
Global
edition

G
lo

b
a

l
ed

it
io

n

This is a special edition of an established
title widely used by colleges and universities
throughout the world. Pearson published this
exclusive edition for the benefit of students
outside the United States and Canada. If you
purchased this book within the United States
or Canada you should be aware that it has
been imported without the approval of the
Publisher or Author.

Pearson Global Edition

Global
edition

For these Global Editions, the editorial team at Pearson has
collaborated with educators across the world to address a
wide range of subjects and requirements, equipping students
with the best possible learning tools. This Global Edition
preserves the cutting-edge approach and pedagogy of the
original, but also features alterations, customization and
adaptation from the North American version.

Paul Deitel • Harvey Deitel • Abbey Deitel

Android™

How to Program
second edition

A
ndroid

™
H

ow
 to Program

D
eitel • D

eitel • D
eitel

sec
o

n
d

 ed
it

io
n

Deitel_027379339X_mech.indd 1 01/07/14 8:17 am

ONLINE ACCESS

Thank you for purchasing a new copy of Android™ How to Program, Second Edition.
Your textbook includes 12 months of prepaid access to the book’s Companion
Website. This prepaid subscription provides you with full access to the following
student support areas:

• 	��Source code
•	�� Premium web chapters

Use a coin to scratch off the coating and reveal your student access code.
Do not use a knife or other sharp object as it may damage the code.

To access the Android How to Program, Second Edition, Companion Website for the
first time, you will need to register online using a computer with an Internet connection
and a web browser. The process takes just a couple of minutes and only needs to be
completed once.

1.	Go to www.pearsonglobaleditions.com/deitel

2.	 Click on Companion Website.

3.	 Click on the Register button.

4.	 On the registration page, enter your student access code* found beneath the scratch-
off panel. Do not type the dashes. You can use lower- or uppercase.

5.	 Follow the on-screen instructions. If you need help at any time during the online
registration process, simply click the Need Help? icon.

6.	 Once your personal Login Name and Password are confirmed, you can begin using
the Android How to Program Companion Website!

To log in after you have registered:

You only need to register for this Companion Website once. After that, you can log in any
time at www.pearsonglobaleditions.com/deitel by providing your Login Name and
Password when prompted.

*Important: The access code can only be used once. This subscription is valid for 12
months upon activation and is not transferable. If this access code has already been
revealed, it may no longer be valid. If this is the case, you can purchase a subscription
by going to www.pearsonglobaleditions.com/deitel going to the Android book and
following the on-screen instructions.

Deitel_027379339X_ifc.indd 1 01/07/14 5:29 pm

Global Edition

A01_DEIT3397_02_SE_TP.fm Page 1 Monday, July 7, 2014 8:26 AM

Deitel® Ser ies Page
How To Program Series
Android How to Program, 2/e
C++ How to Program, 9/E
C How to Program, 7/E
Java™ How to Program, 10/E
Java™ How to Program, Late Objects Version, 10/E
Internet & World Wide Web How to Program, 5/E
Visual C++® 2008 How to Program, 2/E
Visual Basic® 2012 How to Program, 6/E
Visual C#® 2012 How to Program, 5/E

Simply Series
Simply C++: An App-Driven Tutorial Approach
Simply Java™ Programming: An App-Driven

Tutorial Approach
Simply C#: An App-Driven Tutorial Approach
Simply Visual Basic® 2010: An App-Driven

Approach, 4/E

CourseSmart Web Books
www.deitel.com/books/CourseSmart/

C++ How to Program, 8/E and 9/E
Simply C++: An App-Driven Tutorial Approach
Java™ How to Program, 9/E and 10/E
Simply Visual Basic 2010: An App-Driven

Approach, 4/E

(continued from previous column)
Visual Basic® 2012 How to Program, 6/E
Visual Basic® 2010 How to Program, 5/E
Visual C#® 2012 How to Program, 5/E
Visual C#® 2010 How to Program, 4/E

Deitel® Developer Series
Android for Programmers: An App-Driven

Approach, 2/e, Volume 1
C for Programmers with an Introduction to C11
C++11 for Programmers
C# 2012 for Programmers
Dive Into® iOS 6 for Programmers: An App-Driven

Approach
Java™ for Programmers, 2/e
JavaScript for Programmers

LiveLessons Video Learning Products
www.deitel.com/books/LiveLessons/

Android App Development Fundamentals,
C++ Fundamentals
Java™ Fundamentals
C# 2012 Fundamentals
C# 2010 Fundamentals
iOS® 6 App Development Fundamentals
JavaScript Fundamentals
Visual Basic Fundamentals

To receive updates on Deitel publications, Resource Centers, training courses, partner offers and more,
please join the Deitel communities on

• Facebook®—facebook.com/DeitelFan

• Twitter®—@deitel

• Google+™—google.com/+DeitelFan

• YouTube™—google.com/+DeitelFan

• LinkedIn®—linkedin.com/company/deitel-&-associates

and register for the free Deitel® Buzz Online e-mail newsletter at:
 www.deitel.com/newsletter/subscribe.html

To communicate with the authors, send e-mail to:
 deitel@deitel.com

For information on Dive-Into® Series on-site seminars offered by Deitel & Associates, Inc. worldwide,
write to us at deitel@deitel.com or visit:
 www.deitel.com/training/

For continuing updates on Pearson/Deitel publications visit:
www.deitel.com
www.pearsonglobaleditions.com/Deitel

Visit the Deitel Resource Centers that will help you master programming languages, software develop-
ment, Android and iOS app development, and Internet- and web-related topics:
 www.deitel.com/ResourceCenters.html

A01_DEIT3397_02_SE_TP.fm Page 2 Monday, July 7, 2014 8:26 AM

Paul Deitel • Harvey Deitel • Abbey Deitel
Deitel & Associates, Inc.

Global Edition contributions by Muthuraj M.

Global Edition

A01_DEIT3397_02_SE_TP.fm Page 3 Monday, July 7, 2014 8:26 AM

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2015

The rights of Paul Deitel, Harvey Deitel, and Abbey Deitel to be identified as the authors of this work have been
asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Android: How to Program, 2nd edition, ISBN 978-0-13-
376403-1, by Paul Deitel, Harvey Deitel, and Abbey Deitel, published by Pearson Education © 2015.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, withouteither the prior written
permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright
Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners.The use of any trademark in this text does not
vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks
imply any affiliation with or endorsement of this book by such owners.

ISBN 10: 0-273-79339-X

ISBN 13: 978-0-273-79339-7

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1
14 13 12 11 10

Typeset in Adobe Garamond by GEX Publishing Services.

Printed and bound by Courier Westford in the United States of America.

Editorial Director, ECS: Marcia Horton
Head of Learning Asset Acquisition, Global Edition:
Laura Dent
Executive Editor: Tracy Johnson (Dunkelberger)
Director of Marketing: Christy Lesko
Marketing Manager: Yez Alayan
Marketing Assistant: Jon Bryant
Director of Program Management: Erin Gregg
Program Management-Team Lead: Scott Disanno
Program Manager: Carole Snyder
Project Management-Team Lead: Laura Burgess
Project Manager: Robert Engelhardt
Publishing Administrator and Business Analyst,
Global Edition: Shokhi Shah Khandelwal
Acquisitions Editor, Global Edition: Karthik Subramanian

Assistant Project Editor, Global Edition: Sinjita Basu
Media Producer, Global Edition: M. Vikram Kumar
Senior Manufacturing Controller, Production, Global
Edition: Trudy Kimber
Procurement Specialist: Linda Sager
Permissions Supervisor: Michael Joyce
Permissions Administrator: Jenell Forschler
Director, Image Asset Services: Annie Atherton
Manager, Visual Research: Karen Sanatar
Media Project Manager: Renata Butera
Cover Designer: Shree Inbakumar
Cover Photo: Kirill__M/ Shutterstock
Cover Printer: Courier Westford

A01_DEIT3397_02_SE_TP.fm Page 4 Monday, July 7, 2014 8:26 AM

In Memory of Amar G. Bose, MIT Professor and
Founder and Chairman of the Bose Corporation:

It was a privilege being your student—and members
of the next generation of Deitels, who heard our dad
say how your classes inspired him to do his best work.

You taught us that if we go after the really hard prob-
lems, then great things can happen.
Harvey Deitel
Paul and Abbey Deitel

A01_DEIT3397_02_SE_TP.fm Page 5 Monday, July 7, 2014 8:26 AM

Trademarks
DEITEL, the double-thumbs-up bug and DIVE-INTO are registered trademarks of Deitel & Associates, Inc.

Java is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Google, Android, Google Play, Google Maps, Google Wallet, Nexus, YouTube, AdSense and AdMob
are trademarks of Google, Inc.

Microsoft and/or its respective suppliers make no representations about the suitability of the information
contained in the documents and related graphics published as part of the services for any purpose. All
such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/
or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness
for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective sup-
pliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting
from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typograph-
ical errors. Changes are periodically added to the information herein. Microsoft and/or its respective sup-
pliers may make improvements and/or changes in the product(s) and/or the program(s) described herein
at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and
other countries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

A01_DEIT3397_02_SE_TP.fm Page 6 Monday, July 7, 2014 8:26 AM

Preface 19

Before You Begin 31

1 Introduction to Android 39
1.1 Introduction 40
1.2 Android—The World’s Leading Mobile Operating System 41
1.3 Android Features 41
1.4 Android Operating System 45

1.4.1 Android 2.2 (Froyo) 45
1.4.2 Android 2.3 (Gingerbread) 46
1.4.3 Android 3.0 through 3.2 (Honeycomb) 46
1.4.4 Android 4.0 through 4.0.4 (Ice Cream Sandwich) 46
1.4.5 Android 4.1–4.3 (Jelly Bean) 47
1.4.6 Android 4.4 (KitKat) 48

1.5 Downloading Apps from Google Play 49
1.6 Packages 50
1.7 Android Software Development Kit (SDK) 51
1.8 Object-Oriented Programming: A Quick Refresher 54

1.8.1 The Automobile as an Object 55
1.8.2 Methods and Classes 55
1.8.3 Instantiation 55
1.8.4 Reuse 55
1.8.5 Messages and Method Calls 55
1.8.6 Attributes and Instance Variables 56
1.8.7 Encapsulation 56
1.8.8 Inheritance 56
1.8.9 Object-Oriented Analysis and Design (OOAD) 56

1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 57
1.9.1 Running the Doodlz App in the Nexus 4 Smartphone AVD 57
1.9.2 Running the Doodlz App in a Tablet AVD 66
1.9.3 Running the Doodlz App on an Android Device 68

1.10 Building Great Android Apps 68
1.11 Android Development Resources 70
1.12 Wrap-Up 73

Contents

A02_DEIT3397_02_SE_TOC.fm Page 7 Tuesday, July 8, 2014 8:13 AM

8 Contents

2 Welcome App 76
Dive-Into® the Android Developer Tools: Introducing Visual GUI Design,
Layouts, Accessibility and Internationalization
2.1 Introduction 77
2.2 Technologies Overview 78

2.2.1 Android Developer Tools IDE 78
2.2.2 TextViews and ImageViews 78
2.2.3 App Resources 78
2.2.4 Accessibility 78
2.2.5 Internationalization 78

2.3 Creating an App 79
2.3.1 Launching the Android Developer Tools IDE 79
2.3.2 Creating a New Project 79
2.3.3 New Android Application Dialog 80
2.3.4 Configure Project Step 81
2.3.5 Configure Launcher Icon Step 81
2.3.6 Create Activity Step 83
2.3.7 Blank Activity Step 84

2.4 Android Developer Tools Window 85
2.4.1 Package Explorer Window 86
2.4.2 Editor Windows 86
2.4.3 Outline Window 86
2.4.4 App Resource Files 86
2.4.5 Graphical Layout Editor 87
2.4.6 The Default GUI 87

2.5 Building the App’s GUI with the Graphical Layout Editor 89
2.5.1 Adding Images to the Project 89
2.5.2 Changing the Id Property of the RelativeLayout and the TextView 90
2.5.3 Configuring the TextView 91
2.5.4 Adding ImageViews to Display the Images 95

2.6 Running the Welcome App 97
2.7 Making Your App Accessible 98
2.8 Internationalizing Your App 100
2.9 Wrap-Up 104

3 Tip Calculator App 107
Introducing GridLayout, LinearLayout, EditText, SeekBar, Event Handling,
NumberFormat and Defining App Functionality with Java
3.1 Introduction 108
3.2 Test-Driving the Tip Calculator App 109
3.3 Technologies Overview 110

3.3.1 Class Activity 110
3.3.2 Activity Lifecycle Methods 110
3.3.3 Arranging Views with LinearLayout and GridLayout 111

A02_DEIT3397_02_SE_TOC.fm Page 8 Monday, July 7, 2014 8:28 AM

Contents 9

3.3.4 Creating and Customizing the GUI with the Graphical Layout
Editor and the Outline and Properties Windows 111

3.3.5 Formatting Numbers as Locale-Specific Currency and
Percentage Strings 112

3.3.6 Implementing Interface TextWatcher for Handling EditText
Text Changes 112

3.3.7 Implementing Interface OnSeekBarChangeListener for
Handling SeekBar Thumb Position Changes 112

3.3.8 AndroidManifest.xml 113
3.4 Building the App’s GUI 113

3.4.1 GridLayout Introduction 113
3.4.2 Creating the TipCalculator Project 115
3.4.3 Changing to a GridLayout 115
3.4.4 Adding the TextViews, EditText, SeekBar and LinearLayouts 116
3.4.5 Customizing the Views to Complete the Design 118

3.5 Adding Functionality to the App 122
3.6 AndroidManifest.xml 130
3.7 Wrap-Up 131

4 Twitter® Searches App 135
SharedPreferences, Collections, ImageButton, ListView, ListActivity,
ArrayAdapter, Implicit Intents and AlertDialogs
4.1 Introduction 136
4.2 Test-Driving the App 137

4.2.1 Importing the App and Running It 137
4.2.2 Adding a Favorite Search 138
4.2.3 Viewing Twitter Search Results 139
4.2.4 Editing a Search 140
4.2.5 Sharing a Search 142
4.2.6 Deleting a Search 142
4.2.7 Scrolling Through Saved Searches 143

4.3 Technologies Overview 143
4.3.1 ListView 143
4.3.2 ListActivity 144
4.3.3 Customizing a ListActivity’s Layout 144
4.3.4 ImageButton 144
4.3.5 SharedPreferences 144
4.3.6 Intents for Launching Other Activities 145
4.3.7 AlertDialog 145
4.3.8 AndroidManifest.xml 146

4.4 Building the App’s GUI 146
4.4.1 Creating the Project 146
4.4.2 activity_main.xml Overview 147
4.4.3 Adding the GridLayout and Components 148

A02_DEIT3397_02_SE_TOC.fm Page 9 Monday, July 7, 2014 8:28 AM

10 Contents

4.4.4 Graphical Layout Editor Toolbar 153
4.4.5 ListView Item’s Layout: list_item.xml 154

4.5 Building the MainActivity Class 155
4.5.1 package and import Statements 155
4.5.2 Extending ListActivity 157
4.5.3 Fields of Class MainActivity 157
4.5.4 Overriding Activity Method onCreate 158
4.5.5 Anonymous Inner Class That Implements the saveButton’s

OnClickListener to Save a New or Updated Search 160
4.5.6 addTaggedSearch Method 162
4.5.7 Anonymous Inner Class That Implements the ListView’s

OnItemClickListener to Display Search Results 163
4.5.8 Anonymous Inner Class That Implements the ListView’s

OnItemLongClickListener to Share, Edit or Delete a Search 165
4.5.9 shareSearch Method 167
4.5.10 deleteSearch Method 168

4.6 AndroidManifest.xml 170
4.7 Wrap-Up 170

5 Flag Quiz App 174
Fragments, Menus, Preferences, AssetManager, Tweened Animations, Handler,
Toasts, Explicit Intents, Layouts for Multiple Device Orientations
5.1 Introduction 175
5.2 Test-Driving the Flag Quiz App 177

5.2.1 Importing the App and Running It 177
5.2.2 Configuring the Quiz 177
5.2.3 Taking the Quiz 179

5.3 Technologies Overview 181
5.3.1 Menus 181
5.3.2 Fragments 181
5.3.3 Fragment Lifecycle Methods 182
5.3.4 Managing Fragments 182
5.3.5 Preferences 182
5.3.6 assets Folder 182
5.3.7 Resource Folders 183
5.3.8 Supporting Different Screen Sizes and Resolutions 183
5.3.9 Determining the Screen Size 184
5.3.10 Toasts for Displaying Messages 184
5.3.11 Using a Handler to Execute a Runnable in the Future 184
5.3.12 Applying an Animation to a View 184
5.3.13 Logging Exception Messages 185
5.3.14 Using an Explicit Intent to Launch Another Activity in the

