Grassroots Series

Mike Joy, ,
Stephen Jarvis
& Michael Luck

Introducing

UNIX

and Linux
I

Introducing UNIX
and Linux

Mike Joy, Stephen Jarvis and Michael Luck

© Mike Joy, Stephen Jarvis and Michael Luck 2002

All rights reserved. No reproduction, copy or transmission of this publication may be
made without written permission.

No paragraph of this publication may be reproduced, copied or transmitted save with
written permission or in accordance with the provisions of the Copyright, Designs and
Patents Act 1988, or under the terms of any licence permitting limited copying issued
by the Copyright Licensing Agency, 90 Tottenham Court Road, London W1T 4LP.

Any person who does any unauthorised act in relation to this publication may be liable
to criminal prosecution and civil claims for damages.

The authors have asserted their rights to be identified as the authors of this work in
accordance with the Copyright, Designs and Patents Act 1988.

First published 2002 by

PALGRAVE MACMILLAN

Houndmills, Basingstoke, Hampshire RG21 6XS and

175 Fifth Avenue, New York, N. Y. 10010

Companies and representatives throughout the world

PALGRAVE MACMILLAN is the global academic imprint of the Palgrave Macmillan
division of St. Martin’s Press, LLC and of Palgrave Macmillan Ltd. Macmillan® is a
registered trademark in the United States, United Kingdom and other countries.
Palgrave is a registered trademark in the European Union and other countries.
ISBN 978-0-333-98763-6 ISBN 978-0-230-80245-2 (eBook)

DOI 10.1007/978-0-230-80245-2

This book is printed on paper suitable for recycling and made from fully managed and
sustained forest sources.

A catalogue record for this book is available from the British Library.

M7 9 8 7 6 5 4 3 2 1
1 10 09 08 07 06 05 04 03 02

Contents

Preface

Chapter 1

1.1
1.2
1.3
1.4
1.5

Chapter 2

2.1
2.2
2.3
2.4

Chapter 3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

The Computing Environment

Chapter overview

What is a Computer?
Hardware

Software

History of UNIX and Linux
Conventions

Chapter summary
UNIX and Linux Design and Organisation

Chapter overview
The Kernel and Shell
Files

Technical Basics
How to get Linux
Chapter summary

Installing Linux

Chapter overview
Starting out
Preliminaries
Single boot

Dual boot
Emulators
Installing Linux
Using Linux
KDE

Chapter summary

viii

0 = N ==

10
10

11

11
11
13
14
16
16

17

17
17
18
19
19
21
22
25
26
30

iii

Introducing UNIX and Linux

Chapter 4 Getting started

Chapter 5

Chapter 6

Chapter 7

iv

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3
7.4
7.5

Chapter overview

Using UNIX

Logging out

Commands

Communication with other users
Files

Input and output

Emergencies

Getting help

Chapter summary

Files

Chapter overview

The UNIX directory hierarchy
Filesystems

Manipulating files

Protecting files

File contents

Printing files

File archives and file compression
Other relevant commands
Chapter summary

Processes and devices

Chapter overview
Processes
Environment
Program control
Quotes and escapes
Devices
Backquotes
Chapter summary

Introduction to shells

Chapter overview

Why do we need a shell?
Shell syntax

Arithmetic

Making decisions

Loops

31

31
31
33
33
36
39
44
54
55
57

59

59
59
62
64
67
73
81
83
84
86

88

88
88
92
100
110
111
113
115

117

117
117
118
126
128
134

7.6
7.7
7.8

Chapter 8

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Chapter 9

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

Chapter 10

10.1
10.2
10.3
10.4
10.5
10.6
10.7

Searching for files
Formatted output
Passing information to scripts
Chapter summary

More on shells

Chapter overview

Simple arithmetic

Pattern matching

Entering and leaving the shell

More about scripts with options
Symbolic links

Setting up terminals

Conventions used in UNIX file systems
Chapter summary

Advanced shell programming

Chapter overview

Sending and trapping signals
Functions

Aliases

The ‘exec’ mechanism

The ‘eval’ mechanism
Sending data across networks
Makefiles

Safe programming

Setting up a terminal

More on files

Miscellaneous utilities
Chapter summary

Regular expressions and filters

Chapter overview

Using filters

Character-to-character transformation
Selecting lines by content

Stream editor

Splitting a file according to context
Choosing between the three filters
More on Vi

Chapter summary

Contents

137
139
142
148

150

150
150
154
159
162
165
166
168
170

173

173
173
175
177
178
179
180
183
186
187
188
191
192

194

194
194
196
198
203
206
210
210
212

Introducing UNIX and Linux

Chapter 11 Awk

Chapter 12

Chapter 13

Chapter 14

vi

11.1
11.2
11.3
114
11.5
11.6
11.7
11.8
11.9
11.10

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10

13.1
13.2
13.3
13.4
13.5

14.1
14.2

Chapter overview

What is ‘awk’?

Invoking ‘awk’

Naming the fields
Formatted output
Patterns

Variables

Arguments to ‘awk’ scripts
Arrays

Field and record separators
Functions

Chapter summary

Perl

Chapter overview
Introduction
Variables

Input and output
Fields

Control structures
Predefined Perl
Regular expressions
Perl and the Kernel
Quality code

When do I use Perl?
Chapter summary

Maintaining your Linux OS

Chapter overview
Basic management
Linux file management
Linux networking
Security

Uninstalling Linux
Chapter summary

Other Issues
Chapter overview

Programming languages
Document Preparation

214

214
214
215
216
217
220
222
225
226
229
233
236

239

239
239
241
242
246
247
249
251
253
254
256
257

258

258
259
262
264
268
269
270

271
271

271
273

14.3 Other Software
14.4 Useful Resources
Chapter summary

Answers to problems

Appendix — summary of utilities

Index

Contents

274
275
277
278

291

296

vii

Preface

UNIX is an operating system which has seen substantial growth in its
popularity over the last few years and is used by many universities and
colleges, as well as in industry. Linux is a UNIX-like operating system for
PCs which is freely available and has become a serious alternative to
proprietary systems such as Windows. This book is a beginner’s guide for
students who have to use UNIX and/or Linux. No prior knowledge of
programming is assumed, nor is any experience of using computers. We
do, however, expect our audience to have a serious interest in computing,
and a typical reader might be a student in the first year of a degree or
HND course.

