KA.STROUD

 FOUNDITIO Mililillin m
WTTH DEXTER J. BOOTH

N0.1 BEST-SELLING AUTHORS

FOUNDATION

K. A. Stroud
 Formerly Principal Lecturer Department of Mathematics Coventry University
 with

Dexter J. Booth
Formerly Principal Lecturer
School of Computing and Engineering
University of Huddersfield
(C) K.A. Stroud and Dexter J. Booth 2009

All rights reserved. No reproduction, copy or transmission of this publication may be made without written permission.

No portion of this publication may be reproduced, copied or transmitted save with written permission or in accordance with the provisions of the Copyright, Designs and Patents Act 1988, or under the terms of any licence permitting limited copying issued by the Copyright Licensing Agency, Saffron House, 6-10 Kirby Street, London EC1N 8TS.

Any person who does any unauthorized act in relation to this publication may be liable to criminal prosecution and civil claims for damages.

The authors have asserted their rights to be identified as the authors of this work in accordance with the Copyright, Designs and Patents Act 1988.

First published 2009 by PALGRAVE MACMILLAN

Palgrave Macmillan in the UK is an imprint of Macmillan Publishers Limited, registered in England, company number 785998, of Houndmills, Basingstoke, Hampshire RG21 6XS.

Palgrave Macmillan in the US is a division of St Martin's Press LLC, 175 Fifth Avenue, New York, NY 10010.

Palgrave Macmillan is the global academic imprint of the above companies and has companies and representatives throughout the world.

Palgrave ${ }^{\circledR}$ and Macmillan ${ }^{\circledR}$ are registered trademarks in the United States, the United Kingdom, Europe and other countries.

```
ISBN-13 978-0-230-57907-1 paperback
ISBN-10 0-230-57907-8 paperback
```

This book is printed on paper suitable for recycling and made from fully managed and sustained forest sources. Logging, pulping and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

A catalogue record for this book is available from the British Library.
A catalog record for this book is available from the Library of Congress.

10	9	8	7	6	5	4	3	2	1
18	17	16	15	14	13	12	11	10	09

Printed and bound in Great Britain by CPI Antony Rowe, Chippenham and Eastbourne

Summary of contents

Module 1 Arithmetic 1
Unit 1 Types of numbers 2
Unit 2 Factors and prime numbers 12
Unit 3 Fractions, ratios and percentages 17
Unit 4 Decimal numbers 27
Unit 5 Powers 35
Unit 6 Number systems 50
Module 2 Introduction to algebra 72
Unit 7 Algebraic expressions 73
Unit 8 Powers 81
Unit 9 Algebraic multiplication and division 92
Unit 10 Factorization of algebraic expressions 101
Module 3 Expressions and equations 116
Unit 11 Expressions and equations 117
Unit 12 Evaluating expressions 128
Module 4 Graphs 145
Unit 13 Graphs of equations 146
Unit 14 Using a spreadsheet 156
Unit 15 Inequalities 169
Unit 16 Absolute values 171
Module 5 Linear equations and simultaneous linear equations 184
Unit 17 Linear equations 185
Module 6 Polynomial equations 203
Unit 18 Polynomial equations 204
Module 7 Partial fractions 223
Unit 19 Partial fractions 224
Unit 20 Denominators with repeated and quadratic factors 233
Module 8 Trigonometry 245
Unit 21 Angles and trigonometric ratios 246
Unit 22 Trigonometric identities 262
Module 9 Functions 273
Unit 23 Processing numbers 274
Unit 24 Composition - 'function of a function' 288
Unit 25 Trigonometric functions 294
Unit 26 Inverse trigonometric functions 305
Unit 27 Exponential and logarithmic functions 313
Unit 28 Odd and even functions 321
Unit 29 Limits 325
Module 10 Matrices 333
Unit 30 Matrices 334
Unit 31 Inverse matrices 344
Unit 32 Solving simultaneous linear equations 352
Module 11 Vectors 376
Unit 33 Scalar and vector quantities 377
Unit 34 Vectors in space 390
Unit 35 Products of vectors 396
Module 12 Binomial series 407
Unit 36 Factorials and combinations 408
Unit 37 Binomial series 417
Unit 38 The \sum (sigma) notation 425
Module 13 Sets 436
Unit 39 Sets and subsets 437
Unit 40 Set operations 445
Unit 41 Set properties 453
Module 14 Probability 473
Unit 42 Empirical probability 474
Unit 43 Classical probability 482
Unit 44 Addition law of probability 485
Unit 45 Multiplication law and conditional probability 489
Module 15 Statistics 498
Unit 46 Data 499
Unit 47 Measures of central tendency 514
Unit 48 Dispersion 527
Unit 49 The normal distribution 533
Module 16 Regression and correlation 550
Unit 50 Regression 551
Unit 51 Correlation 561
Module 17 Introduction to differentiation 577
Unit 52 Gradients 578
Unit 53 Further differentiation 593
Module 18 Partial differentiation 620
Unit 54 Partial differentiation 621
Unit 55 Further partial differentiation 628
Unit 56 Calculating errors 636
Module 19 Integration 647
Unit 57 Integration 648
Unit 58 Integration of polynomial expressions 652
Unit 59 Integration by partial fractions 658
Unit 60 Integration by parts 663
Unit 61 Areas under curves 669
Unit 62 Integration as a summation 684

