

Au2832 _half title 6/7/05 1:54 PM Page 1

Handbook on

Theoretical and
Algorithmic Aspects of

Sensor, Ad Hoc Wireless,
and Peer-to-Peer Networks

Au2832 _title 6/7/05 1:51 PM Page 1

Boca Raton London New York Singapore

Handbook on

Theoretical and
Algorithmic Aspects of

Sensor, Ad Hoc Wireless,
and Peer-to-Peer Networks

Edited by Jie Wu

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2005 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20131031

International Standard Book Number-13: 978-0-203-32368-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Preface

Overview

Theoretical and algorithmic approaches in Sensor networks, Ad hoc wireless networks, and Peer-to-peer
networks (together called SAP networks) have played a central role in the development of emerging
network paradigms. These three networks are characterized by their ad hoc nature without infrastructure
or centralized administration. Unlike infrastructured networks, such as cellular networks, where nodes
interact through a centralized base station, nodes in a SAP network interact in a peer-to-peer fashion.
As a result of the mobility (including joining/leaving the network) of their nodes, SAP networks are
characterized by dynamically changing topologies. The applications of SAP networks range from civilian
(file-sharing) to disaster recovery (search-and-rescue), to military (battlefield).

The main goal of this book is to fill the need for comprehensive reference material on the recent devel-
opment on theoretical and algorithmic aspects of three related fields. Topics covered include: theoretical
and algorithmic methods/tools for optimization, computational geometry, graph theory, and combina-
torics; protocol security and privacy; scalability design; distributed and localized solutions; database and
data management; operating systems and middleware support; power control systems and energy efficient
design; applications; and performance and simulations.

This book brings together different research disciplines to initiate a comprehensive technical discussion
on theoretical and algorithmic approaches to three related fields: sensor networks, ad hoc wireless net-
works, and peer-to-peer networks. The objective is to identify several common theoretical and algorithmic
approaches that can address issues related to SAP networks. The central topic is defined by the following
two questions: What are the central technical issues in SAP networks? What are the possible solutions/tools
available to address these issues?

This book is expected to serve as a reference book for developers in the telecommunication industry or
as a textbook for a graduate course in computer science and engineering. It is organized in the following
three groups as 47 chapters.

� Ad-Hoc Wireless Networks (19 chapters)
� Sensor Networks (16 chapters)
� Peer-to-Peer Networks (12 chapters)

Although many books have emerged recently in this area, none of them address all three fields in terms
of common issues. This book has the following features and benefits:

� Coverage of three related fields, ad hoc wireless, sensor, and peer-to-peer networks, allows the
reader to easily cross-reference similar results in three fields.

� International groups of authors present balanced coverage of research results.
� Systematic treatment of theoretical and algorithmic aspects allows the reader easy access to some

important results.

v

� Applications and uses of these networks offer good motivation for research in these fields.
� Authoritative materials on a broad range of topics provide a comprehensive treatment of various

important topics by some of the leading researchers in the field.

Common Theoretical and Algorithmic Issues

The following preliminary set of common theoretical and algorithmic issues is identified for SAP networks.

Location Management (in sensor networks, ad hoc wireless networks, and peer-to-peer networks): This
issue addresses the problem of “Where is X.” This problem can be analyzed from two aspects: update and
page. The updating process notifies the location servers of the current locations of nodes. In search of a
node, the paging process queries the servers to identify the exact/possible locations of the mobile station
before the actual search. This avoids the potentially high costs of doing a global search. Updating and
paging costs are tradeoffs. More frequent updates can improve the accuracy of the information in location
servers, thus reducing the paging costs. On the contrary, less frequent updates can save updating costs,
but may incur higher paging costs, especially for highly mobile stations. Many analytical tools such as
queueing analysis and Markov chain analysis are used in this area. Graph theoretical models are used in
peer-to-peer networks based on building an overlay network.

Security and Privacy (in sensor networks, ad hoc wireless networks, and peer-to-peer networks): Security
is the possibility of a system withstanding an attack. There are two types of security mechanisms: preventive
and detective. The majority of the preventive mechanisms have cryptography as building components. The
goal of system security is to have controlled access to resources. The key requirements for SAP networks
are confidentiality, authentication, integrity, non-repudiation and availability. SAP networks are more
prone to attack because of their dynamic and/or infrastructureless nature. The attacks on networks can be
categorized into interruption, interception, modification, and fabrication. In addition to various “attacks,”
a number of “trust” issues also occur in SAP networks. Cryptographic algorithms are widely used in this
area.

Topology Design and Control (in sensor networks, ad hoc wireless networks, and peer-to-peer networks):
Topology design deals with the way to control the network topology to achieve several desirable properties
in SAP networks, including small diameter and small average node distance in peer-to-peer networks, and
a certain level of node connectivity in sensor and ad hoc wireless networks. In general, each node has a
similar number of neighbors, and the average nodal degree should be small. Regular and uniform structures
are usually preferred. In many cases, topology control is tied to energy-efficient design. Traditional graph
theory is usually used to deal with topology control.

Scalable Design (in sensor networks, ad hoc wireless networks, and peer-to-peer networks): Scalable design
deals with how to increase the number of nodes without degrading system or protocol performance. The
most common approach for supporting scalability is the clustering approach used both in sensor networks
and ad hoc wireless networks. Basically, the network is partitioned into a set of clusterheads, with one
clusterhead in each cluster. Clusterheads do not have direct connectivity to each other, but each clusterhead
directly connects to all of its members. In sensor networks, the clustering approach is used to reduce the
number of forward nodes (which contact the base station directly), and hence, to reduce overall energy
consumption. The traditional scalability analysis is normally used.

Energy-Aware Design (in sensor networks and ad hoc wireless networks): Energy-aware design has been
applied to various levels of protocol stacks. Most works have been done at the network layer. Several
different protocols have been proposed to manage energy consumption by adjusting transmission ranges.
In the source-independent approach, all nodes can be a source and are able to reach all other nodes
by assigning appropriate ranges. The problem of minimizing the total transmission power consumption

vi

(based on an assigned model) is NP-complete for both 2-D and 3-D space. Various heuristic solutions
exists for this problem. At the MAC layer, power saving techniques for ad hoc and sensor networks can be
divided into two categories: sleeping and power controlling. The sleeping methods put wireless nodes into
periodic sleep states in order to reduce power consumption in the idle listening mode. Both graph theory
and optimization methods are widely used in this area.

Routing and Broadcasting (in sensor networks and ad hoc wireless networks): This issue deals with trade-
offs between proactive and reactive routing, flat and hierarchical routing, location-assist and non-location-
assist routing and source-dependent and source-independent broadcasting. These trade-offs focus on cost
and efficiency and are dependent on various parameters, such as network topology, host mobility, and
network and traffic density. Various graph theoretical models (such as dominating set) and computational
geometric models (such as Yao graph, RNG (relative neighborhood graph), and Gabriel graph) have been
used. Graph theory, distributed algorithms, and computational geometry are widely used in this area.

Acknowledgments

I wish to thank all the authors for their contributions to the quality of the book. The support from NSF
for an international workshop, held at Fort Lauderdale, Florida in early 2004, is greatly appreciated. Many
chapters come from the extension of presentations at that workshop.

Special thanks to Rich O’Hanley, the managing editor, for his guidance and support throughout the
process. It has been a pleasure to work with Andrea Demby and Claire Miller, who collected and edited all
chapters. I am grateful to them for their continuous support and professionalism. Thanks to my students,
Eyra Bethancourt and Max Haider, for their assistance.

Finally, I thank my children, NiNi and YaoYao, and my wife, Ruiguang Zhang, for making this all
worthwhile and for their patience during my numerous hours working both at home and at the office.

vii

Contributors

Mehran Abolhasan
Telecommunication and IT

Research Institute (TITR)
University of Wollongong
Wollongong, NSW,

Australia

Dharma P. Agrawal
OBR Research Center for

Distributed and Mobile
Computing

ECECS Department
University of Cincinnati
Cincinnati, Ohio

Anish Arora
Department of Computer

Science and Engineering
The Ohio State University
Columbus, Ohio

James Aspnes
Department of Computer

Science
Yale University
New Haven,

Connecticut

Rimon Barr
Computer Science and

Electrical
Engineering

Cornell University
Ithaca, New York

Ratnabali Biswas
OBR Research Center for

Distributed and Mobile
Computing

ECECS Department
University of Cincinnati
Cincinnati, Ohio

Douglas M. Blough
School of Electrical and

Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia

Andrija M. Bosnjakovic
Faculty of Electrical

Engineering
University of Belgrade
Belgrade, Yugoslavia

Virgil Bourassa
Panthesis, Inc.
Bellevue, Washington

Aharon S. Brodie
Wayne State University
Detroit, Michigan

Gruia Calinescu
Department of Computer

Science
Illinois Institute of Technology
Chicago, Illinois

Edgar H. Callaway, Jr.
Florida Communication

Research Laboratory
Motorola Labs
Plantation, Florida

Guohong Cao
Department of Computer

Science and Engineering
Pennsylvania State University
University Park, Pennsylvania

Ionu Cârdei
Department of Computer

Science and Engineering
Florida Atlantic University
Boca Raton, Florida

Krishnendu Chakrabarty
Department of Electrical and

Computer Engineering
Duke University
Durham, North Carolina

Chih-Yung Chang
Department of Computer

Science and Information
Engineering

Tamkang University
Taipei, Taiwan

Sriram Chellappan
Department of Computer

Science and Engineering
Ohio State University
Columbus, Ohio

Po-Yu Chen
Institute of Communications

Engineering
National Tsing Hua University
Hsin-Chu, Taiwan

ix

Wen-Tsuen Chen
Department of Computer

Science
National Tsing Hua University
Hsin-Chu, Taiwan

Xiao Chen
Department of Computer

Science
Texas State University
San Marcas, Texas

Yuh-Shyan Chen
Department of Computer

Science and Information
Engineering

National Chung Cheng
University

Chia-Yi, Taiwan

Liang Cheng
Laboratory of Networking

Group (LONGLAB)
Department of Computer

Science and Engineering
Lehigh University
Bethlehem, Pennsylvania

Young-ri Choi
Department of Computer

Sciences
The University of Texas at

Austin
Austin, Texas

Marco Conti
Institute for Informatics and

Telematics (IIT)
National Research Council

(CNR)
Pisa, Italy

Jon Crowcroft
Computer Laboratory
University of Cambridge
Cambridge, UK

Arindam Kumar Das
Department of Electrical

Engineering
University of Washington
Seattle, Washington

Saumitra M. Das
School of Electrical and

Computer Engineering
Purdue University
West Lafayette, Indiana

Haitao Dong
Department of Computer

Science and Technology
Tsinghua University
Beijing, China

Sameh El-Ansary
Swedish Institute of

Computer Science
(SICS)

Sweden

Mohamed Eltoweissy
Department of Computer

Science
Virginia Tech
Falls Church, Virginia

Jakob Eriksson
Department of Computer

Science and Engineering
University of California,

Riverside
Riverside, California

Patrick Th. Eugster
Sun Microsystems, Inc.
Client Solutions Volketscuil

Switzerland and School of
Information and
Communication Sciences

Swiss Federal Institute of
Technology

Lausanne, Switzerland

Michalis Faloutsos
Department of Computer

Science and Engineering
University of California,

Riverside
Riverside, California

Yuguang Fang
Department of Electrical and

Computer Engineering
University of Florida
Gainesville, Florida

Ophir Frieder
Department of Computer

Science
Illinois Institute of Technology
Chicago, Illinois

Luca M. Gambardella
Istituto Dalle Molle di Studi

sull’Intelligenza Artificiale
(IDSIA)

Manno-Lugano
Switzerland

Mohamed G. Gouda
Department of Computer

Sciences
The University of Texas at

Austin
Austin, Texas

Aditya Gupta
OBR Research Center for

Distributed and Mobile
Computing

ECECS Department
University of Cincinnati
Cincinnati, Ohio

Sandeep K.S. Gupta
Department of Computer

Science and Engineering
Arizona State University
Tempe, Arizona

x

Zygmunt J. Haas
Department of Electrical and

Computer Engineering
Cornell University
Ithaca, New York

Joseph Y. Halpern
Department of Computer

Science
Cornell University
Ithaca, New York

Seif Haridi
Royal Institute of Technology

(IMIT/KTH)
Sweden

Fred B. Holt
Panthesis, Inc.
Bellevue, Washington

Jennifer C. Hou
Department of Computer

Science
University of Illinois at

Urbana-Champaign
Urbana, Illinois

Hung-Chang Hsiao
Computer and

Communications Research
Center

National Tsing-Hua University
Hsin-Chu, Taiwan

Jinfeng Hu
Department of Computer

Science and Technology
Tsinghua University
Beijing, China

Y. Charlie Hu
School of Electrical and

Computer Engineering
Purdue University
West Lafayette, Indiana

Yiming Hu
Department of Electrical

and Computer
Engineering and
Computer Science

University of Cincinnati
Cincinnati, Ohio

Chi-Fu Huang
Department of Computer

Science and Information
Engineering

National Chiao Tung
University

Hsin-Chu, Taiwan

Zhuochuan Huang
Department of Computer

and Information
Sciences

University of Delaware
Newark, Delaware

François Ingelrest
IRCICA/LIFL
University of Lille
INRIA futurs
France

Neha Jain
OBR Research Center for

Distributed and Mobile
Computing

ECECS Department
University of Cincinnati
Cincinnati, Ohio

Xiaohua Jia
Department of Computer

Science
City University of Hong Kong
Hong Kong

Kennie Jones
Department of Computer

Science
Old Dominion University
Norfolk, Virginia

Dongsoo S. Kim
Electrical and Computer

Engineering
Indiana University, Purdue

University
Indianapolis, Indiana

Chung-Ta King
Department of Computer

Science
National Tsing-Hua University
Hsin-Chu, Taiwan

Manish Kochhal
Department of Electrical

and Computer
Engineering

Wayne State University
Detroit, Michigan

Odysseas Koufopavlou
Electrical and Computer

Engineering Department
University of Patras
Greece

Srikanth Krishnamurthy
Department of Computer

Science and Engineering
University of California,

Riverside
Riverside, California

Tom La Porta
Pennsylvania State

University
University Park,

Pennsylvania

Mauro Leoncini
Dipartimento dilngegneria dell’

in Formazione
UniversitÂ di Modena e Reggio

Emilia
Modena, Italy

xi

Dongsheng Li
School of Computer
National University

of Defense Technology
Changsha, China

Li (Erran) Li
Center for Networking

Research
Bell Labs, Lucent
Holmdel, New Jersey

Xiang-Yang Li
Department of Computer

Science
Illinois Institute of Technology
Chicago, Illinois

Xiuqi Li
Department of

Computer Science
and Engineering

Florida Atlantic University
Boca Raton, Florida

Hai Liu
Department of Computer

Science
City University of

Hong Kong
Hong Kong

Xuezheng Liu
Department of Computer

Science and Technology
Tsinghua University
Beijing, China

Yunhao Liu
Department of

Computer Science
and Engineering

Michigan State
University

East Lansing, Michigan

Xicheng Lu
School of Computer
National University of

Defense Technology
Changsha, China

B. S. Manoj
Department of

Computer Science
and Engineering

Indian Institute of
Technology

Chennai, India

Gaia Maselli
Institute for Informatics and

Telematic (IIT) National
Research Council (CNR)

Pisa, Italy

Jelena Mišić
University of Manitoba
Winnipeg, Manitoba
Canada

Vojislav B. Mišić
University of Manitoba
Winnipeg, Manitoba
Canada

Nikolay A. Moldovyan
Specialized Center of

Program Systems
(SPECTR)

St. Petersburg, Russia

Roberto Montemanni
Istituto Dalle Molle di Studi

sull’Intelligenza Artificiale
(IDSIA)

Manno-Lugano, Switzerland

Thomas Moscibroda
Department of Computer

Science
Swiss Federal Institute of

Technology
Zurich, Switzerland

Anindo Mukherjee
OBR Research Center for

Distributed and Mobile
Computing

ECECS Department
University of Cincinnati
Cincinnati, Ohio

C. Siva Ram Murthy
Department of

Computer Science
and Engineering

Indian Institute of
Technology

Chennai, India

Lionel M. Ni
Department of Computer

Science
Hong Kong University of

Science and Technology
Hong Kong

Stephan Olariu
Department of Computer

Science
Old Dominion University
Norfolk, Virginia

Shashi Phoha
Pennsylvania State

University
University Park,

Pennsylvania

Jovan Popovic
Faculty of Electrical

Engineering
University of Belgrade
Belgrade, Yugoslavia

Himabindu Pucha
School of Electrical and

Computer Engineering
Purdue University
West Lafayette, Indiana

xii

Cauligi S. Raghavendra
Departments of Electrical

Engineering-Systems and
Computer Science

University of Southern
California

Los Angeles, California

Giovanni Resta
Instituto di Informaticae

Telematica
Area della Ricerca del CNR

Pisa, Italy

Paolo Santi
Instituto di Informaticae

Telematica
Area della Ricerca del CNR

Pisa, Italy

Loren Schwiebert
Department of Computer

Science
Wayne State University
Detroit, Michigan

Sandhya Sekhar
OBR Research Center for

Distributed and Mobile
Computing

ECECS Department
University of Cincinnati
Cincinnati, Ohio

Gauri Shah
IBM Almaden Research

Center
San Jose, California

Chien-Chung Shen
Department of Computer

and Information Sciences
University of Delaware
Newark, Delaware

Haiying Shen
Department of Electrical and

Computer Engineering
Wayne State University
Detroit, Michigan

Jian Shen
Department of Mathematics
Texas State University
San Marcas, Texas

Jang-Ping Sheu
Department of Computer

Science and Information
Engineering

National Central University
Chung-Li, Taiwan

Shuming Shi
Department of Computer

Science and Technology
Tsinghua University
Beijing, China

Weisong Shi
Department of Computer

Science
Wayne State University
Detroit, Michigan

Zhenghan Shi
Department of Computer

Science
Clemson University
Clemson, South Carolina

David Simplot-Ryl
IRCICA/LIFL
University of Lille
INRIA futurs
France

Nicolas Sklavos
VLSI Design Laboratory
University of Patras
Patras, Greece

Pradip K Srimani
Department of Computer

Science
Clemson University
Clemson, South Carolina

Ivan Stojmenovic
Computer Science
SITE
University of Ottawa
Ottawa, Ontario
Canada

Caimu Tang
Department of Computer

Science
University of Southern

California
Los Angeles, California

Yu-Chee Tseng
Department of Computer

Science and Information
Engineering

National Chiao Tung University
Hsin-Chu, Taiwan

Giovanni Turi
Institute for Informatics and

Telematics (IIT) National
Research Council (CNR)

Pisa, Italy

Robbert van Renesse
Department of Computer

Science
Cornell University
Ithaca, New York

Ashraf Wadaa
Department of Computer

Science
Old Dominion University
Norfolk, Virginia

Peng-Jun Wan
Department of Computer

Science
Illinois Institute of

Technology
Chicago, Illinois

Wheizhao Wang
Department of Computer

Science
Illinois Institute of Technology
Chicago, Illinois

xiii

Guiling Wang
Department of Computer

Science and Engineering
Pennsylvania State

University
University Park,

Pennsylvania

Xun Wang
Department of Computer

Science and Engineering
Ohio State University
Columbus, Ohio

Roger Wattenhofer
Department of Computer

Science
Swiss Federal Institute of

Technology
Zurich, Switzerland

Larry Wilson
Department of Computer

Science
Old Dominion University
Norfolk, Virginia

Jie Wu
Department of Computer

Science and Engineering
Florida Atlantic University
Boca Raton, Florida

Tadeusz Wysocki
Telecommunication and IT

Research Institute (TITR)
University of Wollongong
Wollongong, New South Wales
Australia

Li Xiao
Department of Computer

Science and Engineering
Michigan State University
East Lansing, Michigan

Cheng-Zhong Xu
Department of Electrical and

Computer Engineering
Wayne State University
Detroit, Michigan

Chuanfu Xu
School of Computer
National University of Defense

Technology
Changsha, China

Dong Xuan
Department of Computer

Science and Engineering
Ohio State University
Columbus, Ohio

Qing Ye
Laboratory of Networking

Group (LONGLAB)
Department of Computer

Science and Engineering
Lehigh University
Bethlehem, Pennsylvania

Hongqiang Zhai
Department of Electrical

and Computer
Engineering

University of Florida
Gainesville, Florida

Honghai Zhang
Department of Computer

Science
University of Illinois at

Urbana-Champaign
Urbana, Illinois

Wensheng Zhang
Pennsylvania State

University
University Park,

Pennsylvania

Weimin Zheng
Department of Computer

Science and Technology
Tsinghua University
Beijing, China

Yingwu Zhu
Department of Electrical

and Computer
Engineering and
Computer Science

University of Cincinnati
Cincinnati, Ohio

Yi Zou
Department of Electrical

and Computer
Engineering

Duke University
Durham, North Carolina

xiv

Contents

Section I Ad Hoc Wireless Networks 1

1 A Modular Cross-Layer Architecture for Ad Hoc Networks
Marco Conti, Jon Crowcroft, Gaia Maselli, and Giovanni Turi . 5

2 Routing Scalability in MANETs
Jakob Eriksson, Srikanth Krishnamurthy, and Michalis Faloutsos 17

3 Uniformly Distributed Algorithm for Virtual Backbone Routing
in Ad Hoc Wireless Networks
Dongsoo S. Kim .35

4 Maximum Necessary Hop Count for Packet Routing in MANETs
Xiao Chen and Jian Shen . 43

5 Efficient Strategy-Proof Multicast in Selfish Wireless Networks
Xiang-Yang Li and Weizhao Wang . 53

6 Geocasting in Ad Hoc and Sensor Networks
Ivan Stojmenovic . 79

7 Topology Control for Ad Hoc Networks: Present Solutions and Open Issues
Chien-Chung Shen and Zhuochuan Huang . 99

8 Minimum-Energy Topology Control Algorithms in Ad Hoc Networks
Joseph Y. Halpern and Li (Erran) Li . 115

9 Models and Algorithms for the MPSCP: An Overview
Roberto Montemanni, Luca M. Gambardella, and Arindam Kumar Das 133

10 A Survey on Algorithms for Power Assignment in Wireless
Ad Hoc Networks
Gruia Calinescu, Ophir Frieder, and Peng-Jun Wan . 147

