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PREFACE

In preparing this third edition of our text, we wanted to provide long-time
readers with new and updated material in a familiar format, while offering
first-time readers an accessible, self-contained treatment of the essential
core of modern microeconomic theory.

To those ends, every chapter has been revised and updated. The
more significant changes include a new introduction to general equilib-
rium with contingent commodities in Chapter 5, along with a simplified
proof of Arrow’s theorem and a new, careful development of the Gibbard-
Satterthwaite theorem in Chapter 6. Chapter 7 includes many refinements
and extensions, especially in our presentation on Bayesian games. The
biggest change – one we hope readers find interesting and useful – is
an extensive, integrated presentation in Chapter 9 of many of the cen-
tral results of mechanism design in the quasi-linear utility, private-values
environment.

We continue to believe that working through exercises is the surest
way to master the material in this text. New exercises have been added to
virtually every chapter, and others have been updated and revised. Many
of the new exercises guide readers in developing for themselves exten-
sions, refinements or alternative approaches to important material covered
in the text. Hints and answers for selected exercises are provided at the end
of the book, along with lists of theorems and definitions appearing in the
text. We will continue to maintain a readers’ forum on the web, where
readers can exchange solutions to exercises in the text. It can be reached
at http://alfred.vassar.edu.

The two full chapters of the Mathematical Appendix still provide
students with a lengthy and largely self-contained development of the set
theory, real analysis, topology, calculus, and modern optimisation theory



xvi PREFACE

which are indispensable in modern microeconomics. Readers of this edi-
tion will now find a fuller, self-contained development of Lagrangian and
Kuhn-Tucker methods, along with new material on the Theorem of the
Maximum and two separation theorems. The exposition is formal but pre-
sumes nothing more than a good grounding in single-variable calculus
and simple linear algebra as a starting point. We suggest that even stu-
dents who are very well-prepared in mathematics browse both chapters of
the appendix early on. That way, if and when some review or reference is
needed, the reader will have a sense of how that material is organised.

Before we begin to develop the theory itself, we ought to say a word
to new readers about the role mathematics will play in this text. Often, you
will notice we make certain assumptions purely for the sake of mathemat-
ical expediency. The justification for proceeding this way is simple, and
it is the same in every other branch of science. These abstractions from
‘reality’ allow us to bring to bear powerful mathematical methods that, by
the rigour of the logical discipline they impose, help extend our insights
into areas beyond the reach of our intuition and experience. In the physical
world, there is ‘no such thing’ as a frictionless plane or a perfect vacuum.
In economics, as in physics, allowing ourselves to accept assumptions
like these frees us to focus on more important aspects of the problem and
thereby helps to establish benchmarks in theory against which to gauge
experience and observation in the real world. This does not mean that you
must wholeheartedly embrace every ‘unrealistic’ or purely formal aspect
of the theory. Far from it. It is always worthwhile to cast a critical eye on
these matters as they arise and to ask yourself what is gained, and what is
sacrificed, by the abstraction at hand. Thought and insight on these points
are the stuff of which advances in theory and knowledge are made. From
here on, however, we will take the theory as it is and seek to understand it
on its own terms, leaving much of its critical appraisal to your moments
away from this book.

Finally, we wish to acknowledge the many readers and colleagues
who have provided helpful comments and pointed out errors in previous
editions. Your keen eyes and good judgements have helped us make this
third edition better and more complete than it otherwise would be. While
we cannot thank all of you personally, we must thank Eddie Dekel, Roger
Myerson, Derek Neal, Motty Perry, Arthur Robson, Steve Williams, and
Jörgen Weibull for their thoughtful comments.
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ECONOMIC AGENTS





CHAPTER 1
CONSUMER THEORY

In the first two chapters of this volume, we will explore the essential features of modern
consumer theory – a bedrock foundation on which so many theoretical structures in eco-
nomics are built. Some time later in your study of economics, you will begin to notice just
how central this theory is to the economist’s way of thinking. Time and time again you
will hear the echoes of consumer theory in virtually every branch of the discipline – how
it is conceived, how it is constructed, and how it is applied.

1.1 PRIMITIVE NOTIONS

There are four building blocks in any model of consumer choice. They are the consump-
tion set, the feasible set, the preference relation, and the behavioural assumption. Each is
conceptually distinct from the others, though it is quite common sometimes to lose sight of
that fact. This basic structure is extremely general, and so, very flexible. By specifying the
form each of these takes in a given problem, many different situations involving choice can
be formally described and analysed. Although we will tend to concentrate here on specific
formalisations that have come to dominate economists’ view of an individual consumer’s
behaviour, it is well to keep in mind that ‘consumer theory’ per se is in fact a very rich and
flexible theory of choice.

The notion of a consumption set is straightforward. We let the consumption set, X,
represent the set of all alternatives, or complete consumption plans, that the consumer can
conceive – whether some of them will be achievable in practice or not. What we intend
to capture here is the universe of alternative choices over which the consumer’s mind is
capable of wandering, unfettered by consideration of the realities of his present situation.
The consumption set is sometimes also called the choice set.

Let each commodity be measured in some infinitely divisible units. Let xi ∈ R repre-
sent the number of units of good i. We assume that only non-negative units of each good are
meaningful and that it is always possible to conceive of having no units of any particular
commodity. Further, we assume there is a finite, fixed, but arbitrary number n of different
goods. We let x = (x1, . . . , xn) be a vector containing different quantities of each of the n
commodities and call x a consumption bundle or a consumption plan. A consumption
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bundle x ∈ X is thus represented by a point x ∈ R
n+. Usually, we’ll simplify things and just

think of the consumption set as the entire non-negative orthant, X = R
n+. In this case, it is

easy to see that each of the following basic requirements is satisfied.

ASSUMPTION 1.1 Properties of the Consumption Set, X

The minimal requirements on the consumption set are

1. X ⊆ R
n+.

2. X is closed.

3. X is convex.

4. 0 ∈ X.

The notion of a feasible set is likewise very straightforward. We let B represent all
those alternative consumption plans that are both conceivable and, more important, realis-
tically obtainable given the consumer’s circumstances. What we intend to capture here are
precisely those alternatives that are achievable given the economic realities the consumer
faces. The feasible set B then is that subset of the consumption set X that remains after we
have accounted for any constraints on the consumer’s access to commodities due to the
practical, institutional, or economic realities of the world. How we specify those realities
in a given situation will determine the precise configuration and additional properties that
B must have. For now, we will simply say that B ⊂ X.

A preference relation typically specifies the limits, if any, on the consumer’s ability
to perceive in situations involving choice the form of consistency or inconsistency in the
consumer’s choices, and information about the consumer’s tastes for the different objects
of choice. The preference relation plays a crucial role in any theory of choice. Its spe-
cial form in the theory of consumer behaviour is sufficiently subtle to warrant special
examination in the next section.

Finally, the model is ‘closed’ by specifying some behavioural assumption. This
expresses the guiding principle the consumer uses to make final choices and so identifies
the ultimate objectives in choice. It is supposed that the consumer seeks to identify and
select an available alternative that is most preferred in the light of his personal tastes.

1.2 PREFERENCES AND UTILITY

In this section, we examine the consumer’s preference relation and explore its connec-
tion to modern usage of the term ‘utility’. Before we begin, however, a brief word on the
evolution of economists’ thinking will help to place what follows in its proper context.

In earlier periods, the so-called ‘Law of Demand’ was built on some extremely
strong assumptions. In the classical theory of Edgeworth, Mill, and other proponents of
the utilitarian school of philosophy, ‘utility’ was thought to be something of substance.
‘Pleasure’ and ‘pain’ were held to be well-defined entities that could be measured and com-
pared between individuals. In addition, the ‘Principle of Diminishing Marginal Utility’ was



CONSUMER THEORY 5

accepted as a psychological ‘law’, and early statements of the Law of Demand depended
on it. These are awfully strong assumptions about the inner workings of human beings.

The more recent history of consumer theory has been marked by a drive to render its
foundations as general as possible. Economists have sought to pare away as many of the
traditional assumptions, explicit or implicit, as they could and still retain a coherent theory
with predictive power. Pareto (1896) can be credited with suspecting that the idea of a
measurable ‘utility’ was inessential to the theory of demand. Slutsky (1915) undertook the
first systematic examination of demand theory without the concept of a measurable sub-
stance called utility. Hicks (1939) demonstrated that the Principle of Diminishing Marginal
Utility was neither necessary, nor sufficient, for the Law of Demand to hold. Finally,
Debreu (1959) completed the reduction of standard consumer theory to those bare essen-
tials we will consider here. Today’s theory bears close and important relations to its earlier
ancestors, but it is leaner, more precise, and more general.

1.2.1 PREFERENCE RELATIONS

Consumer preferences are characterised axiomatically. In this method of modelling as few
meaningful and distinct assumptions as possible are set forth to characterise the struc-
ture and properties of preferences. The rest of the theory then builds logically from these
axioms, and predictions of behaviour are developed through the process of deduction.

These axioms of consumer choice are intended to give formal mathematical expres-
sion to fundamental aspects of consumer behaviour and attitudes towards the objects of
choice. Together, they formalise the view that the consumer can choose and that choices
are consistent in a particular way.

Formally, we represent the consumer’s preferences by a binary relation, � , defined
on the consumption set, X. If x1 � x2, we say that ‘x1 is at least as good as x2’, for this
consumer.

That we use a binary relation to characterise preferences is significant and worth a
moment’s reflection. It conveys the important point that, from the beginning, our theory
requires relatively little of the consumer it describes. We require only that consumers make
binary comparisons, that is, that they only examine two consumption plans at a time and
make a decision regarding those two. The following axioms set forth basic criteria with
which those binary comparisons must conform.

AXIOM 1: Completeness. For all x1 and x2 in X, either x1 � x2 or x2 � x1.

Axiom 1 formalises the notion that the consumer can make comparisons, that is, that
he has the ability to discriminate and the necessary knowledge to evaluate alternatives. It
says the consumer can examine any two distinct consumption plans x1 and x2 and decide
whether x1 is at least as good as x2 or x2 is at least as good as x1.

AXIOM 2: Transitivity. For any three elements x1, x2, and x3 in X, if x1 � x2 and x2 � x3,
then x1 � x3.

Axiom 2 gives a very particular form to the requirement that the consumer’s choices
be consistent. Although we require only that the consumer be capable of comparing two
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alternatives at a time, the assumption of transitivity requires that those pairwise compar-
isons be linked together in a consistent way. At first brush, requiring that the evaluation of
alternatives be transitive seems simple and only natural. Indeed, were they not transitive,
our instincts would tell us that there was something peculiar about them. Nonetheless, this
is a controversial axiom. Experiments have shown that in various situations, the choices
of real human beings are not always transitive. Nonetheless, we will retain it in our
description of the consumer, though not without some slight trepidation.

These two axioms together imply that the consumer can completely rank any finite
number of elements in the consumption set, X, from best to worst, possibly with some ties.
(Try to prove this.) We summarise the view that preferences enable the consumer to con-
struct such a ranking by saying that those preferences can be represented by a preference
relation.

DEFINITION 1.1 Preference Relation

The binary relation � on the consumption set X is called a preference relation if it satisfies
Axioms 1 and 2.

There are two additional relations that we will use in our discussion of consumer
preferences. Each is determined by the preference relation, � , and they formalise the
notions of strict preference and indifference.

DEFINITION 1.2 Strict Preference Relation

The binary relation � on the consumption set X is defined as follows:

x1 � x2 if and only if x1 � x2 and x2 �� x1.

The relation � is called the strict preference relation induced by � , or simply the strict
preference relation when � is clear. The phrase x1 � x2 is read, ‘x1 is strictly preferred
to x2’.

DEFINITION 1.3 Indifference Relation

The binary relation ∼ on the consumption set X is defined as follows:

x1 ∼ x2 if and only if x1 � x2 and x2 � x1.

The relation ∼ is called the indifference relation induced by � , or simply the indifference
relation when � is clear. The phrase x1 ∼ x2 is read, ‘x1 is indifferent to x2’.

Building on the underlying definition of the preference relation, both the strict prefer-
ence relation and the indifference relation capture the usual sense in which the terms ‘strict
preference’ and ‘indifference’ are used in ordinary language. Because each is derived from
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the preference relation, each can be expected to share some of its properties. Some, yes,
but not all. In general, both are transitive and neither is complete.

Using these two supplementary relations, we can establish something very concrete
about the consumer’s ranking of any two alternatives. For any pair x1 and x2, exactly one
of three mutually exclusive possibilities holds: x1 � x2, or x2 � x1, or x1 ∼ x2.

To this point, we have simply managed to formalise the requirement that prefer-
ences reflect an ability to make choices and display a certain kind of consistency. Let us
consider how we might describe graphically a set of preferences satisfying just those first
few axioms. To that end, and also because of their usefulness later on, we will use the
preference relation to define some related sets. These sets focus on a single alternative in
the consumption set and examine the ranking of all other alternatives relative to it.

DEFINITION 1.4 Sets in X Derived from the Preference Relation

Let x0 be any point in the consumption set, X. Relative to any such point, we can define
the following subsets of X:

1. � (x0) ≡ {x | x ∈ X, x � x0}, called the ‘at least as good as’ set.

2. � (x0) ≡ {x | x ∈ X, x0 � x}, called the ‘no better than’ set.

3. ≺ (x0) ≡ {x | x ∈ X, x0 � x}, called the ‘worse than’ set.

