
An Introduction To Programming

Using Visual Basic® 2012
NINTH EDITION

David I. Schneider

A
n Introduction To Program

m
ing

U
sing V

isual Basic
® 2012

Schneider
N

IN
T

H
ED

IT
IO

N
IN

T
ER

N
AT

IO
N

A
L

ED
IT

IO
N

ISBN-13:
ISBN-10:

978-0-273-79334-2
0-273-79334-9

9 7 8 0 2 7 3 7 9 3 3 4 2

9 0 0 0 0

This is a special edition of an established title widely
used by colleges and universities throughout the world.
Pearson published this exclusive edition for the benefi t
of students outside the United States and Canada. If you
purchased this book within the United States or Canada
you should be aware that it has been imported without
the approval of the Publisher or Author.

Pearson International Edition

INTERNATIONAL
EDITION

The editorial team at Pearson has worked closely with educators
around the globe to inform students of the ever-changing world in a
broad variety of disciplines. Pearson Education offers this product to the
international market, which may or may not include alterations from the
United States version.

INTERNATIONAL
EDITION

Through the power of practice and immediate personalized

feedback, MyProgrammingLab improves your performance.

Learn more at www.myprogramminglab.com

get with the programming

MyProgrammingLab™

A n I n t r o d u c t I o n
t o P r o g r A m m I n g u s I n g

VIsuAl BAsIc® 2012
n I n t h E d I t I o n

A n I n t r o d u c t I o n
t o P r o g r A m m I n g u s I n g

VIsuAl BAsIc® 2012
n I n t h E d I t I o n

David I. Schneider
University of Maryland

International Edition contributions by

B.R. Chandavarkar
NITK Surathkal

Prentice Hall
Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director, ECS: Marcia Horton
Executive Editor: Tracy Johnson
Editorial Assistant: Jenah Blitz-Stoehr
Director of Marketing: Christy Lesko
Marketing Manager: Yezan Alayan
Senior Marketing Coordinator: Kathryn Ferranti
Director of Production: Erin Gregg
Senior Managing Editor: Scott Disanno
Production Project Manager: Kayla Smith-Tarbox
Publisher, International Edition: Angshuman Chakraborty
Publishing Administrator and Business Analyst,

International Edition: Shokhi Shah Khandelwal
Associate Print and Media Editor, International Edition:

Anuprova Dey Chowdhuri
Acquisitions Editor, International Edition: Shivangi Ramachandran

Publishing Administrator, International Edition: Hema Mehta
Project Editor, International Edition: Karthik Subramanian
Senior Manufacturing Controller, Production,

International Edition: Trudy Kimber
Manufacturing Buyer: Lisa McDowell
Art Director: Anthony Gemmellaro
Cover Designer: Anthony Gemmellaro
Manager, Rights and Permissions: Michael Joyce
Text Permission Coordinator: Anna Waluk /

Electronic Publishing Services
Cover Image: © Redshinestudio / Shutterstock
Media Project Manager: Renata Butera
Full-Service Project Management: Laserwords
Cover Printer: © Redshinestudio / Shutterstock

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoninternationaleditions.com

© Pearson Education Limited 2014

The rights of David I. Schneider to be identified as author of this work have been asserted by him in accordance with the Copyright, Designs
and Patents Act 1988.

Authorized adaptation from the United States edition, entitled An Introduction to Programming Using Visual Basic 2012, Ninth Edition, ISBN
978-0-13-337850-4, by David I. Schneider, published by Pearson Education © 2014.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a license permitting
restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or
publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement
of this book by such owners.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and
 related graphics published as part of the services for any purpose. All such documents and related graphics are provided “as is” without
 warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information,
including all warranties and conditions of merchantability, whether express, implied or statutory, fitness for a particular purpose, title and
non-infringement. In no event shall Microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages
or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract, negligence or other tortious action,
 arising out of or in connection with the use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically
added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or
the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This book is not
 sponsored or endorsed by or affiliated with the Microsoft Corporation.

ISBN 10: 0-273-79334-9
ISBN 13: 978-0-273-79334-2

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1
14 13 12 11 10

Typeset in Goudy by Laserwords

Printed and bound by Courier Kendallville in The United States of America
The publisher’s policy is to use paper manufactured from sustainable forests.

7

Guide to VideoNotes
www.pearsoninternationaleditions.com/schneider

Chapter 2 Visual Basic, Controls, and Events

 Visual Basic Controls 43
 Basic Controls, Sizing and Aligning 52
 Using Multiple Controls 53
 Moving a Textbox (Homework) 57
 Event Procedures 58

Chapter 3 Variables, Input, and Output

 Numbers 78
 Option Explicit and Option Strict 93
 Widening/Narrowing, Comments and Scope 98
 Variable Scope 100
 Formatting Output 109
 Input Boxes and Message Boxes 114
 Loan Calculator (Home work) 124

Chapter 4 Decisions

 Relational and Logical Operators 127
 If Blocks 134
 Select Case Blocks 156
 Grading System Problem (Homework) 167
 Listboxes, Radio Buttons, and Checkboxes for Input 171

Chapter 5 General Procedures

 Function Procedures 188
 Sub Procedures 204
 Scope and Lifetime of Variables 222
 Debugging Functions and Sub Procedures 223
 Hardware Store Application (Homework) 241

Chapter 6 Repetition

 Do Loops 246
 For . . . Next Loops 260
 Nested For . . . Next Loops 264
 List Boxes and Loops 274
 Sieve of Eratosthenes (Homework) 289

Chapter 7 Arrays

 Declaring and Using Arrays 293
 Array Methods 297
 For Each Loops 300
 Copying an Array, Split Method, and Join Function 303
 LINQ 318
 Arrays of Structures 332
 Two-Dimensional Arrays 357

VideoNote

 8 u Guide to VideoNotes

Chapter 8 Text Files

 Managing Text Files 392
 StreamReaders and StreamWriters 406
 Exception Handling 413
 XML 424
 DNA sequence data (Homework) 442

Chapter 9 Additional Controls and Objects

 List Boxes and Combo Boxes 448
 Timer, Picturebox, Menustrip, and Scrollbar Controls; Random Class 455
 Multiple-Form Programs 470
 Graphics 482

Chapter 10 Databases

 Introduction to Databases 504
 Querying Tables 511
 Editing Databases 530
 Richard’s Catering Case Study (Homework) 539

Chapter 11 Object-Oriented Programming

 Classes and Objects 542
 Arrays of Objects 559
 Inheritance 570
 Student Registration Application (Homework) 586

Guide to Application Topics

Business and Economics
Admission fee, 174
Airline reservations, 385, 500
Analyze a Loan case study, 371
Analyze fuel economy, 388
Analyze growth of chains, 366
Annuity, 89, 203, 258, 259, 272
APY, 153
Automated directory assistance, 387
Automobile depreciation, 271
Bank account, 588
Break-even analysis, 88, 167
Business travel expenses, 502
Calculate a profit, 88, 138, 201
Calculate a tip, 149, 217
Calculate weekly pay, 149, 193, 228, 476, 557
Car loan, 184, 258, 272
Cash register, 557, 568, 586
Cash reward, 168
Change from a sale, 150
Checking account, 588

transactions, 480
Compare interest rates, 153
Compare two salary options, 272
Compound interest, 89, 153, 177, 193, 203, 250, 257,

258, 259, 271, 480
Computers in the workplace, 365
Consumer options, 169
Consumer price index, 258
Cost of a computer system, 178
Cost of a tour, 167
Cost of benefits, 175, 177
Cost of electricity, 105
Cost of flash drives, 181
Create sales receipt, 422
Credit card account, 227, 481
Crop production, 89, 274
Currency exchange rates, 524
Depreciation, 271, 287
Discounted price, 88, 104
Display economic data in a bar chart, 273, 487, 494
Display economic data in a pie chart, 485, 494, 496
Doubling time of an investment, 119, 257
Employee paycheck receipt, 569
Estate tax, 119
FICA tax, 140, 232, 558
Fixed cost, 167
Future value, 108, 193

Gather billing information, 481
Generate an order form, 241
Growth of an investment, 203
Income tax, 152, 180
ISBN code, 381
Itemized bill, 123, 240
Lifetime earnings, 271
Loan analysis, 124, 480
Loan calculator, 242
Mail-order company, 539
Maintain a membership list, 498
Manage telephone directories, 441
Marginal revenue and cost, 167
Membership fee, 181
Minimum wage, 494
Monetary units of countries, 513, 518
Mortgage, 227, 258
Number of restaurants in U.S., 90
Pay raise, 227
Payroll, 232, 476, 587
Percentage profit, 89
Postage costs, 202
Present value, 108
Price-to-earnings ratio, 106
Recording Checks and Deposits case study, 431
Rental costs, 183
Restaurant order, 184, 568
Retirement plan, 180
Revenue, 167
Rule of ‘72’, 285
Sales commission, 108
Sales tax, 119, 457
Savings plan, 258
Simple interest, 271
Simulate a lottery, 456
Stock purchase, 88
Subscriber data, 404
Supply and demand, 274
Tax return, 180
Total cost, 149
Total income, 473
Total salaries paid, 369
Track inventory, 365, 499, 586
Universal Product Code, 442
Weekly Payroll case study, 232
Withdrawal from a savings account, 150
Withholding tax, 233, 569

9

 10 u Guide to Application Topics

General Interest
Age of a tire, 168
American Heart Assn recommendation, 183
Anagram, 330
Analyze Shakespeare sonnet, 314
Animation, 488, 497
Bachelor degrees conferred, 382
Birthdays, 152
Body Mass Index, 201
Caffeine absorption, 285
Calculate age, 112, 115, 121, 153
Chain-link sentence, 318
Cloudiness descriptors, 166
College admissions, 185
College majors, 495
Colleges, 337, 340, 429
Computer pioneers, 353
Convert temperatures, 189, 469
Crayola crayons, 316, 405
Declaration of Independence, 120
Determine day of week, 121
Digital clock, 467
Distance between cities, 358
Distance from a storm, 105
Flags, 470, 493, 497
Freshman life goals, 495
Friday the 13th, 273
Game of Life, 386
Grade book, 540
Ideal weight, 271
Language translation, 383
Leap years, 150, 203

Military time, 151
Monthly precipitation, 367
Movies, 151, 173, 247, 528, 529, 537
Nutritional content of foods, 359
Old McDonald had a farm, 216
Palindrome, 288, 317
Physician’s abbreviations, 168
Pig Latin, 150
Pizza consumption, 90
Population growth, 90, 257
Population of cities, 512–117, 521, 522, 534, 537
Presidential eligibility, 179
Principal languages, 496
Proverbs, 241
Qwerty words, 272
Radioactive decay, 258, 270
Rating of hurricanes, 201
Spread of an epidemic, 501
Stopwatch, 455
Supreme Court justices, 353, 354, 393, 396, 405, 428
The Twelve Days of Christmas, 355
Times Square ball, 469
Training heart rate, 105, 201
U.S. cities, 349
U.S. presidents, 169, 297, 321, 331, 393, 404, 454
U.S. Senate, 430, 440
U.S. states, 275, 282–84, 302, 323, 351, 398, 428
United Nations, 332, 335, 336, 523, 524
University rankings, 366
Voting machine, 499
Weather beacon, 137

Mathematics
Areas of geometric shapes, 167, 579
Calculate a median, 331, 367
Calculate a range, 256, 284, 315
Calculate a spread, 586
Calculate a sum, 270, 313, 314, 315, 423
Calculate an average, 90, 107, 150, 217, 248, 273,

277, 301, 314, 315, 317, 330, 331, 341, 367
Calculate population densities, 351
Calculator, 123, 572, 586
Coefficient of restitution, 255
Convert temperatures, 255
Convert units of length, 124, 380, 453

Calculate with fractions, 557, 568
Curve grades, 381
Factorial, 273
Factorization, 258
Greatest common divisor, 257
ISBN codes, 381
Magic squares, 369
Measurements on a square, 556, 568
Projectile motion, 90, 286
Quadratic equation, 184
Standard deviation, 284, 315, 381
Surface area, 200

Sports and Games
Baseball, 106, 352, 430, 440, 443, 501, 525–6
Blackjack, 589
Carnival game, 468
Dice, 469, 470, 556, 567, 568
Football, 280, 281, 294, 299, 330

Golf, 329, 367
Pick-up-sticks, 242
Poker, 384, 467, 563
Soccer league, 384
Triathlon, 105

Contents

Guide to VideoNotes 7

Guide to Application Topics 9

Preface 15

Acknowledgments 19

Using this Book for a Short or Condensed Course 21

Chapter 1 An Introduction to Computers

 and Problem Solving 23
1.1 An Introduction to Computing and Visual Basic 24

1.2 Program Development Cycle 27

1.3 Programming Tools 29

Chapter 2 Visual Basic, Controls, and Events 37
2.1 An Introduction to Visual Basic 2012 38

2.2 Visual Basic Controls 40

2.3 Visual Basic Events 58

Summary 74

Chapter 3 Variables, Input, and Output 75
3.1 Numbers 76

3.2 Strings 91

3.3 Input and Output 109

Summary 122

Programming Projects 123

11

 12 u Contents

Chapter 4 Decisions 125
4.1 Relational and Logical Operators 126

4.2 If Blocks 134

4.3 Select Case Blocks 155

4.4 Input via User Selection 170

Summary 182

Programming Projects 183

Chapter 5 General Procedures 187
5.1 Function Procedures 188

5.2 Sub Procedures, Part I 203

5.3 Sub Procedures, Part II 218

5.4 Modular Design 228

5.5 A Case Study: Weekly Payroll 232

Summary 240

Programming Projects 240

Chapter 6 Repetition 245
6.1 Do Loops 246

6.2 For . . . Next Loops 259

6.3 List Boxes and Loops 274

Summary 285

Programming Projects 285

Chapter 7 Arrays 291
7.1 Creating and Using Arrays 292

7.2 Using LINQ with Arrays 318

 Contents u 13

7.3 Arrays of Structures 332

7.4 Two-Dimensional Arrays 357

7.5 A Case Study: Analyze a Loan 371

Summary 379

Programming Projects 380

Chapter 8 Text Files 389
8.1 Managing Text Files 390

8.2 StreamReaders, StreamWriters, and Structured Exception Handling 406

8.3 XML 424

8.4 A Case Study: Recording Checks and Deposits 431

Summary 439

Programming Projects 440

Chapter 9 Additional Controls and Objects 445
9.1 List Boxes and Combo Boxes 446

9.2 Eight Additional Controls and Objects 455

9.3 Multiple-Form Programs 470

9.4 Graphics 482

Summary 497

Programming Projects 498

Chapter 10 Databases 503
10.1 An Introduction to Databases 504

10.2 Editing and Designing Databases 530

Summary 538

Programming Projects 539

Chapter 11 Object-Oriented Programming 541
11.1 Classes and Objects 542

11.2 Working with Objects 559

11.3 Inheritance 570

Summary 587

Programming Projects 588

Appendices 591

Appendix A ANSI Values 591

Appendix B How To 593

Appendix C Files and Folders 605

Appendix D Visual Basic Debugging Tools 607

Answers 617

Index 673

 14 u Contents

PrefaCe

Visual Basic has been a widely used programming language since its introduction in
1991. Its latest incarnation, Visual Basic 2012, brings continued refinement of the

language. Visual Basic programmers are enthusiastically embracing the powerful capabili-
ties of the language. Likewise, students learning their first programming language will find
VB 2012 the ideal tool to understand the development of computer programs.