11 Energy Conservation for Broadcast and Multicast Routings in
Wireless Ad Hoc Networks
Jang-Ping Sheu, Yuh-Shyan Chen, and Chih-Yung Chang . 159

12 Linear Programming Approaches to Optimization Problems
of Energy Efficiency in Wireless Ad Hoc Networks
Hai Liu and Xiaohua Jia . 177

13 Wireless Networks World and Security Algorithms
Nicolas Sklavos, Nikolay A. Moldovyan, and Odysseas Koufopavlou 193

xv

14 Reliable Computing in Ad Hoc Networks
Patrick Th. Eugster . 219

15 Medium Access Control Protocols in Mobile Ad Hoc Networks
Problems and Solutions
Hongqiang Zhai and Yuguang Fang . 231

16 On Using Ad Hoc Relaying in Next-Generation Wireless Networks
B.S. Manoj and C. Siva Ram Murthy . 251

17 Ad Hoc Networks: A Flexible and Robust Data Communication
Mehran Abolhasan and Tadeusz Wysocki . 267

18 Adaptive Cycle-Controlled E-Limited Polling in Bluetooth Piconets
Jelena Mǐsić and Vojislav B. Mǐsić . 283

19 Scalable Wireless Ad Hoc Network Simulation
Rimon Barr, Zygmunt J. Haas, and Robbert van Renesse . 297

Section II Sensor Networks 313

20 Sensor Systems: State of the Art and Future Challenges
Dharma P. Agrawal, Ratnabali Biswas, Neha Jain, Anindo Mukherjee,
Sandhya Sekhar, and Aditya Gupta . 317

21 How to Structure Chaos: Initializing Ad Hoc and Sensor Networks
Thomas Moscibroda and Roger Wattenhofer . 347

22 Self-Organization of Wireless Sensor Networks
Manish M. Kochhal, Loren Schwiebert, and Sandeep K.S. Gupta 369

23 Self-Stabilizing Distributed Systems and Sensor Networks
Zhengnan Shi and Pradip K. Srimani . 393

24 Time Synchronization in Wireless Sensor Networks
Qing Ye and Liang Cheng . 403

25 Routing and Broadcasting in Hybrid Ad Hoc and Sensor Networks
François Ingelrest, David Simplot-Ryl, and Ivan Stojmenovic 415

26 Distributed Algorithms for Deploying Mobile Sensors
Guohong Cao, Guiling Wang, Tom La Porta, Shashi Phoha,
and Wensheng Zhang . 427

27 Models and Algorithms for Coverage Problems in Wireless
Sensor Networks
Chi-Fu Huang, Po-Yu Chen, Yu-Chee Tseng, and Wen-Tsuen Chen 441

28 Maintaining Sensing Coverage and Connectivity in Large
Sensor Networks
Honghai Zhang and Jennifer C. Hou . 453

29 Advances in Target Tracking and Active Surveillance Using
Wireless Sensor Networks
Yi Zou and Krishnendu Chakrabarty . 475

xvi

30 Energy-Efficient Detection Algorithms for Wireless Sensor Networks
Caimu Tang and Cauligi S. Raghavendra . 491

31 Comparison of Cell-Based and Topology-Control-Based Energy
Conservation in Wireless Sensor Networks
Douglas M. Blough, Mauro Leoncini, Giovanni Resta, and Paolo Santi 507

32 QoS Support for Delay-Sensitive Applications in Wireless Networks of UAVs
Ionu Cârdei . 529

33 A Scalable Solution for Securing Wireless Sensor Networks
Asharaf Wadaa, Kennie Jones, Stephan Olariu, Larry Wilson,

and Mohamed Eltoweissy . 547

34 Antireplay Protocols for Sensor Networks
Mohamed G. Gouda, Young-ri Choi, and Anish Arora . 561

35 Low Power Consumption Features of the IEEE 802.15.4 WPAN Standard
Edgar H. Callaway, Jr. 575

Section III Peer-to-Peer Networks 587

36 Peer-to-Peer: A Technique Perspective
Weimin Zheng, Xuezheng Liu, Shuming Shi, Jinfeng Hu, and Haitao Dong 591

37 Searching Techniques in Peer-to-Peer Networks
Xiuqi Li and Jie Wu . 617

38 Semantic Search in Peer-to-Peer Systems
Yingwu Zhu and Yiming Hu . 643

39 An Overview of Structured P2P Overlay Networks
Sameh El-Ansary and Seif Haridi . 665

40 Distributed Data Structures for Peer-to-Peer Systems
James Aspnes and Gauri Shah . 685

41 State Management in DHT with Last-Mile Wireless Extension
Hung-Chang Hsiao and Chung-Ta King . 701

42 Topology Construction and Resource Discovery in Peer-to-Peer Networks
Dongsheng Li, Xicheng Lu, and Chuanfu Xu . 733

43 Peer-to-Peer Overlay Optimization
Yunhao Liu, Li Xiao, and Lionel M. Ni . 753

44 Resilience of Structured Peer to Peer Systems: Analysis and Enhancement
Dong Xuan, Sriram Chellappan, and Xun Wang . 767

45 Swan: Highly Reliable and Efficient Network of True Peers
Fred B. Holt, Virgil Bourassa, Andrija M. Bosnjakovic, and Jovan Popovic 787

46 Scalable and Secure P2P Overlay Networks
Haiying Shen, Aharon S. Brodie, Cheng-Zhong Xu, and Weisong Shi 813

47 Peer-to-Peer Overlay Abstractions in MANETs
Y. Charlie Hu, Saumitra M. Das, and Himabindu Pucha . 845

Index . 865

xvii

I
Ad Hoc

Wireless
Networks

The maturity of wireless transmissions and the popularity of portable computing devices
have made the dream of “communication anytime and anywhere” possible. An ad hoc wire-
less network is a good choice for fulfilling this dream. An ad hoc wireless network consists
of a set of mobile hosts operating without the aid of an established infrastructure of central-
ized administration. Communication is done through wireless links among mobile hosts
using their antennas. Due to concerns such as radio power limits and channel utilization,
a mobile host may not be able to communicate directly with other hosts in a single-hop
fashion. In this case, a multihop scenario occurs, in which the packets sent by the source
host must be relayed by several intermediate hosts before reaching the destination host.

Although military tactical communication is still considered the primary application for
ad hoc wireless networks, commercial interest in this type of network continues to grow.
Applications such as law enforcement operation, commercial and educational use, and
sensor networks are just a few possible commercial examples. There are several technical
challenges related to the ad hoc wireless network. In ad hoc wireless networks, the topology
is highly dynamic, and frequent changes in the topology may be difficult to predict. With
the use of wireless links, the network suffers from higher loss rates, and can experience
more delays and jitter. In addition, physical security is limited due to wireless transmission.
Finally, as ad hoc wireless network nodes rely on batteries, energy saving is an important
system design criterion.

Most of the existing works on ad hoc wireless networks focus on issues related to the
network layer, such as routing and broadcasting. Routing protocols in ad hoc wireless
networks are either proactive or reactive, although a combination of proactive and reactive
is also possible. In proactive routing, routes to all destinations are computed a priori and
are maintained in the background via a periodic update process. Route information is
maintained either as routing tables or as global link state information. In reactive routing,
a route to a specific destination is computed “on demand,” that is, only when needed.
To efficiently use resources in controlling large dynamic networks, hierarchical routing,
including cluster based and dominating set based, is normally used.

1

2 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

Many other technical issues are discussed through the use of protocol stacks where at
least four layers are used:

1. Physical layer: responsible for frequency selection, carrier frequency generation,
signal detection, modulation, and data encryption.

2. Data link layer: responsible for the multiplexing of data streams, data frame detec-
tion, medium access, and error control.

3. Network layer: responsible for forwarding the data to appropriate destinations.
4. Application layer: responsible for supporting various applications.

The 19 chapters in this section cover a wide range of topics across multiple layers: MAC
(part of the data link layer), network, and applications. One chapter is devoted to the
cross-layer architecture for ad hoc wireless networks. Several chapters deal with various
techniques for efficient and scalable routing, including multicasting and geocasting, in ad
hoc wireless networks. One chapter discusses routing in a selfish wireless network. Three
chapters present some recent results on topology control while three other chapters are
dedicated to energy-efficient design under several different system settings. The security
and reliability issues are covered in two separate chapters. MAC protocols are given in one
dedicated chapter. Of the three chapters about applications, one discusses ad hoc relaying
in cellular networks, one uses ad hoc wireless networks for robust data communication,
and one is devoted to the application in Bluetooth. This section ends with a chapter on
scalable simulation for ad hoc wireless networks.

1 A Modular Cross-Layer Architecture for Ad Hoc Networks Marco Conti,
Jon Crowcroft, Gaia Maselli, and Giovanni Turi . 5
Introduction • Toward Loosely Coupled Cross-Layering • The Need for Global
Evaluation • Discussion and Conclusions

2 Routing Scalability in MANETs Jakob Eriksson, Srikanth Krishnamurthy,
and Michalis Faloutsos . 17
Defining Scalability • Analytical Results on Ad Hoc Network Scalability • Flat Proactive
Routing • Pure Reactive Routing • Geographical Routing • Zone-Based
Routing • Single-Level Clustering • Multilevel Clustering • Dynamic Address
Routing • Conclusion

3 Uniformly Distributed Algorithm for Virtual Backbone Routing in
Ad Hoc Wireless Networks Dongsoo S. Kim . 35
Characteristics of Ad Hoc Networks • Searching Virtual Backbone • Conclusion

4 Maximum Necessary Hop Count for Packet Routing in MANETs Xiao Chen
and Jian Shen . 43
Introduction • Notations • The Problem • Circle Packing Problem • Our
Solution • Sharpness of the Maximum Necessary Hop Count • Conclusion

5 Efficient Strategy-Proof Multicast in Selfish Wireless Networks
Xiang-Yang Li and Weizhao Wang . 53
Introduction • Preliminaries and Priori Art • Strategyproof Multicast • Experimental
Studies • Conclusion

6 Geocasting in Ad Hoc and Sensor Networks Ivan Stojmenovic 79
Introduction • Position-Based Localized Routing and Geocasting
Algorithms • Geocasting Based on Traversing Faces that Intersect the
Boundary • Geocasting Based on Depth-First Search Traversal of Face Tree
• Multicasting and Geocasting with Guaranteed Delivery • Conclusion

7 Topology Control for Ad Hoc Networks: Present Solutions and Open Issues
Chien-Chung Shen and Zhuochuan Huang . 99
Introduction • Related Topics • Review of Existing
Solutions • Comparisons • Conclusion and Open Issues

Ad Hoc Wireless Networks 3

8 Minimum-Energy Topology Control Algorithms in Ad Hoc Networks
Joseph Y. Halpern and Li (Erran) Li . 115
Introduction • The Model • A Characterization of Minimum-Energy Communication
Networks • A Power-Efficient Protocol for Finding a Minimum-Energy Communication
Network • Reconfiguration • Simulation Results and Evaluation • Summary

9 Models and Algorithms for the MPSCP: An Overview Roberto Montemanni,
Luca M. Gambardella, and Arindam Kumar Das . 133
Introduction • Problem Description • Mathematical Models and Exact
Algorithms • Preprocessing Procedure • Computational Results • Conclusion

10 A Survey of Algorithms for Power Assignment in Wireless Ad Hoc Networks
Gruia Calinescu, Ophir Frieder, and Peng-Jun Wan . 147
Introduction • Strong Connectivity • Symmetric
Connectivity • Biconnectivity • k-Edge-Connectivity • Symmetric Unicast • Broadcast
and Multicast • Summary of Approximability Results

11 Energy Conservation for Broadcast and Multicast Routings in Wireless
Ad Hoc Networks Jang-Ping Sheu, Yuh-Shyan Chen, and Chih-Yung Chang 159
Introduction • Energy-Efficient Broadcast Protocols in MANETs • Energy-Efficient
Multicast Protocol in MANETs • Conclusions and Future Works

12 Linear Programming Approaches to Optimization Problems of Energy
Efficiency in Wireless Ad Hoc Networks Hai Liu and Xiaohua Jia 177
Introduction • Energy Efficiency Routing • Broadcast/Multicast Routing • Data
Extraction and Gathering in Sensor Networks • QoS Topology Control • Conclusion

13 Wireless Networks World and Security Algorithms Nicolas Sklavos, Nikolay A.
Moldovyan, and Odysseas Koufopavlou . 193
Introduction • Cryptography: An Overview • Security and Wireless Protocols • Wireless
Network Algorithm Implementations: The Software Approach • The Hardware Solution
for Mobile Devices: Architectures, Designs, and Integration • Alternative Solutions for
Security Implementations • New Encryption Algorithm Standards • Future Approach
Based on Data-Dependent Operations • Wireless Communications Security in the
Near Future

14 Reliable Computing in Ad Hoc Networks Patrick Th. Eugster 219
Reliable Computing in Unpredictable Ad Hoc Networks • Modeling the System • Unicast
Routing • Multicast Routing • Data Replication • Applications

15 Medium Access Control Protocols in Mobile Ad Hoc Networks Problems
and Solutions Hongqiang Zhai and Yuguang Fang . 231
Introduction • Problems • DUCHA: A New Dual-Channel MAC Protocol • Distributed
Flow Control and Medium Access Control • Rate Adaptation with Dynamic
Fragmentation • Opportunistic Media Access Control and Auto Rate Protocol
(OMAR) • Conclusion

16 On Using Ad Hoc Relaying in Next-Generation Wireless Networks
B.S. Manoj and C. Siva Ram Murthy . 251
Introduction • Hybrid Wireless Network Architectures • A Qualitative Comparison and
Open Problems in Hybrid Wireless Networks • Summary

17 Ad Hoc Networks: A Flexible and Robust Data Communication
Mehran Abolhasan and Tadeusz Wysocki . 267
Background • Routing in Ad Hoc and Mobile Ad Hoc Networks • Future Challenges in
Ad Hoc and Mobile Ad Hoc Networking

18 Adaptive Cycle-Controlled E-Limited Polling in Bluetooth Piconets
Jelena Mišić and Vojislav B. Mǐsić . 283
Introduction • An Overview of the ACE Scheme • The Queueing Model of the ACE
Scheme • Performance of the New Scheme • Summary and Possible Enhancements

19 Scalable Wireless Ad Hoc Network Simulation Rimon Barr, Zygmunt J. Haas,
and Robbert van Renesse . 297
Background • Design Highlights • Throughput • Hierarchical Binning • Memory
Footprint • Embedding Applications • Conclusion

1
A Modular

Cross-Layer
Architecture for

Ad Hoc Networks

Marco Conti

Jon Crowcroft

Gaia Maselli

Giovanni Turi

1.1 Introduction . 5
1.2 Toward Loosely Coupled Cross-Layering 8

1.2.1 Overview of NeSt Functionalities 8
1.2.2 The NeSt Interface . 9
1.2.3 Design and Implementation Remarks 12

1.3 The Need for Global Evaluation . 12
1.4 Discussion and Conclusions . 14
References . 15

The success of the cleanly layered Internet Architecture has promoted its adoption for wireless and mobile
networks, including ad hoc networks. This has also fostered skepticism toward alternative approaches.
However, a strict-layered design is not flexible enough to cope with the dynamics of mobile networks and
can prevent many classes of performance optimizations. To what extent, then, must developers modify the
pure layered approach by introducing closer cooperation among protocols belonging to different layers?

Although the debate on cross-layer versus legacy-layer architecture has been around for a while, we
propose a novel solution based on loosely coupled cross-layering, which constitutes a trade-off between the
two extremes. Our solution allows for performance optimizations, but at the same time maintains flexibility.

This innovative architecture not only makes room for techniques to design new ad hoc protocols,
for which we present specific examples, but also opens up the possibility of research into the usage of
cross-layering for the Internet more generally.

1.1 Introduction

The Internet transparently connects millions of heterogeneous devices, supporting a huge variety of
communications. From a networking standpoint, its popularity is due to a core design that has made
it extensible, and robust against evolving usage as well as failures. Now, mobile devices and wireless
communications prompt the vision of networking without a network (ad hoc networking). This brings

5

6 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

new challenging issues where the need for flexibility confronts ad hoc constraints. A careful architectural
design for the ad hoc protocol stack is necessary to incorporate this emerging technology.

The Internet architecture layers protocol and network responsibilities, breaking down the networking
system into modular components, and allowing for transparent improvements of single modules. In a
strict-layered system, protocols are independent of each other and interact through well-defined (and
static) interfaces: each layer implementation depends on the interfaces available from the lower layer, and
those exported to the upper layer. Strict-layering provides flexibility to a system’s architecture: extensions
introduced into single levels do not affect the rest of the system. The separation of concerns brings the
added benefits of minimizing development costs by re-using existing code. This design approach relies on
“horizontal” communication between peer protocol layers on the sender and receiver devices (the dashed
arrows in Figure 1.1). The result is a trend to spend bandwidth (an abundant resource in the Internet)
instead of processing power and storage.

Several aspects of the Internet architecture have led to the adoption of this strict-layer approach also for
mobile ad hoc networks. Some of these aspects include (1) the “IP-centric” view of ad hoc networks; and
(2) the flexibility offered by independent layers, which allows for reuse of existing software. The choice
of the layered approach is supported by the fact that ad hoc networks are considered mobile extensions
of the Internet, and hence the protocol stack must be suitable. However, this design principle clashes with
the following facts:

1. Issues such as energy management, security, and cooperation characterize the whole stack and
cannot be solved inside a single layer.

2. Ad hoc networks and the Internet have conflicting constraints; and while the former are dynamic,
the latter is relatively static.

Some guidelines to approach these problems point to an enhancement of “vertical” communication
in a protocol stack (see Figure 1.1),1,2 as a way to reduce peer (horizontal) communication, and hence
conserve bandwidth. Vertical communication, especially between nonadjacent layers, facilitates local data
retrieval, otherwise carried out through network communication. The practice of accessing not only the
next lower layer, but also other layers of the protocol stack, leads to cross-layering to allow performance
improvements. The main downside of strict-layering is that it hinders extensibility: a new, higher-level
component can only build on what is provided by the next lower layer.3 Hence, if one layer needs to access
functionality or information provided by a nonadjacent layer, then an intermediate extension should be
devised. Cross-layering allows nonadjacent protocols to directly interact, making overall optimizations
possible and achieving extensibility at the eventual expense of flexibility.

Applications Applications

Middleware Middleware

Transport Transport

Network Network

MAC/Physical MAC/Physical

Horizontal
communication

V
er

tic
al

co
m

m
un

ic
at

io
n

FIGURE 1.1 The Internet emphasizes horizontal communication between peer protocol layers to save router re-
sources, while ad hoc networking promotes vertical interaction to conserve bandwidth.

A Modular Cross-Layer Architecture for Ad Hoc Networks 7

In the literature there is much work showing the potential of cross-layering for isolated performance
improvements in ad hoc networks. However, the focus of that work is on specific problems, as it looks
at the joint design of two to three layers only. For example, cross-layer interactions between the routing
and the middleware layers allow the two levels to share information with each other through system
profiles, in order to achieve high quality in accessing data.4 An analogous example is given by Schollmeier
et al.,5 where a direct interaction between the network and the middleware layers, termed Mobile Peer
Control Protocol, is used to push a reactive routing to maintain existing routes to members of a peer-
to-peer overlay network. Yuen et al.6 propose an interaction between the MAC and routing layers, where
information like signal-to-noise ratio, link capacity, and MAC packet delay is communicated to the routing
protocol for the selection of optimal routes. Another example is the joint balancing of optimal congestion
control at the transport layer with power control at the physical layer.7 This work observes how congestion
control is solved in the Internet at the transport layer, assuming that link capacities are fixed quantities.
In ad hoc networks, this is not a good assumption, as transmission power, and hence throughput, can be
dynamically adapted on each link. Last, but not least, Kozat et al.8 propose cross-layer interaction between
physical, MAC, and routing layers to perform joint power control and link scheduling as an optimized
objective.

Although these solutions are clear examples of optimization introduced by cross-layering, the draw-
back on the resulting systems is that they contain tightly coupled, and therefore mutually dependent,
components. Additionally, while an individual suggestion for cross-layer design, in isolation, may appear
appealing, combining them all together could result in interference among the various optimizations.9

From an architectural point of view, this approach leads to an “unbridled” stack design, difficult to main-
tain efficiently, because every modification must be propagated across all protocols. To give an example of
interfering optimizations, let us consider an adaptation loop between a rate-adaptive MAC and minimal
hop routing protocol (most ad hoc routing protocols are minimum hop). A rate-adaptive MAC would
be able to analyze the quality of channels, suggesting higher layers on the outgoing links, which provide
the higher data rates in correspondence with shorter distances. This conflicts with typical decisions of a
minimum hop routing protocol, which chooses a longer link (for which the signal strength and data rate
are typically lower) to reach the destination while using as few hops as possible.