Contents

Preface XX
How to use this book xxi
Useful background information xxii
Module 1 Arithmetic 1
Learning outcomes 1
Unit 1 Types of numbers 2
The natural numbers 2
Numerals and place value 2
Points on a line and order 2
The integers 2
Brackets 3
Addition and subtraction 3
Multiplication and division 4
Brackets and precedence rules 5
Basic laws of arithmetic 7
Estimating 8
Rounding 8
Unit 1 Review summary 10
Unit 1 Review exercise 10
Unit 1 Review test 12
Unit 2 Factors and prime numbers 12
Factors 12
Prime numbers 13
Prime factorization 13
Highest common factor (HCF) 14
Lowest common multiple (LCM) 14
Unit 2 Review summary 15
Unit 2 Review exercise 15
Unit 2 Review test 16
Unit 3 Fractions, ratios and percentages 17
Division of integers 17
Multiplying fractions 17
Of 18
Equivalent fractions 18
Dividing fractions 20
Adding and subtracting fractions 21
Fractions on a calculator 22
Ratios 23
Percentages 23
Unit 3 Review summary 25
Unit 3 Review exercise 25
Unit 3 Review test 27
Unit 4 Decimal numbers 27
Division of integers 27
Rounding 28
Significant figures 28
Decimal places 29
Trailing zeros 29
Fractions as decimals 30
Decimals as fractions 30
Unending decimals 30
Unending decimals as fractions 31
Rational, irrational and real numbers 32
Unit 4 Review summary 33
Unit 4 Review exercise 33
Unit 4 Review test 34
Unit 5 Powers 35
Raising a number to a power 35
The laws of powers 35
Powers on a calculator 39
Fractional powers and roots 40
Surds 40
Multiplication and division by integer powers of 10 41
Precedence rules 42
Standard form 42
Working in standard form 43
Using a calculator 44
Preferred standard form 45
Checking calculations 46
Accuracy 47
Unit 5 Review summary 48
Unit 5 Review exercise 48
Unit 5 Review test 50
Unit 6 Number systems 50
Denary (or decimal) system 50
Binary system 51
Octal system (base 8) 51
Duodecimal system (base 12) 52
Hexadecimal system (base 16) 53
An alternative method 54
Change of base from denary to a new base 57
A denary number in binary form 57
A denary number in octal form 57
A denary number in hexadecimal form 58
A denary decimal to octal form 59
Use of octals as an intermediate step 61
Reverse method 62
Unit 6 Review summary 63
Unit 6 Review exercise 64
Unit 6 Review test 65
Can You? 66
Test exercise 1 67
Further problems 1 68
Module 2 Introduction to algebra 72
Learning outcomes 72
Unit 7 Algebraic expressions 73
Symbols other than numerals 73
Constants 74
Variables 74
Rules of algebra 75
Rules of precedence 76
Terms and coefficients 76
Collecting like terms 76
Similar terms 77
Expanding brackets 78
Nested brackets 78
Unit 7 Review summary 79
Unit 7 Review exercise 79
Unit 7 Review test 81
Unit 8 Powers 81
Powers 81
Rules of indices 82
Logarithms 83
Powers 83
Logarithms 84
Rules of logarithms 85
Base 10 and base e 86
Change of base 87
Logarithmic equations 88
Unit 8 Review summary 90
Unit 8 Review exercise 91
Unit 8 Review test 92
Unit 9 Algebraic multiplication and division 92
Multiplication of algebraic expressions of a single variable 92
Fractions 94
Algebraic fractions 94
Addition and subtraction 94
Multiplication and division 95
Division of one expression by another 97
Unit 9 Review summary 98
Unit 9 Review exercise 99
Unit 9 Review test 100
Unit 10 Factorization of algebraic expressions 101
Common factors 101
Common factors by grouping 101
Useful products of two simple factors 102
Quadratic expressions as the product of two simple factors 104
Factorization of a quadratic expression $a x^{2}+b x+c$ when $a=1$ 104
Factorization of a quadratic expression $a x^{2}+b x+c$ when $a \neq 1$ 106
Test for simple factors 108
Unit 10 Review summary 110
Unit 10 Review exercise 110
Unit 10 Review test 111
Can You? 112
Test exercise 2 112
Further problems 2 114
Module 3 Expressions and equations 116
Learning outcomes 116
Unit 11 Expressions and equations 117
Evaluating expressions 117
Equations 118
Evaluating independent variables 120
Transposition of formulas 122
Unit 11 Review summary 126
Unit 11 Review exercise 127
Unit 11 Review test 128
Unit 12 Evaluating expressions 128
Systems 128
Polynomial equations 129
Polynomial expressions 129
Evaluation of polynomials 130
Evaluation of a polynomial by nesting 130
Remainder thorem 132
Factor theorem 133
Factorization of fourth-order polynomials 136
Unit 12 Review summary 140
Unit 12 Review exercise 141
Unit 12 Review test 141
Can You? 142
Test exercise 3 143
Further problems 3 143
Module 4 Graphs 145
Learning outcomes 145
Unit 13 Graphs of equations 146
Ordered pairs of numbers 146
Cartesian axes 146
Drawing a graph 147
Unit 13 Review summary 153
Unit 13 Review exercise 154
Unit 13 Review test 155
Unit 14 Using a spreadsheet 156
Spreadsheets 156
Rows and columns 156
Text and number entry 157
Formulas 158
Clearing entries 158
Construction of a Cartesian graph 159
Unit 14 Review summary 166
Unit 14 Review exercise 167
Unit 14 Review test 168
Unit 15 Inequalities 169
Less than or greater than 169
Unit 15 Review summary 170
Unit 15 Review exercise 170
Unit 15 Review test 171
Unit 16 Absolute values 171
Modulus 171
Graphs 172
Inequalities 173
Interaction 178
Unit 16 Review summary 179
Unit 16 Review exercise 180
Unit 16 Review test 181
Can You? 181
Test exercise 4 182
Further problems 4 182
Module 5 Linear equations and simultaneous linear equations 184
Learning outcomes 184
Unit 17 Linear equations 185
Solution of simple equations 185
Simultaneous linear equations with two unknowns 188
Solution by substitution 188
Solution by equating coefficients 189
Simultaneous linear equations with three unknowns 191
Pre-simplification 193
Unit 17 Review summary 196
Unit 17 Review exercise 197
Unit 17 Review test 199
Can You? 199
Test exercise 5 200
Further problems 5 200
Module 6 Polynomial equations 203
Learning outcomes 203
Unit 18 Polynomial equations 204
Quadratic equations, $a x^{2}+b x+c=0$ 204
Solution by factors 204
Solution by completing the square 207
Solution by formula 209
Solution of cubic equations having at least one linear factor 210
Solution of fourth-order equations having at least two linear factors 214
Unit 18 Review summary 218
Unit 18 Review exercise 219
Unit 18 Review test 220
Can You? 221
Test exercise 6 221
Further problems 6 222
Module 7 Partial fractions 223
Learning outcomes 223
Unit 19 Partial fractions 224
Unit 19 Review summary 231
Unit 19 Review exercise 231
Unit 19 Review test 233
Unit 20 Denominators with repeated and quadratic factors 233
Unit 20 Review summary 241
Unit 20 Review exercise 241
Unit 20 Review test 242
Can You? 242
Test exercise 7 243
Further problems 7 243
Module 8 Trigonometry 245
Learning outcomes 245
Unit 21 Angles and trigonometric ratios 246
Rotation 246
Radians 247
Triangles 249
Trigonometric ratios 251
Reciprocal ratios 253
Pythagoras' theorem 255
Special triangles 256
Half equilateral triangles 258
Unit 21 Review summary 260
Unit 21 Review exercise 261
Unit 21 Review test 262
Unit 22 Trigonemetric identities 262
The fundamental identity 262
Two more identities 263
Identities for compound angles 265
Trigonometric formulas 267
Sums and differences of angles 267
Double angles 267
Sums and differences of ratios 268
Products of ratios 268
Unit 22 Review summary 268
Unit 22 Review exercise 268
Unit 22 Review test 270
Can You? 270
Test exercise 8 271
Further problems 8 271
Module 9 Functions 273
Learning outcomes 273
Unit 23 Processing numbers 274
Functions are rules but not all rules are functions 275
Combining functions 278
Inverses of functions 279
Graphs of inverses 281
The graph of $y=x^{3}$ 281
The graph of $y=x^{1 / 3}$ 282
The graphs of $y=x^{3}$ and $y=x^{1 / 3}$ plotted together 283
Unit 23 Review summary 286
Unit 23 Review exercise 286
Unit 23 Review test 288
Unit 24 Composition - 'function of a function' 288
Inverses of compositions 292
Unit 24 Review summary 293
Unit 24 Review exercise 293
Unit 24 Review test 294
Unit 25 Trigonometric functions 294
Rotation 294
The tangent 297
Period 298
Amplitude 300
Phase difference 302
Unit 25 Review summary 303
Unit 25 Review exercise 304
Unit 25 Review test 305
Unit 26 Inverse trigonometric functions 305
Trigonometric equations 307
Using inverse functions 309
Unit 26 Review summary 311
Unit 26 Review exercise 311
Unit 26 Review test 312
Unit 27 Exponential and logarithmic functions 313
Exponential functions 313
Logarithmic functions 314
Indicial equations 316
Unit 27 Review summary 319
Unit 27 Review exercise 319
Unit 27 Review test 320
Unit 28 Odd and even functions 321
Odd and even parts 321
Odd and even parts of the exponential function 323
Unit 28 Review summary 324
Unit 28 Review exercise 324
Unit 28 Review test 324
Unit 29 Limits 325
Limits of functions 325
The rules of limits 326
Unit 29 Review summary 327
Unit 29 Review exercise 327
Unit 29 Review test 328
Can You? 329
Test exercise 9 330
Further problems 9 331
Module 10 Matrices 333
Learning outcomes 333
Unit 30 Matrices 334
Matrix operations 334
Matrix addition 337
Matrix subtraction 337
Multiplication by a scalar 338
Multiplication of matrices 339
Unit 30 Review summary 342
Unit 30 Review exercise 342
Unit 30 Review test 343
Unit 31 Inverse matrices 344
Unit matrices 344
The determinant of a matrix 345
The inverse of a matrix 346
The inverse of a 2×2 matrix 347
Unit 31 Review summary 349
Unit 31 Review exercise 350
Unit 31 Review test 351
Unit 32 Solving simultaneous linear equations 352
Matrix solution to simultaneous linear equations 352
Determinants and Cramer's rule 357
Cramer's rule 357
Higher order determinants 362
Unit 32 Review summary 370
Unit 32 Review exercise 371
Unit 32 Review test 373
Can You? 373
Test exercise 10 374
Further problems 10 374
Module 11 Vectors 376
Learning outcomes 376
Unit 33 Scalar and vector quantities 377
Vector representation 378
Two equal vectors 378
Types of vectors 379
Addition of vectors 379
The sum of a number of vectors $\mathbf{a}+\mathbf{b}+\mathbf{c}+\mathbf{d}+\ldots$ 380
Components of a given vector 382
Components of a vector in terms of unit vectors 386
Unit 33 Review summary 388
Unit 33 Review exercise 389
Unit 33 Review test 389
Unit 34 Vectors in space 390
Direction cosines 391
Angle between two vectors 392
Unit 34 Review summary 394
Unit 34 Review exercise 395
Unit 34 Review test 396
Unit 35 Products of vectors 396
Scalar product of two vectors 396
Vector product of two vectors 398
Unit 35 Review summary 402
Unit 35 Review exercise 402
Unit 35 Review test 403
Can You? 404
Test exercise 11 405
Further problems 11 405
Module 12 Binomial series 407
Learning outcomes 407
Unit 36 Factorials and combinations 408
Factorials 408
Combinations 411
Some properties of combinatorial coefficients 415
Unit 36 Review summary 416
Unit 36 Review exercise 416
Unit 36 Review test 417
Unit 37 Binomial series 417
Pascal's triangle 417
Binomial expansions 419
The general term of the binomial expansion 422
Unit 37 Review summary 424
Unit 37 Review exercise 424
Unit 37 Review test 425
Unit 38 The \sum (sigma) notation 425
General terms 426
The sum of the first n natural numbers 430
Rules for manipulating sums 431
Unit 38 Review summary 432
Unit 38 Review exercise 433
Unit 38 Review test 433
Can You? 434
Test exercise 12 435
Further problems 12 435
Module 13 Sets 436
Learning outcomes 436
Unit 39 Sets and subsets 437
Definitions 437
Further set notation 438
Subsets 439
The empty set 441
The universal set 442
Unit 39 Review summary 443
Unit 39 Review exercise 443
Unit 39 Review test 444
Unit 40 Set operations 445
Venn diagrams 445
Intersection 446
Union 447
Complement 449
Unit 40 Review summary 450
Unit 40 Review exercise 450
Unit 40 Review test 452
Unit 41 Set properties 453
Union, intersection and complement 453
Distributivity rules 456
The number of elements in a set 458
Three sets 461
Unit 41 Review summary 466
Unit 41 Review exercise 466
Unit 41 Review test 469
Can You? 469
Test exercise 13 470
Further problems 13 471
Module 14 Probability 473
Learning outcomes 473
Unit 42 Empirical probability 474
Introduction 474
Notation 474
Sampling 474
Types of probability 474
Empirical probability 475
Expectation 475
Success or failure 476
Sample size 476
Multiple samples 477
Experiment 477
Unit 42 Review summary 480
Unit 42 Review exercise 481
Unit 42 Review test 481
Unit 43 Classical probability 482
Definition 482
Certain and impossible events 483
Mutually exclusive and mutually non-exclusive events 483
Unit 43 Review summary 484
Unit 43 Review exercise 484
Unit 43 Review test 485
Unit 44 Addition law of probability 485
Unit 44 Review summary 487
Unit 44 Review exercise 488
Unit 44 Review test 488
Unit 45 Multiplication law and conditional probability 489
Independent events and dependent events 489
Multiplication law of probabilities 489
Conditional probability 490
Unit 45 Review summary 494
Unit 45 Review exercise 494
Unit 45 Review test 495
Can You? 495
Test exercise 14 496
Further problems 14 496
Module 15 Statistics 498
Learning outcomes 498
Unit 46 Data 499
Introduction 499
Arrangement of data 499
Tally diagram 500
Grouped data 501
Grouping with continuous data 502
Relative frequency 503
Rounding off data 504
Class boundaries 505
Histograms 508
Frequency histogram 508
Relative frequency histogram 510
Unit 46 Review summary 511
Unit 46 Review exercise 512
Unit 46 Review test 514
Unit 47 Measures of central tendency 514
Mean 514
Coding for calculating the mean 516
Decoding 517
Coding with a grouped frequency distribution 518
Mode 519
Mode of a grouped frequency distribution 519
Median 521
Median with grouped data 521
Unit 47 Review summary 523
Unit 47 Review exercise 523
Unit 47 Review test 526
Unit 48 Dispersion 527
Range 527
Standard deviation 527
Unit 48 Review summary 530
Unit 48 Review exercise 531
Unit 48 Review test 532
Unit 49 The normal distribution 533
Frequency polygons 533
Frequency curves 533
Normal distribution curve 533
Standard normal curve 536
Unit 49 Review summary 542
Unit 49 Review exercise 542
Unit 49 Review test 543
Can You? 544
Test exercise 15 544
Further problems 15 546
Module 16 Regression and correlation 550
Learning outcomes 550
Unit 50 Regression 551
Explicit linear variation of two variables 551
Implicit linear variation of two variables 552
Regression - method of least squares 553
Unit 50 Review summary 558
Unit 50 Review exercise 559
Unit 50 Review test 560
Unit 51 Correlation 561
Correlation 561
Measures of correlation 561
The Pearson product-moment correlation coefficient 562
Spearman's rank correlation coefficient 566
Unit 51 Review summary 569
Unit 51 Review exercise 569
Unit 51 Review test 572
Can You? 573
Test exercise 16 573
Further problems 16 574
Module 17 Introduction to differentiation 577
Learning outcomes 577
Unit 52 Gradients 578
The gradient of a straight-line graph 578
The gradient of a curve at a given point 581
Algebraic determination of the gradient of a curve 583
Derivative of powers of x 585
Two straight lines 585
Two curves 586
Differentiation of polynomials 588
Derivatives - an alternative notation 590
Unit 52 Review summary 590
Unit 52 Review exercise 591
Unit 52 Review test 592
Unit 53 Further differentiation 593
Second derivatives 593
Limiting value of $\frac{\sin \theta}{\theta}$ as $\theta \rightarrow 0$ 594
Standard derivatives 594
Differentiation of products of functions 597
Differentiation of a quotient of two functions 598
Function of a function 602
Differentiation of a function of a function 602
Newton-Raphson iterative method 606
Tabular display of results 608
Unit 53 Review summary 613
Unit 53 Review exercise 614
Unit 53 Review test 616
Can You? 617
Test exercise 17 618
Further problems 17 618
Module 18 Partial differentiation 620
Learning outcomes 620
Unit 54 Partial differentiation 621
Partial derivatives 621
Unit 54 Review summary 626
Unit 54 Review exercise 626
Unit 54 Review test 627
Unit 55 Further partial differentiation 628
Second derivatives 628
Unit 55 Review summary 633
Unit 55 Review exercise 633
Unit 55 Review test 635
Unit 56 Calculating errors 636
Small increments 636
Unit 56 Review summary 642
Unit 56 Review exercise 642
Unit 56 Review test 643
Can You? 644
Test exercise 18 644
Further problems 18 645
Module 19 Integration 647
Learning outcomes 647
Unit 57 Integration 648
Constant of integration 648
Standard integrals 649
Unit 57 Review summary 650
Unit 57 Review exercise 650
Unit 57 Review test 652
Unit 58 Integration of polynomial expressions 652
Function of a linear function of x 654
Unit 58 Review summary 655
Unit 58 Review exercise 655
Unit 58 Review test 657
Unit 59 Integration by partial fractions 658
Unit 59 Review summary 661
Unit 59 Review exercise 661
Unit 59 Review test 662
Unit 60 Integration by parts 663
Unit 60 Review summary 668
Unit 60 Review exercise 669
Unit 60 Review test 669
Unit 61 Areas under curves 669
Simpson's rule 673
Unit 61 Review summary 682
Unit 61 Review exercise 683
Unit 61 Review test 684
Unit 62 Integration as a summation 684
The area between a curve and an intersecting line 689
Unit 62 Review summary 691
Unit 62 Review exercise 692
Unit 62 Review test 695
Can You? 696
Test exercise 19 697
Further problems 19 698
Answers 701
Index 725

Preface

It is now nearly 40 years since Ken Stroud first developed his approach to personalized learning with his classic text Engineering Mathematics, now in its sixth edition and having sold over half a million copies. That unique and hugely successful programmed learning style is exemplified in this text and I am delighted to have been asked to contribute to it. I have endeavoured to retain the very essence of his style, particularly the time-tested Stroud format with its close attention to technique development throughout. This style has, over the years, contributed significantly to the mathematical abilities of so many students all over the world.

Student readership

Over recent years there have been many developments in a wide range of university disciplines. This has led to an increase in the number of courses that require knowledge of mathematics to enable students to participate in their studies with confidence. Also, by widening access to these courses, many students arrive at university with a need to refresh and amplify the mathematical knowledge that they have previously acquired. This book was written with just those students in mind, starting as it does from the very beginnings of the subject. Indeed, the content of the book ranges from the earliest elements of arithmetic to differential and integral calculus. The material is presented in a manner that will be appreciated by those students requiring to review and extend their current mathematical abilities from a level of low confidence to one of confident proficiency.

Acknowledgements

This is a further opportunity that I have had to work on the Stroud books. It is as ever a challenge and an honour to be able to work with Ken Stroud's material. Ken had an understanding of his students and their learning and thinking processes which was second to none, and this is reflected in every page of this book. As always, my thanks go to the Stroud family for their continuing support for and encouragement of new projects and ideas which are allowing Ken's hugely successful teaching methodology to be offered to a whole new range of students. Finally, I should like to thank the entire production team at Palgrave Macmillan for all their care, and principally my editor Helen Bugler whose dedication and professionalism are an inspiration to all who work with her.

How to use this book

This book contains nineteen Modules, each module consisting of a number of Units. In total there are 62 Units and each one has been written in a way that makes learning more effective and more interesting. It is like having a personal tutor because you proceed at your own rate of learning and any difficulties you may have are cleared before you have the chance to practise incorrect ideas or techniques.

You will find that each Unit is divided into numbered sections called Frames. When you start a Unit, begin at Frame 1. Read each frame carefully and carry out any instructions or exercise you are asked to do. In almost every frame, you are required to make a response of some kind, so have your pen and paper at the ready to test your understanding of the information in the frame. You can immediately compare your answer and how you arrived at it with the correct answer and the working given in the frame that follows. To obtain the greatest benefit, you are strongly advised to cover up the following frame until you have made your response. When a series of dots occurs, you are expected to supply the missing word, phrase, number or mathematical expression. At every stage you will be guided along the right path. There is no need to hurry: read the frames carefully and follow the directions exactly. In this way you must learn.

Each Module opens with a list of Learning outcomes that specify exactly what you will learn by studying the contents of the Module. The material is then presented in a number of short Units, each designed to be studied in a single sitting. At the end of each Unit there is a Review summary of the topics in the Unit. Next follows a Review exercise of questions that directly test your understanding of the Unit material and which comes complete with worked solutions. Finally, a Review test enables you to consolidate your learning of the Unit material. You are strongly recommended to study the material in each Unit in a single sitting so as to ensure that you cover a complete set of ideas without a break.

Each Module ends with a checklist of Can You? questions that matches the Learning outcomes at the beginning of the Module, and enables you to rate your success in having achieved them. If you feel sufficiently confident then tackle the short Test exercise that follows. Just like the Review tests, the Test exercise is set directly on what you have learned in the Module: the questions are straightforward and contain no tricks. To provide you with the necessary practice, a set of Further problems is also included: do as many of the these problems as you can. Remember that in mathematics, as in many other situations, practice makes perfect - or nearly so.