My objectives when writing this text were as follows:

1. To develop focused chapters. Rather than covering many topics superficially, I con-
centrate on important subjects and cover them thoroughly.

2. To use examples and exercises with which students can relate, appreciate, and feel com-
fortable. I frequently use real data. Examples do not have so many embellishments
that students are distracted from the programming techniques illustrated.

3. To produce compactly written text that students will find both readable and informative.
The main points of each topic are discussed first and then the peripheral details
are presented as comments.

4. To teach good programming practices that are in step with modern programming methodol-
ogy. Problem solving techniques and structured programming are discussed early and
used throughout the book. The style follows object-oriented programming principles.

5. To provide insights into the major applications of computers.

What’s New in the Ninth Edition
Among the changes in this edition, the following are the most significant.

1. Visual Basic Upgraded The version of Visual Basic has been upgraded from
 Visual Basic 2010 to Visual Basic 2012, and relevant new features of Visual Basic
2012 have been addressed.

2. Additional Exercises We have added 50 new exercises.

3. Updated Data We have updated the real-world data appearing in exercises, ex-
amples, and data files.

4. Discussion of Printing Moved The discussion of printing has been moved from
Chapter 3 to Chapter 9.

5. Formatting Statements Changed The functions used to format strings, numbers,
and dates have been replaced with the ToString method.

6. Captions Every example and applied exercise has been labeled with a caption
identifying its type of application.

7. Screen Captures Output for most applied exercises and programming projects are
shown in screen captures. This feature helps clarify the intent of each exercise.

8. Windows 8 The screen captures have been updated from Windows 7 to Windows 8
captures.

15

 16 u Preface

Unique and Distinguishing Features

Exercises for Most Sections. Each section that teaches programming has an exercise set.
The exercises both reinforce the understanding of the key ideas of the section and chal-
lenge the student to explore applications. Most of the exercise sets require the student
to trace programs, find errors, and write programs. The answers to all the odd-numbered
exercises in Chapters 2 through 7 and the short-answer odd-numbered exercises from
Chapters 8, 9, 10, and 11 are given at the end of the text. A screen capture accompanies
most programming answers.

Practice Problems. Practice Problems are carefully selected exercises located at the
end of a section, just before the exercise set. Complete solutions are given following the
exercise set. The practice problems often focus on points that are potentially confusing
or are best appreciated after the student has thought about them. The reader should
seriously attempt the practice problems and study their solutions before moving on to
the exercises.

Programming Projects. Beginning with Chapter 3, every chapter contains programming
projects. The programming projects not only reflect the variety of ways that computers are
used in the business community, but also present some games and general-interest topics.
The large number and range of difficulty of the programming projects provide the flex-
ibility to adapt the course to the interests and abilities of the students. Some programming
projects in later chapters can be assigned as end-of-the-semester projects.

Comments. Extensions and fine points of new topics are deferred to the “Comments”
portion at the end of each section so that they will not interfere with the flow of the
 presentation.

Case Studies. Each of the three case studies focuses on an important programming appli-
cation. The problems are analyzed and the programs are developed with top-down charts
and pseudocode. The programs can be downloaded from the companion website at www
.pearsoninternationaleditions.com/schneider.

Chapter Summaries. In Chapters 2 through 11, the key results are stated and the impor-
tant terms are summarized at the end of the chapter.

“How To” Appendix. Appendix B provides a compact, step-by-step reference on how to
carry out standard tasks in the Visual Basic and Windows environments.

Appendix on Debugging. The placing of the discussion of Visual Basic’s sophisticated
 debugger in Appendix D allows the instructor flexibility in deciding when to cover this
topic.

Guide to Application Topics. This section provides an index of programs that deal with
various topics including Business, Mathematics, and Sports.

VideoNotes. Nearly 50 VideoNotes are available at www.pearsoninternationaleditions
.com/schneider. VideoNotes are Pearson’s visual tool designed for teaching key program-
ming concepts and techniques. VideoNote icons are placed in the margin of the text book
to notify the reader when a topic is discussed in a video. Also, a Guide to Video Notes
summarizing the different videos throughout the text is included.

Solution Manuals. The Student Solutions Manual contains the answer to every
 odd-numbered exercise. The Instructor Solutions Manual contains the answer to every

 Preface u 17

exercise and programming project. Both solution manuals are in pdf format and can be
downloaded from the Publisher’s Web site.

Source Code. The programs for all examples and case studies can be downloaded from the
Publisher’s Web site.

How to Access Instructor and Student Resource Materials

Online Practice and Assessment with

MyProgrammingLab helps students fully grasp the logic, semantics, and syntax of program-
ming. Through practice exercises and immediate, personalized feedback, MyProgrammingLab
improves the programming competence of beginning students who often struggle with the
basic concepts and paradigms of popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists of hundreds of
small practice problems organized around the structure of this textbook. For students, the
system automatically detects errors in the logic and syntax of their code submissions and
offers targeted hints that enable students to figure out what went wrong—and why. For
instructors, a comprehensive gradebook tracks correct and incorrect answers and stores
the code inputted by students for review.

For a full demonstration, to see feedback from instructors and students, or to get start-
ed using MyProgrammingLab in your course, visit www.myprogramminglab.com.

Instructor Resources

The following protected instructor resource materials are available on the Publisher’s Web
site at www.pearsoninternationaleditions.com/schneider. For username and password in-
formation, please contact your local Pearson representative.

	 •	 Test Item File
	 •	 PowerPoint Lecture Slides
	 •	 Instructor Solutions Manual
	 •	 VideoNotes
	 •	 Programs for all examples, case studies, and answers to exercises and programming

projects (Databases, text files, and picture files needed for the exercises are included in
the Programs folder.)

Student Resources

Access to the Premium Website and VideoNotes tutorials is located at www
.pearsoninternationaleditions.com/schneider. Students must use the access card located
in the front of the book to register and access the online material. Instructors must register
on the site to access the material.

The following content is available through the Premium Web site:
	 •	 VideoNotes
	 •	 Student Solutions Manual
	 •	 Programs for examples and case studies (Databases, text files, and picture files needed

for the exercises are included in the Programs folder.)

MyProgrammingLab™

aCknowledgments

Many talented instructors and programmers provided helpful comments and construc-
tive suggestions during the many editions this text and I am most grateful for their

contributions. The current edition benefited greatly from the valuable comments of the
following reviewers:

Chris Olson, Dakota State University
Douglas B. Bock, Southern Illinois University
Gary E. Sullivan, Weatherford College
J.T. Shim, Louisiana Tech University
Laurence Boxer, Niagara University and State University of New York at Buffalo

Many people are involved in the successful publication of a book. I wish to thank the
dedicated team at Pearson whose support and diligence made this textbook possible, espe-
cially Jenah Blitz-Stoehr, Editorial Assistant for Computer Science, and Scott Disanno,
Senior Managing Editor.

I would like to thank Sharon O’Donnell and Craig Cornell for their excellent proof-
reading. Production editor Kayla Smith-Tarbox did a fantastic job producing the book
and keeping it on schedule. I am grateful to John Russo of the Wentworth Institute of
Technology for producing the VideoNotes that accompany the book. The skill and gra-
ciousness of the team at Laserwords made for a pleasant production process.

I extend special thanks to my editor Tracy Johnson. Her ideas and enthusiasm helped
immensely with the preparation of the book.

David I. Schneider

The publishers wish to thank Arup Kumar Bhattacharjee and Soumen Mukherjee
of RCC Institute of Information Technology, Kolkata for reviewing the content of the
International Edition.

19

Using this Book for a short
or Condensed CoUrse

This book provides more than enough material for a complete semester course. For a course
shorter than a semester in length, it will be necessary to bypass some sections. The following
syllabus provides one possible way to present an abbreviated introduction to programming.

Chapter 1 An Introduction to Computers and Problem Solving
 1.1 An Introduction to Computing and Visual Basic

Chapter 2 Visual Basic, Controls, and Events
 2.1 An Introduction to Visual Basic 2012
 2.2 Visual Basic Controls
 2.3 Visual Basic Events

Chapter 3 Variables, Input, and Output
 3.1 Numbers
 3.2 Strings
 3.3 Input and Output

Chapter 4 Decisions
 4.1 Relational and Logical Operators
 4.2 If Blocks
 4.3 Select Case Blocks
 4.4 Input via User Selection

Chapter 5 General Procedures1

 5.1 Function Procedures
 5.2 Sub Procedures, Part I

Chapter 6 Repetition
 6.1 Do Loops
 6.2 For . . . Next Loops

Chapter 7 Arrays
 7.1 Creating and Accessing Arrays
 7.2 Using LINQ with Arrays

Chapter 8 Text Files2

 8.1 Managing Text Files
 or 8.2 StreamReaders, StreamWriters, Structured Exception Handling

21

1Passing by reference can be omitted or just mentioned briefly. In Chapters 6 through 11, ByRef is used
only in Example 6 of Section 7.3 (Arrays of Structures) and in the Chapter 7 case study. In both of those
programs, it is used to obtain input.
2Sections 8.1 and 8.2 are independent of each other.

23

1

1.1 An Introduction to Computing and Visual Basic 24

1.2 Program Development Cycle 27

◆ Performing a Task on the Computer ◆ Program Planning

1.3 Programming Tools 29

◆ Flowcharts ◆ Pseudocode ◆ Hierarchy Chart ◆ Decision Structure
◆ Direction of Numbered NYC Streets Algorithm ◆ Repetition Structure
◆ Class Average Algorithm

An Introduction to
Computers and Problem
Solving

 24 ◆ Chapter 1 An Introduction to Computers and Problem Solving

1.1 An Introduction to Computing and Visual Basic

An Introduction to Programming Using Visual Basic 2012 is about problem solving using comput-
ers. The programming language used is Visual Basic 2012 (hereafter shortened to Visual Basic),
but the principles apply to most modern programming languages. Many of the examples and
exercises illustrate how computers are used in the real world. Here are some questions that you
may have about computers and programming.

Question: How do we communicate with the computer?

Answer: Many languages are used to communicate with the computer. At the lowest level,
there is machine language, which is understood directly by the microprocessor but is difficult for
humans to understand. Visual Basic is an example of a higher-level language. It consists of instruc-
tions to which people can relate, such as Click, If, and Do. Some other well-known higher-level
languages are Java, C++, and Python.

Question: What is a GUI?

Answer: GUI (pronounced GOO-ee) stands for “graphical user interface”. Both Windows and
Visual Basic use a graphical user interface; that is, they employ objects such as windows, icons,
and menus that can be manipulated by a mouse. Non-GUI-based programs use only text and
are accessed solely via a keyboard.

Question: How do we get computers to perform complicated tasks?

Answer: Tasks are broken down into a sequence of instructions that can be expressed in a
computer language (this text uses Visual Basic). A sequence of instructions is called a program.
Programs can range in size from two or three instructions to millions of instructions. The process
of executing the instructions is called running the program.

Question: What are the meanings of the terms “programmer” and “user”?

Answer: A programmer (sometimes also called a developer) is a person who solves problems by
writing programs on a computer. After analyzing the problem and developing a plan for solving
it, the programmer writes and tests the program that instructs the computer how to carry out
the plan. The program might be run many times, either by the programmer or by others. A user
is any person who runs a program. While working through this text, you will function both as a
programmer and as a user.

Question: Are there certain characteristics that all programs have in common?

Answer: Most programs do three things: take in data, manipulate data, and produce desired
results. These operations are referred to as input, processing, and output. The input data might be
held in a portion of the program, reside on a disk drive, or be provided by the user in response to
requests made by the computer while the program is running. The processing of the input data
occurs inside the computer and can take from a fraction of a second to many hours. The output
data are either displayed on a monitor, printed on a printer, or recorded on a disk. As a simple
example, consider a program that computes sales tax. An item of input data is the cost of the
thing purchased. The processing consists of multiplying the cost by a certain percentage. An
item of output data is the resulting product, the amount of sales tax to be paid.