We claim that cross-layering can be achieved, maintaining the layer separation principle, with the
introduction of a vertical module, called Network Status∗ (NeSt), which controls all cross-layer interactions
(see Section 1.2). The NeSt aims at generalizing and abstracting vertical communications, getting rid of
the tight coupling from an architectural standpoint. The key aspect is that protocols are still implemented
in isolation inside each layer, offering the advantages of:

� Allowing for full compatibility with standards, as NeSt does not modify each layer’s core functions
� Providing a robust upgrade environment, which allows the addition or removal of protocols be-

longing to different layers from the stack, without modifying operations at other layers
� Maintaining the benefits of a modular architecture (layer separation is achieved by standardizing

access to the NeSt)

In addition to the advantages of a full cross-layer design, which still satisfies the layer separation principle,
the NeSt provides full context awareness at all layers. Information regarding the network topology, energy
level, local position, etc. is made available by the NeSt to all layers, to achieve optimizations, and offers
performance gains from an overhead point of view. Although this awareness is restricted to the node’s
local view, protocols can be designed so as to adapt the system to highly variable network conditions (the
typical ad hoc characteristic).

∗This term indicates the collection of network information that a node gathers at all layers. It should not be confused
with a concept of globally shared network context.

8 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

This innovative architecture opens research opportunities for techniques to design and evaluate new
ad hoc protocols (see Section 1.3), but also remains compliant with the usage of legacy implementations,
introducing new challenging issues concerning the usage of cross-layering for the Internet more generally
(see Section 1.4).

1.2 Toward Loosely Coupled Cross-Layering

One of the main problems caused by direct cross-layer interactions (as already discussed in Section 1.1)
is the resulting tight coupling of interested entities. To solve this problem, the NeSt stands vertically beside
the network stack (as shown in Figure 1.2), handling eventual cross-layer interactions among protocols.
That is, the NeSt plays the role of intermediary, providing standard models to design protocol interactions.
While the new component uniformly manages vertical exchange of information between protocols, usual
network functions still take place layer-by-layer through standardized interfaces, which remain unaltered.
This introduced level of indirection maintains the loosely coupled characteristic of Internet protocols,
preserving the flexible nature of a layered architecture.

The idea is to have the NeSt exporting an interface toward protocols, so as to allow sharing of information
and reaction to particular events. In this way, cross-layer interactions do not directly take place between
the interested protocols, but are implemented using the abstractions exported by the NeSt. This approach
allows protocol designers to handle new cross-layer interactions apart, without modifying the interfaces
between adjacent layers. The work described by Conti et al.10,11 introduces this idea in the context of pure ad
hoc networking. This work extends the definition of the NeSt interaction models, presenting the exported
interface. This is to evolve toward a general-purpose component, eventually suitable for cross-layering in
a future Internet architecture.

1.2.1 Overview of NeSt Functionalities

The NeSt supports cross-layering implementation with two models of interaction between protocols:
synchronous and asynchronous. Protocols interact synchronously when they share private data (i.e., internal
status collected during their normal functioning). A request for private data takes place on-demand,
with a protocol querying the NeSt to retrieve data produced at other layers, and waiting for the result.
Asynchronous interactions characterize the occurrence of specified conditions to which protocols may be
willing to react. As such conditions are occasional (i.e., not deliberate), protocols are required to subscribe
for their occurrences. In other words, protocols subscribe for events they are interested in, and then
return to their work. The NeSt, in turn, is responsible for delivering eventual occurrences to the right
subscribers. Specifically, we consider two types of events: internal and external. Internal events are directly
generated inside the protocols. Picking just one example, the routing protocol notifies the rest of the stack
about a “broken route” event, whenever it discovers the failure of a preexisting route. On the other side,
external events are discovered inside the NeSt on the basis of instructions provided by subscriber protocols.

Applications Applications

Middleware Middleware

Transport Transport

Network Network

MAC/Physical MAC/Physical

In
di

re
ct

 v
er

tic
al

in
te

ra
ct

io
n

NeSt NeSt

FIGURE 1.2 An architectural trade-off for loosely coupled vertical protocol interactions.

A Modular Cross-Layer Architecture for Ad Hoc Networks 9

An example of an external event is a condition on the host energy level. A protocol can subscribe for a
“battery-low” event, specifying an energy threshold to the NeSt, which in turn will notify the protocol
when the battery power falls below the given value.

As the NeSt represents a level of indirection in the treatment of cross-layer interactions, an agreement
for common-data and events representation inside the vertical component is a fundamental requirement.
Protocols must agree on a common representation of shared information, in order to guarantee loose
coupling. To this end, the NeSt works with abstractions of data and events, intended as a set of data
structures that comprehensively reflect the relevant (from a cross-layering standpoint) information and
special conditions used throughout the stack. A straightforward example is the topology information
collected by a routing protocol. To abstract from implementation details of particular routing protocols,
topology data can be represented as a graph inside the NeSt. Therefore, the NeSt becomes the provider of
shared data, which appear independent of its origin and hence usable by each protocol.

How is protocol internal data exported into NeSt abstractions? The NeSt accomplishes this task using
callback functions, which are defined and installed by protocols themselves. A callback is a procedure that
is registered to a library (the NeSt interface) at one point in time, and later on invoked (by the NeSt). Each
callback contains the instructions to encode private data into an associated NeSt abstraction. In this way,
the protocol designer provides a tool for transparently accessing protocol internal data.

1.2.2 The NeSt Interface

To give a technical view of the vertical functionalities, we assume that the language used by the NeSt to
interface the protocol stack allows for declaration of functions, procedures, and common data structures.
We adopt the following notation to describe the NeSt interface:

functionName : (input) → output

Each protocol starts its interaction with the NeSt by registering to the vertical component. This operation
assigns to each protocol a unique identifier (PID), as shown by step a in Figure 1.3. The registration is
expected to happen once for all at protocol bootstrap time by calling

register : () → PID

As described in the previous section, the NeSt does not generate shared data, but acts as an intermediary
between protocols. More precisely, a protocol seizes the NeSt abstractions related to its internal function-
alities and data structures. The example of the network topology suggests the routing protocol to acquire
ownership of an abstract graph containing the collected routing information. This operation requires a
protocol to identify itself, providing the PID, and to specify the abstraction’s identifier (AID) together with
the associated callback function (see step b in Figure 1.3). When invoked, the callback function fills out the

NeSt

1. Generate PID
2. Return PID

1. Verify callback
2. Grant or reject
 seizing

register ()

seize ()

access ()

subscribe ()

notify ()

setmonitor ()

a. Register

b. Seize an abstraction
 with PID, AID,
 and callback

P1

P2

FIGURE 1.3 NeSt functionalities: register and seize.

10 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

abstraction, encoding protocol internal representation in NeSt format. Note that the callback invocation
takes place asynchronously with the seizing operation, every time a fresh copy of the associated data is
needed inside the NeSt. The entire process begins by calling

seize : (P I D, AI D, readCallBack()) → result

The result of a call to s ei ze() indicates the outcome of the ownership request.
Once an abstraction has been seized, the NeSt is able to satisfy queries of interested entities. A protocol

accesses an abstraction by calling

access : (P I D, AI D, filter()) → result

This function shows that the caller must identify itself with a valid PID, providing also the abstraction
identifier and a filter function. The latter parameter is a container of instructions for analyzing and
selecting only information relevant to the caller’s needs. The NeSt executes this call by spawning an
internal computation that performs the following steps (see Figure 1.4):

1. Invoke the callback installed by the abstraction’s owner (if any).
2. Filter the returned data locally (i.e., in the context of the NeSt).
3. Deliver the filtering result to the caller.

The remaining functions of the NeSt interface cope with asynchronous interactions. In the case of
internal events, the role of the NeSt is to collect subscriptions, wait for notifications, and vertically dispatch
occurrences to the appropriate subscribers, as shown in Figure 1.5. A protocol subscribes for an event by
identifying itself and providing the event’s identifier (EID), calling the function

subscribe : (P I D, E I D) → result

To notify the occurrence of an event, a protocol must specify in addition to the event identifier (EID),
information regarding the occurrence. This happens by calling the function

notify : (P I D, E I D, info) → result

After the notification of an event, the NeSt checks it against subscriptions, and dispatches the occurrence
to each subscriber.

In the case of external events, protocols subscribe by instructing the NeSt on how to detect the event.
The rules to detect an external event are represented by a monitor function that periodically checks the
status of a NeSt abstraction. When the monitor detects the specified condition, the NeSt dispatches the
information to the subscriber protocol. As shown in Figure 1.6, a protocol delegates the monitoring of an

NeSt

1. Invoke callback
 for AID
2. Apply Filter ()
 on AID

register ()

seize ()

access ()

subscribe ()

notify ()

monitor ()

a. Access an abstraction
 with PID, AID, and Filter ()

b. Abstract internal
 data in NeSt format

P1

P2

3. Return Filter ()
 result

Internal data

FIGURE 1.4 NeSt functionalities: access an abstraction.

A Modular Cross-Layer Architecture for Ad Hoc Networks 11

NeSt

1. Register subscription
 (PID, EID)

1. Check EID on the
 subscription list

register ()

seize ()

access ()

subscribe ()

notify ()

monitor ()

a. Subscribe event with
 PID and EID

b. Notify event with
 PID, EID and info
 regarding the
 occurrence

P1

P2
2. Deliver the occurrence
 to matching subscribers

Catch e

FIGURE 1.5 NeSt functionalities: management of internal events.

external event by passing to the NeSt a monitor function and the identifier of the target abstraction. This
happens by calling

set monitor : (P I D, AI D, monitor()) → result

The NeSt serves this call by spawning a persistent computation (see Figure 1.6) that executes the following
steps:

1. Verify the monitor (e.g., type checking).
2. While (true):

a. Refresh the abstraction invoking the associated callback.
b. Apply the monitor to the resulting content.
c. If the monitor detects the special condition, then notify the requesting protocol.

The result of a call to set monitor() only returns the outcome of the monitor’s installation, while the
notification of external events takes place asynchronously.

NeSt

1. Verify Monitor ()

1. While (true)
 2a. Invoke callback
 for AID
 2b. Apply Monitor ()
 to AID
 2c. If match found
 notify PID

register ()

seize ()

access ()

subscribe ()

notify ()

monitor ()

a. Monitor event with
 PID, AID, and Monitor ()

b. Abstract internal
 data in NeSt format

P1

P2Internal data

FIGURE 1.6 NeSt functionalities: management of external events.

12 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

1.2.3 Design and Implementation Remarks

It is difficult to find comparisons to the proposed architecture as, to the best of our knowledge, there are
no similar approaches in the organization of a protocol stack. However, there are important observations
and remarks to be given.

First of all, the NeSt is a component dedicated to enabling optimization. If on the one hand it helps
maintain the layering principle allowing loosely coupled interactions, on the other hand it must guarantee
the appropriate level of real-timing. That is, when subjected to a heavy load of cross-layering, the NeSt
should be responsive, avoiding making protocol efforts fruitless. For example, in the case of synchronous
interactions where call-backs are employed, the NeSt should not degrade the performance of both the
requestor and provider protocols. For these reasons, it advisable to pre-fetch and cache exported data (when
possible), serving a series of accesses to the same abstraction with fewer callback executions. However, this
approach also requires the presence of cache invalidation mechanisms, which protocols can use to stale
pre-fetched or cached abstractions.

As presented here, the NeSt should come with an a priori set of abstractions for data and events,
to which protocols adapt in order to cross-interact. A more mature and desirable approach would re-
verse the adaptation process, having the vertical component adapt to whatever the protocols provide.
For example, this adaptation issue could be solved through the use of reflection, a characteristic of
some modern programming languages12 that enables introspection of software components, allowing
for dynamic changes in behavior. A NeSt reflective API would allow each protocol to define its con-
tribution to cross-layer interactions, providing an initial registration of profiles describing the data
and the events it is able to share. The resulting data and event sharing would be more content-based
than the presented subject-based mechanism. With this approach, the sole agreement between the two
parties would regard the representation of protocol profiles. A solution could be the usage of a language
that provides rules to define both profiles data and metadata, as for example the eXtensible Markup
Language (XML). This solution would restrict the agreement on the set of tags (i.e., the grammar)
to use in building profiles. Note that such use of higher-level programming languages would inter-
est only initial negotiation phases between the NeSt and the protocols, without affecting the runtime
performance.

One might argue that the NeSt exhibits some conceptual similarities with a management information
base (MIB). An MIB is a collection of network-management information that can be accessed, for example,
through the Simple Network Management Protocol (SNMP). SNMP facilitates the exchange of information
between network devices and enables network administrators to manage performances, find and solve
problems, and plan for network growth. Some NeSt functionalities could be realized through a local MIB
(storing protocols information), to which other protocols can access in order to read and write data.
However, the NeSt and MIBs target different goals. MIBs are designed for network statistics and remote
management purposes, while the NeSt aims at overall local performance improvements. Furthermore, the
MIB’s nature makes it unsuitable for the real-time tasks typical of NeSt optimizations, which require only
local accesses and fine-grained time scales (e.g., in the order of single packets sent/received).

1.3 The Need for Global Evaluation

The NeSt architecture, as described in previous sections, is a full cross-layer approach where protocols
become adaptive to both application and underlying network conditions. Such an approach brings the
stack as a whole to the best operating trade-off. This has been highlighted by Goldsmith and Wicker,13

where the authors point at global system requirements, like energy saving and mobility management, as
design guidelines for a joint optimization. Our approach opens up different perspectives in the evaluation
of network protocols. We claim that in a full cross-layer framework, the performance of a protocol should
not only be evaluated by looking at its particular functionalities, but also by studying its contribution in
cross-layer activities. Therefore, a stack designed to exploit joint optimizations might outperform a “team”
of individually optimized protocols.

A Modular Cross-Layer Architecture for Ad Hoc Networks 13

To give an example, let us consider ad hoc routing, which is responsible for finding a route toward
a destination in order to forward packets. With reference to the classifications reported by Royer and
Toh14 and Chlamtac et al.,15 the main classes of routing protocols are proactive and reactive. While
reactive protocols establish routes only toward destinations that are in use, proactive approaches com-
pute all the possible routes, even if they are not (and eventually will never be) in use. Typically, reactive
approaches represent the best option: they minimize flooding, computing and maintaining only indis-
pensable routes (even if they incur an initial delay for any new session to a new destination). But what
happens when we consider the cross-layer contribution that a routing protocol might introduce in a NeSt
framework?

To answer this question, we provide an example of cross-layer interaction between a routing protocol
and middleware platform for building overlay networks, where the former contributes exporting the
locally collected knowledge of the network topology. Building an overlay network mainly consists of
discovering service peers, and establishing and maintaining routes toward them, as they will constitute the
backbone of a distributed service. The overlay network is normally constituted by a subset of the network
nodes, and a connection between two peers exists when a route in the underlay (or physical) network
can be established. The task of building and maintaining an overlay is carried out at the middleware
layer, with a cost that is proportional to the dynamics of the physical network. Overlay platforms for the
fixed Internet assume no knowledge of the physical topology, and each peer collects information about
the overlay structure in a distributed manner. This is possible because the fixed network offers enough
stability, in terms of topology, and bandwidth to exchange messages. Of course, similar conditions do not
apply for ad hoc environments, where bandwidth is a precious (and scarce) resource and the topology is
dynamic. In ad hoc networks, cross-layering can be exploited, offering the information exported by the
network routing to the middleware layer. The key idea is that most of the overlay management can be
simplified (and eventually avoided) on the basis of already available topology information.16 In this case,
the more information available, the easier the overlay management; and for this reason, a proactive routing
approach becomes more appealing. To support this claim, let us look at what is described by Schollmeier
et al.5 This article describes a cross-layer interaction between a middleware that builds an overlay for
peer-to-peer computing and a dynamic source routing (DSR) at the network layer. In this work, the DSR
algorithm is forced to maintain valid routes toward the overlay peers, even if these routes are not in use.
That is, a reactive routing is forced to behave proactively, with the additional overhead of reactive control
packets. The same cross-layer approach with a proactive protocol would probably represent the best joint
optimization.

Another example of joint optimization is the extension of routing to support service discovery. A ser-
vice discovery protocol works at the middleware layer to find out what kind of services are available in
the network. As the dynamics of the ad hoc environment determines frequent changes in both avail-
able services and hosting devices, service discovery is of fundamental support. The IETF proposes the
Service Location Protocol (SLP)17 to realize service discovery in both Internet and ad hoc networks.
Recently, they also underlined the similarity of the messages exchanged in SLP, with those used in a reac-
tive routing such as the Ad hoc On-demand Distance Vector (AODV) protocol.18 This proposal discusses
an extension of AODV to allow service request/reply messages in conjunction with route request/reply.
In this proposal, there is a background cross-layer interaction that allows SLP to interface directly with
AODV, asking for service-related messages, providing local service data, and receiving service informa-
tion coming from other nodes. The proposed joint optimization would work even better in the case
of a proactive routing protocol such as DSDV or OLSR (see Chlamtac et al.15 for details). In case of
proactive routing, the service information regarding the local services offered on each node could be
piggybacked on routing control packets and proactively spread around the network, together with lo-
cal connectivity information. The service discovery communication could be significantly reduced, at
the expense of broadcasting routing control packets a few bytes longer. This optimization would result
in a proactive service discovery, where a component such as the NeSt supports the exchange of ser-
vice information from the service discovery protocol, at the middleware, with the routing protocol, and
vice versa.

14 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

1.4 Discussion and Conclusions

Typically, cross-layering is emphasized as a way to work around the TCP/IP implementation limits, as
it introduces direct interaction between protocols to enable smarter adaptation or better performance,
at the cost of a “spaghetti-like” code.9 We believe that cross-layering is possible while keeping the layer
separation principle, and that the Internet community is incrementally moving toward cross-layering. The
simplest step in this direction is represented by layer triggers, which are predefined signals that notify events
between protocols. An example is given by the Explicit Congestion Notification (ECN) mechanism, which
notifies the TCP layer about congestion detected by intermediate routers (IP layer). In this way, the source
can be informed of congestion quickly and unambiguously, without resorting to inferring mechanisms
based on retransmit timer or repeated duplicate ACKs. Another example is given by L2 triggers,19 added
between the data link and IP layers to efficiently detect changes in the wireless links’ status. A further
step toward cross-layering is presented in by Waldvogel and Rinaldi.20 This work proposes a way to build
topology-aware overlay networks, where logical neighbors are also close in the physical network, according
to metrics coming from different levels. These include metrics typically used in routing protocols, such as
the physical distance and the bandwidth achieved by a TCP stream.

An open question is to understand if a NeSt-like approach can support cross-layering in the future Inter-
net architecture. Considering the above examples, the NeSt could easily handle the described interactions
in the following way:

� The signaling of the ECN bit might correspond to an internal event generated by the IP protocol,
previously subscribed by the TCP. Analogously, the MAC layer could generate link-related events
to notify the IP layer.

� The metrics used in the construction of the topology-aware overlay network could be associated
to NeSt abstractions, seized by the routing and transport protocols, and accessible through the
NeSt API.

The NeSt could also be employed to realize optimizations, proposed for the Internet architecture, which
are not cross-layered but sidestep the standard layer interfacing. For example, Application Level Framing
(ALF)21 aims at minimizing retransmissions due to data loss, enabling the application level to break the
data (to transmit) into suitable aggregates, and the lower level to preserve these frame boundaries when
processing the data. Thus, the data segmentation functionality is moved from the transport layer to the
application layer. Although the vertical data pipeline inside the protocol stack is not altered, the ALF
approach needs a customized implementation, which complicates the maintainability of the overall stack
and disagrees with standard interfacing. In the NeSt architecture, the same goal could be achieved keeping
the data segmentation functionality at the transport layer and allowing the application layer to instruct,
through information sharing, the transport protocol on the way to break data.

Finally, cross-layering provides an effective step toward the mobile Internet. The NeSt architecture is a
building block for context-aware computing and networking, a novel paradigm in which a system shows
the ability to discover and take advantage of contextual information. Context can be defined as the set
of environmental states and settings that determines a system’s behavior, and in which system events of
interest for the user occurs.22 While current distributed Internet applications and middleware platforms
tend to provide a transparent representation of the underlying execution environment,23 context awareness
fits well in the area of mobile computing, where applications and software components have to cope with
dynamic environments, determining changes in context. In mobile networks, applications and middleware
platforms need to be aware of context details, leaking out information such as device location, network
bandwidth, or surrounding environment, to and from adjacent layers. The NeSt approach goes toward
full awareness of networking context: if applications and network protocols are mutually aware of their
operating conditions, then they can adjust their behavior to achieve functional trade-offs and deliver the
best end-to-end performance.13

Awareness is an important requisite for extending the mobile Internet toward 4th Generation wireless
technology. The computing world is experiencing a seamless integration of mobile ad hoc networks

A Modular Cross-Layer Architecture for Ad Hoc Networks 15

with other wireless networks and the fixed Internet infrastructure. The global system presents different
characteristics, depending on both physical constraints (e.g., bandwidth, energy, processing power) and
usage patterns. The key requirement for the operation of this heterogeneous Internet is the protocol’s ability
to globally adapt to application requirements and underlying network conditions. The need for adaptive
networking becomes a challenging issue, the solution of which requires context-awareness.

Acknowledgments

This work was partially funded by the Information Society Technologies programme of the European
Commission, Future and Emerging Technologies, under the IST-2001-38113 MOBILEMAN project, and
by the Italian Ministry for Education and Scientific Research in the framework of the FIRB-VICOM project.

References

1. J.P. Macker and M.S. Corson. Mobile ad hoc networking and the IETF. ACM Mobile Computing and
Communications Review, 2(3):7–9, 1998.