UNIX is more than just a computer operating system: it is a
philosophy of programming. Learning UNIX involves becoming familiar
not only with the commands it affords the user, but also with the
methodology it employs. It is a very powerful tool in the hands of an
experienced practitioner, but it can be daunting for the novice. We
introduce enough detail for the reader to be able to utilise the facilities in
UNIX, but no more.

In 1993 an International Standard was published, known as ‘POSIX.2’,
which specifies the constructs and commands that a UNIX system should
have available to its users. This book follows that standard. However,
POSIX is a ‘minimal’ standard, and most UNIX or Linux systems contain
much more. We discuss in this book all the basic constructs and
commands of UNIX (as defined in POSIX.2), sufficient for the reader to
be able to use each of them, together with some of the more common and
useful extensions. We do not delve into any in fine detail; part of the
UNIX philosophy is that such information is available online. The reader
who requires more sophisticated use of UNIX after reading this book will
know how and where to find the extra information they need.

To get the most from this book, you should have access to a UNIX
computer system or a PC running Linux, as much of the text relies on
your being able to try out examples. If you have a PC running Windows,
we discuss in Chapter 3 how you can install Linux on your PC.

This book is a new version of Beginning UNIX, which is no longer in
print. The material covered in chapters 4 to 11 is substantially the same
as the corresponding chapters in Beginning UNIX, but the remaining

NOTE

Acknowledgements

NOTE

Trademarks

Preface

chapters are new. We have expanded the coverage to include discussion of
Linux and related issues, including installation and maintenance on a PC.
A new chapter on Perl has been included. Technical material is now
consistent with current Linux distributions in addition to Solaris and
other versions of the UNIX operating system.

Grateful thanks are due to Nathan Griffiths and Steve Matthews for
commenting on draft versions of this book. Thanks also to Hugh Glaser
for encouragement and feedback, and to students at Warwick and
Southampton for valuable input.

Adobe, Acrobat and Framemaker are registered trademarks of Adobe
Systems Incorporated.

BeOS is a registered trademark of Be, Inc.

Eudora is a registered trademark of the University of Illinois Board of
Trustees, licensed to QUALCOMM Inc.

Internet Explorer, Outlook, Windows, Windows 95, Windows NT,
Windows 2000 and Windows XP are registered trademarks of Microsoft
Corporation.

Java is a trademark of Sun Microsystems, Inc.

KDE, K Desktop Environment and KOffice are trademarks of KDE e.V.
Linux is a registered trademark of Linus Torvalds.

MacOS is a registered trademark of Apple Computer, Inc.

Mandrake and Linux-Mandrake are registered trademarks of
MandrakeSoft SA and MandrakeSoft, Inc.

Mozilla is a trademark of the Mozilla Organization.

Netscape Navigator is a registered trademark of Netscape
Communications Corporation.

Opera is a trademark of Opera Software AS.

PalmOS is a registered trademark of Palm, Inc.

Pentium is a registered trademark of Intel Corporation.

PostScript is a registered trademark of Adobe Systems, Inc.

Red Hat and RPM are registered trademarks of Red Hat, Inc.
SPARC is a registered trademark of SPARC International, Inc.
Stufflt is a trademark of Aladdin Systems, Inc.

SuSE is a registered trademark of SuSE AG.

TeX is a trademark of the American Mathematical Society (AMS).
UNIX is a registered trademark of The Open Group.

VMS is a registered trademark of COMPAQ Computer Corporation.
VMware is a registered trademark of VMware, Inc.

WordPerfect is a registered trademark of Corel Corporation.

X Windows is a registered trademark of the Massachusetts Institute of
Technology.

All other trademarks are the property of their respective owners.

ix

el x4 o>

The Computing
Environment

CHAPTER OVERVIEW

This chapter

reviews basic notions of computer hardware and software;
outlines the different kinds of software program;

introduces the basic philosophy of UNIX and Linux; and
provides a brief description of the history of UNIX and Linux.

If you pick up any book over ten years old on the subject of
computing, you could get quite different ideas of how people use their
computers. The basic ways of using computers haven’t changed, but
modern computing places an unimagined amount of control and power
with the individual user. This means that the user now has the ability
(and quite often the need) to deal with issues relating to the
administration of the computer to get the best out of it. In this book,
we’ll be explaining just how to understand what this involves, and how to
minimise the amount of effort required for effective use of your computer.

We start in this chapter by reviewing some basic concepts of computing
in a non-technical way, so that if you really are a beginner, reading
through this chapter should bring you up to speed. If you are already
familiar with the ideas of hardware and software, input and output,
processors, systems software, and applications programs, you may choose
instead to move swiftly on to Chapter 2.1, or simply to skim this chapter.

1.1 What is a Computer?

In very basic terms, there are essentially two kinds of “thing” involved in
computing. There are things you can kick, actual bits of machinery that
you can pick up and take away, including the computer itself, printers,

Introducing UNIX and Linux

ACRONYM

AMD = ‘Advanced
Micro Devices, Inc.’
SPARC = ‘Scalable
Processor ARChitecture’

screens and other physical devices (digital cameras, scanners, disk drives,
CD drives, etc.), which are collectively and individually known as
hardware Thus, hardware includes the devices you use to communicate
with a computer system (such as the mouse, keyboard), the actual
components that make up that system, and any other devices.

Unfortunately, the hardware won’t work by itself and needs detailed
instructions, or programs, to make it do what it should. In addition to
the hardware, therefore, it is also necessary to have a set of programs that
tell the hardware what to do. These programs, which refer to the actual
instructions rather than the medium on which they are stored, are
collectively known as software. Software is needed for the basic operation
of computers (like the software that is the subject of this book, UNIX and
Linux) as well as for the more common applications that you may already
be familiar with, such as word-processing, spreadsheets, games, MP3
playing, and limitless other possibilities. By themselves, hardware and
software are not enough to do the things we want of computers — it is
the combination of hardware and software that enables effective use of
modern computers.