4. � (x0) ≡ {x | x ∈ X, x � x0}, called the ‘preferred to’ set.

5. ∼ (x0) ≡ {x | x ∈ X, x ∼ x0}, called the ‘indifference’ set.

A hypothetical set of preferences satisfying Axioms 1 and 2 has been sketched in
Fig. 1.1 for X = R

2+. Any point in the consumption set, such as x0 = (x0
1, x0

2), represents
a consumption plan consisting of a certain amount x0

1 of commodity 1, together with a
certain amount x0

2 of commodity 2. Under Axiom 1, the consumer is able to compare x0

with any and every other plan in X and decide whether the other is at least as good as
x0 or whether x0 is at least as good as the other. Given our definitions of the various sets
relative to x0, Axioms 1 and 2 tell us that the consumer must place every point in X into

Figure 1.1. Hypothetical preferences
satisfying Axioms 1 and 2.
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one of three mutually exclusive categories relative to x0; every other point is worse than x0,
indifferent to x0, or preferred to x0. Thus, for any bundle x0 the three sets ≺ (x0),∼ (x0),
and � (x0) partition the consumption set.

The preferences in Fig. 1.1 may seem rather odd. They possess only the most limited
structure, yet they are entirely consistent with and allowed for by the first two axioms
alone. Nothing assumed so far prohibits any of the ‘irregularities’ depicted there, such as
the ‘thick’ indifference zones, or the ‘gaps’ and ‘curves’ within the indifference set ∼ (x0).
Such things can be ruled out only by imposing additional requirements on preferences.

We shall consider several new assumptions on preferences. One has very little
behavioural significance and speaks almost exclusively to the purely mathematical aspects
of representing preferences; the others speak directly to the issue of consumer tastes over
objects in the consumption set.

The first is an axiom whose only effect is to impose a kind of topological regularity
on preferences, and whose primary contribution will become clear a bit later.

From now on we explicitly set X = R
n+.

AXIOM 3: Continuity. For all x ∈ R
n+, the ‘at least as good as’ set, � (x), and the ‘no

better than’ set, � (x), are closed in R
n+.

Recall that a set is closed in a particular domain if its complement is open in that
domain. Thus, to say that � (x) is closed in R

n+ is to say that its complement, ≺ (x), is
open in R

n+.
The continuity axiom guarantees that sudden preference reversals do not occur.

Indeed, the continuity axiom can be equivalently expressed by saying that if each element
yn of a sequence of bundles is at least as good as (no better than) x, and yn converges to y,
then y is at least as good as (no better than) x. Note that because � (x) and � (x) are closed,
so, too, is ∼ (x) because the latter is the intersection of the former two. Consequently,
Axiom 3 rules out the open area in the indifference set depicted in the north-west of
Fig. 1.1.

Additional assumptions on tastes lend the greater structure and regularity to prefer-
ences that you are probably familiar with from earlier economics classes. Assumptions of
this sort must be selected for their appropriateness to the particular choice problem being
analysed. We will consider in turn a few key assumptions on tastes that are ordinarily
imposed in ‘standard’ consumer theory, and seek to understand the individual and collec-
tive contributions they make to the structure of preferences. Within each class of these
assumptions, we will proceed from the less restrictive to the more restrictive. We will
generally employ the more restrictive versions considered. Consequently, we let axioms
with primed numbers indicate alternatives to the norm, which are conceptually similar but
slightly less restrictive than their unprimed partners.

When representing preferences over ordinary consumption goods, we will want to
express the fundamental view that ‘wants’ are essentially unlimited. In a very weak sense,
we can express this by saying that there will always exist some adjustment in the compo-
sition of the consumer’s consumption plan that he can imagine making to give himself a
consumption plan he prefers. This adjustment may involve acquiring more of some com-
modities and less of others, or more of all commodities, or even less of all commodities.
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By this assumption, we preclude the possibility that the consumer can even imagine hav-
ing all his wants and whims for commodities completely satisfied. Formally, we state this
assumption as follows, where Bε(x0) denotes the open ball of radius ε centred at x0:1

AXIOM 4’: Local Non-satiation. For all x0 ∈ R
n+, and for all ε > 0, there exists some x ∈

Bε(x0) ∩ R
n+ such that x � x0.

Axiom 4′ says that within any vicinity of a given point x0, no matter how small that
vicinity is, there will always be at least one other point x that the consumer prefers to x0.
Its effect on the structure of indifference sets is significant. It rules out the possibility of
having ‘zones of indifference’, such as that surrounding x1 in Fig. 1.2. To see this, note that
we can always find some ε > 0, and some Bε(x1), containing nothing but points indifferent
to x1. This of course violates Axiom 4′, because it requires there always be at least one
point strictly preferred to x1, regardless of the ε > 0 we choose. The preferences depicted
in Fig. 1.3 do satisfy Axiom 4′ as well as Axioms 1 to 3.

A different and more demanding view of needs and wants is very common. Accor-
ding to this view, more is always better than less. Whereas local non-satiation requires

Figure 1.2. Hypothetical preferences
satisfying Axioms 1, 2, and 3.

Figure 1.3. Hypothetical preferences
satisfying Axioms 1, 2, 3, and 4′.

1See Definition A1.4 in the Mathematical Appendix.
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that a preferred alternative nearby always exist, it does not rule out the possibility that
the preferred alternative may involve less of some or even all commodities. Specifically,
it does not imply that giving the consumer more of everything necessarily makes that
consumer better off. The alternative view takes the position that the consumer will always
prefer a consumption plan involving more to one involving less. This is captured by the
axiom of strict monotonicity. As a matter of notation, if the bundle x0 contains at least
as much of every good as does x1 we write x0 ≥ x1, while if x0 contains strictly more of
every good than x1 we write x0 
 x1.

AXIOM 4: Strict Monotonicity. For all x0, x1 ∈ R
n+, if x0 ≥ x1 then x0 � x1, while if x0 


x1, then x0 � x1.

Axiom 4 says that if one bundle contains at least as much of every commodity as
another bundle, then the one is at least as good as the other. Moreover, it is strictly better
if it contains strictly more of every good. The impact on the structure of indifference and
related sets is again significant. First, it should be clear that Axiom 4 implies Axiom 4′,
so if preferences satisfy Axiom 4, they automatically satisfy Axiom 4′. Thus, to require
Axiom 4 will have the same effects on the structure of indifference and related sets as
Axiom 4′ does, plus some additional ones. In particular, Axiom 4 eliminates the possibility
that the indifference sets in R

2+ ‘bend upward’, or contain positively sloped segments. It
also requires that the ‘preferred to’ sets be ‘above’ the indifference sets and that the ‘worse
than’ sets be ‘below’ them.

To help see this, consider Fig. 1.4. Under Axiom 4, no points north-east of x0 or
south-west of x0 may lie in the same indifference set as x0. Any point north-east, such as
x1, involves more of both goods than does x0. All such points in the north-east quadrant
must therefore be strictly preferred to x0. Similarly, any point in the south-west quadrant,
such as x2, involves less of both goods. Under Axiom 4, x0 must be strictly preferred
to x2 and to all other points in the south-west quadrant, so none of these can lie in the
same indifference set as x0. For any x0, points north-east of the indifference set will be
contained in � (x0), and all those south-west of the indifference set will be contained in
the set ≺ (x0). A set of preferences satisfying Axioms 1, 2, 3, and 4 is given in Fig. 1.5.

x1

x2

x0

x2

x1

Figure 1.4. Hypothetical preferences
satisfying Axioms 1, 2, 3, and 4′.
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Figure 1.5. Hypothetical preferences
satisfying Axioms 1, 2, 3, and 4.

The preferences in Fig. 1.5 are the closest we have seen to the kind undoubtedly
familiar to you from your previous economics classes. They still differ, however, in one
very important respect: typically, the kind of non-convex region in the north-west part of
∼ (x0) is explicitly ruled out. This is achieved by invoking one final assumption on tastes.
We will state two different versions of the axiom and then consider their meaning and
purpose.

AXIOM 5’: Convexity. If x1 � x0, then tx1 + (1 − t)x0 � x0 for all t ∈ [0, 1].
A slightly stronger version of this is the following:

AXIOM 5: Strict Convexity. If x1 �=x0 and x1 � x0, then tx1 + (1 − t)x0 � x0 for all
t ∈ (0, 1).

Notice first that either Axiom 5′ or Axiom 5 – in conjunction with Axioms 1, 2, 3,
and 4 – will rule out concave-to-the-origin segments in the indifference sets, such as those
in the north-west part of Fig. 1.5. To see this, choose two distinct points in the indifference
set depicted there. Because x1 and x2 are both indifferent to x0, we clearly have x1 � x2.
Convex combinations of those two points, such as xt, will lie within ≺ (x0), violating the
requirements of both Axiom 5′ and Axiom 5.

For the purposes of the consumer theory we shall develop, it turns out that Axiom 5′
can be imposed without any loss of generality. The predictive content of the theory would
be the same with or without it. Although the same statement does not quite hold for the
slightly stronger Axiom 5, it does greatly simplify the analysis.

There are at least two ways we can intuitively understand the implications of con-
vexity for consumer tastes. The preferences depicted in Fig. 1.6 are consistent with both
Axiom 5′ and Axiom 5. Again, suppose we choose x1 ∼ x2. Point x1 represents a bun-
dle containing a proportion of the good x2 which is relatively ‘extreme’, compared to the
proportion of x2 in the other bundle x2. The bundle x2, by contrast, contains a propor-
tion of the other good, x1, which is relatively extreme compared to that contained in x1.
Although each contains a relatively high proportion of one good compared to the other,
the consumer is indifferent between the two bundles. Now, any convex combination of
x1 and x2, such as xt, will be a bundle containing a more ‘balanced’ combination of x1
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x1

x2

x1

x2

xt

x0

Figure 1.6. Hypothetical preferences satisfying
Axioms 1, 2, 3, 4, and 5′ or 5.

and x2 than does either ‘extreme’ bundle x1 or x2. The thrust of Axiom 5′ or Axiom 5 is
to forbid the consumer from preferring such extremes in consumption. Axiom 5′ requires
that any such relatively balanced bundle as xt be no worse than either of the two extremes
between which the consumer is indifferent. Axiom 5 goes a bit further and requires that the
consumer strictly prefer any such relatively balanced consumption bundle to both of the
extremes between which he is indifferent. In either case, some degree of ‘bias’ in favour
of balance in consumption is required of the consumer’s tastes.

Another way to describe the implications of convexity for consumers’ tastes focuses
attention on the ‘curvature’ of the indifference sets themselves. When X = R

2+, the (abso-
lute value of the) slope of an indifference curve is called the marginal rate of substitution
of good two for good one. This slope measures, at any point, the rate at which the con-
sumer is just willing to give up good two per unit of good one received. Thus, the consumer
is indifferent after the exchange.

If preferences are strictly monotonic, any form of convexity requires the indifference
curves to be at least weakly convex-shaped relative to the origin. This is equivalent to
requiring that the marginal rate of substitution not increase as we move from bundles
such as x1 towards bundles such as x2. Loosely, this means that the consumer is no more
willing to give up x2 in exchange for x1 when he has relatively little x2 and much x1 than
he is when he has relatively much x2 and little x1. Axiom 5′ requires the rate at which the
consumer would trade x2 for x1 and remain indifferent to be either constant or decreasing
as we move from north-west to south-east along an indifference curve. Axiom 5 goes a
bit further and requires that the rate be strictly diminishing. The preferences in Fig. 1.6
display this property, sometimes called the principle of diminishing marginal rate of
substitution in consumption.

We have taken some care to consider a number of axioms describing consumer pref-
erences. Our goal has been to gain some appreciation of their individual and collective
implications for the structure and representation of consumer preferences. We can sum-
marise this discussion rather briefly. The axioms on consumer preferences may be roughly
classified in the following way. The axioms of completeness and transitivity describe a
consumer who can make consistent comparisons among alternatives. The axiom of conti-
nuity is intended to guarantee the existence of topologically nice ‘at least as good as’ and
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‘no better than’ sets, and its purpose is primarily a mathematical one. All other axioms
serve to characterise consumers’ tastes over the objects of choice. Typically, we require
that tastes display some form of non-satiation, either weak or strong, and some bias in
favour of balance in consumption, either weak or strong.

1.2.2 THE UTILITY FUNCTION

In modern theory, a utility function is simply a convenient device for summarising the
information contained in the consumer’s preference relation – no more and no less.
Sometimes it is easier to work directly with the preference relation and its associated sets.
Other times, especially when one would like to employ calculus methods, it is easier to
work with a utility function. In modern theory, the preference relation is taken to be the
primitive, most fundamental characterisation of preferences. The utility function merely
‘represents’, or summarises, the information conveyed by the preference relation. A utility
function is defined formally as follows.

DEFINITION 1.5 A Utility Function Representing the Preference Relation �

A real-valued function u : R
n+ → R is called a utility function representing the preference

relation � , if for all x0, x1 ∈ R
n+, u(x0) ≥ u(x1)⇐⇒x0 � x1.

Thus a utility function represents a consumer’s preference relation if it assigns higher
numbers to preferred bundles.

A question that earlier attracted a great deal of attention from theorists concerned
properties that a preference relation must possess to guarantee that it can be represented
by a continuous real-valued function. The question is important because the analysis of
many problems in consumer theory is enormously simplified if we can work with a utility
function, rather than with the preference relation itself.