2. M.S. Corson, J.P. Macker, and G.H. Cirincione. Internet-based mobile ad hoc networking. IEEE Internet
Computing, 3(4):63–70, 1999.

3. C. Szyperski. Component Software, pp. 140–141. Addison-Wesley, 1998.
4. K. Chen, S.H. Shah, and K. Nahrstedt. Cross-layer design for data accessibility in mobile ad hoc

networks. Wireless Personal Communications, 21(1):49–76, 2002.
5. R. Schollmeier, I. Gruber, and F. Niethammer. Protocol for peer-to-peer networking in mobile envi-

ronments. In Proc. 12th IEEE Int. Conf. Computer Communications and Networks, Dallas, TX, 2003.
6. W.H. Yuen, H. Lee, and T.D. Andersen. A simple and effective cross layer networking system for mobile

ad hoc networks. In Proc. IEEE PIMRC 2002, Lisbon, Portugal, 2002.
7. M. Chiang. To Layer or not to layer: balancing transport and physical layers in wireless multihop

networks. In Proc. IEEE INFOCOM 2004, Hong Kong, China, 2004.
8. U.C. Kozat, I. Koutsopoulus, and L. Tassiulas. A framework for cross-layer design of energy-efficient

communication with QoS provisioning in multi-hop wireless netwroks. In Proc. IEEE INFOCOM
2004, Hong Kong, China, 2004.

9. V. Kawadia and P.R. Kumar. A Cautionary Perspective on Cross Layer Design. In IEEE Wireless Com-
munications, 12(2):3–11, 2005.

10. M. Conti, S. Giordano, G. Maselli, and G. Turi. MobileMAN: mobile metropolitan ad hoc networks.
In Proc. 8th IFIP-TC6 Int. Conf. on Personal Wireless Communications, pp. 169–174, Venice, Italy, 2003.

11. M. Conti, G. Maselli, G. Turi, and S. Giordano. Cross-layering in mobile ad hoc network design. IEEE
Computer, Special Issue on Ad Hoc Networks, 37(2):48–51, 2004.

12. Sun Microsystems. The JAVA Reflection API. http://java.sun.com/j2se/1.4.2/docs/guide/reflection/
index.html, 2002.

13. A.J. Goldsmith and S.B. Wicker. Design challenges for energy-constrained ad hoc wireless networks.
IEEE Wireless Communication, 9(4):8–27, 2002.

14. E.M. Royer and C.-K. Toh. A review of current routing protocols for ad hoc mobile wireless networks.
IEEE Wireless Communications, 6(2):46–55, 1999.

15. I. Chlamtac, M. Conti, and J.J.-N. Liu. Mobile ad hoc networking: imperatives and challenges. Ad Hoc
Networks Journal, 1(1):13–64, 2003.

16. M. Conti, E. Gregori, and G. Turi. Towards scalable P2P computing for mobile ad hoc networks.
In Proc. First Int. Workshop on Mobile Peer-to-Peer Computing (MP2P’04), in conjunction with IEEE
PerCom 2004, Orlando, FL, 2004.

17. E. Guttman, C.E. Perkins, J. Veizades, and M. Day. Service Location Protocol, Version 2. IETF RFC
2608, June 1999.

18. R. Koodli and C.E. Perkins. Service Discovery in On-Demand Ad Hoc Networks. Internet Draft,
October 2002.

16 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

19. S. Corson. A Triggered Interface. http://www.flarion.com/products/drafts/draft-corson-triggered-
00.txt, May 2002.

20. M. Waldvogel and R. Rinaldi. Efficient topology-aware overlay network. ACM Computer Commun.
Rev., 33(1):101–106, 2003.

21. D.D. Clark and D.L. Tennenhouse. Architectural considerations for a new generation of protocols. In
Proc. ACM Symp. Communications Architectures and Protocols, pp. 200–208. ACM Press, 1990.

22. G. Chen and D. Kotz. A Survey of Context-Aware Mobile Computing Research. Technical Report
TR2000-381, Dept. of Computer Science, Dartmouth College, 2000.

23. C. Mascolo, L. Capra, and W. Emmerich. Middleware for mobile computing (a survey). In E. Gregori,
G. Anastasi, and S. Basagni, Editors, Neworking 2002 Tutorial Papers, LNCS 2497, pp. 20–58, 2002.

2
Routing Scalability

in MANETs

Jakob Eriksson,

Srikanth Krishnamurthy

Michalis Faloutsos

2.1 Defining Scalability . 18
2.2 Analytical Results on Ad Hoc Network Scalability 18

2.2.1 Link Layer . 18
2.2.2 Hierarchical Routing . 19

2.3 Flat Proactive Routing . 20
2.4 Pure Reactive Routing . 21
2.5 Geographical Routing . 22
2.6 Zone-Based Routing . 23
2.7 Single-Level Clustering . 24
2.8 Multilevel Clustering . 25
2.9 Dynamic Address Routing . 27

2.9.1 Address Allocation. 29
2.9.2 Distributed Location Server . 30

Coping with Temporary Route Failures

2.10 Conclusion . 31
References . 32

With today’s rapidly improving link-layer technology, and the widespread adoption of wireless networking,
the creation of large-scale ad hoc networks could be construed as all but inevitable. However, for routing
in such a network to be feasible, there is a pressing need for a scalable ad hoc routing protocol. Applications
for large-scale ad hoc networking include consumer-owned networks, tactical military networks, natural
disaster recovery services, and vehicular networks.

Ad hoc routing protocols used experimentally today, such as DSDV, OLSR, AODV, and DSR, only
scale reasonably well to dozens or sometimes hundreds of nodes. To support networks one or several
orders of magnitude larger, there is a need for routing protocols designed specifically to scale to large
networks. Under certain limiting assumptions, geographical location information can be used to help the
routing layer scale to support very large networks. However, this chapter focuses on the more generally
viable approach of multilevel clustering, which to some extent is what has made made the Internet scale
as well as it does.

We study various aspects of routing protocol scalability. First, we take a look at the analytical results
thus far, with regard to ad hoc network scalability. These results assess the theoretical limits for ad hoc
network scalability in terms of the capacity achievable per node in the network. To set the stage for the

17

18 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

scalable routing techniques, and to introduce the reader to the issues that impact scalability, we briefly
discuss several techniques used for ad hoc routing. These include flat proactive routing, pure reactive rout-
ing, geographic routing, and zone-based hybrid protocols. We then take a more detailed look at routing
based on clustering, in its single-level and multilevel forms. Finally, we spend the last third of the chapter
describing a recent promising scalable routing technique based on multilevel clustering, called Dynamic
Address Routing.

2.1 Defining Scalability

The scalability of a network protocol can potentially be defined in many different ways, and at several
different levels. In this chapter, we use the following high-level definition of scalability.

Scalability is the ability of a routing protocol to perform efficiently as one or more inherent parameters
of the network grow to be large in value.

Typical parameters that are studied for ad hoc networks are the number of nodes (N) and the average
rate of mobility(M) in m/s under various mobility models. Other parameters that have an impact on
scalability include node density (D), number of links (L), the frequency of connection establishment (F),
and the average number of concurrent connections (C). Measuring performance can also be done in
several ways. Typical metrics used to evaluate routing protocols are overall message or byte overhead,
amount of per-node state to be maintained, latency, and total network throughput. In this chapter, we
primarily discuss the overhead aspect. However, we also discuss the other metrics briefly in the sections
that follow.

In the remainder of this chapter, we use notation commonly employed in asymptotic analysis to de-
scribe various scalability characteristics. In particular, we use the �(X) to denote a lower asymptotic
bound, O(X) to denote an upper asymptotic bound, and �(X) to denote a simultaneous upper and
lower asymptotic bound. By asymptotic bound, we refer to the scaling behavior of the protocol with
respect to a given variable. For example, if a protocol is said to have an overhead of O(N), this means
that there exists a constant c such that the amount of overhead incurred in a network of N nodes is
at most cN, where N can take on any finite value. Except where explicitly stated, node identifiers are
taken to be 48-bit MAC addresses. It is reasonable to assume that a 48-bit identifier space will not
be exhausted within the foreseeable future (248 = 281, 474, 976, 710, 656 or about 281 trillion unique
identifiers).

2.2 Analytical Results on Ad Hoc Network Scalability

The analytical study of scalability relationships in ad hoc networks can provide us with valuable insights
into the proper design of ad hoc routing protocols and possibly related mechanisms at other layers. So
far, the study of scalability in ad hoc networks has been mostly limited to simulation. However, a few
significant analytical results have emerged fairly recently, and we introduce them in this section.

2.2.1 Link Layer

Even without considering the effects of routing overhead on the performance of ad hoc networks, there
are several concerns regarding the scalability of current wireless networking link-layer technology.

It is easily seen that the popular 802.11 link layer, when deployed with omnidirectional antennas, does
not scale with respect to node density, D. Clearly, as D grows, each node will receive only a proportional
share of the channel capacity. The upper limit on the average link layer capacity made available to each
node decreases as 1/D. A well-known solution to this problem is to reduce the transmission range of each
node, thereby reducing D. The effect achieved is called spatial reuse, where several transmissions can take
place on the same frequency band simultaneously, due to the limited spatial overlap of the transmitters
involved.

Routing Scalability in MANETs 19

However, as a direct effect of reducing the transmission range, packets in some cases must be forwarded
over an increased number of wireless links to reach their respective destinations. Increasing the number of
hops is likely to lead to longer end-to-end delays, lower packet delivery ratios, and in some cases, increased
traffic congestion.

A fundamental result in multihop ad hoc networking was shown by Gupta and Kumar.11 A simplified
argument for their result follows. In a network of nodes with omnidirectional antennas, and with a constant
node density, we can expect the average path length to be �(

√
N), where N is the number of nodes in the

network. Therefore, for every packet a node generates, it will see, on average, �(
√

N) packets originated
by other nodes. Thus, with a channel capacity of C , the capacity available for a node’s own packets will be:

O

(
C√
N

)
(2.1)

where C is the total channel capacity, that is, the maximum throughput achievable by a single link when
there are no other links competing for the channel. The unfortunate conclusion is that under certain
reasonable assumptions, purely omnidirectional ad hoc networks cannot grow beyond certain fairly re-
strictive limits. However, we would like to point out that all hope is not lost. As link layer technologies
evolve, the channel capacity C will continue to increase. And for every increase in channel capacity, the
feasible network size grows by the square of this increase, as per Equation 2.1. Since the publication of the
article by Gupta and Kumar,11 channel capacity has grown by approximately 100 times. Our conclusion
is that whatever the feasible network size was at the time of publication (1999), the upper limit today
is 10,000 times higher. Clearly, this shows that link layer capacity by itself is not the limiting factor in
multihop ad hoc networks. Note that this highly theoretical result does not take into account any routing
layer overhead, the scalability of which is the topic of this chapter.

In addition, there is the prospect of using directional antennas16 and adaptive beamforming antennas.26

These could be employed to have nodes dynamically direct a narrow transmission beam toward the neigh-
bor it wishes to communicate with, thereby greatly improving both transmission range and spatial reuse.∗

Grossglauser and Tse10 published a somewhat controversial result. The authors show that if nodes are
mobile, then each node could potentially achieve a throughput that does not decrease with the size of
the network. By relaying each packet only once, to a random one-hop neighbor, a source can achieve a
stationary uniform distribution of its packets throughout the network. Subsequently, as the destination
moves around, each of its neighbors will always have packets to deliver to it. As each packet only traverses two
hops, the throughput of the node can be expected to remain the same, regardless of the size of the network.

This result relies on strong assumptions with regard to the mobility patterns of the nodes, and even
given those assumptions, the expected delay is of the order of node mobility, in the sense that nodes have
to move considerable distances before a packet can be delivered. In our opinion, although this result holds
in theory, it is unclear as yet if it will have much practical relevance.

2.2.2 Hierarchical Routing

Hierarchical routing protocols, such as those based on multilevel clustering, consist of a number of different
components, such as clustering, routing, and location management. Here, clustering is the process by which
nearby nodes form groups, called clusters. For the purpose of routing, clusters can be treated as a single
destination, thereby reducing the amount of routing state that must be maintained at each node. Location
management is any technique by which a source can determine the current address or location of an
intended destination node, given its identifier.

When studying the scalability of such protocols, the scaling properties of each of these components must
be considered. Sucec and Marsic29,30 have studied the theoretical scalability aspects of multilevel hierarchical

∗To see how both range and spatial reuse can be improved simultaneously, consider the extreme case of directional
transmission, a point-to-point laser link.

20 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

routing in ad hoc networks. In the general scheme they analyze, nodes are organized in clusters, which
are then grouped in higher-level clusters. The number of levels is logarithmic in the network size. The
location management technique they analyze is a distributed location server, where each node stores the
current address of �(log N) other nodes, where N is the number of nodes in the network. A similar
location management scheme is discussed in Section 2.9. Specifically, their analysis focuses on the number
of routing-related control datagrams that a node needs to transmit per unit of time, on average, given a
wide variety of parameters.

Their main result is that routing overhead is polylogarithmic in the size of the network. More specifically,
the channel capacity required for routing control messages sent by each node, on average, is:

�(log3 N)

Interestingly, they show that the dominating factor in the overhead calculation is not routing updates,
but the retransmission of location information due to changes in the clustering hierarchy, called location
management handoff. Other potentially valuable results of the same article include the overhead incurred
by cluster formation and maintenance, which is computed to be

O(log N)

packet transmissions per node per second, and the overhead for location management handoff, which is
shown to be

�(log2 N)

packet transmissions per node per second, where the size of every control packet is �(log N). Note that
this study is targeted at a particular group of clustering schemes (Max-Min D-hop clustering1). These are
based on finding the node with the maximum node identifier in a D-hop neighborhood, and assigning that
node to be the cluster head. Other types of clustering, such as that described in Section 2.9, could poten-
tially have different scaling behaviors. It is also geared toward a scalable hierarchical location management
scheme similar to that used by Eriksson et al.7,8 and described in Section 2.9. Again, other types of location
management will exhibit different scaling behavior. Nevertheless, these results offer valuable insights into
the scalability of hierarchical, multilevel clustering ad hoc routing protocols. To our knowledge,30 is the first
paper with comprehensive theoretical results on the overhead of multilevel hierarchical routing protocols.

2.3 Flat Proactive Routing

Flat proactive routing scales very well with respect to the frequency of connection establishment (F)
and the number of concurrent connections (C). However, the number of control packet transmissions
per node is �(N).

In proactive routing, the routing protocol periodically disseminates routing information throughout the
network. With flat proactive routing, every node keeps routing information for every other node; there is
no abstraction for nodes far away. This strategy generally leads to close to optimal paths, but this is achieved
at the cost of lacking scalability. The flat proactive routing protocols proposed so far can be roughly divided
into two subcategories: (1) link-state (LS) and (2) distributed Bellman-Ford (DBF) algorithms.

In LS algorithms such as Fisheye State Routing,22 Global State Routing,4 and Optimized Link-State
Routing,6 each node has complete, although not always accurate, knowledge of the state of every link in
the network. Using this information, it can calculate the entire path to the destination on its own accord.
This has many advantages. In particular, recovery from link failure is typically very quick in LS protocols.
With large N or D, the number of links in the network, and thus the routing table size, may be prohibitive.
Fisheye State Routing (FSR)22 tries to reduce the overall overhead by limiting the rate of link-state updates
far away from the source of the update. The idea in FSR is that link changes far away generally have a small
effect on local routing decisions.

In DBF algorithms, such as Destination Sequenced Distance Vector routing24 and Wireless Routing
Protocol,19 each node has much less information about the network. For every destination, a node maintains

Routing Scalability in MANETs 21

a routing table consisting of the distance to the destination, and the next hop neighbor on the shortest
route toward the destination. Typically, after a link failure, there is an interval of time where faulty routes
may exist, until the protocol has settled on a new route.

Common for all of these protocols is that the necessary amount of state kept at each node scales at
least linearly with N. In a mobile network, this state must be updated frequently, resulting in protocol
overhead on the order of O(N).30 For this reason, flat proactive routing protocols are only feasible for
small networks.

2.4 Pure Reactive Routing

Reactive routing is scalable with respect to most parameters, as long as the frequency of connection
establishment (F), and the average number of concurrent connections (C), remain low. Control
packet transmissions per node grow as O(F + C), which is �(1), but O(N2).

In an effort to address the problem of maintaining state for all nodes in the network, reactive protocols
such as Ad hoc On-demand Distance Vector routing,25 Dynamic Source Routing,13 Associativity Based
Routing,31 and Labeled Distance Routing9 defer the expenditure of routing overhead until the time of
connection establishment. With this technique, nodes keep completely quiet as long as there is no data to
transmit. If a connection is to be established, the source node S needs to flood the network with a route
request, as shown in Figure 2.1. When the intended destination D receives the route request, it responds
to the source with a route response, using one of the routes discovered during the route request phase. In
networks where a large majority of nodes have nothing to send, and where connections involve more than
just a few packets, this strategy pays off in terms of reducing the overall routing overhead.

Reactive routing protocols have seen much popularity in ad hoc networks research. This is due to several
good reasons, including the battery savings achieved by not transmitting anything during idle periods.
Other important reasons are the good performance and the straightforward design principles of AODV
and DSR, the two most well-known reactive ad hoc routing protocols.

However, by deferring the routing overhead, these protocols lose many potential aggregation benefits
made possible by proactively distributing routing information. In contrast with flat proactive routing,
every connection establishment sets off a reactive route request with an asymptotic cost of O(N), as a
nonnegligible constant fraction of all nodes will rebroadcast the request packet. In addition, in a mobile
network, established connections will fail regularly due to link breakages caused by node motion, thereby
initiating additional route requests. This gives an overhead complexity of �(F +C) for the number of route
requests per second. Putting the two terms together, the expected number of control packet transmissions
is O(N(F +C)). With N nodes to share the burden, the average per-node cost is O(F +C). Note that if a

Route
request

Route
reply

S

D D

S

FIGURE 2.1 Reactive routing. A route request is flooded throughout the network. Once the request reaches the
intended destination, a route reply is sent back along a discovered path.

22 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

constant fraction of the nodes can be expected to start or maintain a connection every second, this reverts
back to the O(N) per-node cost of flat proactive routing. In the worst case, where a constant fraction of
the nodes can be expected to set up k connections, and k grows linearly with N, the overhead incurred
will be O(N2).

A performance optimization used aggressively in DSR13 is route caching, where intermediate nodes are
allowed to send a route response, if they have recently observed a route to the desired destination. This can
result in greatly improved performance but there is also a high risk of route poisoning, where intermediate
nodes unwittingly return routes that are no longer accurate. In general, reactive routing has been shown
through simulation to scale better than flat proactive routing in most considered scenarios.

As we see below, proactive routing has an advantage that a purely reactive protocol lacks: the ability to
cluster nodes and aggregate routes. As we see in the following sections, clustering and address aggregation
have the potential to drastically reduce the protocol overhead of a proactive routing protocol, as network
size increases. The relationship between the overhead of reactive and proactive routing under different
traffic scenarios is discussed in more detail by Eriksson et al.8

2.5 Geographical Routing

The control overhead of geographical routing is typically O(1), not counting location manage-
ment. However, geographical routing relies heavily on two assumptions: (1) that each node knows
its position, and (2) that the geographical distance between nodes corresponds well to the dis-
tance between these nodes in the network topology. In many situations, these assumptions are
unacceptable.

Geographical routing protocols make use of the geographical location of a node to make routing
decisions. Such location information would generally be acquired either from GPS satellites, or from
location interpolation given the positions of neighboring nodes.

In addition to knowing its own geographical location, a node also needs to know the locations of its
neighbors, as well as the location of its intended destination. Dream (Distance Routing Effect Algorithm
for Mobility)2 and Grid Location Service17 are mechanisms for finding out the location of any given node
in the network. In Dream, nodes periodically flood their location information throughout the network.
However, as the flood travels away from the source, the speed with which updates are propagated decreases,
thereby drastically reducing the overall overhead of the protocol. This is similar to the technique used in
Fisheye routing22 to reduce the cost of disseminating link state updates. In GLS, the location for a given
node is stored at an anchor node. An anchor node is defined as the node positioned closest to a geographic
location that is determined by hashing the node identifier. Every node is responsible for keeping its anchor
node up-to-date on its current location. This method of distributing responsibility for storing location
information is highly scalable and efficient, given that some characteristics of the network are known, such
as the extent of the network in geographical terms.

Geographic routing protocols include Greedy Perimeter State-less Routing (GPSR)14 and Location
Aided Routing (LAR).15 GPSR greedily routes packets to the one-hop neighbor that is closest to the
destination. Should an obstacle appear between source and destination, GPSR uses a planarized version
of the network graph and follows the “right hand rule” to route around the obstacle. The technique is
illustrated in Figure 2.2, where a packet destined for node D is originated at S. When the large obstacle
in the middle of the network is encountered, the right-hand rule is triggered, routing the packet around
it. The use of the right-hand rule for routing around obstacles can result in paths of length O(N), making
greedy routing a risky proposition unless the characteristics of the topology are known in advance. LAR
uses the geographic location of the destination to guide a reactive route lookup. By limiting the route
request flood to neighbors in the approximate direction of the destination, the cost of route setup is
reduced.

Any geographical routing protocol relies on the assumption that the geographical distance between two
nodes corresponds well with their distance in the network topology. In scenarios where this is not the

Routing Scalability in MANETs 23

ob
sta

cle

D

S

FIGURE 2.2 Geographical routing. The next hop is selected on greedily, until there is no neighbor that is closer to
the destination than the current node. When this happens, routing switches to the right-hand rule until the obstacle
has been successfully routed around.

case, such as sparse or heterogeneous networks, or networks with directional or wired links, geographical
routing is unlikely to achieve acceptable performance.