Question: Many programming languages, including Visual Basic, use a zero-based numbering system.
What is a zero-based numbering system?

Answer: In a zero-based numbering system, counting begins with zero instead of one. For exam-
ple, in the word “code”, “c” would be the zeroth letter, “o” would be the first letter, and so on.

 1.1 An Introduction to Computing and Visual Basic ◆ 25

Question: What are the meanings of the terms “hardware” and “software”?

Answer: Hardware refers to the physical components of the computer, including all peripherals,
the central processing unit, disk drives, and all mechanical and electrical devices. Programs are
referred to as software.

Question: How are problems solved with a program?

Answer: Problems are solved by carefully reading them to determine what data are given and
what outputs are requested. Then a step-by-step procedure is devised to process the given data
and produce the requested output.

Question: How did Visual Basic 2012 evolve?

Answer: In the early 1960s, two mathematics professors at Dartmouth College developed a
programming language called BASIC to provide their students with an easily learned language
that could tackle complicated programming projects. As the popularity of BASIC grew, refine-
ments were introduced that permitted structured programming, which increased the reliability of
programs. Visual Basic 1.0 is a graphical version of BASIC developed in 1991 by the Microsoft
Corporation to allow easy, visual-oriented development of Windows applications. Visual Basic
2012 is a more advanced and powerful version of the original Visual Basic.

Question: Are there any prerequisites to learning Visual Basic 2012?

Answer: Since Visual Basic is used to write Windows applications, you should be familiar with
Windows and understand how folders and files are managed with Windows. The key concepts
for understanding folders and files are presented in Appendix C.

Question: Will it matter whether Windows Vista, Windows 7, or Windows 8 are used as the underly-
ing operating system?

Answer: Visual Basic runs fine with all three of these versions of Windows. However, the
windows will vary slightly in appearance. Figure 1.1 shows the appearance of a typical win-
dow produced in Visual Basic with each of the three versions of Windows. The appearance of
windows in Windows 7 and 8 depends on the Windows product edition, the hardware on your
system, and your own personal preferences. Most likely your windows will look like the ones
in Fig. 1.1(b) and (c). In this book, all screen captures have been done with the Windows 8
operating system.

FIgure 1.1 Visual Basic windows.

(a) Windows Vista (c) Windows 8(b) Windows 7

 26 ◆ Chapter 1 An Introduction to Computers and Problem Solving

Question: What is an example of a program developed in this textbook?

Answer: Figure 1.2 shows a program from Chapter 7 when it is first run. After the user types in
a first name and clicks on the button, the names of the presidents who have that first name are
displayed. Figure 1.3 shows the output.

Question: How does the programmer create the aforementioned program?

Answer: The programmer begins with a blank window called a form. See Fig. 1.4. The program-
mer adds objects, called controls, to the form and sets properties for the controls. In Fig. 1.5,
four controls have been placed on the form. The Text properties of the form, the label, and the
button have been set to “U.S. Presidents”, “First name:”, and “Display Presidents”. The Name
property of the list box was set to “lstPres”.

FIgure 1.3 Window after a name is entered
and the button is clicked.

FIgure 1.2 Window when program is
first run.

FIgure 1.4 A blank Visual Basic form. FIgure 1.5 Controls added to the form.

label
text box

button

list box

In order to get the program to perform a task, the programmer has to write instructions
called code. The code is written into a text-editing window called the Code Editor. The code
tells the computer what to do after the button is clicked. The program includes the form (with
its controls) and the code.

Question: What conventions are used to show keystrokes?

Answer: The combination key1+key2 means “hold down key1 and then press key2”. The
 combination Ctrl+C places selected material into the Clipboard. The combination key1/key2
means “Release key1 and then press key2”. The combination Alt/F opens the File menu on a
menu bar.

 1.2 Program Development Cycle ◆ 27

Question: What is the difference between Visual Studio and Visual Basic?

Answer: Visual Studio is an all-encompassing development environment for creating websites
and Windows applications. Visual Basic is a programming language that is part of Visual Studio.

Question: What is the difference between the Express and Professional editions of Visual Studio
2012?

Answer: The Express edition (officially called Visual Studio Express 2012 for Windows Desktop)
is free and is packaged with this textbook. The Professional edition has additional capabilities
and must be purchased from Microsoft.

Question: How can the programs for the examples in this textbook be obtained?

Answer: See the preface for information on how to download the programs from the Pearson
website.

Question: Are there any adjustments that should be made to Windows before using this textbook?

Answer: Yes. By default, Windows shows only the base names of files. You should configure
Windows to display the filename extensions for all known file types. By default, the size of text
and images appearing with Windows 7 and 8 is a bit small. We recommend enlarging them to
the Medium – 125 % DPI setting. (The programs downloaded from the Pearson website were
created using that setting.)

The details for both adjustments are presented in Appendix B in the “Configuring the Windows
Environment ” section.

Question: Are there any adjustments that should be made to Visual Basic while using this textbook?

Answer: Yes. Three adjustments are discussed in the textbook. In Section 2.2, a setting is
specified that guarantees flexibility in naming, saving, and discarding programs. In Section 2.3,
we specify the number of spaces that lines of code will be indented. In Section 3.2, we set some
options that affect how rigorous we must be when declaring the data types of variables.

Question: Where will new programs be saved?

Answer: Before writing your first program, you should use File Explorer (with Windows 8) or
Windows Explorer (with Windows Vista or Windows 7) to create a separate folder to hold your
programs. The first time you save a program, you will have to browse to that folder. Subsequent
savings will use that folder as the default folder.

1.2 Program Development Cycle

We learned in Section 1.1 that hardware refers to the machinery in a computer system (such
as the monitor, keyboard, and CPU) and software refers to a collection of instructions, called
a program, that directs the hardware. Programs are written to solve problems or perform tasks
on a computer. Programmers translate the solutions or tasks into a language the computer can
understand. As we write programs, we must keep in mind that the computer will do only what we
instruct it to do. Because of this, we must be very careful and thorough when writing our instruc-
tions. Note: Microsoft Visual Basic refers to a program as a project, application, or solution.

n Performing a Task on the Computer

The first step in writing instructions to carry out a task is to determine what the output should
be—that is, exactly what the task should produce. The second step is to identify the data, or
input, necessary to obtain the output. The last step is to determine how to process the input to

 28 ◆ Chapter 1 An Introduction to Computers and Problem Solving

obtain the desired output—that is, to determine what formulas or ways of doing things should
be used to obtain the output.

This problem-solving approach is the same as that used to solve word problems in an algebra
class. For example, consider the following algebra problem:

How fast is a car moving if it travels 50 miles in 2 hours?

The first step is to determine the type of answer requested. The answer should be a number giving
the speed in miles per hour (the output). (Speed is also called velocity.) The information needed
to obtain the answer is the distance and time the car has traveled (the input). The formula

speed = distance/time

is used to process the distance traveled and the time elapsed in order to determine the speed.
That is,

 speed = 50 miles/2 hours

 = 25 miles/hour

A graphical representation of this problem-solving process is

Input Processing Output

We determine what we want as output, get the needed input, and process the input to pro-
duce the desired output.

In the chapters that follow, we discuss how to write programs to carry out the preceding
operations. But first we look at the general process of writing programs.

n Program Planning

A baking recipe provides a good example of a plan. The ingredients and the amounts are deter-
mined by what is to be baked. That is, the output determines the input and the processing. The
recipe, or plan, reduces the number of mistakes you might make if you tried to bake with no
plan at all. Although it’s difficult to imagine an architect building a bridge or a factory without
a detailed plan, many programmers (particularly students in their first programming course)
try to write programs without first making a careful plan. The more complicated the problem,
the more complex the plan may be. You will spend much less time working on a program if you
devise a carefully thought out step-by-step plan and test it before actually writing the program.

Many programmers plan their programs using a sequence of steps, referred to as the Software
Development Life Cycle. The following step-by-step process will enable you to use your time
efficiently and help you design error-free programs that produce the desired output.

 1. Analyze: Define the problem.
Be sure you understand what the program should do—that is, what the output should be.
Have a clear idea of what data (or input) are given and the relationship between the input
and the desired output.

 2. Design: Plan the solution to the problem.
Find a logical sequence of precise steps that solve the problem. Such a sequence of steps is
called an algorithm. Every detail, including obvious steps, should appear in the algorithm. In

 1.3 Programming Tools ◆ 29

the next section, we discuss three popular methods used to develop the logic plan: flowcharts,
pseudocode, and top-down charts. These tools help the programmer break a problem into a
sequence of small tasks the computer can perform to solve the problem. Planning also involves
using representative data to test the logic of the algorithm by hand to ensure that it is correct.

 3. Design the interface: Select the objects (text boxes, buttons, etc.).
Determine how the input will be obtained and how the output will be displayed. Then cre-
ate objects to receive the input and display the output. Also, create appropriate buttons and
menus to allow the user to control the program.

 4. Code: Translate the algorithm into a programming language.
Coding is the technical word for writing the program. During this stage, the program is
written in Visual Basic and entered into the computer. The programmer uses the algorithm
devised in Step 2 along with a knowledge of Visual Basic.

 5. Test and correct: Locate and remove any errors in the program.
Testing is the process of finding errors in a program. (An error in a program is called a bug
and testing and correcting is often referred to as debugging.) As the program is typed, Visual
Basic points out certain kinds of program errors. Other kinds of errors will be detected by
Visual Basic when the program is executed; however, many errors due to typing mistakes,
flaws in the algorithm, or incorrect use of the Visual Basic language rules can be uncovered
and corrected only by careful detective work. An example of such an error would be using
addition when multiplication was the proper operation.

 6. Complete the documentation: Organize all the material that describes the program.
Documentation is intended to allow another person, or the programmer at a later date, to
understand the program. Internal documentation (comments) consists of statements in the
program that are not executed but point out the purposes of various parts of the program.
Documentation might also consist of a detailed description of what the program does and
how to use it (for instance, what type of input is expected). For commercial programs, docu-
mentation includes an instruction manual and on-line help. Other types of documentation
are the flowchart, pseudocode, and hierarchy chart that were used to construct the program.
Although documentation is listed as the last step in the program development cycle, it
should take place as the program is being coded.

1.3 Programming Tools

This section discusses some specific algorithms and describes three tools used to convert algo-
rithms into computer programs: flowcharts, pseudocode, and hierarchy charts.

You use algorithms every day to make decisions and perform tasks. For instance, whenever you
mail a letter, you must decide how much postage to put on the envelope. One rule of thumb is to use
one stamp for every five sheets of paper or fraction thereof. Suppose a friend asks you to determine
the number of stamps to place on an envelope. The following algorithm will accomplish the task.

 1. Request the number of sheets of paper; call it Sheets. (input)
 2. Divide Sheets by 5. (processing)
 3. Round the quotient up to the next highest whole number; call it Stamps. (processing)
 4. Reply with the number Stamps. (output)

The preceding algorithm takes the number of sheets (Sheets) as input, processes the data,
and produces the number of stamps needed (Stamps) as output. We can test the algorithm for a
letter with 16 sheets of paper.

 30 ◆ Chapter 1 An Introduction to Computers and Problem Solving

 1. Request the number of sheets of paper; Sheets = 16.
 2. Dividing 5 into 16 gives 3.2.
 3. Rounding 3.2 up to 4 gives Stamps = 4.
 4. Reply with the answer, 4 stamps.

This problem-solving example can be illustrated by

Input
(16)

Processing
(formulas)

Output
(4)

Symbol Name Meaning

Flowline Used to connect symbols and indicate the
flow of logic.

Terminal Used to represent the beginning (Start) or
the end (End) of a task.

Input/Output Used for input and output operations, such
as reading and displaying. The data to be read
or displayed are described inside.

Processing Used for arithmetic and data-manipulation
operations. The instructions are listed
inside the symbol.

Decision Used for any logic or comparison operations.
Unlike the input/output and processing
symbols, which have one entry and one exit
flowline, the decision symbol has one entry
and two exit paths. The path chosen depends
on whether the answer to a question is “yes”
or “no.”

Connector Used to join different flowlines.

Annotation Used to provide additional information
about another flowchart symbol.

Of the program design tools available, three popular ones are the following:

Flowcharts: Graphically depict the logical steps to carry out a task and show how the steps
relate to each other.
Pseudocode: Uses English-like phrases with some Visual Basic terms to outline the task.
Hierarchy charts: Show how the different parts of a program relate to each other.

n Flowcharts

A flowchart consists of special geometric symbols connected by arrows. Within each symbol is a
phrase presenting the activity at that step. The shape of the symbol indicates the type of operation
that is to occur. For instance, the parallelogram denotes input or output. The arrows connecting
the symbols, called flowlines, show the progression in which the steps take place. Flowcharts
should “flow” from the top of the page to the bottom. Although the symbols used in flowcharts
are standardized, no standards exist for the amount of detail required within each symbol.

 1.3 Programming Tools ◆ 31

The table of the flowchart symbols shown on the previous page has been adopted by the
American National Standards Institute (ANSI). Figure 1.6 shows the flowchart for the postage-
stamp problem.

