Word Recognition, 
by M. Gareth Gaskell and William D. Marslen-Wilson, concerns the connec­
tionist modeling of speech processing. A critical property of the perception 
of spoken words is the transient ambiguity of the speech signal. Speech 
information is spread out across time, and early on in the processing of a 
word the speech information will be compatible with more than one lexical 
item. In localist models of speech perception this property is captured by 
allowing the parallel activation of multiple independent lexical representa­
tions. Gaskell and Marslen-Wilson examine how this property can be ac­
commodated in a distributed model of speech perception, in which word 
representations are not independent. In this case an approximation to the 
activation of more than one representation is possible by activating a "blend" 
of the different distributed representations. Statistical analyses of vector 
spaces show that coactivation of multiple distributed representations is in­
herently noisy, and depends on parameters such as sparseness and dimen­
sionality. Furthermore, the characteristics of coactivation vary considerably, 
depending on the organization of distributed representations within the mental 
lexicon. This view of lexical access is supported by analyses of phonological 
and semantic word representations, which provide an explanation of a recent 
set of experiments on coactivation in speech perception (Gaskell & Marslen-
Wilson, 1999). More generally, this work illustrates a tight interplay be­
tween connectionist psycholinguistic modeling and experimental psycholinguistic 
research. Thus, the model provides for a good primary data contact and 
reasonable input representativeness, but suffers from a relatively poor task 
veridicality because of the abstract nature of the simulations. 

Chapter 4, A Connectionist Model of English Past-Tense and Plural Morph­
ology, by Kim Plunkett and Patrick Juola, concerns what has been one of 
the most controversial domains to which connectionist research has been 
applied: morphological processing. Theorists advocating a symbolic per­
spective have frequently taken morphology as a paradigmatic case of a "rule 
+ exception" mapping. A rigid symbolic rule, which specifies a regular 
morphological mapping, is presumed to be supplemented with a set of ex­
plicit exceptions, which are assumed to be processed by a very different 
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mechanism. In line with much connectionist work in this area, Plunkett and 
Juola make the opposite assumption, that a single mechanism explains both 
rule and exception cases in morphological processing. Specifically, they 
model the acquisition of English noun and verb morphology using a single 
connectionist network. The network is trained to produce the plurals and 
past-tense forms for a large corpus of monosyllabic English nouns and verbs. 
The developmental trajectory of network performance is analyzed in detail 
and is shown to mimic a number of important features of the acquisition of 
English noun and verb morphology in young children. These include an 
initial error-free period of performance on both nouns and verbs followed 
by a period of intermittent overregularization of irregular nouns and verbs. 
Errors in the model show evidence of phonological conditioning and fre­
quency effects. Furthermore, the network demonstrates a strong tendency 
to regularize denominal verbs and deverbal nouns and masters the prin­
ciples of voicing assimilation. Despite being dealt with by a single network, 
nouns and verbs exhibit some important differences in their profiles of ac­
quisition. Most important, noun inflections are acquired earlier than verb 
inflections. The simulations generate several empirical predictions that can 
be used to further evaluate the suitability of this type of cognitive architec­
ture in the domain of inflectional morphology, thus pointing the way for 
close links between computational and empirical research. The model has 
good secondary data contact and decent input representativeness, but the 
task veridicality is poor because the task of mapping noun and verb stems to 
plural and past-tense inflections is not likely to play a large role in language 
acquisition. 

Chapter 5, Finite Models of Infinite Language: A Connectionist Approach 
to Recursion, by Morten H. Christiansen and Nick Chater, deals with an­
other theoretical issue that has been seen as strongly supporting a symbolic, 
rather than a connectionist, approach to language processing: natural lan­
guage recursion. Since the inception of modern linguistics there has been 
considerable emphasis on the importance of recursive phenomena in natural 
language, and the assumption that any approach to sentence processing must 
allow for unbounded recursion. Indeed, the existence of different kinds of 
recursion has had important implications on the choices of symbolic formal­
isms (e.g., different kinds of generative grammars, different classes of parser 
and generator) that have been used to explain natural language. From this 
perspective, natural language recursion presents a difficult challenge to any 
nonsymbolic account of natural language processing. 

A range of connectionist approaches have been put forward that attempt 
to deal with recursion in natural language, although they have not typically 
achieved the unbounded character of natural language recursion that lin­
guists typically assume. Christiansen and Chater note, though, that the propo­
sition that natural language allows unbounded applications of recursion may 
make an inappropriate target for connectionist modeling. Instead, they ar-
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gue that a more appropriate goal for connectionism is to account for the 
levels of performance that people exhibit when exposed to recursive con­
structions—to address recursion as a purely psycholinguistic phenomenon, 
rather than as a linguistic abstraction. It is important to note that people's 
ability to process recursive constructions is quite limited. People produce 
only a very limited number of complex recursive constructions in naturally 
occurring speech, and this is reflected in the empirically documented diffi­
culties that people experience when processing such structures. 

Christiansen and Chater present a connectionist model of human perfor­
mance in processing recursive language structures, based on Elman's (1990) 
simple recurrent network (SRN). The model is trained on simple artificial 
languages inspired by Chomsky (1957). They find that the qualitative per­
formance profile of the model closely matches human behavior, both on the 
relative difficulty of center-embedded and cross-dependency, and between 
the processing of these complex recursive structures and right-branching 
recursive constructions. Christiansen and Chater analyze how these differ­
ences in performance are reflected in the internal representations of the 
model by performing discriminant analyses on these representations both 
before and after training. The model has good primary data contact and 
reasonable task veridicality, but the input representativeness is low because 
of the abstractness of the artificial languages. More generally, this work 
suggests a novel explanation of people's limited recursive performance, 
without assuming the existence of a mentally represented grammar allowing 
unbounded recursion. 

Chapter 6, Dynamical Systems for Sentence Processing, by Whitney Ta­
bor and Michael K. Tanenhaus, like the previous chapter, addresses the 
question of natural language processing at the level of the sentence, using 
input patterned on natural language rather than the more abstract structures 
used by Christiansen and Chater. Tabor and Tanenhaus suggest that the 
theory of dynamical systems, originated in the physical sciences, provides a 
revealing general framework for modeling the representations and mecha­
nisms underlying sentence processing. Recent work in sentence processing 
(e.g., McRae, Spivey-Knowlton, & Tanenhaus, 1998) suggests that parsing 
biases change fairly continuously over the course of processing the succes­
sive words of a sentence. Connectionist networks are good at fitting graded 
data, and their dynamical properties are naturally suited to modeling con­
tinuously changing quantities. But the connectionist network that has been 
most successful in modeling natural language syntax (Elman's SRN, which 
is used by Christiansen and Chater in the previous chapter) does not explic­
itly model processing times. They argue that, like many connectionist mod­
els at the present time, the SRN is analytically opaque: It is difficult to see 
the principles underlying its solutions to complex tasks. And it is relativis-
tic—no categorical distinctions are made between grammatical and ungram-
matical strings—so it is hard to use linguistic structural insights, which make 
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heavy use of such distinctions, to get past the opaqueness. They suggest that 
dynamical systems theory, through its insight into the relationship between 
quantitative and topological properties of systems, offers a solution to these 
shortcomings. 

