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Preface

About this book

This book is a bridging text for students and researchers in the human and behavioral sciences.
The ideal reader will have some familiarity with inferential statistics – perhaps as part of an
undergraduate degree in a discipline such as psychology, cognitive science or ergonomics –
and be interested in deepening their understanding or learning new material. This book aims to
bridge the gap between a reader’s existing understanding of statistics and that required to apply
and interpret more advanced statistical procedures.

I have also tried to make the book a helpful resource for experienced researchers who wish
to refresh their statistical knowledge or who have good understanding of a ‘narrow’ but fairly
advanced topic such as analysis of variance. I hope it will allow these readers to expand from
islands of existing expertise to new territory.

The book starts with a review of basic inferential statistics, beginning with descriptive statis-
tics, probability distributions and statistical inference (in the form of confidence intervals and
significance tests). If you are already familiar with these topics I would encourage you to
look through these chapters to refresh your understanding. In addition, this material may be
presented in a slightly different way (e.g., from a different perspective or in greater depth).

Later chapters introduce core topics such as, regression, correlation and covariance, effect
size, and statistical power. Unless you have advanced training in statistics it is likely that you
will benefit from looking closely at this material – it is fundamental to an appreciation of later
content. Two further chapters consider the messiness inherent in working with real data (partic-
ularly data from human participants). The approach I adopt is to give a taster of some methods
for exploring and dealing with messy data, rather than provide a comprehensive recipe for
checking and solving every possible problem. This is both for practical reasons (as each of
these chapters could be a book in its own right) and because the best approach in any particular
situation depends on what you are trying to do and the context from which the data are drawn.

Later chapters cover what I consider to be advanced material: multiple regression, analysis
of variance, analysis of covariance, and the general linear model. Before covering these topics
I review alternatives to classical, frequentist inference (and significance tests in particular). In
order to get the most out of the more advanced material in the book, you will need to understand
the problems inherent in relying (solely) on a p value from a significance test for inference. I also
think it important to go beyond criticism of the p value approach and present viable alternatives.
Three are presented here: Bayesian, likelihood, and information theoretic approaches to infer-
ence. There are important connections (and distinctions) between these three approaches. In
this chapter, I sacrifice depth for breadth (though there is sufficient material to run a range of
analyses using each approach).

The final chapters explore the most challenging topics. Also included are chapters on inter-
action effects and contrasts. These topics are extremely important for researchers in the human
and behavioral sciences, but are often covered only briefly (if at all) in introductory classes.
My goal here is to remedy this deficit. The final two chapters introduce generalized linear models
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Preface xxi

(for discrete outcomes) and multilevel models (with emphasis on repeated measures models).
I have tried to emphasize the links between these advanced topics and the general linear model
and to demonstrate what they offer over and above simpler models.

If you want to learn and understand what is covered, it is essential that you have a go at
applying it. Each chapter contains worked examples. Many of these use real data sets. These are
necessarily a bit messy and don’t always lead to clear answers (and several data sets are chosen
because they have interesting or unusual quirks). My aim is to illustrate some of the challenges
of working with real data sets (and the importance of data exploration and model checking).
In other cases I have resorted to creating artificial data sets to illustrate a particular point, or
to make it easier to conduct calculations by hand. These data sets are carefully constructed
to meet the requirements of the example – though you will sometimes encounter real data sets
with similar properties. In general, the early examples use hand calculation while later examples
require you to use a computer.

Hand calculation can sometimes help you to understand how an equation works or demys-
tify a (supposedly) complex technique. This will depend on your confidence and ability with
basic mathematical operations. This doesn’t work with every procedure, and in many examples
I explain how to use a computer package to provide intermediate values that, when put together
in the right way, illustrate what is going on. From time to time the mathematics is sufficiently
challenging that I merely describe the gist of what is happening (and rely on the computer to
provide a complete solution). Where necessary, I refer interested readers to a more detailed
mathematical account of what is taking place.

The contents of the book differ from the coverage of a typical introductory or intermediate
statistics course in the behavioral or human sciences. One difference is the breadth of coverage,
which runs from descriptive statistics to generalized linear and multilevel models. Another is the
reduced emphasis on null hypothesis significance tests and increased emphasis on confidence
intervals or other inferential tools. Several topics have more prominence than you might expect:
graphical methods; effect size; contrasts and interactions. Other topics have less emphasis
or are presented differently: psychometrics, multivariate analysis of variance, non-parametric
statistics; and pairwise comparisons. I have chosen to focus on univariate methods – methods
for the analysis of a single outcome measure (though there may be many predictor variables).
Covering multivariate statistics (in the sense of modeling multiple outcomes) and psychomet-
rics would probably have doubled the page count. Nonparametric statistics are covered, but
in an atypical way. Several methods, often considered to be ‘nonparametric’ (e.g., bootstrap-
ping, kernel density estimation, the rank transformation and robust regression), are integrated
into the text at appropriate points. I have, in particular, avoided describing a large number of
rank transformation tests in detail. My preference is to emphasize the link between parametric
and so-called non-parametric approaches and to encourage consideration of robust methods
as alternatives to the usual (e.g., least squares) models.

If there is a single message to take away from this book, it is that statistical modeling is not
a set of recipes or instructions. It is the search for a model or set of models that capture the
regularities and uncertainties in data, and help us to understand what is going on.

Software

Many of the statistical tools described in the book require specialist software to run them.
Nearly all the examples were implemented in the free, open source statistical programming
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environment R (R Core Development Team, 2011). This will run on PC, Mac and Linux operat-
ing systems. Installation on a Mac or PC is generally very easy. For details on downloading and
installing R see: http://cran.r-project.org/

R works slightly differently on PC, Mac and Linux machines and for this reason I have, for the
most part, avoided referring to platform-specific features of R (e.g., resizing windows, printing,
opening or saving files). There are many online guides and books that run through the basics of
installing and running R (in addition to the information available when you download R for the
first time).

At the end of each chapter, I provide a detailed description of the R code used to reproduce
the examples in that chapter. Data sets and R scripts for each chapter are available with the
online resources for this book. I assume no previous knowledge of R (and only limited famil-
iarity with statistical computing). Although I am not trying to teach R per se, I have tried to
include enough explanation of how R works for readers, if they wish, to learn it as they go
along. To this end, the complexity of the R code being used increases gradually from Chapter 1
through to Chapter 18. In some cases I have glossed over fine grain technical details about how
R works (e.g., the difference between ‘modes’ of vector) and used generic terms such as ‘string’
alongside R-specific terms such as ‘data frame’.

As well as R code, I provide very brief notes on relevant SPSS syntax at the end of each
chapter (where relevant). SPSS is the most widely used statistics package in the human and
behavioral sciences (in the UK at least). These notes are included for two reasons: (1) to reveal
some of the hidden features and capabilities of SPSS, and (2) to highlight the advantages of
using R alongside or in place of SPSS.

Mathematics

To get the most from this book you will need to have basic mathematical competence. I assume
readers will have mastered basic arithmetic (e.g., addition, subtraction, division and multiplica-
tion) and be familiar with concepts such as, fractions, decimals, rounding, negative numbers,
squares and square roots, and cubes and cubed roots. Knowing the order in which to apply
arithmetic operations (e.g., PEMDAS or BODMAS) is also necessary. You should also have some
understanding of percentages, probabilities and ratios (and perhaps reciprocals, exponents, log-
arithms and factorials) and simple algebra. If you are rusty on any of these topics don’t worry
too much – as there will be some ‘refresher’ material in each chapter.

I would expect readers to be able to answer the following arithmetic problems without much
difficulty:

4 + 3 × 5 =? 6(3 − 1) =?
√

9 =?

102 =?
9
2

=? 0.5 × 0.5 =?

I would also expect readers to understand what the following equations mean, and (perhaps
with a little help) be able to solve them:

3x + 1 = 10 ⇒ x =? 4! =?
√

2 × √
2 =?

P(A) + P(∼ A) =? 3√27 =? −2 × −3 =?
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In addition to mathematical competence, I anticipate some familiarity with data collection,
exploration and analysis. This may include experimental design, descriptive statistics and sim-
ple graphical methods such as line graphs or scatter plots (and technical terms such as x-axis
and y-axis). Again, the text contains refresher material on most of these topics.

Many of the examples refer to ‘hand calculation’. This is a fuzzy concept, but I take it to
mean reproducing the calculations step-by-step as if doing them by hand. It therefore includes
using paper and pencil, mental arithmetic, pocket calculators or spreadsheets (if used in the
correct way). In fact, a spreadsheet is one of the best ways to organize hand calculations to
understand what they are doing (provided you know how to use one and are careful to set out
all the intermediate steps).

Boxed sections and online supplements

As well as learning features (such as examples, sections on R code, and SPSS notes), there
are two types of boxed section used throughout the book. One type covers key concepts or
important ideas that are referred to in several different chapters. These are referred to as ‘key
concepts’ and numbered by chapter and serial position within chapter (e.g., Key Concept 2.1
is the first key concept box in Chapter 2). The other is a more traditional boxed section that is
used to improve the flow of the text and contains material that is relatively self-contained (and
that is generally referred to again only within that chapter). These are referred to as ‘boxes’
and numbered by chapter and serial position within chapter (e.g., Box 1.2 is the second boxed
section in Chapter 1).

In addition to the boxed sections there are five online supplements. Supplements 1, 2 and 5
cover advanced topics that are not central to the text, but will be very useful for some readers
(meta-analysis, dealing with missing data and loglinear models). Supplements 3 and 4 provide
more detail on peripheral topics that are mentioned in the main text (replication probabilities
and pseudo-R2 measures).
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2 Serious Stats

1.1 Chapter overview

The aim of this chapter is to review some basic statistical ideas, with particular emphasis on the
use of descriptive statistics to explore data. The main focus is on statistics for summarizing the
central tendency and dispersion of a sample. Key ideas introduced here include the distinction
between sample statistics and population parameters, and between inferential or descriptive
statistics.

1.2 What are data?

To understand what data are, it helps to consider the distinction between numbers and data.
Numbers are abstract tokens or symbols used for counting or measuring. Data are num-
bers that represent ‘real world’ entities.1 The crucial feature that distinguishes data from
numbers is that they are connected to a particular context and acquire meaning from that
connection.

Example 1.1 Take a look at this set of numbers (labeled D1 for later reference):

12 14 9 11 15 11 D1

Their interpretation would be very different if they described the ages (in years) of six children
than if they described the number of words remembered by a participant from a series of six 20-
word lists. Not only is the context vital in understanding what the numbers describe, it also has
profound implications for what you might want to do with them (and on the subsequent findings
of a statistical analysis). Knowing that 11 is an age (in years) makes it reasonable to represent it
as 11 × 12 = 132 months. Alternatively, knowing that the six numbers represent repeated memory
measures from the same individual makes it likely that the numbers can be considered as some
combination of the participant’s learning ability, improvement with practice and chance factors
(influences that are potential components of what, in statistics, is usually termed error).

The context, in turn, depends on the process that generated the data. This process can
for many sciences be characterized as collecting a subset (a sample) of observations from a
larger set (the population) of observations that are of interest. The idea of taking a sample
from a population is central to understanding statistics, and at the heart of most statistical
procedures.

Working with samples is attractive to researchers because the populations themselves are
usually considered to be infinitely large (and so beyond reach). Even where a population might
reasonably be considered finite it is rarely possible, in practice, to sample the whole population.
This presents a fundamental difficulty for researchers. A sample, being a subset of the whole
population, won’t necessarily resemble it. Therefore, the information the sample provides about
the population is inherently uncertain. Statistics involves finding ways to deal with this uncer-
tainty. For example, the uncertainty can be quantified and expressed in terms of probability (see
Box 1.1).
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Box 1.1 Probability

There are many ways to represent the uncertainty of an event numerically, but probability is the
most common. A probability is a number between zero and one, where one indicates that the
event is certain to occur and zero that it is certain not to occur. The probability of an event x can be
written as P(x) or Pr(x).

A probability can be interpreted in several ways, but a reasonable place to start is to consider
the probability as the relative frequency with which an event such as x occurs in the long run. For
instance, if the event H was the occurrence of heads on tossing a fair coin then, in the long run,
equal numbers of heads and tails would be observed, and Pr(H) would be 0.5. For example, if a fair
coin were tossed 1 million times you’d expect to see 500,000 heads out of 1 million coin tosses and
so Pr(H) = 500,000/1,000,000 = 0.5.

The problem of dealing with the uncertainty inherent in taking a sample from a population
is fundamental to understanding even the simplest statistical tools – the descriptive statistics
that are the focus of this chapter. The next section considers these issues in a little more detail,
before turning to consider a range of tools for describing and summarizing data.

1.3 Samples and populations

An important point to understand about the concept of a population in statistics is that it is an
abstraction. Rarely, if ever, does it refer to a particular set of things (e.g., objects or people). The
customary assumption is that samples are drawn from an infinitely large, hypothetical popula-
tion defined by the sampling procedure. A well-designed study will use (or attempt) a sampling
procedure that draws from a population that is relevant to the aims of the research. For most
(and perhaps all) research, the sampling procedure is imperfect and introduces potential bias
into the sample (e.g., because not every member of the population has an equal chance of being
chosen). Therefore, the sample will almost never match the intended population exactly. A good
study is one that minimizes these problems and thus limits their impact on the statistical model
and on the research findings.

Treating a sample as drawn from an infinite population may at first seem unreasonable.
However, it represents a fairly cautious position for a researcher to take in practice. Before we
examine why, we need to introduce a few technical terms. The first term is the sample size –
the number of observations (data points) in a sample – usually abbreviated to n. The sample
size can, in theory, vary from one to ∞ (infinity). The larger the population, the less information
(proportionately) a sample of size n provides about the population of size N.2 The sampling
fraction is the ratio of sample to population size: n/N. In theory, the larger the sampling fraction
the more closely the sample matches the population and the more likely that characteristics of
the sample are also true of the population. Therefore, treating the population as infinitely large is
a very cautious option, one that regards the sampling fraction as negligible. The consequence of
this cautious position is that conclusions drawn from looking at the sample are assessed more
carefully before deciding that they are likely to generalize to the population. The practical limits
on generalization from a statistical model depend on the adequacy of the sampling procedure
in relation to the objective of the research.
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For example, if a researcher collects data from an opportunity sample of 100 healthy people
from the city of Nottingham this limits the generalizability of any findings (e.g., to people broadly
similar to those making up the sample). For some research questions, this restriction would be
severely limiting, but for others it would not. Assessing the adequacy of the sample depends on
extra-statistical factors – notably an understanding of the research domain. This is why it helps
greatly if researchers have routinely obtained information about the context of the data (e.g.,
demographic data about human participants). An opportunity sample from Nottingham might
be adequate to assess the impact of caffeine on simple reaction time, but not to determine
the relative popularity of different UK soccer teams. For the caffeine example it is probably
reasonable to assume a certain degree of similarity in physiological response to caffeine among
healthy adults. For the football example the sample is likely to be biased (e.g., by support for
local teams).

1.3.1 Exploring data

There are many good reasons to explore data, but a very important one is to understand the
relationship between a sample and the population from which it is drawn. In order to extrap-
olate from information in any sample it is necessary to have at least some knowledge of that
population. This process of extrapolation from sampled data is known as statistical general-
ization. The methods used are termed statistical inference or statistical modeling depending on
whether the primary interest is in testing a specific hypothesis or in understanding the process
that generated the observed data (e.g., by predicting new observations). This book looks broadly
at statistical modeling – building a statistical model of the process that generated the observed
data. Statistical inference is a special case of statistical modeling where the primary purpose of
the model (perhaps the only purpose) is to test a specific hypothesis.

In combination with graphical techniques, descriptive statistics form the core methods of
exploratory data analysis (Tukey, 1977). Exploratory analyses are used to become familiar with
a data set and will often throw up specific hypotheses (e.g., potential explanations of what is
happening). In contrast, confirmatory data analysis is employed to test hypotheses. Sometimes
these are derived from scientific theory, but they also often emerge from exploratory analy-
ses. Although this distinction is useful, it is not always clear-cut. In particular, thoughtful use
of descriptive statistics and graphical techniques can be a very powerful method for testing
hypotheses, while confirmatory analyses sometimes lead to reinterpretation of data (e.g., when
checking the quality inferences or predictions).

Descriptive statistics, also called summary statistics, are an excellent starting point for most
statistical analyses and are a good way to summarize and communicate information about a
data set. In some situations, descriptive statistics are sufficient to settle a research question (e.g.,
on the rare occasions when the sample comprises most or all of the whole population of inter-
est). For example, if you want to know what proportion of babies are male and what proportion
female it is probably sufficient to look at descriptive statistics for hospital births (the proportion
of males is between 0.48 to 0.49). It can also happen that patterns in the data are strong or
clear enough to support inferences using descriptive statistics (e.g., that men tend to be taller
than women). However, in my view, the main role for descriptive statistics is to get a feel for
a data set. A lot of time and effort can be saved and many mistakes avoided by even a quick
exploratory analysis of data. Using appropriate descriptive statistics and graphical methods will
often catch basic problems before they cause any serious trouble and will help guide you toward
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an appropriate statistical model. Take three of the most elementary descriptive statistics: the
sample size (n), the minimum (min) and the maximum (max). These will often reveal problems
in coding, transcribing or data entry errors.

Example 1.2 Imagine that we have collected data from 100 students in an introductory statistics
class. These students all rate their understanding of statistics after completing the class on a scale
from one (‘no understanding’) to seven (‘excellent understanding’).

The sample size, minimum and maximum for the ratings appear as follows in computer output:

n 101
min 1
max 77

This sort of output is fairly common for manual entry of data onto a computer. Although there were
100 students the apparent sample size is 101. This is most likely because one of the ratings was
entered into the computer twice by accident. The min of one is plausible (though disappointing),
but the max of 77 is a clear error – probably arising from hitting a key twice in computer entry.
While it is always good practice to check data entry (even if the data are plausible) these descriptive
statistics alert us to serious mistakes.

This may seem like mere common sense – hardly worth mentioning – but trivial errors such as
these are often missed (even by experienced researchers). They are also more likely to be missed
in a complex analysis – where an unusual outcome may be attributed to all sorts of other causes.
There is much more to exploratory analysis than this, but embarking on a statistical analysis without
getting the basics right is extremely dangerous.