Useful background information

Symbols used in the text

$=\quad$ is equal to
$\approx \quad$ is approximately equal to
$>\quad$ is greater than
$\geq \quad$ is greater than or equal to $n!\quad$ factorial $n=1 \times 2 \times 3 \times \ldots \times n$
$|k| \quad$ modulus of k, i.e. size of k irrespective of sign
\sum summation

\rightarrow	tends to
\neq	is not equal to
\equiv	is identical to
$<$	is less than
\leq	is less than or equal to
∞	infinity
$\operatorname{Lim}_{n \rightarrow \infty}$	limiting value as $n \rightarrow \infty$

Useful mathematical information

1 Algebraic identities

$$
\begin{array}{ll}
(a+b)^{2}=a^{2}+2 a b+b^{2} & (a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3} \\
(a-b)^{2}=a^{2}-2 a b+b^{2} & (a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3} \\
(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4} \\
(a-b)^{4}=a^{4}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4} \\
a^{2}-b^{2}=(a-b)(a+b) & a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \\
& a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
\end{array}
$$

2 Trigonometrical identities

(a) $\sin ^{2} \theta+\cos ^{2} \theta=1 ; \sec ^{2} \theta=1+\tan ^{2} \theta ; \operatorname{cosec}^{2} \theta=1+\cot ^{2} \theta$
(b) $\sin (A+B)=\sin A \cos B+\cos A \sin B$
$\sin (A-B)=\sin A \cos B-\cos A \sin B$
$\cos (A+B)=\cos A \cos B-\sin A \sin B$
$\cos (A-B)=\cos A \cos B+\sin A \sin B$
$\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$
$\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$
(c) Let $A=B=\theta \therefore \sin 2 \theta=2 \sin \theta \cos \theta$

$$
\begin{aligned}
& \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=1-2 \sin ^{2} \theta=2 \cos ^{2} \theta-1 \\
& \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}
\end{aligned}
$$

(d) Let $\theta=\frac{\phi}{2} \quad \therefore \sin \phi=2 \sin \frac{\phi}{2} \cos \frac{\phi}{2}$

$$
\begin{aligned}
& \cos \phi=\cos ^{2} \frac{\phi}{2}-\sin ^{2} \frac{\phi}{2}=1-2 \sin ^{2} \frac{\phi}{2}=2 \cos ^{2} \frac{\phi}{2}-1 \\
& \tan \phi=\frac{2 \tan \frac{\phi}{2}}{1-2 \tan ^{2} \frac{\phi}{2}}
\end{aligned}
$$

(e) $\sin C+\sin D=2 \sin \frac{C+D}{2} \cos \frac{C-D}{2}$
$\sin C-\sin D=2 \cos \frac{C+D}{2} \sin \frac{C-D}{2}$
$\cos C+\cos D=2 \cos \frac{C+D}{2} \cos \frac{C-D}{2}$
$\cos D-\cos C=2 \sin \frac{C+D}{2} \sin \frac{C-D}{2}$
(f) $2 \sin A \cos B=\sin (A+B)+\sin (A-B)$
$2 \cos A \sin B=\sin (A+B)-\sin (A-B)$
$2 \cos A \cos B=\cos (A+B)+\cos (A-B)$
$2 \sin A \sin B=\cos (A-B)-\cos (A+B)$
(g) Negative angles: $\sin (-\theta)=-\sin \theta$

$$
\begin{aligned}
\cos (-\theta) & =\cos \theta \\
\tan (-\theta) & =-\tan \theta
\end{aligned}
$$

(h) Angles having the same trigonometrical ratios:
(i) Same sine: $\quad \theta$ and $\left(180^{\circ}-\theta\right)$
(ii) Same cosine: $\quad \theta$ and $\left(360^{\circ}-\theta\right)$, i.e. $(-\theta)$
(iii) Same tangent: θ and $\left(180^{\circ}+\theta\right)$
(i) $a \sin \theta+b \cos \theta=A \sin (\theta+\alpha)$
$a \sin \theta-b \cos \theta=A \sin (\theta-\alpha)$
$a \cos \theta+b \sin \theta=A \cos (\theta-\alpha)$
$a \cos \theta-b \sin \theta=A \cos (\theta+\alpha)$
where $\left\{\begin{array}{l}A=\sqrt{a^{2}+b^{2}} \\ \alpha=\tan ^{-1} \frac{b}{a} \quad\left(0^{\circ}<\alpha<90^{\circ}\right)\end{array}\right.$

3 Standard curves

(a) Straight line

Slope, $m=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Angle between two lines, $\tan \theta=\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}$
For parallel lines, $m_{2}=m_{1}$
For perpendicular lines, $m_{1} m_{2}=-1$

Equation of a straight line $($ slope $=m)$
(i) Intercept c on real y-axis: $y=m x+c$
(ii) Passing through $\left(x_{1}, y_{1}\right): y-y_{1}=m\left(x-x_{1}\right)$
(iii) Joining $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right): \frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$
(b) Circle

Centre at origin, radius $r: \quad x^{2}+y^{2}=r^{2}$
Centre (h, k), radius $r: \quad(x-h)^{2}+(y-k)^{2}=r^{2}$
General equation: $\quad x^{2}+y^{2}+2 g x+2 f y+c=0$
with centre $(-g,-f)$: radius $=\sqrt{g^{2}+f^{2}-c}$
Parametric equations: $x=r \cos \theta, y=r \sin \theta$
(c) Parabola

Vertex at origin, focus $(a, 0): \quad y^{2}=4 a x$
Parametric equations: $\quad x=a t^{2}, y=2 a t$
(d) Ellipse

Centre at origin, foci $\left(\pm \sqrt{a^{2}+b^{2}}, 0\right): \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
where $a=$ semi-major axis, $b=$ semi-minor axis
Parametric equations: $x=a \cos \theta, y=b \sin \theta$
(e) Hyperbola

Centre at origin, foci $\left(\pm \sqrt{a^{2}+b^{2}}, 0\right): \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Parametric equations: $x=a \sec \theta, y=b \tan \theta$
Rectangular hyperbola:
Centre at origin, vertex $\pm\left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right): x y=\frac{a^{2}}{2}=c^{2}$

$$
\text { i.e. } x y=c^{2} \quad \text { where } c=\frac{a}{\sqrt{2}}
$$

Parametric equations: $x=c t, y=c / t$

4 Laws of mathematics

(a) Associative laws - for addition and multiplication

$$
\begin{aligned}
& a+(b+c)=(a+b)+c \\
& a(b c)=(a b) c
\end{aligned}
$$

(b) Commutative laws - for addition and multiplication

$$
\begin{aligned}
& a+b=b+a \\
& a b=b a
\end{aligned}
$$

(c) Distributive laws - for multiplication and division

$$
\begin{aligned}
& a(b+c)=a b+a c \\
& \frac{b+c}{a}=\frac{b}{a}+\frac{c}{a}(\text { provided } a \neq 0)
\end{aligned}
$$

Module 1

Arithmetic

Learning outcomes

When you have completed this Module you will be able to:

- Carry out the basic rules of arithmetic with integers
- Check the result of a calculation making use of rounding
- Write a natural number as a product of prime numbers
- Find the highest common factor and lowest common multiple of two natural numbers
- Manipulate fractions, ratios and percentages
- Manipulate decimal numbers
- Manipulate powers
- Use standard or preferred standard form and complete a calculation to the required level of accuracy
- Understand the construction of various number systems and convert from one number system to another.

Units

1 Types of numbers 2
2 Factors and prime numbers 12
3 Fractions, ratios and percentages 17
4 Decimal numbers 27
5 Powers 35
6 Number systems 50

Types of numbers

Unit 1

1 The natural numbers

The first numbers we ever meet are the whole numbers, also called the natural numbers, and these are written down using numerals.

Numerals and place value

The whole numbers or natural numbers are written using the ten numerals $0,1, \ldots, 9$ where the position of a numeral dictates the value that it represents. For example:

246 stands for 2 hundreds and 4 tens and 6 units. That is $200+40+6$
Here the numerals 2, 4 and 6 are called the hundreds, tens and unit coefficients respectively. This is the place value principle.

Points on a line and order

The natural numbers can be represented by equally spaced points on a straight line where the first natural number is zero 0 .

The natural numbers are ordered - they progress from small to large. As we move along the line from left to right the numbers increase as indicated by the arrow the end of the line. On the line, numbers to the left of a given number are less than $(<)$ the given number and numbers to the right are greater than $(>)$ the given number. For example, $8>5$ because 8 is represented by a point on the line to the right of 5 . Similarly, $3<6$ because 3 is to the left of 6 .

Now move on to the next frame

2 The integers

If the straight line displaying the natural numbers is extended to the left we can plot equally spaced points to the left of zero.

These points represent negative numbers which are written as the natural number preceded by a minus sign, for example -4 . These positive and negative whole numbers and zero are collectively called the integers. The notion of order still applies. For example, $-5<3$ and $-2>-4$ because the point on the line representing -5 is to the left of the point representing 3. Similarly, -2 is to the right of -4 .

The numbers $-10,4,0,-13$ are of a type called \qquad
You can check your answer in the next frame

Integers

They are integers. The natural numbers are all positive. Now try this:
Place the appropriate symbol < or $>$ between each of the following pairs of numbers:
(a) $-3 \quad-6$
(b) $2 \quad-4$
(c) $-7 \quad 12$

Complete these and check your results in the next frame
(a) $-3>-6$
(b) $2>-4$
(c) $-7<12$

The reasons being:
(a) $-3>-6$ because -3 is represented on the line to the right of -6
(b) $2>-4$ because 2 is represented on the line to the right of -4
(c) $-7<12$ because -7 is represented on the line to the left of 12

Now move on to the next frame

Brackets

Brackets should be used around negative numbers to separate the minus sign attached to the number from the arithmetic operation symbol. For example, $5--3$ should be written $5-(-3)$ and 7×-2 should be written $7 \times(-2)$. Never write two arithmetic operation symbols together without using brackets.

Addition and subtraction

Adding two numbers gives their sum and subtracting two numbers gives their difference. For example, $6+2=8$. Adding moves to the right of the first number and subtracting moves to the left of the first number, so that $6-2=4$ and $4-6=-2$:

Adding a negative number is the same as subtracting its positive counterpart. For example $7+(-2)=7-2$. The result is 5 . Subtracting a negative number is the same as adding its positive counterpart. For example $7-(-2)=7+2=9$.

So what is the value of:
(a) $8+(-3)$
(b) $9-(-6)$
(c) $(-4)+(-8)$
(d) $(-14)-(-7)$?

When you have finished these check your results with the next frame

6

(a) 5
(b) 15
(c) -12
(d) -7

Move now to Frame 7

7 Multiplication and division

Multiplying two numbers gives their product and dividing two numbers gives their quotient. Multiplying and dividing two positive or two negative numbers gives a positive number. For example:

$$
12 \times 2=24 \text { and }(-12) \times(-2)=24
$$

$$
12 \div 2=6 \text { and }(-12) \div(-2)=6
$$

Multiplying or dividing a positive number by a negative number gives a negative number. For example:
$12 \times(-2)=-24,(-12) \div 2=-6$ and $8 \div(-4)=-2$
So what is the value of:
(a) $(-5) \times 3$
(b) $12 \div(-6)$
(c) $(-2) \times(-8)$
(d) $(-14) \div(-7)$?

When you have finished these check your results with the next frame

8

(a) -15
(b) -2
(c) 16
(d) 2

Brackets and precedence rules

Brackets and the precedence rules are used to remove ambiguity in a calculation. For example, $14-3 \times 4$ could be either:
$11 \times 4=44$ or $14-12=2$
depending on which operation is performed first.
To remove the ambiguity we rely on the precedence rules:
In any calculation involving all four arithmetic operations we proceed as follows:
(a) Working from the left evaluate divisions and multiplications as they are encountered;
this leaves a calculation involving just addition and subtraction.
(b) Working from the left evaluate additions and subtractions as they are encountered.

For example, to evaluate:

$$
4+5 \times 6 \div 2-12 \div 4 \times 2-1
$$

a first sweep from left to right produces:

$$
4+30 \div 2-3 \times 2-1
$$

a second sweep from left to right produces:

$$
4+15-6-1
$$

and a final sweep produces:

$$
19-7=12
$$

If the calculation contains brackets then these are evaluated first, so that:

$$
\begin{aligned}
(4+5 \times 6) \div 2-12 \div 4 \times 2-1 & =34 \div 2-6-1 \\
& =17-7 \\
& =10
\end{aligned}
$$

This means that:

$$
\begin{aligned}
14-3 \times 4 & =14-12 \\
& =2
\end{aligned}
$$

because, reading from the left we multiply before we subtract. Brackets must be used to produce the alternative result:

$$
\begin{aligned}
(14-3) \times 4 & =11 \times 4 \\
& =44
\end{aligned}
$$

because the precedence rules state that brackets are evaluated first.
So that $34+10 \div(2-3) \times 5=$ \qquad

Because

$$
\begin{aligned}
34+10 \div(2-3) \times 5 & =34+10 \div(-1) \times 5 & & \text { we evaluate the bracket first } \\
& =34+(-10) \times 5 & & \text { by dividing } \\
& =34+(-50) & & \text { by multiplying } \\
& =34-50 & & \text { finally we subtract }
\end{aligned}
$$

Notice that when brackets are used we can omit the multiplication signs and replace the division sign by a line, so that:

$$
5 \times(6-4) \text { becomes } 5(6-4)
$$

and

$$
(25-10) \div 5 \text { becomes }(25-10) / 5 \text { or } \frac{25-10}{5}
$$

When evaluating expressions containing nested brackets the innermost brackets are evaluated first. For example:

$$
\begin{aligned}
3(4-2[5-1]) & =3(4-2 \times 4) & & \text { evaluating the innermost bracket }[\ldots] \text { first } \\
& =3(4-8) & & \begin{array}{l}
\text { multiplication before subtraction inside the } \\
(\ldots) \text { bracket }
\end{array} \\
& =3(-4) & & \begin{array}{l}
\text { subtraction completes the evaluation of the } \\
(\ldots) \text { bracket }
\end{array} \\
& =-12 & & \text { multiplication completes the calculation }
\end{aligned}
$$

so that $5-\{8+7[4-1]-9 / 3\}=$
Work this out, the result is in the following frame
11 -21

Because

$$
\begin{aligned}
5-\{8+7[4-1]-9 / 3\} & =5-\{8+7 \times 3-9 \div 3\} \\
& =5-\{8+21-3\} \\
& =5-\{29-3\} \\
& =5-26 \\
& =-21
\end{aligned}
$$

Basic laws of arithmetic

All the work that you have done so far has been done under the assumption that you know the rules that govern the use of arithmetic operations as, indeed, you no doubt do. However, there is a difference between knowing the rules innately and being consciously aware of them, so here they are. The four basic arithmetic operations are:

> addition and subtraction
> multiplication and division
where each pair may be regarded as consisting of 'opposites' - in each pair one operation is the reverse operation of the other.