As in their previous work (Tabor, Juliano, & Tanenhaus, 1997), Tabor 
and Tanenhaus add a postprocessor to the SRN that has explicit dynamics, 
thus introducing potentially useful dynamical systems concepts: attractors, 
basins, saddle points, trajectories. They call this the Visitation Set Gravita­
tion (VSG) model. Trained on a simple formal language that shares certain 
key properties with English, the model predicts the important reading-time 
contrasts in a recent study of the real-time evolution of parsing biases (McRae 
etal., 1998). 

Further examination of the VSG model reveals that a standard structural 
contrast in dynamical systems—between saddle points and attractors—maps 
onto the fundamental linguistic contrast between ungrammatical and gram­
matical strings, thus helping to bridge the gap between connectionist models 
and linguistic theory. And without further modification of the model, a 
behaviorally accurate analysis of semantically strange sentences falls out: 
They are grammatical sentences that involve long trajectories in the state 
space of the dynamical system and thus have long processing times. This 
insight helps move work on formal language learning in the much-needed 
direction of addressing semantic structure. 

Overall, the Tabor and Tanenhaus model has good primary data contact 
and decent task veridicality, but the input representativeness is low because 
of the simplicity of their formal language. The results suggest that dynamical-
systems theory is a promising source of ideas for relating the flexible, real­
time behavior of the human language processor to its overarching, relatively 
static, categorical organization. This application of dynamical-systems ideas 
is part of a larger movement within cognitive science (e.g., Kelso, 1997; 
Port & van Gelder, 1995; Thelen & Smith, 1994), which seeks to under­
stand cognition in dynamical terms. Language processing provides a chal­
lenging test case for the application of the dynamical approach, because 
language has traditionally been conceived from a symbolic perspective. It is 
interesting, too, to wonder to what extent connectionist researchers will 
follow Tabor and Tanenhaus in using ideas from dynamical-systems theory 
to construct and understand connectionist systems. If this does occur, it 
might represent a substantial departure from the current technical literature 
on connectionist networks, which is grounded in probability, information 
theory, and statistical mechanics, rather than dynamical ideas (Bishop, 1995; 
Frey, 1998). 

Chapter 7, Connectionist Models of Language Production: Lexical Ac­
cess and Grammatical Encoding, by Gary S. Dell, Franklin Chang, and 
Zenzi M. Griffin, moves the focus from how language is understood to how 
it is produced. Language production, like language understanding, has fre-
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quently been characterized as involving the operation of symbolic processes 
on a generative grammar, and a specification of the message to be pro­
duced, in terms of a symbolically encoded underlying "logical form" or 
"conceptual representation." In contrast to this kind of account, there has 
also been a long tradition of connectionist theorizing about language pro­
duction. Indeed, Dell's (1986) "spreading activation" model of speech pro­
duction was one of the most important models in the revival of interest in 
connectionist models of psychological processes, which began in the early 
to mid-1980s. In their chapter, Dell et al. describe the most recent develop­
ments in this approach to modeling speech production. Specifically, they 
outline the issues and challenges that must be addressed by connectionist 
models of lexical access and grammatical encoding, and review three recent 
models. The models illustrate the value of a spreading activation approach 
to lexical access in production, the need for sequential output in both pho­
nological and grammatical encoding, and the potential for accounting for 
structural effects on phonological errors and syntactic priming. These mod­
els account for a broad range of data on speech production, from the analy­
sis of speech errors, to the performance of aphasic patients, to results from 
syntactic priming studies. Indeed, in speech-production research the inter­
play between connectionist modeling and the gathering of empirical data 
that we view as constitutive of connectionist psycholinguistics is particu­
larly well developed. 

Dell et al. consider several specific models, rather than attempting a single 
overarching model of speech production. Individually, the models have good 
primary or secondary data contact and good task veridicality, but all models 
suffer from relatively low input representativeness because the models only 
cover small language fragments. An important question for future research 
concerns the degree to which models of specific aspects of speech produc­
tion can be integrated in a cohesive way, an issue that also arises in relation 
to the models of speech and language processing described in earlier chap­
ters of this book. 

The chapters described so far have focused on the comprehension and 
production of speech, rather than how written language is processed. The 
reading of single words has, in particular, been an area of intense connectionist 
research. Chapter 8, A Connectionist Approach to Word Reading and Ac­
quired Dyslexia: Extension to Sequential Processing, by David C. Plaut, 
outlines a new model of reading, building on the long research tradition. 
Plaut begins by discussing some general principles of the connectionist ap­
proach to word reading—of which he is a leading proponent—including 
distributed representation, graded learning of statistical structure, and 
interactivity in processing. These principles have led to the development of 
explicit computational models that account for an impressively broad range 
of data, from the interaction of word frequency and spelling-sound consis­
tency in normal skilled reading to analogous effects in the reading errors of 
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surface dyslexic patients and the co-occurrence of visual and semantic er­
rors in deep dyslexia. 

Plaut notes, though, that there have been recent empirical challenges to 
these models, and the approach in general, relating to the influence of or­
thographic length on the naming latencies of both normal and dyslexic read­
ers. For instance, the models account for relatively little variance associated 
with individual words in large databases of naming latencies, partly due to 
insufficient sensitivity to orthographic length. The models also underesti­
mate length effects in the naming latencies for nonwords. This kind of em­
pirical challenge is an illustration of the productive interaction between 
connectionist modeling and empirical research—predictions of connectionist 
models have had a crucial impact in directing the search for relevant empiri­
cal confirmation or disconfirmation. 