The main advantage of using a flowchart to plan a task is that it provides a graphical rep-
resentation of the task, which makes the logic easier to follow. We can clearly see every step
and how each is connected to the next. The major disadvantage is that when a program is
very large, the flowcharts may continue for many pages, making them difficult to follow and
modify.

n Pseudocode

Pseudocode is an abbreviated plain English version of actual computer code (hence, pseudocode).
The geometric symbols used in flowcharts are replaced by English-like statements that outline
the process. As a result, pseudocode looks more like computer code than does a flowchart.
 Pseudocode allows the programmer to focus on the steps required to solve a problem rather than
on how to use the computer language. The programmer can describe the algorithm in Visual
Basic–like form without being restricted by the rules of Visual Basic. When the pseudocode is
completed, it can be easily translated into the Visual Basic language.

FIgure 1.6 Flowchart for the postage-stamp problem.

Start

input

processing

processing

output

End

Read
sheets

Set stamps �
sheets / 5

Display
stamps

Round stamps
up to next

whole number

 32 ◆ Chapter 1 An Introduction to Computers and Problem Solving

The following is pseudocode for the postage-stamp problem:

Program: Determine the proper number of stamps for a letter.
Read Sheets (input)
Set the number of stamps to Sheets / 5 (processing)
Round the number of stamps up to the next whole number (processing)
Display the number of stamps (output)

Pseudocode has several advantages. It is compact and probably will not extend for many
pages as flowcharts commonly do. Also, the plan looks like the code to be written and so is
preferred by many programmers.

n Hierarchy Chart

The last programming tool we’ll discuss is the hierarchy chart, which shows the overall program
structure. Hierarchy charts are also called structure charts, HIPO (Hierarchy plus Input-Process-
Output) charts, top-down charts, or VTOC (Visual Table of Contents) charts. All these names
refer to planning diagrams that are similar to a company’s organization chart.

Hierarchy charts depict the organization of a program but omit the specific processing logic.
They describe what each part, or module, of the program does and they show how the modules
relate to each other. The details on how the modules work, however, are omitted. The chart
is read from top to bottom and from left to right. Each module may be subdivided into a suc-
cession of submodules that branch out under it. Typically, after the activities in the succession
of submodules are carried out, the module to the right of the original module is considered.
A quick glance at the hierarchy chart reveals each task performed in the program and where it
is performed. Figure 1.7 shows a hierarchy chart for the postage-stamp problem.

FIgure 1.7 Hierarchy chart for the postage-stamp problem.

Read
sheets

Display
stamps

Calculate
stamps

Postage-stamp
program

Set stamps �
sheets / 5

Round stamps
up to next whole

number

The main benefit of hierarchy charts is in the initial planning of a program. We break down
the major parts of a program so we can see what must be done in general. From this point, we can
then refine each module into more detailed plans using flowcharts or pseudocode. This process
is called the divide-and-conquer method.

n Decision Structure

The postage-stamp problem was solved by a series of instructions to read data, perform calcula-
tions, and display results. Each step was in a sequence; that is, we moved from one line to the
next without skipping over any lines. This kind of structure is called a sequence structure. Many
problems, however, require a decision to determine whether a series of instructions should be
executed. If the answer to a question is “yes”, then one group of instructions is executed. If the

 1.3 Programming Tools ◆ 33

answer is “no”, then another is executed. This structure is called a decision structure. Figure 1.8
contains the pseudocode and flowchart for a decision structure.

Sequence and decision structures are both used to solve the following problem.

n Direction of Numbered NYC Streets Algorithm

Problem: Given a street number of a one-way street in New York City, decide the direction of
the street, either eastbound or westbound.
Discussion: There is a simple rule to tell the direction of a one-way street in New York City:
Even-numbered streets run eastbound.
Input: Street number.
Processing: Decide if the street number is divisible by 2.
Output: “Eastbound” or “Westbound”.

FIgure 1.8 Pseudocode and flowchart for a decision structure.

Process
step(s) 2

Is
condition

true?

No Yes

Process
step(s) 1

If condition is true Then
 Process step(s) 1
Else
 Process step(s) 2
End If

FIgure 1.9 Flowchart for the numbered New York City streets problem.

Display
Westbound

No Yes

Display
Eastbound

Start

End

Get
street

Is
street
even?

 34 ◆ Chapter 1 An Introduction to Computers and Problem Solving

Figures 1.9 through 1.11 show the flowchart, pseudocode, and hierarchy chart for the num-
bered New York City streets problem.

n repetition Structure

A programming structure that executes instructions many times is called a repetition structure
or a loop structure. Loop structures need a test (or condition) to tell when the loop should
end. Without an exit condition, the loop would repeat endlessly (an infinite loop). One way to
control the number of times a loop repeats (often referred to as the number of passes or itera-
tions) is to check a condition before each pass through the loop and continue executing the
loop as long as the condition is true. See Fig. 1.12. The solution of the next problem requires a
repetition structure.

FIgure 1.11 Hierarchy chart for the numbered New York City streets problem.

Street
direction
program

Get
street

number

Decide whether
street number
is even or odd

Display
direction

FIgure 1.12 Pseudocode and flowchart for a loop.

Process
step(s)

Is
condition

true?

No

YesDo While condition is true
 Process step(s)
Loop

FIgure 1.10 Pseudocode for the numbered New York City streets problem.

Program: Determine the direction of a numbered NYC street.
Get street
If street is even Then

 Display Eastbound
Else

 Display Westbound
End If

 1.3 Programming Tools ◆ 35

n Class Average Algorithm

Problem: Calculate and report the average grade for a class.
Discussion: The average grade equals the sum of all grades divided by the number of students.
We need a loop to read and then add (accumulate) the grades for each student in the class. Inside
the loop, we also need to total (count) the number of students in the class. See Figs. 1.13 to 1.15.
Input: Student grades.
Processing: Find the sum of the grades; count the number of students; calculate average
grade = sum of grades / number of students.
Output: Average grade.

FIgure 1.13 Flowchart for the class average problem.

Start

counter and
sum start at 0

read next
grade

No

Yes

add 1 to counter

accumulate
sum of grades

find the average

display the
answer

End

Initialize
counter and

sum to 0

Display
average

Set average
to sum/counter

Add grade
to sum

Increment
counter

Get next
grade

Are
there more

data?

 36 ◆ Chapter 1 An Introduction to Computers and Problem Solving

n Comments

 1. Tracing a flowchart is like playing a board game. We begin at the Start symbol and proceed
from symbol to symbol until we reach the End symbol. At any time, we will be at just one
symbol. In a board game, the path taken depends on the result of spinning a spinner or
 rolling a pair of dice. The path taken through a flowchart depends on the input.

 2. The algorithm should be tested at the flowchart stage before being coded into a program.
Different data should be used as input, and the output checked. This process is known as
desk checking. The test data should include nonstandard data as well as typical data.

 3. Flowcharts, pseudocode, and hierarchy charts are universal problem-solving tools. They can
be used to plan programs for implementation in many computer languages, not just Visual
Basic.

 4. Flowcharts are used throughout this text to provide a visualization of the flow of certain
programming tasks and Visual Basic control structures. Major examples of pseudocode and
hierarchy charts appear in the case studies.

 5. Flowcharts are time-consuming to write and difficult to update. For this reason, professional
programmers are more likely to favor pseudocode and hierarchy charts. Because flowcharts
so clearly illustrate the logical flow of programming techniques, however, they are a valuable
tool in the education of programmers.

 6. There are many styles of pseudocode. Some programmers use an outline form, whereas oth-
ers use a form that looks almost like a programming language. The pseudocode appearing
in the case studies of this text focuses on the primary tasks to be performed by the program
and leaves many of the routine details to be completed during the coding process. Several
Visual Basic keywords, such as “If”, “ Else”, “ Do”, and “ While”, are used extensively in the
pseudocode appearing in this text.

FIgure 1.15 Hierarchy chart for the class average problem.

Class
average
problem

Get
grade

Compute sum and
number of grades

Calculate
average

Display
average

FIgure 1.14 Pseudocode for the class average problem.

Program: Calculate and report the average grade of a class.
Initialize Counter and Sum to 0
Do While there are more data
 Get the next Grade
 Increment the Counter
 Add the Grade to the Sum
Loop
Compute Average = Sum/Counter
Display Average

37

2

2.1 An Introduction to Visual Basic 2012 38

◆ Why Windows and Why Visual Basic? ◆ How You Develop a Visual Basic Program
◆ The Different Versions of Visual Basic

2.2 Visual Basic Controls 40

◆ Starting a New Visual Basic Program ◆ A Text Box Walkthrough
◆ A Button Walkthrough ◆ A Label Walkthrough ◆ A List Box Walkthrough
◆ The Name Property ◆ Fonts ◆ Auto Hide ◆ Positioning and Aligning Controls
◆ Multiple Controls ◆ Setting Tab Order

2.3 Visual Basic Events 58

◆ An Event Procedure Walkthrough ◆ Properties and Event Procedures of the Form
◆ The Header of an Event Procedure ◆ Opening a Program

 Summary 74

Visual Basic, Controls,
and Events

 38 ◆ Chapter 2 Visual Basic, Controls, and Events

2.1 An Introduction to Visual Basic 2012

Visual Basic 2012 is the latest generation of Visual Basic, a language used by many software
developers. Visual Basic was designed to make user-friendly programs easier to develop. Prior
to the creation of Visual Basic, developing a friendly user interface usually required a program-
mer to use a language such as C or C++, often requiring hundreds of lines of code just to get a
window to appear on the screen. Now the same program can be created in much less time with
fewer instructions.

n Why Windows and Why Visual Basic?

What people call graphical user interfaces, or GUIs (pronounced “gooies”), have revolution-
ized the software industry. Instead of the confusing textual prompts that earlier users once saw,
today’s users are presented with such devices as icons, buttons, and drop-down lists that respond
to mouse clicks. Accompanying the revolution in how programs look was a revolution in how
they feel. Consider a program that requests information for a database. Figure 2.1 shows how a
program written before the advent of GUIs got its information. The program requests the six
pieces of data one at a time, with no opportunity to go back and alter previously entered informa-
tion. Then the screen clears and the six inputs are again requested one at a time.

FIgurE 2.1 Input screen of a pre–Visual Basic program to fill a database.

Enter name (Enter EOD to terminate): Mr. President
Enter Address: 1600 Pennsylvania Avenue
Enter City: Washington
Enter State: DC
Enter Zip code: 20500
Enter Phone Number: 202-456-1414

Figure 2.2 shows how an equivalent Visual Basic program gets its information. The boxes
may be filled in any order. When the user clicks on a box with the mouse, the cursor moves to
that box. The user can either type in new information or edit the existing information. When
satisfied that all the information is correct, the user clicks on the Write to Database button. The
boxes will clear, and the data for another person can be entered. After all names have been
entered, the user clicks on the Exit button. In Fig. 2.1, the program is in control; in Fig. 2.2, the
user is in control!

FIgurE 2.2 Input screen of a Visual Basic program to fill a database.

 2.1 An Introduction to Visual Basic 2012 ◆ 39

n How You Develop a Visual Basic Program

A key element of planning a Visual Basic program is deciding what the user sees—in other
words, designing the user interface. What data will he or she be entering? How large a window
should the program use? Where will you place the buttons the user clicks on to activate actions
in the program? Will the program have places to enter text (text boxes) and places to display
output? What kind of warning boxes (message boxes) should the program use? In Visual Basic,
the responsive objects a program designer places on windows are called controls. Two features
make Visual Basic different from traditional programming tools:

 1. You literally draw the user interface, much like using a paint program.
 2. Perhaps more important, when you’re done drawing the interface, the buttons, text boxes,

and other objects that you have placed in a blank window will automatically recognize user
actions such as mouse movements and button clicks. That is, the sequence of procedures
executed in your program is controlled by “events” that the user initiates rather than by a
predetermined sequence of procedures in your program.

In any case, only after you design the interface does anything like traditional programming
occur. Objects in Visual Basic recognize events like mouse clicks; how the objects respond to
them depends on the instructions you write. You always need to write instructions in order to
make controls respond to events. This makes Visual Basic programming fundamentally different
from traditional programming. Programs in traditional programming languages ran from the top
down. For these programming languages, execution started from the first line and moved with
the flow of the program to different parts as needed. A Visual Basic program works differently.
Its core is a set of independent groups of instructions that are activated by the events they have
been told to recognize. This event-driven methodology is a fundamental shift. The user decides
the order in which things happen, not the programmer.

Most of the programming instructions in Visual Basic that tell your program how to respond
to events like mouse clicks occur in what Visual Basic calls event procedures. Essentially, anything
executable in a Visual Basic program either is in an event procedure or is used by an event pro-
cedure to help the procedure carry out its job. In fact, to stress that Visual Basic is fundamentally
different from traditional programming languages, Microsoft uses the term project or application,
rather than program, to refer to the combination of programming instructions and user interface
that makes a Visual Basic program possible. Here is a summary of the steps you take to design a
Visual Basic program:

 1. Design the appearance of the window that the user sees.
 2. Determine the events that the controls on the window should respond to.
 3. Write the event procedures for those events.

Now here is what happens when the program is running:

 1. Visual Basic monitors the controls in the window to detect any event that a control can
recognize (mouse movements, clicks, keystrokes, and so on).

 2. When Visual Basic detects an event, it examines the program to see if you’ve written an
event procedure for that event.

 3. If you have written an event procedure, Visual Basic executes the instructions that make up
that event procedure and goes back to Step 1.