Mathematically, the question is one of existence of a continuous utility function rep-
resenting a preference relation. It turns out that a subset of the axioms we have considered
so far is precisely that required to guarantee existence. It can be shown that any binary
relation that is complete, transitive, and continuous can be represented by a continuous
real-valued utility function.2 (In the exercises, you are asked to show that these three
axioms are necessary for such a representation as well.) These are simply the axioms that,
together, require that the consumer be able to make basically consistent binary choices and
that the preference relation possess a certain amount of topological ‘regularity’. In partic-
ular, representability does not depend on any assumptions about consumer tastes, such as
convexity or even monotonicity. We can therefore summarise preferences by a continuous
utility function in an extremely broad range of problems.

Here we will take a detailed look at a slightly less general result. In addition to
the three most basic axioms mentioned before, we will impose the extra requirement that
preferences be strictly monotonic. Although this is not essential for representability, to

2See, for example, Barten and Böhm (1982). The classic reference is Debreu (1954).
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require it simultaneously simplifies the purely mathematical aspects of the problem and
increases the intuitive content of the proof. Notice, however, that we will not require any
form of convexity.

THEOREM 1.1 Existence of a Real-Valued Function Representing
the Preference Relation �

If the binary relation � is complete, transitive, continuous, and strictly monotonic, there
exists a continuous real-valued function, u : R

n+→R, which represents � .

Notice carefully that this is only an existence theorem. It simply claims that under the
conditions stated, at least one continuous real-valued function representing the preference
relation is guaranteed to exist. There may be, and in fact there always will be, more than
one such function. The theorem itself, however, makes no statement on how many more
there are, nor does it indicate in any way what form any of them must take. Therefore, if we
can dream up just one function that is continuous and that represents the given preferences,
we will have proved the theorem. This is the strategy we will adopt in the following proof.

Proof: Let the relation � be complete, transitive, continuous, and strictly monotonic. Let
e ≡ (1, . . . , 1) ∈ R

n+ be a vector of ones, and consider the mapping u : R
n+→R defined so

that the following condition is satisfied:3

u(x)e ∼ x. (P.1)

Let us first make sure we understand what this says and how it works. In words, (P.1)
says, ‘take any x in the domain R

n+ and assign to it the number u(x) such that the bundle,
u(x)e, with u(x) units of every commodity is ranked indifferent to x’.

Two questions immediately arise. First, does there always exist a number u(x)
satisfying (P.1)? Second, is it uniquely determined, so that u(x) is a well-defined function?

To settle the first question, fix x ∈ R
n+ and consider the following two subsets of real

numbers:

A ≡ {t ≥ 0 | te � x}
B ≡ {t ≥ 0 | te � x}.

Note that if t∗ ∈ A ∩ B, then t∗e ∼ x, so that setting u(x) = t∗ would satisfy (P.1).
Thus, the first question would be answered in the affirmative if we show that A ∩ B is
guaranteed to be non-empty. This is precisely what we shall show.

3For t ≥ 0, the vector te will be some point in R
n+ each of whose coordinates is equal to the number t,

because te = t(1, . . . , 1) = (t, . . . , t). If t = 0, then te = (0, . . . , 0) coincides with the origin. If t = 1, then
te = (1, . . . , 1) coincides with e. If t > 1, the point te lies farther out from the origin than e. For 0<t<1, the
point te lies between the origin and e. It should be clear that for any choice of t ≥ 0, te will be a point in R

n+
somewhere on the ray from the origin through e, i.e., some point on the 45◦ line in Fig. 1.7.
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x1

x2

u(x)

u(x)

1

1

45�

u(x)e

x

� (x)

e

Figure 1.7. Constructing the mapping
u : R

n+→R+.

According to Exercise 1.11, the continuity of � implies that both A and B are closed
in R+. Also, by strict monotonicity, t ∈ A implies t′ ∈ A for all t′ ≥ t. Consequently,
A must be a closed interval of the form [t,∞). Similarly, strict monotonicity and the
closedness of B in R+ imply that B must be a closed interval of the form [0, t̄]. Now
for any t ≥ 0, completeness of � implies that either te � x or te � x, that is, t ∈ A ∪ B. But
this means that R+ = A ∪ B = [0, t̄] ∪ [t,∞]. We conclude that t ≤ t̄ so that A ∩ B�=∅.

We now turn to the second question. We must show that there is only one number
t ≥ 0 such that te ∼ x. But this follows easily because if t1e ∼ x and t2e ∼ x, then by the
transitivity of ∼ (see Exercise 1.4), t1e ∼ t2e. So, by strict monotonicity, it must be the
case that t1 = t2.

We conclude that for every x ∈ R
n+, there is exactly one number, u(x), such that (P.1)

is satisfied. Having constructed a utility function assigning each bundle in X a number, we
show next that this utility function represents the preferences � .

Consider two bundles x1 and x2, and their associated utility numbers u(x1) and
u(x2), which by definition satisfy u(x1)e ∼ x1 and u(x2)e ∼ x2. Then we have the
following:

x1 � x2 (P.2)

⇐⇒ u(x1)e ∼ x1 � x2 ∼ u(x2)e (P.3)

⇐⇒ u(x1)e � u(x2)e (P.4)

⇐⇒ u(x1) ≥ u(x2). (P.5)

Here (P.2) ⇐⇒ (P.3) follows by definition of u; (P.3) ⇐⇒ (P.4) follows from the transi-
tivity of � , the transitivity of ∼, and the definition of u; and (P.4) ⇐⇒ (P.5) follows from
the strict monotonicity of � . Together, (P.2) through (P.5) imply that (P.2) ⇐⇒ (P.5), so
that x1 � x2 if and only if u(x1) ≥ u(x2), as we sought to show.

It remains only to show that the utility function u : R
n+→R representing � is con-

tinuous. By Theorem A1.6, it suffices to show that the inverse image under u of every
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open ball in R is open in R
n+. Because open balls in R are merely open intervals, this is

equivalent to showing that u−1((a, b)) is open in R
n+ for every a<b.

Now,

u−1((a, b)) = {x ∈ R
n+ | a < u(x) < b}

= {x ∈ R
n+ | ae ≺ u(x)e ≺ be}

= {x ∈ R
n+ | ae ≺ x ≺ be}.

The first equality follows from the definition of the inverse image; the second from the
monotonicity of � ; and the third from u(x)e ∼ x and Exercise 1.4. Rewriting the last set
on the right-hand side gives

u−1((a, b)) =� (ae)
⋂

≺ (be). (P.6)

By the continuity of � , the sets � (ae) and � (be) are closed in X = R
n+.

Consequently, the two sets on the right-hand side of (P.6), being the complements of these
closed sets, are open in R

n+. Therefore, u−1((a, b)), being the intersection of two open sets
in R

n+, is, by Exercise A1.28, itself open in R
n+.

Theorem 1.1 is very important. It frees us to represent preferences either in terms of
the primitive set-theoretic preference relation or in terms of a numerical representation, a
continuous utility function. But this utility representation is never unique. If some function
u represents a consumer’s preferences, then so too will the function v = u + 5, or the
function v = u3, because each of these functions ranks bundles the same way u does. This
is an important point about utility functions that must be grasped. If all we require of the
preference relation is that it order the bundles in the consumption set, and if all we require
of a utility function representing those preferences is that it reflect that ordering of bundles
by the ordering of numbers it assigns to them, then any other function that assigns numbers
to bundles in the same order as u does will also represent that preference relation and will
itself be just as good a utility function as u.

This is known by several different names in the literature. People sometimes say the
utility function is invariant to positive monotonic transforms or sometimes they say that the
utility function is unique up to a positive monotonic transform. Either way, the meaning
is this: if all we require of the preference relation is that rankings between bundles be
meaningful, then all any utility function representing that relation is capable of conveying
to us is ordinal information, no more and no less. If we know that one function properly
conveys the ordering of bundles, then any transform of that function that preserves that
ordering of bundles will perform all the duties of a utility function just as well.

Seeing the representation issue in proper perspective thus frees us and restrains us.
If we have a function u that represents some consumers’ preferences, it frees us to trans-
form u into other, perhaps more convenient or easily manipulated forms, as long as the
transformation we choose is order-preserving. At the same time, we are restrained by the
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explicit warning here that no significance whatsoever can be attached to the actual num-
bers assigned by a given utility function to particular bundles – only to the ordering of
those numbers.4 This conclusion, though simple to demonstrate, is nonetheless important
enough to warrant being stated formally. The proof is left as an exercise.

THEOREM 1.2 Invariance of the Utility Function to Positive
Monotonic Transforms

Let � be a preference relation on R
n+ and suppose u(x) is a utility function that represents

it. Then v(x) also represents � if and only if v(x) = f (u(x)) for every x, where f : R→R

is strictly increasing on the set of values taken on by u.

Typically, we will want to make some assumptions on tastes to complete the descrip-
tion of consumer preferences. Naturally enough, any additional structure we impose on
preferences will be reflected as additional structure on the utility function representing
them. By the same token, whenever we assume the utility function to have properties
beyond continuity, we will in effect be invoking some set of additional assumptions on the
underlying preference relation. There is, then, an equivalence between axioms on tastes
and specific mathematical properties of the utility function. We will conclude this section
by briefly noting some of them. The following theorem is exceedingly simple to prove
because it follows easily from the definitions involved. It is worth being convinced, how-
ever, so its proof is left as an exercise. (See Chapter A1 in the Mathematical Appendix for
definitions of strictly increasing, quasiconcave, and strictly quasiconcave functions.)

THEOREM 1.3 Properties of Preferences and Utility Functions

Let � be represented by u : R
n+→R. Then:

1. u(x) is strictly increasing if and only if � is strictly monotonic.

2. u(x) is quasiconcave if and only if � is convex.

3. u(x) is strictly quasiconcave if and only if � is strictly convex.

Later we will want to analyse problems using calculus tools. Until now, we have con-
centrated on the continuity of the utility function and properties of the preference relation
that ensure it. Differentiability, of course, is a more demanding requirement than con-
tinuity. Intuitively, continuity requires there be no sudden preference reversals. It does
not rule out ‘kinks’ or other kinds of continuous, but impolite behaviour. Differentiability
specifically excludes such things and ensures indifference curves are ‘smooth’ as well as
continuous. Differentiability of the utility function thus requires a stronger restriction on

4Some theorists are so sensitive to the potential confusion between the modern usage of the term ‘utility func-
tion’ and the classical utilitarian notion of ‘utility’ as a measurable quantity of pleasure or pain that they reject
the anachronistic terminology altogether and simply speak of preference relations and their ‘representation
functions’.
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preferences than continuity. Like the axiom of continuity, what is needed is just the right
mathematical condition. We shall not develop this condition here, but refer the reader to
Debreu (1972) for the details. For our purposes, we are content to simply assume that the
utility representation is differentiable whenever necessary.

There is a certain vocabulary we use when utility is differentiable, so we should learn
it. The first-order partial derivative of u(x) with respect to xi is called the marginal utility
of good i. For the case of two goods, we defined the marginal rate of substitution of good
2 for good 1 as the absolute value of the slope of an indifference curve. We can derive
an expression for this in terms of the two goods’ marginal utilities. To see this, consider
any bundle x1 = (x1

1, x1
2). Because the indifference curve through x1 is just a function in

the (x1, x2) plane, let x2 = f (x1) be the function describing it. Therefore, as x1 varies, the
bundle (x1, x2) = (x1, f (x1)) traces out the indifference curve through x1. Consequently,
for all x1,

u(x1, f (x1)) = constant. (1.1)

Now the marginal rate of substitution of good two for good one at the bundle x1 = (x1
1, x1

2),
denoted MRS12(x1

1, x1
2), is the absolute value of the slope of the indifference curve through

(x1
1, x1

2). That is,

MRS12
(
x1

1, x1
2

) ≡ ∣∣ f ′(x1
1

)∣∣ = −f ′(x1
1

)
, (1.2)

because f ′<0. But by (1.1), u(x1, f (x1)) is a constant function of x1. Hence, its derivative
with respect to x1 must be zero. That is,

∂u(x1, x2)

∂x1
+ ∂u(x1, x2)

∂x2
f ′(x1) = 0. (1.3)

But (1.2) together with (1.3) imply that

MRS12(x1) = ∂u(x1)/∂x1

∂u(x1)/∂x2
.

Similarly, when there are more than two goods we define the marginal rate of
substitution of good j for good i as the ratio of their marginal utilities,

MRSij(x) ≡ ∂u(x)/∂xi

∂u(x)/∂xj
.

When marginal utilities are strictly positive, the MRSij(x) is again a positive number, and
it tells us the rate at which good j can be exchanged per unit of good i with no change in
the consumer’s utility.

When u(x) is continuously differentiable on R
n++ and preferences are strictly mono-

tonic, the marginal utility of every good is virtually always strictly positive. That is,
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∂u(x)/∂xi > 0 for ‘almost all’ bundles x, and all i = 1, . . . , n.5 When preferences are
strictly convex, the marginal rate of substitution between two goods is always strictly
diminishing along any level surface of the utility function. More generally, for any
quasiconcave utility function, its Hessian matrix H(x) of second-order partials will satisfy

yTH(x)y ≤ 0 for all vectors y such that ∇u(x) · y = 0.

If the inequality is strict, this says that moving from x in a direction y that is tangent to the
indifference surface through x [i.e., ∇u(x) · y = 0] reduces utility (i.e., yTH(x)y<0).