Plaut addresses this challenge by presenting a new model that generates 
sequential phonological output in response to written input. He trains an 
SRN (Elman, 1990) to produce sequences of single phonemes as output 
when given position-specific letters as input. The model was also trained to 
maintain a representation of its current position within the input string. 
When the model found a peripheral portion of the input difficult to pro­
nounce, it used the position signal to refixate the input, shifting the periph­
eral portion to the point of fixation where the model has had more experience 
in generating pronunciations. In this way the model could apply the knowl­
edge tied to the units at the point of fixation to any difficult portion of the 
input. Early on in training, the model required multiple fixations to read 
words, but as the model became more competent it eventually read most 
words in a single fixation. The model could also read nonwords about as well 
as skilled readers, occasionally falling back on a refixation strategy for difficult 
nonwords. The model exhibits an effect of orthographic length and a frequency-
by-consistency interaction in its naming latencies. When subject to periph­
eral damage, the model exhibits an increased length effect that interacts 
with word frequency, characteristic of letter-by-letter reading in pure alexia. 
The model thus has a good primary data contact and good task veridicality, 
but input representativeness suffers somewhat because the model is only trained 
on monosyllabic words. Plaut notes that the model is not intended as a fully 
adequate account of all the relevant empirical phenomena. But the model 
provides a compelling demonstration of how connectionist models may be 
extended to provide deeper insight into sequential processes in reading. 

Plaut's chapter concludes the first part of the book, which reviews cur­
rent models of connectionist language processing. The second part of the 
book consists of three insightful perspectives on the significance, interpre­
tation, and utility of connectionist psycholinguistics by eminent researchers 
in the cognitive science of language processing. 

Chapter 9, Constraint Satisfaction in Language Acquisition and Process­
ing, by Mark S. Seidenberg and Maryellen C. MacDonald, sets out the most 
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radical connectionist agenda, seeing connectionism as potentially under­
mining classical symbolic theorizing in linguistics and psycholinguistics. In 
particular, they see connectionist psycholinguistics as part of a larger theo­
retical framework focusing on probabilistic constraints on language pro­
cessing and language acquisition (Seidenberg, 1997). This probabilistic 
framework offers an alternative viewpoint on language and language use to 
that found in generative linguistics. The generative approach attempts to 
characterize knowledge of language (i.e., competence grammar) and then 
asks how this knowledge is acquired and used. Seidenberg and MacDonald's 
probabilistic approach is performance oriented: The goal is to explain how 
people comprehend and produce utterances and how children acquire this 
skill. From a probabilistic perspective, using language is thought to involve 
exploiting multiple probabilistic constraints over various types of linguistic 
and nonlinguistic information. Children begin accumulating this informa­
tion at a young age. The same constraint-satisfaction processes that are 
central to language use in adulthood also serve as the bootstrapping pro­
cesses that provide entry into language in childhood. Framing questions 
about acquisition in terms of models of skilled language use has important 
consequences for arguments concerning language learnability and holds out 
the possibility of a unified theory of acquisition and use. 

Seidenberg and MacDonald put forward a vigorous case for opposition 
between connectionist and symbolic approaches to language. But this is, of 
course, by no means the only possible viewpoint. Language might instead 
be viewed as emerging from a mixture of linguistic rules, which can be 
specified in symbolic terms, and probabilistic factors that determine how 
language is used in specific contexts; and, indeed, symbolic linguistic rules 
need not, perhaps, be quite as rigid as is typically assumed. Thus, a more 
conciliatory line between connectionist psycholinguistics and symbolic, gen­
erative linguistics may be imagined. 

Chapter 10, Grammar-Based Connectionist Approaches to Language, by 
Paul Smolensky, outlines a specific conception of how connectionist and 
symbolic theorizing about language might be integrated, rather than set 
against each other. In particular, Smolensky argues that connectionist re­
search on language can and must involve the development of grammar for­
malisms rather than merely producing connectionist computer models. From 
formulations of the fundamental theoretical commitments of connectionism 
and of generative grammar, it is argued that these two paradigms are mutu­
ally compatible: The commitments of connectionism concern computational 
principles, and those of generative grammar concern explanations of certain 
fundamental empirical characterizations of human language. Integrating the 
basic assumptions of the two paradigms results in formal theories of gram­
mar that centrally incorporate a certain degree of connectionist computation. 
Two such grammar formalisms—Harmonic Grammar (Legendre, Miyata, & 
Smolensky, 1990) and Optimality Theory (Prince & Smolensky, 1997)—are 
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briefly introduced to illustrate grammar-based approaches to connectionist 
language research. The strengths and weaknesses of grammar-based re­
search and more traditional model-based research are argued to be comple­
mentary: Grammar-based research more readily allows explanations of 
general patterns of language, while model-based research more readily al­
lows exploration of the full richness and power of connectionist computa­
tional mechanisms. This complementarity of strengths suggests a significant 
role for both strategies in the spectrum of connectionist language research. 

Smolensky's standpoint provides a counterweight to the view that connec­
tionist psycholinguistics should attempt to overturn previous theorizing about 
language and language processing. Moreover, the synthesis of principles 
from connectionism and generative grammar that he outlines gains consid­
erable credibility from its very widespread influence in modern linguistics. 
Indeed, optimality theory is widely viewed within linguistics as one of the 
central theoretical developments within the field. Smolensky's approach 
may not, however, satisfy more radical connectionists, who may see the 
move from specific and implementable connectionist models of psychologi­
cal processes (such as are described in the first half of this book) to abstract 
connectionist principles as too great a departure from the original aims of 
the connectionist paradigm. 

Chapter 11, Connectionist Sentence Processing in Perspective, by Mark 
Steedman, presents an outsider's perspective on the project of connectionist 
psycholinguistics. Steedman has been associated with symbolic approaches 
to language, and has been involved in pioneering novel linguistic formal­
isms, such as categorial grammar, as well as carrying out highly influential 
computational and experimental work on human language processing. 
Steedman focuses on connectionist sentence processing, a topic discussed in 
Chapters 5 and 6 of this book. Steedman argues that the emphasis in the 
connectionist sentence-processing literature on distributed representation and 
emergence of grammar from such systems seems to have prevented connec­
tionists and symbolic theorists alike from recognizing the often close rela­
tions between their respective systems. He argues that SRN models (Elman, 
1990) are more directly related to stochastic Part-of-Speech taggers than to 
parsers or grammars as such, while recursive auto-associative memory of 
the kind pioneered by Pollack (1990) and incorporated in many hybrid 
connectionist parsers since may be useful for grammar induction from a 
network-based conceptual structure as well as for structure building. 