1 Commutativity

Two integers can be added or multiplied in either order without affecting the result. For example:

$$
5+8=8+5=13 \text { and } 5 \times 8=8 \times 5=40
$$

We say that addition and multiplication are commutative operations

The order in which two integers are subtracted or divided does affect the result. For example:

$$
4-2 \neq 2-4 \text { because } 4-2=2 \text { and } 2-4=-2
$$

Notice that \neq means is not equal to. Also

$$
4 \div 2 \neq 2 \div 4
$$

We say that subtraction and division are not commutative operations

2 Associativity

The way in which three or more integers are associated under addition or multiplication does not affect the result. For example:

$$
3+(4+5)=(3+4)+5=3+4+5=12
$$

and

$$
3 \times(4 \times 5)=(3 \times 4) \times 5=3 \times 4 \times 5=60
$$

We say that addition and multiplication are associative operations

The way in which three or more integers are associated under subtraction or division does affect the result. For example:

$$
\begin{aligned}
& 3-(4-5) \neq(3-4)-5 \text { because } \\
& 3-(4-5)=3-(-1)=3+1=4 \text { and }(3-4)-5=(-1)-5=-6
\end{aligned}
$$

Also

$$
\begin{aligned}
& 24 \div(4 \div 2) \neq(24 \div 4) \div 2 \text { because } \\
& 24 \div(4 \div 2)=24 \div 2=12 \text { and }(24 \div 4) \div 2=6 \div 2=3
\end{aligned}
$$

We say that subtraction and division are not associative operations

3 Distributivity

Multiplication is distributed over addition and subtraction from both the left and the right. For example:

$$
\begin{aligned}
& 3 \times(4+5)=(3 \times 4)+(3 \times 5)=27 \text { and }(3+4) \times 5=(3 \times 5)+(4 \times 5)=35 \\
& 3 \times(4-5)=(3 \times 4)-(3 \times 5)=-3 \text { and }(3-4) \times 5=(3 \times 5)-(4 \times 5)=-5
\end{aligned}
$$

Division is distributed over addition and subtraction from the right but not from the left. For example:

$$
\begin{aligned}
& (60+15) \div 5=(60 \div 5)+(15 \div 5) \text { because } \\
& (60+15) \div 5=75 \div 5=15 \text { and }(60 \div 5)+(15 \div 5)=12+3=15
\end{aligned}
$$

However, $60 \div(15+5) \neq(60 \div 15)+(60 \div 5)$ because

$$
60 \div(15+5)=60 \div 20=3 \text { and }(60 \div 15)+(60 \div 5)=4+12=16
$$

Also:

$$
\begin{aligned}
& (20-10) \div 5=(20 \div 5)-(10 \div 5) \text { because } \\
& (20-10) \div 5=10 \div 5=2 \text { and }(20 \div 5)-(10 \div 5)=4-2=2
\end{aligned}
$$

but $20 \div(10-5) \neq(20 \div 10)-(20 \div 5)$ because

$$
20 \div(10-5)=20 \div 5=4 \text { and }(20 \div 10)-(20 \div 5)=2-4=-2
$$

On now to Frame 13

13 Estimating

Arithmetic calculations are easily performed using a calculator. However, by pressing a wrong key, wrong answers can just as easily be produced. Every calculation made using a calculator should at least be checked for the reasonableness of the final result and this can be done by estimating the result using rounding. For example, using a calculator the sum $39+53$ is incorrectly found to be 62 if $39+23$ is entered by mistake. If, now, 39 is rounded up to 40 , and 53 is rounded down to 50 the reasonableness of the calculator result can be simply checked by adding 40 to 50 to give 90 . This indicates that the answer 62 is wrong and that the calculation should be done again. The correct answer 92 is then seen to be close to the approximation of 90 .

Rounding

An integer can be rounded to the nearest 10 as follows:
If the number is less than halfway to the next multiple of 10 then the number is rounded down to the previous multiple of 10 . For example, 53 is rounded down to 50 .

If the number is more than halfway to the next multiple of 10 then the number is rounded u p to the next multiple of 10 . For example, 39 is rounded up to 40 .
If the number is exactly halfway to the next multiple of 10 then the number is rounded $u p$. For example, 35 is rounded up to 40.

This principle also applies when rounding to the nearest 100, 1000, 10000 or more. For example, 349 rounds up to 350 to the nearest 10 but rounds down to 300 to the nearest 100, and 2501 rounds up to 3000 to the nearest 1000 .
Try rounding each of the following to the nearest 10,100 and 1000 respectively:
(a) 1846
(b) -638
(c) 445

Finish all three and check your results with the next frame
(a) $1850,1800,2000$
(b) $-640,-600,-1000$
(c) $450,400,0$

Because
(a) 1846 is nearer to 1850 than to 1840 , nearer to 1800 than to 1900 and nearer to 2000 than to 1000 .
(b) -638 is nearer to -640 than to -630 , nearer to -600 than to -700 and nearer to -1000 than to 0 . The negative sign does not introduce any complications.
(c) 445 rounds to 450 because it is halfway to the next multiple of 10,445 is nearer to 400 than to 500 and nearer to 0 than 1000 .

How about estimating each of the following using rounding to the nearest 10 :
(a) $18 \times 21-19 \div 11$
(b) $99 \div 101-49 \times 8$
(a) 398

Because
(a) $18 \times 21-19 \div 11$ rounds to $20 \times 20-20 \div 10=398$
(b) $99 \div 101-49 \times 8$ rounds to $100 \div 100-50 \times 10=-499$

At this point let us pause and summarize the main facts so far on types of numbers

Review summary

161 The integers consist of the positive and negative whole numbers and zero.
2 The integers are ordered so that they range from large negative to small negative through zero to small positive and then large positive. They are written using the ten numerals 0 to 9 according to the principle of place value where the place of a numeral in a number dictates the value it represents.
3 The integers can be represented by equally spaced points on a line.
4 The four arithmetic operations of addition, subtraction, multiplication and division obey specific precedence rules that govern the order in which they are to be executed:

In any calculation involving all four arithmetic operations we proceed as follows:
(a) working from the left evaluate divisions and multiplications as they are encountered.
This leaves an expression involving just addition and subtraction:
(b) working from the left evaluate additions and subtractions as they are encountered.
5 Multiplying or dividing two positive numbers or two negative numbers produces a positive number. Multiplying or dividing a positive number and a negative number produces a negative number.
6 Brackets are used to group numbers and operations together. In any arithmetic expression, the contents of brackets are evaluated first.
7 Integers can be rounded to the nearest 10, 100 etc. and the rounded values used as estimates for the result of a calculation.

Review exercise

1 Place the appropriate symbol < or > between each of the following pairs of numbers:
(a) -1
-6
(b) 5
-29
(c) -14
7

2 Find the value of each of the following:
(a) $16-12 \times 4+8 \div 2$
(b) $(16-12) \times(4+8) \div 2$
(c) $9-3(17+5[5-7])$
(d) $8(3[2+4]-2[5+7])$

3 Show that:
(a) $6-(3-2) \neq(6-3)-2$
(b) $100 \div(10 \div 5) \neq(100 \div 10) \div 5$
(c) $24 \div(2+6) \neq(24 \div 2)+(24 \div 6)$
(d) $24 \div(2-6) \neq(24 \div 2)-(24 \div 6)$

4 Round each number to the nearest 10, 100 and 1000:
(a) 2562
(b) 1500
(c) -3451
(d) -14525

Complete all four questions. Take your time, there is no need to rush. If necessary, look back at the Unit.
The answers and working are in the next frame.
1 (a) $-1>-6$ because -1 is represented on the line to the right of -6
(b) $5>-29$ because 5 is represented on the line to the right of -29
(c) $-14<7$ because -14 is represented on the line to the left of 7

2 (a) $16-12 \times 4+8 \div 2=16-48+4=16-44=-28$
divide and multiply before adding and subtracting
(b) $(16-12) \times(4+8) \div 2=(4) \times(12) \div 2=4 \times 12 \div 2=4 \times 6=24$ brackets are evaluated first
(c) $9-3(17+5[5-7])=9-3(17+5[-2])$

$$
\begin{aligned}
& =9-3(17-10) \\
& =9-3(7) \\
& =9-21=-12
\end{aligned}
$$

(d) $8(3[2+4]-2[5+7])=8(3 \times 6-2 \times 12)$

$$
\begin{aligned}
& =8(18-24) \\
& =8(-6)=-48
\end{aligned}
$$

3 (a) Left-hand side $($ LHS $)=6-(3-2)=6-(1)=5$
Right-hand side $($ RHS $)=(6-3)-2=(3)-2=1 \neq$ LHS
(b) Left-hand side $($ LHS $)=100 \div(10 \div 5)=100 \div 2=50$

Right-hand side $($ RHS $)=(100 \div 10) \div 5=10 \div 5=2 \neq$ LHS
(c) Left-hand side $($ LHS $)=24 \div(2+6)=24 \div 8=3$

Right-hand side $($ RHS $)=(24 \div 2)+(24 \div 6)=12+4=16 \neq$ LHS
(d) Left-hand side $($ LHS $)=24 \div(2-6)=24 \div(-4)=-6$

Right-hand side $($ RHS $)=(24 \div 2)-(24 \div 6)=12-4=8 \neq$ LHS
4 (a) 2560, 2600, 3000
(b) $1500,1500,2000$
(c) $-3450,-3500,-3000$
(d) $-14530,-14500,-15000$

191 Place the appropriate symbol < or > between each of the following pairs of numbers:
(a) -3
-2
(b) 8
-13
(c) -25
0

2 Find the value of each of the following:
(a) $13+9 \div 3-2 \times 5$
(b) $(13+9) \div(3-2) \times 5$

3 Round each number to the nearest 10, 100 and 1000:
(a) 1354
(b) 2501
(c) -2452
(d) -23625

Factors and prime numbers

Unit 2

1 Factors

Any pair of natural numbers are called factors of their product. For example, the numbers 3 and 6 are factors of 18 because $3 \times 6=18$. These are not the only factors of 18 . The complete collection of factors of 18 is $1,2,3,6,9,18$ because

$$
\begin{aligned}
18 & =1 \times 18 \\
& =2 \times 9 \\
& =3 \times 6
\end{aligned}
$$

So the factors of:
(a) 12
(b) 25
(c) 17 are

The results are in the next frame
2
(a) $1,2,3,4,6,12$
(b) $1,5,25$
(c) 1,17

Because
(a) $12=1 \times 12=2 \times 6=3 \times 4$
(b) $25=1 \times 25=5 \times 5$
(c) $17=1 \times 17$

Prime numbers

If a natural number has only two factors which are itself and the number 1 , the number is called a prime number. The first six prime numbers are $2,3,5,7$, 11 and 13 . The number 1 is not a prime number because it only has one factor, namely, itself.

Prime factorization

Every natural number can be written as a product involving only prime factors. For example, the number 126 has the factors $1,2,3,6,7,9,14,18,21$, 42,63 and 126 , of which 2,3 and 7 are prime numbers and 126 can be written as:

$$
126=2 \times 3 \times 3 \times 7
$$

To obtain this prime factorization the number is divided by successively increasing prime numbers thus:

2	126
	63
	21
7	21
	7

so that $126=2 \times 3 \times 3 \times 7$
Notice that a prime factor may occur more than once in a prime factorization.
Now find the prime factorization of:
(a) 84
(b) 512

Work these two out and check the working in Frame 4
(a) $84=2 \times 2 \times 3 \times 7$
(b) $512=2 \times 2 \times 2$

Because
(a) 284

242
321
7

1 so that $84=2 \times 2 \times 3 \times 7$
(b) The only prime factor of 512 is 2 which occurs 9 times. The prime factorization is:

$$
512=2 \times 2 \times 2
$$

5 Highest common factor (HCF)

The highest common factor (HCF) of two natural numbers is the largest factor that they have in common. For example, the prime factorizations of 144 and 66 are:

$$
\begin{aligned}
144 & =2 \times 2 \times 2 \times 2 \times 3 \times 3 \\
66 & =2 \quad \times 3 \quad \times 11
\end{aligned}
$$

Only the 2 and the 3 are common to both factorizations and so the highest factor that these two numbers have in common (HCF) is $2 \times 3=6$.

Lowest common multiple (LCM)

The smallest natural number that each one of a pair of natural numbers divides into a whole number of times is called their lowest common multiple (LCM). This is also found from the prime factorization of each of the two numbers. For example:

$$
\begin{aligned}
144 & =2 \times 2 \times 2 \times 2 \times 3 \times 3 \\
66 & =2 \quad \times 3 \quad \times 11 \\
\text { LCM } & =2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 11=1584
\end{aligned}
$$

The HCF and LCM of 84 and 512 are

6

HCF: 4
LCM: 10752

Because
84 and 512 have the prime factorizations:

$$
\begin{array}{rlr}
84 & =2 \times 2 & \times 3 \times 7 \\
512 & =2 \times 2 & \text { HCF }=2 \times 2=4 \\
\text { LCM } & =2 \times 2 \times 3 \times 7=10752 &
\end{array}
$$

At this point let us pause and summarize the main facts on factors and prime numbers

Review summary

Unit 2

1 A pair of natural numbers are called factors of their product.
2 If a natural number only has one and itself as factors it is called a prime number.
3 Every natural number can be written as a product of its prime factors, some of which may be repeated.
4 The highest common factor (HCF) is the highest factor that two natural numbers have in common.
5 The lowest common multiple (LCM) is the lowest natural number that two natural numbers will divide into a whole number of times.

Review exercise

1 Write each of the following as a product of prime factors:
(a) 429
(b) 1820
(c) 2992
(d) 3185

2 Find the HCF and the LCM of each pair of numbers:
(a) 63,42
(b) 92,34

Complete both questions. Work through Unit 2 again if you need to. Don't rush. Take your time.
The answers and working are in the next frame.