1.3 THE CONSUMER’S PROBLEM

We have dwelt upon how to structure and represent preferences, but these are only one of
four major building blocks in our theory of consumer choice. In this section, we consider
the rest of them and combine them all together to construct a formal description of the
central actor in much of economic theory – the humble atomistic consumer.

On the most abstract level, we view the consumer as having a consumption set,
X = R

n+, containing all conceivable alternatives in consumption. His inclinations and
attitudes toward them are described by the preference relation � defined on R

n+. The con-
sumer’s circumstances limit the alternatives he is actually able to achieve, and we collect
these all together into a feasible set, B ⊂ R

n+. Finally, we assume the consumer is moti-
vated to choose the most preferred feasible alternative according to his preference relation.
Formally, the consumer seeks

x∗ ∈ B such that x∗ � x for all x ∈ B (1.4)

To make further progress, we make the following assumptions that will be maintained
unless stated otherwise.

ASSUMPTION 1.2 Consumer Preferences

The consumer’s preference relation � is complete, transitive, continuous, strictly mono-
tonic, and strictly convex on R

n+. Therefore, by Theorems 1.1 and 1.3 it can be represented
by a real-valued utility function, u, that is continuous, strictly increasing, and strictly
quasiconcave on R

n+.

In the two-good case, preferences like these can be represented by an indifference
map whose level sets are non-intersecting, strictly convex away from the origin, and
increasing north-easterly, as depicted in Fig. 1.8.

5In case the reader is curious, the term ‘almost all’ means all bundles except a set having Lebesgue measure zero.
However, there is no need to be familiar with Lebesgue measure to see that some such qualifier is necessary.
Consider the case of a single good, x, and the utility function u(x) = x + sin(x). Because u is strictly increasing,
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x1

x2Figure 1.8. Indifference map for
preferences satisfying Assumption 1.2.

Next, we consider the consumer’s circumstances and structure the feasible set. Our
concern is with an individual consumer operating within a market economy. By a market
economy, we mean an economic system in which transactions between agents are mediated
by markets. There is a market for each commodity, and in these markets, a price pi prevails
for each commodity i. We suppose that prices are strictly positive, so pi > 0, i = 1, . . . , n.
Moreover, we assume the individual consumer is an insignificant force on every market. By
this we mean, specifically, that the size of each market relative to the potential purchases
of the individual consumer is so large that no matter how much or how little the consumer
might purchase, there will be no perceptible effect on any market price. Formally, this
means we take the vector of market prices, p 
 0, as fixed from the consumer’s point
of view.

The consumer is endowed with a fixed money income y ≥ 0. Because the purchase
of xi units of commodity i at price pi per unit requires an expenditure of pixi dollars, the
requirement that expenditure not exceed income can be stated as

∑n
i=1 pixi ≤ y or, more

compactly, as p · x ≤ y. We summarise these assumptions on the economic environment
of the consumer by specifying the following structure on the feasible set, B, called the
budget set:

B = {x | x ∈ R
n+, p · x ≤ y}.

In the two-good case, B consists of all bundles lying inside or on the boundaries of the
shaded region in Fig. 1.9.

If we want to, we can now recast the consumer’s problem in very familiar terms.
Under Assumption 1.2, preferences may be represented by a strictly increasing and strictly
quasiconcave utility function u(x) on the consumption set R

n+. Under our assumptions on
the feasible set, total expenditure must not exceed income. The consumer’s problem (1.4)
can thus be cast equivalently as the problem of maximising the utility function subject to

it represents strictly monotonic preferences. However, although u′(x) is strictly positive for most values of x, it is
zero whenever x = π + 2πk, k = 0, 1, 2, . . .
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x1
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y/p2

y/p1

B �p1  p2

Figure 1.9. Budget set,
B = {x | x ∈ R

n+, p · x ≤ y}, in the
case of two commodities.

the budget constraint. Formally, the consumer’s utility-maximisation problem is written

max
x∈R

n+
u(x) s.t. p · x ≤ y. (1.5)

Note that if x∗ solves this problem, then u(x∗) ≥ u(x) for all x ∈ B, which means that
x∗ � x for all x ∈ B. That is, solutions to (1.5) are indeed solutions to (1.4). The converse
is also true.

We should take a moment to examine the mathematical structure of this problem.
As we have noted, under the assumptions on preferences, the utility function u(x) is real-
valued and continuous. The budget set B is a non-empty (it contains 0 ∈ R

n+), closed,
bounded (because all prices are strictly positive), and thus compact subset of R

n. By
the Weierstrass theorem, Theorem A1.10, we are therefore assured that a maximum of
u(x) over B exists. Moreover, because B is convex and the objective function is strictly
quasiconcave, the maximiser of u(x) over B is unique. Because preferences are strictly
monotonic, the solution x∗ will satisfy the budget constraint with equality, lying on, rather
than inside, the boundary of the budget set. Thus, when y > 0 and because x∗ ≥ 0, but
x∗ �= 0, we know that x∗

i > 0 for at least one good i. A typical solution to this problem in
the two-good case is illustrated in Fig. 1.10.

Clearly, the solution vector x∗ depends on the parameters to the consumer’s problem.
Because it will be unique for given values of p and y, we can properly view the solution to
(1.5) as a function from the set of prices and income to the set of quantities, X = R

n+. We
therefore will often write x∗

i = xi(p, y), i = 1, . . . , n, or, in vector notation, x∗ = x(p, y).
When viewed as functions of p and y, the solutions to the utility-maximisation problem are
known as ordinary, or Marshallian demand functions. When income and all prices other
than the good’s own price are held fixed, the graph of the relationship between quantity
demanded of xi and its own price pi is the standard demand curve for good i.

The relationship between the consumer’s problem and consumer demand behaviour
is illustrated in Fig. 1.11. In Fig. 1.11(a), the consumer faces prices p0

1 and p0
2 and has

income y0. Quantities x1(p0
1, p0

2, y0) and x2(p0
1, p0

2, y0) solve the consumer’s problem and
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x1

x2

y/p2

y/p1

x*

x1*

x2*

Figure 1.10. The solution to the
consumer’s utility-maximisation
problem.

x1

x2

x1

p1

y0/p2
0

x2(p1
0, p2

0, y0) 

x1(p1
0, p2

0, y0) 

x1(p1, p2
0, y0) 

p1
0/p2

0

p1
0

x2(p1
1, p2
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x1(p1
1, p2
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0, p2

0, y0) x1(p1
1, p2

0, y0) 

p1
1/p2

0

p1
1

(a)

(b)

Figure 1.11. The consumer’s problem and consumer demand behaviour.

maximise utility facing those prices and income. Directly below, in Fig. 1.11(b), we mea-
sure the price of good 1 on the vertical axis and the quantity demanded of good 1 on
the horizontal axis. If we plot the price p0

1 against the quantity of good 1 demanded at
that price (given the price p0

2 and income y0), we obtain one point on the consumer’s
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Marshallian demand curve for good 1. At the same income and price of good 2, facing
p1

1< p0
1, the quantities x1(p1

1, p0
2, y0) and x2(p1

1, p0
2, y0) solve the consumer’s problem and

maximise utility. If we plot p1
1 against the quantity of good 1 demanded at that price, we

obtain another point on the Marshallian demand curve for good 1 in Fig. 1.11(b). By con-
sidering all possible values for p1, we trace out the consumer’s entire demand curve for
good 1 in Fig. 1.11(b). As you can easily verify, different levels of income and different
prices of good 2 will cause the position and shape of the demand curve for good 1 to
change. That position and shape, however, will always be determined by the properties of
the consumer’s underlying preference relation.

If we strengthen the requirements on u(x) to include differentiability, we can
use calculus methods to further explore demand behaviour. Recall that the consumer’s
problem is

max
x∈R

n+
u(x) s.t. p · x ≤ y. (1.6)

This is a non-linear programming problem with one inequality constraint. As we have
noted, a solution x∗ exists and is unique. If we rewrite the constraint as p · x − y ≤ 0 and
then form the Lagrangian, we obtain

L(x, λ) = u(x)− λ[p · x − y].

Assuming that the solution x∗ is strictly positive, we can apply Kuhn-Tucker methods to
characterise it. If x∗ 
 0 solves (1.6), then by Theorem A2.20, there exists a λ∗ ≥ 0 such
that (x∗, λ∗) satisfy the following Kuhn-Tucker conditions:

∂L
∂xi

= ∂u(x∗)
∂xi

− λ∗pi = 0, i = 1, . . . , n, (1.7)

p · x∗ − y ≤ 0, (1.8)

λ∗ [p · x∗ − y
] = 0. (1.9)

Now, by strict monotonicity, (1.8) must be satisfied with equality, so that (1.9)
becomes redundant. Consequently, these conditions reduce to

∂L
∂x1

= ∂u(x∗)
∂x1

− λ∗p1 = 0,

...

∂L
∂xn

= ∂u(x∗)
∂xn

− λ∗pn = 0, (1.10)

p · x∗ − y = 0.
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What do these tell us about the solution to (1.6)? There are two possibilities. Either
∇u(x∗) = 0 or ∇u(x∗)�=0. Under strict monotonicity, the first case is possible, but quite
unlikely. We shall simply assume therefore that ∇u(x∗)�=0. Thus, by strict monotonic-
ity, ∂u(x∗)/∂xi > 0, for some i = 1, . . . , n. Because pi > 0 for all i, it is clear from
(1.7) that the Lagrangian multiplier will be strictly positive at the solution, because
λ∗ = ui(x∗)/pi > 0. Consequently, for all j, ∂u(x∗)/∂xj = λ∗pj > 0, so marginal utility
is proportional to price for all goods at the optimum. Alternatively, for any two goods j
and k, we can combine the conditions to conclude that

∂u(x∗)/∂xj

∂u(x∗)/∂xk
= pj

pk
. (1.11)

This says that at the optimum, the marginal rate of substitution between any two goods
must be equal to the ratio of the goods’ prices. In the two-good case, conditions (1.10)
therefore require that the slope of the indifference curve through x∗ be equal to the slope
of the budget constraint, and that x∗ lie on, rather than inside, the budget line, as in Fig. 1.10
and Fig. 1.11(a).

In general, conditions (1.10) are merely necessary conditions for a local optimum
(see the end of Section A2.3). However, for the particular problem at hand, these necessary
first-order conditions are in fact sufficient for a global optimum. This is worthwhile stating
formally.

THEOREM 1.4 Sufficiency of Consumer’s First-Order Conditions

Suppose that u(x) is continuous and quasiconcave on R
n+, and that (p, y) 
 0. If u

is differentiable at x∗, and (x∗, λ∗) 
 0 solves (1.10), then x∗ solves the consumer’s
maximisation problem at prices p and income y.

Proof: We shall employ the following fact that you are asked to prove in Exercise 1.28: For
all x, x1 ≥ 0, because u is quasiconcave, ∇u(x)(x1 − x) ≥ 0 whenever u(x1) ≥ u(x) and
u is differentiable at x.

Now, suppose that ∇u(x∗) exists and (x∗, λ∗) 
 0 solves (1.10). Then

∇u(x∗) = λ∗p, (P.1)

p · x∗ = y. (P.2)

If x∗ is not utility-maximising, then there must be some x0 ≥ 0 such that

u(x0) > u(x∗),
p · x0 ≤ y.
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Because u is continuous and y > 0, the preceding inequalities imply that

u(tx0) > u(x∗), (P.3)

p · tx0 < y. (P.4)

for some t ∈ [0, 1] close enough to one. Letting x1 = tx0, we then have

∇u(x∗)(x1 − x∗) = (λ∗p) · (x1 − x∗)
= λ∗(p · x1 − p · x∗)
< λ∗(y − y)
= 0,

where the first equality follows from (P.1), and the second inequality follows from (P.2)
and (P.4). However, because by (P.3) u(x1) > u(x∗), (P.5) contradicts the fact set forth at
the beginning of the proof.

With this sufficiency result in hand, it is enough to find a solution (x∗, λ∗) 

0 to (1.10). Note that (1.10) is a system of n + 1 equations in the n + 1 unknowns
x∗

1, . . . , x∗
n, λ

∗. These equations can typically be used to solve for the demand functions
xi(p, y), i = 1, . . . , n, as we show in the following example.

EXAMPLE 1.1 The function, u(x1, x2) = (xρ1 + xρ2 )
1/ρ , where 0 �=ρ<1, is known as a

CES utility function. You can easily verify that this utility function represents preferences
that are strictly monotonic and strictly convex.

The consumer’s problem is to find a non-negative consumption bundle solving

max
x1,x2

(
xρ1 + xρ2

)1/ρ s.t. p1x1 + p2x2 − y ≤ 0. (E.1)

To solve this problem, we first form the associated Lagrangian

L(x1, x2, λ) ≡ (
xρ1 + xρ2

)1/ρ − λ(p1x1 + p2x2 − y).

