
DOUGLAS BELL & MIKE PARR

sixtheditionJAVA
FOR

Stude
ntsStude
nts

Java for
Students

Visit the Java for Students, sixth edition Companion Website
at www.pearsoned.co.uk/bell to find valuable student
learning material including:

n How to download Java 6.0
n Programs from the book
n An extra chapter on Java network programming

We work with leading authors to develop the
strongest educational materials in computing,
bringing cutting-edge thinking and best
learning practice to a global market.

Under a range of well-known imprints, including
Prentice Hall, we craft high quality print and
electronic publications which help readers to
understand and apply their content, whether
studying or at work.

To find out more about the complete range of our
publishing, please visit us on the World Wide Web at:
www.pearsoned.co.uk

Java
for Students
DOUGLAS BELL
MIKE PARR

Sixth edition

Harlow, England • London • New York • Boston • San Francisco • Toronto • Sydney • Dubai • Singapore • Hong Kong
Tokyo • Seoul • Taipei • New Delhi • Cape Town • São Paulo • Mexico City • Madrid • Amsterdam • Munich • Paris • Milan

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoned.co.uk

Sixth edition published 2010

© Prentice Hall Europe 1998
© Pearson Education Limited 2001, 2010

The rights of Douglas Bell and Mike Parr to be identified
as authors of this work have been asserted by them in
accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, without either the prior written permission
of the publisher or a licence permitting restricted copying in the United Kingdom
issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street,
London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any
trademark in this text does not vest in the author or publisher any trademark ownership
rights in such trademarks, nor does the use of such trademarks imply any affiliation with
or endorsement of this book by such owners.

ISBN: 978-0-273-73122-1

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
Bell, Doug, 1944–

Java for students / Douglas Bell, Mike Parr. – 6th ed.
p. cm.

Includes index.
ISBN 978-0-273-73122-1 (pbk.)
1. Java (Computer program language) I. Parr, Mike, 1949– II. Title.
QA76.73.J38B45 2010
005.13′3–dc22

2009051149

10 9 8 7 6 5 4 3 2 1
14 13 12 11 10

Typeset in 9.75/12pt Galliard by 35
Printed in Great Britain by Henry Ling Ltd., at the Dorset Press, Dorchester, Dorset

The publisher’s policy is to use paper manufactured from sustainable forests.

Detailed contents vii
Introduction xix
Guided tour xxiv

1 The background to Java 1
2 First programs 8
3 Using graphics methods 22
4 Variables and calculations 35
5 Methods and parameters 60
6 Using objects 88
7 Selection 115
8 Repetition 152
9 Writing classes 171

10 Inheritance 194
11 Calculations 210
12 Array lists 228
13 Arrays 242
14 Arrays – two dimensional 265
15 String manipulation 278
16 Exceptions 301
17 Files and console applications 318
18 Object-oriented design 348
19 Program style 369

Contents

v

20 Testing 383
21 Debugging 397
22 Threads 406
23 Interfaces 416
24 Programming in the large – packages 426
25 Polymorphism 432
26 Java in context 441

Appendices 454

Index 522

vi Contents

Detailed contents

Introduction xix
Guided tour xxiv

1 The background to Java 1
The history of Java 1
The main features of Java 2
What is a program? 3
Programming principles 5
Programming pitfalls 5
Summary 6
Exercises 6
Answers to self-test questions 7

2 First programs 8
Introduction 8
Integrated development environments 9
Files and folders 9
Creating a Java program 10
The libraries 13
Demystifying the program 14
Objects, methods: an introduction 15
Classes: an analogy 16
Using a text field 17
Programming principles 19
Programming pitfalls 19
Grammar spot 20

vii

New language elements 20
Summary 20
Exercises 21
Answers to self-test questions 21

3 Using graphics methods 22
Introduction 22
Events 22
The button-click event 24
The graphics coordinate system 25
Explanation of the program 25
Methods for drawing 27
Drawing with colours 28
Creating a new program 28
The sequence concept 29
Adding meaning with comments 31
Programming principles 31
Programming pitfalls 32
Grammar spot 32
New language elements 32
Summary 32
Exercises 32
Answers to self-test questions 33

4 Variables and calculations 35
Introduction 35
The nature of int 36
The nature of double 36
Declaring variables 37
The assignment statement 41
Calculations and operators 41
The arithmetic operators 42
The % operator 45
Joining strings with the + operator 46
Converting between strings and numbers 47
Message dialogs and input dialogs 49
Formatting text in dialogs with \n 51
Converting between numbers 52
Constants: using final 53
The role of expressions 54
Programming principles 55
Programming pitfalls 55
Grammar spot 56
New language elements 56
Summary 57

viii Detailed contents

Exercises 57
Answers to self-test questions 59

5 Methods and parameters 60
Introduction 60
Writing your own methods 61
A first method 62
Calling a method 64
Passing parameters 64
Formal and actual parameters 66
A triangle method 67
Local variables 70
Name clashes 71
Event-handling methods and main 72
return and results 73
Building on methods: drawHouse 76
Building on methods: areaHouse 78
this and objects 79
Overloading 80
Programming principles 81
Programming pitfalls 82
Grammar spot 82
New language elements 83
Summary 83
Exercises 83
Answers to self-test questions 86

6 Using objects 88
Introduction 88
Instance variables 89
Instantiation: using constructors with new 92
The Random class 92
The main method and new 97
The Swing toolkit 98
Events 98
Creating a JButton 99
Guidelines for using objects 101
The JLabel class 101
The JTextField class 103
The JPanel class 104
The Timer class 104
The JSlider class 106
The ImageIcon class – moving an image 109
Programming principles 111
Programming pitfalls 112

Detailed contents ix

Grammar spot 112
New language elements 112
Summary 112
Exercises 112
Answers to self-test questions 114

7 Selection 115
Introduction 115
The if statement 116
if...else 118
Comparison operators 121
Multiple events 129
And, or, not 131
Nested ifs 134
switch 136
Boolean variables 139
Comparing strings 143
Programming principles 143
Programming pitfalls 143
Grammar spot 145
New language elements 146
Summary 146
Exercises 147
Answers to self-test questions 149

8 Repetition 152
Introduction 152
while 153
for 158
And, or, not 159
do...while 161
Nested loops 163
Combining control structures 164
Programming principles 165
Programming pitfalls 165
Grammar spot 166
New language elements 166
Summary 167
Exercises 167
Answers to self-test questions 169

9 Writing classes 171
Introduction 171
Designing a class 172

x Detailed contents

Classes and files 175
private variables 177
public methods 177
The get and set methods 179
Constructors 180
Multiple constructors 181
private methods 182
Scope rules 184
Operations on objects 185
Object destruction 186
static methods 186
static variables 187
Programming principles 188
Programming pitfalls 189
Grammar spot 190
New language elements 190
Summary 191
Exercises 191
Answers to self-test questions 193

10 Inheritance 194
Introduction 194
Using inheritance 195
protected 196
Scope rules 197
Additional items 197
Overriding 198
Class diagrams 198
Inheritance at work 199
super 200
Constructors 200
final 203
Abstract classes 204
Programming principles 205
Programming pitfalls 206
New language elements 207
Summary 207
Exercises 208
Answers to self-test questions 209

11 Calculations 210
Introduction 210
Library mathematical functions and constants 211
Formatting numbers 211
Case study – money 214

Detailed contents xi

Case study – iteration 217
Graphs 218
Exceptions 222
Programming principles 223
Programming pitfalls 223
Summary 223
Exercises 224
Answer to self-test question 227

12 Array lists 228
Introduction 228
Creating an array list and generics 229
Adding items to a list 229
The length of a list 230
Indices 231
Displaying an array list 231
The enhanced for statement 232
Using index values 233
Removing items from an array list 234
Inserting items within an array list 235
Lookup 235
Arithmetic on an array list 236
Searching 238
Programming principles 239
Programming pitfalls 240
New language elements 240
Summary 240
Exercises 241
Answers to self-test questions 241

13 Arrays 242
Introduction 242
Creating an array 244
Indices 245
The length of an array 247
Passing arrays as parameters 247
The enhanced for statement 248
Using constants with arrays 249
Initializing an array 250
A sample program 251
Lookup 253
Searching 254
Arrays of objects 256
Programming principles 257
Programming pitfalls 258

xii Detailed contents

Grammar spot 259
Summary 259
Exercises 260
Answers to self-test questions 263

14 Arrays – two dimensional 265
Introduction 265
Declaring an array 266
Indices 267
The size of an array 268
Passing arrays as parameters 269
Using constants with two-dimensional arrays 269
Initializing an array 270
A sample program 271
Programming principles 272
Programming pitfalls 273
Summary 273
Exercises 274
Answers to self-test questions 277

15 String manipulation 278
Introduction 278
Using strings – a recap 279
The characters within strings 280
A note on the char type 280
The String class 281
The String class methods 281
Comparing strings 283
Amending strings 285
Examining strings 286
String conversions 289
String parameters 291
An example of string processing 291
String case study – Frasier 292
Programming principles 296
Programming pitfalls 297
Grammar spot 297
New language elements 297
Summary 298
Exercises 298
Answer to self-test question 300