2.6 Zone-Based Routing

Zone-based routing combines the merits of flat proactive and pure reactive routing. However, while
these hybrid protocols are more efficient than the component protocols they are made up out of, the
asymptotic scalability of zone-based routing is the same as that of other flat routing protocols.

In the Zone Routing Protocol (ZRP)12 and Sharp Hybrid Adaptive Routing Protocol (SHARP),28 the
merits of proactive and reactive routing are combined to form two hybrid proactive–reactive protocols.
Both protocols follow a similar architecture. Around every node, a zone of d hops is maintained in which
proactive routing is performed. For all destinations outside the zone, reactive route requests are used to
establish a route. As soon as a route request reaches a node in the zone of the intended destination, this
node replies with a route response.

In ZRP, the size of the zones can be varied, depending on the mobility and traffic characteristics of the
network.20 Thanks to the proactive routing information available within the zone, the damaging effect of
the flood is limited, as route requests can be efficiently routed to the edges of the zone, using a technique
called bordercasting. Several other techniques are introduced to minimize the duplication of effort that
could otherwise happen due to zone overlap.

While ZRP introduces its own routing components, such as bordercasting, SHARP is a straightforward
combination of proactive and reactive routing (Figure 2.3). In SHARP, every node individually adapts
the size of its zone, that is, the distance (in hops) up to which its proactive routing updates should
be forwarded. Reactive routing is done according to whatever reactive protocol is used, with the mod-
ification that intermediate nodes that have proactive routing information for the desired destination
node are allowed to reply to the route request. SHARP trades off the constant overhead of proactive
routing against the high incremental cost of reactive routing by adaptively tuning the zone size of a
node to correspond to the popularity or usage profile of the node. In addition to improving perfor-
mance for popular nodes, the same trade-off is used to achieve desired packet delivery ratio and delay
characteristics.

However, if properly done, route caching in reactive routing protocols can likely achieve a constant-term
savings in terms of protocol overhead. Moreover, neither route caching nor the hybrid approaches taken
in ZRP and SHARP can efficiently handle the case where there are frequent connection establishments,
unless traffic is concentrated to a small number of nodes. For SHARP to achieve a successful trade-off

24 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

3-hop
zone

Route
request

Route
replies

3-hop
zone

DD

S S

FIGURE 2.3 Hybrid proactive–reactive routing with SHARP. Route requests are flooded until they reach a node
within the destination’s proactive zone.

between flat proactive and reactive routing, it is necessary for a few nodes to receive the majority of the
network traffic.

Compared to flat proactive routing, or pure reactive routing, this middle ground between reactive and
proactive routing can be expected to achieve lower overhead and delay under many traffic scenarios.
However, although hybrid methods can be expected to reduce routing overhead, they only do so by a
constant factor.

2.7 Single-Level Clustering

Single-level clustering improves scalability with respect to the network size (N) if the size of each
cluster can be set to

√
(N). In this case, the control packet overhead is �(

√
N). With constant

size clusters, overhead remains at �(N). Certain node mobility patterns (M) can have a larger
detrimental effect on the performance of clustering protocols than they have on flat protocols.

Several protocols propose to use clustering to improve routing protocol scalability. Clustering is a process
by which neighboring nodes form connected subsets, with one node elected as the cluster head. Depending
on the clustering technique used, clusters can be of radius of one or more hops from the cluster head. The
cluster heads may have responsibilities in addition to that of a regular node, such as inter-cluster routing
and intra-cluster coordination.

In hierarchical protocols, such as LANMAR21 and CGSR,5 routes are aggregated by cluster. Inside
a cluster, every node has complete routing information for every other node in the cluster. Externally,
however, only a route to the cluster as a whole is published. Packets are first routed toward the cluster
head of the destination. Once the cluster head, or simply any node within the destination cluster, has
been reached, the packet is routed directly toward its final destination within the cluster. Through this
technique, a smaller amount of routing state is necessary on each node, and intra-cluster changes in the
topology do not affect external routes. Note that all routing schemes that use clustering for routing will
incur a cost in terms of increased path length. However, this cost is usually negligible compared to the
savings achieved by reducing the amount of routing overhead incurred.

In contrast to the hybrid schemes mentioned earlier, which rely on flooding, hierarchical schemes also
need to keep track of which cluster a node belongs to. This is sometimes referred to as location management.
Depending on the assumptions used, location management can be a crucial factor in the performance of
a clustering-based routing protocol.

In LANMAR (Figure 2.4), it is assumed that most nodes will remain in the same cluster throughout their
lifetimes, and group membership is determined at network initialization. The authors use a group mobility
model, which applies mostly to military scenarios. LANMAR builds on ideas from Landmark Routing32

Routing Scalability in MANETs 25

FIGURE 2.4 Mobile groups and stray nodes in LANMAR. Nodes move together in groups, while stray nodes are
handled with separate distance vector entries.

and Fisheye State Routing (FSR).22 Nodes within a cluster exchange link-state information using FSR.
In addition to this link-state information, each node keeps a distance vector table for a specific node in
each cluster. This node is referred to as the Landmark. Any stray nodes, that is, nodes that are not directly
connected to their home cluster, are handled as special cases: a separate distance vector routing entry is
kept by every node on the shortest path between the Landmark node and the stray node. Assuming that
only a constant number of nodes stray from their home clusters, the asymptotic control packet overhead
is �(

√
N).

In CGSR,5 one-hop clustering is performed, and is mainly used for transmission scheduling. A technique
is also proposed in which each node globally advertises its cluster membership, and routing entries are
kept only for cluster heads. Because the cluster radius is limited to a single hop, a cluster will contain only
a constant number of nodes, leading to, at best, a constant improvement in the overhead incurred.

Both of these protocols rely on nodes staying within their original clusters throughout their lifetimes, or
overhead will grow quickly. More flexible and scalable location management methods have been developed,
and these are discussed in the upcoming sections.

As with the hybrid scheme above, these single-level clustering protocols only reduce overhead to at
best O(

√
N), depending on the cluster size. In the next section, we discuss how to extend the idea of

cluster-based routing to reduce the size of the routing tables from O(
√

N) to O(log N).

2.8 Multilevel Clustering

Multilevel clustering protocols scale well with network size (N), frequency of connection establishment
(F), and the number of concurrent connections (C). The number of control packet transmissions per
node is �(log2 N).

For large networks, the address size in bits is �(log2 N), which in practice could easily grow beyond
the limit of feasibility.

The ability to achieve true routing scalability with respect to network size (N), under most common
scenarios, has so far only been demonstrated through the use of multilevel clustering. In these protocols,

26 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

1

0

6

3

9

2

1

0
5

4

8

7

4

0

FIGURE 2.5 An example multilevel cluster hierarchy. At the left, individual nodes with their respective node IDs,
partial view. In the middle, level-1 clusters forming level-2 clusters; and to the right, a level-2 cluster view of the entire
network.

physical nodes cluster first into level-1 clusters. Then, up to d level-1 clusters are further clustered into
level-2 clusters, etc. (Figure 2.5). In general, with a clustering degree of d , the size of the routing table will
be on the order of O(d logd N).

In addition to reducing the size of the routing table, multilevel clustering will also make the network
appear much less dynamic, as link-state changes within a given cluster generally are not propagated to
nodes that are not part of the cluster. This will reduce the overall control packet overhead under node
mobility.

Examples of multilevel clustering are Hierarchical State Routing (HSR)23 and MMWN.27 These are
link-state protocols, and they use the clustering abstraction to define virtual links between clusters. Instead
of keeping track of all links in the network, a node now only needs to maintain entries for the virtual links
going to or from a cluster in which the node is a member, a much smaller number.

Initially, one-hop physical-level clusters are formed, as in the previous section, by electing a cluster
head and having nodes in the k-hop neighborhood of that node join the cluster head to form a cluster. To
build the next higher clustering level, the cluster heads of neighboring clusters elect a higher-level cluster
head from among themselves. Once the cluster hierarchy is formed, each node creates its own hierarchical
identifier (HID) by concatenating the identifiers of all the clusterheads from the root of the hierarchy to
the node in question. In theory, the size of a node identifier is �(log N) bits, which results in an asymptotic
HID size of �(log2 N). However, in practice, node identifiers are typically 48-bit MAC addresses.∗

Data packet headers contain their destination HID. Routing is performed one level at a time: first, a
packet is routed directly to the lowest-level cluster head in the HID which exists in the current node’s
routing table. Once this cluster head has been reached, the routing proceeds to the next lower level, as
indicated in the HID. Eventually, the intended destination is reached, through the recursive application of
this procedure.

Another example is Landmark routing, which is similar to HSR and MMWN but uses a Distributed
Bellman-Ford-like routing scheme and does not concentrate traffic to cluster heads to the same extent.
First described by Tsuchiya,32 Landmark routing establishes a set of self-elected Landmark nodes in
multiple levels. The main difference in Landmark routing is how the hierarchy is formed. Here, each
Landmark periodically broadcasts an advertisement, announcing its presence. Depending on the level k

∗In addition to the obvious practical reasons for using MAC addresses, it is worth noting that if a node identifier
is to be constant throughout the lifetime of a node, it must be unique not only in the current network, but in every
network it could conceivably be part of. The only way to feasibly assign identifiers to ensure this is to assign every node
a globally unique ID, which is the sole purpose of the current 48-bit MAC addresses used by network interface cards.

Routing Scalability in MANETs 27

of the Landmark, the advertisement will travel rk hops. A new node initially assigns itself level 0 and sends
an advertisement. If it can hear the advertisement of a level-1 Landmark, it can remain at level 0 and select
that Landmark as its parent. If it does not, it cooperates with its level-0 neighbors to elect a new level-1
node. This process is repeated until a small subset of the nodes in the network are level-d Landmarks,
where rd is larger than the diameter of the network. At this point, the Landmark hierarchy is complete.

An interesting difference between Landmark routing other multilevel clustering schemes is that several
Landmarks can cover a single node, giving the node several valid addresses. Landmark routing was the
basis for LANMAR mentioned in the previous section, and was later extended in L+ routing3 and Safari
routing.18

Safari routing18 is similar in many respects to Landmark routing. Landmark nodes, here called drums,
self-elect and form a multilevel Landmark hierarchy. One major difference is that the Safari hierarchy does
not extend all the way to the physical (node) level. Instead, it extends down to the level of a fundamental
cell, consisting of approximately 10 to 100 nodes. Inside a fundamental cell, routing is done by Dynamic
Source Routing (DSR).13 Note that this is the opposite of Zone-based routing, where the local scope is
handled by proactive routing, and distant nodes are served through reactive route requests. In Safari, the
local scope is handled by DSR, and proactive routing is used for computing routes to more distant nodes,
to avoid the high cost of long-range reactive route requests. If the size of the fundamental cell is kept
constant, the size of the routing table in Safari is O(log N).

Routing based on multilevel clustering, just like single-level clustering and geographical routing, needs
a mechanism through which a node can acquire the current location (HID, or Landmark address) of its in-
tended destination. This has been addressed in a variety of ways, including assumptions of group mobility21

(which makes the problem go away by assuming that nodes stay with their original clusters), flooding,5

Mobile IP-style home agents,23 and distributed location servers.3,7,8,18,27,30 The distributed location server
is the most versatile and scalable of these options. Here, the responsibility for storing the current location of
a given node is distributed across the network. MMWN uses a combination of a hierarchical organization
of location servers together with paging, essentially a restricted flood, to find the current location of a node.
A different method is used by Chen and Morris,3 Mohammed et al.,18 and Susec and Marsic,30 similar to
the anchor node idea in GLS.17 To find the anchor node of a node i , a function hash(I Di) is computed. For
every level, the cluster with the identifier most similar to hash(I Di) is selected as the cluster to which the
anchor node should belong, until eventually a level-0 cluster (a single node) has been reached. This is the
anchor node that is responsible for storing the current location of node i . A similar hash(I Di) is computed,
and the node with the routing address most similar to hash(I Di) is the anchor node for node i .7,8 This is
discussed in more detail in Section 2.9. In several of these location management schemes, multiple anchor
nodes are selected, such that there are many anchor nodes close to the node and fewer anchor nodes far
away from it. This improves the scalability of the distributed location server, as local changes and requests
only have an effect on local network resources.

Multilevel clustering protocols that depend on hierarchical identifiers (including Landmark addresses)
are highly sensitive to changes in the clustering hierarchy: whenever a cluster head gets disconnected or
otherwise leaves the cluster, a new cluster head must be elected, and all the nodes within the affected
cluster need to update their hierarchical identifiers. In addition, the election of a new cluster head will
change the anchor node relationships, causing a necessity for a location-handoff mechanism. This has been
identified30 as the dominating component of the total routing overhead of multilevel hierarchical routing
protocols. This takes the total number of control packet transmissions per node in routing protocols based
on multilevel clustering to �(log2 N), where every packet is of length �(log N) bits.

2.9 Dynamic Address Routing

Dynamic address routing is similar to routing based on multilevel clustering but the address size is
reduced to �(log N) from the �(log2 N) address size required with the previous multilevel clustering
protocols. Dynamic address routing is also less sensitive to node movement than previous multilevel
clustering approaches, because its routing addresses are not built up from individual node identifiers.

28 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

TABLE 2.1 Routing Table and Address Sizes for a 1024-Node
Network Varying d .

Routing Routing Hierarchical
d Table Size Address Size ID Size

2 10 10 480
4 15 10 240

16 45 12 144
64 126 12 96

1024 1023 10 48

Note: Address and ID sizes in bits. Changing routing address size
is due to rounding to the nearest log2 d bit word.

Dynamic address routing, described by Eriksson et al.,7,8 takes the idea of multilevel clustering one step
further. Whereas previous multilevel clustering schemes use cluster identifiers to form addresses (HIDs),
dynamic address routing dynamically assigns a considerably shorter index to each cluster. The routing
address of a node is formed by concatenating the indices of the cluster that the node belongs to at every
level. In more detail, with a clustering degree of d , each of the 1 . . . d clusters belonging to the same
higher-level cluster gets an index in the range 0 . . . d − 1. The more lengthy cluster identifiers are used
only to ensure that there is a single, unique cluster per index.

As shown in Table 2.1, the difference in size between hierarchical identifiers and routing addresses is
dramatic. With a low clustering degree d , the size of the hierarchical identifiers can be quite daunting. In
contrast, the routing addresses used in dynamic address routing are roughly constant with respect to d .

Moreover, the size of the routing table in a multilevel clustering hierarchy is equal to

(d − 1) logd N

There are logd levels and d − 1 routing entries per level. As shown in Table 2.1, selecting d = 2 minimizes
the size of the routing table. Clearly, d = 2 is not feasible with previous multilevel clustering protocols,
as the size of the hierarchical identifier is unacceptably large. Instead, these protocols are forced to use
higher clustering degrees. Regardless of the choice of d , the address size in a regular multilevel clustering
protocol is likely to exceed that of a dynamic address routing protocol by at least an order of magnitude,
together with a marked increase in routing table size. In the remainder of this section, we assume d = 2
for dynamic address routing because this choice of d minimizes the size of the routing table.

Conveniently, with d = 2 the index can be represented using a single bit. Figure 2.6 shows an example
address allocation for a six-node network. Because log2 6 < 3, 3 bits of address is sufficient for this small
network. The most significant bit of the address selects the top-level cluster.

100

101

011

000 001

010
10x

00x

0xx 1xx

01x

Level 0Level 1Level 2

FIGURE 2.6 A network topology and three-level clustering. Nodes have 3-bit routing addresses, with each bit selecting
one out of two possible clusters at a given level in the hierarchy.

Routing Scalability in MANETs 29

0xx

00x 01x

1xx

10x 11x

000 001 110 111

Level 0

Level 1

Level 2

010 011 100 101

xxx

FIGURE 2.7 The address tree of a 3-bit binary address space. Leaves represent actual addresses, whereas inner
nodes represent groups of addresses with a common prefix. Dashed lines show physical connectivity between nodes,
corresponding to Figure 2.6.

Because d = 2, we can also think of the cluster hierarchy as a binary tree, as shown in Figure 2.7. The
root of the tree represents the entire network. The leaves of the tree represent nodes and the internal nodes
of the tree represent clusters. Each node (leaf) has one routing entry for every level of the tree. This routing
entry indicates the path to the other subtree (cluster) at any given level. For example, the node with address
[000] would have routing entries for subtrees [001], [01x], and [1xx]. If it wanted to route a packet to
the node with address [100], it would look up the routing entry for the subtree [1xx]. After an additional
routing step, the packet reaches the node with address [101]. This node has routing entries for subtrees
[100], [11x], and [0xx], and is able to forward the packet to its final destination.

One definition of a cluster in the routing context is that the nodes in a cluster form a connected subgraph
in the network topology. Because address prefixes uniquely identify clusters in dynamic address routing,
nodes with a common address prefix need to have the same property, which is called the prefix subgraph
constraint. Ensuring that this constraint is satisfied is the primary objective of dynamic address allocation.
Next, we describe how this is handled in DART, the Dynamic Address Routing Protocol described by
Eriksson et al.8

2.9.1 Address Allocation

Dynamic address allocation has many things in common with clustering in multilevel hierarchical net-
works. However, because dynamic address routing does not rely on concatenating unique identifiers to
form its routing address, a major concern is to ensure the uniqueness of the addresses allocated.

When a node joins an existing network, it uses the periodic routing updates of its neighbors to identify
and select an unoccupied and legitimate address. In more detail, every null entry in a neighbor’s routing
update indicates an empty subtree. This subtree represents a block of free and valid routing addresses. By
definition, the prefix constraint is satisfied if the two subtrees under a given parent are connected, and any
empty subtree in a neighbor’s routing update by definition shares a parent with the neighbor’s subtree at
the same level.

Let us see an example of address allocation. Figure 2.8 illustrates the address allocation procedure for
a 3-bit address space. Node A starts out alone with address [000]. When node B joins the network, it
observes that A has a null routing entry corresponding to the subtree [1xx] and picks the address [100].
Similarly, when C joins the network by connecting to B, C picks the address [110]. Finally, when D joins
via A, A’s [1xx] routing entry is now occupied. However, the entry corresponding to sibling [01x] is still
empty, and so D takes the address [010].

To handle cluster merging and splitting, each cluster, or subtree in this case, is loosely associated with
the lowest of all the identifiers of the nodes that belong to that subtree. This is called the subtree identifier.
With node mobility, subtree identifiers may need to be updated, but these updates are piggybacked on
the periodic routing updates at little extra cost. When the node with the lowest identifier within any
subtree leaves the subtree, the identifier of that subtree must be recomputed. However, this is generally a
nondisruptive process because the route updates from the new lowest identifier node in the subtree will

30 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

FIGURE 2.8 Address tree for a small network topology. The numbers 1, 2 and 3 show the order in which nodes were
added to the network.

propagate and eventually reach all the concerned nodes without forcing any address changes in the process.
Note that because of this, the routing address of a node does not depend directly on the identifiers of a set
of cluster heads. Therefore, if the node with the lowest identifier gets disconnected, we can expect to see a
smaller effect on the cluster hierarchy.

Due to node mobility, clusters will sometimes be partitioned into two or more parts. When this hap-
pens, the prefix subgraph constraint does not hold, and the clustering is thus invalid. The solution is to
have one of the two partitions acquire new addresses as soon as the partitioning event is detected. The
remaining problem is to detect such an event. As described above, subtree identifiers are assigned to be the
minimum identifier in the cluster. If the cluster partitions, one of the two partitions will quickly compute
a new identifier, as routing updates propagate through the cluster. However, a mere change of the cluster
identifier is not enough to accurately diagnose a partitioning event. It could simply be that the node
with the lowest identifier went out of range or ran out of battery power. Instead, all route advertisements
are made to contain the identifier of the destination subtree. The idea is that in the event that a node
receives two routing updates for the same subtree, but with different identifiers, only the update with the
lower identifier prevails and gets forwarded further. In addition, when a node perceives a route to its own
address subtree, but with a lower identifier, it must acquire a new address. This solution also solves the
problem of network merging: if two networks merge, this event will be detected as one or more cluster
partitionings, causing some or all of the nodes in one of the two networks to immediately acquire new,
valid addresses.

2.9.2 Distributed Location Server

As in several other types of routing protocols, dynamic address routing protocols need a distributed location
server. The main problem in designing any distributed location server is to find an effective method to
select the anchor node of any given identifier. The solution proposed for dynamic address routing protocols
is similar to that used in multilevel clustering protocols. However, the methods do not depend on any node
identifier, except that of the destination node. A global and a priori known function hash(I Di), which
takes a node identifier I Di and returns a bit string with the same length as the routing address, is defined.
Second, the hash(I Di) for the desired destination node i is calculated. If there exists a node that occupies
this address, then that node is the anchor node. If there is no node with that address, then the node with
the most similar address∗ is the anchor node.

∗The metric used here for similarity between addresses can be described as the integer value of the XOR result of
the two addresses.

Routing Scalability in MANETs 31

For example, using Figure 2.7 for reference, consider a node with identifier I D1 that has a current
routing address of [010]. This node will periodically send an updated entry to the lookup table, namely
〈I D1, 010〉. To figure out where to send the entry, the node uses the hash function to calculate an address:
hash(I D1). If the return value of the hash function is [100], the packet will simply be routed to the node
with that address. However, if the returned bit string was instead [111], the packet could not be routed to
the node with address [111] because there is no such node. In such a situation, the packet gets routed to
the node with the most similar address to [111], which in this case would be [101].