Because preferences are monotonic, the budget constraint will hold with equality at
the solution. Assuming an interior solution, the Kuhn-Tucker conditions coincide with the
ordinary first-order Lagrangian conditions and the following equations must hold at the
solution values x1, x2, and λ:

∂L
∂x1

= (
xρ1 + xρ2

)(1/ρ)−1
xρ−1

1 − λp1 = 0, (E.2)

∂L
∂x2

= (
xρ1 + xρ2

)(1/ρ)−1
xρ−1

2 − λp2 = 0, (E.3)

∂L
∂λ

= p1x1 + p2x2 − y = 0. (E.4)
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Rearranging (E.2) and (E.3), then dividing the first by the second and rearranging
some more, we can reduce these three equations in three unknowns to only two equations
in the two unknowns of particular interest, x1 and x2:

x1 = x2

(
p1

p2

)1/(ρ−1)

, (E.5)

y = p1x1 + p2x2. (E.6)

First, substitute from (E.5) for x1 in (E.6) to obtain the equation in x2 alone:

y = p1x2

(
p1

p2

)1/(ρ−1)

+ p2x2

= x2
(
pρ/(ρ−1)

1 + pρ/(ρ−1)
2

)
p−1/(ρ−1)

2 . (E.7)

Solving (E.7) for x2 gives the solution value:

x2 = p1/(ρ−1)
2 y

pρ/(ρ−1)
1 + pρ/(ρ−1)

2

. (E.8)

To solve for x1, substitute from (E.8) into (E.5) and obtain

x1 = p1/(ρ−1)
1 y

pρ/(ρ−1)
1 + pρ/(ρ−1)

2

. (E.9)

Equations (E.8) and (E.9), the solutions to the consumer’s problem (E.1), are the
consumer’s Marshallian demand functions. If we define the parameter r = ρ/(ρ − 1), we
can simplify (E.8) and (E.9) and write the Marshallian demands as

x1(p, y) = pr−1
1 y

pr
1 + pr

2
, (E.10)

x2(p, y) = pr−1
2 y

pr
1 + pr

2
. (E.11)

Notice that the solutions to the consumer’s problem depend only on its parameters, p1, p2,
and y. Different prices and income, through (E.10) and (E.11), will give different quantities
of each good demanded. To drive this point home, consider Fig. 1.12. There, at prices
p1, p̄2 and income ȳ, the solutions to the consumer’s problem will be the quantities of x1
and x2 indicated. The pair (p1, x1(p1, p̄2, ȳ)) will be a point on (one of) the consumer’s
demand curves for good x1.
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x1

x2

p1/p2

x1

p1

p1

�

p2
r�1y/(p1

r � p2
r)

p1
r�1y/(p1

r � p2
r)

p1
r�1y/(p1

r � p2
r)

x1(p1, p2, y)

Figure 1.12. Consumer demand when preferences are represented by a
CES utility function.

Finally, a word on the properties of the demand function x(p, y) derived from the
consumer’s maximisation problem. We have made enough assumptions to ensure (by
Theorem A2.21 (the theorem of the maximum)) that x(p, y) will be continuous on R

n++.
But we shall usually want more than this. We would like to be able to consider the slopes
of demand curves and hence we would like x(p, y) to be differentiable. From this point on,
we shall simply assume that x(p, y) is differentiable whenever we need it to be. But just to
let you know what this involves, we state without proof the following result.

THEOREM 1.5 Differentiable Demand

Let x∗ 
 0 solve the consumer’s maximisation problem at prices p0 
 0 and income
y0 > 0. If

• u is twice continuously differentiable on R
n++,

• ∂u(x∗)/∂xi > 0 for some i = 1, . . . , n, and

• the bordered Hessian of u has a non-zero determinant at x∗,

then x(p, y) is differentiable at (p0, y0).
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1.4 INDIRECT UTILITY AND EXPENDITURE

1.4.1 THE INDIRECT UTILITY FUNCTION

The ordinary utility function, u(x), is defined over the consumption set X and represents
the consumer’s preferences directly, as we have seen. It is therefore referred to as the
direct utility function. Given prices p and income y, the consumer chooses a utility-
maximising bundle x(p, y). The level of utility achieved when x(p, y) is chosen thus will
be the highest level permitted by the consumer’s budget constraint facing prices p and
income y. Different prices or incomes, giving different budget constraints, will generally
give rise to different choices by the consumer and so to different levels of maximised
utility. The relationship among prices, income, and the maximised value of utility can be
summarised by a real-valued function v: R

n+ × R+ → R defined as follows:

v(p, y) = max
x∈R

n+
u(x) s.t. p · x ≤ y. (1.12)

The function v(p, y) is called the indirect utility function. It is the maximum-value
function corresponding to the consumer’s utility maximisation problem. When u(x) is
continuous, v(p, y) is well-defined for all p 
 0 and y≥0 because a solution to the maximi-
sation problem (1.12) is guaranteed to exist. If, in addition, u(x) is strictly quasiconcave,
then the solution is unique and we write it as x(p, y), the consumer’s demand function. The
maximum level of utility that can be achieved when facing prices p and income y therefore
will be that which is realised when x(p, y) is chosen. Hence,

v(p, y) = u(x(p, y)). (1.13)

Geometrically, we can think of v(p, y) as giving the utility level of the highest indifference
curve the consumer can reach, given prices p and income y, as illustrated in Fig. 1.13.

x2

y/p2

y/p1

p1/p2�

x1

x (p, y)

u � v(p,y)

Figure 1.13. Indirect utility at prices p and income y.
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There are several properties that the indirect utility function will possess. Continuity
of the constraint function in p and y is sufficient to guarantee that v(p, y) will be contin-
uous in p and y on R

n++×R+. (See Section A2.4.) Effectively, the continuity of v(p, y)
follows because at positive prices, ‘small changes’ in any of the parameters (p, y) fixing
the location of the budget constraint will only lead to ‘small changes’ in the maximum
level of utility the consumer can achieve. In the following theorem, we collect together a
number of additional properties of v(p, y).

THEOREM 1.6 Properties of the Indirect Utility Function

If u(x) is continuous and strictly increasing on R
n+, then v(p, y) defined in (1.12) is

1. Continuous on R
n++×R+,

2. Homogeneous of degree zero in (p, y),

3. Strictly increasing in y,

4. Decreasing in p,

5. Quasiconvex in (p, y).

Moreover, it satisfies

6. Roy’s identity: If v(p, y) is differentiable at (p0, y0) and ∂v(p0, y0)/∂y�=0, then

xi(p0, y0) = −∂v(p0, y0)/∂pi

∂v(p0, y0)/∂y
, i = 1, . . . , n.

Proof: Property 1 follows from Theorem A2.21 (the theorem of the maximum). We shall
not pursue the details.

The second property is easy to prove. We must show that v(p, y) = v(tp, ty) for all
t > 0. But v(tp, ty) = [max u(x) s.t. tp · x ≤ ty], which is clearly equivalent to [max u(x)
s.t. p · x ≤ y] because we may divide both sides of the constraint by t > 0 without affecting
the set of bundles satisfying it. (See Fig. 1.14.) Consequently, v(tp, ty) = [max u(x) s.t.
p · x ≤ y] = v(p, y).

Intuitively, properties 3 and 4 simply say that any relaxation of the consumer’s bud-
get constraint can never cause the maximum level of achievable utility to decrease, whereas
any tightening of the budget constraint can never cause that level to increase.

To prove 3 (and to practise Lagrangian methods), we shall make some additional
assumptions although property 3 can be shown to hold without them. To keep things
simple, we’ll assume for the moment that the solution to (1.12) is strictly positive and
differentiable, where (p, y) 
 0 and that u(·) is differentiable with ∂u(x)/∂xi > 0, for all
x 
 0.

As we have remarked before, because u(·) is strictly increasing, the constraint in
(1.12) must bind at the optimum. Consequently, (1.12) is equivalent to

v(p, y) = max
x∈R

n+
u(x) s.t. p · x = y. (P.1)
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ty/tp1 = y/p1

x2

ty/tp2 = y/p2

�tp1/tp2 � �p1/p2
x1

v(tp, ty) �  v(p, y)

Figure 1.14. Homogeneity of the indirect utility function in prices and income.

The Lagrangian for (P.1) is

L(x, λ) = u(x)− λ(p · x − y). (P.2)

Now, for (p, y) 
 0, let x∗ = x(p, y) solve (P.1). By our additional assumption,
x∗ 
 0, so we may apply Lagrange’s theorem to conclude that there is a λ∗ ∈ R such
that

∂L(x∗, λ∗)
∂xi

= ∂u(x∗)
∂xi

− λ∗pi = 0, i = 1, . . . , n. (P.3)

Note that because both pi and ∂u(x∗)/∂xi are positive, so, too, is λ∗.
Our additional differentiability assumptions allow us to now apply Theorem A2.22,

the Envelope theorem, to establish that v(p, y) is strictly increasing in y. According to
the Envelope theorem, the partial derivative of the maximum value function v(p, y) with
respect to y is equal to the partial derivative of the Lagrangian with respect to y evaluated
at (x∗, λ∗),

∂v(p, y)

∂y
= ∂L(x∗, λ∗)

∂y
= λ∗ > 0. (P.4)

Thus, v(p, y) is strictly increasing in y > 0. So, because v is continuous, it is then strictly
increasing on y ≥ 0.

For property 4, one can also employ the Envelope theorem. However, we shall
give a more elementary proof that does not rely on any additional hypotheses. So con-
sider p0 ≥ p1 and let x0 solve (1.12) when p = p0. Because x0 ≥ 0, (p0 − p1) · x0 ≥ 0.
Hence, p1·x0 ≤ p0·x0 ≤ y, so that x0 is feasible for (1.12) when p = p1. We conclude that
v(p1, y) ≥ u(x0) = v(p0, y), as desired.

Property 5 says that a consumer would prefer one of any two extreme budget sets to
any average of the two. Our concern is to show that v(p, y) is quasiconvex in the vector of
prices and income (p, y). The key to the proof is to concentrate on the budget sets.
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Let B1,B2, and Bt be the budget sets available when prices and income are (p1, y1),
(p2, y2), and (pt, yt), respectively, where pt ≡ tp1 + (1 − t)p2 and yt ≡ y1 + (1 − t)y2.
Then,

B1 = {x | p1 · x ≤ y1},
B2 = {x | p2 · x ≤ y2},
Bt = {x | pt · x ≤ yt}.

Suppose we could show that every choice the consumer can possibly make when he
faces budget Bt is a choice that could have been made when he faced either budget B1 or
budget B2. It then would be the case that every level of utility he can achieve facing Bt is a
level he could have achieved either when facing B1 or when facing B2. Then, of course, the
maximum level of utility that he can achieve over Bt could be no larger than at least one
of the following: the maximum level of utility he can achieve over B1, or the maximum
level of utility he can achieve over B2. But if this is the case, then the maximum level of
utility achieved over Bt can be no greater than the largest of these two. If our supposition
is correct, therefore, we would know that

v(pt, yt) ≤ max[v(p1, y1), v(p2, y2)] ∀ t ∈ [0, 1].

This is equivalent to the statement that v(p, y) is quasiconvex in (p, y).
It will suffice, then, to show that our supposition on the budget sets is correct. We

want to show that if x ∈ Bt, then x ∈ B1 or x ∈ B2 for all t ∈ [0, 1]. If we choose either
extreme value for t,Bt coincides with either B1 or B2, so the relations hold trivially. It
remains to show that they hold for all t ∈ (0, 1).

Suppose it were not true. Then we could find some t ∈ (0, 1) and some x ∈ Bt such
that x/∈B1 and x/∈B2. If x/∈B1 and x/∈B2, then

p1·x > y1

and

p2·x > y2,

respectively. Because t ∈ (0, 1), we can multiply the first of these by t, the second by
(1 − t), and preserve the inequalities to obtain

tp1·x > ty1

and

(1 − t)p2 · x > (1 − t)y2.

Adding, we obtain

(tp1 + (1 − t)p2) · x > ty1 + (1 − t)y2



32 CHAPTER 1

or

pt·x > yt.

But this final line says that x/∈Bt, contradicting our original assumption. We must conclude,
therefore, that if x ∈ Bt, then x ∈ B1 or x ∈ B2 for all t ∈ [0, 1]. By our previous argument,
we can conclude that v(p, y) is quasiconvex in (p, y).

Finally, we turn to property 6, Roy’s identity. This says that the consumer’s
Marshallian demand for good i is simply the ratio of the partial derivatives of indirect
utility with respect to pi and y after a sign change. (Note the minus sign in 6.)

We shall again invoke the additional assumptions introduced earlier in the proof
because we shall again employ the Envelope theorem. (See Exercise 1.35 for a proof that
does not require these additional assumptions.) Letting x∗ = x(p, y) be the strictly positive
solution to (1.12), as argued earlier, there must exist λ∗ satisfying (P.3). Applying the
Envelope theorem to evaluate ∂v(p, y)/∂pi gives

∂v(p, y)

∂pi
= ∂L(x∗, λ∗)

∂pi
= −λ∗x∗

i . (P.5)

However, according to (P.4), λ∗ = ∂v(p, y)/∂y > 0. Hence, (P.5) becomes

−∂v(p, y)/∂pi

∂v(p, y)/∂y
= x∗

i = xi(p, y),

as desired.

EXAMPLE 1.2 In Example 1.1, the direct utility function is the CES form, u(x1, x2) =
(xρ1 + xρ2 )

1/ρ , where 0�=ρ<1. There we found the Marshallian demands:

x1(p, y) = pr−1
1 y

pr
1 + pr

2
,

x2(p, y) = pr−1
2 y

pr
1 + pr

2
, (E.1)

for r ≡ ρ/(ρ − 1). By (1.13), we can form the indirect utility function by sub-
stituting these back into the direct utility function. Doing that and rearranging, we
obtain

v(p, y) = [(x1(p, y))ρ + (x2(p, y))ρ]1/ρ

=
[(

pr−1
1 y

pr
1 + pr

2

)ρ
+
(

pr−1
2 y

pr
1 + pr

2

)ρ]1/ρ

(E.2)
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= y

[
pr

1 + pr
2(

pr
1 + pr

2

)ρ
]1/ρ

= y
(
pr

1 + pr
2

)−1/r
.