16 Exceptions 301
Introduction 301
Exceptions and objects 303

Detailed contents xiii

When to use exceptions 304
The jargon of exceptions 304
A try–catch example 304
try and scopes 307
The search for a catcher 308
Throwing – an introduction 309
Exception classes 310
Compilation and checked exceptions 310
Catching – the common cases 312
Using the exception class structure 314
Programming principles 314
Programming pitfalls 315
Grammar spot 315
New language elements 315
Summary 316
Exercises 316
Answers to self-test questions 317

17 Files and console applications 318
Introduction 318
File access: stream or random? 319
The essentials of streams 319
The Java I/O classes 320
The BufferedReader and PrintWriter classes 320
File output 321
File input 324
File searching 327
The File class 331
The JFileChooser class 333
Console I/O 336
The System class 336
Using JOptionPane 338
A console example: Finder 338
Reading from a remote site 340
Command-line arguments 342
Programming principles 344
Programming pitfalls 344
Grammar spot 344
New language elements 344
Summary 345
Exercises 346
Answers to self-test questions 347

18 Object-oriented design 348
Introduction 348
The design problem 349

xiv Detailed contents

Identifying objects and methods 349
Case study in design 354
Looking for reuse 360
Composition or inheritance? 361
Guidelines for class design 365
Summary 366
Exercises 367
Answers to self-test questions 368

19 Program style 369
Introduction 369
Program layout 370
Names 370
Classes 371
Comments 372
Javadoc 373
Constants 373
Methods 374
Nested ifs 375
Nested loops 378
Complex conditions 379
Documentation 381
Consistency 381
Programming pitfalls 382
Summary 382
Exercises 382

20 Testing 383
Introduction 383
Program specifications 384
Exhaustive testing 385
Black box (functional) testing 385
White box (structural) testing 388
Inspections and walkthroughs 390
Stepping through code 391
Incremental development 391
Programming principles 392
Summary 392
Exercises 393
Answers to self-test questions 394

21 Debugging 397
Introduction 397
Debugging without a debugger 399
Using a debugger 400
Common errors – compilation errors 401

Detailed contents xv

Common errors – run-time errors 402
Common errors – logic errors 403
Common errors – misunderstanding the language 403
Summary 405
Answer to self-test question 405

22 Threads 406
Introduction 406
Threads 407
Starting a thread 411
Thread dying 412
join 412
The state of a thread 412
Scheduling, thread priorities and yield 413
Programming principles 414
Summary 414
Exercises 415
Answers to self-test questions 415

23 Interfaces 416
Introduction 416
Interfaces for design 416
Interfaces and interoperability 419
Interfaces and the Java library 420
Multiple interfaces 421
Interfaces versus abstract classes 423
Programming principles 423
Programming pitfalls 423
Grammar spot 424
New language elements 424
Summary 424
Exercises 424
Answers to self-test questions 425

24 Programming in the large – packages 426
Introduction 426
Using classes and the import statement 426
Creating packages using the package statement 427
Packages, files and folders 428
Scope rules 429
The Java library packages 429
Programming pitfalls 430
New language elements 430
Summary 430
Exercise 430
Answers to self-test questions 431

xvi Detailed contents

25 Polymorphism 432
Introduction 432
Polymorphism in action 433
Programming principles 437
Programming pitfalls 438
New language elements 438
Summary 439
Exercises 439

26 Java in context 441
Introduction 441
Simple 442
Object oriented 442
Platform independence (portability) 442
Performance 443
Security 444
Open source 446
The versions of Java 446
Java capabilities 447
Java libraries 447
Java beans 447
Databases – JDBC 448
Java and the Internet 449
Java and the World Wide Web 450
The opposition: Microsoft’s .NET platform 451
JavaScript 452
Conclusion 453
Summary 453
Exercises 453

Appendices

A Java libraries 454
B The Abstract Window Toolkit 496
C Applets 500
D Glossary 504
E Rules for names 506
F Keywords 507
G Scope rules (visibility) 508
H Bibliography 511
I Installing and using Java 513

Index 522

Detailed contents xvii

Supporting resources

Visit www.pearsoned.co.uk/bell to find valuable online resources:

Companion Website for students

n How to download Java 6.0
n Programs from the book
n An extra chapter on Java network programming

For instructors

n PowerPoint slides
n How to use this book as part of a course

For more information please contact your local Pearson Education sales
representative or visit www.pearsoned.co.uk/bell

Introduction

• What this book will tell you

This book explains how to write Java programs that run either as independent appli-
cations or as applets (part of a web page).

• This book is for novices

If you have never done any programming before – if you are a complete novice – this
book is for you. This book assumes no prior knowledge of programming. It starts from
scratch. It is written in a simple, direct style for maximum clarity. It is aimed primarily
at first-year undergraduates at universities and colleges, but it is also suitable for novices
studying alone.

• Why Java?

Java is probably one of the best programming languages to learn and use because of the
following features.

Java is small and beautiful
The designers of Java have deliberately left out all the superfluous features of program-
ming languages; they cut the design to the bone. The result is a language that has all
the necessary features, combined in an elegant and logical way. The design is lean and
mean. It is easy to learn, but powerful.

Java is object oriented
Object-oriented languages are the latest and most successful approach to programming.
Object-oriented programming is the most popular approach to programming. Java is

xix

xx Introduction

completely object oriented from the ground up. It is not a language that has had
object-orientedness grafted onto it as an afterthought.

Java supports the Internet
A major motivation for Java is to enable people to develop programs that use the
Internet and the World Wide Web. Java applets can easily be invoked from web
browsers to provide valuable and spectacular facilities. In addition, Java programs can
be easily transmitted around the Internet and run on any computer.

Java is general purpose
Java is a truly general-purpose language. Anything that C++, Visual Basic, etc., can do,
so can Java.

Java is platform independent
Java programs will run on almost all computers and mobile phones and with nearly all
operating systems – unchanged! Try that with any other programming language. (You
almost certainly can’t!) This is summed up in the slogan ‘write once – run anywhere’.

Java has libraries
Because Java is a small language, most of its functionality is provided by pieces of pro-
gram held in libraries. A whole host of library software is available to do graphics, access
the Internet, provide graphical user interfaces (GUIs) and many other things.

• You will need

To learn to program you need a computer and some software. A typical system is a
PC (personal computer) with the Java Software Development Kit (JDK). This is also
available for Unix, GNU/Linux and Apple systems. This kit allows you to prepare and
run Java programs. There are also more convenient development environments. See
Chapter 2.

• Exercises are good for you

If you were to read this book time and again until you could recite it backwards, you
still wouldn’t be able to write programs. The practical work of writing programs and
program fragments is vital to becoming fluent and confident at programming.

There are exercises for the reader at the end of each chapter. Please do some of them
to enhance your ability to program.

There are also short self-test questions throughout the text with answers at the end
of the chapter, so that you can check you have understood things properly.

• What’s included?

This book explains the fundamentals of programming:

n variables;

n assignment;

n input and output;

n calculation;

n graphics and windows programming;

n selection using if;

n repetition using while.

It also covers integer numbers, floating-point numbers and character strings. Arrays
are also described. All these are topics that are fundamental, whatever kind of pro-
gramming you go on to do.

This book also thoroughly addresses the object-oriented aspects of programming:

n using library classes;

n writing classes;

n using objects;

n using methods.

We also look at some of the more sophisticated aspects of object-oriented program-
ming, like:

n inheritance;

n polymorphism;

n interfaces.

• What’s not included

This book describes the essentials of Java. It does not explain the bits and pieces, the
bells and whistles. Thus the reader is freed from unnecessary detail and can concentrate
on mastering Java and programming in general.

• Applications or applets?

There are two distinct types of Java program:

n a distinct free-standing program (this is called an application);

n a program invoked from a web browser (this is called an applet).

In this book we concentrate on applications, because we believe that this is the main
way in which Java is being used. (We explain how to run applets in Appendix C.)

Introduction xxi

xxii Introduction

• Graphics or text?

Throughout the text we have emphasized programs that use graphical images rather
than text input and output. We think they are more fun, more interesting and clearly
demonstrate all the important principles of programming. We haven’t ignored pro-
grams that input and output text – they are included, but they come second best.

• Graphical user interfaces (GUIs)

The programs we present use many of the features of a GUI, such as windows, buttons,
scrollbars and using the mouse in lots of different ways.

• AWT or Swing?

There are two Java mechanisms for creating and using GUIs – AWT and Swing. The
Swing set of user-interface components is more complete and powerful than the AWT
set. This book adopts the Swing approach because it is being used more widely.

• The sequence of material

Programming involves many challenging ideas, and one of the problems of writing a
book about programming is deciding how and when to introduce new ideas. We intro-
duce simple ideas early and more sophisticated ideas later on. We use objects from an
early stage. Then later we see how to write new objects. Our approach is to start with
ideas like variables and assignment, then introduce selection and looping, and then go
on to objects and classes (the object-oriented features). We also wanted to make sure that
the fun element of programming is paramount, so we use graphics right from the start.