1.3.2 Types of data

Different contexts provide us with different kinds of data. One of the simplest and most impor-
tant distinctions is between discrete and continuous data. Discrete data are restricted in the
values that can legitimately occur. For example, binary discrete data can take on only two pos-
sible values (usually represented as zero or one). Another common type of discrete data used
in research is frequency data – often known as count data (because it involves counting things).
Continuous data can take on intermediate values within a given range, for example, physical
measures, such as, time and distance can (in principle) take on any value from zero to infin-
ity. The difference between two such measures can therefore range between minus infinity and
infinity.

A widely taught, but controversial, distinction was proposed by Stevens (1946; 1951). He pro-
posed scales of measurement that classify data as nominal (also known as categorical), ordinal,
interval or ratio. He argued that these measurement scales are derived from the underlying rela-
tionships between the numbers used to represent a data set. Furthermore, he argued that they
limit the mathematical operations that are permitted on data of a given type. Nominal data can
be represented by numbers, but the relationship between the numbers is arbitrary (e.g., assign-
ing one to represent blue eye colour and two to represent brown eye colour). If data are ordinal,
the numbers preserve information about the relative magnitude of what is measured, but not
the absolute magnitude (e.g., data about ages are often collected in the form of age groups or
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bands with one representing 21–30-year olds, two representing 31–40-year olds and so forth).
Interval data preserve continuous, linear relationships between what is measured (e.g., tem-
perature in degrees Centigrade). This means that a given interval between two numbers on the
scale (e.g., 5 − 3 = 2) is equivalent to any other interval of the same magnitude (e.g., 10 − 8).
Ratio scales are interval measurements that have a ‘true’ zero point (e.g., weight in kilograms
or temperature in degrees Kelvin). This means that the number zero represents the point at
which the quantity being measured is absent (i.e., nothing is left).

According to this scheme, nominal data is limited to operations, such as counting and ordinal
data, to operations, such as placing numbers in rank order, whereas interval data also permits
addition and subtraction. Ratio scales permit the full range of arithmetic operations and, as the
name suggests, allow meaningful ratios between numbers on the scale to be constructed (e.g.,
10/5 = 2 implies ten is twice as large as five). Ratio scales are probably quite rare for simple
measurements, but an interesting observation is that the difference between two numbers on
an interval scale is a ratio (because zero represents a ‘true’ absence of the difference).

There are many critiques (and some defenses) of Stevens’ measurement scales (e.g., see
Velleman and Wilkinson, 1993, for an overview). Among the more cogent criticisms is the
observation that a measurement scale is not a fixed property of data – it also depends on the
use to which the data are put. Lord (1953) used the example of football shirt numbers. For
many purposes they would be considered nominal data, but it is easy to imagine situations
where the numbers convey additional information (perhaps because players derive status from
lower or higher numbers, or because they indicate the order in which players joined a team).
A major drawback is that the system may also lead people to neglect rather important charac-
teristics of their measurements. Many measurements are bounded in some way (e.g., at zero).
Such limits are often much more important for both theoretical and practical purposes when
selecting a statistical model or procedure. For example, a statistical model that predicts impos-
sibly low or high values for a measure is problematic (though it may be adequate for some
purposes).

Understanding the context of the data that have been sampled and being sensitive to the
constraints that context places on a statistical model is important. Classification of data in types
(such as those proposed by Stevens) is probably not the best way to go about this. Classifi-
cation schemes inevitably lose information about the context, so using them in a rigid way
to determine what to do is dangerous. Velleman and Wilkinson (1993) go as far as to say,
“the single unifying argument against proscribing statistics based on scale type is that it does
not work”.

An alternative approach – that advocated here – is to consider a range of factors of data that
impact on the statistical model you are considering. These factors include whether data are
discrete or continuous, but other factors, such as the probability distribution being assumed,
the size of the sample and what the model is being used for, are also important. Later chapters
will consider several of these factors in greater detail.

1.4 Central tendency

One way to describe data is to reduce it to a single number; a number that is in some way typical
or representative of the data as a whole. This corresponds to the everyday notion of an average;
a notion that encompasses a range of meanings from ‘typical’, ‘most common’ to ‘mediocre’.
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No single way to communicate central tendency will work for all data sets, so it is useful to
distinguish between different measures of central tendency. Some common measures, such as
the mode, median and mean (and a few less widely known ones) are reviewed below.

As well as being used to describe or summarize samples, many of these measures are also
vital in relation to making inferences about the population from which a sample was taken. The
mode, median and mean of a sample will nearly always differ from those of the population being
sampled. This is an example of the uncertainty that arises through sampling from a population.
Even in the ideal situation that every observation in the population has an equal chance of being
sampled (e.g., because observations are sampled at random) any sample that does not exhaust
all members of the population will almost always differ from it in some way. This leads to the
important distinction between a statistic and a parameter (see Key Concept 1.1).

KEY CONCEPT 1.1

Parameters, statistics and the law of large numbers

A parameter can be defined as a property of a population, in contrast to a statistic (which is a property
of a sample). Taking a subset of the population makes it unreasonable to conclude that a characteristic
of the sample, such as its mean, is the same as that of the population. Instead, the statistic provides a
way to estimate a population parameter. It is customary to distinguish statistics from the parameters they
estimate by using different (but usually related) symbols. One convention is to use a Greek letter for the
population parameter and a Latin letter for the sample statistic. Another convention is to use the same
symbol, but differentiate a sample estimate by the ‘hat’ symbol (∧). Thus the population mean is often
designated μ (the Greek letter ‘mu’, pronounced ‘myoo’) and the sample statistic could be represented by
M or μ̂ (‘mu-hat’). This is only a convention (and both Latin and Greek letters can have other roles). The
mean can also be denoted by a placing a horizontal bar over another symbol. Thus x̄ (‘x-bar’) represents
the mean of x.

It is easy to show that statistics are likely to resemble the population parameters they estimate by invok-
ing the notion of the sampling fraction n/N introduced earlier. As sample n approaches N (i.e., the sampling
fraction increases) sample statistics tend to resemble population parameters ever more closely. When the
sampling fraction is 1 (i.e., n = N) a statistic such as the mean is necessarily equal to the parameter being
estimated.

It is possible to go further by appealing to the law of large numbers. According to this law, a sample
average converges on its expected value as the sample size n increases.∗ One way to understand this is to
consider sampling without replacement from a finite population of size N. Sampling without replacement
means that no data point can be sampled more than once. When sampling with replacement, it is possible
to resample the same value at a later stage. As a sample of size n increases, the sample mean, μ̂, computed
from n data points is likely to be closer to the population mean μ (computed from N data points). Even
though the effective N is infinite μ̂ will be indistinguishable from μ for all practical purposes when n
is sufficiently large. A further implication of this law is that parameters that are also averages can be
interpreted as the expected value of a statistic in the long run (i.e., repeatedly taking a large number of
observations).

* If the statistic is unbiased its expected value is the population parameter.

A parameter is a property of a population whereas a statistic is a property of a sample. The
connection between them is that descriptive statistics, for instance a mean, provide estimates
of parameters, such as the population mean. The quality of the estimate depends on a range
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of factors, including (among others) the nature of the process that generated the sample, the
amount of uncertainty in the population and – as already mentioned – the size of the sample.

1.4.1 Mode

The mode is the most common value in a sample. The sample labeled D1 (from Example 1.1)
comprised the following numbers:

12 14 9 11 15 11 D1

The mode of D1 is, therefore, 11 (and n=6). One of important features of the mode is that a set of
numbers may have a single mode (being unimodal) or more than one mode (being multimodal).
For example, a set of numbers with two modes would be bimodal. The mode is often chosen to
summarize frequency or count data (particularly for small numbers of unordered categories).

For continuous data the mode can be useful, but it is also common to find samples where the
mode is not very informative. For the following nine numbers, the mode is 14:

14 14 18 35 43 51 62 88 91

Although this enables you to predict the most common value in the set, it is atypical of the set as
a whole. The mode ignores information about the quantitative relationship between the num-
bers in the set. This makes it more suitable for categorical data – a situation where the numbers
may have no inherent relationship with each other.

The mode – in common with other measures of central tendency – can be used to predict
future outcomes. The mode would be the best value to guess if you wanted to predict the exact
value of a number taken at random from the sample. This tends to work better for discrete
outcomes than continuous ones. For instance, if you wanted to know what ice cream flavor
people prefer, a random sample of 100 people might reveal that chocolate was the modal choice.
Chocolate would be, therefore, the best guess for the favorite flavor in the sample (the guess with
the best chance of being correct) and a good estimate of the best guess for the population. For
continuous data the situation is slightly different. The mode is still the best guess for the sample,
but might be wildly wrong. For instance, if you asked a random sample of 100 people how much
they weighed (to the nearest kilogram) the mode might be 105 kg. This would be the best guess
for the exact weight of someone in the sample, but might be very far from typical. In addition, it
is unlikely to be a good estimate for the population.

Example 1.3 Consider the responses made by a group of ten people to the question: What colour
eyes do you have? If two people respond ‘blue’, five respond ‘brown’ and three respond ‘green’ the
modal eye colour would be brown. Figure 1.1 shows these responses in the form of a bar plot of the
frequencies (a standard way of plotting count data).3 The modal eye colour (brown) is indicated by
the tallest bar in Figure 1.1. One advantage of plotting the data in this way is being able to spot
the mode or modes immediately (which can be hard to detect in even a short list of numbers). The
plot also shows that the sample is unimodal (as the plot has a single peak). Here the mode could
be used to predict the most likely eye colour of a random member of the group. If the group were
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a random sample from a set of people (e.g., university students), and in the absence of any other
information, brown would also be the best guess for eye colour for members of that set (being
correct with probability 5/10 = 0.5). Treating the mode as a best guess at the exact value in the
population being sampled can work quite well for discrete data.
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Figure 1.1 Frequency of eye colour for a sample of ten people

1.4.2 Median

The median is one of the most intuitively appealing measures of central tendency. It is the
central or middle value in a set of n numbers. If n is odd the median requires little effort to
determine. If the numbers are placed in rank order (e.g., lowest to highest) the median is the
middle value. So, for the numbers,

23 42 65 108 111

the median is 65. If n is even, then the median is – in a strict sense – undefined (except in the
unlikely case that the two central numbers take the same value). When n is even the convention
is to take the mid-point between the two central values as the median. If the numbers, 64, 11,
7, 10, 4, 22, are placed in rank order, the resulting set is:

4 7 10 11 22 64
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The two middle values are ten and 11. The median can therefore be computed as
(10 + 11)/2 = 10.5.

The median has some potentially very valuable properties. Any set of numbers can be
described by a single median value and the median divides the set roughly in half (exactly so,
if n is even and there are no ties). Because the median only uses the central one or two values
in its calculation it is not sensitive to extreme scores. For example, the value 64 in the previous
example could be replaced with any value greater than or equal to 11 and the median wouldn’t
change.

The median is generally preferable to the mode if, as with ordinal and continuous data, the
relationships within a set of numbers are meaningful. Its insensitivity to non-central values also
makes it a good choice if there is reason to doubt the accuracy or authenticity of some of the
numbers (e.g., if you think that extreme values may be data entry errors). On the other hand, if
someone is interested in all the non-central values, the median is not a good choice. The median
ignores potentially vital information about a set of numbers. The median is usually preferred as
a description of a typical member of a set of numbers, but is not adequate as a summary of all
the numbers in the set.

The insensitivity of the median to extreme values is a particularly attractive feature when
sampling from populations with a lot of variability. The median generally provides good esti-
mates of a typical population value in these situations – tending to produce values that are close
in absolute distance to the population median (see Box 1.5). One exception, where the median
can be rather misleading, is for multimodal distributions (distributions with several modes),
where the modes could be far apart and the population median might not be close to any of the
modal values.

1.4.3 Arithmetic mean

The arithmetic mean is probably the most widely used measure of central tendency: so widely
employed that it is often referred to (without qualification) as the average or mean. The adjective
‘arithmetic’ distinguishes it from other forms of mean (some of which will be considered later).
An arithmetic mean is calculated by adding up a set of numbers (i.e., taking their sum) and
dividing by n. The set of numbers D1

12 14 9 11 15 11 D1

has a sum of 72 and because n = 6, the arithmetic mean is 72/6 = 12. It is common to report
the arithmetic mean as M (e.g., M = 12) when reporting results, but to refer to it as μ̂ or x̄ in
formulas.4 The symbol μ̂ emphasizes its role as an estimate of the population mean μ.

One way to present the calculation procedure for the arithmetic mean (and other statistics)
is in the form of the equation:

μ̂=

n∑
i=1

xi

n
Equation 1.1

This type of formula is ubiquitous in statistics and can be intimidating at first. A brief explanation
of how they work is given in Box 1.2.
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Box 1.2 Equations involving �

Perhaps the simplest way to understand a formula such as that reproduced below is to view it as a
set of instructions:

μ̂ =

n∑
i=1

xi

n

The � symbol (the Greek capital letter sigma) stands for ‘sum’ and can be interpreted as an instruc-
tion to add up the quantities immediately to its right. Underneath sigma is the element of the
instruction that indicates where to start adding the numbers (when i = 1) and above the sigma
it indicates where to stop (when i = n, the sample size). The x in the formula refers to the set of
numbers in the sample, whereas i is an ‘index’ value for each data point. So, the first number in
the sample D1, 12, is x1 and the last number, 11, is x6. The final element of the instruction involves
dividing the resulting sum by n. Putting all this together, the formula is an instruction to add up the
set of numbers x1 to xn and then to divide the resulting total by n.

Although this type of equation can be off-putting, they are necessary for communicating the
exact procedure used in a calculation. In this case the calculation could easily be communicated in
words, but for a more complex formula (such as Equation 1.10 below) precise notation of some
kind is indispensable.

An important property of the arithmetic mean is that the sum of the distances of each point
from the mean (the deviations from the mean) is zero. Thus, a different way of thinking about
the mean is that it is the value that balances out these deviations (at least when considering
simple arithmetic operations such as addition and subtraction). An important observation is
that, unlike the mode or median, the arithmetic mean uses all n numbers in its calculation.
Changing any number would therefore always have some impact on the mean (though this
impact diminishes as n increases). This has, historically at least, been considered an attractive
property for a descriptive statistic because it implies that all the information in the original set
of numbers has contributed to the final result.

Example 1.4 The 2009 UK Annual Survey of Hours and Earnings reports the median and mean
income for a sample of 18,835 employees as £21,320 and £26,470 respectively. For continuous data
such as earnings, the mode isn’t particularly helpful (perhaps just reflecting the legal minimum wage
for a full-time employee). The mean is a bit higher than the median because the data are not evenly
distributed either side of the median – the high earners are more spread out than the low earners.
This phenomenon is known as skew (specifically positive skew – see Key Concept 2.2). So a small
number of very high earners pull up the mean relative to the median; someone in the sample might
earn £100,000 more than the median, but no one can earn less than zero (£21,320 below median).

Which is the better measure of central tendency here? It depends on what you are trying to
measure. The median tells you what a typical member of the sample earns. More people earn close
to £21,320 than earn close to £26,470. On the other hand if you want to know how much money
the sample as a whole have to spend, the mean is probably a better figure – it better reflects the
total earnings in that period.
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Faced with data such as these it is tempting to think the median is the most informative measure
of central tendency. However, the median can sometimes be very misleading. In 1985 the biol-
ogist Stephen Jay Gould wrote the article ‘The median isn’t the message’, in which he described
being diagnosed with a rare form of cancer three years earlier. He quickly learned that median
mortality for this form of cancer was eight months. Gould (1985) describes his initial ‘stunned’
reaction, before realizing that while the median might be a reasonable description of a typical
patient, he was probably atypical (e.g., being younger and with an early diagnosis). If half of all
patients live between zero and eight months after diagnosis, the other half includes patients who
survived from eight months upwards. Gould doesn’t report the mean survival, but this would have
added further information (because it would incorporate those patients still alive many years after
diagnosis).

Measures of central tendency can provide reasonable predictions of observations from the
same population, but there may well be other information that can be taken into account. The
quality of prediction will also depend on the dispersion of observations around the mean. Both
incomes and survival times are very variable and so neither the median nor the mean would lead
to a particularly accurate prediction on its own. Gould himself lived for another 20 years after
diagnosis.

1.4.4 Geometric mean

An important alternative to the arithmetic mean for certain situations is the geometric mean.
Where the arithmetic mean involves taking the sum of n numbers and dividing by n, the geo-
metric mean involves first calculating the product of n numbers and then taking their nth root.5

Writing the procedure in equation form gives:

μ̂geometric = n√x1 × x2 × . . .× xn Equation 1.2

To see how it works, plug the numbers five and 20 into the equation. Their product is 100 and
the square root of this product (because n = 2) gives a geometric mean of ten:

μ̂geometric = n√x1 × x2 × . . .× xn = 2
√

5 × 20 = 2√100 = 10

Because Equation 1.2 involves multiplication rather than addition, using � would be inappro-
priate. The equivalent symbol for multiplication is � (the capital Greek letter pi). The geometric
mean can therefore be expressed more compactly as:

μ̂geometric =
⎛
⎝ n∏

i=1

xi

⎞
⎠

1/n

Equation 1.3

In what sense is this mean similar to an arithmetic mean? The connection between the
arithmetic mean and the geometric mean becomes obvious if you switch to working with loga-
rithms (see Box 1.3). In the examples that follow we will assume that the natural logarithm (ln)
is used.
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Box 1.3 Arithmetic with logarithms

Logarithms are very convenient mathematical functions that provide a link between addition and
multiplication (and hence also between subtraction and division). Each logarithm has a base that
is needed to scale the link between numbers and the logarithms (but is not that important oth-
erwise). In statistics, two popular choices of base are 10 or e (where e is a mathematical constant
approximately equal to 2.718282). The logarithm of a number x is defined such that if basey = x,
then logbase(x)= y. For instance, if you are working with base 10, then the logarithm 2 is 102 =100.
Conversely, the logarithm of 100 in base 10 is 2 (i.e., log10(100) = 2).