Below, we describe the different kinds of hardware and software in a
little more detail.

1.2 Hardware

1.2.1 Processors

The most important part of the overall system is the processor (or central
processing unit, CPU) on which the computer is based, and which does
the main work of the system. In recent years, the advance of the PC has
been fuelled by progress in such processors, which are becoming ever
faster and more powerful. In PCs, these have included the series of
Pentium processors developed by Intel, with alternatives from companies
like AMD. Other computers have different processors, like Sun’s SPARC
processor. Whichever processor your machine uses is not important for
now — there may be variations in speed and power, as well as in some
other more technical differences, but the key point to note is that this is
the main component of the machine.

1.2.2 Input Devices

Although the processor is most critical, it is of little use if you can’t
display the results of the computation it performs, or if you can’t specify
and modify the kinds of computation you want it to perform. For this
reason, we need input and output devices — hardware components that
allow users to interact with the processor in easy and convenient ways.

The Computing Environment

In order to instruct a computer to perform a task, we require a way to
provide instructions as input. Perhaps the most recognisable input device
is the keyboard (typically of the ‘QWERTY” variety because of the layout
of the keys, similar to a typewriter), which nearly all computers use to
receive textual and numeric input. The keyboard is the most usual way in
which people write programs or enter data on which those programs
might operate. However, there are also many other ways to provide input
to a computer. For example, many people now have scanners to enable
graphical images to be provided as input. Similarly, digital cameras,
bar-code readers in shops, and even sound recorders offer different ways of
getting data to the processor. In this book, we will focus on the standard
keyboard as our main input device, but we also note that the mouse, with
the purpose of enabling the selection and movement of items displayed on
the screen, is a vital part of modern computer systems.

1.2.3 Output Devices

Output devices are also varied, and we will focus primarily on the screen
or monitor (or even visual display unit — VDU — to use a somewhat
out-of-date expression) that typically comes as part of the package with
the processor and the keyboard.

In the past, people used so-called dumb terminals, which are largely
redundant now. A dumb terminal consists of a keyboard and a screen,
and can display only the same sort of text and simple characters as a
typewriter. On the screen is a cursor, which is either a block (a filled
rectangle the size of a letter) or an underscore, marking the point on the
screen at which typed characters appear, and also where any message the
computer writes will begin. The equivalent of a dumb terminal is now
more commonly referred to as a command window in many systems.

These days, modern computers typically use a screen (to display both
the input that is provided through keyboards, for example, and any
results of the processing performed), a keyboard and a mouse. The
configuration is sometimes referred to as a graphics terminals, to
distinguish it from a dumb terminal. These are capable of much more
sophisticated output. In particular, the screen is a high-resolution display
(nearly always colour), allowing complex graphics to be drawn as well as
simple characters. Usually, a system is employed by which the screen is
divided up into rectangular areas called windows, with which to
communicate individually. The computer itself may be a PC, as shown in
Figure 1.1, a workstation or a laptop, but that is not important. We will
assume the use of a command window, which applies to all equally. If you
are using any of these, you can create such a window, which behaves as if
it were itself a dumb terminal, having its own cursor. Typically, there is
also a global cursor that moves each time you move the mouse; you can

Introducing UNIX and Linux

Figure 1.1 A typical
computer, with
screen, keyboard and

mouse

select which window the keyboard will communicate with by moving the
global cursor so that it is within the chosen window.

The look and feel of the various kinds of computers can vary
enormously, as can the way in which windows on a screen are
manipulated. Either a window manager or a desktop manager can be
used to control the windows on a screen, and though the distinction
between the two kinds of software is somewhat blurred, a desktop
manager typically has more features and capabilities than a window
manager. We will go into more details about these later on in Chapter 3.

These basic components of processor, screen and keyboard are the key
pieces of the modern computing system, and their combination underlies
all of the details that follow in this book.

1.3 Software

1.3.1 Input and Characters

When communicating with UNIX, users send to the system a stream of
characters. Each time a key on the keyboard is pressed, a character is sent
to the machine. Usually, the computer echoes the character so that it is

ACRONYM

ASCII = ‘American
Standard Code for

Information Interchange’

NOTE

The bell character was
originally used on
‘teletype’ terminals to
attract the attention of
the user in the days of
the telegraph

The Computing Environment

displayed on the screen. Similarly, to communicate with the user the
system sends a stream of characters to the user’s computer, which is able
to interpret the particular character coding and display the characters on
the screen accordingly.

While interacting with the system, a user types in lines of text from the
keyboard, terminating each line by pressing the Return (or Enter) key.
These lines are interpreted as instructions to UNIX, which then responds
accordingly, and displays messages on the screen. On a graphics terminal,
this dialogue is between the keyboard and a specific window (typically the
window over which the cursor has been placed). Manipulation of other
devices such as a mouse also results in the transmission of characters to
the UNIX machine. However, these are interpreted as relating to the
management and display of the windows only.

Commands sent to UNIX are executed by a program called the shell.
We shall see later that the shell is just one example of a program that can
run on a UNIX system, but is special since it is the principal interface
between a user and the very heart of the system software, known as the
kernel.

Most characters that we shall use are the printing characters. These,
which include letters, digits, punctuation marks and the other symbols
marked on the keyboard, are displayed in the obvious way. However,
other characters, known as control characters (listed in Table 1.1), are
sometimes required by a UNIX system. Each is stored as a number using a
character encoding such as ASCII. For instance, the character whose code
is 7 and is sometimes referred to as ‘bell’, if printed on your terminal,
normally causes the terminal to make a noise (typically a ‘beep’).

Each control character has a name, typically an acronym of its
description. For character number 7, this is BEL, short for ‘bell’. Control
characters can be typed by pressing a key while holding down the Ctrl
key. For BEL, this key is G, and for this reason BEL is often written as
ctrl-G or " G. Some of the other control characters have anachronistic
names that also relate to the functioning of a teletype, but most of them
will not concern us here.