• Bit by bit

In this book we introduce new ideas carefully one at a time, rather than all at once. So
there is a single chapter on writing methods, for example.

• Computer applications

Computers are used in many different applications and this book uses examples from all
these areas:

n information processing;

n games;

n scientific calculations.

Introduction xxiii

The reader can choose to concentrate on those application areas of interest and spend
less time on the other areas.

• Different kinds of programming

There are many different kinds of programming – examples are procedural, logic, func-
tional, spreadsheet, visual and object-oriented programming. This book is about the
dominant type of programming – object-oriented programming (OOP) – as practised
in languages like Visual Basic, C++, C#, Eiffel and Smalltalk.

• Which version of Java?

This book uses Java 6.

• Have fun

Programming is creative and interesting, particularly in Java. Please have fun!

• Visit our website

All the programs presented in this book are available on our website, which can be
reached via: www.pearsoned.co.uk/bell

• Changes to this edition

If you have used earlier editions of this book, you might like to know what is different
about this edition.

The latest version of Java is version 6. This book accords with version 6. There are
no changes to the Java language or to the library classes that we use. All the programs
in the book work with version 6. This has actually meant no changes to the programs
from the last edition.

The main changes for this 6th edition are:

n Chapter 2, ‘First programs’, and Appendix I. We have enhanced the explanation to
include some treatment of integrated development environments (IDEs).

n The CD. In an era of broadband, we have eliminated the CD. Everything, and more,
is on the website.

n Chapter 26 on the role of Java in the world is thoroughly updated.

n There are light-touch improvements throughout to enhance readability

We hope you like the changes.

• Exercises

7.1 Movie theatre (cinema) price Write a program to work out how much a person pays to

go to the cinema. The program should input an age from a slider or a text field and then

decide on the following basis:

n under 5, free;

n aged 5 to 12, half price;

n aged 13 to 54, full price;

n aged 55, or over, free.

7.2 The elevator Write a program to simulate a very primitive elevator. The elevator is repres-

ented as a filled black square, displayed in a tall, thin, white panel. Provide two buttons

– one to make it move 20 pixels up the panel and one to make it move down. Then

enhance the program to make sure that the elevator does not go too high or too low.

7.3 Sorting Write a program to input numbers from three sliders, or three text fields, and

display them in increasing numerical size.

7.4 Betting A group of people are betting on the outcome of three throws of a die. A person

bets $1 on predicting the outcome of the three throws. Write a program that uses the

random number method to simulate three throws of a die and displays the winnings

according to the following rules:

n all three throws are sixes: win $20;

n all three throws are the same (but not sixes): win $10;

n any two of the three throws are the same: win $5.

7.5 Digital combination safe Write a program to act as the digital combination lock for a

safe. Create three buttons, representing the numbers 1, 2 and 3. The user clicks on the

buttons, attempting to enter the correct numbers (say 331121). The program remains

unhelpfully quiet until the correct buttons are pressed. Then it congratulates the user with

a suitable message. A button is provided to restart.

Enhance the program so that it has another button which allows the user to change

the safe’s combination, provided that the correct code has just been entered.

7.6 Deal a card Write a program with a single button on it which, when clicked on, randomly

selects a single playing card. First use the random number generator in the library to

create a number in the range 1 to 4. Then convert the number to a suit (heart, diamond,

club and spade). Next, use the random number generator to create a random number in

the range 1 to 13. Convert the number to an ace, 2, 3, etc., and finally display the value

of the chosen card.

Hint: use switch as appropriate.

7.7 Rock, scissors, paper game In its original form, each of the two players simultaneously

chooses one of rock, scissors or paper. Rock beats scissors, paper beats rock and scis-

sors beats paper. If both players choose the same, it is a draw. Write a program to play

the game. The player selects one of three buttons, marked rock, scissors or paper. The

Exercises 147

• Building on methods: drawHouse

As an example of methods which make use of other methods, let us create a method
which draws a primitive ‘lean-to’ house with a cross-section shown in Figure 5.7. The
height of the roof is the same as the height of the walls, and the width of the walls is
the same as the width of the roof. We will choose the int parameters to be:

n the horizontal position of the top right point of the roof;

n the vertical position of the top right point of the roof;

76 Chapter 5 n Methods and parameters

SELF-TEST QUESTION

5.7 Here is a method named twice, which returns the doubled value of its int
parameter:

private int twice(int n) {

return 2 * n;

}

Here are some calls:

int n = 3;

int r;

r = twice(n);

r = twice(n + 1);

r = twice(n) + 1;

r = twice(3 + 2 * n);

r = twice(twice(n));

r = twice(twice(n + 1));

r = twice(twice(n) + 1);

r = twice(twice(twice(n)));

For each call, state the returned value.

Figure 5.7 House with width of 100 and roof height of 50.

Summary 207

New language elements

n extends – means that this class inherits from another named class.

n protected – the description of a variable or method that is accessible from within
the class or any subclass (but not from elsewhere).

n abstract – the description of an abstract class that cannot be created but is provided
only to be used in inheritance.

n abstract – the description of a method that is simply given as a header and must be
provided by a subclass.

n super – the name of the superclass of a class, the class it inherits from.

n final – describes a method or variable that cannot be overridden.

Summary

Extending (inheriting) the facilities of a class is a good way to make use of existing parts
of programs (classes).

A subclass inherits the facilities of its immediate superclass and all the superclasses
above it in the inheritance tree.

A class has only one immediate superclass. (It can only inherit from one class.) This
is called single inheritance in the jargon of OOP.

A class can extend the facilities of an existing class by providing one or more of:

n additional methods;

n additional variables;

n methods that override (act instead of) methods in the superclass.

A variable or method can be described as having one of three types of access:

n public – accessible from any class.

n private – accessible only from within this class.

n protected – accessible only from within this class and any subclass.

A class diagram is a tree showing the inheritance relationships.
The name of the superclass of a class is referred to by the word super.
An abstract class is described as abstract. It cannot be instantiated to give an object,

because it is incomplete. An abstract class provides useful variables and methods for
inheritance by subclasses.

Here, for example, is the specification for the simple balloon program:

Write a program to represent a balloon and manipulate the balloon via a GUI. The
balloon is displayed as a circle in a panel. Using buttons, the position of the balloon
can be changed by moving it a fixed distance up or down. Using a slider, the radius
of the balloon can be altered. The radius is displayed in a text field.

The window is shown in Figure 18.1.
We look for verbs and nouns in the specification. In the above specification, we can

see the following nouns:

GUI, panel, button, slider, text field, balloon, position, distance,

radius

The GUI provides the user interface to the program. It consists of buttons, a slider, a
text field and a panel. The GUI is represented by an object that is an instance of the
class JFrame. The button, slider, text field and panel objects are available as classes in
the Java library.

The GUI object:

1. Creates the buttons, slider, text field and panel on the screen.

2. Handles the events from mouse-clicks on the buttons and slider.

3. Creates any other objects that are needed, such as the balloon object.

4. Calls the methods of the balloon object.

The next major object is the balloon. It makes use of information to represent its
position (x and y coordinates), the distance it moves and its radius. One option would
be to create completely distinct full-blown objects to represent these items. But it is
simpler to represent them as int variables.

350 Chapter 18 n Object-oriented design

Figure 18.1 The balloon program.

New language elements
reiterate the new syntax
features introduced by
the chapter.

Summaries offer a concise round-up of
the key concepts covered by each chapter.
They tie in with the objectives listed at the
beginning of the chapter and are a great
reference and revision aid.

Numerous self-test questions throughout the book, and exercises
at the end of every chapter allow the student to practise with
the concepts until they fully understand them. The answers to
the self-test questions appear at the end of each chapter.

Programs that use graphical images (particularly
GUIs) rather than text input–output programs
are used throughout. This demonstrates the
creative and exciting side of programming which
helps the student learn concepts faster.

Guided tour

private void createGUI() {

setDefaultCloseOperation(EXIT_ON_CLOSE);

Container window = getContentPane();

window.setLayout(new FlowLayout());

onButton = new JButton("On");

window.add(onButton);

onButton.addActionListener(this);

offButton = new JButton("Off");

window.add(offButton);

offButton.addActionListener(this);

textField = new JTextField(4);

textField.setSize(5, 100);

textField.setFont(new Font(null, Font.BOLD, 60));

window.add(textField);

openButton = new JButton("Open");

window.add(openButton);

openButton.addActionListener(this);

closedButton = new JButton("Closed");

window.add(closedButton);

closedButton.addActionListener(this);

}

public void actionPerformed(ActionEvent event) {

Object source = event.getSource();

if (source == onButton) {

handleOnButton();

}

else if (source == offButton) {

handleOffButton();

}

else if (source == openButton) {

handleOpenButton();

}

else handleClosedButton();

drawSign();

}

private void handleOnButton() {

on = true;

}

private void handleOffButton() {

on = false;

}

private void handleOpenButton() {

open = true;

}

private void handleClosedButton() {

open = false;

}

Boolean variables 141

When the Closed button is clicked on:

open = false;

When the On button is clicked on, the value of open is tested with an if statement and
the appropriate sign displayed:

if (open) {

textField.setText("Open");

}

else {

textField.setText("Closed");

}

The complete program is:

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class ShopSign extends JFrame implements ActionListener {

private JButton onButton, offButton, openButton, closedButton;

private JTextField textField;

private boolean on = false, open = false;

public static void main(String[] args) {

ShopSign demo = new ShopSign();

demo.setSize(250,200);

demo.createGUI();

demo.setVisible(true);

}

140 Chapter 7 n Selection

Figure 7.11 The shop sign.