A major reason for working with logarithms is to simplify mathematical operations using multi-
plication. This works because addition of logarithms is equivalent to multiplication of the original
numbers. Consider the following:

log10(100) = 2

log10(1000) = 3

log10(100) + log10(1000) = 5

Given that log10(100) = 2 and log10(1,000) = 3, the answer 5 represents 100 × 1000 = 100,000
(or 105) on the original scale. Adding logarithms of the original numbers gives 2 + 3 = 5. Although
the answer 5 was arrived at by addition using the logarithms, multiplication of the numbers on the
original scale gives the same answer. The base 10 logarithm of 5 represents 100,000 (a 1 followed
by five zeroes). This is also the answer obtained by multiplying 100 by 1000. This property is true
of all addition involving logarithms, hence

logbase(a) + logbase(b) = logbase(a + b)

is equivalent to

basea × baseb = base(a+b)

Going back to the previous example: 102 × 103 = 105.
Subtraction of logarithms is equivalent to division. Thus log10(1,000) − log10(100) =

log10(100/10) = log10(10) = 1 on a logarithmic scale (or 10 on the original scale). Less obvi-
ous is that logarithms reduce exponentiation (raising a base to the power of another number) to
multiplication. For example

log10(100,000) = log10(105) = 5 × log10(10) = 5

The link between exponentiation and multiplication also provides the inverse of the logarith-
mic function; if logbase(x) = y then basey = x. It follows that the function 10x is the inverse for
log10(x).

Logarithms to base e are known as natural logarithms and usually denoted by the function ln(x)
rather than the clumsier loge(x). The inverse is usually denoted by ex. Most statistical procedures
use natural logarithms, but because the choice of base is purely an issue of scaling this is largely a
matter of preference (provided the same base is used throughout a set of calculations). This scale
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shift involves multiplication by a constant (e.g., by ln(10) ≈ 2.3026 to convert from base 10 to
natural logarithms). Natural logarithms are usually just as easy to work with as those for any other
base when you have real data (because it is unusual to have real data that are neat multiples of 10).
For instance:

ln(2) + ln(3) = ln(6) = 1.791759 and

e1.791759 = 6

There are restrictions on the values a base can take (for routine uses of logarithms at least) and
bases other than e, 10 or 2 are uncommon. In general, bases are positive numbers greater than
one and logarithms can only be computed for real numbers greater than zero. Needing to take the
logarithm of zero sometimes makes using logarithms awkward (though there are ways to cope with
this problem).

The arithmetic mean of the logarithms of n numbers is given by the equation

n∑
i=1

ln
(
xi
)

n
Equation 1.4

(In this case natural logarithms have been used, but remember that the choice of base is not
critical – it just represents a shift of scale.) The statistic expressed by Equation 1.4 is on a loga-
rithmic scale and not easy to interpret in relation to the scale of the original sample. This can be
resolved by the transformation ex (the inverse function for the natural logarithm). The geometric
mean is therefore:

μ̂geometric = e

(
1
n

n∑
i=1

ln(xi)

)
Equation 1.5

Example 1.5 To see how this works in practice, we’ll apply the calculation to D1:

12 14 9 11 15 11 D1

For these values M = 12, and the natural logarithms are:

2.48491 2.63906 2.19722 2.39790 2.70805 2.39790

The arithmetic mean of these values is 2.47084 and Mgeometric = e2.47084 = 11.83. Quite a few sta-
tistical procedures work with numbers on a logarithmic scale rather than the original scale. In most
cases the geometric mean will be much easier to interpret than the arithmetic mean of the numbers
on the logarithmic scale. For example, if the original data were earnings per hour in dollars, the
value 11.83 is easy to interpret (as $11.83). The value 2.47084 is not (although it represents the
same quantity on a logarithmic scale where e is the base).
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1.4.5 Harmonic mean

Where the geometric mean is a generalization of the arithmetic mean using logarithms, the
harmonic mean is a generalization using reciprocals (see Box 1.4).

Box 1.4 Reciprocals

A reciprocal is a mathematical function that involves dividing a number into one. The reciprocal of x
is therefore 1 ÷ x (usually written as 1/x). One consequence of this is that when x is a fraction (e.g.,
1/2) or a ratio (e.g., 0.25 meters/second) calculating the reciprocal of x just involves ‘inverting’
the fraction or ratio. For example, 1/2 becomes 2/1 = 2 and 0.25 meters/second becomes four
seconds/meter.

Like logarithms, reciprocals are often used in mathematics to make arithmetic easier. For example,
multiplication of the reciprocal of x is equivalent to division by x:

5 × 1/x = 5/x

Taking the reciprocal of x is the same as raising x to the power of −1. Hence 1/x = x−1. The
reciprocal function is also its own inverse. So taking the reciprocal of a reciprocal reverses the
operation:

(1/x)−1 = x

One drawback of working with reciprocals is that taking the reciprocal of zero is not possible (for
standard arithmetic, at least) and, as with logarithms, using the reciprocal function when a set of
numbers contains zero can cause problems.

The arithmetic mean of the reciprocals of a set of numbers is

n∑
i=1

(
1
xi

)
n

Equation 1.6

Taking the reciprocal gives the harmonic mean:

μ̂harmonic = n
n∑

i=1

(
1
xi

) Equation 1.7

Note that Equation 1.7 simply ‘flips’ the right side of Equation 1.6 – itself a ratio – upside
down. As with the geometric mean, symbols for the harmonic mean vary, with both H and x̃
(pronounced ‘x-tilda’ by analogy to x̄ and x-bar) being fairly common.
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Example 1.6 Again, let’s apply this formula to the sample D1:

12 14 9 11 15 11 D1

The reciprocals of the numbers are:

0.083333 0.071429 0.111111 0.090909 0.066667 0.090909

The sum of the reciprocals is .514. The arithmetic mean of these numbers is 12 and Mharmonic is
11.67 (because n = 6, the harmonic mean equals six divided by .514).

When the numerator is fixed at some total and the denominator of a ratio varies, the harmonic
mean is often a sensible choice.6 If the denominator is fixed, the arithmetic mean is probably more
appropriate. Consider the rate at which errors occur on two tests. Test A has an error rate of ten per
minute and Test B an error rate of five per minute. If both tests take one minute to complete then
the appropriate average is 7.5 (the arithmetic mean). If the tests were of different durations and
stopped when a participant made ten errors (i.e., the numerator is fixed), the appropriate average
is 6.67 (the harmonic mean).

Why does the appropriate mean change? In the different duration scenario, B takes two minutes
relative to one minute for A. The harmonic mean ‘weights’ the result for the additional length of
time that B took. Doing this produces a number that correctly reflects the fact that a total of 20
errors were produced in three minutes (20/3 = 6.67).

The harmonic mean is not widely used as a descriptive measure (e.g., perhaps when working
with reciprocals rather than data on their original scale). However, it arises from time to time
when working with ratios and fractions, such as when averaging rates or ratios within other
procedures.

1.4.6 Trimmed mean

A trimmed mean is a measure of central tendency designed to reduce the influence of extreme
scores. Consider the following samples:

12 14 9 11 15 11 D1

12 14 8 11 34 11 D2

The respective arithmetic means are 12, for D1, and 15, for D2. A trimmed mean can be calcu-
lated for these samples by discarding the smallest and largest k numbers in each sample. This
procedure can be described by the equation

μ̂trimmed =

n−k∑
i=k+1

x(i)

n − 2k
Equation 1.8
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The new element to the notation here is x(i). This indicates that the data have been ordered from
highest to lowest.

Trimmed means vary according to the extent of trimming. The usual convention is to indicate
this by the percentage of data trimmed. It is usual to set k so that between 5% and 20% of
each end or ‘tail’ of the sample is trimmed (where this percentage is 100 × k/n). For the above
samples, if k = 1, the percentage trimmed from each end of the distribution is 1/6 or roughly
16.7%.7 The 16.7% trimmed mean, M16.7%, is therefore 12 for both D1 and D2. It so happens that
the remaining observations of the two samples (11, 11, 12, 14) are identical (though identical
trimmed means merely require the untrimmed observations to have the same arithmetic mean).

The trimmed mean forms a natural link between the arithmetic mean and the median. The
former is a special case of the trimmed mean when k =0, while the latter is a special case when
n − 2k = 1 (if n is odd) or n − 2k = 2 (if n is even). This makes the trimmed mean a compromise
between the mean (that weights all observations equally) and the median (that ignores all non-
central values). Trimming can be applied to other statistics (e.g., the geometric or harmonic
mean), though this is uncommon in practice. Calculating trimmed means for large data sets
can be awkward by hand, but is implemented in most statistics software. As the percentage of
trimming approaches 50% in each tail (i.e., 100% in total) the trimmed mean will converge on
the sample median.

1.5 Dispersion within a sample

Measures of central tendency such as the median, trimmed mean or arithmetic mean reduce
data to a single number. While this can be a very convenient way to summarize a set of num-
bers, it will fail to capture some essential characteristics of the data. Compare one of the earlier
examples in this chapter with a new sample:

12 14 9 11 15 11 D1

11 22 7 12 15 5 D3

D1 and D3 have identical arithmetic means and medians (12 and 11.5 respectively), but are very
different. Both the sample mean and median are a better description of numbers in the sample
D1 than in D3. The numbers in D1 fall no more than three units from the mean, whereas D3

includes one observation that is ten units away from the mean. The numbers in D3 have greater
dispersion (i.e., are more spread out) than those in D1.

Just as a single number can be used to characterize the central tendency of a sample, various
options exist to describe the dispersion in a sample. As with measures of central tendency, no
single measure is entirely satisfactory for all situations. This section will consider several of the
most important measures in relation to a sample of n numbers.

1.5.1 Range

A very simple and intuitive measure of sample dispersion is the range: the difference between
the minimum and maximum values of the sample. The range is simple to compute and easy to
understand, but it is extremely limited as a measure of dispersion.
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From the range alone, it is hard to assess how far a typical data point might be from the
mean or median (though halving the range gives an idea of how far the extremes are from the
center, provided the sample is fairly symmetrical about the median). A further problem is that
the range is determined only by the most extreme values in a sample. Ignoring the dispersion
of less extreme numbers implies that the range is particularly vulnerable to aberrant or extreme
values – values that researchers will probably not want to dominate the outcome of a statistical
procedure.

Example 1.7 Finding the range is easy enough if the numbers are arranged in order. Ordering
D1 and D2 from highest to lowest gives:

9 11 11 12 14 15 D1
5 7 11 12 15 22 D3

The minimum of D1 is five and its maximum is 15 giving a range of 15 − 9 = 6.
For D3 the range is 22 − 5 = 17. In this case the range does a rather fine job of describing the

differences in spread of the two samples. To see why the range is sometimes problematic, compare
these results with those for D4.

5 10 11 12 12 22 D4

This has the same range as D3 but most of the numbers are very close to the mean and median. The
range is completely insensitive to this clustering of data in the center. This insensitivity to central
values is a particular problem in large samples where there are proportionately more central values.

1.5.2 Quartiles, quantiles and the interquartile range (IQR)

An alternative to computing the range on the full sample is to compute the range on a trimmed
sample. By discarding a proportion of extreme values it is possible to obtain a measure of
dispersion that better describes the spread of less extreme, more central values. In principle,
this could be carried out for any level of trimming, but it is rare to see anything other than the
interquartile range (IQR) chosen. The IQR is defined as the difference between the upper and
lower quartile of a set of numbers.

Quartiles are the points on the number line that separate a set of n ordered numbers into
subsets of n/4 (or as close to n/4 as possible). The first (lower) quartile separates the smallest
25% of the numbers from larger numbers. The second (middle) quartile is the median, while the
third (upper) quartile separates 25% largest numbers from the smallest. If you are wondering
why there are only three quartiles, think about how many cuts you need to make along a length
of pipe to divide it into four equal pieces. It should take three cuts. One cut in the middle creates
two halves, and then two further cuts are required to divide each of those pieces in half. These
cuts are equivalent to the three quartiles. The quartiles are the boundaries used to divide up a
set of numbers, they are not the subsets created by the boundaries.
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Quartiles are a special case of quantiles. Quantiles are the points on the number line used
to divide up a set of numbers into q subsets of equal (or as near to equal as possible) size. So
for quartiles q = 4 and for ‘quintiles’ q = 5. It takes q − 1 quantiles to split a set of numbers up
in this way (e.g., for quintiles there are 5 − 1 = 4 boundaries). This makes the size of each sub-
set n/q (or as close to this as you can get). Quartiles are very popular as descriptive statistics.
Another common choice is the centile (also called a percentile) where q = 100. Centiles there-
fore describe the percentage of values in the lower portion of a set of numbers (e.g., the 12th

centile defines the smallest 12% of the set). It is often convenient to express quartiles as centiles
and you will often see the first, second and third quartile referred to as the 25th, 50th and 75th

centile. Thus the IQR can also be defined as the difference or distance between the 75th and 25th

centile.

Example 1.8 As noted above, the samples D3 and D4 have identical means, medians and
ranges:

5 7 11 12 15 22 D3
5 10 11 12 12 22 D4

The IQR for D3 is 6.25 and for D4 it is 1.75. The IQR therefore does a good job of capturing the
clustering of the non-extreme values in each sample (relative to the median or mean). Halving the
IQR also gives a very rough sense of how far the more central values are from the mean or median
(provided the sample is fairly symmetrical).

Deriving an IQR for small samples such as these (and more generally when n is not neatly divisible
by four) is awkward and different methods exist to resolve the problems for such situations (e.g., the
figures reported here can be replicated in R or via the QUARTILE() function in Excel, but differ from
those provided by SPSS). Software will also sometimes depart from standard conventions when data
are very sparse (e.g., for a sample such as D3). These departures are usually designed to produce
plots that are easier to interpret – but it is worth checking exactly what is plotted when n is small.
A more detailed discussion of calculation methods can be found in Hyndman and Fan (1996).

While the IQR is widely used, it is not common as a stand-alone measure of dispersion. It is
usually encountered alongside other descriptive statistics – in particular in graphical summaries
of data such as a box plot. A box plot is a handy summary of a number of descriptive statis-
tics and can be useful as a quick exploratory tool. Figure 1.2 shows the anatomy of a typical
box plot for a sample of simulated data. The dark central line shows the sample median. The
hinges (the top and bottom of the box) show the upper and lower quartiles respectively. The
whiskers (the dashed lines extending vertically from the box) show the minimum and maximum
values of the sample.

The software that produced the plot extends the whiskers as a multiple of the IQR (typically
1.5) from the hinges, provided they do not extend beyond the most extreme values in the data
(as would happen in this case). Extreme values that fall beyond the whiskers are often also dis-
played. One such value occurs in Figure 1.2 and it is labeled here as a ‘potential’ outlier. Such
values can cause problem for a statistical analysis, but are not necessarily unusual or particularly
extreme. Working out whether a potential outlier is unusual or extreme is a difficult problem (and
dealt with in more detail in Chapter 9). The box plot also indicates the range (this is the dis-
tance along the y-axis between the two most extreme features – whether whiskers or individual
data points). While box plots can be constructed in many different ways, nearly all will display the
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median, IQR and range. Regardless of how they are defined, the whiskers tend to give an indication
of where the ‘bulk’ of the data fall, while the IQR gives an indication of the clustering around the
median.

Potential outlier

In
te

rq
ua

rt
ile

 r
an

geR
an

ge

5

10

S
am

p
le

 d
at

a

15

Median

o

Figure 1.2 The main features of a box plot

1.5.3 Sums of squares

Measures of dispersion such as the range and IQR are often reported alongside measures of
central tendency that do not use all sample data in their calculation (e.g., measures such as
the median, trimmed mean or mode). If you are working with the mean it is natural to report a
measure of dispersion that also uses the whole sample.

It might be tempting to start by using the average deviation of each point from the arith-
metic mean but, as noted earlier, the sum of these deviations is always zero. The arithmetic
mean is the point that balances these deviations (and so they will cancel out when summed).
A plausible alternative is to use absolute deviations from the mean (i.e., discarding the sign
of the deviations). Using absolute deviations is unfortunately not as simple as might first
appear (see Box 1.5). Instead, the most widely employed measures of dispersion are based
on squared deviations from the mean. If the mean is ten and an observation is six, its corre-
sponding deviation would be 6 − 10 = −4. Its squared deviation would therefore be (−4)2 = 16.
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Box 1.5 Advantages and disadvantages of using
absolute deviations

Calculating the absolute deviations from the arithmetic mean merely involves subtracting the mean
from every number in the sample and discarding the sign of the difference. For D2 the raw
deviations (residuals) are:

−3 −1 −7 −4 19 −4

The corresponding absolute deviations are therefore:

3 1 7 4 19 4

The arithmetic mean of these absolute deviations – the mean absolute deviation (MAD) is 38/6 =
6.33. Using the absolute distance from the mean isn’t necessarily the best way to go.

One consideration is that the measure of central tendency that minimizes the absolute deviations
is the median (not the mean). For example, the corresponding raw and absolute deviations from
the median are

0.5 2.5 −3.5 −0.5 22.5 −0.5

and

0.5 2.5 3.5 0.5 22.5 0.5

Here the total absolute distance from the median is 30 (not 38) and the MAD for the
median is 5.

This suggests a link between using the arithmetic mean in conjunction with squared deviations
(and statistics such as SS, variance or SD) and using the median with absolute deviations. One
reason for preferring squared deviations is therefore the prevailing preference for the mean over the
median in statistics. This default use of the mean is not always reasonable. The median is generally
a more robust measure (e.g., it is less sensitive to extreme values).

A second consideration is that squared deviations tend to be easier to work with than absolute
deviations. This is true both in the sense of deriving the mathematical proofs upon which statistical
procedures are based, and in terms of the complexity of the calculations required to implement sta-
tistical analyses. Most statistical work still relies on squared deviations from the mean, but owing to
advances in computing power and the increasing availability of suitable software other approaches
are becoming more popular.