 4. If you have not written an event procedure, Visual Basic ignores the event and goes back to
Step 1.

 40 ◆ Chapter 2 Visual Basic, Controls, and Events

These steps cycle continuously until the program ends. Usually, an event must happen before
Visual Basic will do anything. Event-driven programs are more reactive than active—and that
makes them more user friendly.

n The Different Versions of Visual Basic

Visual Basic 1.0 first appeared in 1991. It was followed by version 2.0 in 1992, version 3.0 in
1993, version 4.0 in 1995, version 5.0 in 1997, and version 6.0 in 1998. VB.NET, initially
released in February 2002, was not backward compatible with the earlier versions of Visual
Basic. It incorporated many features requested by software developers, such as true inheritance.
Visual Basic 2005, released in November 2005, Visual Basic 2008, released in November 2007,
Visual Basic 2010, released in April 2010, and Visual Basic 2012, released in October 2012 are
significantly improved versions of VB.NET.

2.2 Visual Basic Controls

Visual Basic programs display a Windows-style screen (called a form) with boxes into which users
type (and in which users edit) information and buttons that they click on to initiate actions.
The boxes and buttons are referred to as controls. In this section, we examine forms and four of
the most useful Visual Basic controls.

n Starting a New Visual Basic Program

Each program is saved (as several files and subfolders) in its own folder. Before writing your first
program, you should use File Explorer (with Windows 8) or Windows Explorer (with Windows
Vista or Windows 7) to create a folder to hold your programs.

The process for starting Visual Basic varies slightly with the version of Windows and the
edition of Visual Studio installed on the computer. Some possible sequences of steps are shown
below.

Windows Vista or Windows 7 Click the Windows Start button, click All Programs, and then
click on “Microsoft Visual Studio 2012 Express for Desktop.”

Windows 8 Click the tile labeled “VS Express for Desktop.” If there is no such tile, Click on
Search in the Charms bar, select the Apps category, type “VS” into the Search box in the upper-
right part of the screen, and click on the rectangle labeled “VS Express for Desktop” that appears
on the left side of the screen.

Figure 2.3 shows the top part of the screen after Visual Basic is started. A Menu bar and a
Toolbar are at the top of the screen. These two bars, with minor variations, are always present
while you are working with Visual Basic. The remainder of the screen is called the Start Page.
Some tasks can be initiated from the Menu bar, the Toolbar, and the Start Page. We will usually
initiate them from the Menu bar or the Toolbar.

The first item on the Menu bar is FILE. Click on FILE, and then click on New Project to
produce a New Project dialog box. Figure 2.4 shows a New Project dialog box produced by Visual
Basic Express. Your screen might look somewhat different than Fig. 2.4 even if you are using the
Express edition of Visual Studio.

Select Visual Basic in the Templates list on the left side of Fig. 2.4, and select Windows Forms
Application in the center list. Note: The number of items in the center list will vary depending
on the edition of Visual Studio you are using.

The name of the program, initially set to WindowsApplication1, can be specified at this time.
Since we will have a chance to change it later, let’s just use the name WindowsApplication1 for

 2.2 Visual Basic Controls ◆ 41

now. Click on the OK button to invoke the Visual Basic programming environment. See Fig. 2.5
on the next page. The Visual Basic programming environment is referred to as the Integrated
Development Environment or IDE.

It is possible that your screen will look different than Fig. 2.5. The IDE is extremely con-
figurable. Each window in Fig. 2.5 can have its location and size altered. New windows can be

FIgurE 2.3 Visual Basic opening screen.

Menu bar Toolbar

FIgurE 2.4 The Visual Basic New Project dialog box.

 42 ◆ Chapter 2 Visual Basic, Controls, and Events

displayed in the IDE, and any window can be closed or hidden behind a tab. For instance, in
Fig. 2.5 the Toolbox window is hidden behind a tab. The VIEW menu is used to add additional
windows to the IDE. If you would like your screen to look similar to Fig. 2.5, click on Reset Win-
dows Layout in the WINDOW menu, and then click on the Yes button.

The Menu bar of the IDE displays the menus of commands you use to work with Visual
Basic. Some of the menus, like FILE, EDIT, VIEW, and WINDOW, are common to most Win-
dows applications. Others, such as PROJECT, DEBUG, and DATA, provide commands specific
to programming in Visual Basic.

The Toolbar holds a collection of buttons that carry out standard operations when clicked.
For example, you use the sixth button, which looks like two diskettes, to save the files associated
with the current program. To reveal the purpose of a Toolbar button, hover the mouse pointer
over it. The little information rectangle that pops up is called a tooltip.

The Document window currently holds the rectangular Form window, or form for short.
The form becomes a Windows window when a program is executed. Most information displayed
by the program appears on the form. The information usually is displayed in controls that the
programmer has placed on the form. Note: You can change the size of the form by dragging one
of its sizing handles.

The Properties window is used to change the appearance and behavior of objects on the
form.

The Solution Explorer window displays the files associated with the program and provides
access to the commands that pertain to them. (Note: If the Solution Explorer or the Properties
window is not visible, click on it in the VIEW menu.)

The Toolbox holds icons representing objects (called controls) that can be placed on the
form. If your screen does not show the Toolbox, hover the mouse over the Toolbox tab at the left
side of the screen. The Toolbox will slide into view. Then click on the pushpin icon in the title
bar at the top of the Toolbox to keep the Toolbox permanently displayed in the IDE. (Note: If
there is no tab marked Toolbox, click on Toolbox in the VIEW menu.)

FIgurE 2.5 The Visual Basic Integrated Development Environment in Form Designer mode.

Form

Menu bar
Toolbar

Toolbox
tab

Form Designer
tab

Document
window

Solution Explorer
window

Properties
window

Sizing handle

 2.2 Visual Basic Controls ◆ 43

The controls in the Toolbox are grouped into categories such as All Windows Forms and
Common Controls. Figure 2.6 shows the Toolbox after the Common Controls group has been
expanded. Most of the controls discussed in this text can be found in the list of common controls.
(You can obtain a description of a control by hovering the mouse over the control.) The four
controls discussed in this chapter are text boxes, labels, buttons, and list boxes. In order to see
all the group names, collapse each of the groups.

Text boxes: Text boxes are used to get information from the user, referred to as input, or to
display information produced by the program, referred to as output.

Labels: Labels are placed near text boxes to tell the user what type of information is displayed
in the text boxes.

Buttons: The user clicks on a button to initiate an action.

List boxes: In the first part of this book, list boxes are used to display output. Later, they are
used to make selections.

Visual Basic
Controls
and Events

n An Important Setting

The process of naming and saving programs can proceed in two different ways. In this book, we
do not require that a program be given a name until it is saved. The following steps guarantee
that Visual Basic will follow that practice.

 1. Click on Options from the TOOLS menu to display an Options dialog box.
 2. Click on the Projects and Solutions item in the left pane of the Options dialog box.

FIgurE 2.6 The Toolbox’s common controls.

Group names

Pushpin

VideoNote

 44 ◆ Chapter 2 Visual Basic, Controls, and Events

 3. If the box labeled “Save new projects when created” is checked, uncheck it.
 4. Click on the OK button.
 5. Open the FILE menu in the Toolbar and click on Close Solution (or Close Project). Note: If a

dialog box appears and asks you if you want to save or discard changes to the current project,
click on the Discard button.

n A Text Box Walkthrough

Place a text box on a form
 1. Start a new Visual Basic program.
 2. Double-click on the TextBox control () in the Common Controls group of the

Toolbox.
A rectangle with three small squares appears at the upper-left corner of the form. The square
on the top of the text box, called the Tasks button, can be used to set the MultiLine prop-
erty of the text box. The squares on the left and right sides of the text box are called sizing
handles. See Fig. 2.7. An object showing its handles is said to be selected. A selected text
box can have its width altered, location changed, and other properties modified. You alter
the width of the text box by dragging one of its sizing handles.

FIgurE 2.7 Setting the Text property.

 3. Move the mouse cursor to any point in the interior of the text box, hold down the left mouse
button, and drag the text box to the center of the form.

 4. Click anywhere on the form outside the rectangle to deselect the text box.
 5. Click on the rectangle to reselect the text box.
 6. Hover the mouse over the handle in the center of the right side of the text box until the

cursor becomes a double-arrow, hold down the left mouse button, and move the mouse to
the right.
The text box is stretched to the right. Similarly, grabbing the handle on the left side and
moving the mouse to the left stretches the text box to the left. You also can use the handles
to make the text box smaller. Steps 2, 3, and 6 allow you to place a text box of any width
anywhere on the form. Note: The text box should now be selected; that is, its sizing handles
should be showing. If not, click anywhere inside the text box to select it.

 7. Press the Delete key to remove the text box from the form.
Step 8 gives an alternative way to place a text box of any width at any location on the form.

 8. Click on the text box icon in the Toolbox, move the mouse pointer to any place on the
form, hold down the left mouse button, drag the mouse on a diagonal, and release the mouse
button to create a selected text box.
You can now alter the width and location as before. Note: The text box should now be
selected. If not, click anywhere inside the text box to select it.

Activate, move, and resize the Properties window
 9. Press F4 to activate the Properties window.

You also can activate the Properties window by clicking on it, clicking on Properties Window
from the VIEW menu, or right-clicking on the text box with the mouse button and selecting

 2.2 Visual Basic Controls ◆ 45

Properties from the context menu that appears. See Fig. 2.8. The first line of the Properties
window (called the Object box) reads “TextBox1”, etc. TextBox1 is the current name of
the text box. The third button in the row of buttons below the Object box, the Properties
button A B, is normally highlighted. If not, click on it. The left column of the Properties
window gives the available properties, and the right column gives the current settings of the
properties. The first two buttons A B in the row of buttons below the Object box permit
you to view the list of properties either grouped into categories or alphabetically. You can
use the up- and down-arrow keys (or the scroll arrows, scroll box, or the mouse scroll wheel)
to move through the list of properties.

 10. Click on the Properties window’s title bar and drag the window to the center of the screen.
 The Properties window is said to be floating or undocked. Some people find a floating

 window easier to work with.
 11. Drag the lower-right corner of the Properties window to change the size of the Properties

window.
 An enlarged window will show more properties at once.

 12. Hold down the Ctrl key and double-click on the title bar.
The Properties window will return to its original docked location. We now will discuss four
properties in this walkthrough.

Set four properties of the text box
Assume that the text box is selected and its Properties window activated.

Note 1: The third and fourth buttons below the Object box, the Properties button and
the Events button, determine whether properties or events are displayed in the Properties
 window. Normally the Properties button is highlighted. If not, click on it.

Note 2: If the Description pane is not visible, right-click on the Properties window, then
click on Description. The Description pane describes the currently highlighted property.

 13. Move to the Text property with the up- and down-arrow keys (alternatively, scroll until the
Text property is visible, and click on the property).
The Text property, which determines the words displayed in the text box, is now highlighted.
Currently, there is no text displayed in the Text property’s Settings box on its right.

FIgurE 2.8 Text box Properties window.

Description
pane

Object
box

Name of
currently
selected
control

Scroll
arrow

Scroll
box

Categorized view Alphabetic view

 46 ◆ Chapter 2 Visual Basic, Controls, and Events

 14. Type your first name, and then press the Enter key or click on another property. Your name
now appears in both the Settings box and the text box. See Fig. 2.9.

 15. Click at the beginning of your name in the Text Settings box, and add your title, such as
Mr., Ms., or The Honorable. Then, press the Enter key.
If you mistyped your name, you can easily correct it now.

 16. Use the mouse scroll wheel to move to the ForeColor property, and then click on it.
The ForeColor property determines the color of the text displayed in the text box.

 17. Click on the down-arrow button A B in the right part of the Settings box, and then click
on the Custom tab to display a selection of colors. See Fig. 2.10.

FIgurE 2.9 Setting the Text property.

(b)(a)

 18. Click on one of the colors, such as blue or red.
Notice the change in the color of your name.

 19. Select the Font property with a single click of the mouse, and click on the ellipsis button
A B in the right part of its Settings box.
The Font dialog box in Fig. 2.11 is displayed. The three lists give the current name (Micro-
soft Sans Serif), current style (Regular), and current size (8 point) of the font. You can
change any of these attributes by clicking on an item in its list or by typing into the box at
the top of the list.

FIgurE 2.10 Setting the ForeColor property.

 2.2 Visual Basic Controls ◆ 47

 20. Click on Bold in the Font style list, click on 12 in the Size list, and click on the OK button.
Your name is now displayed in a larger bold font. The text box will expand so that it can
accommodate the larger font.

 21. Click on the text box and resize it to be about 3 inches wide.
Visual Basic programs consist of three parts: interface, values of properties, and code. Our
interface consists of a form with a single object—a text box. We have set a few properties
for the text box—the text (namely, your name), the foreground color, the font style, and the
font size. In Section 2.3, we discuss how to place code into a program. Visual Basic endows
certain capabilities to programs that are independent of any code we write. We will now run
the current program without adding any code and experience these capabilities.

Run and end the program

 22. Click on the Start button Q R on the Toolbar to run the program.
Alternatively, you can press F5 to run the program or can click on Start Debugging in the
DEBUG menu. After a brief delay, a copy of the form appears with your name highlighted.

 23. Press the End key to move the cursor to the end of your name, type in your last name, and
then keep typing.
Eventually, the words will scroll to the left.

 24. Press the Home key to return to the beginning of your name.
The text box functions like a miniature word processor. You can place the cursor anywhere
you like in order to add or delete text. You can drag the cursor across text to select a block,
place a copy of the block in the Clipboard with Ctrl+C, and then duplicate it elsewhere
with Ctrl+V.

 25. Click on the Stop Debugging button A B on the Toolbar to end the program.

Alternately, you can end the program by clicking on the form’s Close button Q R,
clicking on Stop Debugging in the DEBUG menu, or pressing Alt+F4.