Same App 185
5.3.15 Java Data Structures 185

5.4 Building the GUI and Resource Files 185

A02_DEIT3397_02_SE_TOC.fm Page 10 Monday, July 7, 2014 8:28 AM

Contents 11

5.4.1 Creating the Project 185
5.4.2 strings.xml and Formatted String Resources 186
5.4.3 arrays.xml 187
5.4.4 colors.xml 188
5.4.5 dimens.xml 188
5.4.6 activity_settings.xml Layout 189
5.4.7 activity_main.xml Layout for Phone and Tablet

Portrait Orientation 189
5.4.8 fragment_quiz.xml Layout 189
5.4.9 activity_main.xml Layout for Tablet Landscape Orientation 192
5.4.10 preferences.xml for Specifying the App’s Settings 193
5.4.11 Creating the Flag Shake Animation 194

5.5 MainActivity Class 196
5.5.1 package Statement, import Statements and Fields 196
5.5.2 Overridden Activity Method onCreate 197
5.5.3 Overridden Activity Method onStart 199
5.5.4 Overridden Activity Method onCreateOptionsMenu 199
5.5.5 Overridden Activity Method onOptionsItemSelected 200
5.5.6 Anonymous Inner Class That Implements

OnSharedPreferenceChangeListener 201
5.6 QuizFragment Class 202

5.6.1 package Statement and import Statements 202
5.6.2 Fields 203
5.6.3 Overridden Fragment Method onCreateView 204
5.6.4 Method updateGuessRows 206
5.6.5 Method updateRegions 207
5.6.6 Method resetQuiz 207
5.6.7 Method loadNextFlag 209
5.6.8 Method getCountryName 211
5.6.9 Anonymous Inner Class That Implements OnClickListener 211
5.6.10 Method disableButtons 214

5.7 SettingsFragment Class 214
5.8 SettingsActivity Class 215
5.9 AndroidManifest.xml 215
5.10 Wrap-Up 216

6 Cannon Game App 220
Listening for Touches, Manual Frame-By-Frame Animation, Graphics, Sound,
Threading, SurfaceView and SurfaceHolder
6.1 Introduction 221
6.2 Test-Driving the Cannon Game App 223
6.3 Technologies Overview 223

6.3.1 Attaching a Custom View to a Layout 223
6.3.2 Using the Resource Folder raw 223
6.3.3 Activity and Fragment Lifecycle Methods 223

A02_DEIT3397_02_SE_TOC.fm Page 11 Monday, July 7, 2014 8:28 AM

12 Contents

6.3.4 Overriding View Method onTouchEvent 224
6.3.5 Adding Sound with SoundPool and AudioManager 224
6.3.6 Frame-by-Frame Animation with Threads, SurfaceView and

SurfaceHolder 224
6.3.7 Simple Collision Detection 225
6.3.8 Drawing Graphics Using Paint and Canvas 225

6.4 Building the App’s GUI and Resource Files 225
6.4.1 Creating the Project 225
6.4.2 strings.xml 226
6.4.3 fragment_game.xml 226
6.4.4 activity_main.xml 227
6.4.5 Adding the Sounds to the App 227

6.5 Class Line Maintains a Line’s Endpoints 227
6.6 MainActivity Subclass of Activity 228
6.7 CannonGameFragment Subclass of Fragment 228
6.8 CannonView Subclass of View 230

6.8.1 package and import Statements 230
6.8.2 Instance Variables and Constants 231
6.8.3 Constructor 232
6.8.4 Overriding View Method onSizeChanged 234
6.8.5 Method newGame 235
6.8.6 Method updatePositions 236
6.8.7 Method fireCannonball 239
6.8.8 Method alignCannon 240
6.8.9 Method drawGameElements 241
6.8.10 Method showGameOverDialog 243
6.8.11 Methods stopGame and releaseResources 244
6.8.12 Implementing the SurfaceHolder.Callback Methods 245
6.8.13 Overriding View Method onTouchEvent 246
6.8.14 CannonThread: Using a Thread to Create a Game Loop 247

6.9 Wrap-Up 248

7 Doodlz App 253
Two-Dimensional Graphics, Canvas, Bitmap, Accelerometer, SensorManager,
Multitouch Events, MediaStore, Printing, Immersive Mode
7.1 Introduction 254
7.2 Technologies Overview 256

7.2.1 Using SensorManager to Listen for Accelerometer Events 256
7.2.2 Custom DialogFragments 256
7.2.3 Drawing with Canvas and Bitmap 257
7.2.4 Processing Multiple Touch Events and Storing Lines in Paths 257
7.2.5 Android 4.4 Immersive Mode 257
7.2.6 GestureDetector and SimpleOnGestureListener 257
7.2.7 Saving the Drawing to the Device’s Gallery 257

A02_DEIT3397_02_SE_TOC.fm Page 12 Monday, July 7, 2014 8:28 AM

Contents 13

7.2.8 Android 4.4 Printing and the Android Support Library’s
PrintHelper Class 258

7.3 Building the App’s GUI and Resource Files 258
7.3.1 Creating the Project 258
7.3.2 strings.xml 258
7.3.3 dimens.xml 259
7.3.4 Menu for the DoodleFragment 260
7.3.5 activity_main.xml Layout for MainActivity 261
7.3.6 fragment_doodle.xml Layout for DoodleFragment 261
7.3.7 fragment_color.xml Layout for ColorDialogFragment 262
7.3.8 fragment_line_width.xml Layout for LineWidthDialogFragment 264
7.3.9 Adding Class EraseImageDialogFragment 265

7.4 MainActivity Class 266
7.5 DoodleFragment Class 267
7.6 DoodleView Class 274
7.7 ColorDialogFragment Class 286
7.8 LineWidthDialogFragment Class 289
7.9 EraseImageDialogFragment Class 293
7.10 Wrap-Up 294

8 Address Book App 298
ListFragment, FragmentTransactions and the Fragment Back Stack,
Threading and AsyncTasks, CursorAdapter, SQLite and GUI Styles
8.1 Introduction 299
8.2 Test-Driving the Address Book App 302
8.3 Technologies Overview 302

8.3.1 Displaying Fragments with FragmentTransactions 303
8.3.2 Communicating Data Between a Fragment and a Host Activity 303
8.3.3 Method onSaveInstanceState 303
8.3.4 Defining Styles and Applying Them to GUI Components 303
8.3.5 Specifying a Background for a TextView 303
8.3.6 Extending Class ListFragment to Create a Fragment That

Contains a ListView 304
8.3.7 Manipulating a SQLite Database 304
8.3.8 Performing Database Operations Outside the GUI Thread

with AsyncTasks 304
8.4 Building the GUI and Resource Files 304

8.4.1 Creating the Project 304
8.4.2 Creating the App’s Classes 305
8.4.3 strings.xml 305
8.4.4 styles.xml 306
8.4.5 textview_border.xml 307
8.4.6 MainActivity’s Layout: activity_main.xml 308
8.4.7 DetailsFragment’s Layout: fragment_details.xml 308
8.4.8 AddEditFragment’s Layout: fragment_add_edit.xml 310
8.4.9 Defining the Fragments’ Menus 311

A02_DEIT3397_02_SE_TOC.fm Page 13 Monday, July 7, 2014 8:28 AM

14 Contents

8.5 MainActivity Class 312
8.6 ContactListFragment Class 318
8.7 AddEditFragment Class 325
8.8 DetailsFragment Class 331
8.9 DatabaseConnector Utility Class 339
8.10 Wrap-Up 344

9 Google Play and App Business Issues 348
9.1 Introduction 349
9.2 Preparing Your Apps for Publication 349

9.2.1 Testing Your App 350
9.2.2 End User License Agreement 350
9.2.3 Icons and Labels 350
9.2.4 Versioning Your App 351
9.2.5 Licensing to Control Access to Paid Apps 351
9.2.6 Obfuscating Your Code 351
9.2.7 Getting a Private Key for Digitally Signing Your App 352
9.2.8 Screenshots 352
9.2.9 Promotional App Video 353

9.3 Pricing Your App: Free or Fee 354
9.3.1 Paid Apps 355
9.3.2 Free Apps 355

9.4 Monetizing Apps with In-App Advertising 356
9.5 Monetizing Apps: Using In-App Billing to Sell Virtual Goods 357
9.6 Registering at Google Play 358
9.7 Setting Up a Google Wallet Merchant Account 359
9.8 Uploading Your Apps to Google Play 360
9.9 Launching the Play Store from Within Your App 361
9.10 Managing Your Apps in Google Play 362
9.11 Other Android App Marketplaces 362
9.12 Other Popular Mobile App Platforms 362
9.13 Marketing Your Apps 363
9.14 Wrap-Up 367

A Introduction to Java Applications 370
A.1 Introduction 371
A.2 Your First Program in Java: Printing a Line of Text 371
A.3 Modifying Your First Java Program 375
A.4 Displaying Text with printf 377
A.5 Another Application: Adding Integers 377
A.6 Memory Concepts 381
A.7 Arithmetic 382
A.8 Decision Making: Equality and Relational Operators 385
A.9 Wrap-Up 389

A02_DEIT3397_02_SE_TOC.fm Page 14 Monday, July 7, 2014 8:28 AM

Contents 15

B Introduction to Classes, Objects, Methods
and Strings 394

B.1 Introduction 395
B.2 Declaring a Class with a Method and Instantiating an Object of a Class 395
B.3 Declaring a Method with a Parameter 398
B.4 Instance Variables, set Methods and get Methods 401
B.5 Primitive Types vs. Reference Types 405
B.6 Initializing Objects with Constructors 406
B.7 Floating-Point Numbers and Type double 408
B.8 Wrap-Up 412

C Control Statements 416
C.1 Introduction 417
C.2 Algorithms 417
C.3 Pseudocode 418
C.4 Control Structures 418
C.5 if Single-Selection Statement 419
C.6 if…else Double-Selection Statement 419
C.7 while Repetition Statement 422
C.8 Case Study: Counter-Controlled Repetition 422
C.9 Case Study: Sentinel-Controlled Repetition 426
C.10 Case Study: Nested Control Statements 431
C.11 Compound Assignment Operators 434
C.12 Increment and Decrement Operators 434
C.13 Primitive Types 436
C.14 Essentials of Counter-Controlled Repetition 437
C.15 for Repetition Statement 438
C.16 Examples Using the for Statement 440
C.17 do…while Repetition Statement 442
C.18 switch Multiple-Selection Statement 443
C.19 break and continue Statements 450
C.20 Logical Operators 450
C.21 Wrap-Up 453

D Methods: A Deeper Look 461
D.1 Introduction 462
D.2 Program Modules in Java 462
D.3 static Methods, static Fields and Class Math 463
D.4 Declaring Methods with Multiple Parameters 465
D.5 Notes on Declaring and Using Methods 468
D.6 Method-Call Stack and Activation Records 469
D.7 Argument Promotion and Casting 469
D.8 Java API Packages 470

A02_DEIT3397_02_SE_TOC.fm Page 15 Monday, July 7, 2014 8:28 AM

16 Contents

D.9 Introduction to Random-Number Generation 471
D.9.1 Scaling and Shifting of Random Numbers 472
D.9.2 Random-Number Repeatability for Testing and Debugging 473

D.10 Case Study: A Game of Chance; Introducing Enumerations 474
D.11 Scope of Declarations 478
D.12 Method Overloading 480
D.13 Wrap-Up 483

E Arrays and ArrayLists 490
E.1 Introduction 491
E.2 Arrays 491
E.3 Declaring and Creating Arrays 492
E.4 Examples Using Arrays 493
E.5 Case Study: Card Shuffling and Dealing Simulation 502
E.6 Enhanced for Statement 506
E.7 Passing Arrays to Methods 507
E.8 Case Study: Class GradeBook Using an Array to Store Grades 511
E.9 Multidimensional Arrays 516
E.10 Case Study: Class GradeBook Using a Two-Dimensional Array 520
E.11 Class Arrays 526
E.12 Introduction to Collections and Class ArrayList 528
E.13 Wrap-Up 531

F Classes and Objects: A Deeper Look 536
F.1 Introduction 537
F.2 Time Class Case Study 537
F.3 Controlling Access to Members 541
F.4 Referring to the Current Object’s Members with the this Reference 542
F.5 Time Class Case Study: Overloaded Constructors 544
F.6 Default and No-Argument Constructors 550
F.7 Composition 551
F.8 Enumerations 554
F.9 Garbage Collection 556
F.10 static Class Members 557
F.11 final Instance Variables 561
F.12 Packages 561
F.13 Package Access 562
F.14 Wrap-Up 562

G Object-Oriented Programming: Inheritance
and Polymorphism 565

G.1 Introduction to Inheritance 566
G.2 Superclasses and Subclasses 567
G.3 protected Members 568

A02_DEIT3397_02_SE_TOC.fm Page 16 Monday, July 7, 2014 8:28 AM

Contents 17

G.4 Relationship between Superclasses and Subclasses 569
G.4.1 Creating and Using a CommissionEmployee Class 569
G.4.2 Creating and Using a BasePlusCommissionEmployee Class 574
G.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 579
G.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using protected Instance Variables 582
G.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance

Hierarchy Using private Instance Variables 585
G.5 Class Object 590
G.6 Introduction to Polymorphism 591
G.7 Polymorphism: An Example 592
G.8 Demonstrating Polymorphic Behavior 593
G.9 Abstract Classes and Methods 596
G.10 Case Study: Payroll System Using Polymorphism 597

G.10.1 Abstract Superclass Employee 598
G.10.2 Concrete Subclass SalariedEmployee 601
G.10.3 Concrete Subclass HourlyEmployee 603
G.10.4 Concrete Subclass CommissionEmployee 604
G.10.5 Indirect Concrete Subclass BasePlusCommissionEmployee 606
G.10.6 Polymorphic Processing, Operator instanceof and Downcasting 607
G.10.7 Summary of the Allowed Assignments Between Superclass and

Subclass Variables 612
G.11 final Methods and Classes 613
G.12 Case Study: Creating and Using Interfaces 614

G.12.1 Developing a Payable Hierarchy 615
G.12.2 Interface Payable 616
G.12.3 Class Invoice 617
G.12.4 Modifying Class Employee to Implement Interface Payable 619
G.12.5 Modifying Class SalariedEmployee for Use in the Payable

Hierarchy 621
G.12.6 Using Interface Payable to Process Invoices and Employees

Polymorphically 623
G.13 Common Interfaces of the Java API 624
G.14 Wrap-Up 625

H Exception Handling: A Deeper Look 629
H.1 Introduction 630
H.2 Example: Divide by Zero without Exception Handling 630
H.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions 632
H.4 When to Use Exception Handling 637
H.5 Java Exception Hierarchy 637
H.6 finally Block 640
H.7 Stack Unwinding and Obtaining Information from an Exception Object 644
H.8 Wrap-Up 647

A02_DEIT3397_02_SE_TOC.fm Page 17 Monday, July 7, 2014 8:28 AM

18 Contents

I GUI Components and Event Handling 650
I.1 Introduction 651
I.2 Nimbus Look-and-Feel 651
I.3 Text Fields and an Introduction to Event Handling with Nested Classes 652
I.4 Common GUI Event Types and Listener Interfaces 658
I.5 How Event Handling Works 659
I.6 JButton 660
I.7 JComboBox; Using an Anonymous Inner Class for Event Handling 665
I.8 Adapter Classes 668
I.9 Wrap-Up 669

J Other Java Topics 670
J.1 Introduction 671
J.2 Collections Overview 671
J.3 Type-Wrapper Classes for Primitive Types 672
J.4 Interface Collection and Class Collections 672
J.5 Lists 673

J.5.1 ArrayList and Iterator 673
J.5.2 LinkedList 675
J.5.3 Views into Collections and Arrays Method asList 678

J.6 Collections Methods 680
J.6.1 Method sort 680
J.6.2 Method shuffle 682

J.7 Interface Queue 683
J.8 Sets 683
J.9 Maps 684
J.10 Introduction to Files and Streams 687
J.11 Class File 688
J.12 Introduction to Object Serialization 689
J.13 Introduction to Multithreading 690
J.14 Creating and Executing Threads with the Executor Framework 691
J.15 Overview of Thread Synchronization 695
J.16 Concurrent Collections Overview 696
J.17 Multithreading with GUI 696
J.18 Wrap-Up 703

K Operator Precedence Chart 706

L Primitive Types 708

Index 709

A02_DEIT3397_02_SE_TOC.fm Page 18 Monday, July 7, 2014 8:28 AM

Build a better mousetrap, and the world will beat a path to your door.
—Ralph Waldo Emerson

Science and technology and the various forms of art,
all unite humanity in a single and interconnected system.
—Zhores Aleksandrovich Medvede

Welcome to the dynamic world of Android smartphone and tablet app development with
the Android Software Development Kit (SDK), the Java™ programming language, the
Android Development Tools IDE, and the new and rapidly evolving Android Studio. We
present leading-edge mobile computing technologies for students, instructors and profes-
sional software developers.