These observations suggest some interesting new directions for connec­
tionist sentence-processing research, including more efficient devices for 
representing finite-state machines, and acquisition devices based on a dis­
tinctively connectionist-grounded conceptual structure. Thus, Steedman, like 
Smolensky, argues for an integration of connectionist and symbolic views 
of language and language processing. But Steedman and Smolensky differ 
concerning the nature of the integration. Whereas Smolensky argues that 
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connectionist principles should be integrated into grammar formalisms, 
Steedman sees connectionist networks as integrating with symbolic language-
processing mechanisms to produce a hybrid computational account of lan­
guage processing and acquisition. And both Smolensky and Steedman differ 
from the more radical agenda of Seidenberg and MacDonald, which aims to 
replace, rather than interconnect with, previous theories of language pro­
cessing and structure. Clearly, only the future development of connectionist 
research will decide which of these perspectives, each of which is persua­
sively argued, proves to be the most fruitful. 

THE SIGNIFICANCE OF 
CONNECTIONIST PSYCHOLINGUISTICS 

Current connectionist models involve important simplifications with re­
spect to real natural language processing. In some cases these simplifica­
tions are relatively modest. For example, models of reading aloud typically 
ignore how eye movements are planned and how information is integrated 
across eye movements; they also tend to ignore the sequential character of 
speech output, and typically deal only with short words. In other cases the 
simplifications are more drastic. For example, connectionist models of syn­
tactic processing involve vocabularies and grammars that are vastly simpli­
fied. However, it is important to note that symbolic models in many cases 
have lower task veridicality and input representativeness than their connec­
tionist counterparts. Furthermore, many symbolic models may give the ap­
pearance of good data contact simply because they have not yet been 
implemented and have therefore not been tested in an empirically rigorous 
way, in contrast to the connectionist models. 

The present breadth and significance of connectionist psycholinguistics, 
as evidenced by the chapters in this volume, suggests that the approach has 
considerable potential. Despite some attempts to argue for a priori limita­
tions on connectionist language processing (e.g., Pinker & Prince, 1988; 
Marcus, 1998), connectionist psycholinguistics has already had a major 
impact on the psychology of language. 

First, connectionist models have provided the first fully explicit and 
psychologically relevant computational models in a number of language-
processing domains, such as reading and past-tense learning. Previous ac­
counts in these areas consisted of "box-and-arrow" flow diagrams rather 
than detailed computational mechanisms. Whatever the lasting value of con­
nectionist models themselves, they have certainly raised the level of theo­
retical debate in these areas by challenging theorists of all viewpoints to 
provide computationally explicit accounts. 

Second, the centrality of learning in connectionist models has brought a 
renewed interest in mechanisms of language learning (Bates & Elman, 1993). 
While Chomsky (e.g., 1986) has argued that there are "universal" aspects of 



Connectionist Psycholinguistics: The Very Idea / 13 

language that are innate, the vast amount of information specific to the 
language that the child acquires must be learned. Connectionist models pro­
vide mechanisms for how (at least some of) this learning might occur, whereas 
previous symbolic accounts of language processing have not taken account of 
how learning might occur. Furthermore, the attempt to use connectionist mod­
els to learn syntactic structure encroaches on the area of language for which 
Chomsky has argued innate information must be central. The successes and 
failures of this program thus directly bear on the validity of this viewpoint. 

Third, the dependence of connectionist models on statistical properties of 
their input has been one contributing factor in the upsurge of interest in the 
role of statistical factors in language learning and processing (MacWhinney, 
Leinbach, Taraban, & McDonald, 1989; Redington & Chater, 1998). This 
renewed interest in the statistical properties of language and statistical methods 
of analysis is, of course, entirely compatible with the view that language 
processing takes account of structural properties of language, as described 
by classical linguistics. But more radical connectionists have, as we have 
noted, also attempted to encroach on the territory of classical linguistics. 

Finally, connectionist systems have given rise to renewed theoretical de­
bate concerning what it really means for a computational mechanism to 
implement a rule, whether there is a distinction between "implicit" and 
"explicit" rules (see, e.g., Davies, 1995, for discussion), and which kind 
should be ascribed to the human language-processing system. 

The potential implications of a realistic connectionist approach to lan­
guage processing are enormous. If realistic connectionist models of lan­
guage processing can be provided, then the possibility of a radical rethinking 
not just of the nature of language processing, but of the structure of lan­
guage itself, may be required. It might be that the ultimate description of 
language resides in the structure of complex networks, and it can only be 
approximately expressed in terms of structural rules, in the style of genera­
tive grammar (Seidenberg & MacDonald, Chapter 9, this volume). On the 
other hand, it may be that connectionist models can only succeed to the 
extent that they build in standard linguistic constructs (Smolensky, Chapter 
10, this volume), or fuse with symbolic models to create a hybrid approach 
(Steedman, Chapter 11, this volume). We suggest that the only way to de­
termine the ultimate value of connectionist psycholinguistics is to pursue it 
with the greatest possible creativity and vigor, as exemplified by the chap­
ters in this volume. 

NOTE 

We are grateful to the Cognitive Science Society for allowing us to put this book 
together based on papers that appeared in Cognitive Science. All the chapters except 
one are revised and updated versions of earlier solicited papers found in the special 
issue, "Connectionist models of human language processing: Progress and pros-
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pects," vol. 23, no. 4, 1999, edited by Morten Christiansen, Nick Chater, and Mark 
Seidenberg. Chapter 5 is a substantially revised version of an article that appeared in 
vol. 23, no. 2, 1999. We would like to thank the contributors for updating and 
revising their papers for this book, and to the reviewers for helping to ensure a very 
high quality of papers throughout. 

This work was partially supported by the Leverhulme Trust and by European 
Commission grant RTN-HPRN-CT-1999-00065 to Nick Chater. 
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Connectionist Psycholinguistics 
in Perspective 