 26. Select the text box, activate the Properties window, select the ReadOnly property, click on
the down-arrow button A B, and finally click on True.
Notice that the background color of the text box has turned gray.

FIgurE 2.11 The Font dialog box.

 48 ◆ Chapter 2 Visual Basic, Controls, and Events

 27. Run the program, and try typing into the text box. You can’t.
Such a text box is used for output. Only code can display information in the text box. (Note:
In this textbook, whenever a text box will be used only for the purpose of displaying output,
we will always set the ReadOnly property to True.)

 28. End the program.

Saving and closing the program
 29. Click on the Toolbar’s Save All button Q R to save the work done so far.

Alternatively, you can click on Save All in the FILE menu. The dialog box in Fig. 2.12 will
appear to request a name and the location where the program is to be saved.

 30. Type a name for the program, such as “VBdemo”.
Use Browse to locate a folder. (This folder will automatically be used the next time you
click on the Save All button.) The files for the program will be saved in a subfolder of the
selected folder.

Important: If the “Create directory for solution” check box is checked, then click on the
check box to uncheck it.

 31. Click on the Save button.
 32. Click on Close Solution (or Close Project) in the FILE menu.

In the next step we reload the program.
 33. Click on Open Project in the FILE menu, navigate to the folder corresponding to the program

you just saved, double-click on its folder, and double-click on the file with extension sln.
If you do not see the Form Designer for the program, double-click on Form1.vb in the Solu-
tion Explorer. The program now exists just as it did after Step 28. You can now modify the
program and/or run it.

 34. Click on Close Solution (or Close Project) in the FILE menu to close the program.

n A Button Walkthrough

Place a button on a form

 1. Click on the New Project button Q R on the Toolbar.

 2. Double-click on the Button control 1 2 in the Toolbox to place a button on the
form. The Button control is the second item in the Common Controls group of the Toolbox.

FIgurE 2.12 The Save Project dialog box.

 2.2 Visual Basic Controls ◆ 49

 3. Drag the button to the center of the form.
 4. Activate the Properties window, highlight the Text property, type “Please Push Me”, and

press the Enter key.
The button is too small to accommodate the phrase. See Fig. 2.13.

 5. Click on the button to select it, and then drag the right-hand sizing handle to widen the
button so that it can accommodate the phrase “Please Push Me” on one line.
Alternately, you can drag the bottom sizing handle down and have the phrase displayed on
two lines.

 6. Run the program, and click on the button.
The color of the button darkens when the mouse hovers over it. In Section 2.3, we will write
code that is executed when a button is clicked on.

 7. End the program and select the button.
 8. From the Properties window, edit the Text setting by inserting an ampersand (&) before the

first letter P, and then press the Enter key.
Notice that the first letter P on the button is now underlined. See Fig. 2.14. Pressing Alt+P
while the program is running causes the same event to occur as does clicking the button.
Here, P is referred to as the access key for the button. (The access key is always the character
following the ampersand.)

FIgurE 2.13 Setting the Text property.

(b)(a)

 9. Click on Close Solution (or Close Project) in the FILE menu to close the program.
There is no need to save this program, so click on the Discard button.

FIgurE 2.14 Designating P as an access key.

(b)(a)

 50 ◆ Chapter 2 Visual Basic, Controls, and Events

n A Label Walkthrough

 1. Click on the New Project button to begin a new program.
Feel free to keep the default name, such as WindowsApplication1.

 2. Double-click on the Label control 1 2 in the Toolbox to place a label on the form.
 3. Drag the label to the center of the form.
 4. Activate the Properties window, highlight the Text property, type “Enter Your Phone

Number:”, and press the Enter key.
Such a label is placed next to a text box into which the user will type a phone number.
Notice that the label widened to accommodate the text. This happened because the
AutoSize property of the label is set to True by default.

 5. Change the AutoSize property to False and press Enter.
Notice that the label now has eight sizing handles when selected.

 6. Make the label narrower and longer until the words occupy two lines.
 7. Activate the Properties window, and click on the down arrow to the right of the setting for the

TextAlign property. Experiment by clicking on the various rectangles and observing their effects.
 The combination of sizing and alignment permits you to design a label easily.
 8. Run the program.

Nothing happens, even if you click on the label. Labels just sit there. The user cannot change
what a label displays unless you write code to make the change.

 9. End the program.
 10. Click on Close Solution (or Close Project) in the FILE menu to close the program.
 There is no need to save this program, so click on the Discard button.

n A List Box Walkthrough

 1. Click on the New Project button to begin a new program.
Feel free to keep the default name, such as WindowsApplication1.

 2. Place a ListBox control 1 2 on the form.
 3. Press F4 to activate the Properties window and notice that the list box does not have a Text

property.
The word ListBox1 that appears is actually the setting for the Name property.

 4. Place a text box, a button, and a label on the form.
 5. Click on the Object box just below the title bar of the Properties window.

The name of the form and the names of the four controls are displayed. If you click on one of the
names, that object will become selected and its properties displayed in the Properties window.

 6. Run the program.
Notice that the word ListBox1 has disappeared, but the words Button1 and Label1 are still
visible. The list box is completely blank. In subsequent sections, we will write code to place
information into the list box.

 7. End the program.
 8. Click on Close Solution (or Close Project) in the FILE menu to close the program.
 There is no need to save this program, so click on the Discard button.

 2.2 Visual Basic Controls ◆ 51

n The Name Property

The form and each control on it has a Name property. By default, the form is given the name
Form1 and controls are given names such as TextBox1 and TextBox2. These names can (and
should) be changed to descriptive ones that reflect the purpose of the form or control. Also, it is
a good programming practice to have each name begin with a three-letter prefix that identifies
the type of the object. See Table 2.1.

Object Prefix Example

form frm frmPayroll
button btn btnComputeTotal
label lbl lblAddress
list box lst lstOutput
text box txt txtCity

TABLE 2.1 Some three-letter prefixes.

The Solution Explorer window contains a file named Form1.vb that holds information about
the form. Form1 is also the setting of the form’s Name property in the Properties window. If you
change the base name of the file Form1.vb, the setting of the Name property will automati-
cally change to the new name. To make the change, right-click on Form1.vb in the Solution
Explorer window, click on Rename in the context menu that appears, type in a new name (such
as frmPayroll.vb), and press the Enter key. Important: Make sure that the new filename keeps
the extension vb.

The name of a control placed on a form is changed from the control’s Properties window.
(The Name property is always the third property in the alphabetized list of properties.) Names
of controls and forms must begin with a letter and can include numbers, letters, and underscore
(_) characters, but cannot include punctuation marks or spaces.

The Name and Text properties of a button are both initially set to something like Button1.
However, changing one of these properties does not affect the setting of the other property, and
similarly for the Name and Text properties of forms, text boxes, and labels. The Text property
of a form specifies the words appearing in the form’s title bar.

n Fonts

The default font for controls is Microsoft Sans Serif. Courier New is another commonly used
font. Courier New is a fixed-width font; that is, each character has the same width. With such a
font, the letter i occupies the same space as the letter m. Fixed-width fonts are used with tables
when information is to be aligned in columns.

n Auto Hide

The Auto Hide feature allows you to make more room on the screen for the Document window
by hiding windows (such as the Toolbox, Solution Explorer, and Properties windows). Let’s
illustrate the feature with a walkthrough using the Toolbox window.

 1. If the Toolbox window is not visible, click on Toolbox in the Menu bar’s VIEW menu to see
the window.

Auto Hide is active when the pushpin icon is horizontal A B. When the Auto Hide feature
is enabled, the Toolbox window will slide out of view when not needed.

 52 ◆ Chapter 2 Visual Basic, Controls, and Events

 2. If the pushpin icon is vertical Q R, then click on the icon to make it horizontal.

The Auto Hide feature is now enabled.
 3. Move the mouse cursor somewhere outside the Toolbox window and click the left mouse

button.
The window slides into a tab captioned Toolbox on the left side of the screen.

 4. Hover the mouse cursor over the tab.
The window slides into view and is ready for use. After you click outside the window, it will
return back into the tab.

 5. Click on the pushpin icon to make it vertical.
The Auto Hide feature is now disabled.

 6. Click the mouse cursor somewhere outside the Toolbox window.
The Toolbox window stays fixed. Note: We recommend keeping Auto Hide disabled for the
Toolbox, Solution Explorer, and Properties windows unless you are creating a program with
a very large form and need extra space.

n Positioning and Aligning Controls

Visual Basic provides several tools for positioning and aligning controls on a form. Proximity
lines are short line segments that help you place controls a comfortable distance from each other
and from the sides of the form. Snap lines are horizontal and vertical line segments that help
you align controls. The FORMAT menu is used to align controls, center controls horizontally
and vertically in a form, and make a group of selected controls the same size.

A Positioning and Aligning Walkthrough

 1. Begin a new program.
 2. Place a button near the center of the form.
 3. Drag the button toward the upper-right corner of the form until two short line segments

appear. The line segments are called proximity lines. See Fig. 2.15(a). The button is now a
comfortable distance from each of the two sides of the form.

Basic
Controls,
Sizing and
Aligning

FIgurE 2.15 Positioning controls.

Proximity
line

Snap
line

(a) (b)

(d)(c)

VideoNote

 2.2 Visual Basic Controls ◆ 53

 4. Place a second button below the first button and drag it upward until a proximity line appears
between the two buttons.
The buttons are now a comfortable distance apart.

 5. Resize and position the two buttons as shown in Fig. 2.15(b).
 6. Drag Button2 upward until a blue line appears along the bottoms of the two buttons.

See Fig. 2.15(c). This blue line is called a snap line. The bottoms of the two buttons are
now aligned.

 7. Continue dragging Button2 upward until a purple snap line appears just underneath the
words Button1 and Button2.
See Fig. 2.15(d). The middles of the two buttons are now aligned. If we were to continue
dragging Button2 upward, a blue snap line would tell us when the tops were aligned. Steps 8
and 9 present another way to align the tops of the controls.

 8. Click on Button1 and then hold down the Ctrl key and click on Button2.
After the mouse button is released, both buttons will be selected. Note: This process
(called selection of multiple controls) can be repeated to select a group of any number
of controls.

 9. With the two buttons still selected, open the FORMAT menu in the Menu bar, hover over
Align, and click on Tops.
The tops of the two buttons are now aligned. Precisely, Button1 (the first button selected)
will stay fixed, and Button2 will move up so that its top is aligned with the top of Button1.
The Align submenu also is used to align middles or corresponding sides of a group of selected
controls. Some other useful submenus of the FORMAT menu are as follows:

Make Same Size: Equalize the width and/or height of the controls in a group of selected
controls.
Center in Form: Center a selected control either horizontally or vertically in a form.
Vertical Spacing: Equalize the vertical spacing between a column of three or more selected
controls.
Horizontal Spacing: Equalize the horizontal spacing between a row of three or more
selected controls.

 10. With the two buttons still selected, open the Properties window and set the ForeColor
property to blue.
Notice that the ForeColor property has been altered for both buttons. Actually, any property
that is common to every control in a group of selected multiple controls can be set simulta-
neously for the entire group of controls.

n Multiple Controls

When a group of controls are selected with the Ctrl key, the first control selected (called the
master control of the group) will have white sizing handles, while the other controls will have
black sizing handles. All alignment and sizing statements initiated from the FORMAT menu
will keep the master control fixed and will align (or size) the other controls with respect to the
master control. You can designate a different control to be the master control by clicking on it.

After multiple controls have been selected, they can be dragged, deleted, and have properties
set as a group. The arrow keys also can be used to move and size multiple controls as a group.

A group of multiple controls also can be selected by clicking the mouse outside the controls,
dragging it across the controls, and releasing it. The Select All command from the EDIT menu
(or the key combination Ctrl+A) causes all the controls on the form to be selected.

Using
Multiple
Controls

VideoNote

 54 ◆ Chapter 2 Visual Basic, Controls, and Events

n Setting Tab Order

Whenever the Tab key is pressed while a program is running, the focus moves from one control
to another. The following walkthrough explains how to determine the order in which the focus
moves and how that order can be changed.

 1. Start a new program.
 2. Place a button, a text box, and a list box on a form.
 3. Run the program, and successively press the Tab key.

Notice that the controls receive the focus in the order they were placed on the form.
 4. End the program.
 5. Click on Tab Order in the VIEW menu.

The screen appears as in Fig. 2.16(a). The controls are numbered from 0 to 2 in the order
they were created. Each of the numbers is referred to as a tab index.

FIgurE 2.16 Tab order.

(b)(a)

 6. Click on the list box, then the button, and finally the text box.
Notice that the tab indexes change as shown in Fig. 2.16(b).

 7. Click again on Tab Order in the VIEW menu to set the new tab order.
 8. Run the program again, and successively press the Tab key.

Notice that the controls receive the focus according to the new tab order.
 9. End the program.

 10. Add a label to the form, rerun the program, and successively press the Tab key.
Notice that the label does not receive the focus. Whether or not a control can receive the
focus is determined by the setting of its TabStop property. By default, the setting of the
TabStop property is True for buttons, text boxes, and list boxes, and False for labels. In this
book we always use these default settings. Note: Even though labels do not receive the focus
while tabbing, they are still assigned a tab index.

n Comments

 1. While you are working on a program, the program resides in memory. Removing a program
from memory is referred to as closing the program. A program is automatically closed when
you begin a new program. Also, it can be closed directly with the Close Solution (or Close
Project) command from the FILE menu.

 2. Three useful properties that have not been discussed are the following:
 (a) BackColor: This property specifies the background color for the form or a control.
 (b) Visible: Setting the Visible property to False causes an object to disappear when the

program is run. The object can be made to reappear with code.