Control characters have purposes which, for the most part, are
obscure. Many are used by operating systems (not necessarily UNIX) to
structure data, and have meanings with historical relevance only. Some of
the more useful control characters include the following. The character
TAB has the effect, when sent to the screen, of moving the cursor to the
next tab position (usually columns 8, 16, 24, 32, etc.). The key marked
TAB or —, when pressed, transmits a TAB character to the computer.
The character NL (Newline) causes the cursor to move down to the
left-hand side of the next row on the screen. This character is provided as
input to the machine whenever the key marked RETURN (or ENTER or
) is pressed. The escape character, which would not normally be

Introducing UNIX and Linux

Table 1.1 ASCII
control characters

Code | ctrl-key | Name | Description

0 "@ NUL [null

1 "A SOH | start of heading

2 "B STX | start of text

3 “C ETX | end of text

4 "D EOT | end of transmission
5 "E ENQ | enquiry

6 “F ACK | acknowledge

7 "G BEL | bell

8 "H BS backspace

9 "1 HT horizontal tab

10 ~J NL newline (linefeed)
11 "K VT vertical tab

12 "L NP new page (formfeed)
13 "M CR carriage return

14 "N SO shift out

15 "0 SI shift in

16 P DLE | data link escape

17 Q DC1 device control 1

18 "R DC2 | device control 2

19 °S DC3 | device control 3

20 “T DC4 | device control 4

21 U NAK | negative acknowledgement
22 Y SYN | synchronous idle

23 "W ETB | end of transmission block
24 "X CAN | cancel

25 Y EM end of medium

26 i/ SUB | substitute

27 1 ESC | escape

28 " FS file separator

29 "] GS group separator

30 o RS record separator

31 " US unit separator

127 "~ DEL | delete

The Computing Environment

displayed on a screen at all, is sometimes required when typing in data.
There should be a key on your keyboard marked ESC or ESCAPE.

1.3.2 Application Programs

As mentioned earlier, the hardware alone is not enough. To do anything
useful with a computer, you need to run software, or programs, on the
hardware. Programs can be used to do pretty much anything you want,
but commonly include word-processing, scientific calculations and games,
and even support the development of yet more programs. What is
important to note here is that for each different application, you need a
different application program to run on the computer. Thus, if you want
to do some word-processing, you’ll need to get a word-processing program
to execute; word-processing can’t be done directly by the computer
otherwise.

Programming Languages

The processing units inside a computer understand a language called
machine code, and all the calculations that a computer performs use this
code. Machine code, which is a ‘low-level’ language, is specific to the
particular make and model of computer on which it runs, and is not
designed to be read by humans. Any instruction given to a computer
must be translated (somehow) to machine code before the computer will
understand it. It is unlikely you will ever need to come into direct contact
with machine code.

Typically, programs are written in high-level languages that are easily
readable by humans, but not by computers. They require compilers and
interpreters to perform a translation into the machine code that
computers can understand.

1.3.3 The Operating System

The final piece of the jigsaw of modern computing, to make the hardware
and software work together, and to make the different bits of hardware
like the screen, keyboard and processor talk to each other, is what is
known as the operating system, which is system software as opposed to
application software. The operating system is a complex program (or
collection of programs) that controls the internal operation of the
computer to ensure that all of the different things that are taking place at
the same time are done effectively and sensibly. For example, while the
computer accepts input from the keyboard and displays output on the
screen, it may also be processing some data and accessing the hard disk,
all at the same time.

Just as there can be different processors, different screens and
keyboards, and different application programs, so there can be different

Introducing UNIX and Linux

ACRONYM

DOS = ‘Disk Operating
System’

CPM = ‘Control
Program for
Microcomputers’

VMS = ‘Virtual Memory
System’

ACRONYM

MIT = ‘Massachusetts
Institute of Technology’

operating systems. If you've got this far, then we should be able to
assume that you know that your particular operating system is (or is
likely to become) UNIX or Linux, but you may also be familiar with
Microsoft’s Windows, with DOS, or with some other operating systems
such as CPM, MacOS, Multics, BeOS, PalmOS or VMS.

1.3.4 System Administration

Traditionally, UNIX systems have been multi-user systems with
individuals simply gaining access as users. In these situations, there is
usually someone, somewhere, who is in day-to-day charge of the system,
and known as the system administrator. If you are using this kind of
system and have problems that neither you nor your colleagues are able
to resolve, then the system administrator will either be able to help, or at
least point you in the direction of someone who can. You should find out
who your system administrator is, and make sure that you are in
possession of any documents that he or she wishes users of the system to
have.

More recently, however, there has been a move towards the use of
UNIX for individually-run personal computers, especially with the recent
success of Linux. If this is your situation, then it is you who will act as
the system administrator for your machine, and will be responsible for its
maintenance. In particular, if you are using Linux on your own personal
computer, make sure you read the handbook supplied with the operating
system in conjunction with this book. If there are any differences, it will
be an invaluable help.

Finally, there is one user of the system who is called the super-user. He
or she has special privileges on the system, and is allowed to perform
certain actions forbidden to ordinary users, such as having the
unrestricted right to change and to delete files on the system. The
super-user may or may not be the same person as the system
administrator.

1.4 History of UNIX and Linux

The first UNIX system was built at Bell Labs, the research division of the
US telephone corporation AT&T, in 1969. Prior to that date, Bell
(together with General Electric and MIT) had been engaged in developing
a large-scale operating system, known as ‘Multics’. This collaboration
between industry and the academic community had begun in 1964, but
five years later it became clear that the three participants had different
goals for the project. By this time a vast amount of work had gone into
Multics, but more needed to be done for it to fulfil the aspirations of any
of the participants. Accordingly, Bell Labs pulled out of the project.

NOTE

The kernel is discussed
in Chapter 2.1

ACRONYM

BSD = ‘Berkeley System
Distribution’

ACRONYM

IEEE = ‘Institute of
Electrical and
Electronics Engineers,
Inc.’

PASC = ‘Portable
Application Standards

Committee’

The Computing Environment

Faced with not having a state-of-the-art operating system with which
to work, a number of researchers at Bell, led by Ken Thompson and
Dennis Ritchie, decided to create a new operating system ‘from scratch’.
Multics had become complex, and it was felt that a much simpler system
was needed — the name ‘UNIX’ arose to emphasise that difference
between it and Multics. The experience gained during the development of
Multics contributed much to the design of UNIX.