Android How to Program, 2/e
With this unique book—the second edition of the world’s first Android computer science
textbook—you can learn Android even if you don’t know Java and even if you’re a pro-
gramming novice. This book includes a complete, 300-page introduction to the Java core
programming concepts that you’ll need when developing Android apps. The Java content
is appropriate for programming novices.

Android How to Program, 2/e was formed by merging

• our professional book Android for Programmers: An App-Driven Approach, 2/e,
Volume 1

• additional online chapters selected from Android for Programmers: An App-Driven
Approach, 2/e, Volume 2

• condensed, introductory core content on object-oriented Java programming
from our college textbook Java How to Program, 9/e

• hundreds of Android short-answer questions and app-development exercises we
created for this book—most are in the book and many of the short-answer ques-
tions are in the test-item file for instructors.

We scoured the Android material, especially the fully coded Android apps, and enu-
merated the Java features that you’ll need to build these and similar apps. Then we
extracted the corresponding Java content from Java How to Program, 9/e. That’s a 1500-
page book, so it was challenging to whittle down that much content and keep it friendly,
even for programming novices.

When you study the Android content, you’ll be thinking like a developer from the
start. You’re going to study and build lots of real stuff and you’ll face the kinds of chal-
lenges professional developers must deal with. We’ll point you to the online documenta-

Preface

A03_DEIT3397_02_SE_PREF.fm Page 19 Tuesday, July 8, 2014 8:14 AM

20 Preface

tion and forums where you can find additional information and get answers to your
questions. We’ll also encourage you to read, modify and enhance open-source code as part
of your learning process.

Intended Audiences
There are several audiences for this book. Most commonly, it will be used in upper-level
elective college courses and industry professional courses for people familiar with object-
oriented programming but who may or may not know Java and want to learn Android app
development.

Uniquely, the book can also be used in introductory courses like CS1, intended for
programming novices. We recommend that schools typically offering many sections of
CS1 in Java consider designating one or two sections for ambitious students who have at
least some prior programming experience and who want to work hard to learn a good
amount of Java and Android in an aggressively paced one-semester course. The schools
may want to list the courses with “honors” or “accelerated” designations. The book works
especially well in two-semester introductory programming sequences where the introduc-
tion to Java is covered first.

App-Development Courses
In 2007, Stanford offered a new course called Creating Engaging Facebook Apps. Students
worked in teams developing apps, some of which landed in Facebook’s top 10, earning some
of the student developers millions of dollars.1 This course gained wide recognition for en-
couraging student creativity and teamwork. Scores of colleges now offer app-development
courses across many social networking and mobile platforms such as Android and iOS. We
encourage you to read the online mobile app development syllabi and check out the You-
Tube™ videos created by instructors and students for many of these courses.

Android Ecosystem: Competition, Innovation, Explosive Growth
and Opportunities
Sales of Android devices and app downloads have been growing exponentially. The first-
generation Android phones were released in October 2008. A study by Strategy Analytics
showed that by October 2013, Android had 81.3% of the global smartphone market
share, compared to 13.4% for Apple, 4.1% for Microsoft and 1% for Blackberry.2 Accord-
ing to an IDC report, by the end of the first quarter of 2013 Android had 56.5% of the
global tablet market share, compared to 39.6% for Apple’s iPad and 3.7% for Microsoft
Windows tablets.3

There are now over one billion Android smartphones and tablets in use,4 and more
than 1.5 million Android devices are being activated daily.5 According to IDC, Samsung

1. http://www.businessinsider.com/these-stanford-students-made-millions-taking-a-
class-on-facebook-2011-5.

2. http://blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-
81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx.

3. http://www.idc.com/getdoc.jsp?containerId=prUS24093213.
4. http://www.android.com/kitkat.
5. http://www.technobuffalo.com/2013/04/16/google-daily-android-activations-1-5-million.

A03_DEIT3397_02_SE_PREF.fm Page 20 Monday, July 7, 2014 8:29 AM

 App-Driven Approach 21

is the leading Android manufacturer, accounting for nearly 40% of Android device ship-
ments in the third quarter of 2013.

Billions of apps have been downloaded from Google Play™—Google’s marketplace
for Android Apps. The opportunities for Android app developers are enormous.

Fierce competition among popular mobile platforms and carriers is leading to rapid
innovation and falling prices. Competition among the dozens of Android device manufac-
turers is driving hardware and software innovation within the Android community.

App-Driven Approach
At the heart of the book is our app-driven approach—we present concepts in the context
of seven complete working Android apps in the print book and more online. We begin each
of the app chapters with an introduction to the app, an app test-drive showing one or more
sample executions, and a technologies overview. We build the app’s GUI and resource files.
Then we proceed with a detailed code walkthrough of the app’s source code in which we
discuss the programming concepts and demonstrate the functionality of the Android APIs
used in the app. All the source code is available at the book’s Companion Website
www.pearsonglobaleditions.com/Deitel. We recommend that you have the source
code open in the IDE as you read the book. Figure 1 lists the book’s apps and the key tech-
nologies we used to build each.

App Technologies

Chapter 2, Welcome App The Android Developer Tools (the Eclipse IDE
and the ADT Plugin), visual GUI design, lay-
outs, TextViews, ImageViews, accessibility and
internationalization.

Chapter 3, Tip Calculator App GridLayout, LinearLayout, EditText, SeekBar,
event handling, NumberFormat and defining app
functionality with Java.

Chapter 4, Twitter® Searches App SharedPreferences, collections, ImageButton,
ListView, ListActivity, ArrayAdapter, implicit
intents and AlertDialogs.

Chapter 5, Flag Quiz App Fragments, menus, preferences, AssetManager,
tweened animations, Handler, Toasts, Explicit
Intents, layouts for multiple device orientations.

Chapter 6, Cannon Game App Listening for touches, frame-by-frame anima-
tion, graphics, sound, threading, SurfaceView
and SurfaceHolder.

Chapter 7, Doodlz App Two-dimensional graphics, Canvas, Bitmap,
accelerometer, SensorManager, multitouch
events, MediaStore, printing and Immersive
Mode.

Chapter 8, Address Book App AdapterViews and Adapters

Fig. 1 | Android How to Program apps in the print book.

A03_DEIT3397_02_SE_PREF.fm Page 21 Monday, July 7, 2014 8:29 AM

22 Preface

Online Chapters and Book Updates
The Companion Website contains additional app-development chapters that introduce
property animation, Google Play game services, video, speech synthesis and recognition,
GPS, the Maps API, the compass, object serialization, Internet-enabled apps, audio re-
cording and playback, Bluetooth®, HTML5 mobile apps and more. Most of these chap-
ters will be available for fall 2014 courses. For the status of the online chapters and for
continuing book updates, visit

Join the Deitel communities on Facebook® (http://www.deitel.com/deitelfan),
Twitter® (@deitel), LinkedIn® (http://bit.ly/DeitelLinkedIn) Google+™ (http://
google.com/+DeitelFan), and YouTube™ (http://youtube.com/user/DeitelTV) and
subscribe to the Deitel® Buzz Online newsletter (http://www.deitel.com/newsletter/
subscribe.html).

Copyright Notice and Code License
All of the Android code and Android apps in the book are copyrighted by Deitel & Associates,
Inc. The sample Android apps in the book are licensed under a Creative Commons Attribution
3.0 Unported License (http://creativecommons.org/licenses/by/3.0), with the excep-
tion that they may not be reused in any way in educational tutorials and textbooks, whether in
print or digital format. Additionally, the authors and publisher make no warranty of any kind,
expressed or implied, with regard to these programs or to the documentation contained in this
book. The authors and publisher shall not be liable in any event for incidental or consequential
damages in connection with, or arising out of, the furnishing, performance, or use of these pro-
grams. You’re welcome to use the apps in the book as shells for your own apps, building on their
existing functionality. If you have any questions, contact us at deitel@deitel.com.

Getting up to Speed in Java and XML
The Android portion of this book assumes that you already know Java and object-oriented
programming. If you’re not familiar with these, the appendices provide a condensed,
friendly introduction to Java and the object-oriented programming techniques you’ll need
to develop Android apps. If you’re interested in learning Java in more depth, you may want
to check out the comprehensive treatment in our textbook Java How to Program, 10/e
www.pearsonglobaleditions.com/Deitel.

Because of the improved Android development tools, we were able to eliminate
almost all XML markup in this edition. There are still two small, easy-to-understand XML
files you’ll need to manipulate. If you’re not familiar with XML, see these online tutorials:

• http://www.deitel.com/articles/xml_tutorials/20060401/XMLBasics/

• http://www.deitel.com/articles/xml_tutorials/20060401/

XMLStructuringData/

• http://www.ibm.com/developerworks/xml/newto/

• http://www.w3schools.com/xml/xml_whatis.asp

www.pearsonglobaleditions.com/Deitel

A03_DEIT3397_02_SE_PREF.fm Page 22 Monday, July 7, 2014 8:29 AM

 Key Features of Android How to Program, 2/e 23

Key Features of Android How to Program, 2/e
• Android SDK 4.3 and 4.4. We cover various new Android Software Develop-

ment Kit (SDK) 4.3 and 4.4 features. [Note: The apps in this book are configured
to run on Android devices with Android 4.3 and higher; however, most apps will
work in 4.0 and higher by changing their minimum required SDK.]

• Fragments. Starting with Chapter 5, we use Fragments to create and manage por-
tions of each app’s GUI. You can combine several fragments to create user inter-
faces that take advantage of tablet screen sizes. You also can easily interchange
fragments to make your GUIs more dynamic, as you’ll do in Chapter 8.

• Support for multiple screen sizes and resolutions. Throughout the app chapters
we demonstrate how to use Android’s mechanisms for automatically choosing re-
sources (layouts, images, etc.) based on a device’s size and orientation.

• Eclipse-Based Android Development Tools (ADT) coverage in the print book.
The free Android Development Tools (ADT) integrated development environ-
ment (IDE)—which includes Eclipse and the ADT plugin—combined with the
free Java Development Kit (JDK) provide all the software you’ll need to create,
run and debug Android apps, export them for distribution (e.g., upload them to
Google Play™) and more.

• Android Studio. This is the preferred IDE for the future of Android app develop-
ment. Because this IDE is evolving quickly, we put our discussions of it online at:

• Immersive Mode. The status bar at the top of the screen and the menu buttons at
the bottom can be hidden, allowing your apps to fill more of the screen. Users
can access the status bar by swiping down from the top of the screen, and the sys-
tem bar (with the back button, home button and recent apps button) by swiping
up from the bottom.

• Printing Framework. Android 4.4 KitKat allows you to add printing functional-
ity to your apps, such as locating available printers over Wi-Fi or the cloud, se-
lecting the paper size and specifying which pages to print.

• Testing on Android Smartphones, Tablets and the Android Emulator. For the best
app-development experience, you should test your apps on actual Android smart-
phones and tablets. You can still have a meaningful experience using the Android
emulator (see the Before You Begin section), however it’s processor-intensive and
can be slow—particularly with games that have a lot of moving parts. In Chapter 1,
we mention some Android features that are not supported on the emulator.

• Multimedia. The apps in the print book use a broad range of Android multime-
dia capabilities, including graphics, images, frame-by-frame animation and au-
dio. The apps in the online chapters use property animation, video, speech
synthesis and speech recognition.

• Android Best Practices. We adhere to accepted Android best practices, pointing
them out in the detailed code walkthroughs. For more information, visit http://
developer.android.com/guide/practices/index.html.

• Java Content in the Appendices Can Be Used With Java SE 6 or Higher.

 www.pearsonglobaleditions.com/Deitel

A03_DEIT3397_02_SE_PREF.fm Page 23 Monday, July 7, 2014 8:29 AM

24 Preface

• Java Exception Handling. We integrate basic exception handling early in the Java
content then present a richer treatment in Appendix H; we use exception han-
dling throughout the Android chapters.

• Classes Arrays and ArrayList; Collections. Appendix E covers class Arrays—
which contains methods for performing common array manipulations—and ge-
neric class ArrayList—which implements a dynamically resizable array-like data
structure. Appendix J introduces Java’s generic collections that are used frequent-
ly in our Android treatment.

• Java Multithreading. Maintaining app responsiveness is a key to building robust
Android apps and requires extensive use of Android multithreading. Appendix J
introduces multithreading fundamentals so that you can understand our use of
the Android AsyncTask class in Chapter 8.

• GUI Presentation. Appendix I introduces Java GUI development. Android pro-
vides its own GUI components, so this appendix presents a few Java GUI com-
ponents and focuses on nested classes and anonymous inner classes, which are
used extensively for event-handling in Android GUIs.

Working with Open-Source Apps
There are numerous free, open-source Android apps available online which are excellent
resources for learning Android app development. We encourage you to download open-
source apps and read their source code to understand how they work. Throughout the
book you’ll find programming exercises that ask you to modify or enhance existing open-
source apps. Our goal is to give you handles on interesting problems that may also inspire
you to create new apps using the same technologies. Caution: The terms of open source
licenses vary considerably. Some allow you to use the app’s source code freely for any pur-
pose, while others stipulate that the code is available for personal use only—not for creat-
ing for-sale or publicly available apps. Be sure to read the licensing agreements carefully.
If you wish to create a commercial app based on an open-source app, you should con-
sider having an intellectual property attorney read the license; be aware that these attor-
neys charge significant fees.

Pedagogic Features
Syntax Shading. For readability, we syntax shade the code, similar to Eclipse’s and An-
droid Studio’s use of syntax coloring. Our syntax-shading conventions are as follows:

Code Highlighting. We emphasize the key code segments in each program by enclosing
them in light gray rectangles.

Using Fonts for Emphasis. We use various font conventions:

• The defining occurrences of key terms appear in bold for easy reference.

• On-screen IDE components appear in bold Helvetica (e.g., the File menu).

comments appear in gray
constants and literal values appear in bold darker gray
keywords appear in bold black
all other code appears in non-bold black

A03_DEIT3397_02_SE_PREF.fm Page 24 Monday, July 7, 2014 8:29 AM

 Software Used in Android How to Program, 2/e 25

• Program source code appears in Lucida (e.g., int x = 5;).

In this book you’ll create GUIs using a combination of visual programming (point
and click, drag and drop) and writing code.

We use different fonts when we refer to GUI elements in program code versus GUI
elements displayed in the IDE:

• When we refer to a GUI component that we create in a program, we place its class
name and object name in a Lucida font—e.g., “Button saveContactButton.”

• When we refer to a GUI component that’s part of the IDE, we place the compo-
nent’s text in a bold Helvetica font and use a plain text font for the component’s
type—e.g., “the File menu” or “the Run button.”

Using the > Character. We use the > character to indicate selecting a menu item from a
menu. For example, we use the notation File > New to indicate that you should select the
New menu item from the File menu.

Source Code. All of the book’s source code is available for download from:

Chapter Objectives. Each chapter begins with a list of learning objectives.

Figures. Hundreds of tables, source code listings and screen shots are included.

Software Engineering. We stress program clarity and performance, and concentrate on
building well-engineered, object-oriented software.

Self-Review Exercises and Answers. Extensive self-review exercises and answers are includ-
ed for self study.

Exercises with a Current Flair. We’ve worked hard to create topical Android app-develop-
ment exercises. You’ll develop apps using a broad array of current technologies. All of the
Android programming exercises require the implementation of complete apps. You’ll be
asked to enhance the existing chapter apps, develop similar apps, use your creativity to de-
velop your own apps that use the chapter technologies and build new apps based on open-
source apps available on the Internet (and again, be sure to read and comply with the
open-source code-license terms for each app). The Android exercises also include short-
answer fill-in and true/false questions.

In the Java exercises, you’ll be asked to recall important terms and concepts; indicate
what code segments do; indicate what’s wrong with a portion of code; write Java state-
ments, methods and classes; and write complete Java programs.

Index. We include an extensive index for reference. The page number of the defining oc-
currence of each key term in the book is highlighted in the index in bold.

Software Used in Android How to Program, 2/e
All the software you’ll need for this book is available free for download from the Internet.
See the Before You Begin section for the download links.

www.pearsonglobaleditions.com/Deitel

A03_DEIT3397_02_SE_PREF.fm Page 25 Monday, July 7, 2014 8:29 AM

26 Preface

Documentation. All the Android and Java documentation you’ll need to develop Android
apps is available free at http://developer.android.com and http://www.oracle.com/
technetwork/java/javase/downloads/index.html. The documentation for Eclipse is
available at www.eclipse.org/documentation. The documentation for Android Studio is
available at http://developer.android.com/sdk/installing/studio.html.