(c)

(d)

5	3185
7	637
7	91
	13
	1
	$3185=5 \times 7 \times 7 \times 13$

2 (a) The prime factorizations of 63 and 42 are:

$$
\begin{aligned}
63 & =3 \times 3 \times 7 \\
42 & =2 \times 3 \quad \times 7 \quad \text { HCF } 3 \times 7=21 \\
\mathrm{LCM} & =2 \times 3 \times 3 \times 7=126
\end{aligned}
$$

(b) The prime factorizations of 34 and 92 are:

$$
\begin{aligned}
34 & =2 \quad \times 17 \\
92 & =2 \times 2 \quad \text { HCF } 2 \\
\text { LCM } & =2 \times 2 \times 17 \times 23=1564
\end{aligned}
$$

Review test
101 Write each of the following as a product of prime factors:
(a) 170
(b) 455
(c) 9075
(d) 1140

2 Find the HCF and the LCM of each pair of numbers:
(a) 84,88
(b) 105, 66

Fractions, ratios and percentages Unit 3

Division of integers

A fraction is a number which is represented by one integer - the numerator divided by another integer - the denominator (or the divisor). For example, $\frac{3}{5}$ is a fraction with numerator 3 and denominator 5 . Because fractions are written as one integer divided by another - a ratio - they are called rational numbers. Fractions are either proper, improper or mixed:

- in a proper fraction the numerator is less than the denominator, for example $\frac{4}{7}$
- in an improper fraction the numerator is greater than the denominator, for example $\frac{12}{5}$
- a mixed fraction is in the form of an integer and a fraction, for example $6 \frac{2}{3}$

So that $-\frac{8}{11}$ is a $\ldots \ldots \ldots \ldots$ fraction?
The answer is in the next frame
Proper

Fractions can be either positive or negative.
Now to the next frame

Multiplying fractions

Two fractions are multiplied by multiplying their respective numerators and denominators independently. For example:

$$
\frac{2}{3} \times \frac{5}{7}=\frac{2 \times 5}{3 \times 7}=\frac{10}{21}
$$

Try this one for yourself. $\frac{5}{9} \times \frac{2}{7}=$ \qquad

Because

$$
\frac{5}{9} \times \frac{2}{7}=\frac{5 \times 2}{9 \times 7}=\frac{10}{63}
$$

5 Of
The word 'of' when interposed between two fractions means multiply. For example:

Half of half a cake is one-quarter of a cake. That is

$$
\frac{1}{2} \text { of } \frac{1}{2}=\frac{1}{2} \times \frac{1}{2}=\frac{1 \times 1}{2 \times 2}=\frac{1}{4}
$$

So that, for example:

$$
\frac{1}{3} \text { of } \frac{2}{5}=\frac{1}{3} \times \frac{2}{5}=\frac{1 \times 2}{3 \times 5}=\frac{2}{15}
$$

So that $\frac{3}{8}$ of $\frac{5}{7}=$

6

$$
\frac{15}{56}
$$

Because

$$
\frac{3}{8} \text { of } \frac{5}{7}=\frac{3}{8} \times \frac{5}{7}=\frac{3 \times 5}{8 \times 7}=\frac{15}{56}
$$

On now to the next frame

7 Equivalent fractions

Multiplying the numerator and denominator by the same number is equivalent to multiplying the fraction by unity, that is by 1 :
$\frac{4 \times 3}{5 \times 3}=\frac{4}{5} \times \frac{3}{3}=\frac{4}{5} \times 1=\frac{4}{5}$
Now, $\frac{4 \times 3}{5 \times 3}=\frac{12}{15}$ so that the fraction $\frac{4}{5}$ and the fraction $\frac{12}{15}$ both represent the same number and for this reason we call $\frac{4}{5}$ and $\frac{12}{15}$ equivalent fractions.

A second fraction, equivalent to a first fraction, can be found by multiplying the numerator and the denominator of the first fraction by the same number.

So that if we multiply the numerator and denominator of the fraction $\frac{7}{5}$ by 4 we obtain the equivalent fraction

Because

$$
\frac{7 \times 4}{5 \times 4}=\frac{28}{20}
$$

We can reverse this process and find the equivalent fraction that has the smallest numerator by cancelling out common factors. This is known as reducing the fraction to its lowest terms. For example:
$\frac{16}{96}$ can be reduced to its lowest terms as follows:

$$
\frac{16}{96}=\frac{4 \times 4}{24 \times 4}=\frac{4 \times 4}{24 \times 4}=\frac{4}{24}
$$

by cancelling out the 4 in the numerator and the denominator
The fraction $\frac{4}{24}$ can also be reduced:

$$
\frac{4}{24}=\frac{4}{6 \times 4}=\frac{4}{6 \times 4}=\frac{1}{6}
$$

Because $\frac{1}{6}$ cannot be reduced further we see that $\frac{16}{96}$ reduced to its lowest terms is $\frac{1}{6}$.
How about this one? The fraction $\frac{84}{108}$ reduced to its lowest terms is
Check with the next frame

```
7
```

Because

$$
\frac{84}{108}=\frac{7 \times 3 \times 4}{9 \times 3 \times 4}=\frac{7 \times 3 \times 4}{9 \times 3 \times 4}=\frac{7}{9}
$$

10 Dividing fractions

The expression $6 \div 3$ means the number of 3 's in 6 , which is 2 . Similarly, the expression $1 \div \frac{1}{4}$ means the number of $\frac{1}{4}$'s in 1 , which is, of course, 4 . That is: $1 \div \frac{1}{4}=4=1 \times \frac{4}{1}$. Notice how the numerator and the denominator of the divisor are switched and the division replaced by multiplication.

Two fractions are divided by switching the numerator and the denominator of the divisor and multiplying the result. For example:

$$
\frac{2}{3} \div \frac{5}{7}=\frac{2}{3} \times \frac{7}{5}=\frac{14}{15}
$$

So that $\frac{7}{13} \div \frac{3}{4}=$ \qquad

Because

$$
\frac{7}{13} \div \frac{3}{4}=\frac{7}{13} \times \frac{4}{3}=\frac{28}{39}
$$

In particular:

$$
1 \div \frac{3}{5}=1 \times \frac{5}{3}=\frac{5}{3}
$$

The fraction $\frac{5}{3}$ is called the reciprocal of $\frac{3}{5}$
So that the reciprocal of $\frac{17}{4}$ is

Because

$$
1 \div \frac{17}{4}=1 \times \frac{4}{17}=\frac{4}{17}
$$

And the reciprocal of -5 is

$$
-\frac{1}{5}
$$

Because

$$
1 \div(-5)=1 \div\left(-\frac{5}{1}\right)=1 \times\left(-\frac{1}{5}\right)=-\frac{1}{5}
$$

Move on to the next frame

Adding and subtracting fractions

Two fractions can only be added or subtracted immediately if they both possess the same denominator, in which case we add or subtract the numerators and divide by the common denominator. For example:

$$
\frac{2}{7}+\frac{3}{7}=\frac{2+3}{7}=\frac{5}{7}
$$

If they do not have the same denominator they must be rewritten in equivalent form so that they do have the same denominator - called the common denominator. For example:

$$
\frac{2}{3}+\frac{1}{5}=\frac{10}{15}+\frac{3}{15}=\frac{10+3}{15}=\frac{13}{15}
$$

The common denominator of the equivalent fractions is the LCM of the two original denominators. That is:
$\frac{2}{3}+\frac{1}{5}=\frac{2 \times 5}{3 \times 5}+\frac{1 \times 3}{5 \times 3}=\frac{10}{15}+\frac{3}{15}$ where 15 is the LCM of 3 and 5
So that $\frac{5}{9}+\frac{1}{6}=$ \qquad
The result is in Frame 15

$$
\frac{13}{18}
$$

Because
The LCM of 9 and 6 is 18 so that $\frac{5}{9}+\frac{1}{6}=\frac{5 \times 2}{9 \times 2}+\frac{1 \times 3}{6 \times 3}=\frac{10}{18}+\frac{3}{18}$

$$
=\frac{10+3}{18}=\frac{13}{18}
$$

There's another one to try in the next frame
Now try $\frac{11}{15}-\frac{2}{3}=$

17

$\frac{1}{15}$

Because

$$
\begin{aligned}
\frac{11}{15}-\frac{2}{3} & =\frac{11}{15}-\frac{2 \times 5}{3 \times 5}=\frac{11}{15}-\frac{10}{15} \\
& =\frac{11-10}{15}=\frac{1}{15} \quad(15 \text { is the LCM of } 3 \text { and } 15)
\end{aligned}
$$

Correct? Then on to Frame 18

18 Fractions on a calculator

The a / c button on a calculator enables fractions to be entered and manipulated with the results given in fractional form. For example, to evaluate $\frac{2}{3} \times 1 \frac{3}{4}$ using your calculator [note: your calculator may not produce the identical display in what follows]:

Enter the number 2
Press the $a b / c$ key
Enter the number 3
The display now reads 2 ـ 2 to represent $\frac{2}{3}$
Press the \times key
Enter the number 1
Press the $a b / c$ key
Enter the number 3
Press the a^{b} / c key
Enter the number 4
The display now reads 1 to represent $1 \frac{3}{4}$
Press the $=$ key to display the result 1$\lrcorner 1\lrcorner 6=1 \frac{1}{6}$, that is:

$$
\frac{2}{3} \times 1 \frac{3}{4}=\frac{2}{3} \times \frac{7}{4}=\frac{14}{12}=1 \frac{1}{6}
$$

Now use your calculator to evaluate each of the following:
(a) $\frac{5}{7}+3 \frac{2}{3}$
(b) $\frac{8}{3}-\frac{5}{11}$
(c) $\frac{13}{5} \times \frac{4}{7}-\frac{2}{9}$
(d) $4 \frac{1}{11} \div\left(-\frac{3}{5}\right)+\frac{1}{8}$
(a) 4 - $21=4 \frac{8}{21}$
(b) 2$\lrcorner 7 \boldsymbol{}$ 」 $33=2 \frac{7}{33}$
(c) $1 ـ 83$ ـ $\boldsymbol{ـ} 315=1 \frac{83}{315}$
(d) $-6-61$ ـ $68=-6 \frac{61}{88}$

In (d) enter the $\frac{3}{5}$ and then press the $+/$ key.
On now to the next frame

Ratios

If a whole number is separated into a number of fractional parts where each fraction has the same denominator, the numerators of the fractions form a ratio. For example, if a quantity of brine in a tank contains $\frac{1}{3}$ salt and $\frac{2}{3}$ water, the salt and water are said to be in the ratio 'one-to-two' - written $1: 2$.
What ratio do the components A, B and C form if a compound contains $\frac{3}{4}$ of A , $\frac{1}{6}$ of B and $\frac{1}{12}$ of C?

Take care here and check your results with Frame 21

$$
9: 2: 1
$$

Because the LCM of the denominators 4,6 and 12 is 12 , then:
$\frac{3}{4}$ of A is $\frac{9}{12}$ of $\mathrm{A}, \frac{1}{6}$ of B is $\frac{2}{12}$ of B and the remaining $\frac{1}{12}$ is of C. This ensures that the components are in the ratio of their numerators. That is:

$$
9: 2: 1
$$

Notice that the sum of the numbers in the ratio is equal to the common denominator.

On now to the next frame

Percentages

A percentage is a fraction whose denominator is equal to 100 . For example, if 5 out of 100 people are left-handed then the fraction of left-handers is $\frac{5}{100}$ which is written as 5%, that is 5 per cent (\%).
So if 13 out of 100 cars on an assembly line are red, the percentage of red cars on the line is \qquad

Because
The fraction of cars that are red is $\frac{13}{100}$ which is written as 13%.
Try this. What is the percentage of defective resistors in a batch of 25 if 12 of them are defective?

24

48\%

Because
The fraction of defective resistors is $\frac{12}{25}=\frac{12 \times 4}{25 \times 4}=\frac{48}{100}$ which is written as 48%. Notice that this is the same as:

$$
\left(\frac{12}{25} \times 100\right) \%=\left(\frac{12}{25} \times 25 \times 4\right) \%=(12 \times 4) \%=48 \%
$$

A fraction can be converted to a percentage by multiplying the fraction by 100.
To find the percentage part of a quantity we multiply the quantity by the percentage written as a fraction. For example, 24% of 75 is:

$$
\begin{aligned}
24 \% \text { of } 75 & =\frac{24}{100} \text { of } 75=\frac{24}{100} \times 75=\frac{6 \times 4}{25 \times 4} \times 25 \times 3=\frac{6 \times 4}{25 \times 4} \times 25 \times 3 \\
& =6 \times 3=18
\end{aligned}
$$

So that 8% of 25 is \qquad
Work it through and check your results with the next frame
25

Because

$$
\frac{8}{100} \times 25=\frac{2 \times 4}{25 \times 4} \times 25=\frac{2 \times 4}{25 \times 4} \times 25=2
$$

At this point let us pause and summarize the main facts on fractions, ratios and percentages

Review summary

Unit 3

1 A fraction is a number represented as one integer (the numerator) divided by another integer (the denominator or divisor).
2 The same number can be represented by different but equivalent fractions.
3 A fraction with no common factors other than unity in its numerator and denominator is said to be in its lowest terms.
4 Two fractions are multiplied by multiplying the numerators and denominators independently.
5 Two fractions can only be added or subtracted immediately when their denominators are equal.
6 A ratio consists of the numerators of fractions with identical denominators.
7 The numerator of a fraction whose denominator is 100 is called a percentage.

Review exercise

1 Reduce each of the following fractions to their lowest terms:
(a) $\frac{24}{30}$
(b) $\frac{72}{15}$
(c) $-\frac{52}{65}$
(d) $\frac{32}{8}$

2 Evaluate the following:
(a) $\frac{5}{9} \times \frac{2}{5}$
(b) $\frac{13}{25} \div \frac{2}{15}$
(c) $\frac{5}{9}+\frac{3}{14}$
(d) $\frac{3}{8}-\frac{2}{5}$
(e) $\frac{12}{7} \times\left(-\frac{3}{5}\right)$
(f) $\left(-\frac{3}{4}\right) \div\left(-\frac{12}{7}\right)$
(g) $\frac{19}{2}+\frac{7}{4}$
(h) $\frac{1}{4}-\frac{3}{8}$

3 Write the following proportions as ratios:
(a) $\frac{1}{2}$ of $\mathrm{A}, \frac{2}{5}$ of B and $\frac{1}{10}$ of C
(b) $\frac{1}{3}$ of $\mathrm{P}, \frac{1}{5}$ of $\mathrm{Q}, \frac{1}{4}$ of R and the remainder S

4 Complete the following:
(a) $\frac{2}{5}=\%$
(b) 58% of $25=$
(c) $\frac{7}{12}=\%$
(d) 17% of $50=$

Complete the questions.
Look back at the Unit if necessary but don't rush. The answers and working are in the next frame.