>
>

>

• Introduction

This book has been about writing ‘applications’. They run under the control of your
operating system and the Java code and corresponding class files are stored on your
computer. Applets are different. The term means a small program. Compiled applet
class files are uploaded to a web server computer, in the same folder as you might store
your web pages. It is possible to specify that a web page links up to an applet. When a
user downloads such a web page, the Java class code comes with it, and the applet runs
in an area of the web browser window.

• An applet example

Here we will look at the process of creating and running an applet. We will use the
SumTextFields program of Chapter 6. Note that, in Appendix B, we provided an
AWT version of this program, and this is the version we will convert to an applet. The
reason for this choice is because AWT applets will work with all browsers, but Swing
support in browsers is not as widespread. Figure C.1 shows the applet running within
a web browser. Here is the code:

import java.awt.*;

import java.applet.Applet;

import java.awt.event.*;

public class SumTextFieldsApplet

extends Applet implements ActionListener{

private TextField number1Field, number2Field, sumField;

private Label equalsLabel;

private Button plusButton;

Applets

APPENDIX

C

>

500

82 Chapter 5 n Methods and parameters

Programming pitfalls

n The method header must include type names. The following is wrong:

private void methodOne(x) { // wrong

Instead we must put, for example, the following:

private void methodOne(int x) {

n A method call must not include type names. For example, rather than:

methodOne(int y); //

we put:

methodOne(y);

n When calling a method, we must supply the correct number of parameters and the
correct types of parameters.

n We must arrange to consume a returned value in some way. The following style of
call does not consume a return value:

someMethod(e, f); //

Grammar spot

n The general pattern for methods takes two forms. Firstly, for a method that does not
return a result, we declare the method by:

private void methodName(formal parameter list) {

... body

}

and we call the method by a statement, as in:

methodName(actual parameter list);

n For a method which returns a result, the form is:

private type methodName(actual parameter list) {

... body

}

Any type or class can be specified as the returned type. We call the method as part of
an expression. For example:

n = methodName(a, b);

Programming pitfalls
highlight common
programming mistakes
and how to avoid them.

Grammar spot identifies the correct
way to write code, reinforcing the
student’s understanding of Java syntax.

Example code is included in the text – this edition
uses Swing throughout.

Appendices broaden the
student’s understanding of
Java programming.

• The history of Java

A computer program is a series of instructions that are obeyed by a computer. The
point of the instructions is to carry out a task, e.g. play a game, send an email, etc. The
instructions are written in a particular style: they must conform to the rules of the pro-
gramming language we choose. There are hundreds of programming languages, but
only a few have made an impact and become widely used. The history of programming
languages is a form of evolution, and here we will look at the roots of Java. The names
of the older languages are not important, but we provide them for completeness.

Around 1960, a programming language named Algol 60 was created. (‘Algol’ from
the term ‘algorithm’ – a series of steps that can be performed to solve a problem.)
This was popular in academic circles, but its ideas persisted longer than its use. At this
time, other languages were more popular: COBOL for data processing, and Fortran
for scientific work. In the UK, an extended version of Algol 60 was created (CPL –
Combined Programming Language), which was soon simplified into basic CPL, or
BCPL.

We then move to Bell Laboratories USA, where Dennis Ritchie and others trans-
formed BCPL into a language named B, which was then enhanced to become C,

CHAPTER

1
The background to Java

This chapter explains:

n how and why Java came into being;

n the main features of Java;

n the introductory concepts of programming.

1

around 1970. C was tremendously popular. It was used to write the Unix operating
system, and, much later, Linus Torvalds used it to write a major part of Unix – named
Linux – for PCs.

The next step came when C++ (‘C plus plus’) was created around 1980 by Bjarne
Stroustrup, also at Bell Labs. This made possible the creation and reuse of separate
sections of code, in a style known as ‘object-oriented programming’. (In C, you could
use ++ to add one to an item – hence C++ is one up from C.) C++ is still popular, but
hard to use – it takes a lot of study.

Now we move to Sun Microsystems in the USA. In the early 1990s, James Gosling
was designing a new language named Oak, intended to be used in consumer elec-
tronics products. This project never came to fruition, but the Oak language became
renamed Java (after the coffee).

In parallel, the Internet was becoming more popular, and a small company called
Netscape had created a web browser.

After discussions with Microsoft, Netscape agreed to provide support for Java in its
web browser, with the result that Java programs could be downloaded alongside web
pages. This provided a programming capability to enhance static pages. These programs
were known as ‘applets’. Netscape decided to allow users to download its browser for
free, and this also spread the word about Java.

• The main features of Java

When James Gosling designed Java, he didn’t create something from nothing. Rather,
he took existing concepts, and integrated them to form a new language. Here are its
main features:

n Java programs look similar to C++ programs. This meant that the C++ community
would take it seriously, and also meant that C++ programmers can be productive
quickly.

n Java was designed with the Internet in mind. As well as creating conventional pro-
grams, applets can be created which run ‘inside’ a web page. Java also had facilities
for transferring data over the Internet in a variety of ways.

n Java programs are portable: they can run on any type of computer. In order for
this to happen, a Java ‘run-time system’ has to be written for every type of computer,
and this has been done for virtually all types of computer in use today. Java is also
available for cell or mobile phones, so, in a sense, the abandoned Oak project has
come to fruition.

n Java applets are secure. Computer viruses are widespread, and downloading
and running programs over the Internet can be risky. However, the design of
Java applets means that they are secure, and will not infect your computer with
a virus.

2 Chapter 1 n The background to Java

n Though not a technical issue, Sun’s marketing of Java is worthy of note. All the soft-
ware needed to create and run Java programs was made available free, as an Internet
download. This meant that Java became popular quickly. In addition, the Netscape
web browser supported Java from its early days, and Microsoft provided similar facil-
ities in its Internet Explorer web browser.

Java was very well received in industry because of its portability and Internet features.
It was also well received in education, as it provides full object-oriented facilities in a
simpler way than in C++.

Although Java is relatively new, it was influential in the design of Microsoft’s C#
(C Sharp) language. From an educational point of view, familiarity with Java will enable
you to move to C# relatively easily.

• What is a program?

In this section we try to give the reader some impression of what a program is. One way
to understand is by using analogies with recipes, musical scores and knitting patterns.
Even the instructions on a bottle of hair shampoo are a simple program:

wet hair

apply shampoo

massage shampoo into hair

rinse

This program is a list of instructions for a human being, but it does demonstrate one
important aspect of a computer program – a program is a sequence of instructions that
is obeyed, starting at the first instruction and going on from one to the next until the
sequence is complete. A recipe, musical score and a knitting pattern are similar – they
constitute a list of instructions that are obeyed in sequence. In the case of a knitting pat-
tern, knitting machines exist which are fed with a program of instructions, which they
then carry out (or ‘execute’). This is what a computer is – it is a machine that auto-
matically obeys a sequence of instructions, a program. (In fact, if we make an error in
the instructions, the computer is likely to do the wrong task.) The set of instructions
that are available for a computer to obey typically includes:

n input a number;

n input some characters (letters and digits);

n output some characters;

n do a calculation;

n output a number;

n output some graphical image to the screen;

n respond to a button on the screen being clicked on by the mouse.

What is a program? 3

The job of programming is one of selecting from this list those instructions that will
carry out the required task. These instructions are written in a specialized language
called a programming language. Java is one of many such languages. Learning to pro-
gram means learning about the facilities of the programming language and how to com-
bine them so as to do something you want. The example of musical scores illustrates
another aspect of programs. It is common in music to repeat sections, e.g. a chorus
section. Musical notation saves the composer from duplicating those parts of the score
that are repeated and, instead, provides a notation specifying that a section of music is
repeated. The same is true in a program; it is often the case that some action has to be
repeated: for example, in a word-processing program, searching through a passage of
text for the occurrence of a word. Repetition (or iteration) is common in programs, and
Java has special instructions to accomplish this.

Recipes sometimes say something like: ‘if you haven’t got fresh peas, use frozen’.
This illustrates another aspect of programs – they often carry out a test and then do one
of two things depending on the result of the test. This is called selection, and, as with
repetition, Java has special facilities to accomplish it.

If you have ever used a recipe to prepare a meal, you may well have got to a
particular step in the recipe only to find that you have to refer to another recipe. For
example, you might have to turn to another page to find out how to cook rice, before
combining it with the rest of the meal: the rice preparation has been separated out as a
sub-task. This way of writing instructions has an important analogue in programming,
called methods in Java and other object-oriented languages. Methods are used in all
programming languages, but sometimes go under other names, such as functions,
procedures, subroutines or sub-programs.