To improve the scalability of the distributed location server, each lookup entry is stored in several
locations, at increasing distances from the destination node. By starting with a small, local lookup and
gradually going to further away locations, nodes can avoid sending lookup requests across long distances
to find a node that is nearby. Similarly, when a node makes a small address change, it need only contact
nearby location servers with the location update, as the records at distant location servers will still be
sufficiently accurate to guide the packets to the correct neighborhood, where more recent information is
readily available.

2.9.2.1 Coping with Temporary Route Failures

On occasion, due to link or node failure, a node will not have a completely accurate routing table. This
could potentially lead to lookup packets, both updates and requests, terminating at the wrong node. The
end result of this is that requests cannot be promptly served. In an effort to reduce the effect of such
intermittent errors, a node can periodically check the lookup entries it stores to see if a route to a more
suitable host has been found. If this should be the case, the entry is forwarded in the direction of this more
suitable host.

Requests are handled in a similar manner: if the request cannot be responded to with an address, it is
kept in a buffer awaiting either the arrival of the requested information, or the appearance of a route to a
node that more closely matches the has h of the identifier the request was in regard to. This way, even if
a request packet arrives at the anchor node before the update has the anchor, the request will be buffered
and served as soon as the update information is available.

Dynamic address routing has size O(log N) routing tables and an O(log N) address size. The �(log2 N)
result for location management handoff shown by Susec and Morsic has not yet been shown for dynamic
address routing. However, there are considerable structural similarities between the distributed location
server described in that article and the one described for dynamic address routing. Moreover, dynamic
address routing has a decreased reliance on node identifiers for clustering and addressing. These observa-
tions lead us to conjecture that the lower bound on per-node channel utilization for control packets is, at
most, �(log3 N).

2.10 Conclusion

This chapter discussed a variety of aspects of ad hoc routing scalability. We deliberated the various routing
protocols that have been proposed over the past decade in an effort to understand how these scale with
respect to various parameters. To achieve true scalability, it is the belief of the authors that multilevel
clustering is the only viable option. While geographic routing is an attractive alternative for certain niche
applications, multilevel clustering applies well to all scenarios, except for those with extremely high mobility.

From a scalability perspective, dynamic address routing represents the current state-of-the-art in scalable
ad hoc routing. The use of dynamic address routing, a variation on multilevel clustering, results in addresses
of length �(log N). This is considerably shorter than the hierarchical identifiers used in previous multilevel
clustering protocols, which are of size �(log2 N). Dynamic address routing achieves a similar average
routing table size of �(log N) and offers a reduced dependence on node identifiers for ensuring the
stability of clustering and location management.

In summary, scalable ad hoc routing remains a focal point of interest in terms of making the deployment
of large-scale ad hoc networks a reality.

32 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

References

1. A.D. Amis, R. Prakash, D. Huynh, and T. Vuong. Max-min d-cluster formation in wireless ad hoc
networks. In INFOCOM (1), pp. 32–41, 2000.

2. S. Basagni, I. Chlamtac, V.R. Syrotiuk, and B.A. Woodward. A distance routing effect algorithm for
mobility (DREAM). In ACM/IEEE MOBICOM, 1998.

3. B. Chen and R. Morris. L+: scalable Landmark routing and address lookup for multi-hop wireless
networks, Tech Report, Massachusetts Institute of Technology, 2002.

4. T. Chen and M. Gerla. Global state routing: a new routing scheme for ad-hoc wireless networks. In
Proc. of IEEE ICC, 1998.

5. C. Chiang, H. Wu, W. Liu, and M. Gerla. Routing in clustered multihop, mobile wireless networks. In
The IEEE Singapore Int. Conf. on Networks, 1997.

6. T. Clausen and P. Jaquet. Rfc 3626: Optimized link state routing, 2003.
7. J. Eriksson, M. Faloutsos, and S. Krishnamurthy. Peernet: pushing peer-2-peer down the stack. In

IPTPS: International Workshop on Peer-to-Peer Systems, 2003.
8. J. Eriksson, M. Faloutsos, and S. Krishnamurthy. Scalable ad hoc routing: the case for dynamic ad-

dressing. In IEEE INFOCOM, 2004.
9. J.J. Garcia-Luna-Aceves, M. Mosko, and C.E. Perkins. A new approach to on-demand loop-free routing

in ad hoc networks. In Proc. 22nd Annu. Symp. on Principles of Distributed Computing, pp. 53–62. ACM
Press, 2003.

10. M. Grossglauser and D.N.C. Tse. Mobility increases the capacity of ad-hoc wireless networks. In
INFOCOM, pp. 1360–1369, 2001.

11. P. Gupta and P. Kumar. Capacity of wireless networks, Tech Report, University of Illinois, Urbana-
Champaign, 1999.

12. Z. Haas. A new routing protocol for the reconfigurable wireless networks, IEEE International Confer-
ence on Universal Personal Communications (ICUPC), 1997.

13. D.B. Johnson and D.A. Maltz. Dynamic source routing in ad hoc wireless networks. In Mobile Com-
puting, Vol. 353. Kluwer Academic Publishers, 1996.

14. Brad Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wireless networks. In Mobile
Computing and Networking, pages 243–254, 2000.

15. Y.-B. Ko and N.H. Vaidya. Location-aided routing (LAR) in mobile ad hoc networks. In ACM/IEEE
MOBICOM, 1998.

16. Y.-B. Ko, V. Shankarkumar, and N.H. Vaidya. Medium access control protocols using directional
antennas in ad hoc networks. In INFOCOM (1), pp. 13–21, 2000.

17. J. Li, J. Jannotti, D. De Couto, D. Karger, and R. Morris. A scalable location service for geographic
ad-hoc routing. In Proc. 6th ACM Int. Conf. on Mobile Computing and Networking (MOBICOM ’00),
pp. 120–130, August 2000.

18. A.K. Mohammed, R.H. Johnson Reidi, David B. Johnson, P. Druschel, and R. Baraniuk. Analysis of
safari: an architecture for scalable ad hoc networking and services. Technical Report TREE 0304, Rice
University, 2004.

19. S. Murthy and J.J. Garcia-Luna-Aceves. An efficient routing protocol for wireless networks. Mob. Netw.
Appl., 1(2):183–197, 1996.

20. M.R. Pearlman and Z.J. Haas. Determining the optimal configuration for the zone routing protocol.
IEEE J. Selected Areas in Communication, 17(8), August 1999.

21. G. Pei, M. Gerla, and X. Hong. LANMAR: landmark routing for large-scale wireless ad hoc networks
with group mobility. In ACM MobiHOC’00, 2000.

22. G. Pei, M. Gerla, and T.-W. Chen. Fisheye state routing: a routing scheme for ad hoc wireless networks.
In ICC (1), pp. 70–74, 2000.

23. G. Pei, M. Gerla, X. Hong, and C.-C. Chiang. A wireless hierarchical routing protocol with group
mobility. In WCNC: IEEE Wireless Communications and Networking Conference, 1999.

Routing Scalability in MANETs 33

24. C. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-vector routing (DSDV)
for mobile computers. In ACM SIGCOMM’94, 1994.

25. C.E. Perkins and E.M. Royer. Ad-hoc on-demand distance vector routing. In Proc. Second IEEE Work-
shop on Mobile Computer Systems and Applications, pp. 90. IEEE Computer Society, 1999.

26. R. Ramanathan. On the performance of ad hoc networks with beamforming antennas. In Proc. 2nd
ACM Int. Symp. on Mobile Ad Hoc Networking and Computing, pp. 95–105. ACM Press, 2001.

27. R. Ramanathan and M. Steenstrup. Hierarchically-organized, multihop mobile wireless networks for
quality-of-service support. Mobile Networks and Applications, 3(1):101–119, 1998.

28. V. Ramasubramanian, Z.J. Haas, and E.G.ün SIRER. SHARP: a hybrid adaptive routing protocol
for mobile ad hoc networks. In Proc. 4th ACM Int. Symp. on Mobile Ad Hoc Networking and Computing,
pp. 303–314. ACM Press, 2003.

29. J. Sucec and I. Marsic. Clustering overhead for hierarchical routing in mobile ad hoc networks. In
IEEE INFOCOM 2002, New York, June 23–27, 2002.

30. J. Sucec and I. Marsic. Hierarchical routing overhead in mobile ad hoc networks. IEEE Trans. on Mobile
Computing, 3, Jan. 2004.

31. C.-K. Toh. Associativity-based routing for ad hoc mobile networks. Wireless Personal Commun. J.,
4(2):103–139, March 1997.

32. P.F. Tsuchiya. The Landmark hierarchy: a new hierarchy for routing in very large networks. In
SIGCOMM. ACM, Press, 1988.

3
Uniformly Distributed

Algorithm for Virtual
Backbone Routing in

Ad Hoc Wireless
Networks

Dongsoo S. Kim

3.1 Characteristics of Ad Hoc Networks 36
3.2 Searching Virtual Backbone . 37
3.3 Conclusion . 40
References . 40

Ad hoc wireless networks consist of a group of mobile wireless devices. The transmission of a mobile host is
received by all hosts within its transmission range due to the broadcast nature of wireless communication
and omnidirectional antenna of the mobile hosts. If two wireless hosts are out of their transmission
ranges, other mobile hosts residing between them can forward their messages and construct connected
networks. Because of the mobility of wireless hosts, each host must be equipped with the capability
of an autonomous system, or a router without any statically established infrastructure or centralized
administration. In wireless networks, each host can move arbitrarily and can be turned on or off without
notifying other hosts. The mobility and autonomy introduces a dynamic topology of the networks not
only because end-hosts are transient, but also because intermediate hosts of a communication path are
transient.

The ad hoc wireless networks can be modeled using a graph G = (V, E), a vertex v ∈ V represents
a host, and an edge (u, v) indicates that two hosts u and v are within their transmission range. For
simplicity, we assume that the communication is bidirectional in that a host u is reachable from a host v
iff v is reachable from u, although two or more hosts within a transmission range may not be reachable to
each other in the wireless communication due to the hidden-station problem.

The routing problem in ad hoc wireless networks is to find a set of hosts that perform message for-
warding, while hosts not included in the set have direct links to at least one host in the set. To construct
connected networks, the nodes in the set form a virtual backbone network. A critical issue of such net-
works is to design efficient routing schemes that can readily adapt to the dynamic topology of the networks.
Numerous routing algorithms have been proposed1,5,7–11,13 recently for ad hoc wireless networks. There
are several good surveys on the ad hoc mobile wireless routing protocols.4,11,12

35

36 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

3.1 Characteristics of Ad Hoc Networks

Mobility is one of the major characteristics of most ad hoc wireless environments. There are several
exceptions where mobility does not need to be considered. In sensor networks, for example, hosts equipped
with communication and sensor devices are interconnected to collect data such as temperature or vibration
and to report the data to a monitoring center. Most applications of sensor networks require each host to
be deployed at a fixed location during its operation. In many other circumstances, however, wireless
hosts can move freely in a deployment area, and the connectivity of the hosts is dynamically varying
with time. When constructing a virtual backbone, it is necessary to take into account mobility. A global
positioning system (GPS) can be used to handle the mobility problem,15 but its usage must be limited as
secondary information because the location information such as latitude, longitude, and height does not
directly relate to the connectivity. For example, consider ad hoc networks in transportation trains. Hosts
in this application move fast with respect to global position, but their relative locations are practically
fixed during travel. In other perspectives, noise in wireless environments and interference by obstacles can
make a disconnection between wireless hosts although they are within the normal transmission range.
Figure 3.1 shows the relation between motion(M) and connection (C). The shaded area indicates the
motion of mobile hosts related to the connection of hosts, in which a global location method can be used
to approximate the connectivity of wireless hosts. However, the train example belongs to the category of
M \C and the problems of noises and obstacles are in C \ M, in which GPS-based virtual backbone finding
methods are not efficient.

In wireless networks, each host can move arbitrarily (mobile host’s movement) and can be turned on
(mobile host’s switch on) or off (mobile host’s switch off) without notifying other hosts.17 The mobility
and autonomy introduce a dynamic topology to the networks not only because end-hosts are transient
and mobile, but also because intermediate hosts of a routing path are transient and have the same mobile
characteristic. Even in a sensor network where each host tends to stay in a location, moving obstacles such
as animals and vehicles introduce the dynamic topology of networks. Every host in ad hoc networks or
sensor networks is autonomous, in that their functionalities are identical in the aspect of communication
networks (space uniformity). Although it is possible to designate a host as a request initiator or a data
collector in some applications, they are generally operating in a distributed environment, and a backbone
construction method in ad hoc networks has more constraints than general grid computing. The goal
of grid computing is to minimize the computation time to search a final solution utilizing a cluster of
computing powers. The physical topology is not altered during its computation and a central node can
orchestrate the remaining nodes as needed by an algorithm for finding the solution. In the meantime,
a physical topology can be continuously transformed in ad hoc networks due to movement, switch-on,
and switch-off. The method of finding a virtual backbone must be able to gradually adapt to the network
transformation (time uniformity). This progressive computation plays a critical role in searching virtual
backbones in networks. A network state can alter to another before an algorithm finds a backbone unless
the transient period is ignorable, meaning the problem set of finding a virtual backbone is time-variant
so that its solution must fit into the variation. As a fact of the time-variant, it is desired that the network
supports some partial solutions during the transient period. A searching method preferably minimizes the
impacts of the transient period. A non-optimal partial solution is acceptable but can provide the network
connectivities among mobile hosts before obtaining a final solution.

Motion Connection

FIGURE 3.1 Set relation of motion and connection.

Uniformly Distributed Algorithm for Virtual Backbone Routing 37

3.2 Searching Virtual Backbone

For a graph G = (V, E), a subset of the vertex, VD ⊆ V , is a dominating set if each vertex in V − VD has at
least one neighbor in VD . A virtual backbone network is constructed by connecting the dominating set. To
construct the virtual backbone as simple and small as possible, we can use a minimum connected dominating
set (MCDS). Because finding such an MCDS is an intractable problem,6 we develop an algorithm for
approximating the MCDS that is suitable for use in independent mobile hosts.

For simplicity, we assume that each host is assigned a globally unique identifier and maintains local
information, including its dominator, state, a set of neighbors, etc. A host locally broadcasts hello mes-
sages in a fixed interval or when its local information is modified so that its neighbors need to update
their neighbor data. The local broadcast can be achieved within O(�) under the assumption of a perfect
underlying Medium Access Control protocol, where � is the maximum degree of the graph.2 Each host
determines its state by comparing its local information to the neighbor information collected through the
hello message using a state machine. The machine consists of six states: four permanent states (dominator,
essential dominator, dominatee, and absolute dominatee) and two transient states (candidate and domi-
natee candidate). Each host is initially in the candidate state and moves to one of the permanent states by
considering neighbor information.

Many approximation algorithms3,8,14,16,17 try to find a dominating node set (VD) in a unit-disk graph
G = (V, E) and then add more nodes in VD using a global leader or a state machine to make the nodes
connected. As we see, the resulting CDS is a spanning tree; these approaches are to identify internal nodes,
or backbone nodes, first and then to decide leaf nodes, dominated nodes. Our approach, however, uses an
opposite direction that recognizes dominated nodes and searches the best dominator for each dominatee
by comparing neighbor information. This approach came from a simple observation of geometric graphs,
realizing that some nodes do not need to be dominators by directly examining their neighbors, called
absolute dominatees. Figure 3.2 illustrates examples of the absolute dominatees. Node 1 has only one
neighbor 2, meaning that the node is a leaf in a resulting spanning tree. In other words, edge (1, 2) forms
a complete subgraph K2 and node 1 has no other edge than the subgraph. For the same reason, nodes 3,
4, 5, and 6 are forming a maximum complete subgraph K4 and nodes 3, 4, and 5 have no additional edge
other than K4. With the maximum complete subgraph, we can designate nodes 3, 4, and 5 as absolute
dominatees. Unfortunately, finding a maximum complete subgraph is impractical because it is identical
to the NP-complete k-clique problem. For searching an absolute dominatee, however, we can relieve the
constraint of the complete subgraph; that is, a node becomes an absolute dominatee if it has a neighbor
whose neighbors cover all neighbors. Let Na denote the neighbors of node a , including the node itself.
Node a becomes an absolute dominatee if it has a neighbor b such as Na ⊂ Nb . For example, node 8
becomes an absolute dominatee because the set of its neighbors {7, 8, 9} is included by the neighbor set
of node 10, or {2, 6, 7, 8, 9, 10}. We generated many random connected unit-disk graphs and found out
that 40 percent of nodes were absolute dominatees, which validates our approach of quickly identifying
dominatees with limited information.

After a node becomes an absolute dominatee, it searches its dominator among its neighbors. A
node becomes an essential dominator if its absolute dominatee neighbor considers it as a dominator.

9

8

1

2
3

4

5

6 10

7

FIGURE 3.2 White nodes are absolute dominatees and black nodes are essential dominators.

38 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

For example, nodes 2, 6, and 10 are essential dominators because their neighbors are pointing them as
dominators. The absolute dominatees and essential dominators construct trees that will merge together
to build a single tree in a connected graph. There are some cases in which an absolute dominatee and an
essential dominator cannot be found at all (for example, cyclic graphs or complete graphs), in which a
node is a candidate, or the initial state, as all its neighbors are candidates. In this case, the group of nodes
start a contention procedure to select a local leader. A simple contention can be achieved using unique
identifiers.

Level information and join messages play a critical role in merging subtrees. Each node is initially in
level 0, indicating that the node itself is a tree. A node in candidate state looks for its dominator among
its neighbors in the dominator state. If the candidate node has a neighbor belonging to a different tree,
we can say the node is on a border between two or more subtrees. Each tree has a precedence indicated
by its root ID. The precedence of the border node is compared with the precedence of its nearby tree and
the node locally broadcasts a join message if it has a higher precedence than the nearby tree. The join
message contains the root ID of the nearby tree (old root ID) and the sender’s root ID (new root ID).
Upon receiving a join message whose old root ID is equal to its own root ID, a node joins to the new tree
and searches the best dominator with the new root ID. If the node was not in one of dominatee states, it
regenerates and broadcasts a new join message to its neighborhood. For examining the best dominator,
the level, the number of children, and the state are taken into consideration.

Figure 3.3 illustrates the algorithm for constructing a virtual backbone. All hosts are initially candidates.
After exchanging hello messages at the first round, nodes 0, 1, 6, and 8 identify themselves as absolute
dominatees because node 5 (for node 0 and 1), node 2 (for node 6), and node 7 (for node 8) cover the set
of neighbors of the corresponding dominatee nodes. Three subtrees are merged together by sending join
messages in the next steps. In step 4, node 1 changes its dominator from node 5 to node 2 because nodes
2 and 5 are in the same tree and the level of node 2 in the tree is smaller than the level of node 5.

Figure 3.4 summarizes the state transition of the algorithm. Note that a node state does not move from
dominators to dominatees directly, or vice versa. A hello message received by a node does not reflect the
network topology at the time when the node calculates its state; rather, the message contains the topology
at the previous time interval in the distributed computing environment. The anachronistic information
makes it difficult to calculate the dominating set, especially when a node can move, or switch on or off. If
the direct transition between dominators and dominatee is allowed, its neighbor can make a premature
decision based on timely incorrect information. In the worst case, this miscalculation results in an endless
state transition among a set of nodes. To avoid an unstable transition, the candidate states are employed
so that a node informs the trends of its state transition to the neighbors.

As explained previously, the topological changes of ad hoc networks are described as three different
types. We discuss the recalculation of a connected dominating set caused by topological changes. When
a mobile host u switches on, it is in candidate state and all neighbors will not recognize its existence
and their existing connectivity will not be affected by the switch-on of node u so that the only possible
transition is to be in a dominatee state. The node stays in the dominatee state unless some of its neigh-
bors consider node u as their dominator. When a mobile host is turned off without any notification, its
neighbors will not receive a hello message from the node. Each entry in the table for maintaining neigh-
bor information is associated with a timer. If a node does not receive a hello message from a neighbor
before the timer expires, it deletes the entry of the neighbor from the table. Eliminating a dominatee
node u will not affect the dominatee neighbors; u’s dominator might transit to a dominatee if it has
no children but node u. If the node turned off is a dominator, its children will look for other nodes
as their dominators by deleting the entry for the node after its timer expires. A mobile host movement
is viewed as a sequence of connections and disconnections. The event of disconnection can be consid-
ered a mobile host switch-off because the event of “out of transmission range” cannot be practically
distinguished from the disappearance of the node if we have no geometrical information. The differ-
ences between a new connection and switch-on are when the counterpart of a new connection is not in
a candidate state. However, when the counterpart v of a node u for a new connection is in a dominatee
state, the connection will not affect the computation of u’s state because u already has its dominator.

Uniformly Distributed Algorithm for Virtual Backbone Routing 39

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

(a) Initial (b) Step 1 (c) Step 2 (d) Step 3

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

(e) Step 4 (f) Step 5 (g) Final

FIGURE 3.3 A sample graph and its state transition. Shaded nodes are in candidate states, hollow nodes are domi-
natees, and solid nodes are dominators. A dotted line indicates that the edge has no use for building a dominating set.
A gray line is an edge between a dominatee and a dominator. A solid line is an edge between two dominators, and their
dominating relation is indicated by an arrow.

40 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

essential
dominator

dominator

dominatee
candidate

dominatee
absolute

dominatee

candidate

FIGURE 3.4 State transition diagram.

If v is in a dominator state, u will consider v as its dominator when v is beneficial over its previous
dominator.