A number of fundamental design decisions that were taken pervade the
whole of UNIX. Programs written for UNIX should be simple, and should
each do a single task well. This was different from the style adopted in
some other operating systems, where large programs would be developed
with many different capabilities, and would be commensurately complex.
Also, programs should be designed so that they could easily be linked
together, the output from one becoming the input to another. Thus it
would be possible to build more complex programs by joining simple ones
together.

Part of the philosophy underlying the design of UNIX was that the
core system software, or kernel, should be as small as possible, and only
perform those functions that are absolutely necessary — all other tasks
should be the responsibility of the shell. At the same time as UNIX was
being written, the language C was being designed, and in 1973 a UNIX
kernel was written using C. C is a high-level language, and as such is
machine-independent, so the new (small) kernel and shell could be
transferred to a different machine easily. This was found to work well, and
Bell Labs was happy to allow the source code for the kernel to be
distributed to universities.

In the next few years, work on UNIX was undertaken principally by
Bell Labs and by the University of California at Berkeley. These two
organisations, however, developed their own versions of UNIX, known
respectively as System V and BSD. Industrial users tended to use System
V, whereas BSD UNIX was common in universities and colleges.

By the late 1980s UNIX had been implemented by many
manufacturers, each of whom had developed versions which, although
based either on System V or on BSD, had their own features. It became
apparent that the popularity of UNIX, coupled with the proliferation of
‘dialects’, had resulted in a pressing need for a recognised standard for
UNIX to be developed. This was taken on board by the IEEE under the
name POSIX. POSIX consists of a number of interrelated standards. Now
part of the PASC project, there are more than nine proposed POSIX
standards, but not all are yet completed. In this book we only deal with
POSIX.2, since the other standards are not necessary for understanding
the UNIX shell.

In 1991, a computer science student at the University of Helsinki in
Finland, Linus Torvalds, decided to create his own version of UNIX,
which he named Linux. It was in 1994 that he released version 1.0 of

Introducing UNIX and Linux

10

Linux. Very quickly it became clear that Torvalds alone would not be able
to develop a complete operating system, so he chose to open up his
project to allow others to contribute to its development. On the Internet,
Torvalds announced his project and called for volunteers to assist; in
doing so, the source code was made freely available.

As a result of this model of allowing developers from around the world
to contribute to the development of Linux, a Linux community was born,
and has now grown to millions of users, numerous different Linux
distributions, and over a hundred developers just for the Linux kernel. It
is now an effective and successful operating system that competes on
many platforms with commercial offerings. The latest version at the time
of writing is version 2.4.

1.5 Conventions

Several different fonts are used in this book. Bold face is used when names
or concepts are first introduced, and occasionally for emphasis. When
dialogue with a machine is displayed, fixed width font is used for
messages that the UNIX system prints, and (bold) keyboard font
for instructions typed by a user. If a word that would normally appear in
such a dialogue appears in the text, fixed width font is again used.

For most purposes in the book, the words ‘UNIX’ and ‘Linux’ are
interchangeable, and unless otherwise stated use of the word ‘UNIX’
should be understood as meaning ‘UNIX or Linux’.

CHAPTER SUMMARY

Modern computer systems are made up of both hardware
and software.

Hardware comprises processors, and input and output
devices.

Software can be application programs or system software like
operating systems.

UNIX and Linux are operating systems with a long academic
tradition.

DN "mMmA4ov>xTn

UNIX and Linux

Design and
Organisation

CHAPTER OVERVIEW

This chapter

introduces the basic organisation of UNIX and Linux;
describes the key underlying concepts;

outlines the basic technical components necessary to get
started; and

gives details of how to get a copy of Linux.

2.1 The Kernel and Shell

In order for a computer to do any useful work, it must also perform
‘housekeeping’. It needs to understand that it has various devices such as
printers connected to it, and it needs to know when a user wants to run a
program. These tasks, are performed by an operating system, together
with many others that are required for the computer to function
effectively, but are not of interest to the user. An operating system is a
program, or collection of programs, that runs whenever the computer is
switched on. It controls the computer, allows the user to type in
instructions to the computer, and performs many other necessary
functions. UNIX is an operating system.

A UNIX system can be split into two parts. While the system is
operational, a program called the kernel is constantly running. This is
what forms the core of the operating system and is central to UNIX. In

11

Introducing UNIX and Linux

Figure 2.1 The
UNIX kernel and shell

ACRONYM

bash = ‘Bourne Again
SHell’

12

this book, we will not be concerned with how the kernel functions, since it
is not information which the user needs to know.

The other part of a UNIX system is a shell, which is the interface
between a user and the system itself. It allows the user to instruct the
machine and to run programs. A shell communicates with the kernel, but
keeps the user at arm’s length from it, as illustrated in Figure 2.1. In
order to use a UNIX system, it is sufficient to understand a shell; the
kernel can remain hidden from the user.

shell

kernel

hardware

The kernel is always present, but the shell is only active when someone
is actually using the UNIX system. Since the shell enables the user to
instruct the system to perform tasks, the instructions that can be given to
the shell must be easy for a person to understand. Different individuals
have had different ideas about exactly how a shell should be designed,
and a number of different shells have been devised in the past. They are
all similar to each other, but differ in details. The first shell, historically,
is the Bourne shell, known as sh and named after its creator. This shell is
still used today, although newer shells with more powerful features have
been created which are effectively extensions of the Bourne shell. These
include the Korn shell (ksh), the Z shell (zsh), and bash. A programmer
familiar with the Bourne shell should have no trouble using any of these
three other shells. Indeed, if such a programmer were not using the extra
features provided by these shells, he or she would be unaware that the
shell was not the Bourne shell.

The C shell, known as csh, has a syntax that resembles that of the C
programming language, and is markedly different from any of the shells
based on the Bourne shell. A programmer familiar with the Bourne shell
would not be able to use the C shell without learning the differences
between it and the Bourne shell. Just as there are shells that are
extensions of the Bourne shell, so the C shell itself has been developed
into shells with extra facilities. The most common of these is the the tcsh
(pronounced ‘teesh’).