28
1 (a) $\frac{24}{30}=\frac{2 \times 2 \times 2 \times 3}{2 \times 3 \times 5}=\frac{2 \times 2}{5}=\frac{4}{5}$
(b) $\frac{72}{15}=\frac{2 \times 2 \times 2 \times 3 \times 3}{3 \times 5}=\frac{2 \times 2 \times 2 \times 3}{5}=\frac{24}{5}$
(c) $-\frac{52}{65}=-\frac{2 \times 2 \times 13}{5 \times 13}=-\frac{2 \times 2}{5}=-\frac{4}{5}$
(d) $\frac{32}{8}=\frac{2 \times 2 \times 2 \times 2 \times 2}{2 \times 2 \times 2}=4$

2 (a) $\frac{5}{9} \times \frac{2}{5}=\frac{5 \times 2}{9 \times 5}=\frac{2}{9}$
(b) $\frac{13}{25} \div \frac{2}{15}=\frac{13}{25} \times \frac{15}{2}=\frac{13 \times 15}{25 \times 2}=\frac{13 \times 3 \times 5}{5 \times 5 \times 2}=\frac{39}{10}$
(c) $\frac{5}{9}+\frac{3}{14}=\frac{5 \times 14}{9 \times 14}+\frac{3 \times 9}{14 \times 9}=\frac{70}{126}+\frac{27}{126}=\frac{70+27}{126}=\frac{97}{126}$
(d) $\frac{3}{8}-\frac{2}{5}=\frac{3 \times 5}{8 \times 5}-\frac{2 \times 8}{5 \times 8}=\frac{15}{40}-\frac{16}{40}=\frac{15-16}{40}=-\frac{1}{40}$
(e) $\frac{12}{7} \times\left(-\frac{3}{5}\right)=\frac{12 \times(-3)}{7 \times 5}=\frac{-36}{35}=-\frac{36}{35}$
(f) $\left(-\frac{3}{4}\right) \div\left(-\frac{12}{7}\right)=\left(-\frac{3}{4}\right) \times\left(-\frac{7}{12}\right)=\frac{(-3) \times(-7)}{4 \times 12}=\frac{3 \times 7}{4 \times 3 \times 4}=\frac{7}{16}$
(g) $\frac{19}{2}+\frac{7}{4}=\frac{38}{4}+\frac{7}{4}=\frac{45}{4}$
(h) $\frac{1}{4}-\frac{3}{8}=\frac{2}{8}-\frac{3}{8}=-\frac{1}{8}$

3 (a) $\frac{1}{2}, \frac{2}{5}, \frac{1}{10}=\frac{5}{10}, \frac{4}{10}, \frac{1}{10}$ so ratio is $5: 4: 1$
(b) $\frac{1}{3}, \frac{1}{5}, \frac{1}{4}=\frac{20}{60}, \frac{12}{60}, \frac{15}{60}$ and $\frac{20}{60}+\frac{12}{60}+\frac{15}{60}=\frac{47}{60}$
so the fraction of S is $\frac{13}{60}$
so $\mathrm{P}, \mathrm{Q}, \mathrm{R}$ and S are in the ratio $20: 12: 15: 13$
4 (a) $\frac{2}{5}=\frac{2 \times 20}{5 \times 20}=\frac{40}{100}$ that is 40% or $\frac{2}{5}=\frac{2}{5} \times 100 \%=40 \%$
(b) $\frac{58}{100} \times 25=\frac{58}{4}=\frac{29}{2}=14 \frac{1}{2}$
(c) $\frac{7}{12}=\frac{7}{12} \times 100 \%=\frac{700}{12} \%=\frac{58 \times 12+4}{12} \%=58 \frac{4}{12} \%=58 \frac{1}{3} \%$
(d) $\frac{17}{100} \times 50=\frac{17}{2}=8 \frac{1}{2}$

1 Reduce each of the following fractions to their lowest terms:
(a) $\frac{12}{18}$
(b) $\frac{144}{21}$
(c) $-\frac{49}{14}$
(d) $\frac{64}{4}$

2 Evaluate the following:
(a) $\frac{3}{7} \times \frac{2}{3}$
(b) $\frac{11}{30} \div \frac{5}{6}$
(c) $\frac{3}{7}+\frac{4}{13}$
(d) $\frac{5}{16}-\frac{4}{3}$

3 Write the following proportions as ratios:
(a) $\frac{1}{2}$ of $\mathrm{A}, \frac{1}{5}$ of B and $\frac{3}{10}$ of C
(b) $\frac{1}{4}$ of $\mathrm{P}, \frac{1}{3}$ of $\mathrm{Q}, \frac{1}{5}$ of R and the remainder S

4 Complete the following:
(a) $\frac{4}{5}=\%$
(b) 48% of $50=$
(c) $\frac{9}{14}=\%$
(d) 15% of $25=$

Decimal numbers

Division of integers

If one integer is divided by a second integer that is not one of the first integer's factors the result will not be another integer. Instead, the result will lie between two integers. For example, using a calculator it is seen that:
$25 \div 8=3 \cdot 125$
which is a number greater than 3 but less than 4 . As with integers, the position of a numeral within the number indicates its value. Here the number 3.125 represents

3 units +1 tenth +2 hundredths +5 thousandths.
That is $3+\frac{1}{10}+\frac{2}{100}+\frac{5}{1000}$
where the decimal point shows the separation of the units from the tenths. Numbers written in this format are called decimal numbers.

2 Rounding

All the operations of arithmetic that we have used with the integers apply to decimal numbers. However, when performing calculations involving decimal numbers it is common for the end result to be a number with a large quantity of numerals after the decimal point. For example:

$$
15 \cdot 11 \div 8 \cdot 92=1 \cdot 6939461883 \ldots
$$

To make such numbers more manageable or more reasonable as the result of a calculation, they can be rounded either to a specified number of significant figures or to a specified number of decimal places.

Now to the next frame

3 Significant figures

Significant figures are counted from the first non-zero numeral encountered starting from the left of the number. When the required number of significant figures has been counted off, the remaining numerals are deleted with the following proviso:

If the first of a group of numerals to be deleted is a 5 or more, the last significant numeral is increased by 1 . For example:
$9 \cdot 4534$ to two significant figures is $9 \cdot 5$, to three significant figures is 9.45 , and 0.001354 to two significant figures is 0.0014

Try this one for yourself. To four significant figures the number 18.7249 is

Check your result with the next frame

4

$18 \cdot 72$

Because

The first numeral deleted is a 4 which is less than 5 .
There is one further proviso. If the only numeral to be dropped is a 5 then the last numeral retained is rounded up. So that 12.235 to four significant figures (abbreviated to sig fig) is $12 \cdot 24$ and $3 \cdot 465$ to three sig fig is $3 \cdot 47$.

So $8 \cdot 1265$ to four sig fig is \qquad

$8 \cdot 127$

Because
The only numeral deleted is a 5 and the last numeral is rounded up. Now on to the next frame

Decimal places

Decimal places are counted to the right of the decimal point and the same rules as for significant figures apply for rounding to a specified number of decimal places (abbreviated to $d p$). For example:
123.4467 to one decimal place is 123.4 and to two dp is 123.45

So, 47.0235 to three dp is \qquad

$$
47 \cdot 024
$$

Because
The only numeral dropped is a 5 and the last numeral retained is odd so is increased to the next even numeral.

Now move on to the next frame

Trailing zeros

Sometimes zeros must be inserted within a number to satisfy a condition for a specified number of either significant figures or decimal places. For example:

12645 to two significant figures is 13000 , and $13 \cdot 1$ to three decimal places is $13 \cdot 100$.

These zeros are referred to as trailing zeros.
So that 1515 to two sig fig is

$$
1500
$$

And:
$25 \cdot 13$ to four dp is \qquad

11 Fractions as decimals

Because a fraction is one integer divided by another it can be represented in decimal form simply by executing the division. For example:
$\frac{7}{4}=7 \div 4=1.75$
So that the decimal form of $\frac{3}{8}$ is \qquad
12
$0 \cdot 375$
Because

$$
\frac{3}{8}=3 \div 8=0 \cdot 375
$$

Now move on to the next frame

13 Decimals as fractions

A decimal can be represented as a fraction. For example:
$1.224=\frac{1224}{1000}$ which in lowest terms is $\frac{153}{125}$
So that 0.52 as a fraction in lowest terms is

14

Because

$$
0 \cdot 52=\frac{52}{100}=\frac{13}{25}
$$

Now move on to the next frame

15 Unending decimals

Converting a fraction into its decimal form by performing the division always results in an infinite string of numerals after the decimal point. This string of numerals may contain an infinite sequence of zeros or it may contain an infinitely repeated pattern of numerals. A repeated pattern of numerals can be written in an abbreviated format. For example:

$$
\frac{1}{3}=1 \div 3=0 \cdot 3333 \ldots
$$

Here the pattern after the decimal point is of an infinite number of 3's. We abbreviate this by placing a dot over the first 3 to indicate the repetition, thus:

$$
0 \cdot 3333 \ldots=0 \cdot \dot{3} \quad \text { (described as zero point } 3 \text { recurring) }
$$

For other fractions the repetition may consist of a sequence of numerals, in which case a dot is placed over the first and last numeral in the sequence. For example:

$$
\frac{1}{7}=0 \cdot 142857142857142857 \ldots=0 \cdot 14285 \dot{7}
$$

So that we write $\frac{2}{11}=0 \cdot 181818 \ldots$ as \qquad

Sometimes the repeating pattern is formed by an infinite sequence of zeros, in which case we simply omit them. For example:

$$
\frac{1}{5}=0 \cdot 20000 \ldots \text { is written as } 0 \cdot 2
$$

Unending decimals as fractions

Any decimal that displays an unending repeating pattern can be converted to its fractional form. For example:

To convert $0 \cdot 181818 \ldots=0 \cdot 1 \dot{8}$ to its fractional form we note that because there are two repeating numerals we multiply by 100 to give:

$$
100 \times 0 \cdot \dot{1} \dot{8}=18 \cdot \dot{1} \dot{8}
$$

Subtracting $0 \cdot 1 \dot{8}$ from both sides of this equation gives:

$$
100 \times 0 \cdot \dot{1} \dot{8}-0 \cdot \dot{1} \dot{8}=18 \cdot \dot{1} \dot{8}-0 \cdot \dot{1} \dot{8}
$$

That is:

$$
99 \times 0 \cdot \dot{1} \dot{8}=18 \cdot 0
$$

This means that:

$$
0 \cdot 1 \dot{8}=\frac{18}{99}=\frac{2}{11}
$$

Similarly, the fractional form of $2 \cdot 0 \dot{3} 15$ is found as follows:
$2.0 \dot{1} 1 \dot{5}=2.0+0.0 \dot{3} 1 \dot{5}$ and, because there are three repeating numerals:

$$
1000 \times 0.0 \dot{3} 1 \dot{5}=31.5 \dot{3} 1 \dot{5}
$$

Subtracting $0.0 \dot{1} 15$ from both sides of this equation gives:

$$
1000 \times 0.0 \dot{3} 1 \dot{5}-0.0 \dot{3} 1 \dot{5}=31.5 \dot{3} 1 \dot{5}-0.0 \dot{3} 1 \dot{5}=31.5
$$

That is:

$$
999 \times 0.0 \dot{3} 1 \dot{5}=31.5 \text { so that } 0.0 \dot{3} 1 \dot{5}=\frac{31 \cdot 5}{999}=\frac{315}{9990}
$$

This means that:

$$
2 \cdot 0 \dot{3} 1 \dot{5}=2 \cdot 0+0 \cdot 0 \dot{3} 1 \dot{5}=2+\frac{315}{9990}=2 \frac{35}{1110}=2 \frac{7}{222}
$$

What are the fractional forms of $0 \cdot \dot{2} 1$ and $3 \cdot 2 i$?
The answers are in the next frame
18

```
7}33\mathrm{ and 3 19}9
```

Because
$100 \times 0 \cdot \dot{2} \dot{1}=21 \cdot \dot{2} \dot{1}$ so that $99 \times 0 \cdot \dot{2} \dot{1}=21$
giving $0 \cdot \dot{2} \dot{1}=\frac{21}{99}=\frac{7}{33}$ and
$3.2 \dot{1}=3.2+0.0 \dot{1}$ and $10 \times 0.0 \dot{1}=0.1 \dot{1}$ so that $9 \times 0.0 \dot{1}=0.1$ giving
$0 \cdot 0 \dot{1}=\frac{0 \cdot 1}{9}=\frac{1}{90}$, hence $3 \cdot 2 \dot{1}=\frac{32}{10}+\frac{1}{90}=\frac{289}{90}=3 \frac{19}{90}$

19 Rational, irrational and real numbers

A number that can be expressed as a fraction is called a rational number. An irrational number is one that cannot be expressed as a fraction and has a decimal form consisting of an infinite string of numerals that does not display a repeating pattern. As a consequence it is not possible either to write down the complete decimal form or to devise an abbreviated decimal format. Instead, we can only round them to a specified number of significant figures or decimal places. Alternatively, we may have a numeral representation for them, such as $\sqrt{2}, e$ or π. The complete collection of rational and irrational numbers is called the collection of real numbers.

At this point let us pause and summarize the main facts so far on decimal numbers

Review summary

Unit 4

1 Every fraction can be written as a decimal number by performing the division.
2 The decimal number obtained will consist of an infinitely repeating pattern of numerals to the right of one of its digits.
3 Other decimals, with an infinite, non-repeating sequence of numerals after the decimal point are the irrational numbers.
4 A decimal number can be rounded to a specified number of significant figures (sig fig) by counting from the first non-zero numeral on the left.
5 A decimal number can be rounded to a specified number of decimal places (dp) by counting from the decimal point.

Review exercise

Unit 4

1 Round each of the following decimal numbers, first to 3 significant figures and then to 2 decimal places:
(a) $12 \cdot 455$
(b) $0 \cdot 01356$
(c) $0 \cdot 1005$
(d) $1344 \cdot 555$

2 Write each of the following in abbreviated form:
(a) $12 \cdot 110110110 \ldots$
(b) $0 \cdot 123123123 \ldots$
(c) $-3 \cdot 11111 \ldots$
(d) $-9360 \cdot 936093609360 \ldots$

3 Convert each of the following to decimal form to 3 decimal places:
(a) $\frac{3}{16}$
(b) $-\frac{5}{9}$
(c) $\frac{7}{6}$
(d) $-\frac{24}{11}$

4 Convert each of the following to fractional form in lowest terms:
(a) $0 \cdot 6$
(b) $1 \cdot \dot{4}$
(c) $1 . \dot{2} \dot{4}$
(d) $-7 \cdot 3$

Complete all four questions. Take your time, there is no need to rush. If necessary, look back at the Unit. The answers and working are in the next frame.