3.3 Conclusion

This chapter proposed a distributed algorithm for constructing a connected dominating set in wireless ad
hoc networks. It is distinguished from other approximation algorithms in the aspect of using a bottom-
up approach realizing absolute dominatees. The proposed algorithm does not require any geometric
information but uses only data that can be obtained from messages exchanged among neighbors. In
addition, the algorithm is uniform in terms of space and time so that it is adequate for being deployed in
ad hoc networks with no central contol host and no interruption.

References

1. K.M. Alzoubi, P.-J. Wan, and O. Fieder. New distributed algorithm for connected dominating set in
wireless ad hoc networks. In Proc. of HICSS, 2002.

2. B. Awerbuch. Optimal distributed algorithm for minimum weight spanning tree, counting, leader
election and related problems. In Proc. 19th ACM Symp. on Theory of Computing, pp. 230–240, 1987.

3. M. Cardei, X. Cheng, and D.Z. Du. Connected domination in multihop ad hoc wireless networks. In
Proc. 6th Int. Conf. on Computer Science and Informatics (CS&I 2002), North Carolina, March 2002.

4. Y. Chen and A. Liestman. Approximating minimum size weakly-connected dominating sets for
clustering mobile ad hoc Networks. In Proc. of the Symp. on Mobile Ad Hoc Networking and Computing,
2002.

5. X. Cheng and D.Z. Du. Virtual backbone-based routing in multihop ad hoc wireless networks. In
preparation, 2002.

6. B.N. Clark, C.J. Colbourn, and D.S. Johnson. Unit disk graph. Discrete Mathematics, 86:165–177,
1990.

7. M.S. Corson and A. Ephremides. A distributed routing algorithm for mobile wireless networks. ACM
J. Wireless Networks, 1(1):61–81, 1995.

8. B. Das and V. Bharghaven. Routing in ad-hoc networks using minimum connected dominating sets.
In Proc. Int. Conf. on Communication (ICC97), pp. 376–380, 1997.

9. D.B.Johnson. Routing in ad hoc networks of mobile hosts. In Proc. of Workshop on Mobile Computing
Systems and Applications, pp. 158–163, Dec. 1994.

10. S. Guha and S. Khuller. Approximation algorithms for connected dominating sets. Algorithmica,
20(4):374–387, 1998.

11. P. Krishna, M. Chatterjee, N.H. Vaidya, and D.K. Pradhan. A cluster-based approach for routing in ad-
hoc networks. In Proc. Second USENIX Symposium on Mobile and Location-Independent Computing,
pp. 1–10, 1995.

Uniformly Distributed Algorithm for Virtual Backbone Routing 41

12. E.M. Royer and C.-K. Toh. A review of current routing protocols for ad-hoc mobile wireless networks.
IEEE Personal Communications, pp. 46–55, 1999.

13. R. Sivakumar, B. Das, and V. Bharghavan. An improved spine-based infrastructure for routing in ad
hoc networks. In Proc. Int. Symp. on Computers and Communications (ISCC’98), 1998.

14. I. Stojmenovic, M. Seddigh, and J. Zunic. Dominating sets and neighbor elimination-based broadcast-
ing algorithm in wireless networks. In Proc. IEEE Hawaii International, Conference on System Science,
January 2001.

15. I. Stojmenovic, M. Seddigh, and J. Zunic. Dominating sets and neighbor elimination-based broadcast-
ing algorithms in wireless networks. IEEE Trans. on Parallel and Distributed Systems, 12(12), December
2001.

16. P.-J. Wan, K.M. Alzoubi, and O. Frieder. Distributed construction of connected dominating set in
wireless ad hoc networks. In Proc. on the Joint Conf. of the IEEE Computer and Communication Societies
(INFOCOM), pp. 1597–1604, March 2002.

17. J. Wu and H. Li. On calculating connected dominating set for efficient routing in ad hoc wireless
networks. In Proc. 3rd Int. Workshop on Discrete Algorithms and Methods for Mobile Computing and
Communication, pp. 7–14, Seattle, WA, 1999.

4
Maximum Necessary
Hop Count for Packet
Routing in MANETs

Xiao Chen

Jian Shen

4.1 Introduction . 43
4.2 Notations . 44
4.3 The Problem . 45
4.4 Circle Packing Problem . 45
4.5 Our Solution. 47
4.6 Sharpness of the Maximum Necessary Hop Count. 49
4.7 Conclusion . 52
References . 52

This chapter investigates a fundamental characteristic of a mobile ad hoc network (MANET): the maximum
necessary number of hops needed to deliver a packet from a source to a destination. In this chapter, without
loss of generality, we assume that the area is a circle with a radius of r , r > 1, and the transmission range
of each mobile station is 1. We prove that the maximum necessary number of hops needed to deliver a
packet from a source to a destination is 4π√

3
(r + 1√

3
)2 − 1 = 4πr 2√

3
+ O(r) ≈ 7.255r 2 + O(r). We show that

this result is very close to optimum with only a difference of O(r).

4.1 Introduction

Recent advances in technology have provided portable computers with wireless interfaces that allow net-
worked communication among mobile users. The resulting environment no longer requires users to
maintain a fixed and universally known position in the network and enables almost unrestricted mobility.

A mobile ad hoc network (MANET) is formed by a cluster of mobile stations randomly located within
a certain area without the infrastructure of base stations. The applications of MANETs appear in places
where predeployment of network infrastructure is difficult or unavailable (e.g., fleets in oceans, armies in
march, natural disasters, battlefield, festival field grounds, and historic sites).

In a MANET, stations communicate with each other by sending and receiving packets. The delivery of a
packet from a source station to a destination station is called routing. Particularly in a MANET, two stations
can communicate directly with each other if and only if they are within each other’s wireless transmission
range. Otherwise, the communication between them must rely on other stations. For example, in the

43

44 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

B
CA 1 2

FIGURE 4.1 Example ad hoc wireless network.

network shown in Figure 4.1, stations A and B are within each other’s transmission range (indicated by
the circles around A and B, respectively). If A wants to send a packet m to B, A can send it directly in one
hop. A and C are not within each other’s transmission range. If A wants to send a packet to C, it must first
forward the packet to B and then use B to route the packet to C. Therefore, it takes two hops to deliver a
packet from A to C.

Many routing algorithms have been designed1,3,5,6,8 but less work has been done to investigate the
fundamental properties of MANETs in a mathematical way. This chapter addresses the issue of find-
ing the maximum necessary number of hops needed to deliver a packet from a source to a destination
in a MANET within a certain area. An initial attempt by us to solve the problem was made.2 In this
chapter we reconsider the problem and provide a much better maximum necessary hop count. Without
loss of generality, we assume that all the mobile stations are located within an area of a circle with a
radius r , r > 1, and the transmission range of all the nodes is 1, assuming they use the fixed transmission
power.

This chapter is organized as follows. Section 4.2 provides the notations. Section 4.3 puts forward the
problem. Section 4.4 introduces the circle packing problem, and Section 4.5 provides our solution to the
problem. Section 4.6 shows the sharpness of our solution, and Section 4.7 is the conclusion.

4.2 Notations

We can use a simple graph G = G(V, E) to represent a MANET, where the vertex set V is the collection
of mobile stations within the wireless network. An edge between two stations u and v denoted by u ↔ v
means that both of them are within each other’s transmission range. We assume that this graph G is finite
and connected.

See an example of a wireless network in Figure 4.2. There are five stations A, B, C, D, and E in a MANET.
The circle around each one represents its transmission range. Two vertices are connected if and only if
they are within each other’s transmission range. The resultant graph is shown in Figure 4.3.

CA B
D

E

FIGURE 4.2 Example ad hoc wireless network.

Maximum Necessary Hop Count for Packet Routing in MANETs 45

B

C

E

A D

FIGURE 4.3 The graph representing an ad hoc wireless network.

4.3 The Problem

This chapter addresses the issue of finding the maximum necessary number of hops needed to deliver a
packet from a source to a destination in a MANET within a certain area. Without loss of generality, we
assume that all the mobile stations are within an area of a circle with a radius r , r > 1. Two stations u and
v can communicate with each other if and only if their geographic distance is less than or equal to 1. Based
on the above description, a simple graph G can be drawn to represent the MANET within this circle.
The maximum necessary number of hops to deliver a packet from a source to a destination is actually the
diameter of the graph G .

4.4 Circle Packing Problem

Before presenting our result, we introduce the circle packing problem that leads to our solution.
The circle/sphere packing problem is to consider how to effectively pack non-overlapping small

circles/spheres of the same size into a large circle/sphere as many as possible so that the density of a
packing, which is the ratio of the region/space occupied by the circles/spheres to the whole region/space,
is as large as possible.

FIGURE 4.4 A pyramid in face-centered cubic sphere
packing.

The history of the circle/sphere packing prob-
lem goes back to the early 1600s when astronomer-
mathematician Johannes Kepler asserted that no
sphere packing could be better than face-centered
cubic (FFC) packing. FFC packing is the natural
one that arises from packing spheres in a pyramid,
as shown in Figure 4.4.

The Kepler Conjecture. The density of any sphere
packing in three-dimensional space is at most π/

√
18,

which is the density of the FCC packing.

Although the Kepler conjecture looks natural, it
is very difficult to prove. Recently, a 250-page proof
of the Kepler conjecture was claimed.4

Compared with the difficulties of the Kepler conjecture, the problem of circle packing in the plane has
been solved with ease. The result is stated in the following lemma. It was first proved by Axel Thue in 1890.
To make this chapter self-contained, we include a proof provided by Surendran7 with the following slight
change: while the proof in Ref. 7 uses unit circles to pack the plane, we use circles of radius 1/2 to pack
the plane in order to be consistent with the proof of Theorem 4.1 in Section 4.5.

Lemma 4.1 The optimum packing of circles in the plane has density π/
√

12, which is that of the hexagonal
packing shown in Figure 4.5.

46 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

FIGURE 4.5 The hexagonal circle packing of the plane.

Proof We can suppose without loss of generality that we use circles of radius 1/2 to pack the plane. Start
with an arbitrary packing of circles of radius 1/2 in the plane. Around each circle draw a concentric circle
of radius 1/

√
3. (The reason for choosing 1/

√
3 as the radius of the concentric circle is that when three 1/2

radius circles are packed next to each other just as shown in the left part of Figure 4.6, the three centers can
form an equilateral triangle, then the three cooresponding concentric circles can intersect at the middle of
the equilateral triangle.) Where a pair of concentric circles overlap, join their points of intersection and use
this as the base of two isosceles triangles. The centers of each circle form the third vertex of each triangle.
In this way, the plane can be partitioned into three regions, as depicted in Figure 4.6.

1. The isosceles triangles: if the top angle of the triangle is θ radians, then its area is (1/
√

3)2 sin θ/2 =
sin θ/6 and the area of the sector is (1/2)2θ/2 = θ/8, so that the packing density is

θ/8

sin θ/6
= 3θ

4 sin θ
,

where θ ranges between 0 and π/3 radians. The maximum value of the density is π/
√

12, attained
at θ = π/3 radians.

2. Regions of the larger circles not in a triangle: here the regions are sectors of a pair of concentric
circles of radius 1/2 and 1/

√
3, so the density is

(
1/2

1/
√

3

)2

= 3

4
<

π√
12

3. Regions not in any circle: here the density is zero.

Because the density of each region of space is at most π/
√

12, the density of this circle packing is at most
π/

√
12. Furthermore, a packing can only be optimum when it causes space to be divided into equilateral

triangles. This only happens for the hexagonal packing of Figure 4.5. ✷

1/2

1/sqrt(3)1

23

FIGURE 4.6 The plane partition induced by a sample circle packing.

Maximum Necessary Hop Count for Packet Routing in MANETs 47

Remarks The above lemma concerns circle packing into an unlimited space. Now consider that some
circles Ci of radius 1/2 are packed into a limited region such as a large circle with a radius t. From now
on, we use the notation C (x) to represent a circle with a radius x . In the proof of Lemma 4.1, we draw a
concentric circle C (1/

√
3) around each Ci . Because all circles Ci are within a circle C(t), all those circles

C(1/
√

3) must be within the circle C (t + 1/
√

3 − 1/2), which is concentric with C(t). Thus, the proof of
Lemma 4.1 can still be applied to the limited region C(t + 1/

√
3 − 1/2); that is,

∑
i (area of Ci)

area of C (t + 1/
√

3 − 1/2)
≤ π√

12

Furthermore, Lemma 4.1 shows that π/
√

12 is the best upper bound for the ratio of the area of all Ci ’s to
the area of C (t + 1/

√
3 − 1/2), in the case that C (t) is sufficiently larger than each of the small circles Ci .

4.5 Our Solution

Based on the above lemma, the following is our result of the maximum necessary hop count to deliver a
packet from a source to a destination in MANET.

Theorem 4.1 Assume that all the mobile stations are within an area of a circle with a radius r , r > 1. The
transmission range of each mobile station is 1. Denote the graph generated by connecting all pairs of vertices
within each other’s transmission range as G; that is, two vertices are connected if and only if their geographic
distance is less than or equal to 1. Then an upper bound for the diameter of G is 4π√

3
(r + 1√

3
)2 − 1; in other

words, it takes maximum 4π√
3

(r + 1√
3

)2 − 1 = 4πr 2√
3

+ O(r) necessary hops to deliver a packet from a source
to a destination.

Proof Let D be the diameter of the graph G . Choose two vertices u, v such that the distance in G
between u and v , dG (u, v), is D; that is, dG (u, v) = D. Then there exist distinct vertices ui , 1 ≤ i ≤ D +1,
such that

u = u1 ↔ u2 ↔ u3 ↔ · · · ↔ uD ↔ uD+1 = v

is a shortest path of length D between u and v (see Figure 4.7).
We define a set I = {ui : i is odd}. Then the size of I , denoted by |I |, is
(D + 1)/2�. We can prove that

I is an independent set of vertices. An independent set of vertices is defined as a set of vertices in which
there is no edge between any pair of vertices in the set. ✷

Claim 4.1 I is an independent set of vertices in graph G .

Proof of Claim 4.1 Suppose that I is not an independent set; that is, there exists at least one edge
between some pair of vertices in I . Without loss of generality, we assume that there are two vertices u2 j+1,
u2k+1 in I such that j < k and u2 j+1 ↔ u2k+1. By the definition of I , the two vertices are on the shortest
path from u to v . Then the shortest path can be represented as

u = u1 ↔ · · · ↔ u2 j ↔ u2 j+1 ↔ u2k+1

↔ u2k+2 ↔ · · · ↔ uD+1 = v

u u D D+1=vuuu = u1 32

FIGURE 4.7 A shortest path between u and v .

48 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

The length of this path, as represented, is D − [(2k + 1) − (2 j + 1)] + 1 = D + 2 j − 2k + 1. It is less
than D. This contradicts to dG (u, v) = D. Therefore, there is no edge between any pair of vertices in I ; in
other words, I is an independent set in G .

By Claim 4.1 and the definition of G , we have the following claim.

Claim 4.2 The geographic distance between any pair of vertices in I is larger than 1.

Then, for each vertex ui ∈ I , we define a circle Si with a center at ui and with a radius of 1/2. By
Claim 4.2, two circles S j , Sk are disjoint if j �= k. Because all the vertices in I are covered by the circle C(r),
all the disjoint circles Si (i is odd) can be covered by a larger circle named C(r + 1/2), which has the same
center as the circle C (r) and has a radius of r + 1/2 (see Figure 4.8 for an example). Now we can relate this
diameter problem to the circle packing problem, that is, how to effectively pack these non-overlapping
circles Si (i is odd) as many as possible into the larger circle C(r +1/2). By the remarks following the proof
of Lemma 4.1 in Section 4.4 (note that the circle C (t + 1/

√
3 − 1/2) in the remark should be converted

to C(r + 1/
√

3) since t = r + 1/2.), we have∑
i (Area of Si)

Area of C (r + 1/
√

3)
≤ π√

12

where C (r + 1/
√

3) is the circle that has the same center as the circle C(r) and has a radius of r + 1/
√

3.
Thus,

|I |π
(

1

2

)2

π

(
r + 1√

3

)2 ≤ π√
12

Solving for |I |,

|I | ≤ 2π√
3

(
r + 1√

3

)2

Since |I | =
(D + 1)/2� ≥ (D + 1)/2, we have

D ≤ 2|I | − 1 ≤ 4π√
3

(
r + 1√

3

)2

− 1

So, it takes maximum 4π√
3

(r + 1√
3

)2 − 1 = 4πr 2√
3

+ O(r) necessary hops to deliver a packet from a source
to a destination.

r+1/2r

1/2

1/2

1/2

FIGURE 4.8 All the Si ’s are covered by a circle of radius r + 1/2.

Maximum Necessary Hop Count for Packet Routing in MANETs 49

4.6 Sharpness of the Maximum Necessary Hop Count

In this section, we show the sharpness of the maximum necessary hop count. The idea is like this: if we
can actually construct a graph G with a diameter of 4πr 2/

√
3 + O(r) in a circle C(r), then our maximum

necessary hop count 4π√
3

(r + 1√
3

)2 − 1 is very close to optimum, with only a difference of O(r). The
construction of such a G is based on a parallelogram packing into the circle C(r). Before the construction,
we present some assumptions and properties of the packing unit “parallelogram.”

Let ε (0 < ε < 1) be a positive real number. We draw a parallelogram ABDE. Then we choose points C
and G on the side of BD, and choose a point F on the side of AE such that |AC| = |AG| = 1 + ε, |AF| = 1,
|CG| = 1 − ε, and |BG| = |CD| = |EF| = ε, where | | represents the length of a line segment. (See
Figure 4.9.) Then |AB| and |DE| can be uniquely determined in terms of ε because ABDE is a parallelogram.
Next we give some properties of the parallelogram.

Property 4.0 |AF| = |BC| = 1, |EF| = |CD| = ε, and |AE| = |BD| = 1 + ε.

This property is obvious from the above assumptions.

Property 4.1 Any two vertices chosen from sets {A, E , F } and {B , C , D}, respectively, are at least 1 + ε

distance apart.

Proof of Property 4.1 First, since |AC| = |AG| and |CD| = |GB|, elementary geometry shows that the
triangles ACD and AGB are identical. Thus, |AD| = |AB|, angle � ADC is an acute angle, and angle � ACD
is an obtuse angle. Then, � ACD > � ADC implies |AD| > |AC|, so

|AB| = |AD| > |AC| = 1 + ε

Second, because |AF| = |G D| = 1, we know that AGDF is a parallelogram. This implies |FD| = |AG| and
� FDB = � AGB = � ACD > π/2 radians. Thus,

|FB| > |FC| > |FD| = |AG| = 1 + ε

Third, because � EDB > � FDB > π/2 radians, we have

|EB| > |EC| > |ED| = |AB| > |AC| = 1 + ε.

Therefore, any two vertices chosen from sets {A, E , F } and {B , C , D}, respectively, are at least 1 + ε

distance apart.

Property 4.2 The area of the parallelogram ABDE is 1+ε
2

√
3 + 10ε + 3ε2.

A EF

B G DC

FIGURE 4.9 A parallelogram ABDE.

50 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

Proof of Property 4.2 By the Pythagoras theorem, the height of the parallelogram ABDE is
√

|AC|2 − (|CG|/2)2.
Thus, the area of the parallelogram is

|BD| ·
√

|AC|2 −
(|CG|

2

)2

= (1 + ε) ·
√

(1 + ε)2 −
(

1 − ε

2

)2

= 1 + ε

2

√
3 + 10ε + 3ε2

Property 4.3 |BE| = √
3 + 7ε + 3ε2.

Proof of Property 4.3 Draw a line segment EH perpendicular to the line BD, as shown in Figure 4.10.
Then |EH| is the height of the parallelogram, and so

|EH| =
√

|AC|2 −
(|CG|

2

)2

= 1

2

√
3 + 10ε + 3ε2

Applying the Pythagoras theorem to the right triangle B H E ,

|BE| =
√

|EH|2 + |BH|2 =
√

|EH|2 +
(

|AE| + |BD|
2

)2

=
√

3 + 10ε + 3ε2

4
+

(
3(1 + ε)

2

)2

=
√

3 + 7ε + 3ε2

Now let P denote the parallelogram ABDE with six points A, B , C , D, E , F on its boundary. This is our
packing unit parallelogram. We use parallel packing to pack as many non-overlapping P ’s as possible into
the circle C (r), as shown in Figure 4.11. Let

l =
√

3 + 7ε + 3ε2

By Property 4.3, any two points in P are at most l distance apart. Then the circle C(r − l) concentric with
C(r) is entirely covered by P ’s because otherwise we could have packed one more P without reaching the
boundary of C (r). Thus, by Property 4.2, at least n parallelograms P can be packed into C(r), where

n ≥ Area of C (r − l)

Area of P
= π(r − l)2

(1 + ε)/2
√

3 + 10ε + 3ε2
= 2π(r − √

3 + 7ε + 3ε2)2

(1 + ε)
√

3 + 10ε + 3ε2

Let V be the set of all points A, B , C , D, E , F in P ’s; that is, V = ∪P {A, B , C , D, E , F } and let |V |
denote the number of points in V . We have the following property:

A

B

E

HD

FIGURE 4.10 Computation of |BE|.

Maximum Necessary Hop Count for Packet Routing in MANETs 51

A E

B DC

F

FIGURE 4.11 Parallel packing of parallelograms into a circle.

Property 4.4 |V | ≥ 2n.

Proof of Property 4.4 We can assume that the parallelograms are packed one by one into C(r), from
the lower layer to the higher layer, and in each layer from the left to the right. Because each time adding a
parallelogram P increases |V | by at least 2, Property 4.4 holds by induction.