Instructor Resources
The following supplements are available to qualified college instructors only through Pear-
son Education’s Instructor Resource Center www.pearsonglobaleditions.com/Deitel:

• PowerPoint® slides containing all the code and figures in the text.

• Test Item File of short-answer questions.

• Solutions Manual with solutions to the end-of-chapter short-answer exercises
for both the Java and Android content. For the Java content, solutions are pro-
vided for most of the programming exercises.
 The suggested Android app-development project exercises are not typical
homework problems. These tend to be substantial projects—many of which
could require weeks of effort, possibly with students working in teams. Selected
solutions only are provided for these project exercises—these will be available on
the Pearson Instructor’s Resource Center (IRC) for fall semester 2014 classes.
Contact us at deitel@deitel.com if you have any questions.

Please do not write to us requesting access to the Pearson Instructor’s Resource Center.
Access is restricted to qualified college instructors teaching from the book. Instructors may
obtain access only through their Pearson representatives. If you’re not a registered faculty
member, contact your Pearson representative.

Before You Begin
For information configuring your computer so that you can develop apps with Java and
Android, see the Before You Begin section that follows this Preface.

Acknowledgments
Thanks to Barbara Deitel for long hours devoted to this project—she created all of our Java
and Android Resource Centers, and patiently researched hundreds of technical details.

This book was a cooperative effort between the academic and professional divisions
of Pearson. We appreciate the guidance, wisdom and energy of Tracy Johnson, Executive
Editor, Computer Science. Tracy and her team handle all of our academic textbooks.
Carole Snyder recruited the book’s academic reviewers and managed the review process.
Bob Engelhardt managed the book’s publication. We selected the cover art and Marta
Samsel designed the cover.

We also appreciate the efforts and 18-year mentorship of our friend and professional
colleague Mark L. Taub, Editor-in-Chief of the Pearson Technology Group. Mark and his
team handle all of our professional books and LiveLessons video products. Kim Boe-

A03_DEIT3397_02_SE_PREF.fm Page 26 Monday, July 7, 2014 8:29 AM

 Acknowledgments 27

digheimer recruited and managed the professional reviewers for the Android content. John
Fuller manages the production of all of our Deitel Developer Series books.

We’d like to thank Michael Morgano, a former colleague of ours at Deitel & Associ-
ates, Inc., now an Android developer at Imerj™, who co-authored the first editions of this
book and our book, iPhone for Programmers: An App-Driven Approach. Michael is an
extraordinarily talented software developer.

Reviewers of the Content from Android How to Program and Android for Program-
mers: An App-Driven Approach Recent Editions
We wish to acknowledge the efforts of our first and second edition reviewers. They scru-
tinized the text and the code and provided countless suggestions for improving the presen-
tation: Paul Beusterien (Principal, Mobile Developer Solutions), Eric J. Bowden, COO
(Safe Driving Systems, LLC), Tony Cantrell (Georgia Northwestern Technical College),
Ian G. Clifton (Independent Contractor and Android App Developer, Daniel Galpin (An-
droid Advocate and author of Intro to Android Application Development), Jim Hathaway
(Application Developer, Kellogg Company), Douglas Jones (Senior Software Engineer,
Fullpower Technologies), Charles Lasky (Nagautuck Community College), Enrique Lo-
pez-Manas (Lead Android Architect, Sixt, and Computer Science Teacher at the Univer-
sity of Alcalá in Madrid), Sebastian Nykopp (Chief Architect, Reaktor), Michael Pardo
(Android Developer, Mobiata), Ronan “Zero” Schwarz (CIO, OpenIntents), Arijit Sen-
gupta (Wright State University), Donald Smith (Columbia College), Jesus Ubaldo
Quevedo-Torrero (University of Wisconsin, Parkside), Dawn Wick (Southwestern Com-
munity College) and Frank Xu (Gannon University).

Reviewers of the Content from Java How to Program Recent Editions
Lance Andersen (Oracle), Soundararajan Angusamy (Sun Microsystems), Joseph Bowbeer
(Consultant), William E. Duncan (Louisiana State University), Diana Franklin (Univer-
sity of California, Santa Barbara), Edward F. Gehringer (North Carolina State Universi-
ty), Huiwei Guan (Northshore Community College), Ric Heishman (George Mason
University), Dr. Heinz Kabutz (JavaSpecialists.eu), Patty Kraft (San Diego State Univer-
sity), Lawrence Premkumar (Sun Microsystems), Tim Margush (University of Akron),
Sue McFarland Metzger (Villanova University), Shyamal Mitra (The University of Texas
at Austin), Peter Pilgrim (Consultant), Manjeet Rege, Ph.D. (Rochester Institute of Tech-
nology), Manfred Riem (Java Champion, Consultant, Robert Half), Simon Ritter (Ora-
cle), Susan Rodger (Duke University), Amr Sabry (Indiana University), José Antonio
González Seco (Parliament of Andalusia), Sang Shin (Sun Microsystems), S. Sivakumar
(Astra Infotech Private Limited), Raghavan “Rags” Srinivas (Intuit), Monica Sweat (Geor-
gia Tech), Vinod Varma (Astra Infotech Private Limited) and Alexander Zuev (Sun
Microsystems).

As you read the book, we’d sincerely appreciate your comments, criticisms and sug-
gestions for improving the text. Please address all correspondence to:

We’ll respond promptly. We really enjoyed writing this book—we hope you enjoy reading it!

Paul Deitel
Harvey Deitel
Abbey Deitel

deitel@deitel.com

A03_DEIT3397_02_SE_PREF.fm Page 27 Monday, July 7, 2014 8:29 AM

28 Preface

About the Authors
Paul Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. He holds the Java Certified Program-
mer and Java Certified Developer certifications, and is an Oracle Java Champion.
Through Deitel & Associates, Inc., he has delivered hundreds of programming courses
worldwide to clients, including Cisco, IBM, Siemens, Sun Microsystems, Dell, Fidelity,
NASA at the Kennedy Space Center, the National Severe Storm Laboratory, White Sands
Missile Range, Rogue Wave Software, Boeing, SunGard Higher Education, Nortel Net-
works, Puma, iRobot, Invensys and many more. He and his co-author, Dr. Harvey M.
Deitel, are the world’s best-selling programming-language textbook/professional book/
video authors.

Dr. Harvey Deitel, Chairman and Chief Strategy Officer of Deitel & Associates, Inc.,
has 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S. degrees
in Electrical Engineering from MIT and a Ph.D. in Mathematics from Boston University.
He has extensive college teaching experience, including earning tenure and serving as the
Chairman of the Computer Science Department at Boston College before founding
Deitel & Associates, Inc., in 1991 with his son, Paul Deitel. The Deitels’ publications have
earned international recognition, with translations published in Simplified Chinese, Tra-
ditional Chinese, Korean, Japanese, German, Russian, Spanish, French, Polish, Italian,
Portuguese, Greek, Urdu and Turkish. Dr. Deitel has delivered hundreds of programming
courses to corporate, academic, government and military clients.

Abbey Deitel, President of Deitel & Associates, Inc., is a graduate of Carnegie Mellon
University’s Tepper School of Management where she received a B.S. in Industrial Manage-
ment. Abbey has been managing the business operations of Deitel & Associates, Inc. for 16
years. She has contributed to numerous Deitel & Associates publications and, together with
Paul and Harvey, is the co-author of Android for Programmers: An App-Driven Approach, 2/e,
iPhone for Programmers: An App-Driven Approach, Internet & World Wide Web How to Pro-
gram, 5/e, Visual Basic 2012 How to Program, 6/e and Simply Visual Basic 2010, 5/e.

Deitel® Dive-Into® Series Programming Languages Training
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring and corporate training organization, specializing in computer pro-
gramming languages, object technology, mobile app development and Internet and web
software technology. The company’s training clients include many of the world’s largest
companies, government agencies, branches of the military, and academic institutions. The
company offers instructor-led training courses delivered at client sites worldwide on major
programming languages and platforms, including Android app development, Objective-
C and iOS app development, Java™, XML®, C++, C, Visual C#®, Visual Basic®, Visual
C++®, Python®, object technology, Internet and web programming and a growing list of
additional programming and software development courses.

Through its 37-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., publishes leading-edge programming college textbooks and professional
books in print and a wide range of electronic formats and LiveLessons video courses. Deitel
& Associates, Inc. and the authors can be reached at:

deitel@deitel.com

A03_DEIT3397_02_SE_PREF.fm Page 28 Monday, July 7, 2014 8:29 AM

 Deitel® Dive-Into® Series Programming Languages Training 29

To learn more about Deitel’s Dive-Into® Series Corporate Training curriculum, visit:

To request a proposal for worldwide on-site, instructor-led training at your organization,
e-mail deitel@deitel.com.

Individuals wishing to purchase Deitel books and LiveLessons video training can do so
through www.deitel.com. Bulk orders by corporations, the government, the military and
academic institutions should be placed directly with Pearson. For more information,
please contact your Pearson representative.

Pearson wishes to thank and acknowledge the following people for their work on the
Global Edition:

Contributor:
Muthuraj M., Android Developer

Reviewers:
SC Raghavendra SSE, Intuit, India
Manasa S., NMAM Institute of Technology, Nitte, India

http://www.deitel.com/training

A03_DEIT3397_02_SE_PREF.fm Page 29 Monday, July 7, 2014 8:29 AM

30 Preface

A03_DEIT3397_02_SE_PREF.fm Page 30 Monday, July 7, 2014 8:29 AM

In this section, you’ll set up your computer for use with this book. The Android develop-
ment tools are frequently updated. Before reading this section, check the book’s website

to see if we’ve posted an updated version.

Font and Naming Conventions
We use fonts to distinguish between on-screen components (such as menu names and
menu items) and Java code or commands. Our convention is to show on-screen compo-
nents in a sans-serif bold Helvetica font (for example, Project menu) and to show file
names, Java code and commands in a sans-serif Lucida font (for example, the keyword
public or class Activity). When specifying commands to select in menus, we use the >
notation to indicate a menu item to select. For example, Window > Preferences indicates
that you should select the Preferences menu item from the Window menu.

Software and Hardware System Requirements
To develop Android apps you need a Windows®, Linux or Mac OS X system. To view the
latest operating-system requirements visit:

and scroll down to the SYSTEM REQUIREMENTS heading. We developed the apps in this
book using the following software:

• Java SE 7 Software Development Kit

• Android SDK/ADT Bundle based on the Eclipse IDE

• Android SDK versions 4.3 and 4.4

You’ll see how to obtain each of these in the next sections.

Installing the Java Development Kit (JDK)
Android requires the Java Development Kit (JDK) version 7 (JDK 7) or 6 (JDK 6). We used
JDK 7. To download the JDK for Windows, OS X or Linux, go to

You need only the JDK. Choose the 32-bit or 64-bit version based on your computer
hardware and operating system. Most recent computers have 64-bit hardware—check
your system’s specifications. If you have a 32-bit operating system, you must use the 32-
bit JDK. Be sure to follow the installation instructions at

www.pearsonglobaleditions.com/Deitel

http://developer.android.com/sdk/index.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html

http://docs.oracle.com/javase/7/docs/webnotes/install/index.html

Before You
Begin

A04_DEIT3397_02_SE_BYB.fm Page 31 Tuesday, July 8, 2014 8:15 AM

32 Before You Begin

Android Integrated Development Environment (IDE) Options
Google now provides two Android IDE options:

• Android SDK/ADT bundle—a version of the Eclipse IDE that comes preconfig-
ured with the latest Android Software Development Kit (SDK) and the latest An-
droid Development Tools (ADT) plugin. At the time of this writing, these were
Android SDK version 4.4 and ADT version 22.3.

• Android Studio—Google’s new Android IDE based on IntelliJ® IDEA and their
preferred future IDE.

The Android SDK/ADT bundle has been widely used in Android app development for
several years. Android Studio, introduced in May 2013, is an early access version and will
be evolving rapidly. For this reason, we’ll stay with the widely used Android SDK/ADT
bundle in the book, and as online supplements at

we’ll provide Android Studio versions of the Chapter 1 Test-Drive section and the Build-
ing the GUI section for each app, as appropriate.

Installing the Android SDK/ADT Bundle
To download the Android SDK/ADT bundle, go to

and click the Download the SDK ADT Bundle button. When the download completes, extract
the ZIP file’s contents to your system. The resulting folder has an eclipse subfolder con-
taining the Eclipse IDE and an sdk subfolder containing the Android SDK. As with the
JDK, you can choose a 32-bit or 64-bit version. The Android SDK/ADT bundle 32-bit ver-
sion should be used with the 32-bit JDK, and the 64-bit version with the 64-bit JDK.

Installing Android Studio
The IDE instructions in the printed book use the Android SDK/ADT bundle. You can
also optionally install and use Android Studio. To download Android Studio, go to

and click the Download Android Studio button. When the download completes, run the in-
staller and follow the on-screen instructions to complete the installation. [Note: For Android
4.4 development in Android Studio, Android now supports Java SE 7 language features, in-
cluding the diamond operator, multi-catch, Strings in switch and try-with-resources.]

Set the Java Compiler Compliance Level and Show Line Numbers
Android does not fully support Java SE 7. To ensure that the book’s examples compile cor-
rectly, configure Eclipse to produce files that are compatible with Java SE 6 by performing
the following steps:

1. Open Eclipse (or), which is located in the eclipse subfolder of the An-
droid SDK/ADT bundle’s installation folder.

2. When the Workspace Launcher window appears, click OK.

www.pearsonglobaleditions.com/Deitel

http://developer.android.com/sdk/index.html

http://developer.android.com/sdk/installing/studio.html

A04_DEIT3397_02_SE_BYB.fm Page 32 Monday, July 7, 2014 8:45 AM

 Android 4.3 SDK 33

3. Select Window > Preferences to display the Preferences window. On Mac OS X,
select ADT > Preferences….

4. Expand the Java node and select the Compiler node. Under JDK Compliance, set
the Compiler compliance level to 1.6 (to indicate that Eclipse should produce
compiled code that’s compatible with Java SE 6).

5. Expand the General > Editors node and select TextEditors, then ensure that Show
line numbers is selected and click OK.

6. Close Eclipse.

Android 4.3 SDK
This book’s examples were written using the Android 4.3 and 4.4 SDKs. At the time of
this writing, 4.4 was the version included with the Android SDK/ADT bundle and An-
droid Studio. You should also install Android 4.3 (and any other versions you might want
to support in your apps). To install other Android platform versions, perform the follow-
ing steps (skipping Steps 1 and 2 if Eclipse is already open):

1. Open Eclipse. Depending on your platform, the icon will appear as or .

2. When the Workspace Launcher window appears, click OK.

3. On Mac OS X, if you see a window indicating “Could not find SDK folder '/Users/
YourAccount/android-sdk-macosx/',” click Open Preferences then Browse… and
select the sdk folder located where you extracted the Android SDK/ADT bundle.

4. Select Window > Android SDK Manager to display the Android SDK Manager (Fig. 1).

5. The Android SDK Manager’s Name column shows all of the tools, platform versions
and extras (such as APIs for interacting with Google services, like Maps) that you

Fig. 1 | Android SDK Manager window.

A04_DEIT3397_02_SE_BYB.fm Page 33 Monday, July 7, 2014 8:45 AM

34 Before You Begin

can install. Uncheck the Installed checkbox. Then, if any of Tools, Android 4.4
(API19), Android 4.3 (API18) and Extras appear in the Packages list, ensure that
they’re checked and click Install # packages… (# is the number of items to be in-
stalled) to display the Choose Packages to Install window. Most items in the Extras
node are optional. For this book, you’ll need the Android Support Library and
Google Play services. The Google USB Driver is necessary for Windows users who
wish to test apps on Android devices.]

6. In the Choose Packages to Install window, read the license agreements for each
item. When you’re done, click the Accept License radio button, then click the In-
stall button. The status of the installation process will be displayed in the Android
SDK Manager window.

Creating Android Virtual Devices (AVDs)
The Android emulator, included in the Android SDK, allows you to test apps on your com-
puter rather than on an actual Android device. This is useful if you’re learning Android and
don’t have access to Android devices, but can be very slow, so a real device is preferred if you
have one. There are some hardware acceleration features that can improve emulator perfor-
mance (developer.android.com/tools/devices/emulator.html#acceleration). Before
running an app in the emulator, you must create an Android Virtual Device (AVD) which
defines the characteristics of the device you want to test on, including the screen size in pixels,
the pixel density, the physical size of the screen, size of the SD card for data storage and more.
To test your apps for multiple Android devices, you can create AVDs that emulate each
unique device. For this book, we use AVDs for Google’s Android reference devices—the
Nexus 4 phone, the Nexus 7 small tablet and Nexus 10 large tablet—which run unmodified
versions of Android. To do so, perform the following steps:

1. Open Eclipse.

2. Select Window > Android Virtual Device Manager to display the Android Virtual De-
vice Manager window, then select the Device Definitions tab (Fig. 2).