The basic building block for any measure of dispersion using squared deviations from the
mean is a sum of squares (SS). Sums of squares are calculated by squaring each of the devia-
tions from the mean and adding these squared values together. The can be represented as the
equation

SS =
n∑

i=1

(xi − μ̂)2 Equation 1.9

where μ̂ is the arithmetic mean of the sample.
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Summing squared deviations from the mean is a very convenient way to capture variabil-
ity within a sample (and many other statistical procedures have this basic calculation at their
core). Even so, there are several difficulties inherent in using sums of squares as a descriptive
measure. First, summing deviations from the mean ensures that if n increases, SS increases too
(assuming some variability in the sample). This makes comparison between samples with dif-
ferent n awkward. Second, sums of squares are scaled in terms of the squared deviations from
the mean. Interpreting these squared values in terms of the original (unsquared) units can be
tricky.

Note also that any measure using the squared deviations has disadvantages (as well as
advantages) relative to using alternatives such as absolute deviations (see Box 1.5). Measur-
ing dispersion in terms of the squared deviations from the mean produces statistics that may
be oversensitive to extreme values (although this is not inevitable). This can cause serious
problems (e.g., a single very extreme value can sometimes distort the outcome of a study).

Example 1.9 This example will again use the sample D1:

12 14 9 11 15 11 D1

For D1 the deviations from the mean (often termed residuals in this context) are obtained by
subtracting the mean of 12 from each observation to get:

0 2 −3 −1 3 −1

The corresponding squared deviations are therefore:

0 4 9 1 9 1

The sum of squares is thus 0 + 4 + 9 + 1 + 9 + 1 = 24.
Now compare this to D3, a sample with the same mean, but more widely dispersed values. For

D3 the SS = 184. While for D4, a sample with the same mean, median and range, SS = 154. This is
consistent with the observation that central values in D4 tend to be closer to the mean than for D3.
Because sums of squares use the whole data set they are sensitive to the dispersion of both extreme
and central values.

1.5.4 Variance

The variance is closely related to sums of squares, but incorporates an adjustment to the SS
to account for different sample sizes. This is achieved by dividing the sums of the squared
deviations by n. The equation for the variance can therefore be denoted as:

Var =

n∑
i=1

(xi − μ̂)2

n
Equation 1.10

This equation can be interpreted as the arithmetic mean of the sums of the squared deviations
from the arithmetic mean. This is an important point: the variance of a sample is itself a form
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of arithmetic mean. Thus both the variance and the arithmetic mean are averages and findings
such as the law of large numbers apply to both (see Key Concept 1.1).

The variance is a fundamental concept in statistics that, like SS, has many further applica-
tions. Here the focus is on the variance as a descriptive statistic. Although it deals with the
problem of differences in sample size it shares all the other limitations of SS. Its main limitation
as a descriptive statistic is a consequence of using squared deviations from the mean. Knowing
that the mean is ten and that the variance is 16 doesn’t make it easy to tell how the data are
dispersed around the mean because the number ten (in unsquared units) and the number 16 (in
squared units) are on different scales.

Example 1.10 In the previous example, the SS of the samples D1, D3, and D4 were reported as
24, 184 and 154 respectively. In each case n =6, so the corresponding variances of the samples can
be calculated as 24/6 = 4, 184/6 = 30.67, and 154/6 = 25.67. Because the samples have identical
n, the variance is only marginally more informative than the SS.

To understand the advantages of the variance requires a comparison of samples of different sizes.
Let’s combine D3 and D4 into a single sample with n = 12. The variance of the combined sample is
SS/12 and because the two samples have the same mean there is a shortcut to calculate its overall
SS. This shortcut is simply to add the SS of D3 and D4 together. (This won’t work if the means
differ, because the residuals of the combined and individual samples would no longer be calculated
relative to a common value). The new SS is 184 + 154 = 338, and the variance of the combined
sample would be 338/12 = 28.17.

Doubling the sample has little impact on the variance (which necessarily takes a value somewhere
between the variances of the two original samples). In contrast, the SS of the combined sample is
around twice the size of the original SS for D3 and D4 separately (338 versus 154 or 184). The
combined sample and the two subsamples all have similar dispersion and this produces similar
variances (25.67, 28.17 or 30.67). The variance is a better statistic than SS (or even the range or
IQR) for comparing otherwise similar samples with different n (e.g., different classes in a school).

1.5.5 Standard deviation

The standard deviation (SD) is a measure of dispersion related to the variance, but scaled to use
the same units as the original data. It is the square root of the arithmetic mean of the sum of
the squared residuals (where the residuals are deviations of observations from the arithmetic
mean). Because the arithmetic mean of the sum of the squared residuals is the variance, the
standard deviation is the square root of the variance. This is illustrated by the equation:

SD = √
Var =

√√√√√
n∑

i=1
(xi − μ̂)2

n
Equation 1.11

As a description of sample dispersion the SD has all the advantages of the variance, being a
far more sensitive measure of dispersion than measures such as the range or the IQR, because
it uses all the data (not just extreme or intermediate values) in its calculation. As with the SS or
variance, it can sometimes be unduly influenced by extreme values (in which case a trimmed
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measure such as the IQR might be preferred). Taken together, the advantages of using the SD
often outweigh the disadvantages. For this reason, the SD is a popular statistic for summarizing
the dispersion of a sample (and it is the standard choice for reporting dispersion alongside the
arithmetic mean). Its most important property is that, unlike the variance or SS, the SD can be
directly interpreted as a measure of the degree of clustering of a sample around the mean in a
sample. It is therefore an excellent statistic for comparing the dispersion of samples of different
sizes on a common scale.

A convenient guideline is to treat the SD as an estimate of the distance a typical data point
lies from the mean. In a sample with a mean of ten and a variance of 16 the SD is four. It is
usually reasonable to interpret this as indicating that a typical observation falls roughly four
units from the mean.8

Example 1.11 In the preceding example the variances of D1 and D4 were calculated to be four
and 25.67. The SDs are

√
4 = 2 and

√
25.67 = 5.07 respectively. Because the samples are fairly

symmetrical and evenly spread around the mean, the SD gives a good indication of the distance a
typical sample member is from the mean. A typical observation is around two units from the mean
of D1 and around five units from the mean of D4. If samples are less evenly distributed around the
mean the SD will still give a rough idea of the average spread of points around the mean (though
it might not be the case that any single observation falls around this point). Getting a feel for the
distribution of a small sample is easy. In larger samples it is a good idea to plot the data to reveal
the overall shape of the distribution. A box plot is one way to do this, but there are many other
methods (only one of which will be considered at this point).

A drawback of the box plot (and alternatives such as histograms) is that individual observations
are not shown. A simple alternative that does show individual data points is the stem and leaf plot.
In a stem and leaf plot the numbers are ordered low to high and the first two significant digits (i.e.,
both digits for numbers in the range −99 to 99) are plotted. Of these digits the first digit is the
‘stem’ and placed on the left (followed by a vertical line). The second digit is the ‘leaf’ and placed to
the right of the vertical line. Numbers sharing the same stem have their second digit added to the
right. Numbers with a larger stem value are added below. So a basic stem and leaf plot of D3 looks
like this:

0 | 5 7

1 | 1 2 5

2 | 2

Here the stem digits are ‘tens’ and the plot indicates a fairly even and symmetrical spread with no
obvious gaps. The SD of 5.5 is therefore broadly consistent with typical distance of points from the
mean. Contrast this with a stem and leaf plot for D4:

0 | 5

1 | 0 1 2 2

2 | 2

The SD here is 5.1, but most points are much closer to the mean than this (with two points a little
further out).
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Stem and leaf plots are easy to generate (not requiring sophisticated software) but are not com-
mon in published work. Their inclusion here is to show the value of even a simple plot that includes
all observations (albeit in an abbreviated form). Such plots can be helpful in deciding what measure
of dispersion to report.

1.5.6 Other measures of dispersion

The measures of dispersion described here are among the most popular. Alternative measures
of dispersion using absolute deviations from the median or arithmetic mean such as the MAD
can be constructed (see Box 1.5). It is also possible to calculate measures of dispersion appro-
priate for the geometric mean, harmonic mean and trimmed mean. For example, the SD of
the natural logarithms of a sample is very simple to calculate. Taking the exponent of this value
(to base e) would rescale the SD in terms of the original units and give the geometric SD. Likewise
a trimmed or harmonic SD or variance could be calculated for a sample.

1.6 Description, inference and bias

There are a number of properties that are desirable in estimates of a parameter such as the
mean or median. A statistic should, for example, be an unbiased and efficient estimator of the
relevant population parameter.

An efficient estimate has less error (i.e., tends to be close to the population parameter). The
degree of error can be assessed in different ways, but the most common criterion is to use the
sum of the squared residuals. An efficient estimator assessed using this criterion is therefore
one that tends to have a small SD. If the estimator is also unbiased, it has zero bias, where bias
is defined as the difference between the expected value of the statistic and the true value of the
parameter. In the long run (e.g., given sufficient sample size) an unbiased statistic will converge
exactly on the parameter it estimates.

The accuracy of an estimate is a combination of its error and bias. Imagine a large number of
darts thrown at a target. If the throws are unbiased they will be scattered more-or-less evenly
around the center of the target. If they fall consistently slightly right or left (or above or below)
the center of the target, this indicates bias. The overall accuracy depends on the sum of the
error and bias. An efficient estimator could be very inaccurate if the bias is large (just as a set
of throws could be tightly clustered but all land a long way from the target). In the same way,
being unbiased doesn’t imply accuracy (your throws could fall evenly around the center of the
target and yet still fall a long way away from it on average). On the other hand, a known bias
can sometimes be corrected, whereas error tends to be quite hard to eliminate. For this reason
it is sometimes better to adopt a biased estimator with small error rather than an unbiased but
inefficient estimator.

Descriptive statistics such as means, medians and trimmed means are unbiased estimators
of central tendency. The expected value of the statistic is the true population parameter (e.g.,
μ̂ estimates the population mean μ with zero bias). This is not the case, however, for sample
statistics used to estimate population dispersion. The expected value of a descriptive measure
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of dispersion in a sample (e.g., the range or variance) is an underestimate of the true population
value. Where the law of large numbers applies, this underestimate declines, as n approaches N.
However, for infinitely large populations (i.e., when N = ∞) any finite sample will have some
bias (though with sufficiently large n this bias will become too small to detect).

Why is the sample dispersion an underestimate of the population dispersion? To understand
how this bias arises, consider the case of a finite sample taken without replacement from some
population. For example, imagine we have obtained a random sample of the ages (in years) of n
people from the population of Nottingham (N ≈300,000). When n is small the sample is unlikely
to capture the extremes of the population and will underestimate its dispersion. The lowest
age in the population will be zero years and we’ll assume that the population maximum is 100
years. A random sample of size, say, n = 10 will hardly ever include both a newborn baby and a
100-year-old adult. For this reason the sample range will tend to underestimate the population
range. As n increases, the probability of sampling the extremes increases (e.g., assuming there
is only one 100-year-old in the population the probability of him or her being in the sample
increases from P ≈ 1/30,000 to P ≈ 1/3,000 as n increases from ten to 100). As n approaches
N the sample range is likely to get closer and closer to 100 years (the population range). This
argument applies equally to infinite populations (and a mathematical proof is possible).

Other measures of dispersion in a sample will also underestimate the population dispersion
(for exactly the same reasons). Measures such as the variance or SD require the full range of
values in the sample or population for calculation; omitting the extreme values will necessarily
reduce the final result. A moment’s reflection should suffice to show that it also applies, albeit
to a lesser extent, to measures such as the IQR or trimmed variance, even though they exclude
the minimum and maximum. Excluding the most extreme values just shifts the problem to the
next most extreme values (e.g., the first and third quartiles for the IQR).

1.6.1 Unbiased estimation of the population variance or SD

The aim of collecting data is often to use sample statistics to estimate population parame-
ters. It is therefore undesirable if the descriptive formula for calculating the variance (or other
measures of dispersion) provides an underestimate of the population variance.

Fortunately because the degree of bias is known, it can be eliminated. For this reason, a
different formula is adopted for estimating the population variance from a sample than for
description of the sample itself. Confusingly, both formulas are often labeled as the ‘sample
variance’. A more sensible designation is to label one formula the descriptive formula (which
treats the sample as if it were a population) and one as the inferential formula (which regards
the sample as an estimate of the population): Equation 1.9, Equation 1.10 and Equation 1.11 are
all descriptive formulas.

The formulas differ by what is termed a correction factor (which can be derived from the
mathematical proof that a sample variance underestimates the population variance) applied to
the inferential formula. To go from the uncorrected descriptive formula to the corrected inferen-
tial formula requires multiplying the variance by this correction factor. Dividing by the correction
factor (or multiplying by its reciprocal) allows you convert the (inferential) population variance
estimate back to the (descriptive) sample variance. The correction factor is n/(n–1). As you
might expect, it is relatively large only for small n and becomes negligible when n is very large.
In practice, the largest possible value of the correction factor is two (when n=2) and approaches
one for large samples (e.g., it would be ≈ 1.01 for n = 100 and ≈ 1.001 for n = 1000).
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The population variance is usually represented by the symbol σ2 (pronounced ‘sigma
squared’ because σ is a lower-case form of the Greek letter sigma). So the descriptive sample
SD is a biased estimator of σ2. Knowing the correction factor is n/(n–1), it is possible to con-
struct an unbiased estimate of σ2. The unbiased estimator of σ2 can be labeled σ̂2 (‘sigma-hat
squared’). Incorporating the correction factor, the unbiased, inferential formula is:

σ̂2 =

(
n

n−1

)
×

n∑
i=1

(xi − μ̂)2

n
=

n∑
i=1

(xi − μ̂)2

n − 1
Equation 1.12

Apart from the correction factor, this is identical to Equation 1.10. Many inferential statistical
procedures include a similar correction to form estimators of population parameters. However,
some measures (e.g., the range or IQR) tend to be encountered almost exclusively as descriptive
measures (although they remain biased estimates of dispersion in the population). Sums of
squares are also used purely as descriptive measures. The SS tends to infinity as n increases
(and is therefore not a sensible estimate of any population parameter). Using SS as a descriptive
statistic is not necessarily inappropriate, but there is a tendency for people to interpret measures
based on SS as if they were inferential statistics. So understanding the difference between SS
and variance – particularly inferential measures of variance – is important.

Given the relationship between the variance and SD it is also possible to derive an inferential
formula for the population standard deviation σ. The usual sample estimate of σ can be labeled
σ̂ (‘sigma-hat’), and is the square root of the unbiased variance estimate:

σ̂ =
√

σ̂2 =

√√√√√
n∑

i=1
(xi − μ̂)2

n − 1
Equation 1.13

A curious property of the estimator σ̂ is that, although derived from an unbiased estimator,
it is not itself an unbiased estimate of σ . Equation 1.13 underestimates the magnitude of σ

(the underestimate arising, in this case, because the square root function is nonlinear). The
underestimate is relatively small and can be safely ignored for most applications.

From this point on, the inferential formulas for the variance and standard deviation will be
used by default. However, for the sum of squares (and some closely related statistics) descriptive
formulas based on Equation 1.9 will be used.

1.7 R code for Chapter 1

1.7.1 Getting started

Once R is installed (a fairly easy procedure on most desktop computer systems) you will be
presented with the R console window. Most interaction with R involves typing input into this
window and hitting the return key. When R is ready to accept input you will see the following
prompt:

>
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Most of the work in R involves assigning things to entities called ‘objects’ and using functions
(themselves types of objects) to manipulate other objects. The most basic object type in R is
called a vector and it is a one-dimensional container of information. Vectors can contain all
sorts of information, but for the moment we’ll just consider vectors as containers of numbers.
To assign a number to a vector is very simple. For instance, to assign the number 36 to a vector
named num.vect9 just enter (followed by the return key):

num.vect <- 36

To confirm that the assignment has indeed occurred, just type the name of the vector and hit
return. This should bring up the following output:

[1] 36

The [1] in square brackets indicates that the object has a single dimension (and can be ignored
for the moment). The <- arrow is an example of an assignment operator (there are others) and
works – as you have probably realized – by taking the object on the right and assigning it to the
object on the left. An alternative that would have worked just as well is:

36 -> num.vect

If you are new to R you will be tempted to assign objects left to right (as when writing) but in
many cases you’ll find it helpful to work right to left. One reason for this is that naming the
object tends to be very easy, and it helps to get the easy part out of the way before typing out a
complex instruction or formula.

In this way, R allows you to type in data and assign it to an object. It is also possible to read
in data from external files (e.g., Excel or SPSS files). To keep things very basic, the examples in
this chapter won’t require reading in any external data files. On the other hand, the examples
do require samples containing more than one data point. How do you get several numbers into
an R object? One way is to use the combine function: c(). This is one of the most important
and useful functions in R. To combine several numbers just use the combine function with the
numbers separated by commas:

num.vect <- c(36, 49, 64)

Now, by entering num.vect (typing the object name and hitting return) the R console will
generate:

[1] 36 49 64

The original contents of the vector have now been over-written (and are lost). You now know
enough to enter data sets into R. Note that the vector is returned with [1] preceding it, indicating
that the line starts with the first element of the vector. For large data sets this allows you to find
the row with, for example, the 379th observation more easily.

Once you start entering data into R, your workspace (the bit of R that keeps track of objects
such as vectors) may start to get untidy. When you quit R you will have the opportunity to save
your default workspace (the one that R opens in). You could keep things tidy by not saving your
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work, saving workspaces under a different name or by saving work in a text editor.10 It helps to
keep track of your workspace and tidy it up as you go along. To see what objects are in R, you
can list them with:

ls()

The above call requires no arguments. You can remove (i.e., delete) objects with rm(), but be
sure to use the name of the correct object. To remove num.vect enter:

rm(num.vect)

1.7.2 Arithmetic

All basic arithmetic operators are also built into R, so it is possible to perform a range of cal-
culations either with numbers, objects or both. Standard operators such as + and − behave as
expected. For multiplication, R uses the asterisk character ∗; for division, R uses the forward
slash character /. Try out the following examples:

2 + 6

9 - 2

3 ∗ 7

100/4

Using R as a calculator pays off when you start integrating calculations with assignment to
objects. This makes it possible to store the output from a calculation. One application for this is
to update objects:

num.vect <- c(36, 49, 64)

num.vect <- num.vect + 4

num.vect

[1] 40 53 68

As well as basic arithmetic operators, R has functions for square roots, logarithms and expo-
nentiation (raising to different powers or orders). These follow the standard order of operations
(e.g., associated with acronyms such PEMDAS in the US and BODMAS in the UK). These place
operations in parentheses (brackets) first, followed by exponentiation and then division and
multiplication. Addition and subtraction bring up the rear. To raise a number (or object) to a
power, place the ∧ operator after the number, followed by the required power. To square a
number you raise it to the power of two (e.g., to square 15 you would enter 15∧2 into R). This
procedure is quite flexible and allows square, cube and other roots to be found. (To get the nth
root of a number you need to raise it to the power of 1/n.)