Morten H. Christiansen and Nick Chater 

Connectionist approaches to language have been, and still are, highly con­
troversial. Some have argued that natural language processing from phonol­
ogy to semantics can be understood in connectionist terms; others have 
argued that no aspects of natural language can be captured by connectionist 
methods. And the controversy is particularly heated because of the revision­
ist claims of some connectionists: For many, connectionism is not just an 
additional method for studying language processing; it also offers an alter­
native to traditional theories, which describe language and language pro­
cessing in symbolic terms. Indeed, Rumelhart and McClelland (1987, p. 196) 
suggest "that implicit knowledge of language may be stored among simple 
processing units organized into networks. While the behavior of such net­
works may be describable (at least approximately) as conforming to some 
system of rules, we suggest that an account of the fine structure of the 
phenomena of language and language acquisition can best be formulated in 
models that make reference to the characteristics of the underlying net­
works." We shall see that the degree to which connectionism supplants, 
rather than complements, existing approaches to language is itself a matter 
of debate. Finally, the controversy over connectionist approaches to lan­
guage is an important test case for the validity of connectionist methods in 
other areas of psychology. 
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In this chapter we aim to set the scene for the present volume on 
connectionist psycholinguistics, providing a brief historical and theoretical 
background as well as an update on current research in the specific topic 
areas outlined later. First we describe the historical and intellectual roots of 
connectionism, then introduce the elements of modern connectionism and 
how it has been applied to natural language processing, and outline some of 
the theoretical claims that have been made for and against it. We then con­
sider five central topics within connectionist psycholinguistics: speech pro­
cessing, morphology, sentence processing, language production, and reading. 
We evaluate the research in each of these areas in terms of the three criteria for 
connectionist psycholinguistics discussed in Chapter 1: data contact, task 
veridicality, and input representativeness. The five topics illustrate the range 
of connectionist research on language discussed in more depth in the other 
chapters in Part I of this volume. They also provide an opportunity to assess 
the strengths and weaknesses of connectionist methods across this range, 
setting the stage for the general debate concerning the validity of connectionist 
methods in Part II of this volume. Finally, we sum up and consider the pros­
pects for future connectionist research, and its relation to other approaches to 
the understanding of language processing and linguistic structure. 

BACKGROUND 

From the perspective of modern cognitive science, we tend to see theo­
ries of human information processing as borrowing from theories of infor­
mation processing in machines (i.e., from computer science). Within 
computer science, symbolic processing on general-purpose digital comput­
ers has proved to be the most successful method of designing practical com­
putational devices. It is therefore not surprising that cognitive science, 
including the study of language processing, has aimed to model the mind as 
a symbol processor. 

Historically, however, theories of human thought inspired attempts to 
build computational devices, rather than the other way around. Mainstream 
computer science arises from the intellectual tradition of viewing human 
thought as a matter of symbol processing. This tradition can be traced to 
Boole's (1854) suggestion that logic and probability theory describe "Laws 
of Thought," and that reasoning in accordance with these laws can be con­
ducted by following symbolic rules. It runs through Turing's (1936) argu­
ment that all human thought can be modeled by symbolic operations on a 
tape (the Turing machine), through von Neumann's motivation for the de­
sign for the modern digital computer, to the development of symbolic com­
puter programming languages, and thence to modern computer science, 
artificial intelligence, and symbolic cognitive science. 

Connectionism (also known as "parallel distributed processing," "neural 
networks," or "neurocomputing") can be traced to a different tradition, 
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which attempts to design computers inspired by the structure of the brain.* 
McCulloch and Pitts (1943) provided an early and influential idealization of 
neural function. In the 1950s and 1960s Ashby (1952), Minsky (1954), 
Rosenblatt (1962), and others designed computational schemes based on 
related idealizations. Aside from their biological origin, these schemes were 
of interest because they were able to learn from experience, rather than 
being designed. Such "self-organizing" or learning machines therefore 
seemed plausible as models of learned cognitive abilities, including many 
aspects of language processing (although Chomsky, 1965, among others, 
challenged the extent to which language is learned). Throughout this period 
connectionist and symbolic computation stood as alternative paradigms for 
modeling intelligence, and it was unclear which would prove to be the most 
successful. But gradually the symbolic paradigm gained ground, providing 
powerful models in core domains such as language (Chomsky, 1965) and 
problem solving (Newell & Simon, 1972). Connectionism was largely aban­
doned, particularly in view of the limited power of then current connectionist 
methods (Minsky & Papert, 1969). But more recently, some of these limita­
tions have been overcome (e.g., Hinton & Sejnowski, 1986; Rumelhart, 
Hinton, & Williams, 1986), reopening the possibility that connectionism 
constitutes an alternative to the symbolic model of thought. 

So connectionism is inspired by the structure and processing of the brain. 
What does this mean in practice? At a coarse level of analysis, the brain can 
be viewed as consisting of a very large number of simple processors, neu­
rons, which are densely interconnected into a complex network. These neu­
rons do not appear to tackle information processing problems alone. Rather, 
large numbers of neurons operate cooperatively and simultaneously to pro­
cess information. Furthermore, neurons appear to communicate numerical 
values (encoded by firing rate), rather than passing symbolic messages, 
and, to a first approximation at least, neurons can be viewed as mapping a 
set of numerical inputs (delivered from other neurons) onto a numerical 
output (which is then transmitted to other neurons). Connectionist models 
are designed to mimic these properties: Hence, they consist of large numbers 
of simple processors, known as units (or nodes), which are densely intercon­
nected into a complex network, and which operate simultaneously and coopera­
tively to solve information-processing problems. In line with the assumption 
that real neurons are numerical processors, units are assumed to pass only 
numerical values rather than symbolic messages, and the output of a unit is 
usually assumed to be a numerical function of its inputs. 

The most popular of the connectionist networks is the feed-forward net­
work, as illustrated in Figure 2.1. In this type of network the units are 
divided into "layers" and activation flows in one direction through the net­
work, starting at the layer of input units and finishing at the layer of output 
units. The internal layers of the network are known as hidden units (HU). 
The activation of each unit is determined by its current input (calculated as 
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Figure 2.1 
Feed-Forward Network 

Information flows entirely bottom-up in these networks, from the input units through the 
hidden units to the output units, as indicated by the arrows. 

the weighted sum of its inputs, as before). Specifically, this input is 
"squashed," so that the activation of each unit lies between 0 and 1. As the 
input to a unit tends to positive infinity, the level of activation approaches 1; 
as the input tends to negative infinity, the level of activation approaches 0. 
With occasional minor variations, this description applies equally to almost 
all feed-forward connectionist networks. 

Feed-forward networks learn from exposure to examples, and learning is 
typically achieved using the back-propagation learning algorithm (Rumelhart 
et al., 1986; prefigured in Bryson & Ho, 1975; Werbos, 1974). When each 
input is presented, it is fed through the network and the output is derived. 
The output is compared against the correct "target" value and the difference 
between the two is calculated for each output unit. The squared differences 
are summed over all the output units to give an overall measure of the 
"error" that the network has made. The goal of learning is to reduce the 
overall level of error, averaged across input-target pairs. Back-propagation 
is a procedure that specifies how the weights of the network (i.e., the strengths 
of the connections between the units) should be adjusted in order to de­
crease the error. Training with back-propagation is guaranteed (within cer­
tain limits) to reduce the error made by the network. If everything works 
well, then the final level of error may be small, meaning that the network 
produces the desired output. Notice that the network will produce an output 
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not only for inputs on which it has been trained, but for any input. If the 
network has learned about regularities in the mapping between inputs and 
targets, then it should be able to generalize successfully (i.e., to produce 
appropriate outputs in response to these new inputs). 