Methods are sub-tasks, and are so called because they are a method for doing some-
thing. Using methods promotes simplicity where there might otherwise be complexity.

Now consider cooking a curry. A few years ago, the recipe would suggest that you
buy fresh spices, grind them and fry them. Nowadays, though, you can buy ready-made
sauces. Our task has become simpler. The analogy with programming is that the
task becomes easier if we can select from a set of ready-made ‘objects’ such as buttons,
scrollbars and databases. Java comes with a large set of objects that we can incorporate
in our program, rather than creating the whole thing from scratch.

To sum up, a program is a list of instructions that can be obeyed automatically by a
computer. A program consists of combinations of:

n sequences;

n repetitions;

n selections;

n methods;

n ready-made objects;

n objects you write yourself.

All modern programming languages share these features.

4 Chapter 1 n The background to Java

Programming pitfalls 5

SELF-TEST QUESTIONS

1.1 Here are some instructions for calculating an employee’s pay:

obtain the number of hours worked

calculate pay

print pay slip

subtract deductions for illness

Is there a major error?

1.2 Take the instruction:

massage shampoo into hair

and express it in a more detailed way, incorporating the concept of repetition.

1.3 Here are some instructions displayed on a roller-coaster ride:

Only take the ride if you are over 8 or younger than 70!

Is there a problem with the notice? How would you rewrite it to improve it?

Programming principles

n Programs consist of instructions combined with the concepts of sequence, selection,
repetition and sub-tasks.

n The programming task becomes simpler if we can make use of ready-made
components.

Programming pitfalls

Human error can creep into programs – such as placing instructions in the wrong
order.

• Exercises

1.1 This question concerns the steps that a student goes through to wake up and get to

college. Here is a suggestion for the first few steps:

wake up

dress

eat breakfast

brush teeth

...

(a) Complete the steps. Note that there is no ideal answer – the steps will vary between

individuals.

(b) The ‘brush teeth’ step contains repetition – we do it again and again. Identify another

step that contains repetition.

(c) Identify a step that contains a selection.

(d) Take one of the steps, and break it down into smaller steps.

1.2 You are provided with a huge pile of paper containing 10000 numbers, in no particular

order. Write down the process that you would go through to find the largest number.

Ensure that your process is clear and unambiguous. Identify any selection and repetition

in your process.

1.3 For the game of Tic Tac Toe (noughts and crosses), try to write down a set of precise

instructions which enables a player to win. If this is not possible, try to ensure that a player

does not lose.

6 Chapter 1 n The background to Java

Summary

n Java is an object-oriented language, derived from C++.

n Java programs are portable: they can run on most types of computer.

n Java is integrated with web browsers. Applet programs can be executed by web
browsers.

n A program is a list of instructions that are obeyed automatically by a computer.

n Currently the main trend in programming practice is the object-oriented program-
ming (OOP) approach, and Java fully supports it.

Answers to self-test questions 7

Answers to self-test questions

1.1 The major error is that the deductions part comes too late. It should precede the printing.

1.2 We might say:

keep massaging your hair until it is washed.

or:

As long as your hair is not washed, keep massaging.

1.3 The problem is with the word ‘or’. Someone who is 73 is also over 8, and could therefore

ride.

We could replace ‘or’ by ‘and’ to make it technically correct, but the notice might still be

misunderstood. We might also put:

only take this ride if you are between 8 and 70

but be prepared to modify the notice again when hordes of 8 and 70 year olds ask if they

can ride!

• Introduction

To learn how to program in Java you will need access to a computer with Java facilities,
but fortunately the Java language has been designed to run on any operating system.
Currently, the most widely used operating systems are Microsoft’s Windows systems on
PCs, but other operating systems in use are GNU/Linux on PCs and OS X on Apple
Mac. Java can run on any of these systems. This is a major benefit, but it means that the
detailed instructions for using Java will vary. Here we provide general information only.
Appendix I provides more details about how to obtain free Java systems.

When Java has been installed, there are four stages involved:

n creating a new file or project;

n entering/modifying the program with an editor;

n compiling the program;

n running the program.

CHAPTER

2
First programs

This chapter explains:

n how to create, compile and run Java programs;

n the use of an integrated development environment;

n the ideas of classes, objects and methods;

n how to display a message dialog;

n how to place text in a text field.

8

• Integrated development environments

There are two main ways to create and run your programs. Firstly, you might choose
an integrated development environment (IDE). This is a software package designed to
help with the complete process of creating and running a Java program. If you use an
IDE, it is still a good idea to understand the ideas of files, editing, compilation and
running, as described below.

There are several IDEs. One of the most popular free ones is Eclipse (itself written
in Java). Refer to Appendix I for more information. Alternatively, you can use a text
editor (rather like a simple word processor) to create your programs. Some of the more
powerful ones (such as Textpad) can be configured to link up Java software, allowing
you to initiate compiling and running by clicking on a menu option.

• Files and folders

The programs that are automatically loaded and run when the computer is switched on
are collectively called the operating system. One major part of an operating system is
concerned with storing files, and here we provide a brief introduction.

Information stored on a computer disk is stored in files, just as information stored in
filing cabinets in an office is stored in files.

Normally you set up a file to contain related information. For example:

n a letter to your mother;

n a list of students on a particular course;

n a list of friends, with names, addresses and telephone numbers.

Each file has its own name, chosen by the person who created it. It is usual, as you
might expect, to choose a name that clearly describes what is in the file. A file name has
an extension – a part on the end – that describes the type of information that is held in
the file. For example, a file called letter1 that holds a letter and is normally edited
with a word processor might have the extension .doc (short for document) so that its
full name is letter1.doc. A file that holds a Java program has the extension .java,
so that a typical file name might be Game.java.

A group of related files is collected together into a folder (sometimes called a direc-
tory). So, in a particular folder you might hold all letters sent to the bank. In another
folder you might store all the sales figures for one year. Certainly you will keep all the
files that are used in a single Java program in the same folder. You give each folder a
name – usually a meaningful name – that helps you to find it.

Normally folders are themselves grouped together in a folder. So you might have a
folder called Toms within which are the folders myprogs, letters.

You might think that this will go on for ever, and indeed you can set up folders of
folders ad infinitum. Your computer system will typically have hundreds of folders and
thousands of files. Some of these will be yours (you can set them up and alter them)
and some of them will belong to the operating system (leave them alone!).

Files and folders 9

So, a file is a collection of information with a name. Related files are collected
together into a folder, which also has a name.

To actually see lists of folders and the files they contain, we make use of a program
known as Windows Explorer on Microsoft Windows systems. Clicking on a folder reveals
the files it contains. GNU/Linux and Apple Macs have similar facilities.

10 Chapter 2 n First programs

SELF-TEST QUESTION

2.1 (a) What is the difference between a folder and a directory?

(b) What is a folder?

(c) Is it possible to create two folders with the same name?

• Creating a Java program

Whether you use a powerful IDE or a simpler text editor, there are a number of steps
that need to be worked through.

Creating a new file
If you use a text editor, you will create a new file, which needs to have a .java exten-
sion. In an IDE, you will create a project, which consists of a number of files. The only
file you will modify is the .java file.

Editing the file
This involves typing in and modifying the program. (We provide an example program
below.) Obviously, a text editor can be used, but all IDEs contain a text editor com-
ponent. The editor is where you will spend a lot of time, so it is important to explore
its advanced facilities, such as those for searching and replacing text.

Compiling the program
A compiler is a program that converts a program written in a language like Java into the
language that the computer understands. So a compiler is like an automatic translator,
able to translate one (computer) language into another. Java programs are converted
into bytecode. Bytecode is not exactly the same as the language that a computer under-
stands (machine code). Instead, it is an idealized machine language that means that
your Java program will run on any type of computer. When your program is run, the
bytecode is interpreted by a program called the Java Virtual Machine (JVM).

We will click on a button or menu option to begin the compilation process.
As it compiles your program, the Java compiler checks that the program obeys the

rules of programming in Java and, if something is wrong, displays appropriate error
messages. It also checks that the programs in any libraries that you are using are being
employed correctly. It is rare (even for experienced programmers) to have a program
compile correctly first time, so don’t be disappointed if you get some error messages.
Here is an example of an error message:

Hello.java:9: ';' expected

This message provides the name of the file, the line number of the error (9 in this case)
and a description of the error. We need to understand the error (this is not always obvi-
ous) and then return to the editor to correct the text.

Running the program
When we have removed any compilation errors, the program can now be run (executed,
interpreted). To initiate the JVM, we will click on a button or use a menu option. We
now see the effect of the program as it does its job.

Note that with some IDEs, clicking to start the compilation process will also initiate
a run of the program if no compilation errors were found.

Creating a Java program 11

A first program
Using the editor or IDE, create a new file (named Hello.java) or project, then key
in the small Java program shown below.