One more feature of R is worth introducing here. If a vector contains several numbers you
can apply the same operation to every number in the vector simultaneously (if you wish). This
is extremely valuable in statistics, because you will often want to do exactly this. We’ll illustrate
this by taking the square root of several numbers within a vector.
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num.vect∧0.5

[1] 6 7 8

Sometimes there are several ways to do the same thing in R (or more generally in mathematics).
R has a built-in square root function called sqrt(). We could express the preceding operation
as num.vect∧.5 or num.vect∧(1/2) with the same outcome. The preceding example displayed
the outcome of the calculation, but was not assigned to an object, so would be lost. To store the
results we’d need to use assignment, as below.

sqrt.vect <- sqrt(num.vect)

1.7.3 Simple functions and measures of central tendency

R has functions for most common descriptive statistics, the exception being the mode. This is
usually easy to determine in small samples. For large samples the sample mode is rarely used
for continuous data (and different approaches are appropriate).

If the data are discrete (e.g., frequency or count data) then the modal response is the largest
count (and obtained as the maximum of the counts). For such data a bar plot or histogram is
usually a good idea. The bar plot in Figure 1.1 is produced by the R code below. This creates a
vector of the counts for each eye colour and a separate vector of labels for the eye colors. The
vector of labels uses text strings enclosed by single or double quotes (the choice is irrelevant –
although consistency is important). Strings such as ‘Blue’ or ‘two’ can be stored and retrieved
by R and are required to label output (e.g., to put titles or legends on figures).11

eyes <- c(2, 5, 3)

labels <- c(’Blue’, ’Brown’, ’Green’)

The plot itself uses the barplot() function. A basic plot just requires one argument to be defined
when the function is ‘called’. The arguments are the information supplied to the function. The
most basic bar plot just requires a vector of data points to define the heights of the bars.

barplot(eyes)

This resulting plot has no labels on the x or y-axis and additional arguments have to be supplied
to get a satisfactory plot. Commas must separate all arguments. Depending on the function, the
arguments can be defined by order of entry or (if some arguments can be omitted) may need to
be named. To tell R that the labels represent the names of the bars the names.arg argument is
used. To specify the label on the y-axis the ylab argument is used.

barplot(eyes, names.arg = labels, ylab = ’Frequency’)

This reproduces Figure 1.1 almost exactly. The main difference is the size and shape of the plot.
This can also be manipulated via R code, but it is usually easiest just to resize the plot window
manually. Manual resizing might sometimes distort the plot, but if so, re-running the command
should clean it up. To return to a previous command just use the up arrow key in the R console
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window. Repeated use of the up arrow cycles back through previously executed commands.
In the preceding call, the text string defining the y-axis label is specified within the function (but it
could be defined as a separate object such as a vector). Once you are happy with the plot you can
save it in one or more common different formats (depending on the platform R is running on).

The flexibility to change the output of a function by specifying different arguments is a con-
siderable benefit, but it can also be frustrating to keep track of the names of all the arguments
a function can take. It is worth making your own reference sheet of common functions (or
downloading one of the dozens available on the internet). To remember what arguments are
available and how to specify them when calling a function, try out the help() function. You can
get help for any function in the base installation packages (the packages of R functions that are
installed by default) with the call help(function.name) or the shortcut ?function.name. The
help output may at first appear confusing, but it follows a fairly strict structure across all the
main packages and will make more sense as you learn more about R. Try it out with the call ?c
to get help for the combine function. Some functions also have examples that can be accessed
via the example() function:

example(c)

To compute the median or mean of a sample the functions median() and mean() are used.
To illustrate this, let’s do the calculations for the sample D1. (Note that R is case sensitive and
so the object D1 is different from d1.)

D1 <- c(12, 14, 9, 11, 15, 11)

median(D1)

mean(D1)

The mean() is very versatile and will also calculate a trimmed mean. As a second argument
it expects the trimmed proportion in each tail. If you look at the help for this function using
?mean you will see that the function has a trim argument with a default value of zero. This
is designated by the trim = 0 argument under ‘Usage’. Many functions have default values,
allowing the function to show quite sophisticated behavior. So a 16.7% trimmed mean for D1 is
obtained with the command:

mean(D1, .167)

Increasing the trim proportion would eventually produce the median (and is guaranteed for
trim = .5). In this case the trimmed mean doesn’t differ from the mean, but for a sample such
as D2 it does matter:

D2 <- c(12, 14, 8, 11, 34, 11)

mean(D2, .167)

What about the geometric and harmonic mean? Functions to calculate them can be found
in user-contributed packages for R, but it is also very easy to calculate them yourself. For the
geometric mean, one method is to calculate the logarithms of the sample data (using whatever
base you wish). We’ll use natural logarithms. The natural logarithm is the default for the R log()

function. This can be changed by using the base argument: the default being base = exp(1).
There is also a separate log10() function for logarithms to base ten. The inverse of the natural
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logarithm is ex and is provided by the exp() function. Thus exp(1) is one way to obtain the
constant e.

To compute the geometric mean of D1, first calculate the natural logarithms of the sample.
The geometric mean is then obtained by using the inverse of the mean of the natural logarithms:

D1.ln <- log(D1)

D1.ln.mean <- mean(D1.ln)

exp(D1.ln.mean)

Doing it in three steps is not necessary, and R can roll all the steps into a single command:

exp(mean(log(D1)))

This instantiates the formula in Equation 1.5. To instantiate the formula in Equation 1.3 it helps
to use the prod() command for taking the product of a set of numbers.

prod(D1)∧(1/6)

The sample size can also be obtained from the length() function – which will count the number
of things (in this case numbers) in a vector.

prod(D1)∧(1/length(D1))

The harmonic mean can be obtained by instantiating Equation 1.7. Either of these commands
will give the harmonic mean of D1:

1/mean(1/D1)

mean(D1∧-1)∧-1

One final function is worth introducing here. This is the summary() function. Summary is a
very general function that produces different outputs depending on the type of object in the call.
For a vector of numbers it will return the minimum, maximum, mean and the three quartiles
(including the median, which is the middle or second quartile).

summary(D1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

9.0 11.0 11.5 12.0 13.5 15.0

1.7.4 Measures of dispersion

Although the range() function in R returns the minimum and maximum of a sample (often even
more informative than the range itself), getting the range is easy using the functions min() and
max() directly:

D1.range <- max(D1) - min(D1)

D1.range

[1] 6



Data, samples and statistics 33

The summary() function also returns the minimum and maximum for a numeric vector along
with the quartiles. Unlike the range, the IQR has a dedicated function called IQR(). To calculate
IQR for samples D3 and D4:

D3 <- c(11, 22, 7, 12, 15, 5)

D4 <- c(10, 22, 11, 12, 12, 5)

IQR(D3)

IQR(D4)

R also has a general quantile function that defaults to reporting the minimum, maximum and
quartiles (labeled as the 0%, 25%, 50%, 75% and 100% centiles). Note that different computer
software may calculate the quartiles in slightly different ways (and may produce different IQR
values when n is small). Hyndman and Fan (1996) describe nine different methods for calcu-
lating quantiles – all of which are implemented by quantile(). Details are given in the help
documentation (e.g., via ?quantile).

There is no sum of squares function, but R is designed to carry out similar calculations on
objects. Calculating the sum of squares for D1 is therefore not at all hard. The new function
required here is the sum() function.

resids <- D1 - mean(D1)

sq.resids <- resids∧2
sum(resids∧2)

Again it can be combined into a single expression:

sum((D1 - mean(D1))∧2)

To calculate sums of squares for any other numeric vector replace D1 with the relevant vec-
tor name. You can make the procedure more generic by separating the object name from the
expression using another vector:

vect <- D1

sum((vect-mean(vect))∧2)

This means we just have to change the line vect <- D1 to read vect <- D2 to get the SS for
D2. (We could write a function to do this, but for the present it is useful to work through the
details of each calculation.)

For the descriptive formulas in Chapter 1, calculating the variance of a sample involves
dividing sums of squares by n. For a vector this works out as:

vect <- D1

sum((vect - mean(vect))∧2)/length(vect)

Taking the square root of this gives the descriptive SD of the sample:

(sum((vect - mean(vect))∧2)/length(vect))∧.5
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R also has built-in functions for the inferential variance and inferential SD of a vector. These are
var() and sd().

var(D1)

sd(D1)

1.7.5 Plotting dispersion

This chapter introduced two very basic ways to plot the dispersion of a sample in R (in addi-
tion to the bar plot used for frequency data in Figure 1.1). The first of these was the box plot.
A box plot can be plotted in a number of different ways. The plot in Figure 1.2 uses the R
defaults.

The box is defined by the quartiles (with the median, the second quartile, a line across the
middle). The length of the whiskers is defined as either as 1.5 times the IQR or as the distance
up to the values of the largest or smallest data points (whichever is least extreme). Any points
outside the whiskers (potential outliers) would be marked as open circles. A basic box plot using
the boxplot() function requires only a vector of data points:

boxplot(D3)

This illustrates the power of R for quick plotting and exploration of data – especially if combined
with descriptive data functions such as summary(). To make it prettier you can add labels such
as the y-axis label in Figure 1.2.

boxplot(D3, ylab = ’Sample Data’)

A second plot type considered here is the stem and leaf plot. Again the basic command for
this is very easy to run:

stem(D3)

stem(D4)

One complication is that R default scales the stem of the plot in units of five (rather than units
of ten used in Example 1.11). For larger samples the R defaults will usually be very helpful, but
to reproduce the plots in this chapter exactly it is possible to tweak the scale argument of the
stem() function:

stem(D3, scale = .5)

stem(D4, scale = .5)

1.8 Notes on SPSS syntax for Chapter 1

The examples in this chapter were either worked out by hand or using R (rather than SPSS). The
notes below give some pointers for getting broadly equivalent output using SPSS syntax.
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1.8.1 Basic descriptive statistics and plots

To obtain common descriptive statistics such as n, min, max, mean, SD and range use the
DESCRIPTIVES command with a /STATISTICS subcommand. It is good practice to separate out
the command and subcommand onto different lines like this:

SPSS data file: D1toD4.sav

DESCRIPTIVES VARIABLES=D1

/STATISTICS=MEAN STDDEV MIN MAX.

This example assumes you have opened the data file (D1toD4.sav) with each sample specified
as a separate variable (and that this is the active data file). To use the syntax you can open a new
syntax window and type or paste it in. Highlight the syntax you need from the syntax window,
and then go to the <Run> menu and choose <Selection>. You can also access these commands
directly from the <Analyze> menu. Choose <Descriptive Statistics> and <Descriptives . . . > to
open a dialog box that allows you to generate the syntax you require and either run it by clicking
on the ‘OK’ button or pasting it into the syntax window by clicking on ‘Paste’. The latter is an
excellent way to explore how SPSS syntax works (and gives your more flexibility than a pure
menu-driven approach).

The output from the function includes a box with the requested descriptive statistics
for sample D1. To get the same for D2, edit the syntax so that the variables statement
reads VARIABLES=D1 D2. The DESCRIPTIVES command is rather limited. For a broader set of
descriptive statistics including 5% trimmed mean, median and IQR use the EXAMINE command.

EXAMINE

VARIABLES=D1

/PLOT NONE

/STATISTICS DESCRIPTIVES

The EXAMINE command will include plots by default (and the syntax above suppresses that
with the /PLOT NONE subcommand. SPSS can produce a wide range of plots, but it is not as
versatile as R. A plot similar to the bar plot in Figure 1.1 can be produced with the following
syntax:

SPSS data file: eyes.sav

GRAPH

/BAR(SIMPLE)=COUNT BY eye_colour

/TITLE= ’Frequency of eye colour for a sample of 10 people’.

Box plots and stem and leaf plots are also available. A box plot similar to that in Figure 1.2
can be plotted with the following syntax:

SPSS data file: D1toD4.sav

EXAMINE VARIABLES=D3

/PLOT=BOXPLOT

/STATISTICS=NONE.
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For a stem and leaf plot (such as that in Example 1.11) try:

EXAMINE VARIABLES=D3

/PLOT STEMLEAF

/STATISTICS NONE.

1.8.2 Other descriptive statistics

SPSS provides a wide range of descriptive statistics and exploratory plots – notably from the
EXAMINE and EXPLORE commands. Arithmetic can be performed on variables via the COMPUTE

command. For simple arithmetic, however, you may find it easier to do calculations by hand (or
to use spreadsheet software such as EXCEL).

The following syntax uses the compute command to calculate the natural logarithms of a
variable and DESCRIPTIVES to calculate the mean of the transformed variable. The simplest
way to obtain the geometric mean is then to take the exponent ex of the result (2.478) using a
calculator or spreadsheet.

SPSS data file: C1 sample data.sav

COMPUTE ln_D1 = LN(D1).

EXECUTE.

DESCRIPTIVES

VARIABLES=ln_D1

/STATISTICS=MEAN.
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2.1 Chapter overview

This chapter introduces common probability distributions for discrete and continuous data. The
main focus is on distribution functions for determining probability or probability density, cumu-
lative probability and quantiles of a distribution. Key characteristics of probability distributions
(e.g., skew and kurtosis) and key ideas such as the central limit theorem are reviewed. A cen-
tral theme is the role of selecting an appropriate probability distribution in building a statistical
model.

2.2 Why are probability distributions important in statistics?

The presence of uncertainty is fundamental to statistical inference. If there were no uncertainty
when sampling from a population then there would be no need for inferential statistics. In the
absence of uncertainty, there will be zero variability and the sample will match the population
perfectly.

Example 2.1 Consider the set of numbers {1, 1} as a finite population (of size N = 2). As there is
no uncertainty in the population there is no role for statistical inference. A sample of size n = 1 or
n = 2 taken from the set {1, 1} will always estimate the population mean (or any other parameter)
with perfect accuracy. Because the population does not vary, this would not change even if the
population were infinitely large. This could be confirmed by sampling the finite population with
replacement (replacing observations after they are sampled and, in effect, sampling from an infi-
nite population). Nor does the probability with which an observation is sampled matter when the
population does not vary – the lack of uncertainty makes the relative probability of sampling any
particular population value (e.g., the first observation) irrelevant.

Contrast the above situation with the numbers {0, 1} also considered as a population. The prob-
ability of sampling a particular value (0 or 1) is now of the utmost importance in estimating a
population parameter. For example, if the probability of sampling zero is .25 when sampling with
replacement (i.e., Pr(0) = .25), then this is effectively sampling from an infinite population where
25% of the population take the value 0 and 75% take the value 1. The distribution of values in
this population determines how accurately a sample of size n will estimate the population mean.
So even this rather simplistic situation requires us to consider the probability distribution defined by
the population.

Example 2.1 suggests that without knowing the distribution of the population being sampled
it will be difficult to make accurate inferences about a population. An immediate difficulty is
how to determine the distribution of values in the population. This may seem like an impossible
obstacle to overcome. But it is important to realize that the sample itself contains some infor-
mation about the population from which it was sampled (and this information increases with
n). In addition, at least some further information about the distribution is available in any real
study (e.g., about its upper or lower bound). Last, but far from least, you will nearly always be
able to get by without knowing the precise population probability distribution. What is required
is sufficient information about the distribution to meet the goals of the research (e.g., estimating
one or more parameters with a certain degree of accuracy).
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For many purposes it is possible to rely on a relatively small set of probability distributions
that can capture many of the key characteristics of population. These distributions act as useful
building blocks for a statistical model. The distributions focused on here are just a few of those
most commonly used in statistical modeling in the human and behavioral sciences. Methods
also exist for dealing with situations when data are not easily modeled by assuming one of these
distributions (e.g., robust methods). Whatever assumptions are required for a model, however,
some understanding of the most important characteristics of the probability distribution being
sampled is required (see Box 2.1).

Box 2.1 Characteristics of discrete and continuous
probability distributions

One of the most fundamental characteristics of a probability distribution is whether the distribution
is discrete or continuous. A discrete distribution is one where the population (and hence sample)
only contains specific values, usually integers, such as {0, 1} or {−3,−2,−1,0,1,2,3}. A probability
distribution for discrete data involves a mutually exclusive pairing of a probability with each pop-
ulation value that could be sampled. This can be done, in the simplest case, by listing each value
with its corresponding probability. If the range of possible population values is large, then this can
be done more conveniently by specifying a functional relationship∗ between the population values
and their probability:

f (x) = p(X = x) = probability of X taking the value x

For discrete data the functional relationship f (x) gives the probably of X taking a particular value
and is called a probability mass function (pmf ).

It is common to represent the pmf as a plot of probability (from 0 to 1) on the y-axis and the
values (x) that the distribution can assume on the x-axis. A pmf for the number of heads obtained
when tossing a fair coin ten times is shown in Figure 2.1. In a pmf the probabilities of different
values (denoted by the height of the lines in Figure 2.1) must sum to 1.

It is possible to obtain the arithmetic mean or expected value of the distribution by multiplying
each probability on the y-axis by the value on the x-axis and summing the results. In this case the
expected value is:

E(x) = 0.0009765625 × 0 + 0.0097656250 × 1 + 0.0439453125 × 2+
0.1171875000 × 3 + 0.2050781250 × 4 + 0.2460937500 × 5+
0.2050781250 × 6 + 0.1171875000 × 7 + 0.0439453125 × 8+

0.0097656250 × 9 + 0.0009765625 × 10 = 5

For a discrete distribution the mode is simply the value (or values, if more than one) with the
highest probability and therefore the tallest line (e.g., 5 in Figure 2.1). The median is the value that
is halfway through (or at the 50th centile) of the probability distribution. This is easiest to show by
plotting a cumulative distribution function (cdf ) for the distribution.