 2.2 Visual Basic Controls ◆ 55

 (c) Enabled: Setting the Enabled property of a control to False restricts its use. It appears
grayed and cannot receive the focus. Controls sometimes are disabled temporarily when
they are not needed in the current state of the program.

 3. Most properties can be set or altered with code as the program is running instead of being
preset from the Properties window. For instance, a button can be made to disappear with a
line such as Button1.Visible = False. The details are presented in Section 2.3.

 4. If you inadvertently double-click on a form, a window containing text will appear. (The first
line is Public Class Form1.) This is the Code Editor, which is discussed in the next section.
To return to the Form Designer, click on the tab at the top of the Document window labeled
“Form1.vb [Design].”

 5. We have seen two ways to place a control onto a form. Another way is to just click on the
control in the Toolbox and then click on the location in the form where you would like to
place the control. Alternatively, you can just drag the control from the Toolbox to the loca-
tion in the form.

 6. Figure 2.9 on page 46 shows a small down-arrow button on the right side of the Text property
setting box. When you click on that button, a rectangular box appears. The setting for the Text
property can be typed into this box instead of into the Settings box. This method of specifying
the setting is especially useful when you want the button to have a multiline caption.

 7. We recommend setting the StartPosition property of the form to CenterScreen. With this
setting the form will appear in the center of the screen when the program is run.

 8. Refer to Fig. 2.8 on page 45. If you click on the button at the right side of the Properties
window’s Object box, a list showing all the controls on the form will drop down. You can
then click on one of the controls to make it the selected control.

Practice Problems 2.2

 1. What is the difference between the Text and the Name properties of a button?

 2. The first two group names in the Toolbox are All Windows Forms and Common Controls.
How many groups are there?

ExErCISES 2.2

 1. Create a form with a ListBox control, set the Name property to lstFirst and run the program.
Do you notice anything different before and after running the program?

 2. Name the different tools provided by Visual Basic for positioning and aligning controls on
a form. Verify your answer by creating a form with two buttons.

In Exercises 3 through 24, carry out the task.

 3. Create a form with background color yellow.
 4. Alter the width of the textbox using the mouse.
 5. Place the textbox center of the form using the mouse.
 6. Create a form with a textbox. Activate the property window of the textbox using a single

key from the keyboard.
 7. Create a textbox txtFirst and display “Visual Basic” in Times New Roman with font size 12.
 8. Create a form with a textbox and display “After all is said and done, more is said than done.”

in the text box in bold, blue color.

 56 ◆ Chapter 2 Visual Basic, Controls, and Events

 9. Create a form with a title bar “Visual Basic” and a textbox with text “Visual Basic 2012” in
Times New Roman.

 10. Create a textbox txtFirst and display your first name in bold italic.
 11. Create a textbox txtFirst and display your first name in the text box.
 12. Create a textbox and find the default font, font style and font size.
 13. Create a label with the text “Hello” in gold background.
 14. Create a textbox txtFirst for output.
 15. Equalize the vertical spacing between three textboxes.
 16. Create a button btnFirst with the text “Please Push Me”.
 17. Create a button and display the bold text “Please Push Me” in two lines. Each line should

be center justified.
 18. Create a button with the text “Save As”.
 19. Create a button with the text “Send”, access key d.
 20. Create two buttons and align the tops of the two buttons.
 21. Create a Label lblFirst with the text “Enter Your Name:”.
 22. Create a Label lblFirst with the two-line text “Enter Your First and Last Name”.
 23. Create a Label lblFirst with bold, center aligned text “Register No.:”.
 24. Create a List Box that will be disabled when the program is run.

In Exercises 25 through 30, create the form shown in the figure. (These exercises give you
practice creating controls and assigning properties. The interfaces do not necessarily cor-
respond to actual programs.)

 25. 26.

 27. 28.

 29. 30.

 2.2 Visual Basic Controls ◆ 57

 31. Create a replica of your bank check on a form. Words common to all checks, such as
“PAY TO THE ORDER OF”, should be contained in labels. Items specific to your checks,
such as your name at the top left, should be contained in text boxes. Make the check on
the screen resemble your personal check as much as possible. Note: Omit the account
number.

 32. Create a replica of your campus ID on a form. Words that are on all student IDs, such as the
name of the college, should be contained in labels. Information specific to your ID, such as
your name and student ID number, should be contained in text boxes.

 33. Consider the form shown in Exercise 25. Assume the Batman button was added to the form
before the Robin button. What is the tab index of the Robin button?

 34. Consider the form shown in Exercise 26. Assume the first control added to the form was the
label. What is the tab index of the label?

The following hands-on exercises develop additional techniques for manipulating and
accessing controls placed on a form.

 35. Place a label on a form and select the label. What is the effect of pressing the various arrow
keys while holding down the Ctrl key?

 36. Place a label on a form and select the label. What is the effect of pressing the various arrow
keys while holding down the Shift key?

 37. Repeat Exercise 36 for a Button.
 38. Repeat Exercise 35 for a Button.
 39. Create a label and a list box with font size 12 and font Times New Roman at the same time.
 40. Place a Text Box txtexample in the center of a form and select it. Hold down the Ctrl key and

press an arrow key. Repeat this process for each of the other arrow keys. Describe what happens.
 41. Place a label and a list box on a form with the label to the left of and above the list box.

Select the label. Hold down the Ctrl key and press the down-arrow key twice. With the Ctrl
key still pressed, press the right-arrow key. Describe what happens.

 42. Place two text boxes on a form with one text box to the right of and below the other text
box. Select the lower text box, hold down the Ctrl key, and press the left-arrow key. With
the Ctrl key still pressed, press the up-arrow key. Describe the effect of pressing the two
arrow keys.

 43. Explore FORMAT menu to determine the difference between the center and the middle of
a control by placing a textbox and a button respectively on a form.

 44. Place four different size textboxes vertically on a form. Use the FORMAT menu to make
them the same size, center and to make the spacing between them uniform.

 45. Place a label and a text box on a form as in Exercise 26, and then lower the label slightly
and lower the text box until it is about one inch lower than the label. Use the mouse to
slowly raise the text box to the top of the form. Three snap lines will appear along the way:
a blue snap line, a purple snap line, and finally another blue snap line. What is the signifi-
cance of each snap line?

 46. Place a label on a form, select the label, and open its Properties window. Double-click on the
name (not the Settings box) of the Visible property. Double-click again. What is the effect
of double-clicking on a property whose possible settings are True and False?

 47. Place a list box on a form, select the list box, and open its Properties window. Double-click
on the name (not the Settings box) of the Enable property. Double-click repeatedly. Describe
what is happening.

Moving a
Textbox
(Homework)

VideoNote

 58 ◆ Chapter 2 Visual Basic, Controls, and Events

Solutions to Practice Problems 2.2

 1. The text is the words appearing on the button, whereas the name is the designation used to refer to the button
in code. Initially, they have the same value, such as Button1. However, each can be changed independently of
the other.

 2. The Toolbox in the Express Edition of Visual Basic contains 11 groups. Figure 2.17 shows the Toolbox after each
group has been collapsed. Note: In the other editions of Visual Basic the Toolbox contains 12 groups.

FIgurE 2.17 Toolbox group names.

2.3 Visual Basic Events

When a Visual Basic program runs, the form and its controls appear on the screen. Normally,
nothing happens until the user takes an action, such as clicking a control or pressing a key. We
call such an action an event. The programmer writes code that reacts to an event by performing
certain tasks.

The three steps in creating a Visual Basic program are as follows:

 1. Create the interface; that is, generate, position, and size the objects.
 2. Set properties; that is, configure the appearance of the objects.
 3. Write the code that executes when events occur.

Section 2.2 covered Steps 1 and 2; this section is devoted to Step 3. Code consists of statements
that carry out tasks. Writing code in Visual Basic is assisted by an autocompletion system called
IntelliSense that reduces the amount of memorization needed and helps prevent errors. In this
section, we limit ourselves to statements that change properties of a control or the form while
a program is running.

Properties of controls are changed in code with statements of the form

controlName.property = setting

where controlName is the name of the control, property is one of the properties of the control,
and setting is a valid setting for that property. Such statements are called assignment statements.
They assign values to properties. Here are three examples of assignment statements:

 1. The statement

txtBox.Text = "Hello"

displays the word Hello in the text box.

Event
Procedures

VideoNote

 2.3 Visual Basic Events ◆ 59

 2. The statement

btnButton.Visible = True

makes the button visible.
 3. The statement

txtBox.ForeColor = Color.Red

sets the color of the characters in the text box named txtBox to red.
Most events are associated with controls. The event “click on btnButton” is different from the

event “click on lstBox”. These two events are specified btnButton.Click and lstBox.Click. The
statements to be executed when an event occurs are written in a block of code called an event
procedure or event handler. The first line of an event procedure (called the header) has the form

Private Sub objectName_event(sender As System.Object,

 e As System.EventArgs) Handles objectName.event

Since we rarely make any use of the lengthy text inside the parentheses in this book, for the
sake of readability we replace it with an ellipsis. However, it will automatically appear in our
programs each time Visual Basic creates the header for an event procedure. The structure of an
event procedure is

Private Sub objectName_event(...) Handles objectName.event

 statements

End Sub

where the three dots (that is, the ellipsis) represent

sender As System.Object, e As System.EventArgs

Words such as “Private,” “As,” “Sub,” “Handles,” and “End” have special meanings in Visual
Basic and are referred to as keywords or reserved words. The Code Editor automatically capi-
talizes the first letter of a keyword and displays the word in blue. The word “Sub” in the first
line signals the beginning of the procedure, and the first line identifies the object and the event
occurring to that object. The last line signals the termination of the event procedure. The
statements to be executed appear between these two lines. These statements are referred to as
the body of the event procedure. (Note: The word “Private” indicates that the event procedure
cannot be invoked by another form. This will not concern us until much later in the book. The
expression following “Handles” identifies the object and the event happening to that object.
The expression "objectName_event" is the default name of the procedure and can be changed
if desired. In this book, we always use the default name. The word “Sub” is an abbreviation of
Subroutine.) For instance, the event procedure

Private Sub btnButton_Click(...) Handles btnButton.Click

 txtBox.ForeColor = Color.Red

End Sub

changes the color of the words in the text box to red when the button is clicked. The clicking
of the button is said to raise the event, and the event procedure is said to handle the event.

n An Event Procedure Walkthrough

The form in Fig. 2.18, on the next page, which contains two text boxes and a button, will be used
to demonstrate what event procedures are and how they are created. Three event procedures
will be used to alter the appearance of a phrase appearing in a text box. The event procedures
are named txtFirst_TextChanged, btnRed_Click, and txtFirst_Leave.

 60 ◆ Chapter 2 Visual Basic, Controls, and Events

 1. Create the interface in Fig. 2.18 in the Form Designer. The Name properties of the form,
text boxes, and button should be set as shown in the Object column. The Text property of
the form should be set to Demonstration, and the Text property of the button should be set
to Change Color to Red. No properties need be set for the text boxes.

 2. Click the right mouse button anywhere on the Form Designer, and click on View Code. The
Form Designer IDE is replaced by the Code Editor (also known as the Code view or the Code
window). See Fig. 2.19.

FIgurE 2.18 The interface for the event procedure walkthrough.

OBjECT PrOPErTY SETTINg

frmDemo Text Demonstration
txtFirst
txtSecond
btnRed Text Change Color to Red

FIgurE 2.19 The Visual Basic IDE in Code Editor mode.

Code Editor
tab

Form Designer
tab

The tab labeled frmDemo.vb corresponds to the Code Editor. Click on the tab labeled
frmDemo.vb [Design] when you want to return to the Form Designer. We will place our
program code between the two lines shown.

Figure 2.19 shows that the Code Editor IDE has a Toolbox, Solution Explorer, and Prop-
erties window that support Auto Hide. The Solution Explorer window for the Code Editor
functions exactly like the one for the Form Designer. The Code Editor’s Toolbox has just
one group, General, that is used to store code fragments that can be copied into a program
when needed. The Code Editor’s Properties window will not be used in this textbook.

 3. Click on the tab labeled “frmDemo.vb [Design]” to return to the Form Designer. (You also
can invoke the Form Designer by clicking on Designer in the VIEW menu, or by right-
clicking the Code Editor and clicking on View Designer.)

 2.3 Visual Basic Events ◆ 61

 4. Double-click on the button. The Code Editor reappears, but now the following two lines of
code have been added to it and the cursor is located on the blank line between them.

Private Sub btnRed_Click(...) Handles btnRed.Click

End Sub

The first line is the header for an event procedure named btnRed_Click. This procedure
is invoked by the event btnRed.Click. That is, whenever the button is clicked, the code
between the two lines just shown will be executed.

 5. Type the line

txtFirst.ForeColor = Color.Red

at the cursor location.
This statement begins with the name of a control, txtFirst. Each time you type a letter of

the name, IntelliSense drops down a list containing possible completions for the name.1 As
you continue typing, the list is shortened to match the letters that you have typed. Figure 2.20
shows the list after the letters tx have been typed. At this point, you have the following three
options on how to continue:

 i. Double-click on txtFirst in the list.
 ii. Keep the cursor on txtFirst, and then press the Tab key or the Enter key.
 iii. Directly type in the remaining six letters of txtFirst.

1This feature of IntelliSense is referred to as Complete Word.

FIgurE 2.20 Drop-down list produced by IntelliSense.