Back-propagation may sound too good to be true. But note that back-
propagation merely guarantees to adjust the weights of the network to re­
duce the error; it does not guarantee to reduce the error to 0, or a value 
anywhere near 0. Indeed, in practice, back-propagation can configure the 
network so that error is very high, but changes in weights in any direction 
lead to the same or a higher error level, even though a quite different con­
figuration of weights would give rise to much lower error, if only it could 
be found by the learning process. The network is stuck in a local minimum 
in weight space, and cannot find its way to better local minima, or better 
still, to the optimal weights that are the global minimum for error. Attempt­
ing to mitigate the problem of local minima is a major day-to-day concern 
of connectionist researchers, as well as being a focus of theoretical research. 
The problem of local minima can be reduced by judicious choice among the 
large number of variants of back-propagation, and by appropriate decisions 
on the numerous parameters involved in model building (such as the num­
ber of hidden units used, whether learning proceeds in small or large steps, 
and many more). But the adjustment of these parameters is often more a 
matter of judgment, experience, and guesswork than it is a product of theoreti­
cal analysis. Despite these problems, back-propagation is surprisingly success­
ful in many contexts. Indeed, the feasibility of back-propagation learning 
has been one of the reasons for the renewed interest in connectionist research. 
Prior to the discovery of back-propagation, there were no well-justified meth­
ods for training multilayered networks. The restriction to single-layered net­
works was unattractive, since Minsky and Papert (1969) showed that such 
networks, sometimes known as "perceptrons," have very limited computa­
tional power. It is partly for this reason that hidden units are viewed as having 
such central importance in many connectionist models; without hidden units, 
most interesting connectionist computation would not be possible. 

A popular variation of the feed-forward network is the simple recurrent 
network (SRN; Elman, 1988, 1990) (see Figure 2.2). This network is es­
sentially a standard feed-forward network equipped with an extra layer of 
so-called context units. At a particular time step an input pattern is propa­
gated through the hidden-unit layer to the output layer (solid arrows). At the 
next time step the activation of the hidden-unit layer at the previous time 
step is copied back to the context layer (dashed arrows) and paired with the 
current input (solid arrows).2 This means that the current state of the hidden 
units can influence the processing of subsequent inputs, providing a limited 
ability to deal with integrated sequences of input presented successively. 

Whereas simple recurrent networks can be trained using the standard 
back-propagation learning algorithm, fully recurrent networks are trained 
using more complex learning algorithms, such as discrete back-propagation 
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Figure 2.2 
Simple Recurrent Network 

At a particular time step an input pattern is propagated through the hidden-unit layer to the 
output layer (solid arrows). At the next time step the activation of the hidden-unit layer at 
the previous time step is copied back to the context layer (dashed arrows) and paired with 
the current input (solid arrows). 

through time (Williams & Peng, 1990) and continuous back-propagation 
(Pearlmutter, 1989). This type of network architecture is shown in Figure 2.3. 
Through the recurrent links (circular arrows), current activation can affect 
future activations similarly to the simple recurrent network, but in a more 
fine-grained manner and potentially reaching further back in time. 

Another popular network architecture is the interactive activation net­
work, shown in Figure 2.4. This type of network is completely prespecified 
(i.e., it does not learn). It consists of a sequence of unit layers. Units in the 
first layer typically encode fine-grained features of the input (e.g., visual or 
phonetic features). Units in the subsequent layers encode elements of in­
creasingly higher levels of analyses (e.g., letters -* words or phonemes -• 
words). Units are connected using bidirectional links that can be either 
excitatory (arrows) or inhibitory (filled circles). This style of connectivity 
allows for activation to flow both bottom-up and top-down, reinforcing 
mutually consistent states of affairs and inhibiting mutually inconsistent 
states of affair. 

The behavior of individual units in interactive activation networks is some­
what more complex than in the network architectures we have described so 
far, because it depends not only on the current input but also on the previous 



Figure 2.3 
Fully Recurrent Network 

Recurrent links (circular arrows) allow activation at the current time step to affect activations 
for many future time steps. 

Figure 2.4 
Interactive Activation Network 

The links are bidirectional and can be either excitatory (arrows) or inhibitory (filled circles). 
Activation in this network flows both bottom-up and top-down. 



26 / The State of the Art 

level of activity of the unit. If the input to a unit is 0, then all that happens 
is that the level of activity of the unit decays exponentially. The input to the 
unit is, as is standard, simply the weighted sum of the outputs of the units 
that feed into that unit (where the weights correspond to the strengths of the 
connections). If the input is positive, then the level of activity is increased in 
proportion both to that input and to the distance between the current level of 
activation and the maximum activation (conventionally set at 1); if the input 
is negative, the level of activity is decreased in proportion to the input and 
to the distance between the current level of activation and the minimum 
activation (conventionally set at -1). 

While this behavior sounds rather complex, the basic idea is simple. Given 
a constant input, the unit will gradually adjust to a stable level where the expo­
nential decay balances with the boost from that input: Positive constant inputs 
will be associated with positive stable activation, negative constant inputs 
with negative stable activation; small inputs lead to activations levels close 
to 0, while large inputs lead to activation values which tend to be 1 or - 1 . If we 
think of a unit as a feature detector, then an activation level near 1 corre­
sponds to a high level of confidence that the feature is present; an activation 
level near -1 corresponds to a high level of confidence that it is not. 

With respect to the relationship between connectionist models and the 
brain, it is important to note that none of the connectionist architectures that 
we have described amount to realistic models of brain function (see, e.g., 
Sejnowski, 1986). They are unrealistic at the level of individual processing 
units, where the models not only drastically oversimplify, but knowingly 
falsify, many aspects of the function of real neurons, and in terms of the 
structure of the connectionist networks, which bear little if any relation to 
brain architecture. One avenue of research is to seek increasing biological 
realism (e.g., Koch & Segev, 1989). In the study of the areas of cognition 
in which few biological constraints are available, most notably language, 
researchers have concentrated on developing connectionist models with the 
goal of accurately modeling human behavior. They therefore take their data 
from cognitive psychology, linguistics, and cognitive neuropsychology, rather 
than from neuroscience. Thus, connectionist research on language appears 
to stand in direct competition with symbolic models of language processing. 