A file that holds a Java program must have the extension java. The first part of the
name must match the name that follows the words public class in the Java code.
This name can be chosen by the programmer.

Do not worry about what it means, at this stage. You will see that the program
contains certain unusual characters and three different kinds of bracket. You might have
to search for them on your keyboard. The text that you have entered is known as the
Java code.

SELF-TEST QUESTION

2.2 (a) Find out how to start and use your editor/IDE.

(b) In your editor, enter some text containing the word "he" several times. Find
out how your editor can be used to replace every occurrence of "he" by
"she" with a single command.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class Hello extends JFrame {

public static void main(String[] args) {

JOptionPane.showMessageDialog(null, "Hello World!");

JOptionPane.showMessageDialog(null, "Goodbye");

System.exit(0);

}

}

Undoubtedly you will make mistakes when you key in this program. You can use the
editor to correct the program.

When the program looks correct, try to compile it, and observe any error messages.
Fix them by comparing your code with our version

One of the standing jokes of programming is that error messages from compilers are
often cryptic and unhelpful. The compiler will indicate (note: not pinpoint) the posi-
tion of the errors. Study what you have keyed in and try to see what is wrong. Common
errors are:

n semicolons missing or in the wrong place;

n brackets missing;

n single quotes (') rather than double quotes (").

Identify your error, edit the program and recompile. This is when your patience is on
test! Repeat until you have eradicated the errors.

12 Chapter 2 n First programs

SELF-TEST QUESTION

2.3 Make an intentional error in your code, by omitting a semicolon. Observe the
error message that the compiler produces. Finally, put the semicolon back.

After editing and compiling with no errors, we can run (or execute) the program.
The compiler creates a file on disk with the extension class. The first part of the name
matches the Java program name – so in this example the file name is:

Hello.class

This is the file that the JVM will run. A button-click or menu option will start the
process.

>
>

The program now runs. First, it displays the message:

Hello World!

Click on OK to close the message and to display the next message:

Goodbye

Click on OK again. The program terminates. Figure 2.1 shows a screenshot of the first
message.

• The libraries

As we saw, the output from the compiler is a .class file, which we execute with the
JVM. However, the class file does not contain the complete program. In fact, every Java
program needs some help from one or more pieces of program that are held in libraries.
In computer terms, a library is a collection of already-written useful pieces of program,
kept in files. Your small sample program needs to make use of such a piece of program
to display information on the screen. In order to accomplish this, the requisite piece of
program has to be linked to your program when it is run.

The libraries are collections of useful parts. Suppose you were going to design a new
motor car. You would probably want to design the body shape and the interior layout.
But you would probably want to make use of an engine that someone else had designed
and built. Similarly, you might well use the wheels that some other manufacturer had
produced. So, some elements of the car would be new, and some would be off the shelf.
The off-the-shelf components are like the pieces of program in the Java library. For
example, our example program makes use of a pop-up message dialog from a library.

Things can go wrong when the compiler checks the links to library software and you
may get a cryptic error message. Common errors are:

n the library is missing;

n you have misspelled the name of something in the library.

The libraries are incorporated into your program when it runs.

The libraries 13

Figure 2.1 Screenshot of Hello.java.

• Demystifying the program

We will now provide an overview of the Java program. Even though it is quite small, you
can see that the program has quite a lot to it. This is because Java is a real industrial-
strength language, and even the smallest program needs some major ingredients.
Note that at this early stage, we do not cover every detail. This comes in the following
chapters.

We show the code of the program here again, in Figure 2.2. This time it has line num-
bers to help with the explanation. (Line numbers must not be part of a real program.)
Lines 8 and 9 are the most important pieces of this program. They instruct the
computer to display some text in a pop-up rectangle known as a message dialog, from
the JOptionPane class. Line 8 displays the text Hello World!, which must be
enclosed in double quotes. Text in quotes like this is called a string. The line ends with
a semicolon, as do many lines in Java. Similarly, line 9 displays "Goodbye". In Java, the
letter J (standing for Java, of course) precedes many names (such as JOptionPane).

Figure 2.1 shows the effect of line 8. When OK is clicked, the program proceeds to
line 9. This time the string "Goodbye" is displayed. Note that the message dialogs are
displayed in sequence, working down the program.

14 Chapter 2 n First programs

1 import java.awt.*;

2 import java.awt.event.*;

3 import javax.swing.*;

4

5 public class Hello extends JFrame {

6

7 public static void main(String[] args) {

8 JOptionPane.showMessageDialog(null, "Hello World!");

9 JOptionPane.showMessageDialog(null, "Goodbye");

10 System.exit(0);

11 }

12 }

Figure 2.2 The Hello program.

>
>

SELF-TEST QUESTION

2.4 (a) Find two errors in this code:

JOptionpane.showMessageDialog(null, "Hello wirld");

(b) Which error will prevent the program from running?

At the top, lines 1, 2 and 3 specify information about the library programs that the
program uses. The word import is followed by the name of a library that is to be used
by the program. This program uses the AWT (Abstract Window Toolkit) and the Swing
library in order to display a message dialog.

Line 4 is a blank line. We can use blank lines anywhere, to make a program more
readable.

Line 5 is a heading which announces that this code is a program named Hello.
The program itself is enclosed within the curly brackets. The opening { in line 5 goes

with (matches) the closing } on line 12. Within these lines, there are more curly brackets.
The { at line 7 goes with the } at line 11.

Line 10 causes the program to stop running.
Later, we will present a longer program which displays text on the screen in a dif-

ferent way. Before we do, let us look at the use of ‘objects’ in Java.

• Objects, methods: an introduction

One of the reasons for Java’s popularity is that it is object oriented. This is the book’s
main theme, and we cover it at length in future chapters. But here we will introduce
the concept of objects via an analogy.

Firstly, consider a home with a CD player in the kitchen and an identical one in the
bedroom. In the Java jargon, we regard them as ‘objects’. Next, we consider what facil-
ities each CD player provides for us. In other words, what buttons does a CD player
provide? In the Java jargon, each facility is termed a ‘method’. (For example, we might
have a start and a stop method, and a method for skipping to a track via its number.)

The term method is rather strange, and it comes from the history of programming
languages. Imagine it as meaning ‘function’ or ‘facility’, as in ‘This CD player has a start
and a stop method.’

Now consider the task of identifying each button on each player. It is not enough
to state:

stop

because there are two players. Which player do we mean? Instead, we must identify the
player as well. Moving slightly closer to Java, we use:

kitchenCD.stop

Objects, methods: an introduction 15

SELF-TEST QUESTION

2.5 Alter the program so that it displays a third message dialog, showing the string
"Finishing now".

Note the use of the dot. It is used in a similar way in all object-oriented languages.
We have two items:

n The name of an object; this usually corresponds to a noun.

n A method which the object provides; this is often a verb.

Note that you can imagine that the dot means ’s in English, as in:

kitchenCD's stop button

Later, when we discuss methods in more detail, you will see that the exact Java version
of the above is:

kitchenCD.stop();

Observe the semicolon and the brackets with nothing between them. For some other
methods, we might have to supply additional information for the method to work on,
such as selecting a numbered track:

bedroomCD.select(4);

The item in brackets is known as a ‘parameter’. (Again a traditional programming term
rather than an instantly meaningful one.)

In general terms, the way we use methods is:

object.method(parameters);

If the particular method does not need parameters, we must still use the brackets. We
cover parameters and methods in Chapter 5.

16 Chapter 2 n First programs

SELF-TEST QUESTION

2.6 Assume that our kitchen and bedroom CD players have facilities (methods) for
stopping, starting and selecting a numbered track. Here is an example of using one
method:

kitchenCD.select(6);

Give five examples of using the methods.

• Classes: an analogy

The concept of a class is extremely important in object-oriented programming. Recall
our analogy: we have two identical CD player objects in our house. In object-oriented
jargon, we have two ‘instances’ of the CD player ‘class’. A class is rather like a produc-
tion line which can manufacture new CD players.

Let us distinguish between a class and instances of a class. The house has two
instances of the CD player class, which really exist: we can actually use them. A class is
a more abstract concept. Though the CD player production line possesses the design
(in some form or another) of a CD player, an actual instance does not exist until the

machine manufactures one. In Java, we use the word ‘new’ to instruct a class to manu-
facture a new instance. To summarize:

n objects are instances of a class;

n a class can produce as many instances as we require.

It is worth repeating that these concepts are the main ones of this book, and we cover
them later in much more detail. We do not expect you to be able to create Java programs
with objects and classes in this chapter.

• Using a text field

The first program we saw used a message dialog. The second program we will introduce
is rather longer, but it forms the basis for many of the programs in this book. It uses a
text field to display a single line of text – the string "Hello!" in this case. Figure 2.3
shows a screenshot, and Figure 2.4 shows the code with line numbers.

At this stage, we need to remind you again that the details of Java really begin in the
next chapter. For now, we are showing you some programs, and providing a general
explanation of what they do. We do not (yet) expect you to be able to look at a line of
code, and say precisely what it does.