A cdf is very similar to a pmf except that rather than the probability of a value being plotted,
the probability of obtaining that value or lower – the cumulative probability of x – is plotted on
the y-axis. Figure 2.2 shows the cdf for the number of heads from ten tosses of a fair coin. In this
figure the lengths of the lines indicate the probability of observing x or fewer successes (and hence
each line is taller than its height in the pmf by an amount equal to the height of the preceding cdf
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Figure 2.1 Probability mass function for the number of heads observed from 10 tosses of a
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line). The median is the first value for which the probability (or height of the line) includes .5. For
the present example this is again 5 (as can be seen by following the dotted line at P = .5).

Unlike a discrete distribution, continuous distributions are not restricted to specific values such as
integers and can, as a rule, take any value in between the lower and upper bound of the population
(assuming it is bounded). A continuous probability distribution therefore has a smooth function
rather than the characteristic ‘spiky’ function of a discrete probability distribution. An implication of
this is that, unlike the discrete case, the probability of any particular value is zero. As a consequence,
a probability can only be obtained for an interval (a range of values) within a continuous distribution.
This makes plotting the probability directly as a pmf problematic. The solution is to specify the
functional relationship between the population values and their probability density rather than the
probability per se:

f (x) = p(X = x) = probability density of X at the value x

This relationship for a continuous distribution is known as the probability density function (pdf ). Like
a pmf a pdf is often represented in graphical form, but in this case the pdf is a smooth curve
representing the density at a given population value, while the probability is represented by the
area under the curve (with the total area summing to 1). The probability of observing a value in the
interval between the values a and b is

Pr(a ≤ X ≤ b) =
∫ b

a
f (x)dx Equation 2.1

This equation appears more complex than it is. The right-hand side of the equation is the integral
for the pdf between the values a and b. (Integration is a mathematical procedure for calculating the
area under a curve and an integral is the calculated area under a section of the curve.) Equation 2.1
thus indicates that calculating the area under the curve of a pdf between two values gives the
probability of obtaining values in that range.

The population mean, median and mode can also be derived from continuous distribution. The
mean is obtained via integration of the product of each value and its probability density:

μ=
∫ ∞

−∞
x f (x) dx Equation 2.2

The median is the value that divides the area under the probability density function exactly in half,
while the mode is the value with highest peak (or peaks if more than one) in the pdf. Note that
plotting a cdf for a continuous distribution is not a problem (because cumulative probabilities are
always defined over intervals from zero to P). A cdf for a continuous function can also legitimately
be plotted as a smooth curve.

It is important to realize that probability distributions also differ in other important ways. In par-
ticular, either a discrete or continuous distribution could be bounded or unbounded. For example
the pmf in Figure 2.1 is for a distribution bounded at 0 and at 10. Many continuous distributions
are also bounded (e.g., heights or weights are bounded at 0). Placing such limits means that values
outside these limits are logically impossible. Therefore a continuous distribution such as the time
(in seconds) it takes to drink a cup of coffee is bounded at 0 but has no logical upper limit.

Some probability distributions (e.g., that in Figure 2.1) are symmetrical, such that the probability
function is a mirror image (i.e., identical but reversed) about the median. In a symmetrical distri-
bution the mean and median take the same value. If the distribution is also unimodal (has a single
peak and hence mode) then the population median, mean and mode are usually also all equal.∗∗
(More generally, in a multimodal symmetrical distribution, one of the modes will coincide with the
mean only if there are an odd number of modes.) These relationships also hold between sample
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distributions and sample statistics (e.g., if the sample is symmetrical around the sample median, this
value is also the sample mean).

A vital step in statistical modeling is to match characteristics of the data – more accurately charac-
teristics of the process that generated the data – to a suitable probability distribution (or at least to
narrow the choice down to a family or set of related distributions). Particularly important char-
acteristics for this purpose are whether a distribution is discrete or continuous, symmetrical or
asymmetrical and whether it is bounded in some way.

* The term f (x) is just a general way to express the output of a function f when the input is the
observation x.
** The exception is for discrete distributions with even number population values (see Key
Concept 2.2).

2.3 Discrete distributions

2.3.1 The binomial distribution

In introducing probability distributions, the notion of sampling with replacement from a very
simple population – a population containing only the values 0 and 1 – was invoked (see Exam-
ple 2.1). If the probability of sampling the value 1 is fixed at, say, Pr(1)= .75 then a single sample
of n = 1 from such a population is known as a Bernoulli trial and its distribution is termed a
Bernoulli distribution. A Bernoulli trial can be used to model the outcomes of a process that has
two mutually exclusive outcomes (e.g., the sex of a newborn baby – in which case the values
represent ‘male’ and ‘female’).1 A convenient shorthand is to label 1 as ‘success’ and 0 as ‘fail-
ure’. The expected value or mean of a Bernoulli trial is equal to P (defined as the probability of
a ‘success’). The variance is equal to P(1 − P), where 1 − P is the probability of a ‘failure’.

What happens if n independent observations are sampled from such a population? The
resulting probability distribution is known as the binomial distribution. As it happens, just such
a situation is shown Figure 2.1 (which shows the probability mass function for a fair coin tossed
ten times). Figure 2.1 shows the pmf for a binomial distribution with P = .5 and n = 10 (where 1
represents ‘heads’).

The binomial distribution is a theoretical distribution that is fundamental to many statistical
models. For example, consider a recognition memory experiment in which 20 participants are
presented with an item and then offered five options (the correct item and four foils) at test.
In this situation, random guessing can be modeled as a binomial distribution with n = 20 and
P = .2.

The pmf of a binomial distribution for a variable X is:

f (x;n,P) =
(

n
x

)
Px(1 − P)n−x Equation 2.3

Again, this formula may appear complex, but if you understand the notation (and some basic
probability theory) it is reasonably simple (see Box 2.2). The symbols n and P refer to the num-
ber of independent binomial trials and the probability of success respectively, while x is the
observed number of ‘successes’. Thus 1−P is the probability of a failure and n−x is the observed
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number of ‘failures’. Overall, the equation indicates that the probability of observing x successes
is obtained by multiplying the number of possible combinations of trials with x successes by the
probability of a sequence with x successes: Px(1 − P)n−x. The number of possible combinations
is given by the binomial coefficient described in Box 2.2.

Box 2.2 Probability, combinations and
the binomial coefficient

A full introduction to even the basics of probability theory is outside the scope of this chapter, but it
is worth introducing (or reviewing) some important points. First, if a and b are independent events
(that is, the outcome of one has no influence on the other) then the probability of a occurring
followed by b is Pr(a) × Pr(b). For example, if you toss a fair coin twice the probability of it coming
up heads followed by heads again (HH) is

Pr(H) × Pr(H) = Pr(HH) = .5 × .5 = .52 = .25

Similarly, the probability of tails followed by tails (TT), or the probability of heads followed by tails
(HT) is also .25. Together, these probabilities sum to .75 (not to 1). Why is that? Because a fourth
option, tails followed by heads (TH) – also with probability .25 – has been missed out.

To find out how likely any set of outcomes (two heads, two tails or one head and one tail) is, you
need to know not just the probability of each particular outcome, but also the number of ways in
which it can occur. The number of ways an unordered outcome can occur is known as the number of
combinations (and is distinct from the four ordered permutations HH, HT, TH and TT). In the above
example, two heads can only occur in one way (HH), whereas one head and one tail can occur
two ways (HT or TH). While it often helps to think of combinations in terms of sequences, the same
principles apply to any set of independent events (e.g., tossing two coins labeled A and B simulta-
neously; thus HT could indicate that A is heads and B tails, and TH that A is tails and B is heads).

Thus in the pmf for the binomial distribution the Px(1 − P)n−x term represents the probability
of obtaining a particular combination of x successes in n trials. For two fair coins n = 2 and P = .5
so the probability of two heads is .52(1 − .5)(2−2) = .25(1 − .5)0 = .25(1) = .25. To get the number
of possible combinations there are two main methods. The first method is to list all the possible
outcomes and count the relevant ones. Although time-consuming, it is a good way to understand

what is going on when n is small. The second method is to use the following formula to find
(

n
x

)
:

(
n
x

)
= n!

x!(n − x)! Equation 2.4

The exclamation mark denotes the factorial function. The factorial of a non-zero integer x (e.g., 4) is
obtained by multiplying all integers from 1 up to x together (e.g., 1 × 2 × 3 × 4 = 24). The factorial
of zero is a special case and defined as 0!=1. When tossing two coins, there is only one combination
of two heads (or two tails):

(
2
2

)
= 2!

2!(2 − 2)! = 2
2

= 1

The term
(

n
x

)
is known as the binomial coefficient and is a general way to refer to the number of

ways of selecting x combinations from a total of n things.
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The mean (expected value) of a binomial distribution can be obtained by summing the
probability of x successes over all possible outcomes:

μ=
n∑

x=0

f (x;n,P) = nP Equation 2.5

Equivalently, given that there are n independent trials, each has P chance of being a success
and hence the mean of a binomial distribution is nP. The corresponding variance is nP(1 − P).

Although the binomial distribution is unimodal, it is symmetrical only if P = .5. In this case,
nP is also the median. The median itself always falls between nP −1 and nP +1, while the mode
is the largest integer smaller than (n + 1)P. This carries the implication that the mean, median
and mode are also identical if the mean is an integer. When the median and mode differ the
mean lies between them (Kaas and Buhrman, 2008). This is necessarily true if the mean is not
an integer: it will lie in between the median and the mode (one of which must be nP +1 and the
other nP − 1).

If a variable X has a binomial distribution this can be written as:

X ∼ B(n,P)

B is shorthand for binomial while n and P refer to the parameters of the distribution (the tilde
symbol can be read as ‘is distributed as’). Here a particular sense of the term parameter is
invoked. If you know both n and P, and that the distribution of X is binomial then no other
information is needed – between them these parameters completely specify a binomially dis-
tributed variable. The estimators of such a set of parameters are sometimes termed sufficient
statistics (see Box 2.3). Any other parameter of the binomial distribution (e.g., median, mode,
range or variance) can be deduced once n and P are known.

Box 2.3 Sufficient statistics

Sufficient statistics are summaries of data that preserve all the information a sample provides about

a population parameter. For example, P̂ is a sufficient statistic for a Bernoulli distribution, whereas n
and P̂ are (in combination) sufficient statistics for a binomial distribution. A better-known example
is that μ̂ and σ̂ are sufficient statistics for the normal distribution.

When data are assumed to have been sampled from a particular distribution, sufficient statistics
play a particularly crucial role as descriptive statistics. If the assumption is correct then the sufficient
statistics offer a complete description of the population distribution. In practice it is unreasonable
to assume data are sampled from a perfect binomial or other distribution. Even so, if the distribu-
tion is closely approximated by some ideal distribution, sufficient statistics for that distribution are
undoubtedly a very powerful way to summarize and communicate what is going on (e.g., poten-
tially allowing readers to check, re-analyze or conduct alternative tests of published data). Strong
distributional assumptions are not always adopted, but sufficient statistics (usually in conjunction
with other descriptive statistics and checks on a statistical model) are the starting point for most
summaries of research. For example, they are the standard for reporting many statistical procedures
in psychology (e.g., APA, 2010).

Applications of the binomial distribution often involve not the number of successes x but the
proportion of successes x/n. For example, a researcher might be interested in the proportion
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of successes from n trials in a memory experiment (e.g., because this might be comparable
between experiments with similar stimuli but different n). This follows the same distribution,
except that dividing by n produces a mean of P and a variance P(1 − P). A sample estimate of
the probability of successes is therefore also an estimate of the proportion of successes in the
population. I will refer to this sample estimate as P̂ (‘P-hat’) to distinguish it from the population
parameter P.

Example 2.2 Consider a rudimentary extra-sensory perception experiment in which a supposed
psychic (the ‘sender’) concentrates on one of three shapes (a circle, square or triangle). On each trial
a participant (the ‘receiver’) is presented with pictures of the three shapes and asked to pick out the
one that the sender is concentrating on. This procedure is repeated until n = 6 trials are completed.
If the receiver is guessing at random then all options are equally probable and the probability of
success P = 1/3. The assumed population mean is nP = 6(1/3) = 2 (as is the median and mean).
The variance of this distribution is nP(1 − P) = 2(2/3) = 4/3 or approximately 1.33. This could easily
be re-expressed in terms of proportions of successes rather than number of successes. Dividing by
n gives a mean of 1/3 and a variance of 4/18 = 2/9 or about .22. The corresponding standard
deviation (SD) could be estimated as .47 (the square root of .22). If four successes are observed
then P̂ = 4/6 = .67. Although the observed proportion is fairly high it is not inconsistent with the
assumed distribution of random guesses. Its SD of .47 gives a rough idea of how far a typical sample
proportion might fall from the true mean.

Given these assumptions about the population it is possible to work out the probability of any
particular outcome using Equation 2.3 and Equation 2.4. The probability of four successes turns out
to be:

(
6!

4!(2)!
)

×
(

1
3

)4

×
(

2
3

)2

= 720
48

× 1
81

× 4
9

= 15 × 4
729

≈ .0823

Cumulative probabilities can also be calculated using these equations. The probability of four or
more successes Pr(x ≥ 4) would be approximately 0.0823 plus the probability of five successes
(0.0165) and six successes (0.0014) for a total of around 0.10. Although these calculations might
seem precise, it is important to remember that they are limited in several ways. First, as noted earlier,
the variance is probably quite large. Second, the probability model required an assumption (albeit a
fairly reasonable one) about the value of the parameter P. Third, the binomial distribution assumes
that the six trials are independent (which is almost certainly not true in this case – as all six responses
are made in sequence by the same person). This would be violated if both receiver and sender have
a preference for selecting a particular shape or sequence of shapes. Such a problem could be dealt
with by generating the targets at random. Thus the design of the study can have an impact on the
suitability of the probability model.

2.3.2 The Poisson distribution

The Poisson distribution is often selected to model frequency or count data – data that arise
from counting the number of occurrences of an outcome within a particular area or time period.
A Poisson process (something that generates a Poisson distribution) is one in which independent,
discrete events occur over time or space at a continuous rate. This means that the number of
events observed depends only on the length of the time period or the size of the area sampled.
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Figure 2.3 Probability mass function for a Poisson distribution with λ = 3.5

It is important to realize that, although each event is discrete, the time period or area sampled
is continuous and could be divided into smaller segments (or pooled into a larger segment). The
Poisson distribution is a natural starting point for modeling, say, the number of hits on a website
or accidents reported in a one-week period in a particular workplace. The Poisson distribution
has a single rate parameter λ (lambda) that determines the number of outcomes observed in
a given sample. Figure 2.3 shows a Poisson probability mass function for λ = 3.5. A Poisson
distributed variable, X, can be denoted as:

X ∼ Pois(λ)

The probability mass function for the Poisson is:

f (x;λ) = λxe−λ

x! Equation 2.6

A fundamental characteristic of the Poisson distribution is that the single rate parameter is
both the mean and the variance of the distribution. Also, as one would expect from a discrete
distribution used to model count data, it is bounded at zero (but has no upper bound). A con-
sequence of this is that the distribution is notably asymmetric when λ is small (the distribution
tends to be squashed together toward zero and stretched out toward the upper bound, indi-
cating positive skew – see Key Concept 2.2), but becomes more symmetrical as λ increases.
Figure 2.4 illustrates this using the pmf for the Poisson distribution for λ = 2 and λ = 5. Also
apparent is how the distribution spreads out as the mean (and hence its variance) also rises.
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Figure 2.4 Probability mass functions for Poisson distribution with different rates

This relationship between mean and variance in the Poisson distribution offers one indica-
tion of its appropriateness in a statistical model. If the mean and variance of a sample differ
markedly then a Poisson distribution may not be appropriate (at least not without considering
additional factors that may be influencing the variability of the observed counts). Although
generally asymmetrical, the Poisson distribution is unimodal. Its mode is the largest integer
less than λ, unless λ is an integer (in which case both λ and λ − 1 are modes2). The median is
less easy to pin down because of the asymmetry of the distribution. The median will often be
close to λ, but there is no simple rule to describe its location (see von Hippel, 2005).

In the preceding section the binomial distribution was introduced as the sum of n indepen-
dent Bernoulli trials with a fixed probability. What happens if two or more independent Poisson
distributions are summed? It turns out that the sum of independent Poisson distributions is
also a Poisson distribution with λ equal to the sum of the rates of the constituent distribu-
tions. For example, if the frequency of arguments between two couples undergoing therapy is
rates of two per week and three per week respectively, the total rate of arguments is five per
week. This is useful, because any number of couples (or other measurement units) with differ-
ent rate parameters might, in principle, be modeled (provided the observations on each unit are
independent).

So far, the discussion has focused on the Poisson distribution as the number of independent,
discrete events occurring at a given rate. It is also possible to consider the Poisson distribution
as an approximation of the binomial distribution appropriate when events are rare (i.e., P is very
small). Under these circumstances the binomial distribution approaches the Poisson distribution
with λ = nP for a fixed value of λ as n becomes very large. Hence you can think of the Poisson
distribution as a distribution for rare events if there are very many independent opportunities
for the event to occur. At any point in time, a large number of people might potentially carry
out some act (e.g., make a fraudulent insurance claim) but each does so with only a small
probability. Thus a binomial distribution with n = 5000, P = .001 is approximated by a Poisson
distribution with λ = 5. The binomial probability of observing exactly two such rare events is
0.08416534, while the Poisson approximation is 0.08422434.
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Example 2.3 Consider the case of the number of arguments reported by a couple undergo-
ing therapy. If a couple reported seven arguments in two weeks then λ = 3.5 per week and the
probability of a couple reporting exactly two arguments in a week would be:

3.52e−3.5

2! = 12.25 × .030197
2

= .36992
2

= .18496

You’d expect such a couple to report two arguments in a week around 18% of the time. As just
noted, this can also be thought of as an approximation to a binomial distribution where arguments
occur with fixed probability P̂ and an unknown number of trials. Working with a binomial distribu-
tion directly would be problematic – partly because it would not be practical to estimate the number
of opportunities for arguments in any week.