POSIX.2 defines the ‘standard’ shell, and is modelled principally on
the Bourne shell. The POSIX.2 shell contains features that have been
added to the Bourne shell in the light of experience gained with other

ACRONYM

CPU = ‘Central
Processing Unit’

UNIX and Linux Design and Organisation

shells. Much of what is discussed in this book will thus be true for the
Bourne shell. It is likely that as existing shells derived from the Bourne
shell, such as ksh and zsh, are developed, each will be amended so that its
specification conforms to POSIX.2.

2.2 Files

On any machine there will be a large amount of information (or data)
that must be stored, including programs, text, and the UNIX operating
system itself. Each unit of data — which may be small (for instance, a
few words of text) or large (like parts of the UNIX operating system
itself) — is stored in a file. Files are simply sequences of bytes, stored
somewhere on the system, perhaps on magnetic disks, CD-ROMs, or
other storage devices. We are not interested in exactly where the file is
stored, merely in its contents.

Each file has a name, which should consist of any letter, digit, or the
characters . (period), - (minus sign), or _ (underscore). Other characters
are also acceptable in a filename, but are discouraged in order to promote
clarity. When we use files, we will normally refer to them by name. Some
examples are:

test 11a My_File prog.c p-1

2.2.1 Networks

Computer systems contain at least one computer. However, it is becoming
increasingly difficult to define what is meant by ‘a computer’ — until a
few years ago, a computer would have had a single CPU, which would
perform all the computational tasks.

Nowadays, a computer may contain several processing units around
which the workload will be distributed. In addition, several computers
may be connected together in a network where each constituent computer
can communicate with others in the network.

In some cases, the computers in a network are very intimately
connected, and the network appears to a user as a single but very large
computer. We use the word system to mean either a single computer or a
network of computers that appear to the user as a single entity. A
campus-wide UNIX network would be an example of such a system; a
more loosely-connected network such as the Internet would not be. When
using a terminal on a network, users are still communicating with a
specific machine. Each window allows a dialogue with a single UNIX
machine, and it is that target UNIX machine with which we shall be
concerned in this book.

13

Introducing UNIX and Linux

Figure 2.2 A 4-byte

word

ACRONYM

ASCII = ‘American
Standard Code for

Information Interchange’

14

2.3 Technical Basics

2.3.1 Bits, Bytes, Words and Characters

Data inside a computer is stored as a sequence of binary digits. Each such
digit is called a bit. Exactly how bits are stored does not concern us here,
but several different methods can be used depending where on the
computer system the data is required. Bits are grouped together in groups
of (usually) 8 to form a byte. Bytes are then grouped in 2s, 4s or 8s to
form words, the number of bytes in a word depending on the machine
being used.

One word

< One byte___,

One bit

-

It is rarely necessary to enquire what individual bits are stored on a
computer. Normally, the byte is regarded as the most basic unit of
storage on a machine. Since a byte contains 256 permutations of eight
binary digits, a byte can represent any number between 0 and 255
inclusive (or between —128 and 4127, or other such ranges).

Just as with a typewriter, communication with UNIX is
character-by-character. Unless you are dealing bit-by-bit with the data
stored in the system’s memory, it is helpful to think of each byte
representing a character, such as the letter ‘A’ or the symbol ‘Q’, since
there is a correspondence between characters and the numeric codes
(between 0 and 255) that can be stored in a byte. The most common
coding scheme used is called ASCII, in which codes for the upper-case
letters ‘A’ to ‘Z’ are 65 to 90, for lower-case letters ‘a’ to ‘z’ they are 97 to
122, and for the digits ‘0’ to ‘9’ they are 48 to 57. Other codes are used
for other symbols. The codes are summarised in Table 2.1.

In the earlier days of computing, the electronic components were often
unreliable, and the final bit in a byte was used as a check digit whose
value is determined by a simple calculation from the other seven bits. If
one of the other seven bits is changed, the value of the eighth, which is
referred to as a parity bit, is also changed. This parity check can then be
used to identify bytes whose contents have been accidentally altered.

UNIX and Linux Design and Organisation

Table 2.1 ASCII Code Description
characters 0-31 control characters (see Table 1.1)
32 space
33 ! exclamation mark
34 7 double quote
35 # hash
36 $ dollar
37 % percent
38 & ampersand
39 ’ single quote
40 (left parenthesis
41) right parenthesis
42 * asterisk
43 + plus
44 , comma
45 - minus
46 . dot
47 / slash
48-57 | 0-9 digits
58 : colon
59 ; semicolon
60 < less than
61 = equals
62 > greater than
63 ? question mark
64 @ at
65-90 | A-Z capital letters
91 [left bracket
92 \ backslash
93] right bracket
94) caret
95 - underscore
96 ¢ backquote
97-122 | a-z lower case letters
123 { left brace
124 | bar
125 } right brace
126 i tilde
127 DEL delete (control character)

15

Introducing UNIX and Linux

ACRONYM

EBCDIC = ‘Extended
Binary Coded Decimal
Interchange Code’

16

Parity checking is an unsophisticated form of error detection, and
modern equipment seldom uses it, thus allowing 256 character codes to be
stored in a single 8-bit byte, rather than just 128. Usually the first 128
match the ASCII character set, and the remaining characters are used for
extra symbols, such as currency symbols and accented letters from
languages other than English. One such code is known as LATIN-1. For
the symbols used in this book these two codings are identical. Other
codings do exist, however, perhaps the best known being EBCDIC and
the 16-bit Unicode, but for the purposes of this book, we shall assume
that ASCII is being used.

Note that if you total the number of letters, digits, punctuation marks
and other graphics symbols, there are nowhere near 256 of them — some
codes relate to non-printing characters. These are characters which,
rather than representing a symbol that can be printed on a computer
screen, denote other actions that the computer display can perform.

2.4 How to get Linux

For many years there has been a tradition in universities of freedom of
information, and results of academic research are typically easily
accessible. Furthermore, software created during that research is often
made available free of charge, either as public domain (where copyright no
longer applies) or as shareware (where, although copyright still applies,
the copyright owner permits copying). The source code for that software
may also be available, and much software is now open source, where the
source code is distributed and the user licence prohibits sale of the
software without the source code. Linux is open source.