We should verify that (E.2) satisfies all the properties of an indirect utility function
detailed in Theorem 1.6. It is easy to see that v(p, y) is homogeneous of degree zero in
prices and income, because for any t > 0,

v(tp, ty) = ty((tp1)
r + (tp2)

r)−1/r

= ty
(
trpr

1 + trpr
2

)−1/r

= tyt−1(pr
1 + pr

2

)−1/r

= y
(
pr

1 + pr
2

)−1/r

= v(p, y).

To see that it is increasing in y and decreasing in p, differentiate (E.2) with respect to
income and any price to obtain

∂v(p, y)

∂y
= (

pr
1 + pr

2

)−1/r
> 0, (E.3)

∂v(p, y)

∂pi
= −(pr

1 + pr
2

)(−1/r)−1
ypr−1

i < 0, i = 1, 2. (E.4)

To verify Roy’s identity, form the required ratio of (E.4) to (E.3) and recall (E.1) to obtain

(−1)

[
∂v(p, y)/∂pi

∂v(p, y)/∂y

]
= (−1)

−(pr
1 + pr

2

)(−1/r)−1
ypr−1

i(
pr

1 + pr
2

)−1/r

= ypr−1
i

pr
1 + pr

2
= xi(p, y), i = 1, 2.

We leave as an exercise the task of verifying that (E.2) is a quasiconvex function of
(p, y).

1.4.2 THE EXPENDITURE FUNCTION

The indirect utility function is a neat and powerful way to summarise a great deal about the
consumer’s market behaviour. A companion measure, called the expenditure function,
is equally useful. To construct the indirect utility function, we fixed market prices and
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Figure 1.15. Finding the lowest level of expenditure to achieve utility
level u.

income, and sought the maximum level of utility the consumer could achieve. To construct
the expenditure function, we again fix prices, but we ask a different sort of question about
the level of utility the consumer achieves. Specifically, we ask: what is the minimum level of
money expenditure the consumer must make facing a given set of prices to achieve a given
level of utility? In this construction, we ignore any limitations imposed by the consumer’s
income and simply ask what the consumer would have to spend to achieve some particular
level of utility.

To better understand the type of problem we are studying, consider Fig. 1.15 and
contrast it with Fig. 1.13. Each of the parallel straight lines in Fig. 1.15 depicts all bundles x
that require the same level of total expenditure to acquire when facing prices p = (p1, p2).
Each of these isoexpenditure curves is defined implicity by e = p1x1 + p2x2, for a dif-
ferent level of total expenditure e > 0. Each therefore will have the same slope, −p1/p2,
but different horizontal and vertical intercepts, e/p1 and e/p2, respectively. Isoexpenditure
curves farther out contain bundles costing more; those farther in give bundles costing less.
If we fix the level of utility at u, then the indifference curve u(x) = u gives all bundles
yielding the consumer that same level of utility.

There is no point in common with the isoexpenditure curve e3 and the indiffer-
ence curve u, indicating that e3 dollars is insufficient at these prices to achieve utility u.
However, each of the curves e1, e2, and e∗ has at least one point in common with u, indi-
cating that any of these levels of total expenditure is sufficient for the consumer to achieve
utility u. In constructing the expenditure function, however, we seek the minimum expen-
diture the consumer requires to achieve utility u, or the lowest possible isoexpenditure
curve that still has at least one point in common with indifference curve u. Clearly, that
will be level e∗, and the least cost bundle that achieves utility u at prices p will be the bun-
dle xh = (xh

1(p, u), xh
2(p, u)). If we denote the minimum expenditure necessary to achieve

utility u at prices p by e(p, u), that level of expenditure will simply be equal to the cost of
bundle xh, or e(p, u) = p1xh

1(p, u)+ p2xh
2(p, u) = e∗.
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More generally, we define the expenditure function as the minimum-value function,

e(p, u) ≡ min
x∈R

n+
p · x s.t. u(x) ≥ u (1.14)

for all p 
 0 and all attainable utility levels u. For future reference, let U = {u(x) | x ∈
R

n+} denote the set of attainable utility levels. Thus, the domain of e(·) is R
n++×U .

Note that e(p, u) is well-defined because for p ∈ R
n++, x ∈ R

n+, p · x ≥ 0. Hence,
the set of numbers {e|e = p · x for some x with u(x) ≥ u} is bounded below by zero.
Moreover because p 
 0, this set can be shown to be closed. Hence, it contains a smallest
number. The value e(p, u) is precisely this smallest number. Note that any solution vector
for this minimisation problem will be non-negative and will depend on the parameters p
and u. Notice also that if u(x) is continuous and strictly quasiconcave, the solution will be
unique, so we can denote the solution as the function xh(p, u) ≥ 0. As we have seen, if
xh(p, u) solves this problem, the lowest expenditure necessary to achieve utility u at prices
p will be exactly equal to the cost of the bundle xh(p, u), or

e(p, u) = p · xh(p, u). (1.15)

We have seen how the consumer’s utility maximisation problem is intimately related
to his observable market demand behaviour. Indeed, the very solutions to that problem –
the Marshallian demand functions – tell us just how much of every good we should observe
the consumer buying when he faces different prices and income. We shall now interpret the
solution, xh(p, u), of the expenditure-minimisation problem as another kind of ‘demand
function’ – but one that is not directly observable.

Consider the following mental experiment. If we fix the level of utility the consumer
is permitted to achieve at some arbitrary level u, how will his purchases of each good
behave as we change the prices he faces? The kind of ‘demand functions’ we are imagin-
ing here are thus utility-constant ones. We completely ignore the level of the consumer’s
money income and the utility levels he actually can achieve. In fact, we know that when a
consumer has some level of income and we change the prices he faces, there will ordinarily
be some change in his purchases and some corresponding change in the level of utility he
achieves. To imagine how we might then construct our hypothetical demand functions, we
must imagine a process by which whenever we lower some price, and so confer a utility
gain on the consumer, we compensate by reducing the consumer’s income, thus conferring
a corresponding utility loss sufficient to bring the consumer back to the original level of
utility. Similarly, whenever we increase some price, causing a utility loss, we must imag-
ine compensating for this by increasing the consumer’s income sufficiently to give a utility
gain equal to the loss. Because they reflect the net effect of this process by which we
match any utility change due to a change in prices by a compensating utility change from
a hypothetical adjustment in income, the hypothetical demand functions we are describing
are often called compensated demand functions. However, because John Hicks (1939)
was the first to write about them in quite this way, these hypothetical demand functions
are most commonly known as Hicksian demand functions. As we illustrate below, the
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Figure 1.16. The Hicksian demand for good 1.

solution, xh(p, u), to the expenditure-minimisation problem is precisely the consumer’s
vector of Hicksian demands.

To get a clearer idea of what we have in mind, consider Fig. 1.16. If we wish to fix
the level of utility the consumer can achieve at u in Fig. 1.16(a) and then confront him
with prices p0

1 and p0
2, he must face the depicted budget constraint with slope −p0

1/p
0
2.

Note that his utility-maximising choices then coincide with the expenditure-minimising
quantities xh

1(p
0
1, p0

2, u) and xh
2(p

0
1, p0

2, u). If we reduce the price of good 1 to p1
1<p0

1, yet
hold the consumer on the u-level indifference curve by an appropriate income reduction,
his new budget line now has slope −p1

1/p
0
2, and his utility-maximising choices change to

xh
1(p

1
1, p0

2, u) and xh
2(p

1
1, p0

2, u). As before, if we fix price p0
2 and we plot the own-price

of good 1 in Fig. 1.16(b) against the corresponding hypothetical quantities of good 1 the
consumer would ‘buy’ if constrained to utility level u, we would trace out a ‘demand-
curve-like’ locus as depicted. This construction is the Hicksian demand curve for good 1,
given utility level u. Clearly, there will be different Hicksian demand curves for different
levels of utility – for different indifference curves. The shape and position of each of them,
however, will always be determined by the underlying preferences.

In short, the solution, xh(p, u), to the expenditure-minimisation problem is precisely
the vector of Hicksian demands because each of the hypothetical ‘budget constraints’ the
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consumer faces in Fig. 1.16 involves a level of expenditure exactly equal to the minimum
level necessary at the given prices to achieve the utility level in question.

Thus, the expenditure function defined in (1.14) contains within it some impor-
tant information on the consumer’s Hicksian demands. Although the analytic importance
of this construction will only become evident a bit later, we can take note here of the
remarkable ease with which that information can be extracted from a knowledge of
the expenditure function. The consumer’s Hicksian demands can be extracted from the
expenditure function by means of simple differentiation. We detail this and other important
properties of the expenditure function in the following theorem.

THEOREM 1.7 Properties of the Expenditure Function

If u(·) is continuous and strictly increasing, then e(p, u) defined in (1.14) is

1. Zero when u takes on the lowest level of utility in U ,

2. Continuous on its domain R
n++ × U ,

3. For all p 
 0, strictly increasing and unbounded above in u,

4. Increasing in p,

5. Homogeneous of degree 1 in p,

6. Concave in p.

If, in addition, u(·) is strictly quasiconcave, we have

7. Shephard’s lemma: e(p, u) is differentiable in p at (p0, u0) with p0 
 0, and

∂e(p0, u0)

∂pi
= xh

i (p
0, u0), i = 1, . . . , n.

Proof: To prove property 1, note that the lowest value in U is u(0) because u(·) is strictly
increasing on R

n+. Consequently, e(p, u(0)) = 0 because x = 0 attains utility u(0) and
requires an expenditure of p · 0 = 0.

Property 2, continuity, follows once again from Theorem A2.21 (the theorem of the
maximum).

Although property 3 holds without any further assumptions, we shall be content to
demonstrate it under the additional hypotheses that xh(p, u) 
 0 is differentiable ∀ p 
 0,
u > u(0), and that u(·) is differentiable with ∂u(x)/∂xi > 0, ∀ i on R

n++.
Now, because u(·) is continuous and strictly increasing, and p 
 0, the constraint

in (1.14) must be binding. For if u(x1) > u, there is a t ∈ (0, 1) close enough to 1 such
that u(tx1) > u. Moreover, u ≥ u(0) implies u(x1) > u(0), so that x1 �=0. Therefore, p ·
(tx1)< p · x1, because p · x1 > 0. Consequently, when the constraint is not binding, there
is a strictly cheaper bundle that also satisfies the constraint. Hence, at the optimum, the
constraint must bind. Consequently, we may write (1.14) instead as

e(p, u) ≡ min
x∈R

n+
p · x s.t. u(x) = u. (P.1)
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The Lagrangian for this problem is

L(x, λ) = p · x − λ[u(x)− u]. (P.2)

Now for p 
 0 and u > u(0), we have that x∗ = xh(p, u) 
 0 solves (P.1). So, by
Lagrange’s theorem, there is a λ∗ such that

∂L(x∗, λ∗)
∂xi

= pi − λ∗ ∂u(x∗)
∂xi

= 0, i = 1, . . . , n. (P.3)

Note then that because pi and ∂u(x∗)/∂xi are positive, so, too, is λ∗. Under our addi-
tional hypotheses, we can now use the Envelope theorem to show that e(p, u) is strictly
increasing in u.

By the Envelope theorem, the partial derivative of the minimum-value function
e(p, u) with respect to u is equal to the partial derivative of the Lagrangian with respect to
u, evaluated at (x∗, λ∗). Hence,

∂e(p, u)

∂u
= ∂L(x∗, λ∗)

∂u
= λ∗ > 0.

Because this holds for all u > u(0), and because e(·) is continuous, we may conclude that
for all p 
 0, e(p, u) is strictly increasing in u on U (which includes u(0)).

That e is unbounded in u can be shown to follow from the fact that u(x) is continuous
and strictly increasing. You are asked to do so in Exercise 1.34.

Because property 4 follows from property 7, we shall defer it for the moment.
Property 5 will be left as an exercise.

For property 6, we must prove that e(p, u) is a concave function of prices. We begin
by recalling the definition of concavity. Let p1 and p2 be any two positive price vectors,
let t ∈ [0, 1], and let pt = tp1 + (1 − t)p2 be any convex combination of p1 and p2. Then
the expenditure function will be concave in prices if

te(p1, u)+ (1 − t)e(p2, u) ≤ e(pt, u). (P.4)

To see that this is indeed the case, simply focus on what it means for expenditure to be
minimised at given prices. Suppose in particular that x1 minimises expenditure to achieve
u when prices are p1, that x2 minimises expenditure to achieve u when prices are p2, and
that x∗ minimises expenditure to achieve u when prices are pt. Then the cost of x1 at prices
p1 must be no more than the cost at prices p1 of any other bundle x that achieves utility
u. Similarly, the cost of x2 at prices p2 must be no more than the cost at p2 of any other
bundle x that achieves utility u. Now, if, as we have said,

p1·x1 ≤ p1·x
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and

p2·x2 ≤ p2·x

for all x that achieve u, then these relations must also hold for x∗, because x∗ achieves u
as well. Therefore, simply by virtue of what it means to minimise expenditure to achieve
u at given prices, we know that

p1·x1 ≤ p1·x∗

and

p2·x2 ≤ p2·x∗.