Fig. 2 | Android Virtual Device Manager window.

A04_DEIT3397_02_SE_BYB.fm Page 34 Monday, July 7, 2014 8:45 AM

 Creating Android Virtual Devices (AVDs) 35

3. Google provides preconfigured devices that you can use to create AVDs. Select
Nexus 4 by Google, then click Create AVD… to display the Create new Android Vir-
tual Device (AVD) window (Fig. 3), then configure the options as shown and click
OK to create the AVD. If you check Hardware keyboard present, you’ll be able to
use your computer’s keyboard to type data into apps that are running in the
AVD, but this may prevent the soft keyboard from displaying on the screen. If
your computer does not have a camera, you can select Emulated for the Front
Camera and Back Camera options. Each AVD you create has many other options
specified in its config.ini. You can modify this file as described at

to more precisely match the hardware configuration of your device.

4. We also configured Android 4.3 AVDs that represent Nexus 7 by Google and Nex-
us 10 by Google for testing our tablet apps. Their settings are shown in Fig. 4. In

 http://developer.android.com/tools/devices/managing-avds.html

Fig. 3 | Configuring a Nexus 4 smartphone AVD for Android 4.3.

A04_DEIT3397_02_SE_BYB.fm Page 35 Monday, July 7, 2014 8:45 AM

36 Before You Begin

addition, we configured Android 4.4 AVDs for the Nexus 4, Nexus 7 and Nexus
10 with the names: AVD_for_Nexus_4_KitKat, AVD_for_Nexus_7_KitKat, and
AVD_for_Nexus_10_KitKat,

(Optional) Setting Up an Android Device for Development
As we mentioned, testing apps on AVDs can be slow due to AVD performance. If you
have an Android device available to you, you should test the apps on that device. In addi-
tion, there are some features that you can test only on actual devices. To execute your apps
on Android devices, follow the instructions at

If you’re developing on Microsoft Windows, you’ll also need the Windows USB driver for
Android devices. In some cases on Windows, you may also need device-specific USB driv-
ers. For a list of USB driver sites for various device brands, visit:

Fig. 4 | Configuring Nexus 7 and Nexus 10 tablet AVDs.

http://developer.android.com/tools/device.html

http://developer.android.com/tools/extras/oem-usb.html

A04_DEIT3397_02_SE_BYB.fm Page 36 Monday, July 7, 2014 8:45 AM

 Obtaining the Book’s Code Examples 37

Obtaining the Book’s Code Examples
The examples for Android How to Program, 2/e are available for download at

If you’re not already registered at our website, go to www.deitel.com and click the Register
link. Fill in your information. Registration is free, and we do not share your information
with anyone. Please verify that you entered your registration e-mail address correctly—
you’ll receive a confirmation e-mail with your verification code. You must click the verifi-
cation link in the e-mail before you can sign in at www.deitel.com for the first time. Config-
ure your e-mail client to allow e-mails from deitel.com to ensure that the verification e-
mail is not filtered as junk mail. We send only occasional account-management e-mails
unless you register separately for our free Deitel® Buzz Online e-mail newsletter at

Next, visit www.deitel.com and sign in using the Login link below our logo in the
upper-left corner of the page. Go to http://www.deitel.com/books/AndroidHTP2/.
Click the Examples link to download a ZIP archive file containing the examples to your
computer. Double click the ZIP file to unzip the archive, and make note of where you
extract the file’s contents on your system.

A Note Regarding the Android Development Tools
Google frequently updates the Android development tools. This often leads to problems
compiling our apps when, in fact, the apps do not contain any errors. If you import one
of our apps into Eclipse or Android Studio and it does not compile, there is probably a
minor configuration issue. Please contact us by e-mail at deitel@deitel.com or by post-
ing a question to:

• Facebook®—facebook.com/DeitelFan

• Google+™—google.com/+DeitelFan

and we’ll help you resolve the issue.

You’ve now installed all the software and downloaded the code examples you’ll need
to study Android app development with Android How to Program, 2/e and to begin devel-
oping your own apps. Enjoy!

www.pearsonglobaleditions.com/Deitel

http://www.deitel.com/newsletter/subscribe.html

A04_DEIT3397_02_SE_BYB.fm Page 37 Monday, July 7, 2014 8:45 AM

A04_DEIT3397_02_SE_BYB.fm Page 38 Monday, July 7, 2014 8:45 AM

1Introduction to Android

O b j e c t i v e s
In this chapter you’ll be

introduced to:

■ The history of Android and
the Android SDK.

■ Google Play Store for
downloading apps.

■ The Android packages used
in this book to help you
create Android apps.

■ Basic object-technology
concepts.

■ Key software for Android app
development, including the
Android SDK, the Java SDK,
the Eclipse integrated
development environment
(IDE) and Android Studio.

■ Important Android
documentation.

■ Test-driving an Android
drawing app in Eclipse (in the
print book) and in Android
Studio (online).

■ Characteristics of great
Android apps.

M01_DEIT3397_02_SE_C01.fm Page 39 Tuesday, July 8, 2014 8:21 AM

40 Chapter 1 Introduction to Android

1.1 Introduction
Welcome to Android app development! We hope that working with Android How to Pro-
gram, 2/e will be an informative, challenging, entertaining and rewarding experience for you.

This portion of the book is geared toward students with Java programming experience.
We use only complete working apps, so if you don’t know Java but have object-oriented
programming experience in another language, such as C#, Objective-C/Cocoa or C++
(with class libraries), you should be able to master the material quickly, learning Java and
Java-style object-oriented programming as you learn Android app development. If you do
not know Java, we also provide a friendly, rich introduction to it in the book’s appendices.

App-Driven Approach
We use an app-driven approach—new features are discussed in the context of complete
working Android apps, with one app per chapter. For each app, we first describe it, then
have you test-drive it. Next, we briefly overview the key Eclipse IDE (integrated develop-
ment environment), Java and Android SDK (Software Development Kit) technologies we
use to implement the app. For apps that require it, we walk through designing the GUI
visually using Eclipse. Then we provide the complete source-code listing, using line num-
bers, syntax shading and code highlighting to emphasize the key portions of the code. We
also show one or more screen shots of the running app. Then we do a detailed code walk-
through, emphasizing the new programming concepts introduced in the app. You can
download the source code for all of the book’s apps from http://www.deitel.com/
books/AndroidHTP2/.

1.1 Introduction
1.2 Android—The World’s Leading

Mobile Operating System
1.3 Android Features
1.4 Android Operating System

1.4.1 Android 2.2 (Froyo)
1.4.2 Android 2.3 (Gingerbread)
1.4.3 Android 3.0 through 3.2

(Honeycomb)
1.4.4 Android 4.0 through 4.0.4 (Ice Cream

Sandwich)
1.4.5 Android 4.1–4.3 (Jelly Bean)
1.4.6 Android 4.4 (KitKat)

1.5 Downloading Apps from Google Play
1.6 Packages
1.7 Android Software Development Kit

(SDK)
1.8 Object-Oriented Programming: A

Quick Refresher

1.8.1 The Automobile as an Object
1.8.2 Methods and Classes
1.8.3 Instantiation
1.8.4 Reuse
1.8.5 Messages and Method Calls
1.8.6 Attributes and Instance Variables
1.8.7 Encapsulation
1.8.8 Inheritance
1.8.9 Object-Oriented Analysis and Design

(OOAD)
1.9 Test-Driving the Doodlz App in an

Android Virtual Device (AVD)
1.9.1 Running the Doodlz App in the

Nexus 4 Smartphone AVD
1.9.2 Running the Doodlz App in a Tablet

AVD
1.9.3 Running the Doodlz App on an

Android Device
1.10 Building Great Android Apps
1.11 Android Development Resources
1.12 Wrap-Up

Self-Review Exercises | Answers to Self-Review Exercises | Exercises

M01_DEIT3397_02_SE_C01.fm Page 40 Monday, July 7, 2014 8:53 AM

1.2 Android—The World’s Leading Mobile Operating System 41

For each chapter, we also provide Android Studio IDE versions of any Eclipse-specific
instructions. Because Android Studio is an early access version and will be evolving rap-
idly, we provide the Android Studio instructions on the book’s website

This will enable us to keep the instructions up to date.

1.2 Android—The World’s Leading Mobile Operating
System
Android device sales are growing quickly, creating enormous opportunities for Android
app developers.

• The first-generation Android phones were released in October 2008. By October
2013, a Strategy Analytics report showed that Android had 81.3% of the global
smartphone market share, compared to 13.4% for Apple, 4.1% for Microsoft and
1% for Blackberry.1

• According to an IDC report, by the end of the first quarter of 2013 Android had
56.5% of the global tablet market share, compared to 39.6% for Apple’s iPad and
3.7% for Microsoft Windows tablets.2

• As of April 2013, more than 1.5 million Android devices (including smart-
phones, tablets, etc.) were being activated daily.3

• At the time of this writing, there were over one billion activated Android devices.4

• Android devices now include smartphones, tablets, e-readers, robots, jet engines,
NASA satellites, game consoles, refrigerators, televisions, cameras, health-care de-
vices, smartwatches, automobile in-vehicle “infotainment” systems (for control-
ling the radio, GPS, phone calls, thermostat, etc.) and more.5

1.3 Android Features

Openness and Open Source
One benefit of developing Android apps is the openness of the platform. The operating sys-
tem is open source and free. This allows you to view Android’s source code and see how its
features are implemented. You can also contribute to Android by reporting bugs (see http:/
/source.android.com/source/report-bugs.html) or by participating in the Open Source
Project discussion groups (http://source.android.com/community/index.html). Nu-
merous open-source Android apps from Google and others are available on the Internet

http://www.deitel.com/books/AndroidHTP2

1. http://blogs.strategyanalytics.com/WSS/post/2013/10/31/Android-Captures-Record-
81-Percent-Share-of-Global-Smartphone-Shipments-in-Q3-2013.aspx.

2. http://www.idc.com/getdoc.jsp?containerId=prUS24093213.
3. http://www.technobuffalo.com/2013/04/16/google-daily-android-activations-1-5-

million.
4. http://venturebeat.com/2013/09/03/android-hits-1b-activations-and-will-be-called-

kitkat-in-next-version.
5. http://www.businessweek.com/articles/2013-05-29/behind-the-internet-of-things-is-

android-and-its-everywhere.

M01_DEIT3397_02_SE_C01.fm Page 41 Monday, July 7, 2014 8:53 AM

42 Chapter 1 Introduction to Android

(Fig. 1.1). Figure 1.2 shows you where you can get the Android source code, learn about the
philosophy behind the open-source operating system and get licensing information.

The openness of the platform spurs rapid innovation. Unlike Apple’s proprietary iOS,
which is available only on Apple devices, Android is available on devices from dozens of orig-

URL Description

http://en.wikipedia.org/wiki/

List_of_open_source_Android

_applications

Extensive list of open-source apps, organized by cate-
gory (e.g., games, communication, emulators, multime-
dia, security).

http://developer.android.com/

tools/samples/index.html

Google’s sample apps for the Android platform;
includes over 60 apps and games such as Lunar Lander,
Snake and Tic Tac Toe.

http://github.com/ GitHub allows you to share your apps and source code
and contribute to others’ open-source projects.

http://sourceforge.net SourceForge also allows you to share apps and source
code and contribute to others’ open-source projects.

http://f-droid.org/ Hundreds of free and open-source Android apps
including the Adblock Plus advertisement blocker,
aMetro public transportation navigation, AnySoftKey-
board (available in several languages), Apollo music
player, Chinese Checkers game, DroidWeight weight
tracker, Earth Live Wallpaper and more.

http://blog.interstellr.com/

post/39321551640/14-great-

android-apps-that-are-also-

open-source

Lists 14 open-source Android apps with links to the
code.

http://www.openintents.org/

en/libraries

Provides nearly 100 open-source libraries that can be
used to enhance app capabilities.

http://www.androidviews.net Customized GUI controls for enhancing your app’s
appearance.

http://www.stackoverflow.com Stack Overflow is a question-and-answer website for
programmers. Users can vote on each answer, and the
best responses rise to the top.

Fig. 1.1 | Open-source Android app and library resource sites.

 Title URL

Get Android Source Code http://source.android.com/source/downloading.html

Governance Philosophy http://source.android.com/about/philosophy.html

Licenses http://source.android.com/source/licenses.html

FAQs http://source.android.com/source/faqs.html

Fig. 1.2 | Resources and source code for the open-source Android operating system.

M01_DEIT3397_02_SE_C01.fm Page 42 Monday, July 7, 2014 8:53 AM

1.3 Android Features 43

inal equipment manufacturers (OEMs) and through numerous telecommunications carriers
worldwide. The intense competition among OEMs and carriers benefits customers.

Java
Android apps are developed with Java—one of the world’s most widely used programming
languages. Java was a logical choice for the Android platform, because it’s powerful, free,
open source and millions of developers already know it. Experienced Java programmers
can quickly dive into Android development, using Google’s Android APIs (Application
Programming Interfaces) and others available from third parties.

Java is object oriented and has access to extensive class libraries that help you develop
powerful apps quickly. GUI programming in Java is event driven—in this book, you’ll
write apps that respond to various user-initiated events such as screen touches. In addition
to directly programming portions of your apps, you’ll also use the Eclipse and Android
Studio IDEs to conveniently drag and drop predefined objects such as buttons and text-
boxes into place on your screen, and label and resize them. Using these IDEs, you can
create, run, test and debug Android apps quickly and conveniently.

Multi-touch Screen
Android smartphones wrap the functionality of a mobile phone, Internet client, MP3
player, gaming console, digital camera and more into a handheld device with full-color
multi-touch screens. With the touch of your fingers, you can navigate easily between using
your phone, running apps, playing music, web browsing and more. The screen can display
a keyboard for typing e-mails and text messages and entering data in apps (some Android
devices also have physical keyboards).

Gestures
The multi-touch screens allow you to control the device with gestures involving one touch
or multiple simultaneous touches (Fig. 1.3).

Gesture name Physical action Used to

Touch Tap the screen once. Open an app, “press” a button or a menu item.

Double touch Tap the screen twice. Zoom in on pictures, Google Maps and web
pages. Tap the screen twice again to zoom back
out.

Long press Touch the screen and hold
your finger in position.

Select items in a view—for example, checking
an item in a list.

Swipe Touch the screen, then move
your finger in the swipe
direction and release.

Flip item-by-item through a series, such as
photos. A swipe automatically stops at the next
item.

Drag Touch and drag your finger
across the screen.

Move objects or icons, or scroll through a web
page or list.

Pinch zoom Pinch two fingers together,
or spread them apart.

Zoom in and out on the screen (e.g., resizing
text and pictures).

Fig. 1.3 | Some common android gestures.

M01_DEIT3397_02_SE_C01.fm Page 43 Monday, July 7, 2014 8:53 AM

44 Chapter 1 Introduction to Android

Built-in Apps
Android devices come with several default apps, which may vary, depending on the device,
the manufacturer or the mobile service carrier. These typically include Phone, People,
Email, Browser, Camera, Photos, Messaging, Calendar, Play Store, Calculator and more.

Web Services
Web services are software components stored on one computer that can be accessed by an
app (or other software component) on another computer over the Internet. With web ser-
vices, you can create mashups, which enable you to rapidly develop apps by quickly combin-
ing complementary web services, often from different organizations and possibly other forms
of information feeds. For example, 100 Destinations (www.100destinations.co.uk) com-
bines the photos and tweets from Twitter with the mapping capabilities of Google Maps to
allow you to explore countries around the world through the photos of others.

Programmableweb (http://www.programmableweb.com/) provides a directory of
over 9,400 APIs and 7,000 mashups, plus how-to guides and sample code for creating
your own mashups. Figure 1.4 lists some popular web services. According to Programma-
bleweb, the three most widely used APIs for mashups are Google Maps, Twitter and You-
Tube.

Web services source How it’s used

Google Maps Mapping services
Twitter Microblogging
YouTube Video search
Facebook Social networking
Instagram Photo sharing
Foursquare Mobile check-in
LinkedIn Social networking for business
Groupon Social commerce
Netflix Movie rentals
eBay Internet auctions
Wikipedia Collaborative encyclopedia
PayPal Payments
Last.fm Internet radio
Amazon eCommerce Shopping for books and lots of other products
Salesforce.com Customer Relationship Management (CRM)
Skype Internet telephony
Microsoft Bing Search
Flickr Photo sharing
Zillow Real-estate pricing
Yahoo Search Search
WeatherBug Weather

Fig. 1.4 | Some popular web services (http://www.programmableweb.com/apis/
directory/1?sort=mashups).