As noted earlier, the relative merits of connectionist and symbolic models 
of language are hotly debated. But should they be viewed as in opposition at 
all? After all, advocates of symbolic models of language processing assume 
that symbolic processes are somehow implemented in the brain. Thus, they 
too are connectionists at the level of implementation. But symbolic theorists 
assume that language processing can be described at two levels: at the psy­
chological level, in terms of symbol processing, and at the implementational 
level, in neuroscientific terms (to which connectionism is a crude approxi­
mation). If this is right, then connectionist modeling should proceed by 
taking symbol-processing models of language processing and attempting to 



Connectionist Psycholinguistics in Perspective / 27 

implement these in connectionist networks. Advocates of this view (Fodor 
& Pylyshyn, 1988; Marcus, 1998; Pinker & Prince, 1988) typically assume 
that it implies that symbolic modeling should be entirely autonomous from 
connectionism; symbolic theories set the goalposts for connectionism, but 
not the other way round. Chater and Oaksford (1990) have argued that even 
according to this view there will be two-way influences between symbolic 
and connectionist theories, since many symbolic accounts can be ruled out 
precisely because they could not be neurally implemented. But most 
connectionists in the field of language processing have a more radical agenda: 
not to implement, but to challenge, to varying degrees, the symbolic ap­
proach to language processing. Part II of this book will illustrate a variety of 
contemporary viewpoints on the relationship between connectionist and sym­
bolic theories of language. 

With these general issues in mind, let us now consider the broad spec­
trum of connectionist models of language processing. 

SPEECH PROCESSING 

Speech processing in its broadest sense encompasses a broad range of 
cognitive processes, from those involved in low-level acoustical analysis to 
those involved in semantic and pragmatic interpretation of utterances. Here 
we shall focus much more narrowly, on the processes involved in segment­
ing and recognizing spoken words from input that is represented in a lin­
guistic form (e.g., as sequences of phonetic features or phonemes). Thus, 
we will not be concerned with connectionist research on the enormously 
complex issues involved in dealing with the complexity, variability, and 
noisiness of acoustic representations of speech (see, e.g., Salmela, Lehto-
kangas, & Saarinen, 1999, for a typical application of connectionist meth­
ods to speech technology). We also shall not deal with higher-level aspects 
of linguistic processing. Nonetheless, as we shall see, even given these 
restrictions, the problem of understanding human speech processing is still 
formidable. 

Naively, we might imagine that the speech processor has to do two jobs, 
one after the other. First, it has to segment speech input into units corre­
sponding to words (i.e., it has to find word boundaries); second, it has to 
recognize each word. But on reflection, this viewpoint seems potentially 
problematic, because it is not clear how the speech processor can determine 
where the word boundaries are until the words are recognized. And con­
versely, word recognition itself seems to presuppose knowing which chunk 
of speech material corresponds to a potential word. Thus, segmentation and 
recognition appear to stand in a chicken-and-egg relationship—each process 
seems to depend on the other. 

One approach to resolving the paradox is to assume that segmentation 
and recognition are two aspects of a single process, that tentative hypoth-
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eses about each issue are developed and tested simultaneously, and mutu­
ally consistent hypotheses are reinforced. A second approach is to suppose 
that there are segmentation cues in the input that are used to give at least 
better-than-chance indications of what segments may correspond to identifi­
able words. So the question is this: Does speech processing involve dedi­
cated segmentation strategies prior to word recognition? 

Developmental considerations suggest that there may be specialized seg­
mentation methods. The infant, initially knowing no words, seems con­
strained to segment speech input using some method not requiring word 
recognition. Moreover, infant studies have shown that prelinguistic infants 
may use such methods, and are sensitive to a variety of information that is 
available in the speech stream and potentially useful for segmentation, such 
as phonotactics and lexical stress (Jusczyk, 1997). 

Connectionist models have begun to address questions of how effective 
different kinds of segmentation cues might be. For example, Cairns, 
Shillcock, Chater, and Levy (1997) explore a model of segmentation based 
on predictability. They note that language is less predictable across, rather 
than between, words. They trained a recurrent network on a large corpus of 
phonologically transcribed conversational speech, represented as a sequence 
of bundles of binary phonetic features. The network was trained to predict 
the next bundle of features along with the previous and current feature 
bundles, based on the current input material. Where prediction error was 
large, it was assumed that a word boundary had been encountered. This 
model captured some aspects of human segmentation performance. For ex­
ample, it spontaneously learned to pay attention to patterns of strong and 
weak syllables as a segmentation cue. However it was able to reliably pre­
dict only a relatively small proportion of word boundaries, indicating that 
other cues also need to be exploited. While the Cairns et al. model uses just 
a single cue to segmentation, Christiansen, Allen, and Seidenberg (1998) 
showed how multiple, partial constraints on segmentation could yield much 
better segmentation performance. They trained an SRN to integrate sets of 
phonetic features with information about lexical stress (strong or weak) and 
utterance boundary information (encoded as a binary unit) derived from a 
corpus of child-directed speech. The network was trained to predict the 
appropriate values of these three cues for the next segment. After training, 
the network was able to integrate the input such that it would activate the 
boundary unit not only at utterance boundaries, but also at word boundaries 
inside utterances. The network was thus able to generalize patterns of cue 
information that occurred at the end of utterances to cases where the same 
patterns occurred within an utterance. This model performed well on the 
word-segmentation task while capturing additional aspects of infant seg­
mentation, such as the bias toward the dominant trochaic (strong-weak) 
stress pattern in English, the ability to distinguish between phonotactically 
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legal and illegal novel words, and having segmentation errors being con­
strained by English phonotactics. 

This model shows how integrating multiple segmentation cues can lead to 
good segmentation performance. To what extent does it provide a model of 
how infants process speech? Christiansen, Conway, and Curtin (2000) used 
the trained model, without any additional modifications, to fit recent infant 
data. These data are of particular interest, because they have been claimed 
to be incompatible with a purely connectionist approach to language pro­
cessing, and to require the language processor to use "algebraic" or sym­
bolic rules (Marcus, Vijayan, Rao, & Vishton, 1999). Marcus et al. habituated 
infants on syllable sequences that followed either an AAB or ABB pattern 
(e.g., le-le-je versus le-je-je). The infants were then presented with sequences 
of novel syllables, either consistent or inconsistent with the habituation pat­
tern, and showed a preference for the inconsistent items. Christiansen et al. 
suggested that statistical knowledge acquired in the context of learning to 
segment fluent speech provided the basis for these results, in much the same 
way as knowledge acquired in the process of learning to read can be used to 
perform experimental tasks such as lexical decision. Their simulation closely 
replicated the experimental conditions, using the same number of habitua­
tion and test trials as in the original experiment (no repeated training ep­
ochs) and one network for each infant. Analyses of the model's segmentation 
performance revealed that the model was significantly better at segmenting 
out the syllables in the inconsistent items. This makes the inconsistent items 
more salient and therefore explains why the infants preferred these to the 
consistent items. Thus, Christiansen et al.'s results challenge the claim that 
the Marcus et al. infant data necessarily require that the infant's language-
processing system is using algebraic rules. Moreover, these infant data pro­
vide an unexpected source of evidence for the Christiansen et al. model, 
viewed as a model of infant segmentation. 