As before, we provide line numbers to assist in our explanations, but the numbers
should not be typed in. The name following the public class words is Greeting, so
the program must be saved in a file named:

Greeting.java

Compile and run the program. To stop the program, click on the cross at the top right
of the window, or click on the Java icon at the top left, then select Close from the menu.

We will now look at some of the uses of instances, methods and parameters.
Recall our analogies. We mentioned the use of the ‘dot’ notation for objects and

their associated methods. Locate line 11:

frame.setSize(300, 200);

Using a text field 17

Figure 2.3 Screenshot of Greetings.java.

Here is another use of objects. Locate the following lines in the program:

textField = new JTextField("Hello!");

window.add(textField);

Firstly, a text field is being created, using the word new. At this stage, we can choose
the text that will appear in the text field, though this can also be overtyped by the user
when the program runs. Next, the window object has the text field added to it. When
the program runs, the text field is displayed, and is centred automatically.

18 Chapter 2 n First programs

This uses the same notation – object, dot, method, parameters.
Imagine the frame object as the outer edge of the screenshot of Figure 2.3. The

setSize method takes two parameters – the required width and height of the frame in
units known as pixels. Here, we have used an object-oriented approach to setting the
size of the frame.

1 import java.awt.*;

2 import java.awt.event.*;

3 import javax.swing.*;

4

5 public class Greeting extends JFrame {

6

7 private JTextField textField;

8

9 public static void main (String[] args) {

10 Greeting frame = new Greeting();

11 frame.setSize(300, 200);

12 frame.createGUI();

13 frame.setVisible(true);

14 }

15

16 private void createGUI() {

17 setDefaultCloseOperation(EXIT_ON_CLOSE);

18 Container window = getContentPane();

19 window.setLayout(new FlowLayout());

20 textField = new JTextField("Hello!");

21 window.add(textField);

22 }

23 }

Figure 2.4 The Greeting program.

>
>

SELF-TEST QUESTION

2.7 Modify the Greeting program so that the frame is half as wide.

Finally, a general point about our second program. Most of the instructions are con-
cerned with stating which libraries are needed, and setting up the visual appearance of
the screen, i.e. the ‘graphical user interface’ or GUI.

Imagine the GUI of your favourite word processor. Across the top of its window, you
will see a large number of menus and buttons. When you run the word processor, they
all appear instantly, so it might surprise you to learn that, behind the scenes, it starts with
a totally blank window, and laboriously adds each menu and button to the window, one
by one. Because of the speed of the computer, this process seems instantaneous.

When you write larger programs, the initial setup of the screen still has to be done,
but that part of the code becomes less dominant in proportion to the code concerned
with making the program carry out a task when a button or menu item is clicked on.

Programming pitfalls 19

SELF-TEST QUESTIONS

2.8 Modify the program to display the text:

Some text in a text field

2.9 Run the Greeting program and experiment with resizing the frame by dragging
it with the mouse. What happens to the position of the text field?

Programming principles

n A major feature of Java is the widespread use of classes.
n The ‘dot’ notation for using objects is:

object.method(parameters)

n Instructions are obeyed in sequence, from the top of the program to the bottom.

Programming pitfalls

n When you are editing a program, save it every 10 minutes or so to guard against
losing your work should the computer fail.

n Make sure that when you key in a program, you copy the characters exactly, with
capitals as shown.

n Make sure that the name of the file matches the name of the class in the file. For
example:

public class Hello extends JFrame {

Here, the name following class is Hello. The file must be saved in Hello.java.
The capital letter of the class is important.

n You will almost certainly make a mistake when you key in a program. The compiler
will tell you what the errors are. Try not to get too frustrated by the errors.

20 Chapter 2 n First programs

New language elements

A message dialog can display a text string along with an OK button, as in:

JOptionPane.showMessageDialog(null, "Hello World!");

Summary

n Java programs can be created and executed on most types of computer.

n An editor or IDE is used to create and modify your Java source code.

n A Java program must be compiled prior to running.

n Compilation errors must be corrected before a program can run.

n The compiler produces a file with the same name as the original Java file, but with
the extension class. This file contains bytecode instructions.

n The JVM (Java Virtual Machine) is used to run (execute) programs.

n Much of the power of Java comes from its libraries, which are linked in as the
program runs.

n Java is object oriented. It uses the concepts of classes, instances and methods.

n The ‘dot’ notation occurs throughout Java programs. Here is an example:

frame.setSize(300, 200);

n Methods (such as setSize) cause tasks to be performed on the specified object (such
as frame).

n Things can go wrong at any stage, and part of the programmer’s job is identifying
and correcting the errors. Don’t forget: it is rare for everything to work smoothly first
time. Be careful, be relaxed.

Grammar spot

Java programs contain a number of opening and closing brackets. There must be the
same number of closing brackets as opening brackets.

• Exercises

2.1 Ensure that you know how to compile and run Java programs on your computer. Compile

and run the two programs from this chapter.

2.2 In the Hello program, add a message dialog to display your name.

2.3 In the Greeting program, make the text field display your name.

Answers to self-test questions 21

Answers to self-test questions

2.1 (a) No difference. The terms mean the same thing.

(b) A folder contains a number of files and/or other folders.

(c) Yes. As long as the two identically named folders are not within the same folder. (For

example, the folders Work and Home might each contain a letters folder.)

2.2 (a) This depends on the editors available on your computer. If you use an IDE, the editor

is contained within it.

(b) This depends on your editor. Many editors have a Find...Replace facility, which

scans all of the text.

2.3 The error message will vary, depending on which semicolon you omitted.

2.4 (a) There is an incorrect ‘p’. It should be ‘P’ as in JOptionPane. There is a misspelling

of wirld.

(b) The ‘p’ error will prevent the program from compiling, hence it cannot run. The ‘wirld’

error will not prevent the program running, but the result will not be as you intended.

2.5 Insert the following line immediately below line 9, which displays "Goodbye":

JOptionPane.showMessageDialog(null, "Finishing now");

Compile and run the modified program.

2.6 kitchenCD.start();

kitchenCD.stop();

bedroomCD.start();

bedroomCD.stop();

bedroomCD.select(3);

2.7 Replace 300 by 150 in line 11, then recompile and run the program.

2.8 Replace "Hello!" in line 20 by:

"Some text in a text field"

Compile and run the program.

2.9 It remains centred near the top of the frame.

• Introduction

The term computer graphics conjures up a variety of possibilities. We could be discussing
a computer-generated Hollywood movie, a static photo, or a simpler image made up of
lines. In this chapter we restrict ourselves to still images built from simple shapes, and
focus on the use of library methods to create them. Our programs also introduce the
use of a button to allow user interaction.

• Events

Many programs are built in such a way to allow user interaction via a GUI. Such pro-
grams provide buttons, text fields, scrollbars, etc. In Java terms, the user manipulates
the mouse and keyboard, creating ‘events’ which the program responds to. Typical
events are:

CHAPTER

3
Using graphics methods

This chapter explains:

n the nature of events;

n how to draw shapes with graphics methods;

n the use of parameters;

n how to comment programs;

n how to use colours;

n the sequence concept.

22

>
n a mouse-click;

n a key press;

n using a slider to scroll through some values.

The Java system regards events as falling into several categories. For example, scrolling
through a page is regarded as a ‘change’ event, whereas clicking on a button is regarded
as an ‘action’ event.

When you write a Java program, you must ensure that the program will detect the
events – otherwise nothing will happen. The transmission of an event (such as a mouse-
click) to a program does not happen automatically. Instead, the program has to be set
up to ‘listen’ for types of event. Fortunately, the coding for this is standard, and you
will reuse it from program to program rather than creating it anew for every program.

Responding to an event is known as ‘handling’ the event.
Here is a program which provides a button. Figure 3.1 shows the screenshot.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class DrawExample extends JFrame

implements ActionListener {

private JButton button;

private JPanel panel;

Events 23

Figure 3.1 Screenshot of DrawExample program, after clicking on the button.

public static void main(String[] args) {

DrawExample frame = new DrawExample();

frame.setSize(400, 300);

frame.createGUI();

frame.setVisible(true);

}

private void createGUI() {

setDefaultCloseOperation(EXIT_ON_CLOSE);

Container window = getContentPane();

window.setLayout(new FlowLayout());

panel = new JPanel();

panel.setPreferredSize(new Dimension(300, 200));

panel.setBackground(Color.white);

window.add(panel);

button = new JButton("Press me");

window.add(button);

button.addActionListener(this);

}

public void actionPerformed(ActionEvent event) {

Graphics paper = panel.getGraphics();

paper.drawLine(0, 0, 100, 100);

}

}

The user clicks on the button, and a diagonal line is drawn. For the purpose of this
chapter, we are mainly interested in this instruction:

paper.drawLine(0, 0, 100, 100);

As you might expect, this instruction actually draws the line. The rest of the code sets
up the GUI, and we will discuss it only in general terms. Setting up the GUI involves:

n adding a button to the window, in a similar way that we added a text field in
Chapter 2;

n adding a ‘panel’ to be used for drawing;

n stating that the program will listen for mouse-clicks (categorized as action events).