M01_DEIT3397_02_SE_C01.fm Page 44 Monday, July 7, 2014 8:53 AM

1.4 Android Operating System 45

1.4 Android Operating System
The Android operating system was developed by Android, Inc., which was acquired by
Google in 2005. In 2007, the Open Handset Alliance™—which now has 84 company
members (http://www.openhandsetalliance.com/oha_members.html)—was formed to
develop, maintain and evolve Android, driving innovation in mobile technology and im-
proving the user experience while reducing costs.

Android Version Naming Convention
Each new version of Android is named after a dessert, going in alphabetical order
(Fig. 1.5).

1.4.1 Android 2.2 (Froyo)
Android 2.2 (also called Froyo, released in May 2010) introduced external storage, allow-
ing you to store apps on an external memory device rather than just in the Android device’s
internal memory. It also introduced the Android Cloud to Device Messaging (C2DM)
service. Cloud computing allows you to use software and data stored in the “cloud”—i.e.,
accessed on remote computers (or servers) via the Internet and available on demand—rath-
er than having it stored on your desktop, notebook computer or mobile device. Cloud
computing gives you the flexibility to increase or decrease computing resources to meet
your resource needs at any given time, making it more cost effective than purchasing ex-
pensive hardware to ensure that you have enough storage and processing power for occa-
sional peak levels. Android C2DM allows app developers to send data from their servers
to their apps installed on Android devices, even when the apps are not currently running.
The server notifies the apps to contact it directly to receive updated app or user data.6

C2DM is now deprecated in favor of Google Cloud Messaging.
For information about additional Android 2.2 features—OpenGL ES 2.0 graphics

capabilities, the media framework and more—visit http://developer.android.com/
about/versions/android-2.2-highlights.html.

Android version Name

Android 1.5 Cupcake

Android 1.6 Donut

Android 2.0–2.1 Eclair

Android 2.2 Froyo

Android 2.3 Gingerbread

Android 3.0–3.2 Honeycomb

Android 4.0 Ice Cream Sandwich

Android 4.1–4.3 Jelly Bean

Android 4.4 KitKat

Fig. 1.5 | Android version numbers and the corresponding names.

6. http://code.google.com/android/c2dm/.

M01_DEIT3397_02_SE_C01.fm Page 45 Monday, July 7, 2014 8:53 AM

46 Chapter 1 Introduction to Android

1.4.2 Android 2.3 (Gingerbread)
Android 2.3 (Gingerbread), released later in 2010, added more user refinements, such as
a redesigned keyboard, improved navigation capabilities, increased power efficiency and
more. It also added several developer features for communications (e.g., technologies that
make it easier to make and receive calls from within an app), multimedia (e.g., new audio
and graphics APIs) and gaming (e.g., improved performance and new sensors, such as a
gyroscope for better motion processing).

One of the most significant new features in Android 2.3 was support for near-field
communication (NFC)—a short-range wireless connectivity standard that enables com-
munication between two devices within a few centimeters. NFC support and features vary
by Android device. NFC can be used for payments (for example, touching your NFC-
enabled Android device to a payment device on a soda machine), exchanging data such as
contacts and pictures, pairing devices and accessories and more.

For a more Android 2.3 developer features, see http://developer.android.com/
about/versions/android-2.3-highlights.html.

1.4.3 Android 3.0 through 3.2 (Honeycomb)
Android 3.0 (Honeycomb) included user-interface improvements specifically for large-
screen devices (e.g., tablets), such as a redesigned keyboard for more efficient typing, a vi-
sually appealing 3D user interface, easier navigation between screens within an app and
more. New Android 3.0 developer features included:

• fragments, which describe portions of an app’s user interface and can be com-
bined into one screen or used across multiple screens

• a persistent Action Bar at the top of the screen providing users with options for
interacting with apps

• the ability to add large-screen layouts to existing apps designed for small screens
to optimize your app for use on different screen sizes

• a visually attractive and more functional user interface, known as “Holo” for its
holographic look and feel

• a new animation framework

• improved graphics and multimedia capabilities

• ability to use multicore processor architectures for enhanced performance

• increased Bluetooth support (e.g., enabling an app to determine if there are any
connected devices such as headphones or a keyboard)

• and an animation framework for animating user-interface or graphics objects.

For a list of Android 3.0 user and developer features and platform technologies, go to
http://developer.android.com/about/versions/android-3.0-highlights.html.

1.4.4 Android 4.0 through 4.0.4 (Ice Cream Sandwich)
Android 4.0 (Ice Cream Sandwich), released in 2011, merged Android 2.3 (Gingerbread)
and Android 3.0 (Honeycomb) into one operating system for use on all Android devices.
This allowed you to incorporate into your smartphone apps Honeycomb’s features that

M01_DEIT3397_02_SE_C01.fm Page 46 Monday, July 7, 2014 8:53 AM

1.4 Android Operating System 47

previously were available only on tablets—the “Holo” user interface, a new launcher (used
to customize the device’s home screen and launch apps) and more—and easily scale your
apps to work on different devices. Ice Cream Sandwich also added several APIs for im-
proved communication between devices, accessibility for users with disabilities (e.g., vision
impairments), social networking and more (Fig. 1.6). For a complete list of Android 4.0
APIs, see http://developer.android.com/about/versions/android-4.0.html.

1.4.5 Android 4.1–4.3 (Jelly Bean)
Android Jelly Bean, released in 2012, includes support for external displays, improved se-
curity, appearance enhancements (e.g., resizable app widgets and larger app notifications)
and performance improvements that make switching between apps and screens more
seamless (Fig. 1.7). For the Jelly Bean features list, see http://developer.android.com/
about/versions/jelly-bean.html.

Feature Description

Face detection Using the camera, compatible devices can determine the posi-
tioning of the user’s eyes, nose and mouth. The camera can also
track the user’s eye movement, allowing you to create apps that
change perspective, based on where the user is looking.

Virtual camera operator When filming video of multiple people, the camera will auto-
matically focus on the person who is speaking.

Android Beam Using NFC, Android Beam allows you to touch two Android
devices to share content (e.g., contacts, pictures, videos).

Wi-Fi Direct Wi-Fi P2P (peer-to-peer) APIs allow you to connect multiple
Android devices using Wi-Fi. The devices can communicate
wirelessly at a greater distance than when using Bluetooth.

Social API Access and share contact information across social networks and
apps (with the user’s permission).

Calendar API Add and share events across multiple apps, manage alerts and
attendees and more.

Accessibility APIs Use the new Accessibility Text-to-Speech APIs to enhance the
user experience of your apps for people with disabilities such as
vision impairments and more. The explore-by-touch mode
allows users with vision impairments to touch anywhere on the
screen and hear a voice description of the touched content.

Android@Home frame-
work

Use the Android@Home framework to create apps that control
appliances in users’ homes, such as, thermostats, irrigation sys-
tems, networked light bulbs and more.

Bluetooth Health
Devices

Create apps that communicate with Bluetooth health devices
such as scales, heart-rate monitors and more.

Fig. 1.6 | Some Android Ice Cream Sandwich developer features
(http://developer.android.com/about/versions/android-4.0.html).

M01_DEIT3397_02_SE_C01.fm Page 47 Monday, July 7, 2014 8:53 AM

48 Chapter 1 Introduction to Android

1.4.6 Android 4.4 (KitKat)
Android 4.4 KitKat, released in October 2013, includes several performance improvements
that make it possible to run the operating system on all Android devices, including older,
memory-constrained devices, which are particularly popular in developing countries.7

Enabling more users to update to KitKat will reduce the “fragmentation” of Android
versions in the market, which has been a challenge for developers who previously had to
design apps to run across multiple versions of the operating system, or limit their potential
market by targeting their apps to a specific version of the operating system.

Android KitKat also includes security and accessibility enhancements, improved
graphics and multimedia capabilities, memory-use analysis tools and more. Figure 1.8 lists
some of the key new KitKat features. For a complete list, see

Feature Description

Android Beam You can use Android Beam to easily pair your smartphone or tablet with wire-
less Bluetooth® speakers or special headphones.

Lock screen widgets Create widgets that appear on the user’s screen when the device is locked, or
modify your existing home-screen widgets so that they’re also visible when the
device is locked.

Photo Sphere APIs for working with the new panoramic photo features that enable users to
take 360-degree photos, similar to those used for Google Maps Street View.

Daydreams Daydreams are interactive screensavers that are activated when a device is
docked or charging. Daydreams can play audio and video and respond to user
interactions.

Language support New features help your apps reach international users, such as bidirectional
text (left-to-right or right-to-left), international keyboards, additional key-
board layouts and more.

Developer options Several new tracking and debugging features help you improve your apps,
such as bug reports that include a screen shot and device state information.

Fig. 1.7 | Some Android Jelly Bean features (http://developer.android.com/about/
versions/jelly-bean.html).

7. http://techcrunch.com/2013/10/31/android-4-4-kitkat-google/.

http://developer.android.com/about/versions/kitkat.html

Feature Description

Immersive mode The status bar at the top of the screen and the menu buttons at the
bottom can be hidden, allowing your apps to fill more of the screen.
Users can access the status bar by swiping down from the top of the
screen, and the system bar (with the back button, home button and
recent apps button) by swiping up from the bottom.

Fig. 1.8 | Some Android KitKat features (http://developer.android.com/about/
versions/kitkat.html). (Part 1 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 48 Monday, July 7, 2014 8:53 AM

1.5 Downloading Apps from Google Play 49

1.5 Downloading Apps from Google Play
At the time of this writing, there were over one million apps in Google Play, and the number
is growing quickly.8 Figure 1.9 lists some popular free and fee-based apps. You can download
apps through the Play Store app installed on the device. You can also log into your Google
Play account at http://play.google.com through your web browser, then specify the An-
droid device on which to install the app. It will then download via the device’s WiFi or 3G/
4G connection. In Chapter 9, Google Play and App Business Issues, we discuss additional
app stores, offering your apps for free or charging a fee, app pricing and more.

Printing framework Build printing functionality into your apps, including locating
available printers over Wi-Fi or the cloud, selecting the paper size
and specifying which pages to print.

Storage access framework Create document storage providers that allow users to browse, cre-
ate and edit files (e.g., documents and images) across multiple
apps.

SMS provider Create SMS (Short Message Service) or MMS (Multimedia Mes-
saging Service) apps using the new SMS provider and APIs. Users
can now select their default messaging app.

Transitions framework The new framework makes it easier to create transition anima-
tions.

Screen recording Record video of your app in action to create tutorials and market-
ing materials.

Enhanced accessibility The captioning manager API allows apps to check the user's cap-
tioning preferences (e.g., language, text styles and more).

Chromium WebView Supports the latest standards for displaying web content including
HTML5, CSS3 and a faster version of JavaScript.

Step detector and step
counter

Create apps that detect whether the user is running, walking or
climbing stairs and count the number of steps.

Host Card Emulator
(HCE)

HCE enables any app to perform secure NFC transactions (e.g.,
mobile payments) without the need for a secure element on the
SIM card controlled by the wireless carrier.

8. en.wikipedia.org/wiki/Google_Play.

Google Play category Some popular apps in the category

Books and Reference Kindle, Wikipedia, Audible for Android, Google Play Books

Business Office Suite Pro 7, Job Search, Square Register, GoToMeeting

Fig. 1.9 | Some popular Android apps in Google Play. (Part 1 of 2.)

Feature Description

Fig. 1.8 | Some Android KitKat features (http://developer.android.com/about/
versions/kitkat.html). (Part 2 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 49 Monday, July 7, 2014 8:53 AM

50 Chapter 1 Introduction to Android

1.6 Packages
Android uses a collection of packages, which are named groups of related, predefined classes.
Some of the packages are Android specific, some are Java specific and some are Google spe-
cific. These packages allow you to conveniently access Android OS features and incorporate
them into your apps. The Android packages help you create apps that adhere to Android’s
unique look-and-feel conventions and style guidelines (http://developer.android.com/
design/index.html). Figure 1.10 lists the packages we discuss in this book. For a complete
list of Android packages, see developer.android.com/reference/packages.html.

Comics ComicRack, Memedroid Pro, Marvel Comics, Comic Strips

Communication Facebook Messenger, Skype™, GrooVe IP

Education Duolingo: Learn Languages Free, TED, Mobile Observatory

Entertainment SketchBook Mobile, Netflix, Fandango® Movies, iFunny :)

Finance Mint.com Personal Finance, Google Wallet, PayPal

Games: Arcade & Action Minecraft—Pocket Edition, Fruit Ninja, Angry Birds

Games: Brain & Puzzle Where’s My Water?, Draw Something, Can You Escape

Games: Cards & Casino Solitaire, Slots Delux, UNO™ & Friends, DH Texas Poker

Games: Casual Candy Crush Saga, Hardest Game Ever 2, Game Dev Story

Health & Fitness RunKeeper, Calorie Counter, Workout Trainer, WebMD®

Lifestyle Zillow Real Estate, Epicurious Recipe App, Family Locator

Live Wallpaper PicsArt, GO Launcher EX, Beautiful Widgets Pro

Media & Video MX Player, YouTube, KeepSafe Vault, RealPlayer®

Medical Epocrates, ICE: In Case of Emergency, Medscape®

Music & Audio Pandora®, Shazam, Spotify, Ultimate Guitar Tabs & Chords

News & Magazines Flipboard, Pulse News, CNN, Engadget, Drippler

Personalization Beautiful Widgets Pro, Zedge™, GO Launcher EX

Photography Camera ZOOM FX, Photo Grid, InstaPicFrame for Instagram

Productivity Adobe® Reader®, Dropbox, Google Keep, SwiftKey Keyboard

Shopping eBay, Amazon Mobile, Groupon, The Coupons App

Social Facebook®, Instagram, Vine, Twitter, Snapchat, Pinterest

Sports SportsCenter for Android, NFL ’13, Team Stream™

Tools Titanium Backup PRO, Google Translate, Tiny Flashlight®

Transportation Uber, Trapster, Lyft, Hailo™, Ulysse Speedometer

Travel & Local Waze, GasBuddy, KAYAK, TripAdvisor, OpenTable®

Weather WeatherBug, AccuWeather, The Weather Channel

Widgets Zillow, DailyHoroscope, Starbucks, Family Locator

Google Play category Some popular apps in the category

Fig. 1.9 | Some popular Android apps in Google Play. (Part 2 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 50 Monday, July 7, 2014 8:53 AM

1.7 Android Software Development Kit (SDK) 51

1.7 Android Software Development Kit (SDK)
The Android SDK provides the tools you’ll need to build Android apps. It’s available at
no charge through the Android Developers’ site. See the Before You Begin section for de-
tails on downloading the Android app-development tools you’ll need to develop Android
apps, including the Java SE, the Android SDK/ADT Bundle (which includes the Eclipse
IDE) and the Android Studio IDE.

Package Description

android.app Includes high-level classes in the Android app model. (Chapter 3’s Tip
Calculator app.)

android.content Access and publish data on a device. (Chapter 6’s Cannon Game app.)
android.content.res Classes for accessing app resources (e.g., media, colors, drawables, etc.),

and device-configuration information affecting app behavior.
(Chapter 5’s Flag Quiz app.)

android.database Handling data returned by the content provider. (Chapter 8’s Address
Book app.)

android.database.sqlite SQLite database management for private databases. (Chapter 8’s
Address Book app.)

android.graphics Graphics tools used for drawing to the screen. (Chapter 5’s Flag Quiz
app and Chapter 7’s Doodlz app.)

android.hardware Device hardware support. (Chapter 7’s Doodlz app.)
android.media Classes for handling audio and video media interfaces. (Chapter 6’s

Cannon Game app.)
android.net Network access classes. (Chapter 4’s Twitter® Searches app.)
android.os Operating-systems services. (Chapter 3’s Tip Calculator app.)
android.preference Working with an app’s user preferences. (Chapter 5’s Flag Quiz app.)
android.provider Access to Android content providers. (Chapter 7’s Doodlz app.)
android.support.

 v4.print
Android Support Library features for using the Android 4.4 printing
framework. (Chapter 7’s Doodlz app.)

android.text Rendering and tracking text on a device. (Chapter 3’s Tip Calculator app.)
android.util Utility methods and XML utilities. (Chapter 6’s Cannon Game app.)
android.widget User-interface classes for widgets. (Chapter 3’s Tip Calculator app.)
android.view User interface classes for layout and user interactions. (Chapter 4’s Twit-

ter® Searches app.)
java.io Streaming, serialization and file-system access of input and output facil-

ities. (Chapter 5’s Flag Quiz app.)
java.text Text formatting classes. (Chapter 4’s Twitter® Searches app.)
java.util Utility classes. (Chapter 4’s Twitter® Searches app.)
android.graphics.

 drawable
Classes for display-only elements (e.g., gradients, etc.). (Chapter 5’s
Flag Quiz app.)