After you type the dot (.) following txtFirst, IntelliSense drops down a list containing prop-
erties of text boxes. See Fig. 2.21(a) on the next page. Each property is preceded by a properties
icon A B. [The list also contains items called methods, which we will discuss later. Methods
are preceded by a method icon A B.] At this point, you can scroll up the list and double-click
on ForeColor to automatically enter that property. See Fig. 2.21(b). Or, you can keep typing.
After you have typed “For”, the list shortens to the single word ForeColor. At that point, you
can press the Tab key or the Enter key, or keep typing to obtain the word ForeColor.

After you type in the equal sign, IntelliSense drops down the list of colors shown in
Fig. 2.22. You have the option of scrolling to Color.Red and double-clicking on it, or typing
Color.Red into the statement.

 6. Return to the Form Designer and double-click on the first text box. The Code Editor reap-
pears, and the first and last lines of the event procedure txtFirst_TextChanged appear in it.
This procedure is raised by the event txtFirst.TextChanged—that is, whenever there is a
change in the text displayed in the text box txtFirst. Type the line that sets the ForeColor
property of txtFirst to blue. The event procedure will now appear as follows:

 Private Sub txtFirst_TextChanged(...) Handles txtFirst.TextChanged

 txtFirst.ForeColor = Color.Blue

 End Sub

 62 ◆ Chapter 2 Visual Basic, Controls, and Events

 7. Return to the Form Designer and select txtFirst.

 8. Click on the Events button Q R in the toolbar near the top of the Properties window. The
63 events associated with text boxes are displayed, and the Description pane at the bottom
of the window describes the currently selected event. (Don’t be alarmed by the large number
of events. Only a few events are used in this book.) Scroll to the Leave event. See Fig. 2.23.

FIgurE 2.22 Drop-down list of colors produced by IntelliSense.

FIgurE 2.21 Drop-down list produced by IntelliSense.

(a) (b)

FIgurE 2.23 Events displayed in the Properties window.

 2.3 Visual Basic Events ◆ 63

 9. Double-click on the Leave event. (The event txtFirst.Leave is raised when the focus is
moved away from the text box.) The header and the last line of the event procedure
 txtFirst_Leave will be displayed. In this procedure, type the line that sets the ForeColor
property of txtFirst to Black. The Code Editor will now look as follows:

Public Class frmDemo

 Private Sub btnRed_Click(...) Handles btnRed.Click

 txtFirst.ForeColor = Color.Red

 End Sub

 Private Sub txtFirst_Leave(...) Handles txtFirst.Leave

 txtFirst.ForeColor = Color.Black

 End Sub

 Private Sub txtFirst_TextChanged(...) Handles txtFirst.TextChanged

 txtFirst.ForeColor = Color.Blue

 End Sub

End Class

 10. Hover the cursor over the word “ForeColor”. Visual Basic now displays information about
the foreground color property. This illustrates another help feature of Visual Basic.

 11. Run the program by pressing F5.
 12. Type something into the first text box. In Fig. 2.24, the blue word “Hello” has been typed.

(Recall that a text box has the focus whenever it is ready to accept typing—that is, whenever
it contains a blinking cursor.)

FIgurE 2.24 Text box containing input.

 13. Click on the second text box. The contents of the first text box will become black. When
the second text box was clicked, the first text box lost the focus; that is, the event Leave
happened to txtFirst. Thus, the event procedure txtFirst_Leave was invoked, and the code
inside the procedure was executed.

 14. Click on the button. This invokes the event procedure btnRed_Click, which changes the
color of the words in txtFirst to red.

 15. Click on the first text box, and type the word “Friend” after the word “Hello”. As soon as
typing begins, the text in the text box is changed and the TextChanged event is raised. This
event causes the color of the contents of the text box to become blue.

 16. You can repeat Steps 12 through 15 as many times as you like. When you are finished, end
the program by clicking on the Stop Debugging button on the Toolbar, clicking on the form’s
Close button, or pressing Alt+F4.

Note: After viewing events in the Properties window, click on the Properties button A B
to the left of the Events button to return to displaying properties in the Properties window.

n Properties and Event Procedures of the Form

You can assign properties to the form itself in code. However, a statement such as

frmDemo.Text = "Demonstration"

 64 ◆ Chapter 2 Visual Basic, Controls, and Events

will not work. The form is referred to by the keyword Me. Therefore, the proper statement is

Me.Text = "Demonstration"

To display a list of all the events associated with frmDemo, select the form in the Form
Designer and then click on the Events button in the Properties window’s toolbar.

n The Header of an Event Procedure

As mentioned earlier, in the header for an event procedure such as

Private Sub btnOne_Click(...) Handles btnOne.Click

btnOne_Click is the name of the event procedure, and btnOne.Click identifies the event that
invokes the procedure. The name can be changed at will. For instance, the header can be
changed to

Private Sub ButtonPushed(...) Handles btnOne.Click

Also, an event procedure can handle more than one event. For instance, if the previous line
is changed to

Private Sub ButtonPushed(...) Handles btnOne.Click, btnTwo.Click

the event procedure will be invoked if either btnOne or btnTwo is clicked.
We have been using ellipses (. . .) as place holders for the phrase

sender As System.Object, e As System.EventArgs

In Chapter 5, we will gain a better understanding of this type of phrase. Essentially, the word
“sender” carries a reference to the object that raised the event, and the letter “e” carries some
additional information that the sending object wants to communicate. We will make use of
“sender” and/or “e” in Section 9.4 only when sending output to the printer. You can delete
the entire phrase from any other type of program in this book and just leave the blank set of
parentheses.

n Opening a Program

Beginning with the next chapter, each example contains a program. These programs can be
downloaded from the Pearson website for this book. See the discussion on page 17 of the
Preface for details. The process of loading a program stored on a disk into the Visual Basic envi-
ronment is referred to as opening the program. Let’s open the downloaded program 7-2-3 from
Chapter 7. That program allows you to enter a first name, and then displays U.S. presidents
having that first name.

 1. From Visual Basic, click on Open Project in the FILE menu. (An Open Project dialog box
will appear.)

 2. Navigate to the contents of the Ch07 subfolder downloaded from the website.
 3. Double-click on 7-2-3.
 4. Double-click on 7-2-3.sln.
 5. If the Solution Explorer window is not visible, click on Solution Explorer in the VIEW

menu.
 6. If the file frmPresident.vb is not visible in the Solution Explorer, click on the symbol to the

left of 7-2-3 in the Solution Explorer in order to display the file.

 2.3 Visual Basic Events ◆ 65

 7. Double-click on frmPresident.vb. The Form Designer for the program will be revealed and
the Solution Explorer window will appear as in Fig. 2.25. (You can click on the View Code
button to reveal the Code Editor. The Show All Files and Refresh buttons, which allow you
to view all the files in a program’s folder and to update certain files, will be used extensively
beginning with Chapter 7.)

FIgurE 2.25 Solution Explorer window.

Show
All Files

View
CodeRefresh

 8. Press F5 to run the program.
 9. Type in a name (such as James or William), and press the Display Presidents button. (See

Fig. 2.26.) You can repeat this process as many times as desired.

FIgurE 2.26 Output for program 7-2-3.

 10. End the program.

The program just executed uses a text file named USPres.txt. To view the text file, open the
folder bin, open the subfolder Debug, and click on USPres.txt. (If the bin folder is not visible,
click on the Show All Files button. If USPres.txt is not listed in the Debug subfolder, click the
Refresh button and reopen the folders. After reading Chapter 7, you will understand why text
files are placed in the Debug subfolder of the bin folder.) The first line of the file gives the name
of the first president; the second line gives the name of the second president, and so on. To close
the text file, click on the Close button Q R on the USPres.txt tab.

n Comments

 1. The Visual Basic editor automatically indents the statements inside procedures. In this book,
we indent by two spaces. To instruct your editor to indent by two spaces, click on Options in
the TOOLS menu to display an Options dialog box, expand the “Text Editor” item in the

 66 ◆ Chapter 2 Visual Basic, Controls, and Events

left pane, expand the “Basic” item, click on “Tabs”, enter 2 into the “Indent size:” box, and
click on the OK button.

 2. The event controlName.Leave is raised when the specified control loses the focus. Its coun-
terpart is the event controlName.Enter which is raised when the specified control gets the
focus. A related statement is

controlName.Focus()

which moves the focus to the specified control.
 3. We have ended our programs by clicking the Stop Debugging button or pressing Alt+F4. A

more elegant technique is to create a button, call it btnQuit, with caption Quit and the fol-
lowing event procedure:

Private Sub btnQuit_Click(...) Handles btnQuit.Click

 Me.Close()

End Sub

 4. For statements of the form

object.Text = setting

the expression for setting must be surrounded by quotation marks. (For instance, the state-
ment might be lblName.Text = ;Name:<.) For properties where the proper setting is one of
the words True or False, these words should not be surrounded by quotation marks.

 5. Names of existing event procedures associated with an object are not automatically changed
when you rename the object. You must change them yourself. However, the event that
invokes the procedure (and all other references to the control) will change automatically.
For example, suppose an event procedure is

Private Sub btnOne_Click(...) Handles btnOne.Click

 btnOne.Text = "Press Me"

End Sub

and, in the Form Designer, you change the name of btnOne to btnTwo. Then, when you
return to the Code Editor, the procedure will be

Private Sub btnOne_Click(...) Handles btnTwo.Click

 btnTwo.Text = "Press Me"

End Sub

 6. The Code Editor has many features of a word processor. For instance, the operations cut,
copy, paste, and find can be carried out from the EDIT menu.

 7. The Code Editor can detect certain types of errors. For instance, if you type

txtFirst.Text = hello

and then move away from the line, the automatic syntax checker will underline the word
“hello” with a blue squiggle to indicate that something is wrong. When the mouse cursor
is hovered over the underlined expression, the editor will display a message explaining
what is wrong. If you try to run the program without correcting the error, the dialog box in
Figure 2.27 will appear.

 8. Each control has a favored event, called the default event, whose event procedure template
can be generated from the Form Designer by double-clicking on the control. Table 2.2 shows
some controls and their default events. The most common event appearing in this book is
the Click event for a button. The TextChanged event for a text box was used in this section.

 2.3 Visual Basic Events ◆ 67

The SelectedIndexChanged event for a list box is introduced in Section 4.4, and the Load
event for a form is introduced in Section 7.1. The Click event for a label is never used in
this book.

 9. Font properties, such as the name, style, and size, are usually specified at design time. The
setting of the properties can be displayed in code with statements such as

lstBox.Items.Add(txtBox.Font.Name)

lstBox.Items.Add(txtBox.Font.Bold)

lstBox.Items.Add(txtBox.Font.Size)

However, a font’s name, style, and size properties cannot be altered in code with statements
of the form

txtBox.Font.Name = "Courier New"

txtBox.Font.Bold = True

txtBox.Font.Size = 16

 10. When you make changes to a program, asterisks appear as superscripts on the tabs labeled
“frmName.vb [design]” and “frmName.vb” to indicate that some part of the program has not
been saved. The asterisks disappear when the program is saved or run.

Note: If the program has been saved to disk, all files for the program will be automatically
updated on the disk whenever the program is saved or run.

 11. You can easily change the size of the font used in the current program’s Code Editor. Just
hold down the Ctrl key and move the mouse’s scroll wheel.

 12. Notes on IntelliSense:

 (a) Whenever an item in an IntelliSense drop-down list is selected, a tooltip describing the
item appears to the right of the item.

 (b) From the situation in Fig. 2.20, on page 61, we can display txtFirst by double-clicking
on the highlighted item, pressing the Tab key, or pressing the Enter key. Another option

FIgurE 2.27 Error dialog box.

Control Default Event

form Load
button Click
label Click
list box SelectedIndexChanged
text box TextChanged

TABLE 2.2 Some default events.

 68 ◆ Chapter 2 Visual Basic, Controls, and Events

is to press the period key. In this case, both the name txtFirst and the dot following it
will be displayed. Note: The period key option works only if the selected item is always
followed by a dot in code.

 (c) IntelliSense drop-down lists have tabs labeled Common and All. When the All tab is
selected, every possible continuation choice appears in the list. When the Common tab
is selected, only the most frequently used continuation choices appear.

 (d) Occasionally, the IntelliSense drop-down list will cover some of your program. If you
hold down the Ctrl key, the drop-down list will become transparent and allow you to
see the covered-up code.

Practice Problems 2.3

 1. Describe the event that invokes the following event procedure.

 Private Sub btnCompute_Click(...) Handles txtBox.Leave

 txtBox.Text = "Hello world"

 End Sub

 2. Give a statement that will prevent the user from typing into txtBox.

ExErCISES 2.3

In Exercises 1 through 6, describe the contents of the text box after the button is clicked.

 1. Private Sub btnOutput_Click(...) Handles btnOutput.Click
 txtBox.Visible = False

End Sub

 2. Private Sub btnOutput_Click(...) Handles btnOutput.Click
 txtBox.Text = "Hello"

 txtBox.Visible = False

End Sub

 3. Private Sub btnOutput_Click(...) Handles btnOutput.Click
 txtBox.Text = "Goodbye"

 txtBox.BackColor = Color.Orange

End Sub

 4. Private Sub btnOutput_Click(...) Handles btnOutput.Click
 txtBox.Text = "Hello"

 txtBox.ForeColor = Color.Yellow

End Sub

 5. Private Sub btnOutput_Click(...) Handles btnOutput.Click
 txtBox.Text = "Hello"

 txtBox.Enable = False

End Sub

 6. Private Sub btnOutput_Click(...) Handles btnOutput.Click
 txtBox.BackColor = Color.Yellow

 txtBox.Visible = True

End Sub