2.3.3 Other discrete distributions

There are many other common (and many less common) discrete distributions of interest to
researchers. Two, in particular, are worth a brief mention for their links to the binomial and
Poisson distribution.

The first is the negative binomial distribution (sometimes known as the Pascal distribution).
This is the distribution of the number of independent trials required to achieve a certain number
of successes or failures, where P – the probability of a success – is fixed. Thus the negative bino-
mial distribution is a kind of reverse form of the binomial (where the number of outcomes is
fixed but n varies). The negative binomial model is also widely employed in a different context,
where it acts as a substitute for the Poisson. This application arises because the negative bino-
mial can be set up to mimic the behavior of the Poisson. Because it has an additional parameter
it can model count data where the mean is not equal to the variance (see Chapter 17).

The second distribution is the multinomial distribution. This can be thought of as a gener-
alization of the binomial distribution to situations with k discrete outcomes each with a fixed,
independent probability (Pk) and where P1 + P2 . . .Pk = 1. Furthermore, k independent Poisson
distributed variables will have a joint distribution that is multinomial (and with parameters
determined by the number of Poisson trials and their respective λ). The multinomial distribution
is a natural choice when modeling categorical outcomes with more than two options.

2.4 Continuous distributions

2.4.1 The normal distribution

The normal distribution (also known as the Gaussian distribution) is a symmetrical, unimodal,
continuous distribution that plays a key role in many areas of statistics. One way to derive the
normal distribution is as the sum of an infinite number of independent, random variables. Thus
the normal distribution seems appropriate for situations in which data arise from a process that
involves adding together contributions from a large number of independent, random events.
For example, the distribution of male heights might reasonably be considered the outcome of
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many independent, random genetic or environmental influences and hence (at least approxi-
mately) normal. The importance of the distribution in statistics derives primarily from its role
in the central limit theorem (see Key Concept 2.1).3 The central limit theorem suggests that
under certain, fairly reasonable conditions, many statistics will follow an approximate normal
distribution when n is large.

KEY CONCEPT 2.1

Sampling distributions and the central limit theorem

The central limit theorem (CLT) is the justification for many statistical procedures that assume a normal
distribution (or at least approximate normality). It is a theorem about the sampling distribution of a statistic
(a statistic being the sample estimate of a population parameter). The sampling distribution of a statistic is
the distribution that is obtained by calculating the same statistic from an infinite number of independent
samples of fixed n. It is therefore the hypothetical population distribution of sample statistics for a given
sample size. Such a distribution is known as the sampling distribution of the statistic (e.g., in the case of the
mean you would refer to it as the sampling distribution of the mean). The mean of a sampling distribution
is the expected value (i.e., mean) of the original population the samples were drawn from. The SD of
a sampling distribution is known as its standard error (the importance of which will become apparent
when statistical inference is introduced). So the SD of the sampling distribution of the mean is termed the
standard error of the mean.

There are a number of reasons why sampling distributions are interesting. First, these distributions
determine the probability of observing a particular value of a statistic in any given sample (information
essential for statistical inference). Second, the sampling distribution of a statistic can – and often does –
differ from the population distribution of the data used to calculate the statistic. Don’t assume that a
sampling distribution has the same distribution as the population the original data are sampled from.

The central limit theorem states that the sampling distribution of a statistic approaches the normal
distribution as n approaches infinity (its asymptote). This asymptote is the limit referred to in the theorem.
(It is ‘central’ in the sense that it is fundamental to probability theory and statistics.)

There are restrictions on the generality of this result. The central limit theorem applies to any statistic
that is computed by summing or averaging quantities. Thus it holds for variances or means, but not for
all descriptive statistics (e.g., the SD is the square root of an average and the CLT does not hold for it).
It also holds only for distributions with finite mean and finite variance. This might appear to include all
possible distributions, but there are distributions (and not necessarily esoteric ones) that do not have finite
means or variances. Nevertheless, for many practical applications a finite mean or variance is a reasonable
assumption.

What is the practical impact of this? In essence it means that, provided certain fairly plausible assump-
tions are met and n is sufficiently large, the sampling distribution of a statistic will be approximately
normal. In addition, the larger n gets, the better the approximation gets. Armed with the mean and SD of
the sampling distribution it is therefore possible to use the normal distribution to estimate the probability
of observing a particular statistic value or range of values. It should be immediately obvious that this makes
the normal distribution incredibly versatile (even if the population that data are sampled from is decidedly
non-normal).

Consider data sampled from a binomial distribution. It has finite mean and variance. The number of
successes in a sample from a binomial distribution is the sum of n independent Bernoulli trials. It follows
that the distribution of successes from a binomial distribution approaches the normal distribution asymp-
totically. Figure 2.5 shows histograms (frequency bar graphs) of the sampling distribution of successes
from a binomial distribution when n = 10, 30 or 100 for P = .35 and P = .15. Each plot is based on only
100,000 samples (but this is enough to show the sampling distribution reasonably clearly). When n = 100
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Figure 2.5 Histograms for 100,000 simulated samples from binomial distributions, with P = .15
(top row) or P = .35 (bottom row) and sample sizes of n = 10, n = 30 or n = 100

the distributions for both P = .15 and P = .35 look approximately normal, while both distributions look
rather asymmetrical when n=10. The main insight to be derived from Figure 2.5, however, is that the rate
of convergence of the binomial distribution on the normal depends on P. Remember that the binomial
distribution is symmetrical only when P = .5 and becomes increasingly asymmetrical as P approaches 0
or 1. Thus, when P = .35 the binomial distribution is more symmetrical than when P = .15. The similarity
to the normal is evident for P = .35 even when n = 30 (and some skew is evident for P = .15 even when
n = 100).

In general, the closer the original distribution is to the normal in shape, the more swiftly its sampling
distribution converges on the normal.

As Figure 2.5 shows, different sampling distributions may well have very different rates of convergence.
This poses a problem because it means it is not possible to state with any certainty that a given sample
size (e.g., n = 30, n = 100 or even n = 1,000,000) allows the CLT to be invoked. In other words, no
matter what n is selected there is no guarantee that the sampling distribution of a statistic will be even
approximately normal (without additional conditions being imposed). That said, given some idea of the
original distribution of the data (e.g., that it is approximately binomial with P = .4 or Poisson with λ = 6),
it is easy to estimate what value of n will provide a reasonable approximation. Figure 2.5 suggests that for
n = 30 the normal distribution provides a very satisfactory approximation to the binomial if P = .35, but
might not be adequate for more extreme values of P such as .15 or .85.

Joliffe (1995) provides a neat example of the problem of convergence using the Poisson distribution.
Recall that the sum of independent Poisson distributions itself has a Poisson distribution. Let’s start by
assuming that a distribution has λ= 2. If this distribution is, let’s say, the sum of 100 independent Poisson
distributions with λ = 0.02 it follows that the sum of means from a Poisson distribution is not guaranteed
to be approximately normal when n = 100 (see Figure 2.4a). Thus Joliffe shows that while it tempting
to use the Poisson to illustrate the CLT in action, the scenario works both ways. When λ is large the
Poisson distribution is very well approximated by a normal distribution (e.g., Figure 2.4b suggests that the
approximation may be acceptable even for λ = 5). However, we could pick any finite value of n and show
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that summing n distributions would not be approximately normal (provided λ for the summed distribution
was itself small). This state of affairs is not confined to the Poisson. A similar argument can be made for
the binomial distribution as a sum of n Bernoulli trials for rare events (i.e., when P is small).

Although the central limit theorem is a remarkably powerful tool, it is worth reflecting on three com-
mon misunderstandings of it. The first misunderstanding is that it applies without restriction. This is not
the case – and although widely applicable – there are some statistics and some distributions that are
excluded. Second, it is often assumed that a given value of n (e.g., n = 30 is common) ensures that the
theorem can be invoked. Again, this is untrue. Required n depends on the distribution of the original
data (its shape and the precise parameters involved) and on how close an approximation is desired. The
third misconception is the most troubling. The CLT is sometimes interpreted as a statement about the
distribution of the original data rather than a statement about the sampling distribution of a statistic.
It is possible that this arises because some distributions (e.g., the binomial or Poisson) can themselves
be thought of as sampling distributions of statistics. Nevertheless, a moment’s reflection should be suffi-
cient to counteract this misunderstanding. If you were to sample a completely flat, uniform distribution
(e.g., a process that generates random real numbers between 0 and 1) and calculate the mean, repeating
this process a few thousand or million times will produce a reasonable approximation to the sampling
distribution (an approximate normal distribution). However, the shape of this sampling distribution will
in no way have had any influence on the process that generated those numbers. How could it? Its dis-
tribution remains uniform. A related argument could be made for any discrete distribution such as the
occurrence of heads or tails when a coin is tossed. Even if the sampling distribution of the number of
heads is close to normal (which it will be with large n) and well-described by a continuous function, the
outcome remains discrete. So someone might predict, but never observe, 4.5 heads from nine tosses of
a coin.

The parameters of a normal distribution are its mean μ and its variance σ2. A normally
distributed variable X can therefore be denoted as:

X ∼ N(μ,σ2)

The probability density function for a normal distribution with μ = 100 and σ = 15 is shown in
Figure 2.6. For convenience, the variability of a normal distribution is often described in terms
of σ (sigma) the population SD – for the same reasons that the sample SD is preferred to the
variance as a descriptive statistic. Many psychological scales are deliberately constructed to be
approximately normal and Figure 2.6 happens to show the hypothetical population distribution
for many common IQ tests. All normal distributions have this characteristic ‘bell’ shape (though
note that a number of other common distributions can also be described as ‘bell-shaped’). As the
normal distribution is both symmetrical and unimodal, its mean, median and mode are identical
in the population.

The probability density function for a normally distributed variable, X is:

f (x;μ,σ2) = 1√
2πσ2

e− (x−μ)2

2σ2 Equation 2.7

This function looks rather more difficult to understand than it really is – bear in mind that both
e and π are constants (and π, the ratio of the diameter of a circle to its circumference, is found
in many functions that describe curves). Hays (1973) explains that the ‘working’ part of the
function is −(x − μ)2/2σ2 (where x appears). For any particular normal distribution x − μ (the
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Figure 2.6 Probability density function for a normal distribution, with μ= 100 and σ = 15

distance from the mean) determines its density. As this quantity is squared in Equation 2.7,
the density is symmetrical around the mean. This part of the function appears as an exponent
with a negative sign. Larger distances from the mean produce a more negative exponent, so
the density is smallest when x is very far from μ and largest when x = μ. Thus the distribution
has a single mode. No matter what value x takes, the exponent of a positive number (such as
the constant e) always produces an outcome greater than 0, therefore the probability density
can never fall below zero (and hence the distribution is unbounded). All this holds provided
σ is larger than zero (i.e., provided that there is any variability in X whatsoever). As with any
continuous distribution, probabilities are defined by the area under the curve for a given interval
(obtained by the integral of the curve between those points). Thus the total area under the curve
equals the total probability:

Pr(−∞ ≤ X ≤∞) =
∫ ∞

−∞
f (x)dx = 1

The spread of points around μ is determined entirely by σ (or equivalently by σ2). Figure 2.7
shows normal distributions where μ and σ vary. It should be evident that changing the mean
merely shifts the distribution right or left along the x-axis, while changing the standard deviation
increases or decreases its spread (in the same way that constricting the x-axis would). This
constriction is, in effect, just a rescaling of the x-axis: the same visual result is achieved by
multiplying all the value labels on the x-axis by two or by halving σ .

An important feature of the normal distribution that is not particularly evident when it is plot-
ted is that the probability density never reaches zero (and one convention is to terminate the left
and right ends of the plotted curve in ‘mid air’ to suggest this). This is because the distribution
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Figure 2.7 Normal distributions with differing parameters

is unbounded; ranging from −∞ to ∞. In principle a value any distance from the mean might
be observed (though the probability becomes extremely small as the distance exceeds several
multiples of σ ). This property may make the normal distribution unsuitable for some purposes
(e.g., because the true population values are bounded or because the probability of very extreme
values being observed is poorly represented).

If a variable has the distribution

z ∼ N(0,1),

then it is said to follow the standard normal distribution. The pdf and cdf of the standard normal
are depicted in Figure 2.8.

The standard normal distribution (often abbreviated to z) is frequently used to simplify work-
ing with normal distributions. For the reasons considered above, any normal distribution can
be shifted right or left, so that μ = 0 (by subtracting its mean from all values). Likewise you can
squash or stretch the distribution, so that σ = 1, by dividing all values by its SD. Aside from sim-
plifying calculation (arithmetic using 0 and 1 being generally quite easy) it also simplifies some
mathematical proofs involving the normal distribution. Particularly useful (historically at least)
is the fact that the quantiles (and particularly centiles) of the standard normal distribution can
be so easily mapped onto any other normal distribution and vice versa. A single set of tables of
z quantiles, combined with a little arithmetic, can substitute for any normal distribution (and is
particularly convenient when working without a computer). For example, the 50th centile (the
median) lies at zero and approximately two-thirds of the distribution lie between −1 and 1.
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Figure 2.8 Probability density and cumulative distribution functions for the standard normal (z)
distribution

For any normal distribution, around 67% of the population lie within μ ± σ , and around 95%
of the population lie within μ ± 2σ . As the distribution is symmetrical it follows that about 2.5%
lie above μ + 2σ and about 2.5% below μ − 2σ . While these integer approximations are handy,
more precise values can determined by computer or from tabulated values of z. These values
could also be calculated by integrating the area under the standard normal curve bounded by
particular values of z. The usual trick here is to use the cdf to obtain the cumulative probability
for a particular tail value. When using the z distribution, this function is often labeled Φ (the
Greek capital letter ‘phi’) and its inverse as Φ−1. Hence Φ(−1.96) = .025. This gives the cumula-
tive probability of the left tail of z up to and including −1.96. You should be able to check this
visually using Figure 2.8b. Because the pdf is symmetrical (see Figure 2.8a) you only need to
look up values for the lower tail and double it to get the proportion of values falling +/ − 1.96σ

from the mean. (Using the left tail is easiest because the convention is to cumulate left-to-right.)
Likewise, Φ(1.96) gives the cumulative probability up to and including z = 1.96. This is .975 and
implies 1 − .975 = .025 is the probability for values of z exceeding 1.96. To include 66.67%, 90%,
95% and 99% of the distribution, the correct values of z (to three decimal places) are ±0.968,
±1.645, ±1.960 and ±2.576.4

This property of the normal distribution makes the sample SD an especially useful descrip-
tive statistic. Even if a distribution is known not to be normal, there is a theorem (Tchebycheff’s
inequality) that provides limits on the proportion of a distribution that can fall in each tail (see
Hays, 1973). For any distribution with finite mean and variance, the probability of obtaining a
value ±jσ from the mean of a distribution is always less than or equal to 1/j2. For example, the
probability of obtaining a value ±2σ from the mean is no more than .25. This can also be applied
to the distribution as a whole. At least 75% of values from any distribution are no further than
±2σ and at least 93.75% are no further than ±4σ from the mean. If the distribution is both uni-
modal and symmetrical, it is possible to narrow the limits a little further using the Vysochanskij-
Petunin inequality. Here the relevant quantity is 4/9

(
1/j2

)
. This more than halves the tail proba-

bility, so that around 89% of observations are no further than ±2σ from the mean. Thus, even if a
variable is not normal, σ̂ provides at least a rough indication of how unusual an observation is.
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Example 2.4 Researchers in the UK have recently argued that differences in teaching ability can
have a substantial impact on public examination grades (Slater et al., 2009). One estimate is that
the difference between having a teacher in the top 5% or bottom 5% of teaching ability, relative
to an average teacher, is around one letter grade (the difference between A and B or B and C) at
GCSE (the main public exam for 16-year-olds in England and Wales). If teaching ability is assumed
to follow a normal distribution (probably quite a strong assumption), the effect of teaching ability
on GCSE grades could be modeled as a normal distribution with μ= 0 and σ ≈ 0.3.

On this basis, what is the expected impact of a teacher on the 25th centile of teaching ability?
This can be from Φ−1(.25) ≈ −0.67. A teacher at the 25th centile might be expected to reduce
grades by about .67σ or 0.67 × 0.3 = 0.2. This amounts to a fifth of a letter grade lower than they
would otherwise obtain. It follows that a teacher on the 75th centile would be expected to increase
performance by about a fifth of a grade.

The calculations also work the other way. What proportion of teachers would be expected to
increase grades by a whole letter grade? This is approximately 1/0.30 = 3.33σ . As Φ(3.33) ≈ .9996
it follows that this proportion is about 1 − .9996 = .0004. This equates to .04% (or around one
teacher in 2500). Note that by requesting the lower (left) tail cumulative probability I would have
got directly to Φ(−3.33) ≈ .0004.

Although these estimates seem reasonable, they required quite strong assumptions about the
distribution. If the distribution is not normal the estimated probabilities – particularly the extreme
tail probabilities – could be very inaccurate.

2.4.2 The lognormal distribution

The lognormal distribution is an asymmetric, continuous probability distribution that, as the
name implies, is normal under a logarithmic transformation. If a variable X has a normal distri-
bution then eX has a lognormal distribution. Correspondingly, if Y has a lognormal distribution
then ln(Y) is normal. (Note that the base of the logarithm is irrelevant to this relationship – it
merely acts as a scaling factor.) While the normal distribution is additive – arising as the sum
of an infinite number of independent, random variables, the lognormal distribution is multi-
plicative. The lognormal thus applies when many independent, random variables are multiplied
together (i.e., as the distribution of their product rather than their sum). This is reasonable when
the effect of many independent and random influences is to induce a proportionate change in
something (rather than merely adding or subtracting from it). Just as the sum of independent
normal variables is normal, so the product of independent lognormal distributions is lognormal.

It is natural to exploit the link between the lognormal and the normal. For example, the
parameters of the lognormal are usually defined as μ and σ2 where μ and σ2 are the mean and
variance of the logarithms of the population sampled (rather than of the original population).
A lognormal variable X can be written as

X ∼ LogN(μ,σ2)

with the probability density function:

f
(
x;μ,σ2

)
= 1

x
√

2πσ2
e− (ln(x)−μ)

2

2σ2 Equation 2.8
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Representing the lognormal in this way (using natural logarithms) means that exponentiation
to base e of μ and σ gives eμ, the geometric mean, and eσ , the geometric standard deviation.