You may have access to a UNIX system via your university or college.
If you don’t, or you would like to use UNIX on your PC at home,
Chapter 3 tells you how to get and install your own copy of Linux.

CHAPTER SUMMARY

The kernel is the core of the UNIX operating system.
The shell is the interface between the kernel and the user.

Data inside a computer is organised in bits, bytes, words,
characters and files.

There are several different shells and character codings.

QO TmMmA4oT>Tn

Installing Linux

CHAPTER OVERVIEW

This chapter

shows you how to collect system information about your
computer;

introduces you to the different options for setting up Linux;
provides guidelines on how to install Linux; and

highlights some of the everyday features which Linux will
provide.

The purpose of this chapter is to arm you with the necessary information
to install your own version of Linux. There are a number of Linux
configurations you might consider and the choice you make will be
influenced by the capabilities of your computer. This chapter is designed
to help you recognise these choices and their limitations.

3.1 Starting out

If you want to download a freely distributed version of Linux, you can do
no better than starting your venture at www.linux.org. As well as
documenting general Linux information, details of the various Linux
applications and on-line Linux tutorials, this official web site also plays
host to the distribution of the numerous Linux packages.

The distribution of Linux is now extremely well supported and you will
find that there are references to English and non-English language
versions. There are also links to mirror sites where you can download
Linux free of charge; there are details of Linux vendors and on-line
reviews of some of the free Linux distributions.

At the last count there were at least 40 versions of Linux which could
be downloaded from this site. This chapter does not deal with the
specifics involved in downloading any one of these distributions, but you

17

Introducing UNIX and Linux

ACRONYM

RAM = ‘Random Access
Memory’

18

will find that the on-line documentation provided with each package is
quite adequate. However, there are a number of fundamental choices of
which you should be aware when installing Linux; it is to these that we
turn our attention in this chapter.

3.2 Preliminaries

Before you begin with the installation of Linux it is important that you
establish a match between the requirements of your chosen Linux
download and the capabilities of your computer system.

Linux turns out to be extremely versatile and it is therefore likely that
your computer will be able to run Linux in one form or another. The
‘build’ you choose may, however, depend on the amount of processor
power you have available, the amount of RAM and the amount of hard
disk space you are able to commit to Linux.

3.2.1 Collecting information about your system

If your computer is already running a version of the Microsoft Windows
operating system, then you can find information about your system by
clicking on the ‘Start’ button and selecting ‘Settings’ and the ‘Control
Panel’. From here you should click on the ‘System’ icon; this will bring up
a window entitled ‘System Properties’.

The easiest way to capture the information that the ‘System
Properties’ windows provide is to print a System Resource Report. You
can do this by selecting the system properties ‘Device Manager’ window
and then clicking ‘Print’. At the print menu you should select the ‘All
devices and system summary’ option and then press ‘OK’.

If your computer is still using one of the older versions of Windows
(3.1, 3.2, etc.) then you can gather and print the same system information
by running the MSD.EXE utility from a DOS command prompt.

Among the information provided with each of the Linux distributions
will be listed the minimum system requirements. Before you decide on
which version of Linux to install, it is worth making sure that your
System Resource Report meets these requirements.

3.2.2 Installation options

A second issue likely to affect the type of Linux distribution you choose is
the way in which you intend to use Linux on a day-to-day basis. You
might want to install the Linux operating system as the sole operating
system on your computer. If this is the case then you should probably
install Linux as a ‘single boot’. This means that when you turn your
computer on it only recognises the one operating system.

NOTE

(+) reliable install

(+) less disk and
processor

(=) can only run one OS

ACRONYM

FDISK = ‘Fixed disk
utility’

NOTE

(+) minimal install
(=) not as fast as a hard
disk boot

Installing Linux

If, however, you want to retain the use of your existing operating
system, for example, you would like to be able to run Linux or Windows,
then you should choose a ‘dual boot’ option. This means that the
computer is aware of two different operating systems when it is turned on.
It is also possible to run one operating system inside another with the aid
of an emulator.

The next sections provide some of the detail which you will need to be
able to choose between installation options. Note the pros (4) and cons
(-) of each method; you should also be aware that the installations have
very different hardware requirements and that your choice may to some
extent be determined by the capabilities of your computer.

3.3 Single boot

If you are installing Linux on an old computer (without a CD drive, with
32 Mb of memory or less, or with a 75 MHz processor or thereabouts)
then you will find that the way in which you install Linux is already
limited. In this case you must install Linux as a ‘single boot’ system. This
means that you must essentially forfeit your previous operating system for
your new version of Linux. While this is not always what people want (as
you may still want to use Windows from time to time), this is the
simplest way to install Linux on your machine.

You need to partition your hard disk before Linux can be installed. It
is therefore worth checking whether the version of Linux you have chosen
has its own partitioning software as part of the software bundle. If not,
you will have to use the DOS/Windows FDISK program.

The single boot option does have a number of benefits. For example, it
provides a fast, reliable and easy to use system.

3.4 Dual boot

If you possess a more up-to-date computer, or you are keen not to lose the
use of your previous operating system, then you should install Linux as a
‘dual boot’ system. This has the overwhelming advantage of allowing you
to switch between operating systems (Windows and Linux for example)
and being able to use the applications provided by each. There are a
number of possible dual-boot set-up configurations, which we consider
next.

3.4.1 Booting from CD/floppy

Many of the Linux packages come with a boot floppy disk. If you
download Linux free of charge then you can create your own boot floppy
from the download; you can also order these disks online or purchase a
package with a free distribution copy inside.

19

Introducing UNIX and Linux

NOTE

(+) faster than booting
from floppy

(-) requires maximum
install disk space

NOTE

(+) avoids disk
partitioning

(-) may impact on
existing OS

ACRONYM

UMSDOS = ‘UNIX
under MS-DOS’

GUI = ‘Graphical User
Interface’

NOTE

(+) most installers
automatically partition
(+) little impact on
existing OS

(-) must clear proposed
partition

(-) must calculate
partition size

20

The advantage of this approach is that you only need to do a minimal
installation (of approximately 150 MB) for your system to be Linux
usable. The disadvantage is that you need to keep your boot disk handy
and may require your CD or floppy for other purposes.