22
(a) $12 \cdot 5,12 \cdot 46$
(b) $0.0136,0.01$
(c) $0 \cdot 101,0 \cdot 10$
(d) $1340,1344 \cdot 56$

2 (a) $12 \cdot \dot{1} 1 \dot{0}$
(b) $0 . \dot{1} 2 \dot{3}$
(c) $-3 \cdot 1$
(d) $-9360 \cdot 9360$

3 (a) $\frac{3}{16}=0 \cdot 1875=0.188$ to 3 dp
(b) $-\frac{5}{9}=-0.555 \ldots=-0.556$ to 3 dp
(c) $\frac{7}{6}=1 \cdot 1666 \ldots=1 \cdot 167$ to 3 dp
(d) $-\frac{24}{11}=-2 \cdot 1818 \ldots=-2 \cdot 182$ to 3 dp

4 (a) $0 \cdot 6=\frac{6}{10}=\frac{3}{5}$
(b) $1 \cdot \dot{4}=1+\frac{4}{9}=\frac{13}{9}$
(c) $1 \cdot \dot{2} \dot{4}=1+\frac{24}{99}=\frac{123}{99}=\frac{41}{33}$
(d) $-7 \cdot 3=-\frac{73}{10}$

Unit 4

231 Round each of the following decimal numbers, first to 3 significant figures and then to 2 decimal places:
(a) $21 \cdot 355$
(b) 0.02456
(c) 0.3105
(d) 5134.555

2 Convert each of the following to decimal form to 3 decimal places:
(a) $\frac{4}{15}$
(b) $-\frac{7}{13}$
(c) $\frac{9}{5}$
(d) $-\frac{28}{13}$

3 Convert each of the following to fractional form in lowest terms:
(a) $0 \cdot 8$
(b) 2.8
(c) $3 \cdot 3 \dot{2}$
(d) $-5 \cdot 5$

4 Write each of the following in abbreviated form:
(a) $1.010101 \ldots$
(b) $9.2456456456 \ldots$

Powers

Unit 5

Raising a number to a power

The arithmetic operation of raising a number to a power is devised from repetitive multiplication. For example:
$10 \times 10 \times 10 \times 10=10^{4}$ - the number 10 multiplied by itself 4 times
The power is also called an index and the number to be raised to the power is called the base. Here the number 4 is the power (index) and 10 is the base. So $5 \times 5 \times 5 \times 5 \times 5 \times 5=\ldots \ldots \ldots$. (in the form of 5 raised to a power)

Compare your answer with the next frame

Because the number 5 (the base) is multiplied by itself 6 times (the power or index).

Now to the next frame
The laws of powers
The laws of powers are contained within the following set of rules:

- Power unity

Any number raised to the power 1 equals itself.

$$
3^{1}=3
$$

So $99^{1}=$ \qquad
On to the next frame

Because any number raised to the power 1 equals itself.

- Multiplication of numbers and the addition of powers

If two numbers are each written as a given base raised to some power then the product of the two numbers is equal to the same base raised to the sum of the powers. For example, $16=2^{4}$ and $8=2^{3}$ so:

$$
\begin{aligned}
16 \times 8 & =2^{4} \times 2^{3} \\
& =(2 \times 2 \times 2 \times 2) \times(2 \times 2 \times 2) \\
& =2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \\
& =2^{7} \\
& =2^{4+3} \\
& =128
\end{aligned}
$$

Multiplication requires powers to be added.
So $8^{3} \times 8^{5}=\ldots \ldots \ldots \ldots$. (in the form of 8 raised to a power)
Next frame
5

Because multiplication requires powers to be added.
Notice that we cannot combine different powers with different bases. For example:
$2^{2} \times 4^{3}$ cannot be written as 8^{5}
but we can combine different bases to the same power. For example:
$3^{4} \times 5^{4}$ can be written as 15^{4} because

$$
\begin{aligned}
3^{4} \times 5^{4} & =(3 \times 3 \times 3 \times 3) \times(5 \times 5 \times 5 \times 5) \\
& =15 \times 15 \times 15 \times 15 \\
& =15^{4} \\
& =(3 \times 5)^{4}
\end{aligned}
$$

So that $2^{3} \times 4^{3}$ can be written as $\ldots \ldots \ldots$. (in the form of a number raised to a power)

- Division of numbers and the subtraction of powers

If two numbers are each written as a given base raised to some power then the quotient of the two numbers is equal to the same base raised to the difference of the powers. For example:

$$
\begin{aligned}
15625 \div 25 & =5^{6} \div 5^{2} \\
& =(5 \times 5 \times 5 \times 5 \times 5 \times 5) \div(5 \times 5) \\
& =\frac{5 \times 5 \times 5 \times 5 \times 5 \times 5}{5 \times 5} \\
& =5 \times 5 \times 5 \times 5 \\
& =5^{4} \\
& =5^{6-2} \\
& =625
\end{aligned}
$$

Division requires powers to be subtracted.
So $12^{7} \div 12^{3}=\ldots \ldots \ldots \ldots$ (in the form of 12 raised to a power)
Check your result in the next frame

Because division requires the powers to be subtracted.

- Power zero

Any number raised to the power 0 equals unity. For example:

$$
\begin{aligned}
1 & =3^{1} \div 3^{1} \\
& =3^{1-1} \\
& =3^{0}
\end{aligned}
$$

So $193^{\circ}=$

9

Because any number raised to the power 0 equals unity.

- Negative powers

A number raised to a negative power denotes the reciprocal. For example:

$$
\begin{array}{rlrl}
6^{-2} & =6^{0-2} & \\
& =6^{0} \div 6^{2} & & \text { subtraction of powers means division } \\
& =1 \div 6^{2} & & \text { because } 6^{0}=1 \\
& =\frac{1}{6^{2}} & &
\end{array}
$$

Also $6^{-1}=\frac{1}{6}$
A negative power denotes the reciprocal.
So $3^{-5}=$ \qquad

Because

$$
3^{-5}=3^{0-5}=3^{0} \div 3^{5}=\frac{1}{3^{5}}
$$

A negative power denotes the reciprocal.
Now to the next frame
11

- Multiplication of powers

If a number is written as a given base raised to some power then that number raised to a further power is equal to the base raised to the product of the powers. For example:

$$
\begin{aligned}
(25)^{3} & =\left(5^{2}\right)^{3} \\
& =5^{2} \times 5^{2} \times 5^{2} \\
& =5 \times 5 \times 5 \times 5 \times 5 \times 5 \\
& =5^{6} \\
& =5^{2 \times 3} \\
& =15625 \quad \text { Notice that }\left(5^{2}\right)^{3} \neq 5^{2^{3}} \text { because } 5^{2^{3}}=5^{8}=390625 .
\end{aligned}
$$

Raising to a power requires powers to be multiplied.
So $\left(4^{2}\right)^{4}=\ldots \ldots \ldots$. \quad (in the form of 4 raised to a power)

Because raising to a power requires powers to be multiplied.
Now to the next frame.
Powers on a calculator
Powers on a calculator can be evaluated by using the x^{y} key. For example, enter the number 4, press the x^{y} key, enter the number 3 and press $=$. The result is 64 which is 4^{3}.

Try this one for yourself. To two decimal places, the value of $1 \cdot 3^{3 \cdot 4}$ is

The result is in the following frame

Because
Enter the number $1 \cdot 3$
Press the x^{y} key
Enter the number $3 \cdot 4$
Press the $=$ key
The number displayed is 2.44 to 2 dp .
Now try this one using the calculator:
$8^{\frac{1}{3}}=\ldots \ldots \ldots \ldots$. The $1 / 3$ is a problem, use the a / c key.
Check your answer in the next frame

Because
Enter the number 8
Press the x^{y} key
Enter the number 1
Press the $a b / c$ key
Enter the number 3
Press = the number 2 is displayed.

Now move on to the next frame

16 Fractional powers and roots

We have just seen that $8^{\frac{1}{3}}=2$. We call $8^{\frac{1}{3}}$ the third root or, alternatively, the cube root of 8 because
$\left(8^{\frac{1}{3}}\right)^{3}=8$ the number 8 is the result of raising the 3 rd root of 8 to the power 3
Roots are denoted by such fractional powers. For example, the 5 th root of 6 is given as $6^{\frac{1}{5}}$ because

$$
\left(6^{\frac{1}{5}}\right)^{5}=6
$$

and by using a calculator $6^{\frac{1}{5}}$ can be seen to be equal to $1 \cdot 431$ to 3 dp . Odd roots are unique in the real number system but even roots are not. For example, there are two 2 nd roots - square roots - of 4 , namely:

$$
4^{\frac{1}{2}}=2 \text { and } 4^{\frac{1}{2}}=-2 \text { because } 2 \times 2=4 \text { and }(-2) \times(-2)=4
$$

Similarly:

$$
81^{\frac{1}{4}}= \pm 3
$$

Odd roots of negative numbers are themselves negative. For example:

$$
(-32)^{\frac{1}{5}}=-2 \text { because }\left[(-32)^{\frac{1}{5}}\right]^{5}=(-2)^{5}=-32
$$

Even roots of negative numbers, however, pose a problem. For example, because

$$
\left[(-1)^{\frac{1}{2}}\right]^{2}=(-1)^{1}=-1
$$

we conclude that the square root of -1 is $(-1)^{\frac{1}{2}}$. Unfortunately, we cannot write this as a decimal number - we cannot find its decimal value because there is no decimal number which when multiplied by itself gives -1 . We have to accept the fact that, at this stage, we cannot find the even roots of a negative number. This would be the subject matter for a book of more advanced mathematics.

Surds

An alternative notation for the square root of 4 is the surd notation $\sqrt{4}$ and, by convention, this is always taken to mean the positive square root. This notation can also be extended to other roots, for example, $\sqrt[7]{9}$ is an alternative notation for $9^{\frac{1}{7}}$.
Use your calculator to find the value of each of the following roots to 3 dp :
(a) $16^{\frac{1}{7}}$
(b) $\sqrt{8}$
(c) $19^{\frac{1}{4}}$
(d) $\sqrt{-4}$
(a) 1.486 use the x^{y} key
(b) 2.828 the positive value only
(c) ± 2.088 there are two values for even roots
(d) We cannot find the square root of a negative number

On now to Frame 18
Multiplication and division by integer powers of 10
If a decimal number is multiplied by 10 raised to an integer power, the decimal point moves the integer number of places to the right if the integer is positive and to the left if the integer is negative. For example:
$1.2345 \times 10^{3}=1234.5$ (3 places to the right) and
$1.2345 \times 10^{-2}=0.012345$ (2 places to the left).
Notice that, for example:
$1.2345 \div 10^{3}=1.2345 \times 10^{-3}$ and
$1.2345 \div 10^{-2}=1.2345 \times 10^{2}$
So now try these:
(a) 0.012045×10^{4}
(b) 13.5074×10^{-3}
(c) $144.032 \div 10^{5}$
(d) $0.012045 \div 10^{-2}$

Work all four out and then check your results with the next frame
(a) $120 \cdot 45$
(b) 0.0135074
(c) 0.00144032
(d) 1.2045

Because
(a) multiplying by 10^{4} moves the decimal point 4 places to the right
(b) multiplying by 10^{-3} moves the decimal point 3 places to the left
(c) $144.032 \div 10^{5}=144.032 \times 10^{-5} \quad$ move the decimal point 5 places to the left
(d) $0.012045 \div 10^{-2}=0.012045 \times 10^{2}$ move the decimal point 2 places to the right

20 Precedence rules

With the introduction of the arithmetic operation of raising to a power we need to amend our earlier precedence rules - evaluating powers is performed before dividing and multiplying. For example:

$$
\begin{aligned}
5\left(3 \times 4^{2} \div 6-7\right) & =5(3 \times 16 \div 6-7) \\
& =5(48 \div 6-7) \\
& =5(8-7) \\
& =5
\end{aligned}
$$

So that:

$$
14 \div\left(125 \div 5^{3} \times 4+3\right)=
$$

Check your result in the next frame

Because

$$
\begin{aligned}
14 \div\left(125 \div 5^{3} \times 4+3\right) & =14 \div(125 \div 125 \times 4+3) \\
& =14 \div(4+3) \\
& =2
\end{aligned}
$$

22 Standard form

Any decimal number can be written as a decimal number greater than or equal to 1 and less than 10 (called the mantissa) multiplied by the number 10 raised to an appropriate power (the power being called the exponent). For example:

$$
\begin{aligned}
57.3 & =5.73 \times 10^{1} \\
423.8 & =4.238 \times 10^{2} \\
6042.3 & =6.0423 \times 10^{3} \\
0.267 & =2.67 \div 10=2.67 \times 10^{-1} \\
\text { and } \quad 0.000485 & =4.85 \div 10^{4}=4.85 \times 10^{-4} \text { etc. }
\end{aligned}
$$

So, written in standard form:
(a) $52674=$
(c) $0.0582=$
(b) $0 \cdot 00723=$
(d) $1523800=$
(a) 5.2674×10^{4}
(c) 5.82×10^{-2}
(b) 7.23×10^{-3}
(d) 1.5238×10^{6}

Working in standard form

Numbers written in standard form can be multiplied or divided by multiplying or dividing the respective mantissas and adding or subtracting the respective exponents. For example:

$$
\begin{aligned}
0.84 \times 23000 & =\left(8.4 \times 10^{-1}\right) \times\left(2.3 \times 10^{4}\right) \\
& =(8.4 \times 2.3) \times 10^{-1} \times 10^{4} \\
& =19.32 \times 10^{3} \\
& =1.932 \times 10^{4}
\end{aligned}
$$

Another example:

$$
\begin{aligned}
175.4 \div 6340 & =\left(1.754 \times 10^{2}\right) \div\left(6.34 \times 10^{3}\right) \\
& =(1.754 \div 6.34) \times 10^{2} \div 10^{3} \\
& =0.2767 \times 10^{-1} \\
& =2.767 \times 10^{-2} \text { to } 4 \mathrm{sig} \text { fig }
\end{aligned}
$$

Where the result obtained is not in standard form, the mantissa is written in standard number form and the necessary adjustment made to the exponent.
In the same way, then, giving the results in standard form to 4 dp :
(a) $472.3 \times 0.000564=$
(b) $752000 \div 0 \cdot 862=$

$$
\text { (a) } 2.6638 \times 10^{-1}
$$

(b) 8.7239×10^{5}

Because
(a) $472.3 \times 0.000564=\left(4.723 \times 10^{2}\right) \times\left(5.64 \times 10^{-4}\right)$

$$
\begin{aligned}
& =(4.723 \times 5.64) \times 10^{2} \times 10^{-4} \\
& =26.638 \times 10^{-2}=2.6638 \times 10^{-1}
\end{aligned}
$$

(b) $752000 \div 0.862=\left(7.52 \times 10^{5}\right) \div\left(8.62 \times 10^{-1}\right)$

$$
\begin{aligned}
& =(7.52 \div 8.62) \times 10^{5} \times 10^{1} \\
& =0.87239 \times 10^{6}=8.7239 \times 10^{5}
\end{aligned}
$$

For addition and subtraction in standard form the approach is slightly different.