But now we are home free. Because t ≥ 0 and (1 − t) ≥ 0, we can multiply the first of
these by t, the second by (1 − t), and add them. If we then substitute from the definition
of pt, we obtain

tp1·x1 + (1 − t)p2·x2 ≤ pt·x∗.

The left-hand side is just the convex combination of the minimum levels of expenditure
necessary at prices p1 and p2 to achieve utility u, and the right-hand side is the minimum
expenditure needed to achieve utility u at the convex combination of those prices. In short,
this is just the same as (P.5), and tells us that

te(p1, u)+ (1 − t)e(p2, u) ≤ e(pt, u) ∀ t ∈ [0, 1],

as we intended to show.
To prove property 7, we again appeal to the Envelope theorem but now differentiate

with respect to pi. This gives

∂e(p, u)

∂pi
= ∂L(x∗, λ∗)

∂pi
= x∗

i ≡ xh
i (p, u),

as required. Because xh(p, u) ≥ 0, this also proves property 4. (See Exercise 1.37 for a
proof of 7 that does not require any additional assumptions. Try to prove property 4 without
additional assumptions as well.)

EXAMPLE 1.3 Suppose the direct utility function is again the CES form, u(x1, x2) =
(xρ1 + xρ2 )

1/ρ , where 0�=ρ<1. We want to derive the corresponding expenditure func-
tion in this case. Because preferences are monotonic, we can formulate the expenditure
minimisation problem (1.15)

min
x1,x2

p1x1 + p2x2 s.t.
(
xρ1 + xρ2

)1/ρ − u = 0, x1 ≥ 0, x2 ≥ 0,
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and its Lagrangian,

L(x1, x2, λ) = p1x1 + p2x2 − λ
[(

xρ1 + xρ2
)1/ρ − u

]
. (E.1)

Assuming an interior solution in both goods, the first-order conditions for a minimum
subject to the constraint ensure that the solution values x1, x2, and λ satisfy the equations

∂L
∂x1

= p1 − λ
(
xρ1 + xρ2

)(1/ρ)−1
xρ−1

1 = 0, (E.2)

∂L
∂x2

= p2 − λ
(
xρ1 + xρ2

)(1/ρ)−1
xρ−1

2 = 0, (E.3)

∂L
∂λ

= (
xρ1 + xρ2

)1/ρ − u = 0. (E.4)

By eliminating λ, these can be reduced to the two equations in two unknowns,

x1 = x2

(
p1

p2

)1/(ρ−1)

, (E.5)

u = (
xρ1 + xρ2

)1/ρ
. (E.6)

Substituting from (E.5) into (E.6) gives

u =
[

xρ2

(
p1

p2

)ρ/(ρ−1)

+ xρ2

]1/ρ

= x2

[(
p1

p2

)ρ/(ρ−1)

× 1

]1/ρ

.

Solving for x2, and letting r ≡ ρ/(ρ − 1), we obtain

x2 = u

[(
p1

p2

)ρ/(ρ−1)

+ 1

]−1/ρ

= u
[
pρ/(ρ−1)

1 + pρ/(ρ−1)
2

]−1/ρ
p1/(ρ−1)

2

= u
(
pr

1 + pr
2

)(1/r)−1
pr−1

2 . (E.7)

Substituting from (E.7) into (E.5) gives us

x1 = up1/(ρ−1)
1 p−1/(ρ−1)

2

(
pr

1 + pr
2

)(1/r)−1
pr−1

2

= u
(
pr

1 + pr
2

)(1/r)−1
pr−1

1 . (E.8)
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The solutions (E.7) and (E.8) depend on the parameters of the minimisation problem, p
and u. These are the Hicksian demands, so we can denote (E.7) and (E.8)

xh
1(p, u) = u

(
pr

1 + pr
2

)(1/r)−1
pr−1

1 , (E.9)

xh
2(p, u) = u

(
pr

1 + pr
2

)(1/r)−1
pr−1

2 . (E.10)

To form the expenditure function, we invoke equation (1.15) and substitute from
(E.9) and (E.10) into the objective function in (E.1) to obtain

e(p, u) = p1xh
1(p, u)+ p2xh

2(p, u)

= up1
(
pr

1 + pr
2

)(1/r)−1
pr−1

1 + up2
(
pr

1 + pr
2

)(1/r)−1
pr−1

2

= u
(
pr

1 + pr
2

)(
pr

1 + pr
2

)(1/r)−1 (E.11)

= u
(
pr

1 + pr
2

)1/r
.

Equation (E.11) is the expenditure function we sought. We leave as an exercise the task of
verifying that it possesses the usual properties.

1.4.3 RELATIONS BETWEEN THE TWO

Though the indirect utility function and the expenditure function are conceptually dis-
tinct, there is obviously a close relationship between them. The same can be said for the
Marshallian and Hicksian demand functions.

In particular, fix (p, y) and let u = v(p, y). By the definition of v, this says that at
prices p, utility level u is the maximum that can be attained when the consumer’s income
is y. Consequently, at prices p, if the consumer wished to attain a level of utility at least
u, then income y would be certainly large enough to achieve this. But recall now that e(p,
u) is the smallest expenditure needed to attain a level of utility at least u. Hence, we must
have e(p, u) ≤ y. Consequently, the definitions of v and e lead to the following inequality:

e(p, v(p, y)) ≤ y, ∀ (p, y) 
 0. (1.16)

Next, fix (p, u) and let y = e(p, u). By the definition of e, this says that at prices
p, income y is the smallest income that allows the consumer to attain at least the level of
utility u. Consequently, at prices p, if the consumer’s income were in fact y, then he could
attain at least the level of utility u. Because v(p, y) is the largest utility level attainable at
prices p and with income y, this implies that v(p, y) ≥ u. Consequently, the definitions of
v and e also imply that

v(p, e(p, u)) ≥ u ∀ (p, u) ∈ R
n++ × U . (1.17)
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The next theorem demonstrates that under certain familiar conditions on preferences,
both of these inequalities, in fact, must be equalities.

THEOREM 1.8 Relations Between Indirect Utility and Expenditure
Functions

Let v(p, y) and e(p, u) be the indirect utility function and expenditure function for some
consumer whose utility function is continuous and strictly increasing. Then for all p 
 0,
y ≥ 0, and u ∈ U:

1. e(p, v(p, y)) = y.

2. v(p, e(p, u)) = u.

Proof: Because u(·) is strictly increasing on R
n+, it attains a minimum at x = 0, but does

not attain a maximum. Moreover, because u(·) is continuous, the set U of attainable utility
numbers must be an interval. Consequently, U = [u(0), ū)] for ū > u(0), and where ū may
be either finite or +∞.

To prove 1, fix (p, y) ∈ R
n++ × R+. By (1.16), e(p, v(p, y)) ≤ y. We would like to

show in fact that equality must hold. So suppose not, that is, suppose e(p, u)<y, where u =
v(p, y). Note that by definition of v(·), u ∈ U , so that u<ū. By the continuity of e(·) from
Theorem 1.7, we may therefore choose ε > 0 small enough so that u + ε<ū, and e(p, u +
ε)<y. Letting yε = e(p, u + ε), (1.17) implies that v(p, yε) ≥ u + ε. Because yε<y and
v is strictly increasing in income by Theorem 1.6, v(p, y) > v(p, yε) ≥ u + ε. But u =
v(p, y) so this says u ≥ u + ε, a contradiction. Hence, e(p, v(p, y)) = y.

To prove 2, fix (p, u) ∈ R
n++ × [u(0), ū]. By (1.17), v(p, e(p, u)) ≥ u. Again, to

show that this must be an equality, suppose to the contrary that v(p, e(p, u)) > u. There
are two cases to consider: u = u(0) and u > u(0). We shall consider the second case
only, leaving the first as an exercise. Letting y = e(p, u), we then have v(p, y) > u. Now,
because e(p, u(0)) = 0 and because e(·) is strictly increasing in utility by Theorem 1.7,
y = e(p, u) > 0. Because v(·) is continuous by Theorem 1.6, we may choose ε > 0 small
enough so that y − ε > 0 and v(p, y − ε) > u. Thus, income y − ε is sufficient, at prices p,
to achieve utility greater than u. Hence, we must have e(p, u) ≤ y − ε. But this contradicts
the fact that y = e(p, u).

Until now, if we wanted to derive a consumer’s indirect utility and expenditure func-
tions, we would have had to solve two separate constrained optimisation problems: one
a maximisation problem and the other a minimisation problem. This theorem, however,
points to an easy way to derive either one from knowledge of the other, thus requiring us
to solve only one optimisation problem and giving us the choice of which one we care to
solve.

To see how this would work, let us suppose first that we have solved the utility-
maximisation problem and formed the indirect utility function. One thing we know about
the indirect utility function is that it is strictly increasing in its income variable. But then,
holding prices constant and viewing it only as a function of income, it must be possible to
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invert the indirect utility function in its income variable. From before,

v(p, e(p, u)) = u,

so we can apply that inverse function (call it v−1(p : t)) to both sides of this and obtain

e(p, u) = v−1(p : u). (1.18)

Whatever that expression on the right-hand side of (1.18) turns out to be, we know it will
correspond exactly to the expression for the consumer’s expenditure function – the expres-
sion we would eventually obtain if we solved the expenditure-minimisation problem, then
substituted back into the objective function.

Suppose, instead, that we had chosen to solve the expenditure-minimisation problem
and form the expenditure function, e(p, u). In this case, we know that e(p, u) is strictly
increasing in u. Again supposing prices constant, there will be an inverse of the expendi-
ture function in its utility variable, which we can denote e−1(p : t). Applying this inverse
to both sides of the first item in Theorem 1.8, we find that the indirect utility function can
be solved for directly and will be that expression in p and y that results when we evaluate
the utility inverse of the expenditure function at any level of income y,

v(p, y) = e−1(p : y). (1.19)

Equations (1.18) and (1.19) illustrate again the close relationship between utility
maximisation and expenditure minimisation. The two are conceptually just opposite sides
of the same coin. Mathematically, both the indirect utility function and the expenditure
function are simply the appropriately chosen inverses of each other.

EXAMPLE 1.4 We can illustrate these procedures by drawing on findings from the pre-
vious examples. In Example 1.2, we found that the CES direct utility function gives the
indirect utility function,

v(p, y) = y
(
pr

1 + pr
2

)−1/r (E.1)

for any p and income level y. For an income level equal to e(p, u) dollars, therefore, we
must have

v(p, e(p, u)) = e(p, u)
(
pr

1 + pr
2

)−1/r
. (E.2)

Next, from the second item in Theorem 1.8, we know that for any p and u,

v(p, e(p, u)) = u. (E.3)



44 CHAPTER 1

Combining (E.2) and (E.3) gives

e(p, u)
(
pr

1 + pr
2

)−1/r = u. (E.4)

Solving (E.4) for e(p, u), we get the expression

e(p, u) = u
(
pr

1 + pr
2

)1/r (E.5)

for the expenditure function. A quick look back at Example 1.3 confirms this is the
same expression for the expenditure function obtained by directly solving the consumer’s
expenditure-minimisation problem.

Suppose, instead, we begin with knowledge of the expenditure function and want
to derive the indirect utility function. For the CES direct utility function, we know from
Example 1.3 that

e(p, u) = u
(
pr

1 + pr
2

)1/r (E.6)

for any p and utility level u. Then for utility level v(p, y), we will have

e(p, v(p, y)) = v(p, y)
(
pr

1 + pr
2

)1/r
. (E.7)

From the first item in Theorem 1.8, for any p and y,

e(p, v(p, y)) = y. (E.8)

Combining (E.7) and (E.8), we obtain

v(p, y)
(
pr

1 + pr
2

)1/r = y. (E.9)

Solving (E.9) for v(p, y) gives the expression

v(p, y) = y
(
pr

1 + pr
2

)−1/r (E.10)

for the indirect utility function. A glance at Example 1.2 confirms that (E.10) is what we
obtained by directly solving the consumer’s utility-maximisation problem.

We can pursue this relationship between utility maximisation and expenditure min-
imisation a bit further by shifting our attention to the respective solutions to these two
problems. The solutions to the utility-maximisation problem are the Marshallian demand
functions. The solutions to the expenditure-minimisation problem are the Hicksian demand
functions. In view of the close relationship between the two optimisation problems them-
selves, it is natural to suspect there is some equally close relationship between their
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respective solutions. The following theorem clarifies the links between Hicksian and
Marshallian demands.

THEOREM 1.9 Duality Between Marshallian and Hicksian Demand Functions

Under Assumption 1.2 we have the following relations between the Hicksian and
Marshallian demand functions for p 
 0, y ≥ 0, u ∈ U , and i = 1, . . . , n:

1. xi(p, y) = xh
i (p, v(p, y)).

2. xh
i (p, u) = xi(p, e(p, u)).

The first relation says that the Marshallian demand at prices p and income y is equal
to the Hicksian demand at prices p and the utility level that is the maximum that can be
achieved at prices p and income y. The second says that the Hicksian demand at any prices
p and utility level u is the same as the Marshallian demand at those prices and an income
level equal to the minimum expenditure necessary at those prices to achieve that utility
level.

Roughly, Theorem 1.9 says that solutions to (1.12) are also solutions to (1.14), and
vice versa. More precisely, if x∗ solves (1.12) at (p, y), the theorem says that x∗ solves
(1.14) at (p, u), where u = u(x∗). Conversely, if x∗ solves (1.14) at (p, u), then x∗ solves
(1.12) at (p, y), where y = p · x∗. Fig. 1.17 illustrates the theorem. There, it is clear that
x∗ can be viewed either as the solution to (1.12) or the solution to (1.14). It is in this sense
that x∗ has a dual nature.