3.4.2 Booting from your hard disk

Dual booting Linux from the hard disk is a popular option. It allows you
to select which of your two (or more) operating systems you wish to use
when you boot-up your computer and it will leave any CD or disk drives
free for other use. Although this mode of working does not allow you to
run both operating systems simultaneously (see the Section 3.5 on
emulators if this is your requirement) it allows you to maximise the speed
at which both operating systems are able to co-exist and run
independently on your computer.

3.4.3 A partitionless install

It is possible to provide a dual boot system without any repartitioning of
your hard disk. However, repartitioning is a way of keeping the file
systems and operating components of your two operating systems
completely separate, see below. As a result you may find that you achieve
a more reliable build if a dedicated Linux partition is provided.

If you are aiming to set up a dual-boot Linux on a non-partitioned disk
— an option which is often offered with many of the Linux distributions
— then you should search for a distribution of Linux that uses UMSDOS.
This allows Linux and DOS to coexist in the same partition and uses the
Linux loader loadlin to boot between each.

While this might seem like a good solution, it should be noted that a
partitionless dual-boot installation may have serious implications for your
existing operating system. Rather than take this risk, and to be
completely sure that you achieve a clean installation, it is better to opt
for a dedicated Linux partition.

3.4.4 A dedicated Linux partition

If you have enough disk capacity, then you can allocate a complete
partition (or indeed disk) to Linux. If you are serious about running a
safe, clean and reliable Linux alongside an operating system such as
Windows, then this is a good option. Recognising this fact, many of the
Linux installers provide a GUI-based partitioning package that is fairly
simple to use. Partitioning is discussed in more detail in Section 3.6.2
below.

NOTE

(+) runs Windows and
Linux simultaneously
(+) unrivalled
capabilities

(-) speed hit on guest OS
(-) costs around $300 at
the time of writing

(-) “commercial
software”

ACRONYM

WINE = ‘Wine Is Not
an Emulator’

Installing Linux

3.5 Emulators

Operating system emulation allows you to run multiple operating systems
concurrently without having to reboot. At best it allows you to run a full
version of Windows inside Linux through the creation of something called
a virtual computer — see subsection 3.5.1 below on VMware.

Alternative solutions include those systems that allow Windows
applications to run under Linux without modification. Although this is
not regarded as true emulation, it does provide a considerable level of
Linux and Windows compatibility — see subsection 3.5.2 below on WINE.

3.5.1 VMware

VMware is a commercial software package that allows you to run more
than one operating system simultaneously. This is done by setting up a
host operating system and one (or more) guest operating systems, each of
which runs in an unmodified state.

Each guest operating system runs in a secure virtual machine; the
beauty of VMware is that when using these virtual machines it is as easy
to swap between operating systems as it is to swap between windows. In
fact, if you run the virtual machine window in full screen mode, it is as if
the guest operating system (OS) is the only OS on your machine.

Such sophistication must come at a price. Firstly, you will need a
machine with a bare minimum of 256 MB of RAM and a 400 MHz
processor. You will also need at least 500 MB of disk for the guest OS and
the associated applications. Secondly, there will be a speed reduction
when using the guest OS. This can be as much as 50%, which may be a
problem if your machine is at the bottom end of the hardware
requirements.

VMware is very well supported and you can configure your system so
that the host operating system is chosen from any of Windows XP, 2000
and NT, Red Hat Linux, SuSE Linux and Mandrake Linux; the guest
operating systems include all of the above and also the Windows 3.x/9x
series.

You can find out more about VMware at www.vmware. com.

3.5.2 WINE

WINE allows most Windows applications to be run natively under Intel
versions of UNIX. WINE does this by providing low-level compatibility
for Windows programs running under Linux. As a result, the applications
run faster than they will under an emulator.

One of the main reasons for choosing WINE over an emulator is that it
does not require extensive hardware resources. If you have a processor
sufficiently powerful to run Linux then you will be able to run both

21

Introducing UNIX and Linux

NOTE

(+) WINE is free

(+) applications run fast
(-) some applications
don’t work

ACRONYM

YaST = ‘Yet another
Setup Tool’

22

WINE and Microsoft Windows applications under it. As far as disk space
is concerned, you only need approximately 250 MB of free disk to be able
to store and compile the source code plus an additional 18 MB of /tmp
space (see below) and 50 MB of disk in order to do the install. Another
advantage of WINE is that it is free.

Corel has been using WINE to port its WordPerfect Suite to Linux, so
there are some well-documented success stories. However, there are
difficulties with some of the Windows applications, so it is worth looking
at the Application Database on the WINE web page before deciding
whether this is going to be appropriate for your needs.

Once you have set up WINE on your computer, you can install
Microsoft applications by invoking a terminal window and typing wine
followed by the name of the set-up program. A similar procedure is used
to run the application once it has been installed.

More details on WINE can be found at www.winehq.com.

3.6 Installing Linux

Once you are satisfied that you have chosen an appropriate version of
Linux that matches the capability of your computer and also meets your
own needs, you are ready to begin the installation process.

3.6.1 Installer software

Most of the Linux distributions, including SuSE and Red Hat, have very
good installer software. The SuSE distribution includes the text-mode
YaST installer which is designed to make the process of installation as
painless as possible. You may also find references to the GUI-based
YaST2, which, despite being more memory intensive, is easier to use.
Each version of Linux has its own tool similar to YaST.

The installer software will probably provide you with a number of
installation modes such as recommended, customized and expert. If this
is your first Linux installation then you should choose a recommended
installation. This will automatically install the core components and yet
provide you with enough options to maintain control over the amount of
memory needed for the installation.

Many of the installation questions are straightforward. The choice is
less clear, however, when you are asked whether you are installing as a
workstation, as a server (installation) or for development. Again, if this is
your first installation and you are planning on using your computer as a
stand-alone machine, then you should opt for the ‘workstation’ mode. You
should also select a security setting if prompted to do so; something
around ‘medium risk’ should be adequate if you are planning on
connecting your computer to the Internet.