Example 1

$$
4.72 \times 10^{3}+3.648 \times 10^{4}
$$

Before these can be added, the powers of 10 must be made the same:

$$
\begin{aligned}
4.72 \times 10^{3}+3.648 \times 10^{4} & =4.72 \times 10^{3}+36.48 \times 10^{3} \\
& =(4.72+36.48) \times 10^{3} \\
& =41.2 \times 10^{3}=4.12 \times 10^{4} \text { in standard form }
\end{aligned}
$$

Similarly in the next example.

Example 2

$$
13.26 \times 10^{-3}-1.13 \times 10^{-2}
$$

Here again, the powers of 10 must be equalized:

$$
\begin{aligned}
13.26 \times 10^{-3}-1.13 \times 10^{-2} & =1.326 \times 10^{-2}-1.13 \times 10^{-2} \\
& =(1.326-1.13) \times 10^{-2} \\
& =0.196 \times 10^{-2}=1.96 \times 10^{-3} \text { in standard form }
\end{aligned}
$$

Using a calculator

Numbers given in standard form can be manipulated on a calculator by making use of the EXP key. For example, to enter the number 1.234×10^{3}, enter 1.234 and then press the EXP key. The display then changes to:

$$
1 \cdot 234 \quad 00
$$

Now enter the power 3 and the display becomes:

$$
1 \cdot 234 \quad 03
$$

Manipulating numbers in this way produces a result that is in ordinary decimal format. If the answer is required in standard form then it will have to be converted by hand. For example, using the EXP key on a calculator to evaluate $\left(1.234 \times 10^{3}\right)+\left(2.6 \times 10^{2}\right)$ results in the display 1494 which is then converted by hand to 1.494×10^{3}.

Therefore, working in standard form:
(a) $43.6 \times 10^{2}+8.12 \times 10^{3}=$ \qquad
(b) $7.84 \times 10^{5}-12.36 \times 10^{3}=$
(c) $4.25 \times 10^{-3}+1.74 \times 10^{-2}=$

> (a) 1.248×10^{4}
> (b) 7.7164×10^{5}
> (c) 2.165×10^{-2}

Preferred standard form

In the SI system of units, it is recommended that when a number is written in standard form, the power of 10 should be restricted to powers of 10^{3}, i.e. 10^{3}, $10^{6}, 10^{-3}, 10^{-6}$, etc. Therefore in this preferred standard form up to three figures may appear in front of the decimal point.

In practice it is best to write the number first in standard form and to adjust the power of 10 to express this in preferred standard form.

Example 1

5.2746×10^{4} in standard form
$=5.2746 \times 10 \times 10^{3}$
$=52.746 \times 10^{3}$ in preferred standard form

Example 2

3.472×10^{8} in standard form
$=3.472 \times 10^{2} \times 10^{6}$
$=347.2 \times 10^{6}$ in preferred standard form

Example 3

3.684×10^{-2} in standard form
$=3.684 \times 10 \times 10^{-3}$
$=36.84 \times 10^{-3}$ in preferred standard form
So, rewriting the following in preferred standard form, we have
(a) $8.236 \times 10^{7}=$
(d) $6.243 \times 10^{5}=$
(b) $1.624 \times 10^{-4}=$
(e) $3.274 \times 10^{-2}=$
(c) $4.827 \times 10^{4}=$
(f) $5.362 \times 10^{-7}=$

26

(a) 82.36×10^{6}
(d) 624.3×10^{3}
(b) 162.4×10^{-6}
(e) 32.74×10^{-3}
(c) 48.27×10^{3}
(f) 536.2×10^{-9}

One final exercise on this piece of work:

Example 4

The product of $\left(4.72 \times 10^{2}\right)$ and $\left(8.36 \times 10^{5}\right)$
(a) in standard form $=$
(b) in preferred standard form $=$

27

(a) 3.9459×10^{8}
(b) 394.59×10^{6}

Because
(a) $\left(4.72 \times 10^{2}\right) \times\left(8.36 \times 10^{5}\right)=(4.72 \times 8.36) \times 10^{2} \times 10^{5}$
$=39.459 \times 10^{7}$
$=3.9459 \times 10^{8}$ in standard form
(b) $\left(4.72 \times 10^{2}\right) \times\left(8.36 \times 10^{5}\right)=3.9459 \times 10^{2} \times 10^{6}$
$=394.59 \times 10^{6}$ in preferred standard form
Now move on to the next frame

28 Checking calculations

When performing a calculation involving decimal numbers it is always a good idea to check that your result is reasonable and that an arithmetic blunder or an error in using the calculator has not been made. This can be done using standard form. For example:

$$
\begin{aligned}
59.2347 \times 289.053 & =5.92347 \times 10^{1} \times 2.89053 \times 10^{2} \\
& =5.92347 \times 2.89053 \times 10^{3}
\end{aligned}
$$

This product can then be estimated for reasonableness as:
$6 \times 3 \times 1000=18000$ (see Frames $13-15$ of Unit 1)
The answer using the calculator is 17121.968 to three decimal places, which is 17000 when rounded to the nearest 1000 . This compares favourably with the estimated 18000, indicating that the result obtained could be reasonably expected.

So, the estimated value of $800 \cdot 120 \times 0.007953$ is \qquad

$6 \cdot 4$

29

Because

$$
\begin{aligned}
800.120 \times 0.007953 & =8.00120 \times 10^{2} \times 7.953 \times 10^{-3} \\
& =8.00120 \times 7.9533 \times 10^{-1}
\end{aligned}
$$

This product can then be estimated for reasonableness as:

$$
8 \times 8 \div 10=6 \cdot 4
$$

The exact answer is $6 \cdot 36$ to two decimal places.
Now move on to the next frame

Accuracy

Many calculations are made using numbers that have been obtained from measurements. Such numbers are only accurate to a given number of significant figures but using a calculator can produce a result that contains as many figures as its display will permit. Because any calculation involving measured values will not be accurate to more significant figures than the least number of significant figures in any measurement, we can justifiably round the result down to a more manageable number of significant figures.

For example:
The base length and height of a rectangle are measured as 114.8 mm and 18 mm respectively. The area of the rectangle is given as the product of these lengths. Using a calculator this product is $2066 \cdot 4 \mathrm{~mm}^{2}$. Because one of the lengths is only measured to 2 significant figures, the result cannot be accurate to more than 2 significant figures. It should therefore be read as $2100 \mathrm{~mm}^{2}$.

Assuming the following contains numbers obtained by measurement, use a calculator to find the value to the correct level of accuracy:
$19.1 \times 0.0053 \div 13.345$

$$
0.0076
$$

Because
The calculator gives the result as 0.00758561 but because 0.0053 is only accurate to 2 significant figures the result cannot be accurate to more than 2 significant figures, namely 0.0076.

At this point let us pause and summarize the main facts so far on powers

Review summary

Unit 5

321 Powers are devised from repetitive multiplication of a given number.
2 Negative powers denote reciprocals and any number raised to the power 0 is unity.
3 Multiplication of a decimal number by 10 raised to an integer power moves the decimal point to the right if the power is positive and to the left if the power is negative.
4 A decimal number written in standard form is in the form of a mantissa (a number between 1 and 10 but excluding 10) multiplied by 10 raised to an integer power, the power being called the exponent.
5 Writing decimal numbers in standard form permits an estimation of the reasonableness of a calculation.
6 In preferred standard form the powers of 10 in the exponent are restricted to multiples of 3 .
7 If numbers used in a calculation are obtained from measurement, the result of the calculation is a number accurate to no more than the least number of significant figures in any measurement.

Review exercise

331 Write each of the following as a number raised to a power:
(a) $5^{8} \times 5^{2}$
(b) $6^{4} \div 6^{6}$
(c) $\left(7^{4}\right)^{3}$
(d) $\left(19^{-8}\right)^{0}$

2 Find the value of each of the following to 3 dp :
(a) $16^{\frac{1}{4}}$
(b) $\sqrt[3]{3}$
(c) $(-8)^{\frac{1}{3}}$
(d) $(-7)^{\frac{1}{4}}$

3 Write each of the following as a single decimal number:
(a) 1.0521×10^{3}
(b) 123.456×10^{-2}
(c) $0.0135 \div 10^{-3}$
(d) $165.21 \div 10^{4}$

4 Write each of the following in standard form:
(a) $125 \cdot 87$
(b) 0.0101
(c) 1.345
(d) $10 \cdot 13$

5 Write each of the following in preferred standard form:
(a) 1.3204×10^{5}
(b) 0.0101
(c) 1.345
(d) 9.5032×10^{-8}

6 In each of the following the numbers have been obtained by measurement. Evaluate each calculation to the appropriate level of accuracy:
(a) $13.6 \div 0.012 \times 7.63-9015$
(b) $\frac{0.003 \times 194}{13.6}$
(c) $19.3 \times 1.04^{2.00}$
(d) $\frac{18 \times 2.1-3.6 \times 0.54}{8.6 \times 2.9+5.7 \times 9.2}$

Complete all of these questions.

Look back at the Unit if you need to.
You can check your answers and working in the next frame.
1 (a) $5^{8} \times 5^{2}=5^{8+2}=5^{10}$
(b) $6^{4} \div 6^{6}=6^{4-6}=6^{-2}$
(c) $\left(7^{4}\right)^{3}=7^{4 \times 3}=7^{12}$
34
(d) $\left(19^{-8}\right)^{0}=1$ as any number raised to the power 0 equals unity

2 (a) $16^{\frac{1}{4}}= \pm 2.000$
(b) $\sqrt[3]{3}=1.442$
(c) $(-8)^{\frac{1}{5}}=-1 \cdot 516$
(d) $(-7)^{\frac{1}{4}}$ You cannot find the even root of a negative number

3 (a) $1.0521 \times 10^{3}=1052.1 \quad$ (b) $123.456 \times 10^{-2}=1.23456$
(c) $0.0135 \div 10^{-3}=0.0135 \times 10^{3}=13.5$
(d) $165.21 \div 10^{4}=165.21 \times 10^{-4}=0.016521$

4
(a) $125.87=1.2587 \times 10^{2}$
(b) $0.0101=1.01 \times 10^{-2}$
(c) $1.345=1.345 \times 10^{0}$
(d) $10.13=1.013 \times 10^{1}=1.013 \times 10$

5 (a) $1.3204 \times 10^{5}=132.04 \times 10^{3}$
(b) $0.0101=10.1 \times 10^{-3}$
(c) $1.345=1.345 \times 10^{0}$
(d) $9.5032 \times 10^{-8}=95.032 \times 10^{-9}$

6 (a) $13.6 \div 0.012 \times 7.63-9015=-367 . \dot{6}=-370$ to 2 sig fig
(b) $\frac{0.003 \times 194}{13.6}=0.042794 \ldots=0.04$ to 1 sig fig
(c) $19.3 \times 1.04^{2.00}=19.3 \times 1.0816=20.87488=20.9$ to 2 sig fig
(d) $\frac{18 \times 2.1-3.6 \times 0.54}{8.6 \times 2.9+5.7 \times 9 \cdot 2}=\frac{35.856}{77.38}=0.46337554 \ldots=0.463$ to 3 sig fig

Review test
351 Write each of the following as a number raised to a power:
(a) $3^{6} \times 3^{3}$
(b) $4^{3} \div 2^{5}$
(c) $\left(9^{2}\right)^{3}$
(d) $\left(7^{0}\right)^{-8}$

2 Find the value of each of the following to 3 dp :
(a) $15^{\frac{1}{3}}$
(b) $\sqrt[5]{5}$
(c) $(-27)^{\frac{1}{3}}$
(d) $(-9)^{\frac{1}{2}}$

3 Write each of the following as a single decimal number:
(a) 3.2044×10^{3}
(b) $16 \cdot 1105 \div 10^{-2}$

4 Write each of the following in standard form:
(a) $134 \cdot 65$
(b) 0.002401

5 Write each of the following in preferred standard form:
(a) $16 \cdot 1105 \div 10^{-2}$
(b) 9.3304

6 In each of the following the numbers have been obtained by measurement. Evaluate each calculation to the appropriate level of accuracy:
(a) $11.4 \times 0.0013 \div 5.44 \times 8.810$
(b) $\frac{1 \cdot 01 \div 0.00335}{9 \cdot 12 \times 6 \cdot 342}$

Number systems

1 Denary (or decimal) system
This is our basic system in which quantities large or small can be represented by use of the symbols $0,1,2,3,4,5,6,7,8,9$ together with appropriate place values according to their positions.

For example	2	7	6	5	.	3	2	1_{10}
has place values	10^{3}	10^{2}	10^{1}	10^{0}		10^{-1}	10^{-2}	10^{-3}
	1000	100	10	1		$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$

In this case, the place values are powers of 10 , which gives the name denary (or decimal) to the system. The denary system is said to have a base of 10. You are, of course, perfectly familiar with this system of numbers, but it is included here as it leads on to other systems which have the same type of structure but which use different place values.

Binary system

This is widely used in all forms of switching applications. The only symbols used are 0 and 1 and the place values are powers of 2 , i.e. the system has a base of 2 .

The small subscripts 2 and 10 indicate the bases of the two systems. In the same way, the denary equivalent of $1101 \cdot 011_{2}$ is \qquad to 3 dp .

$$
13 \cdot 375_{10}
$$

Because

$$
\begin{aligned}
& 1 \\
= & 1 \\
= & 0 \\
= & 13 \frac{3}{8}=13 \cdot 375_{10}
\end{aligned}
$$

Octal system (base 8)

This system uses the symbols

$$
0,1,2,3,4,5,6,7
$$

with place values that are powers of 8 .

That is

$$
357 \cdot 321_{8}=239 \cdot 408_{10} \text { to } 3 \mathrm{dp}
$$