Segmentation cues are potentially important in guiding the process of 
word recognition. But even if such cues are exploited very effectively, seg­
mentation cues alone can achieve only limited results. A definitive segmen­
tation of speech can only occur after word recognition has occurred. Speech 
is frequently locally ambiguous: To use an oft quoted example, it is difficult 
to distinguish "recognize speech" from "wreck a nice beach" when these 
phrases are spoken fluently. These interpretations correspond to very dif­
ferent segmentations of the input. It is therefore clear that bottom-up seg­
mentation cues alone will not always segment the speech stream into words 
reliably. In such cases of local ambiguity, a decisive segmentation of the 
input can only be achieved when the speaker has recognized which words 
have been said. This theoretical observation ties in with empirical evidence 
that strongly indicates that during word recognition in adulthood multiple 
candidate words are activated, even if these correspond to different segmen-
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tation of the input. For example, Gow and Gordon (1995) found that adult 
listeners hearing sentences involving a sequence (e.g., two lips) that could 
also be a single word {tulips) showed speeded processing of an associate of 
the second word {kiss) and to an associate of the longer word (flower), 
indicating that the two conflicting segmentations were simultaneously enter­
tained. This would not occur if a complete segmentation of the input occurred 
before word recognition was attempted. On the other hand, it is not clear how 
these data generalize to word segmentation and recognition in infancy before 
any comprehensive vocabulary has been established. How segmentation and 
recognition develop into the kind of integrated system evidenced by the 
Gow and Gordon data remains a matter for future research. 

Gow and Gordon's (1995) result also suggests that word recognition it­
self may be a matter of competition between multiple activated word repre­
sentations, where the activation of the word depends on the degree of match 
between the word and the speech input. Indeed, many studies point toward 
this conclusion, from a range of experimental paradigms. Such competition 
is typically implemented in connectionist networks by a localist code for 
words (the activation of a single unit represents the strength of evidence for 
that word, with inhibitory connections between word units). Thus, when an 
isolated word is identified, a "cohort" of words consistent with that input is 
activated; as more of the word is heard, this cohort is rapidly reduced, 
perhaps to a single item. 

While competition at the word level has been widely assumed, consider­
able theoretical dispute has occurred over the nature of the interaction be­
tween different levels of mental representation. Bottom-up (or "data-driven") 
models are those in which less abstract levels of linguistic representation 
feed into, but are not modified by, more abstract levels (e.g., the phoneme 
level feeds to the word level, but not the reverse). We note, however, that 
this does not prevent these models from taking advantage of suprasegmental 
information, such as in the inclusion of lexical stress in the Christiansen et 
al. (2000) segmentation model, provided that this information is available in 
a purely bottom-up fashion (i.e., no lexical-level feedback). Interactive (also 
"conceptually-driven" or top-down) models allow a two-way flow of infor­
mation between levels of representation. Figures 2.1 and 2.4 provide ab­
stract illustrations of the differences in information flow between the two 
types of models. Note that bottom-up models allow information to flow 
through the network in one direction only, whereas interactive models al­
low information to flow in both directions. 

The bottom-up versus interactive debate rages in all areas of language 
processing, and also in perception and motor control (e.g., Bruner, 1957; 
Fodor, 1983; Marr, 1982; Neisser, 1967). Here we focus on putative inter­
actions between information at the phonemic and the lexical levels in word 
recognition (i.e., between phonemes and words), where experimental work 
and connectionist modeling has been intense. 
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The most obvious rationale for presuming that there is top-down informa­
tion flow from the lexical to the phoneme level stems from the effects of 
lexical context on phoneme identification. For example, Ganong (1980) 
showed that the identification of a syllable-initial speech sound, constructed 
to be between a /g/ and a /k/, was influenced by lexical knowledge. This 
intermediate sound was predominantly heard as a /k/ if the rest of the word 
was -iss {kiss was favored over giss), but heard as /g/ if the rest of the word 
was -ift (gift was favored over kift). 

The early and very influential TRACE model of speech perception 
(McClelland & Elman, 1986) attempts to explain data of this kind from an 
interactive viewpoint. The model employs the standard interactive activa­
tion network architecture already described, with layers of units standing 
for phonetic features, phonemes, and words. There are several copies of 
each layer of units, standing for different points in time in the utterance, and 
the number of copies differs for each layer. At the featural level, there is a 
copy for each discrete "time slice" into which the speech input is divided. 
At the phoneme level, there is a copy of the detector for each phoneme 
centered over every three time slices. The phoneme detector centered on a 
given time slice is connected to feature detectors for that time slice, and also 
to the feature detectors for the previous three and subsequent three slices. 
Hence, successive detectors for the same phoneme overlap in the feature 
units with which they interact. Finally, at the word level there is a copy of 
each word unit at every three time slices. The window of phonemes with 
which the word interacts corresponds to the entire length of the word. Here, 
again, adjacent detectors for the same word will overlap in the lower-level 
units to which they are connected. In short, then, we have a standard inter­
active activation architecture, with an additional temporal dimension added, 
to account for the temporal character of speech input. TRACE captures the 
Ganong effect because phoneme and lexical identification occur in parallel 
and are mutually constraining. TRACE also captures experimental findings 
concerning various factors affecting the strength of the lexical influence 
(e.g., Fox, 1984), and the categorical aspects of phoneme perception 
(Massaro, 1981; Pisoni & Tash, 1974). TRACE also provides rich predic­
tions concerning the time course of spoken word recognition (e.g., Cole & 
Jakimik, 1978; Marslen-Wilson, 1973; Marslen-Wilson & Tyler, 1975), 
and lexical influences on the segmentation of speech into words (e.g., Cole 
& Jakimik, 1980). 

TRACE provides an impressive demonstration that context effects can 
indeed be modeled from an interactive viewpoint. But context effects on 
phoneme recognition can also be explained in purely bottom-up terms. If a 
person's decisions about phoneme identity depend on both the phonemic 
and lexical levels, then phoneme identification may be lexically influenced, 
even though there need be no feedback from the lexical to the phoneme 
level. For example, the Ganong effect might be explained by assuming that 