Fig. 1.10 | Android and Java packages used in this book, listed with the chapter in which they
first appear.

M01_DEIT3397_02_SE_C01.fm Page 51 Monday, July 7, 2014 8:53 AM

52 Chapter 1 Introduction to Android

Android SDK/ADT Bundle
The Android SDK/ADT Bundle—which includes the Eclipse IDE—is the most widely
integrated development environment for Android development. Some developers use only
a text editor and command-line tools to create Android apps. The Eclipse IDE includes:

• Code editor with support for syntax coloring and line numbering

• Auto-indenting and auto-complete (i.e., type hinting)

• Debugger

• Version control system

• Refactoring support

You’ll use Eclipse in Section 1.9 to test-drive the Doodlz app. Starting in Chapter 2, Wel-
come App, you’ll use Eclipse to build apps.

Android Studio
Android Studio, a new Android IDE based on the JetBrains IntelliJ IDEA Java IDE
(http://www.jetbrains.com/idea/), was announced in 2013 and is Google’s preferred
Android IDE of the future. At the time of this writing, Android Studio was available only
as an early access preview—many of its features were still under development. For each
chapter, we also provide Android Studio versions of any Eclipse-specific instructions on
the book’s website

To learn more about Android Studio, installing it and migrating from Eclipse, visit http:/
/developer.android.com/sdk/installing/studio.html.

Android Development Tools (ADT) Plugin for Eclipse
The Android Development Tools (ADT) Plugin for Eclipse (part of the Android SDK/
ADT Bundle) allows you to create, run and debug Android apps, export them for distri-
bution (e.g., upload them to Google Play), and more. ADT also includes a visual GUI de-
sign tool. GUI components can be dragged and dropped into place to form GUIs without
any coding. You’ll learn more about ADT in Chapter 2.

The Android Emulator
The Android emulator, included in the Android SDK, allows you to run Android apps in a
simulated environment within Windows, Mac OS X or Linux, without using an actual An-
droid device. The emulator displays a realistic Android user-interface window. It’s particu-
larly useful if you do not have access to Android devices for testing. You should certainly test
your apps on a variety of Android devices before uploading them to Google Play.

Before running an app in the emulator, you’ll need to create an Android Virtual
Device (AVD), which defines the characteristics of the device on which you want to test,
including the hardware, system image, screen size, data storage and more. If you want to
test your apps for multiple Android devices, you’ll need to create separate AVDs to emu-
late each unique device, or use a service (like testdroid.com or appthwack.com) that
enables you to test on many different devices.

We used the emulator (not an actual Android device) to take most but not all of the
Android screen shots for this book. You can reproduce on the emulator most of the

http://www.deitel.com/books/AndroidHTP2

M01_DEIT3397_02_SE_C01.fm Page 52 Monday, July 7, 2014 8:53 AM

1.7 Android Software Development Kit (SDK) 53

Android gestures (Fig. 1.11) and controls (Fig. 1.12) using your computer’s keyboard and
mouse. The gestures on the emulator are a bit limited, since your computer probably
cannot simulate all the Android hardware features. For example, to test GPS apps in the
emulator, you’ll need to create files that simulate GPS readings. Also, although you can
simulate orientation changes (to portrait or landscape mode), simulating particular accel-
erometer readings (the accelerometer allows the device to respond to up/down, left/right
and forward/backward acceleration) requires features that are not built into the emulator.
There is a Sensor Simulator available at

that you can use to send simulated sensor information into an AVD to test other sensor
features in your apps. Figure 1.13 lists Android functionality that’s not available on the
emulator. You can, however, upload your app to an Android device to test these features.
You’ll start creating AVDs and using the emulator to develop Android apps in Chapter 2’s
Welcome app.

https://code.google.com/p/openintents/wiki/SensorSimulator

Gesture Emulator action

Touch Click the mouse once. Introduced in Chapter 3’s Tip Calculator app.

Double touch Double click the mouse. Introduced in Chapter 6’s Cannon Game app.

Long press Click and hold the mouse.

Drag Click, hold and drag the mouse. Introduced in Chapter 6’s Cannon
Game app.

Swipe Click and hold the mouse, move the pointer in the swipe direction and
release the mouse. Introduced in Chapter 8’s Address Book app.

Pinch zoom Press and hold the Ctrl (Control) key. Two circles that simulate the two
touches will appear. Move the circles to the start position, click and
hold the mouse and drag the circles to the end position.

Fig. 1.11 | Android gestures on the emulator.

Control Emulator action

Back Esc

Call/dial button F3

Camera Ctrl-KEYPAD_5, Ctrl-F3

End call button F4

Home Home button

Menu (left softkey) F2 or Page Up button

Power button F7

Fig. 1.12 | Android hardware controls on the emulator (for additional controls,
go to http://developer.android.com/tools/help/emulator.html). (Part 1 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 53 Monday, July 7, 2014 8:53 AM

54 Chapter 1 Introduction to Android

1.8 Object-Oriented Programming: A Quick Refresher
Android uses object-oriented programming techniques, so in this section we review the ba-
sics of object technology. We use all of these concepts in this book.

Building software quickly, correctly and economically remains an elusive goal at a
time when demands for new and more powerful software are soaring. Objects, or more pre-
cisely the classes objects come from, are essentially reusable software components. There are
date objects, time objects, audio objects, video objects, automobile objects, people objects,
etc. Almost any noun can be reasonably represented as a software object in terms of attri-
butes (e.g., name, color and size) and behaviors (e.g., calculating, moving and communi-
cating). Software developers are discovering that using a modular, object-oriented design-
and-implementation approach can make software development groups much more pro-
ductive than they could be with earlier popular techniques like “structured program-
ming”—object-oriented programs are often easier to understand, correct and modify.

Search F5

* (right softkey) Shift-F2 or Page Down button

Rotate to previous orientation KEYPAD_7, Ctrl-F11

Rotate to next orientation KEYPAD_9, Ctrl-F12

Toggle cell networking on/off F8

Volume up button KEYPAD_PLUS, Ctrl-F5

Volume down button KEYPAD_MINUS, Ctrl-F6

Android functionality not available on the emulator

• Making or receiving real phone calls (the emulator allows simulated calls only)

• Bluetooth

• USB connections

• Device-attached headphones

• Determining connected state of the phone

• Determining battery charge or power charging state

• Determining SD card insert/eject

• Sensors (accelerometer, barometer, compass, light sensor, proximity sensor)

Fig. 1.13 | Android functionality not available on the emulator
(http://developer.android.com/tools/devices/emulator.html).

Control Emulator action

Fig. 1.12 | Android hardware controls on the emulator (for additional controls,
go to http://developer.android.com/tools/help/emulator.html). (Part 2 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 54 Monday, July 7, 2014 8:53 AM

1.8 Object-Oriented Programming: A Quick Refresher 55

1.8.1 The Automobile as an Object
To help you understand objects and their contents, let’s begin with a simple analogy. Sup-
pose you want to drive a car and make it go faster by pressing its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car, someone has to design it.
A car typically begins as engineering drawings, similar to the blueprints that describe the
design of a house. These drawings include the design for an accelerator pedal. The pedal
hides from the driver the complex mechanisms that actually make the car go faster, just as
the brake pedal hides the mechanisms that slow the car, and the steering wheel hides the
mechanisms that turn the car. This enables people with little or no knowledge of how en-
gines, braking and steering mechanisms work to drive a car easily.

Just as you cannot cook meals in the kitchen of a blueprint, you cannot drive a car’s
engineering drawings. Before you can drive a car, it must be built from the engineering
drawings that describe it. A completed car has an actual accelerator pedal to make it go
faster, but even that’s not enough—the car won’t accelerate on its own (hopefully!), so the
driver must press the pedal to accelerate the car.

1.8.2 Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-
ments that actually perform its tasks. The method hides these statements from its user, just
as the accelerator pedal of a car hides from the driver the mechanisms of making the car
go faster. A program unit called a class houses the methods that perform the class’s tasks.
For example, a class that represents a bank account might contain one method to deposit
money to an account, another to withdraw money from an account and a third to inquire
what the account’s current balance is. A class is similar in concept to a car’s engineering
drawings, which house the design of an accelerator pedal, steering wheel, and so on.

1.8.3 Instantiation
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object of a class before a program can perform the tasks that
the class’s methods define. The process of doing this is called instantiation. An object is
then referred to as an instance of its class.

1.8.4 Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems, because existing classes and components often have gone through exten-
sive testing, debugging and performance tuning. Just as the notion of interchangeable parts
was crucial to the Industrial Revolution, reusable classes are crucial to the software revolu-
tion that has been spurred by object technology.

1.8.5 Messages and Method Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—that
is, to go faster. Similarly, you send messages to an object. Each message is a method call

M01_DEIT3397_02_SE_C01.fm Page 55 Monday, July 7, 2014 8:53 AM

56 Chapter 1 Introduction to Android

that tells a method of the object to perform its task. For example, a program might call a
particular bank-account object’s deposit method to increase the account’s balance.

1.8.6 Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank-account object has
a balance attribute that represents the amount of money in the account. Each bank-
account object knows the balance in the account it represents, but not the balances of the
other accounts in the bank. Attributes are specified by the class’s instance variables.

1.8.7 Encapsulation
Classes encapsulate (i.e., wrap) attributes and methods into objects—an object’s attributes
and methods are intimately related. Objects may communicate with one another, but
they’re normally not allowed to know how other objects are implemented—implementa-
tion details are hidden within the objects themselves. This information hiding is crucial to
good software engineering.

1.8.8 Inheritance
A new class of objects can be created quickly and conveniently by inheritance—the new class
absorbs the characteristics of an existing one, possibly customizing them and adding unique
characteristics of its own. In our car analogy, a “convertible” certainly is an object of the more
general class “automobile,” but more specifically, the roof can be raised or lowered.

1.8.9 Object-Oriented Analysis and Design (OOAD)
How will you create the code for your programs? Perhaps, like many programmers, you’ll
simply turn on your computer and start typing. This approach may work for small pro-
grams, but what if you were asked to create a software system to control thousands of au-
tomated teller machines for a major bank? Or suppose you were asked to work on a team
of 1,000 software developers building the next U.S. air traffic control system? For projects
so large and complex, you should not simply sit down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., deciding how the system should do it). Ideally,
you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis and design (OOAD) process. Languages like Java are object ori-
ented. Programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

M01_DEIT3397_02_SE_C01.fm Page 56 Monday, July 7, 2014 8:53 AM

1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 57

1.9 Test-Driving the Doodlz App in an Android Virtual
Device (AVD)
In this section, you’ll run and interact with your first Android app. The Doodlz app allows
you to drag your fingers on the screen to “paint.” You can control the brush sizes and col-
ors using options provided in the app’s options menu. There is no need to look at the app’s
code—you’ll build the app and study its code in Chapter 7.

The following steps show how to import the app’s project into Eclipse and how to
test-drive the app in the Nexus 4 Android Virtual Device (AVD) that you set up in the
Before You Begin section following the Preface. Later in this section, we’ll also discuss how
to run the app on a tablet AVD and on an Android device. When the app is running in
an AVD, you can create a new painting by “dragging your finger” anywhere on the canvas.
You “touch” the screen by using the mouse.

Android SDK/ADT Bundle and Android Studio IDEs
The IDE screen captures in the following steps (and throughout this book) were taken on
a computer running Windows 7, the Java SE 7 JDK and the Android SDK/ADT Bundle
that you installed in the Before You Begin section. Because Android Studio is an early ac-
cess version and will be evolving rapidly, we provide the Android Studio instructions for
this test-drive on the book’s website

This will enable us to update the instructions in response to Google’s changes. Both the
Android SDK/ADT Bundle and Android Studio use the same Android emulator, so once
an app is running in an AVD, the steps are identical.

1.9.1 Running the Doodlz App in the Nexus 4 Smartphone AVD
To test-drive the Doodlz app, perform the following steps:

1. Checking your setup. If you have not done so already, perform the steps specified
in the Before You Begin section located after the Preface.

2. Opening Eclipse. Open the eclipse subfolder of the Android SDK/ADT bun-
dle’s installation folder, then double click the Eclipse icon (or , depending
on your platform).

3. Specifying your workspace location. When the Workspace Launcher window ap-
pears, specify where you’d like the apps that you create to be stored, then click
OK. We used the default location—a folder named workspace in your user direc-
tory. A workspace is a collection of projects, and each project is typically an app
or a library that can be shared among apps. Each workspace also has its own set-
tings, such as where various Eclipse subwindows are displayed. You can have
many workspaces and switch between them for different development tasks—for
example, you could have separate workspaces for Android app development, Java
app development and web app development, each with its own custom settings.
If this is your first time opening Eclipse, the Welcome page (Fig. 1.14) is dis-
played.

www.deitel.com/books/AndroidHTP2

M01_DEIT3397_02_SE_C01.fm Page 57 Monday, July 7, 2014 8:53 AM

58 Chapter 1 Introduction to Android

4. Launching the Nexus 4 AVD. For this test-drive, we’ll use the Nexus 4 smart-
phone AVD that you configured for Android 4.4 (KitKat) in the Before You Be-
gin section—in Section 1.9.2, we’ll show the app running in a tablet AVD. An
AVD can take several minutes to load, so you should launch it in advance of
when you intend to use it and keep it running in the background while you’re
building and testing your apps. To launch the Nexus 4 AVD, select Window > An-
droid Virtual Device Manager to display the Android Virtual Device Manager dialog
(Fig. 1.15). Select the Nexus 4 AVD for Android KitKat and click Start…, then
click the Launch button in the Launch Options dialog that appears. You should
not attempt to execute the app until the AVD finishes loading. Once the AVD
appears as shown in Fig. 1.16, unlock the AVD by dragging the mouse pointer
from the lock icon to the edge of the screen.

Fig. 1.14 | Welcome page in Eclipse.

Fig. 1.15 | Android Virtual Device Manager dialog.

M01_DEIT3397_02_SE_C01.fm Page 58 Friday, June 20, 2014 12:18 PM

1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 59

5. Importing the Doodlz app’s project. Select File > Import… to open the Import dialog
(Fig. 1.17(a)). Expand the General node and select Existing Projects into Work-
space, then click Next > to proceed to the Import Projects step (Fig. 1.17(b)).
Click the Browse… button to the right of the Select root directory textbox. In the

Fig. 1.16 | Nexus 4 AVD home screen (for Android 4.4) when the AVD finishes loading.

Fig. 1.17 | Importing an existing project. (Part 1 of 2.)

Drag the mouse pointer
from the lock icon to
the edge of the screen
to unlock the AVD

a) Import dialog

M01_DEIT3397_02_SE_C01.fm Page 59 Monday, July 7, 2014 8:53 AM

60 Chapter 1 Introduction to Android

Browse For Folder dialog, locate the Doodlz folder in the book’s examples folder,
select it and click Open. Click Finish to import the project into Eclipse. The proj-
ect now appears in the Package Explorer window (Fig. 1.18) at the left side of
Eclipse. If the Package Explorer window is not visible, you can view it by selecting
Window > Show View > Package Explorer.

6. Launching the Doodlz app. In Eclipse, right click the Doodlz project in the Pack-
age Explorer window, then select Run As > Android Application (Fig. 1.19). This
will execute Doodlz in the AVD that you launched in Step 4 (Fig. 1.20).

Fig. 1.18 | Package Explorer window.

Fig. 1.17 | Importing an existing project. (Part 2 of 2.)

b) Import dialog’s
Import Projects step

M01_DEIT3397_02_SE_C01.fm Page 60 Monday, July 7, 2014 8:53 AM

1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 61

Fig. 1.19 | Launching the Doodlz app.

Fig. 1.20 | Doodlz app running in the Android Virtual Device (AVD).

Recent apps button

Home button

Back button

App bar Options menu

Status bar

Navigation bar

M01_DEIT3397_02_SE_C01.fm Page 61 Monday, July 7, 2014 8:53 AM

62 Chapter 1 Introduction to Android

7. Exploring the AVD and immersive mode. At the AVD screen’s bottom are vari-
ous soft buttons that appear on the device’s touch screen. You touch these (by
using the mouse in an AVD) to interact with apps and the Android OS. The back
button goes back to the app’s prior screen, or back to a prior app if you’re in the
current app’s initial screen. The home button returns you to the device’s home
screen. The recent apps button allows you to view the recently used apps list, so
that you can switch back to them quickly. At the screen’s top is the app’s app bar,
which displays the app’s icon and name and may contain other app-specific soft
buttons—some appear on the app bar (COLOR and LINE WIDTH in Fig. 1.20) and
the rest appear in the app’s options menu (). The number of options on the app
bar depends on the size of the device—we discuss this in Chapter 7. Android 4.4
supports a new immersive mode that enables apps to use the entire screen. In this
app, you can tap once in the white drawing area to hide the device’s status and
navigation bars as well as the app’s action bar. You can redisplay these by tapping
the drawing area again or by swiping from the top edge of the screen.