The variance of X is given by
(
eσ2 − 1

)
e2μ+σ2

, while the arithmetic mean of the original values is

given by eμ+ σ2

2 . The geometric mean of a lognormal distribution, eμ, is also its median, whereas
the mode is eμ−σ2

. These values are consistent with the asymmetry of the lognormal distribu-
tion – the median, geometric mean and mode are smaller than the arithmetic mean (which is
weighted toward the long right tail of the distribution). This is shown clearly in Figure 2.9, which
depicts the standard lognormal distribution (i.e., with μ = 0 and σ = 1).

Data from a lognormal distribution are constrained to be greater than zero, but have no
upper bound. The distribution is therefore a popular choice of continuous distribution for real
world data bounded in this way (e.g., response times). The lognormal distribution is a common
example of a positively skewed distribution (see Key Concept 2.2). The degree of skew depends
on σ . When σ is small the skew is negligible (approaching symmetry as σ approaches zero). One

implication of this is that, as skew decreases, the mean eμ+ σ2

2 and geometric mean eμ become
more similar.

It is therefore difficult to distinguish samples from normal and lognormal distributions if μ is
large relative to σ . Limpert et al. (2001) make exactly this argument for much real world data;
the normal distribution is often assumed when the lognormal is at least as plausible.
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Figure 2.9 Probability density function for the standard lognormal
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Example 2.5 Limpert et al. (2001, Table 2) report numerous examples of data sets with an
approximate lognormal distribution. One, based on historic data from Boag (1949), is for survival
after a diagnosis of mouth and throat cancer. Subsequent examples refer to these as the cancer
survival data.

Survival data are notable for their positive skew (see Gould, 1985), and it seems reasonable that
the lognormal distribution could be used to describe it. The geometric mean (also the median)
is approximately 9.6 months with a geometric SD of 2.50. This distribution could be modeled as
a normal distribution of the natural logarithm of the survival time (in months) or as a lognormal
distribution with μ = ln(9.6) and σ = ln(2.50). The advantage of using a lognormal distribution is
that it retains the original units (survival in months).

Using this information one can predict the survival for patients in the left and right tails of the
distribution, or the probability or surviving a certain length of time after diagnosis for a patient
picked at random. The probability of surviving two years or more after diagnosis Pr(x ≥ 24) is about
.16. A patient in the bottom 10% has an estimated survival time of about 3.0 months (6.6 worse
than median). The skew of the distribution is obvious when you consider that estimated survival for
a patient in the top 10% is about 31.1 months (21.5 months better than median). These summary
data are now over 60 years old and survival after diagnosis will probably be much improved (though
it may well still be adequately modeled by a lognormal distribution).

KEY CONCEPT 2.2

Skew

An asymmetrical distribution is said to be skewed. It is sensible to distinguish between positively skewed dis-
tributions (weighted to the right of the number line where the larger, more positive numbers are located)
and negatively skewed distributions (weight toward smaller, more negative numbers on the left). When
plotted with data values on the x-axis (e.g., for a pmf or pdf ), positively skewed distributions look as if
they have been stretched out to the right and negatively skewed stretched out to the left. The terms right
skew and left skew are therefore often used interchangeably with positive and negative skew respectively.
However, positive and negative skew are more general terms; if the data values are plotted vertically (on
the y-axis) the terms right and left skew will be misleading.

Distributions bounded only at their left-most tail (e.g., at or near 0) tend to be positively skewed. This
is apparent for both Poisson and lognormal distributions (see Figure 2.3 and Figure 2.9). Distributions
bounded only on the right tend to have negative skew. Negative skew is less frequently encountered than
positive skew, because many real world processes (e.g., response times, income, number of children) are
bounded at zero (or close to zero). However, negatively skewed distributions are not rare. The binomial
distribution (bounded on both the left and the right) is a good example. When P < .5 it is positively
skewed, whereas for P > .5 it is negatively skewed. Figure 2.10 shows the pmf for the binomial distribution
for n = 20 when P = .08 and P = .92.

For a positively skewed distribution the median is typically smaller than the mean. For negative skew
it is usually larger than the mean. A common misconception is that this is always true, but there are
many situations where this pattern does not hold (von Hippel, 2005). One reason for this misconception is
historical. Karl Pearson proposed two simple measures of skew (skewness) based on the difference between
mean and median. These measures define skewness as positive if the mean is larger than the median (and
negative if it is smaller). The Poisson distribution is a particularly useful counter-example (see von Hippel,
2005). For around 30% of all values of λ the median is larger than the mean (even though the Poisson can
never have negative skew). For example, if λ = 1.9 the median is 2. When λ = 2 the median is also 2, but
the distribution is far from symmetrical. If you look back at Figure 2.4a it should be possible to see why.
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Figure 2.10 An illustration of the asymmetry of the binomial distribution, when P �= .5

First, note that the mode is spread across 1 and 2. When λ falls just below 2, the peak shifts slightly so that
the mode equals 1. The median is harder to shift and remains at 2.

Skew is more correctly defined in terms of the 3rd ‘moment’ (μ3) of a probability distribution (where
the mean is defined as the 1st moment and the variance the 2nd). This indicates that the skew depends on
the cubed deviations of values from the mean (while the variance depends on the squared values and the
mean on the unsquared, uncubed values). When comparing distributions, skewness is often ‘standardized’
(i.e., scaled in terms of σ ). For example, skewness is typically represented as μ3/σ3 (and will be zero if a
distribution is symmetrical).

In general, violations of the supposed ‘rule’ that the median is shifted away from direction of skew (rela-
tive to the mean) occur most often for discrete and bimodal (or multimodal) distributions. For continuous
distributions such a pattern is never found if a distribution is unimodal, but can sometimes occur when a
distribution is not unimodal. In addition, it is important to understand that a sample distribution can (and
typically does) differ in shape from the distribution it is drawn from – so a negatively skewed sample could
be drawn from a positively skewed population. Furthermore, if measurements are discrete (e.g., because of
rounding error or the nature of the measurement tool being used), samples from a continuous distribution
might behave somewhat erratically (relative to the continuous distribution they are supposedly sampled
from).

2.4.3 The chi-square (χ2) distribution

A good starting point for understanding the chi-square distribution5 is to consider a squared
observation, z2, drawn at random from the z (i.e., standard normal) distribution. The sampling
distribution of z2 is a chi-square distribution – specifically it is a chi-square with 1 degree of
freedom (df ). Figure 2.11 shows the pdf for the chi-square distribution with 1 df.6

If k independent observations were sampled from a z distribution and each observation
squared and summed (added together), the distribution would be chi-square with ν degrees
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Figure 2.11 Probability density function for a chi-square distribution with 1 df

of freedom (where ν is the Greek lower-case letter ‘nu’). The distribution has a single parameter
ν, and this is always greater than zero. Why might we be interested in this distribution? The
fundamental insight here is that z2 is a special case of sums of squares where the data have
a variance of 1. Given the intimate link between the calculation of sums of squares and the
variance it turns out that the chi-square distribution is useful for modeling variances of samples
from normal (or approximately normal) distributions.

If a variable X has a chi-square distribution with ν df it can be denoted as:

X ∼ χ2
ν

The mean or expected value of χ2 is equal to its degrees of freedom ν and its variance is 2ν.
Knowledge of the expected value of a chi-square statistic is particularly useful for large ν; it
provides a quick way to gauge the fit of a statistical model (which tends to be good if the statistic
is similar in value to its df and poor when markedly different from its df ). The mode is ν − 2 if
ν>2 (and zero otherwise). In contrast, the median tends to be in the region of ν−2/3. Figure 2.12
shows the pdf for chi-square when for ν= 3 and ν= 10.

The chi-square distribution is positively skewed and bounded at zero – as should be expected
for a distribution derived from sums of squares. Figure 2.12 hints that as the df rise, the
distribution will become more symmetrical (and, in accordance with the CLT, it will ulti-
mately converge on the normal distribution). This is indeed the case – and follows from
the fact that chi-square is itself a form of sampling distribution (for the sums of squares of
independent z).
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Figure 2.12 Probability density functions for chi-square distributions, with (a) ν = 3, and
(b) ν = 10 df

The link between sums of squares and χ2 is not restricted to the standard normal. The
sums of squares of independent, random normal variables with variance σ2 have a chi-square
distribution scaled by σ2:

n∑
i=1

(
xi − μ

)2 ∼ σ2χ2
n−1 Equation 2.9

An oddity of the chi-square distribution is that, although it can be derived as the distribution
of sums of squares of discrete observations, the df are not restricted to integer values (though
ν ≥ 1). Some statistical procedures make use of fractional df and it is helpful to realize that this
is not necessarily an error.

Strictly speaking, the preceding discussion applies to the central chi-square distribution, and
for some situations a non-central chi-square distribution is appropriate. This point is also relevant
for the final two continuous distributions discussed in this chapter – the central t and central F.
The distinction between central and non-central distributions is dealt with later, in relation to
statistical power (see Chapter 8).

2.4.4 The t distribution

The t distribution (also called Student’s t) is a sampling distribution for means from a normal
distribution. As has already been established, the sampling distribution of means from a normal
population is itself normal. However, estimating this distribution when the population standard
deviation σ is unknown presents a practical difficulty. William Gossett (publishing under the
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pseudonym ‘Student’) addressed this problem by showing that if σ is estimated from the unbi-
ased variance estimate σ̂2, the resulting ‘standardized’ sample mean has what is now known
as a t distribution with df equal to ν = n − 1 (Student, 1908). A variable, X, with a t distribution
can be denoted as:

X ∼ t (ν)

The t distribution is closely linked to both z and the χ2 and it is the probability distribution of
the ratio:

Z√
V/ν

Equation 2.10

The numerator Z is a variable with a standard normal distribution. The denominator is a chi-
squared variable V with ν df. In addition, Z and V are assumed to be independent.

A common misconception is that the t distribution applies to the sampling distribution itself
(whereas it applies only to this standardized form). This is, however, the form that is most
likely to arise in practice, because σ2 is rarely known for real data sets. Figure 2.13 shows the
t distribution relative to the standard normal when ν = 1 and ν = 29 (corresponding to a single
sample with n = 2 and n = 30).

Like the normal distribution t, is always symmetrical, but it tends to have a relatively nar-
rower peak and ‘fatter’ or ‘heavier’ tails than z (at least when n is small). This characteristic is
known as leptokurtosis (see Key Concept 2.3). Notably, the t distribution converges rapidly on z
and is only barely distinguishable from z in Figure 2.13b when n = 30. Even so, the difference
between z and t can be substantial for very small samples.

Being related to z (and hence unimodal and symmetrical), the median and mode of t are both
equal to zero (and the mean is also zero if ν > 1). If t has at least 2 df it has a variance of ν

ν−2 .
When t has only 1 df its mean and variance are undefined and it coincides with the standard
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Figure 2.13 Probability density of t1 and t29 relative to z
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Cauchy distribution (a distribution which is the ratio of two standard normal distributions). This
is an important reminder that the distribution of something as ‘basic’ as a t distribution with 1
df can fall outside the scope of the CLT. The CLT requires that the mean and variance are finite
(see Key Concept 2.1).7

KEY CONCEPT 2.3

Kurtosis

Kurtosis is a term describing the relative proportions or ‘weight’ of a probability distribution in its middle
versus its tails. For unimodal, symmetrical distributions (such as the normal or t distributions) it therefore
refers to the relative weight of the distribution in its peak or its tails. A distribution with flat peak and
relatively ‘thin’ or ‘light’ tails indicates platykurtosis (i.e., it is platykurtotic). A distribution with ‘pointy’ peak
and relatively ‘fat’ or ‘heavy’ tails indicates leptokurtosis (i.e., it is leptokurtotic).

Kurtosis is widely misunderstood and is often incorrectly described solely in terms of how ‘pointy’ or
‘peaked’ a distribution is (see DeCarlo, 1997). Think about the normal distribution – it has the same
degree of kurtosis regardless what values μ and σ take, yet it can be made arbitrarily more or less
‘pointy’ simply by decreasing or increasing σ . So adjusting the ‘pointiness’, either by altering σ or by
adjusting the aspect ratio (the ratio of the scales of the x-axis and y-axis) of a plot, has no impact
on kurtosis. Kurtosis must involve a relative shift of probability density (or mass) to or from the mid-
dle to the tails such that the variance is unchanged. For this reason the weight of density falling on
the ‘shoulders’ of a unimodal distribution (the bits either side of the peak) tends to be particularly
important.

Kurtosis is defined formally in terms of the 4th moment around the mean (μ4). Although a normal
distribution has positive standardized kurtosis (with μ4/σ4 = 3), it is common to represent kurtosis as
excess kurtosis relative to the normal distribution (which is defined as having zero excess kurtosis). For
example, the t distribution with 5 df has excess kurtosis of 6 (relative to 0 excess kurtosis for the normal).
The kurtosis of a distribution is a somewhat neglected topic in statistics (relative to skew), but the relative
weight of data in the middle and tails of a distribution can be vital for statistical inference. Distributions
with heavy tails (i.e., leptokurtosis) are particularly awkward to work with.

2.4.5 The F distribution

The F distribution (sometimes termed the Fisher or Fisher-Snedecor distribution) is a proba-
bility distribution for the ratio of variances of independent, random samples from populations
with a normal distribution. The distribution is appropriate if the sample variances are unbiased
estimates and provided the population variances (but not necessarily the means) are equal.
If they are not equal, the non-central F distribution is appropriate. If a variable, X, has an F
distribution it can be written as:

X ∼ F (ν1,ν2)

The parameters ν1 and ν2 are the number of observations in each sample minus 1 (i.e., the
denominator used in calculating an unbiased variance estimate σ̂2). Thus ν1 and ν2 are the
df of two independent χ2 variables. This is because F can also be defined as the ratio of two
chi-square distributions divided by their respective df. Equation 2.9 indicates that (assuming
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a normal distribution) independent sums of squares have the distribution: σ2χ2
n−1. This implies

that an unbiased sample variance has the distribution:

σ̂2 ∼ σ2χ2
n−1

n − 1
Equation 2.11

If it is assumed that the populations the two samples are drawn from have equal variance (as is
the case for the central F distribution) then the unknown σ2 will cancel out and the ratio of the
two sample variances has the distribution

F = χ2
ν1

/ν1

χ2
ν2

/ν2
Equation 2.12

where ν1 and ν2 are (n1 − 1) and (n2 − 2) respectively.
The shape of F distribution (being a ratio of two other distributions) is difficult to characterize.

Figure 2.14 shows the F distribution with values of ν1 ranging from 1 to 10 and with ν2 set at
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either 1 or 30. This gives a rough idea of how the shape of the distribution can vary. As a ratio
of two quantities that must be greater than zero, F is also bounded at zero (but can take any
positive value greater than zero). Provided both that ν1 is smaller than ν2 and that ν2 is larger
than 2 (which is commonly the case for real applications) the distribution is positively skewed
and unimodal. For these values of ν2 the mean of the F distribution is ν2/(ν2 − 2). This, you may
recall, is also the variance of a t distribution when ν> 1. As ν2 approaches infinity the value of F
tends toward 1.

F and t are intimately related (through the chi-square distribution). Using Equation 2.10 it is
easy to show that

t2 =
(

Z√
V/v

)2

= Z2

V/v

The square of a standard normal variable such as Z has, by definition, a chi-square distribution
with 1 df (i.e., Z2 ∼ χ2

1 ). V is chi-square with ν df. Given Equation 2.12 it follows that

t2
ν = χ2

1 /1
χ2

ν /ν
= F1,ν Equation 2.13

In other words t2 is distributed as F with numerator df (ν1) equal to 1 and denominator df (ν2)
equal to ν. It is therefore not surprising that the shape of F be similar to a χ2

1 distribution when
ν1 =1 (as can be seen by comparing Figure 2.11 and Figure 2.14a). It is necessarily also true that√

F1,ν = tν .

Example 2.6 Distribution functions for the χ2, t and F distribution can be employed in the same
way as for the normal or standard normal. As they are continuous distributions the pdf tends to be
preferred for plotting, but the cdf and its inverse are used more heavily in calculations. As with the
Φ function and z, the cdf gives cumulative probabilities from the lower, left tail of the distribution
up to a desired value, while its inverse produces quantiles of the distribution for a given cumulative
probability (and the inverse of a cdf is therefore a quantile function).

Of the three distributions, t (being symmetrical) is the easiest to work with. Just as for z, either
tail can be interrogated to get a particular tail probability. If ν (the df ) is very large the cdf for t will
return values identical to z for all practical purposes. Thus Pr(t999 ≤1.96), the cumulative probability
of t up to and including 1.96 is .975 (rounding these and subsequent values to 3 decimal places).
Likewise, t999, .025 (the quantile of t with cumulative probability .025 and 999 df ) is approximately
−1.96. Discrepancies between the z and t distribution are apparent for low df. For a single sample
with n = 10, Pr(t9 ≤ 1.96) = .960 and t9, .025 ≈ −2.26.

The cdf and its inverse (the quantile function) can be applied to obtain the tail probability for any
quantile, or the quantile (often expressed as a percentage) for any tail probability. For instance, you
might need to find the tail probability for an observed t of 2.14 with 29 df. Using the symmetry of the
distribution this can be obtained directly by looking for the cumulative probability for t29 = −2.14
which is .020. (The cumulative probability for t29 = 2.14 is 1 − .020 = .98.) Alternatively, you may
want to find the upper limit of t that covers 90% of the distribution when df = 29. To do this you’d
want to know the value of t that excludes the most extreme 5% at either end. These values are
t29,.05 ≈ −1.70 and t29, .95 ≈ 1.70 respectively. So with df = 29, 90% of the distribution falls in the
range −1.70 ≤ t ≤ 1.70.

Working with χ2 or F is different. For these distributions interest will almost always focus on one
tail of the distribution. Because the distributions are related to the square of z or t, extreme values