The following point is very important: in later chapters, we cover the creation of user
interfaces. For now, treat the above GUI code as standard.

• The button-click event

The main event in this program is created when the user clicks on the "Press me"
button. A button-click causes the program to execute this section of program:

24 Chapter 3 n Using graphics methods

>

public void actionPerformed(ActionEvent event) {

Graphics paper = panel.getGraphics();

paper.drawLine(0, 0, 100, 100);

}

This section of program is a method, named actionPerformed. When the button is
clicked on, the Java system calls up (invokes) the method, and the instructions between
the opening { and the closing } are executed in sequence. This is where we place our
drawing instructions. We will now look at the details of drawing shapes.

• The graphics coordinate system

Java graphics are based on pixels. A pixel is a small dot on the screen which can be set
to a particular colour. Each pixel is identified by a pair of numbers (its coordinates),
starting from zero:

n the horizontal position, often referred to as x in mathematics (and in the Java
documentation) – this value increases from left to right;

n the vertical position, often referred to as y – this value increases downwards. Note
that this differs from the convention in mathematics.

We use this system when we request Java to draw shapes. Figure 3.2 shows the
approach. The top left of the drawing area is (0, 0), and we draw relative to this point.

Explanation of the program 25

Figure 3.2 The pixel coordinate system.

• Explanation of the program

The only section we are concerned with is the small part which does the drawing:

1 public void actionPerformed(ActionEvent event) {

2 Graphics paper = panel.getGraphics();

3 paper.drawLine(0, 0, 100, 100);

4 }

Line 1 introduces the section of program which is executed when the button is clicked
on. It is a method. Any instructions we place between the { of line 1 and the } of
line 4 are executed in sequence, down the page.

Line 2 provides a graphics area for drawing shapes – we have chosen to name it
paper. Recall Chapter 2, where we stated that Java is object oriented. Objects provide
facilities for us. We considered a CD player, which provides a range of facilities, such as:

kitchenCD.select(4);

In fact, our drawing area is not just a blank sheet of paper – it is more like a drawing
kit which comes with paper together with a set of tools, such as a ruler and protractor.

In line 3, the paper uses its drawLine method to draw a line on itself. The four
numbers in brackets specify the position of the line.

The drawLine method is one of the many methods provided by the Java system in
a library. Line 3 is a call (also known as an invocation) of the method, asking it to carry
out the task of displaying a line.

When we make use of the drawLine method, we supply it with some values for the
start and finish points of the line, and we need to get these in the correct order, which is:

1. the horizontal value (x) of the start of the line;

2. the vertical value (y) of the start of the line;

3. the horizontal value of the end of the line;

4. the vertical value of the end of the line.

The items are known as parameters in Java – they are inputs to the drawLine method.
Parameters must be enclosed in brackets and separated by commas. (You may
encounter the term argument, which is an alternative name for a parameter.) This par-
ticular method requires four parameters, and they must be integers (whole numbers).
If we attempt to use the wrong number of parameters, or the wrong type, we get an
error message from the compiler. We need to ensure that:

n we supply the correct number of parameters;

n we supply the correct type of parameters;

n we arrange them in the right order.

Some methods do not require any parameters. In this case, we must still use the
brackets, as in:

frame.createGUI();

There are two kinds of method at work in our example:

n Those that the programmer writes, such as actionPerformed. This is called up by
the Java system when the button is clicked on.

n Those that are pre-written in the libraries, such as drawLine. Our program calls
them.

A final point – note the semicolon ‘;’ at the end of the drawLine parameters. In Java,
a semicolon must appear at the end of every ‘statement’. But what is a statement? The
answer is not trivial! As you can see from the above program, a semicolon does not
occur at the end of every line. Rather than provide intricate formal rules here, our advice

26 Chapter 3 n Using graphics methods

is to base your initial programs on our examples. However, the use of a method
followed by its parameters is in fact a statement, so a semicolon is required.

• Methods for drawing

As well as lines, the Java library provides us with facilities for drawing:

n rectangles;

n ovals (hence circles).

Here we list the parameters for each method, and provide an example program which
uses them.

drawLine

n the horizontal value of the start of the line;

n the vertical value of the start of the line;

n the horizontal value of the end of the line;

n the vertical value of the end of the line.

drawRect

n the horizontal value of the top left corner;

n the vertical value of the top left corner;

n the width of the rectangle;

n the height of the rectangle.

drawOval

Imagine the oval squeezed inside a rectangle. We provide:

n the horizontal value of the top left corner of the rectangle;

n the vertical value of the top left corner of the rectangle;

n the width of the rectangle;

n the height of the rectangle.

The following shapes can also be drawn, but require additional Java knowledge. We will
omit their parameter details, and won’t use them in our programs.

n arcs (sectors of a circle);

n raised (three-dimensional) rectangles;

n rectangles with rounded corners;

n polygons.

Methods for drawing 27

Additionally, we can draw solid shapes with fillRect and fillOval. Their param-
eters are identical to those of the draw equivalents.

• Drawing with colours

It is possible to set the colour to be used for drawing. There are 13 standard colours:

black blue cyan darkGray

gray green lightGray magenta

orange pink red white

yellow

(cyan is a deep green/blue, and magenta is a deep red/blue).
Take care with the spellings – note the use of capitals in the middle of the names.

Here is how you might use the colours:

paper.setColor(Color.red);

paper.drawLine(0, 0, 100, 50);

paper.setColor(Color.green);

paper.drawOval(100, 100, 50, 50);

The above code draws a red line, then a green unfilled oval. If you don’t set a colour,
Java chooses black.

• Creating a new program

In the above DrawExample program, we concentrated on its actionPerformed
method, which contained a call of the drawLine method. Our focus was to learn about
calling and passing parameters to the drawing methods. But what about the other lines
of code? They are concerned with such tasks as:

n creating the outer frame (window) for the program;

n setting the size of the frame;

n adding the drawing area and button to the user interface.

These tasks are accomplished by calling methods. We explain the details in later chapters.
In fact, for every program in this chapter, the setting up of the user interface is iden-

tical. All the programs use a drawing area and a single button to initiate the drawing.
However, we cannot use the identical code for each program, because the file name that
we choose must match the name of the public class within the program. Look at
the DrawExample program. It is stored in a file named DrawExample.java, and it
contains the line:

public class DrawExample extends JFrame

The class name must start with a capital letter, and the name can only contain letters
and digits. It cannot contain punctuation such as commas, full stops and hyphens, and
cannot contain spaces. Choosing the class name fixes the file name we must use to
contain the program.

28 Chapter 3 n Using graphics methods

There is an additional line:

DrawExample frame = new DrawExample();

This is contained within the main method of the program. When we run a Java
program, the very first thing that happens is an automatic call of the main method.
The first task of main is to create a new instance (an object) of the appropriate class
(DrawExample here). In Chapter 6 we will examine the use of new to create new
instances. For now, note that the DrawExample program contains three occurrences of
the DrawExample name:

n one after the words public class;

n two in the main method.

When we create a new program, these three occurrences must be changed.
Here is an example. We will create a new program, named DrawCircle. The steps are:

1. Open the existing DrawExample.java file in any editor, select all the text, and
copy it to the clipboard.

2. Open the software that you use to create and run Java programs (an IDE such as
Eclipse, or a text editor).

3. If you are using an IDE, you will need to create a new project at this stage. The
name of the project could be DrawCircleProject. (The name need not be
related to DrawCircle, but it makes project identification easier.)

4. Create a new blank Java file, named DrawCircle.java. If you use an IDE, you
may need to delete some code that the IDE creates for you.

5. Paste in the copied code, and change the three occurrences of DrawExample into
DrawCircle.

You can now focus on the main topic of this chapter, and place appropriate calls of the
drawing methods within the actionPerformed method.

The sequence concept 29

SELF-TEST QUESTION

3.1 Create a new program named DrawCircle. When the single button is clicked on,
it should draw a circle 100 pixels in diameter.

• The sequence concept

When we have a number of statements in a program, they are performed from top to
bottom, in sequence (unless we specify otherwise using the later concepts of selection
and repetition). Here is a program which draws a variety of shapes. Figure 3.3 shows
the resulting output. In the following listing we have omitted the code which creates
the user interface, as this part is exactly the same as the previous program.

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class SomeShapes extends JFrame

implements ActionListener {

// GUI code omitted here...

public void actionPerformed(ActionEvent event) {

Graphics paper = panel.getGraphics();

paper.drawRect(30, 30, 80, 40);

paper.drawOval(130, 30, 50, 50);

paper.drawOval(230, 30, 30, 50);

paper.setColor(Color.lightGray);

paper.fillRect(30, 100, 80, 40);

paper.fillOval(130, 100, 50, 50);

paper.fillOval(230, 100, 30, 50);

}

}

The statements are obeyed (executed, performed, . . .) from top to bottom, down the
page – though this is impossible to observe because of the speed of the computer.
In future chapters, you will see that we can repeat a sequence of instructions over and
over again.

30 Chapter 3 n Using graphics methods
>

>

Figure 3.3 Screenshot of the SomeShapes program.