8. Understanding the app’s options. To display the options that do not appear on
the app bar, touch (i.e., click) the options menu () icon. Figure 1.21(a) shows
the action bar and options menu on the Nexus 4 AVD and Fig. 1.21(b) shows
them on a Nexus 7 AVD—options shown on the action bar appear in small cap-
ital letters. Touching COLOR displays a GUI for changing the line color. Touch-
ing LINE WIDTH displays a GUI for changing the thickness of the line that will be
drawn. Touching Eraser sets the drawing color to white so that as you draw over
colored areas, the color is erased. Touching Clear first confirms whether you wish
to erase the entire image, then clears the drawing area if you do not cancel the
action. Touching Save Image saves the image into the device’s Gallery of images.
On Android 4.4, touching Print displays a GUI for selecting an available printer
so can print your image or save it as a PDF document (the default). You’ll explore
each of these options momentarily.

Fig. 1.21 | Doodlz options menu expanded.

Doodlz options menu
contents—on tablet
AVDs and devices,
some of these options
might appear directly
on the action bar

Drawing area

a) Action bar and
expanded

options menu on
a Nexus 4 AVD

b) Action bar
and expanded

options menu on
a Nexus 7 AVD

M01_DEIT3397_02_SE_C01.fm Page 62 Monday, July 7, 2014 8:53 AM

1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 63

9. Changing the brush color to red. To change the brush color, first touch COLOR on
the action bar to display the Choose Color dialog (Fig. 1.22). Colors are defined us-
ing the ARGB color scheme in which the alpha (i.e., transparency), red, green and
blue components are specified by integers in the range 0–255. For alpha, 0 means
completely transparent and 255 means completely opaque. For red, green and blue, 0
means none of that color and 255 means the maximum amount of that color. The
GUI consists of Alpha, Red, Green and Blue SeekBars that allow you to select the
amount of alpha, red, green and blue in the drawing color. You drag the SeekBars
to change the color. As you do, the app displays the new color below the SeekBars.
Select a red color now by dragging the Red SeekBar to the right as in Fig. 1.22.
Touch the Set Color button to return to the drawing area.

10. Changing the line width. To change the line width, touch LINE WIDTH on the ac-
tion bar to display the Choose Line Width dialog. Drag the SeekBar for the line
width to the right to thicken the line (Fig. 1.23). Touch the Set Line Width button
to return to the drawing area.

11. Drawing the flower petals. Tap the screen to enter immersive mode, then drag
your “finger”—the mouse when using the emulator—on the drawing area to
draw flower petals (Fig. 1.24).

Fig. 1.22 | Changing the drawing color to red.

Fig. 1.23 | Changing the line thickness.

Set Color button

SeekBars for changing
the alpha (transparency),

red, green and blue
components of the color

Current color (red)

SeekBar for line width

Current line width in the
current drawing color (red)

Set Line Width button

M01_DEIT3397_02_SE_C01.fm Page 63 Monday, July 7, 2014 8:53 AM

64 Chapter 1 Introduction to Android

12. Changing the brush color to dark green. Tap the screen to leave immersive mode
then touch COLOR to display the Choose Color dialog. Select a dark green color
by dragging the Green SeekBar to the right and ensuring that the Red and Blue
SeekBars are at the far left (Fig. 1.25(a)).

13. Changing the line width and drawing the stem and leaves. Touch LINE WIDTH to
display the Choose Line Width dialog. Drag the SeekBar for the line width to the
right to thicken the line (Fig. 1.25(b)). Tap the screen to re-enter immersive

Fig. 1.24 | Drawing flower petals.

Fig. 1.25 | Changing the color to dark green and making the line thicker.

a) Selecting dark green as the drawing color b) Selecting a thicker line

M01_DEIT3397_02_SE_C01.fm Page 64 Monday, July 7, 2014 8:53 AM

1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 65

mode, then draw the flower stem and leaves. Repeat Steps 12 and 13 for a lighter
green color and thinner line, then draw the grass (Fig. 1.26).

14. Finishing the drawing. Tap the screen to exit immersive mode. Next, change the
drawing color to blue (Fig. 1.27(a)) and select a narrower line (Fig. 1.27(b)).
Then tap the screen to enter immersive mode and draw the raindrops (Fig. 1.28).

Fig. 1.26 | Drawing the stem and grass.

Fig. 1.27 | Changing the line color to blue and narrowing the line.

a) Selecting blue as the drawing color b) Selecting a thinner line

M01_DEIT3397_02_SE_C01.fm Page 65 Monday, July 7, 2014 8:53 AM

66 Chapter 1 Introduction to Android

15. Saving the image. You can save your image to the device’s Gallery app by selecting
Save from the options menu . You can then view this image and others stored
on the device by opening the Gallery app.

16. Printing the image. To print the image, select Print from the options menu. This
displays the print dialog, which allows you to save the image as a PDF document
by default. To select a printer, tap Save as PDF and select from the available print-
ers. If no printers appear in the list, you may need to configure Google Cloud
Print for your printer. For information on this, visit

17. Returning to the home screen. You can return to the AVD’s home screen by tap-
ping the home () button on the AVD. To view the drawing in the Gallery app
touch to display the list of apps installed on the AVD. You can then open
the Gallery app to view the drawing.

1.9.2 Running the Doodlz App in a Tablet AVD
To test the app in a tablet AVD, first launch the AVD by performing Step 4 in
Section 1.9.1, but select the Nexus 7 AVD rather than the Nexus 4 AVD. Next, right click
the Doodlz project in Eclipse’s Package Explorer window and select Run As > Android Ap-
plication. If multiple AVDs are running when you launch an app, the Android Device
Chooser dialog (Fig. 1.29) appears so that you can choose the AVD on which to install
and execute the app. In this case, both the Nexus 4 and Nexus 7 AVDs were running on
our system, so there were two Android virtual devices on which we could possibly run the

Fig. 1.28 | Drawing the rain in the new line color and line width.

 http://www.google.com/cloudprint/learn/

M01_DEIT3397_02_SE_C01.fm Page 66 Monday, July 7, 2014 8:53 AM

1.9 Test-Driving the Doodlz App in an Android Virtual Device (AVD) 67

app. Select the Nexus 7 AVD and click OK. This app runs in portrait orientation (the
width is less than the height) on phone and small tablet devices. If you run the app on a
large tablet AVD (or large tablet device) the app runs in landscape orientation (the width
is greater than the height). Figure 1.30 shows the app running in the Nexus 7 AVD. If the
AVD is too tall to display on your screen, you can change the AVD’s orientation by typing
Ctrl + F12 (on a Mac use fn + control + F12). On some keyboards the Ctrl key is labeled
Control.

Fig. 1.29 | Android Device Chooser dialog.

Fig. 1.30 | Drawing in the Nexus 7 AVD.

M01_DEIT3397_02_SE_C01.fm Page 67 Monday, July 7, 2014 8:53 AM

68 Chapter 1 Introduction to Android

1.9.3 Running the Doodlz App on an Android Device
If you have an Android device, you can easily execute an app on it for testing purposes.

1. Enabling the developer options on the device. First, you must enable debugging
on the device. To do so, go to the device’s Settings app, then select About phone,
(or About tablet) locate the Build number (at the bottom of the list) and tap it re-
peatedly until you see the message You are now a developer on the screen. This
will enable an entry named Developer options to the Settings app.

2. Enabling debugging on the device. Return to the Settings app, select Developer
options and ensure that USB debugging is checked—this is the default when you
first enable the developer options on the device.

3. Connecting your device. Next, connect the device to your computer via the USB
cable that came with your device. If you’re a Windows user, recall from the Before
You Begin section that you might need to install a USB driver for your device.
See the following two web pages for details:

4. Running Doodlz on the Android device. In Eclipse, right click the Doodlz project
in the Package Explorer window, then select Run As > Android Application. If you
do not have any AVDs open, but do have an Android device connected, the IDE
will automatically install the app on your device and execute it. If you have one
or more AVDs open and/or devices connected, the Android Device Chooser dia-
log (Fig. 1.29) is displayed so that you can select the device or AVD on which to
install and execute the app.

Preparing to Distribute Apps
When you build apps for distribution via app stores like Google Play, you should test the
apps on as many actual devices as you can. Remember that some features can be tested only
on actual devices. If you don’t have many devices available to you, create AVDs that sim-
ulate the various devices on which you’d like your app to execute. When you configure
each AVD to simulate a particular device, look up the device’s specifications online and
configure the AVD accordingly. In addition, you can modify the AVD’s config.ini file
as described in the section Setting hardware emulation options at

This file contains options that are not configurable via the Android Virtual Device Manager.
Modifying these options allows you to more precisely match the hardware configuration
of an actual device.

1.10 Building Great Android Apps
With over 800,000 apps in Google Play,9 how do you create an Android app that people will
find, download, use and recommend to others? Consider what makes an app fun, useful, in-

 developer.android.com/tools/device.html
 developer.android.com/tools/extras/oem-usb.html

developer.android.com/tools/devices/
 managing-avds-cmdline.html#hardwareopts

9. http://www.pureoxygenmobile.com/how-many-apps-in-each-app-store/.

M01_DEIT3397_02_SE_C01.fm Page 68 Monday, July 7, 2014 8:53 AM

1.10 Building Great Android Apps 69

teresting, appealing and enduring. A clever app name, an attractive icon and an engaging de-
scription might lure people to your app on Google Play or one of the many other Android
app marketplaces. But once users download the app, what will make them use it regularly
and recommend it to others? Figure 1.31 shows some characteristics of great apps.

Characteristics of great apps

Great Games

• Entertaining and fun.

• Challenging.

• Progressive levels of difficulty.

• Show your scores and use leaderboards to record high scores.

• Provide audio and visual feedback.

• Offer single-player, multiplayer and networked versions.

• Have high-quality animations.

• Offloading input/output and compute-intensive code to separate threads of execution
to improve interface responsiveness and app performance.

• Innovate with augmented reality technology—enhancing a real-world environment
with virtual components; this is particularly popular with video-based apps.

Useful Utilities

• Provide useful functionality and accurate information.

• Increase personal and business productivity.

• Make tasks more convenient (e.g., maintaining a to-do list, managing expenses).

• Make the user better informed.

• Provide topical information (e.g., the latest stock prices, news, severe storm warnings,
traffic updates).

• Use location-based services to provide local services (e.g., coupons for local businesses,
best gas prices, food delivery).

General Characteristics

• Up-to-date with the latest Android features, but compatible with multiple Android ver-
sions to support the widest possible audience.

• Work properly.

• Bugs are fixed promptly.

• Follow standard Android app GUI conventions.

• Launch quickly.

• Are responsive.

• Don’t require too much memory, bandwidth or battery power.

• Are novel and creative.

• Enduring—something that your users will use regularly.

• Use professional-quality icons that will appear in Google Play and on the user’s device.

Fig. 1.31 | Characteristics of great apps. (Part 1 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 69 Monday, July 7, 2014 8:53 AM

70 Chapter 1 Introduction to Android

1.11 Android Development Resources
Figure 1.32 lists some of the key documentation from the Android Developer site. As you
dive into Android app development, you may have questions about the tools, design is-
sues, security and more. There are several Android developer newsgroups and forums
where you can get the latest announcements or ask questions (Fig. 1.33). Figure 1.34 lists
several websites where you’ll find Android development tips, videos and resources.

General Characteristics (cont.)

• Use quality graphics, images, animations, audio and video.

• Are intuitive and easy to use (don’t require extensive help documentation).

• Accessible to people with disabilities (http://developer.android.com/guide/topics/
ui/accessibility/index.html).

• Give users reasons and a means to tell others about your app (e.g., you can give users the
option to post their game scores to Facebook or Twitter).

• Provide additional content for content-driven apps (e.g., game levels, articles, puzzles).

• Localized (Chapter 2) for each country in which the app is offered (e.g., translate the
app’s text and audio files, use different graphics based on the locale, etc.).

• Offer better performance, capabilities and ease-of-use than competitive apps.

• Take advantage of the device’s built-in capabilities.

• Do not request excessive permissions.

• Are designed to run optimally across a broad variety of Android devices.

• Future-proofed for new hardware devices—specify the exact hardware features your app
uses so Google Play can filter and display it for only compatible devices
(http://android-developers.blogspot.com/2010/06/future-proofing-your-app.html).

 Title URL

App Components http://developer.android.com/guide/components/

index.html

Using the Android Emulator http://developer.android.com/tools/devices/

emulator.html

Package Index http://developer.android.com/reference/

packages.html

Class Index http://developer.android.com/reference/

classes.html

Android Design http://developer.android.com/design/index.html

Fig. 1.32 | Key online documentation for Android developers. (Part 1 of 2.)

Characteristics of great apps

Fig. 1.31 | Characteristics of great apps. (Part 2 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 70 Monday, July 7, 2014 8:53 AM

1.11 Android Development Resources 71

Data Backup http://developer.android.com/guide/topics/

data/backup.html

Security Tips http://developer.android.com/training/

articles/security-tips.html

Managing Projects from Eclipse with
ADT

http://developer.android.com/guide/developing/

projects/projects-eclipse.html

Getting Started with Android Studio http://developer.android.com/sdk/installing/

studio.html

Debugging http://developer.android.com/tools/debugging/

index.html

Tools Help http://developer.android.com/tools/help/

index.html

Performance Tips http://developer.android.com/training/

articles/perf-tips.html

Keeping Your App Responsive http://developer.android.com/training/

articles/perf-anr.html

Launch Checklist (for Google Play) http://developer.android.com/distribute/

googleplay/publish/preparing.html

Get Started with Publishing http://developer.android.com/distribute/

googleplay/publish/register.html

Managing Your App’s Memory http://developer.android.com/training/

articles/memory.html

Google Play Developer
Distribution Agreement

http://play.google.com/about/

developer-distribution-agreement.html

Title Subscribe Description

Android Discuss Subscribe using Google Groups:
android-discuss

Subscribe via e-mail:
android-discuss-

subscribe@googlegroups.com

A general Android discussion group
where you can get answers to your app-
development questions.

Stack Overflow http://stackoverflow.com/

questions/tagged/android
Use this list for beginner-level Android
app-development questions, including
getting started with Java and Eclipse, and
questions about best practices.

Android Developers http://groups.google.com/

forum/?fromgroups#!forum/

android-developers

Experienced Android developers use this
list for troubleshooting apps, GUI design
issues, performance issues and more.

Fig. 1.33 | Android newsgroups and forums. (Part 1 of 2.)

 Title URL

Fig. 1.32 | Key online documentation for Android developers. (Part 2 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 71 Monday, July 7, 2014 8:53 AM

72 Chapter 1 Introduction to Android

Android Forums http://www.androidforums.com Ask questions, share tips with other
developers and find forums targeting spe-
cific Android devices.

Android development tips, videos and
resources URL

Sample Android apps from Google http://code.google.com/p/apps-for-

android/

O’Reilly article, “Ten Tips for Android
Application Development”

http://answers.oreilly.com/topic/

862-ten-tips-for-android-application-

development/

Bright Hub™ website for Android pro-
gramming tips and how-to guides

http://www.brighthub.com/mobile/

google-android.aspx

The Android Developers Blog http://android-developers.blogspot.com/

The Sprint® Application Developers
Program

http://developer.sprint.com/site/

global/develop/mobile_platforms/

android/android.jsp

HTC’s Developer Center for Android http://www.htcdev.com/

The Motorola Android development site http://developer.motorola.com/

Top Android Users on Stack Overflow http://stackoverflow.com/tags/android/

topusers

AndroidDev Weekly Newsletter http://androiddevweekly.com/

Chet Haase’s Codependent blog http://graphics-geek.blogspot.com/

Cyril Mottier’s Android blog http://cyrilmottier.com/

Romain Guy’s Android blog http://www.curious-creature.org/

category/android/

Android Developers Channel on YouTube® http://www.youtube.com/user/

androiddevelopers

Android Video Playlists http://developer.android.com/develop/

index.html

What’s New in Android Developer Tools http://www.youtube.com/

watch?v=lmv1dTnhLH4

Google I/O 2013 Developer
Conference session videos

http://developers.google.com/events/io/

sessions

Fig. 1.34 | Android development tips, videos and resources.

Title Subscribe Description

Fig. 1.33 | Android newsgroups and forums. (Part 2 of 2.)

M01_DEIT3397_02_SE_C01.fm Page 72 Monday, July 7, 2014 8:53 AM