Proof: We will complete the proof of the first, leaving the second as an exercise.
Note that by Assumption 1.2, u(·) is continuous and strictly quasiconcave, so that

the solutions to (1.12) and (1.14) exist and are unique. Consequently, the Marshallian and
Hicksian demand fuctions are well-defined.

To prove the first relation, let x0 = x(p0, y0), and let u0 = u(x0). Then v(p0, y0) =
u0 by definition of v(·), and p0 · x0 = y0 because, by Assumption 1.2, u(·) is strictly
increasing. By Theorem 1.8, e(p0, v(p0, y0)) = y0 or, equivalently, e(p0, u0) = y0. But

x1

x2

x*

y/p1

u(x*) = u

y/p2

Figure 1.17. Expenditure minimisation and utility
maximisation.
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because u(x0) = u0 and p0·x0 = y0, this implies that x0 solves (1.14) when (p, u) =
(p0, u0). Hence, x0 = xh(p0, u0) and so x(p0, y0) = xh(p0, v(p0, y0)).

EXAMPLE 1.5 Let us confirm Theorem 1.9 for a CES consumer. From Example 1.3, the
Hicksian demands are

xh
i (p, u) = u

(
pr

1 + pr
2

)(1/r)−1
pr−1

i , i = 1, 2. (E.1)

From Example 1.2, the indirect utility function is

v(p, y) = y
(
pr

1 + pr
2

)−1/r
. (E.2)

Substituting from (E.2) for u in (E.1) gives

xh
i (p, v(p, y)) = v(p, y)

(
pr

1 + pr
2

)(1/r)−1
pr−1

i

= y
(
pr

1 + pr
2

)−1/r(
pr

1 + pr
2

)(1/r)−1
pr−1

i

= ypr−1
i

(
pr

1 + pr
2

)−1 (E.3)

= ypr−1
i

pr
1 + pr

2
, i = 1, 2.

The final expression on the right-hand side of (E.3) gives the Marshallian demands we
derived in Example 1.1 by solving the consumer’s utility-maximisation problem. This
confirms the first item in Theorem 1.9.

To confirm the second, suppose we know the Marshallian demands from
Example 1.1,

xi(p, y) = ypr−1
i

pr
1 + pr

2
, i = 1, 2, (E.4)

and the expenditure function from Example 1.3,

e(p, u) = u
(
pr

1 + pr
2

)1/r
. (E.5)

Substituting from (E.5) into (E.4) for y yields

xi(p, e(p, u)) = e(p, u)pr−1
i

pr
1 + pr

2

= u
(
pr

1 + pr
2

)1/r pr−1
i

pr
1 + pr

2
(E.6)

= upr−1
i

(
pr

1 + pr
2

)(1/r)−1
, i = 1, 2.
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e(p, v(p, y))
x1

x2

u � v(p, y) � v(p, e(p, u))

y/p2

x1

p1

p1

x2*

x1* y
p1p1

�

x1(p, y) � x1
h(p, v(p, y))

x1
h(p, u) � x1(p, e(p, u))

x1* � x1
h(p, u) � x1

h(p, v(p, y)) � x1(p, y)

(a)

(b)

Figure 1.18. Illustration of Theorems 1.8 and 1.9.

The final expression on the right-hand side of (E.6) gives the Hicksian demands derived in
Example 1.3 by directly solving the consumer’s expenditure minimisation problem.

To conclude this section, we can illustrate the four relations in Theorems 1.8 and
1.9. In Fig. 1.18(a), a consumer with income y facing prices p achieves maximum utility
u by choosing x∗

1 and x∗
2. That same u-level indifference curve therefore can be viewed

as giving the level of utility v(p, y), and, in Fig. 1.18(b), point (p1, x∗
1) will be a point

on the Marshallian demand curve for good 1. Consider next the consumer’s expenditure-
minimisation problem, and suppose we seek to minimise expenditure to achieve utility u.
Then, clearly, the lowest isoexpenditure curve that achieves u at prices p will coincide with
the budget constraint in the previous utility-maximisation problem, and the expenditure
minimising choices will again be x∗

1 and x∗
2, giving the point (p1, x∗

1) in Fig. 1.18(b) as a
point on the consumer’s Hicksian demand for good 1.

Considering the two problems together, we can easily see from the coincident inter-
cepts of the budget constraint and isoexpenditure line that income y is an amount of
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money equal to the minimum expenditure necessary to achieve utility v(p, y) or that
y = e(p, v(p, y)). Utility level u is both the maximum achievable at prices p and income
y, so that u = v(p, y), and the maximum achievable at prices p and an income equal to the
minimum expenditure necessary to achieve u, so that u = v(p, e(p, u)). Finally, notice that
(p1, x∗

1) must be a point on all three of the following: (1) the Hicksian demand for good 1
at prices p and utility level u, (2) the Hicksian demand for good 1 at prices p and utility
level v(p, y), and (3) the Marshallian demand for good 1 at prices p and income y. Thus,
x1(p, y) = xh

1(p, v(p, y)) and xh
1(p, u) = x1(p, e(p, u)), as we had hoped.

1.5 PROPERTIES OF CONSUMER DEMAND

The theory of consumer behaviour leads to a number of predictions about behaviour in the
marketplace. We will see that if preferences, objectives, and circumstances are as we have
modelled them to be, then demand behaviour must display certain observable character-
istics. One then can test the theory by comparing these theoretical restrictions on demand
behaviour to actual demand behaviour. Once a certain degree of confidence in the theory
has been gained, it can be put to further use. For example, to statistically estimate con-
sumer demand systems, characteristics of demand behaviour predicted by the theory can
be used to provide restrictions on the values that estimated parameters are allowed to take.
This application of the theory helps to improve the statistical precision of the estimates
obtained. For both theoretical and empirical purposes, therefore, it is extremely important
that we wring all the implications for observable demand behaviour we possibly can from
our model of the utility-maximising consumer. This is the task of this section.

1.5.1 RELATIVE PRICES AND REAL INCOME

Economists generally prefer to measure important variables in real, rather than monetary,
terms. This is because ‘money is a veil’, which only tends to obscure the analyst’s view
of what people truly do (or should) care about: namely, real commodities. Relative prices
and real income are two such real measures.

By the relative price of some good, we mean the number of units of some other
good that must be forgone to acquire 1 unit of the good in question. If pi is the money
price of good i, it will be measured in units of dollars per unit of good i. The money
price of good j will have units of dollars per unit of good j. The relative price of good i in
terms of good j measures the units of good j forgone per unit of good i acquired. This will
be given by the price ratio pi/pj because

pi

pj
= $/unit i

$/unit j
= $

unit i
· unit j

$
= units of j

unit of i
.

By real income, we mean the maximum number of units of some commodity the
consumer could acquire if he spent his entire money income. Real income is intended
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to reflect the consumer’s total command over all resources by measuring his potential
command over a single real commodity. If y is the consumer’s money income, then the
ratio y/pj is called his real income in terms of good j and will be measured in units of
good j, because

y

pj
= $

$/unit of j
= units of j.

The simplest deduction we can make from our model of the utility-maximising con-
sumer is that only relative prices and real income affect behaviour. This is sometimes
expressed by saying that the consumer’s demand behaviour displays an absence of money
illusion. To see this, simply recall the discussion of Fig. 1.14. There, equiproportionate
changes in money income and the level of all prices leave the slope (relative prices) and
both intercepts of the consumer’s budget constraint (real income measured in terms of any
good) unchanged, and so call for no change in demand behaviour. Mathematically, this
amounts to saying that the consumer’s demand functions are homogeneous of degree zero
in prices and income. Because the only role that money has played in constructing our
model is as a unit of account, it would indeed be strange if this were not the case.

For future reference, we bundle this together with the observation that consumer
spending will typically exhaust income, and we give names to both results.

THEOREM 1.10 Homogeneity and Budget Balancedness

Under Assumption 1.2, the consumer demand function xi(p, y), i = 1, . . . , n, is homo-
geneous of degree zero in all prices and income, and it satisfies budget balancedness,
p · x(p, y) = y for all (p, y).

Proof: We already essentially proved homogeneity in Theorem 1.6, part 2, where we
showed that the indirect utility function is homogeneous of degree zero, so that

v(p, y) = v(tp, ty) for all t > 0.

This is equivalent to the statement

u(x(p, y)) = u(x(tp, ty)) for all t > 0.

Now, because the budget sets at (p, y) and (tp, ty) are the same, each of x(p, y) and
x(tp, ty) was feasible when the other was chosen. Hence, the previous equality and the
strict quasiconcavity of u imply that

x(p, y) = x(tp, ty) for all t > 0,

or that the demand for every good, xi(p, y), i = 1, . . . , n, is homogeneous of degree zero
in prices and income.
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We have already mentioned on numerous occasions that because u(·) is strictly
increasing, x(p, y) must exhaust the consumer’s income. Otherwise, he could afford to
purchase strictly more of every good and strictly increase his utility. We will refer to this
relationship as budget balancedness from now on.

Homogeneity allows us to completely eliminate the yardstick of money from any
analysis of demand behaviour. This is generally done by arbitrarily designating one of the
n goods to serve as numéraire in place of money. If its money price is pn, we can set
t = 1/pn and, invoking homogeneity, conclude that

x(p, y) = x(tp, ty) = x
(

p1

pn
, . . . ,

pn−1

pn
, 1,

y

pn

)
.

In words, demand for each of the n goods depends only on n − 1 relative prices and the
consumer’s real income.

1.5.2 INCOME AND SUBSTITUTION EFFECTS

An important question in our model of consumer behaviour concerns the response we
should expect in quantity demanded when price changes. Ordinarily, we tend to think a
consumer will buy more of a good when its price declines and less when its price increases,
other things being equal. That this need not always be the case is illustrated in Fig. 1.19.
In each panel, a utility-maximising consumer with strictly monotonic, convex preferences
faces market-determined prices. In Fig. 1.19(a), a decrease in the price of good 1 causes
the quantity of good 1 bought to increase, as we would usually expect. By contrast, in
Fig. 1.19(b), a decrease in price causes no change in the amount of good 1 bought, whereas
in Fig. 1.19(c), a decrease in price causes an absolute decrease in the amount of good 1

x1

x2

x1
0 x1

1
x1

x2

x1
0 x1

1
x1

x2

x1
0x1

1
�

(a) (b) (c)

Figure 1.19. Response of quantity demanded to a change in price.
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bought. Each of these cases is fully consistent with our model. What, then – if anything –
does the theory predict about how someone’s demand behaviour responds to changes in
(relative) prices?

Let us approach it intuitively first. When the price of a good declines, there are
at least two conceptually separate reasons why we expect some change in the quantity
demanded. First, that good becomes relatively cheaper compared to other goods. Because
all goods are desirable, even if the consumer’s total command over goods were unchanged,
we would expect him to substitute the relatively cheaper good for the now relatively more
expensive ones. This is the substitution effect (SE). At the same time, however, whenever
a price changes, the consumer’s command over goods in general is not unchanged. When
the price of any one good declines, the consumer’s total command over all goods is
effectively increased, allowing him to change his purchases of all goods in any way he
sees fit. The effect on quantity demanded of this generalised increase in purchasing power
is called the income effect (IE).

Although intuition tells us we can in some sense decompose the total effect (TE) of a
price change into these two separate conceptual categories, we will have to be a great deal
more precise if these ideas are to be of any analytical use. Different ways to formalise the
intuition of the income and substitution effects have been proposed. We shall follow that
proposed by Hicks (1939).

The Hicksian decomposition of the total effect of a price change starts with the
observation that the consumer achieves some level of utility at the original prices before
any change has occurred. The formalisation given to the intuitive notion of the substitution
effect is the following: the substitution effect is that (hypothetical) change in consumption
that would occur if relative prices were to change to their new levels but the maximum util-
ity the consumer can achieve were kept the same as before the price change. The income
effect is then defined as whatever is left of the total effect after the substitution effect.
Notice that because the income effect is defined as a residual, the total effect is always
completely explained by the sum of the substitution and the income effect. At first, this
might seem a strange way to do things, but a glance at Fig. 1.20 should convince you of at
least two things: its reasonable correspondence to the intuitive concepts of the income and
substitution effects, and its analytical ingenuity.

Look first at Fig. 1.20(a), and suppose the consumer originally faces prices p0
1 and

p0
2 and has income y. He originally buys quantities x0

1 and x0
2 and achieves utility level u0.

Suppose the price of good 1 falls to p1
1<p0

1 and that the total effect of this price change
on good 1 consumption is an increase to x1

1, and the total effect on good 2 is a decrease
to x1

2. To apply the Hicksian decomposition, we first perform the hypothetical experiment
of allowing the price of good 1 to fall to the new level p1

1 while holding the consumer to
the original u0 level indifference curve. It is as if we allowed the consumer to face the
new relative prices but reduced his income so that he faced the dashed hypothetical budget
constraint and asked him to maximise against it. Under these circumstances, the consumer
would increase his consumption of good 1 – the now relatively cheaper good – from x0

1
to xs

1, and would decrease his consumption of good 2 – the now relatively more expen-
sive good – from x0

2 to xs
2. These hypothetical changes in consumption are the Hicksian