Having the above assumptions and properties of parallelogram, now we construct a graph G within
C(r) as follows: let V be the vertex set of G and two vertices in V are connected if and only if they are at most
1 distance apart. By Property 0, vertices in each layer are connected to form a path; and by Property 4.1,
any two vertices in different layers are not connected. So G is a union of disjoint paths. We can add some
new vertices to G and let them be the intermediate vertices connecting paths of two adjacent layers, as
shown in Figure 4.12. Because at least 1 new vertex is added to G , the final graph is a path with at least

FIGURE 4.12 The construction of a path.

52 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

|V | + 1 vertices. So it has a diameter of at least

|V | ≥ 2n ≥ 4π(r − √
3 + 7ε + 3ε2)2

(1 + ε)
√

3 + 10ε + 3ε2

Because the above argument holds for all the real numbers ε with 0 < ε < 1, we can make ε approach-
ing 0. Because

lim
ε→0

4π(r − √
3 + 7ε + 3ε2)2

(1 + ε)
√

3 + 10ε + 3ε2
= 4π√

3
(r −

√
3)2 = 4πr 2

√
3

+ O(r)

a graph with a diameter of 4πr 2/
√

3 + O(r) always exists (by choosing ε very close to 0). Therefore, our
upper bound for the diameter (maximum necessary hop count) in Theorem 4.1,

4π√
3

(
r + 1√

3

)2

− 1 = 4πr 2

√
3

+ O(r)

is very close to optimum with only a difference of O(r).

4.7 Conclusion

The maximum necessary number of hops needed to deliver a packet from a source to a destination has been
found for a MANET within a circle of radius r , r > 1, assuming the transmission range of each mobile
station is 1. Our proofs show that our result is very close to optimum, with only a difference of O(r).

References

1. V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, MACAW: A Medium Access Protocol for Wireless
LANs, Proc. of SIGCOMM’94, 1994.

2. X. Chen, J. Shen, and X.D. Jia, An Upper Bound for a Mobile Ad-Hoc Wireless Network, Proc. of the
Int. Conf. on Parallel and Distributed Processing Techniques and Applications, June 2001, pp. 1617–1620.

3. C.L. Fullmer and J.J. Garcia-Luna-Aceves, Floor Acquisition Multiple Access (FAMA) for Packet-Radio
Networks, Proc. of SIGCOMM’95, 1995.

4. Web page of Prof. T. Hales, http://www.math.pitt.edu/∼thales/
5. C.R. Lin and M. Gerla, MACA/PR: An Asynchronous Multimedia Multihop Wireless Network, Proc.

of INFOCOM’97, 1997.
6. C.R. Lin and M. Gerla, Real-Time Support in Multihop Wireless Network, ACM/Baltzer Wireless

Networks, 5(2), 1999.
7. D. Surendran, The Conquest of the Kepler Conjecture, Math Horizons, 8, 8–12, (2001).
8. J. Wu and H. Li, A dominating-Set-Based Routing Scheme in Ad Hoc Wireless Networks, special issue

on Wireless Networks in the Telecommunication Systems Journal, 3, 63–84, 2001.

5
Efficient

Strategy-Proof
Multicast in Selfish

Wireless Networks

Xiang-Yang Li

Weizhao Wang

5.1 Introduction . 54
5.2 Preliminaries and Priori Art . 55

5.2.1 Wireless Ad Hoc Networks . 55
5.2.2 Algorithm Mechanism Design 55
5.2.3 Priori Arts . 57
5.2.4 Problem Statement and Network Model 59

5.3 Strategyproof Multicast . 59
5.3.1 Strategyproof Mechanism Based on LCPS 59

Least Cost Path Star (LCPS) • Constructing LCPS
• VCG Mechanism on LCPS Is Not Strategyproof •

Strategyproof Mechanism on LCPS

5.3.2 Strategyproof Mechanism Based on VMST 61
Constructing VMST • VCG Mechanism on
VMST Is Not Strategyproof • Strategyproof
Mechanism on VMST

5.3.3 Strategyproof Mechanism Based on Spider 66
Constructing the Spider • VCG Mechanism on
NST Is Not Strategyproof • Strategyproof
Mechanism on Spiders

5.4 Experimental Studies . 73
5.4.1 Vary the Number of Receivers and Random

Transmission Range . 75
5.5 Conclusion . 77
References . 78

In this chapter, we study how to perform routing when each wireless node is selfish; that is, a wireless
node will always maximize its own benefit. Traditionally, it is assumed by the majority of the routing
protocols for wireless networks that each wireless node will forward the packets for other nodes if it is
asked to do so. However, this assumption may not be true in practice, especially when the wireless devices
are owned by individual users. A node will deviate from a routing protocol if it will gain more benefit
by doing so. In this chapter, we assume that each wireless node will incur a cost when it forwards a unit

53

54 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

of data for some other nodes. A node will forward the data only if it gets a payment to compensate its
cost. Its profit (or called utility) will then be the payment minus its cost if it did forward the data. For a
multicast with a source node and a set of receiver nodes, we assume that they will pay the relay nodes to
carry the traffic from the source to receivers. We assume that the cost of each agent is private and each agent
can manipulate its reported cost to maximize its utility. A payment scheme is strategyproof if every agent
maximizes its utility when it reports its cost truthfully. In this chapter, we propose several strategyproof
mechanisms for multicast in selfish wireless networks when each node has a cost of forwarding a unit data
based on various structures. We prove that each of our payment schemes is optimum for the corresponding
structure used.

5.1 Introduction

Recent years saw a great amount of research into wireless ad hoc networks on various important prob-
lems such as routing, quality of service, security, power management, and traffic and mobility modeling.
However, there are still many challenges left. In wireless ad hoc networks, each host contributes its local
resources to forward the data for other nodes to serve the common good, and may benefit from resources
contributed by other hosts in return. Based on such a fundamental design philosophy, wireless networks
provide appealing features of enhanced system robustness, high service availability, and scalability. How-
ever, the critical observation that users are generally selfish and noncooperative may severely undermine
the expected wireless structure. For example, for a routing algorithm based on the least cost path (LCP), the
individual wireless node may declare an arbitrarily high cost for forwarding a data packet to other nodes
because wireless nodes are energy-constrainted and it is often not in the interest of a node to always relay
the messages for other nodes. The root cause of the problem is, obviously, that there exist no incentives
for users to be altruistic. Following the common belief in neoclassic economics, it is more reasonable to
assume that all wireless terminals are rational: they try to maximize their benefits instead of conforming
to the existing protocols. Thus, we need to design some mechanisms to ensure that these rational wireless
terminals will conform to our protocols without any deviation.

How to achieve cooperation among wireless terminals in network was previously addressed.2–4,11,13,16,17

The key idea behind these approaches is that terminals providing a service should be remunerated, while
terminals receiving a service should be charged. Both of these methods belong to the so-called credit-based
method. Some of these algorithms need some special hardware that is not very practical in the real world.
In recent years, incentive-based methods have been proposed to solve the noncooperative problem. The
most well-known and widely used incentive-based methods is the so-called family of VCG mechanisms by
Vickrey,18 Clarke,5 and Groves.9 Nisan and Ronen14 provided a mechanism belonging to the VCG family
to assure the cooperation for the unicast problem in a general network where each communication link is
assumed to be selfish and rational.

While unicast in wireless network has been studied extensively in the literature and deployed in practice
for years, several important issues about multicast over wireless networks have not been explored fully. In
practice, multicast is a more efficient way to support group communication than unicast or broadcast, as it
can transmit packets to destinations using fewer network resources, which is critical in wireless networks.
Typical wireless multicast applications include group-oriented mobile commerce, military command and
control, distance education, and intelligent transportation systems. For a multicast routing, usually a tree
with the minimum cost that spans the sources and receivers is used because it requires less network re-
sources than other structures. Finding such a minimum cost tree is known to be NP-hard. Thus, some
multicast trees with good practical performances have been proposed in the literature. Unlike unicast
problem, as we will show later, if we simply apply a VCG mechanism to those commonly used multicast
tree structures, we cannot guarantee that all wireless devices will follow our prescribed protocols. In this
chapter, we discuss how to design truthful non-VCG mechanisms for those multicast structures in selfish
wireless networks.

The rest of the chapter is organized as follows. In Section 5.2, we review some definitions and priori art
on truthful mechanism design for multicast. In Section 5.3, we present the first strategyproof mechanism

Efficient Strategy-Proof Multicast in Selfish Wireless Networks 55

for the Steiner tree problem (or multicast). The output of our mechanism (a tree) has a cost within a
constant factor of the optimum, and the payment is minimum among any truthful mechanism having
this output. In Section 5.4, we show our experimental study of our proposed mechanisms. We conclude
the chapter in Section 5.5 by pointing out some possible future work.

5.2 Preliminaries and Priori Art

5.2.1 Wireless Ad Hoc Networks

Wireless ad hoc networks are emerging as a flexible and powerful wireless architecture that does not rely
on a fixed networking infrastructure. Wireless ad hoc networks have received significant attention over the
past few years due to their potential applications in various situations such as battlefield, emergency relief
and environmental monitoring, etc. In a wireless ad hoc network, each mobile node has a transmission
range and energy cost. A node v can receive the signal from another node u iff node v is within node u’s
transmission range. We assume that when node u received a message and then forwarded the message
to another node, it would consume node u some energy, which will be categorized as the cost of node u
forwarding the data for other nodes. If the receiving node is not within the sender’s transmission range,
then it must choose some intermediate nodes to relay the message. So unlike wired networks, all nodes in
the wireless ad hoc network should be able to act as a router. On the other hand, the wireless node usually
uses omnidirectional antennas, which means that it can use a broadcasting-like manner to distribute the
message to all nodes within its transmission range.

Usually, there are two different categories of wireless ad hoc nodes: fixed transmission range and ad-
justable transmission range. For fixed transmission range nodes, their transmission range has been fixed
and cannot be adjusted afterward. So there is a directed arc from u to v if node v is within the transmission
range of node u. Here the transmission cost depends on node u, regardless of the distance between two
nodes. Thus, the wireless ad hoc network can be considered a node weighted graph, where the weight of each
node is its cost to forward a unit data. If all nodes’ transmission range is the same, by properly scaling, we
can assume all nodes have transmission range 1. Thus, wireless topology can be modeled by a unit disk graph
(UDG).

The second type of wireless network is that each wireless node can adjust its transmission range: they
can adjust their transmission power to the amount needed to reach the next relay node. The power needed
to send a packet from node u to v consists of three parts. First, the source node u needs to consume some
power to prepare the packet. Second, node u needs to consume some power to send the message to v . The
power required to support the transmission between u and v not only depends on u, but also depends on
the geometry distance of u and v . In the literature, it is often assumed that the power needed to support
a link uv is du · |uv |β , where 2 ≤ β ≤ 5 depends on the transmission environment, |uv | is the Euclidean
distance between u and v , and du is a positive number depending on node u only. Finally, when v receives
the packet, it needs to consume some power to receive, store, and then process that packet. Thus, the
weight of an edge uv is the power consumed for transmitting packet from u to v plus some possible energy
consumed by u and v to process the signal. The wireless network under this model can be considered a
link weighted graph: all wireless devices are the vertices of the graph, and the weight of each link uv is the
total energy cost of communication using link uv .

5.2.2 Algorithm Mechanism Design

In designing efficient, centralized (with input from individual agents) or distributed algorithms and net-
work protocols, the computational agents are typically assumed to be either correct/obedient or faulty (also
called adversarial). Here, agents are said to be correct/obedient if they follow the protocol correctly; agents
are said to be faulty if (1) they stop working, or (2) they drop messages, or (3) they act arbitrarily, which
is also called Byzantine failure (i.e., they may deviate from the protocol in arbitrary ways that harm other
users, even if the deviant behavior does not bring them any obvious tangible benefits).

56 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

In contrast, as mentioned before, economists design market mechanisms in which it is assumed that
agents are rational. The rational agents respond to well-defined incentives and will deviate from the protocol
only if it improves its gain. A rational agent is neither correct/obedient nor adversarial.

A standard economic model for analyzing scenarios in which the agents act according to their own self-
interests is as follows. There are n agents. Each agent i , for i ∈ {1, · · · , n}, has some private information
ti , called its type. The type ti could be its cost to forward a packet in a network environment, or it could
be its willing payment for a good in an auction environment. Then the set of n agents define a type vector
t = (t1, t2, · · · , tn), which is called the profile. There is an output specification that maps each type vector
t to a set of allowed outputs. Agent i ’s preferences over the possible outputs are given by a valuation
function vi that assigns a real number vi (ti , o) to each possible output o. Here, notice that the valuation
of an agent does not depend on other agents’ types. Everything in the scenario is public knowledge except
the type ti , which is a private information to agent i .

Definition 5.1 A Mechanism M = (A,O, p) defines three functions: a set of strategies A for all agents,
an output functionO, and a payment function p = (p1, . . . , pn):

1. For each agent i , it has a set of strategies Ai . Agent i can only choose a strategy a ∈ Ai .
2. For each strategy vector a = (a1, · · · , an), i.e., the agent i plays a strategy ai ∈ Ai , the mechanism

computes an output o = O(a1, · · · , an) and a payment pi = pi (a). Here, the payment pi is the
money given to each participating agent i . If pi < 0, it means that the agent has to pay −pi to
participate in the action.

For an agent i , given the output o and the payment pi , its utility is ui (o, ti) = vi (ti , o) + pi . If
a strategy ai by an agent i is dominant, the agent i maximizes its utility regardless of whatever other
agents do. Considering all different strategies, there will be too many candidate mechanisms; but with
the Revelation Principle, we only need to focus our attention on these direct revelation mechanisms. A
mechanism is a direct revelation mechanism if the types are the strategy space Ai . In this chapter, we
only consider the direct revelation mechanisms. In practice, a mechanism should satisfy the following
properties:

1. Incentive Compatibility (IC). The payment function should satisfy the incentive compatibility; that
is, for each agent i ,

vi (ti , o(a−i , ti)) + pi (a−i , ti) ≥ vi (ti , o(a−i , ai)) + pi (a−i , ai).

In other words, revealing the type ti is the dominating strategy. If the payment were computed by
a strategyproof mechanism, he would have no incentive to lie about its type because his overall
utility would be not greater than it would have been if he had told the truth.

2. Individual Rationality (IR). It is also called Voluntary Participation. For each agent i and any a−i ,
it should have non-negative utilities. That is, if agent i reveals its true type ti , then its utility should
be non-negative.

3. Polynomial Time Computability (PC). All computation is done in polynomial time. Notice that
after every agent declares its type, the mechanism must compute an output o and a payment vector
to all agents. For example, for the family of VCG mechanisms, the output that maximizes the
summation of the valuations of all nodes must be found. When the optimal output cannot be
found exactly, the individual agent may have incentives to misreport its type initially.

A mechanism is strategyproof or truthful if it satisfies both IR and IC properties. In the remainder of
this chapter, we focus attention on these truthful mechanisms only.

Arguably the most important positive result in mechanism design is what is usually called the general-
ized Vickrey-Clarke-Groves (VCG) mechanism by Vickrey,18 Clarke,5 and Groves.9 The VCG mechanism
applies to mechanism design maximization problems where the objective function is simply the sum of
all agents’ valuations and the set of possible outputs is assumed to be finite.

Efficient Strategy-Proof Multicast in Selfish Wireless Networks 57

A maximization mechanism design problem is called utilitarian if its objective function satisfies that
g (o, t) = ∑

i v i (ti , o). A direct revelation mechanism m = (o(t), p(t)) belongs to the VCG family if (1)
the output o(t) computed based on the type vector t maximizes the objective function g (o, t) = ∑

i v i (ti , o),
and (2) the payment to agent i is

pi (t) =
∑
j
=i

v j (t j , o(t)) + hi (t−i).

Here, hi () is an arbitrary function of t−i and a different agent could have different function hi () as long as it
is defined on t−i . It is proved by Groves9 that a VCG mechanism is truthful. Green and Laffont8 proved that,
under mild assumptions, VCG mechanisms are the only truthful implementations for utilitarian problems.

An output function of a VCG mechanism is required to maximize the objective function. This makes the
mechanism computationally intractable in many cases. Notice that replacing the optimal algorithm with
a non-optimal approximation usually leads to untruthful mechanisms. In this chapter, we study how to
perform truthful routing for multicast, which is known to be NP-hard and thus VCG mechanisms cannot
be applied.

5.2.3 Priori Arts

There are generally two ways to implement the truthful computing: (1) credit-based method and (2)
incentive-based method.

The first category uses various non-monetary approaches, including auditing, systemwide optimal point
analysis, and some hardwares. Credit-based methods have been studied for several years, and most of them
are based on simulation and are heuristic.

Nodes that agree to relay traffic but do not are termed “misbehaving.” Marti et al.13 used Watchdog and
Pathrater to identify misbehaving users and avoid routing through these nodes. Watchdog runs on every
node, keeping track of how the other nodes behave; Pathrater uses this information to calculate the route
with the highest reliability. Notice that this method ignores the reason why a node refused to relay the
transit traffics for other nodes. A node will be wrongfully labeled as misbehaving when its battery power
cannot support many relay requests and thus refuses to relay. It also does not provide any incentives to
encourage nodes to relay the message for other nodes.

Buttyan and Hubaux3 focused on the problem of how to stimulate selfish nodes to forward the packets
for other nodes. Their approach is based on a so-called nuglet counter in each node. A node’s counter
is decreased when sending its own packet, and is increased when forwarding other nodes’ packets. All
counters should always remain positive. In order to protect the proposed mechanism against misuse, they
presented a scheme based on a trusted and tamper-resistant hardware module in each node that generates
cryptographically protected security headers for packets and maintains the nuglet counters of the nodes.
They also studied the behavior of the proposed mechanism analytically and by means of simulations, and
showed that it indeed stimulates the nodes for packet forwarding.

They still use a nuglet counter to store the nuglets and they use a fine that decreases the nuglet counter
to prevent the node from not relaying the packet. They use the packet purse model to discourage the user
from sending useless traffic and overloading the network. The basic idea presented in Ref. 4 is similar to
Ref. 3 but different in the implementation.

Srinivasan et al.16 proposed two acceptance algorithms. These algorithms are used by the network nodes
to decide whether to relay traffic on a per-session basis. The goal is to balance∗ the energy consumed by
a node in relaying traffics for others with energy consumed by other nodes to relay its traffic and to find
an optimal trade-off between energy consumption and session blocking probability. By taking decisions

∗It is impossible to strictly balance the number of packets a node has relayed for other nodes and the number of
packets of this node relayed by other nodes because, in a wireless ad hoc network, the majority of packet transmissions
are relayed packets. For example, consider a path of h hops. h − 1 nodes on the path relay the packets for others. If the
average path length of all routes is h, then 1 − 1/h fractions of the transmissions are transit traffic.

58 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

on a per session basis, the per packet processing overhead of previous schemes is eliminated. In Ref. 17, a
distributed and scalable acceptance algorithm called GTFT is proposed. They proved that GTFT results in
Nash equilibrium and the system converges to the rational and optimal operating point. Notice that they
assumed that each path is h hops long and the h relay nodes are chosen with equal probability from the
remaining n − 1 nodes, which may be unrealistic.

Salem et al.15 presented a charging and rewarding scheme for packet forwarding in multihop cellular
networks. In their network model, there is a base station to forward the packets. They use symmetric
cryptography to cope with the lying. To count several possible attacks, it precharges some nodes and then
refunds them only if a proper acknowledgment is received. Their basic payment scheme is still based on
nuglets.

Jakobsson et al.11 described an architecture for fostering collaboration between selfish nodes of multihop
cellular networks. Based on this architecture, they provided mechanisms based on per-packet charge to
encourage honest behavior and to discourage dishonest behavior. In their approach, all packet originators
attach a payment token to each packet, and all intermediaries on the packet’s path to the base station verify
whether this token corresponds to a special token called winning ticket. Winning tickets are reported to
nearby base stations at regular intervals. The base stations, therefore, receive both reward claims (which are
forwarded to some accounting center) and packets with payment tokens. After verifying the validity of the
payment tokens, base stations send the packets to their desired destinations, over the backbone network.
The base stations also send the payment tokens to an accounting center. Their method also involves some
traditional security methods, including auditing, node abuse detection and encryption, etc.

The incentive-based methods borrow some ideas from the micro-economic and game-theoretic world,
which involve monetary transfer. The key result of this category is that all nodes will not deviate from their
normal activities because they will benefit most when they reveal their true cost, even knowing all other
nodes’ true costs. We can thus achieve the optimal system performance. This idea has been introduced by
Nisan and Ronen14 and is known as the algorithm mechanism design.

Nisan and Ronen14 provided a polynomial-time strategyproof mechanism for optimal unicast route
selection in a centralized computational model. In their formulation, the network is modeled as an abstract
graph G = (V, E). Each edge e of the graph is an agent and has a private type te , which represents the
cost of sending a message along this edge. The mechanism-design goal is to find a Least Cost Path (LCP)
LCP(x , y) between two designated nodes x and y. The valuation of an agent e is −te if the edge e is part
of the path LCP(x , y) and 0 otherwise. Nisan and Ronen used the VCG mechanism for payment. The
payment to an agent e is DG−{e}(x , y) − DG (x , y), where DG−{e}(x , y) is the cost of the LCP through G
when edge e is not presented and DG (x , y) is the cost of the least cost path LCP(x , y) through G . Clearly,
there must be two link disjoint paths connecting x and y to prevent the monopoly. The result can be easily
extended to deal with wireless unicast problems for an arbitrary pair of terminals.

Feigenbaum et al.6 then addressed truthful low-cost routing in a different network model. They assume
that each node k incurs a transit cost ck for each transit packet it carries. For any two nodes i and j of the
network, Ti, j is the intensity of the traffic (number of packets) originating from i and destined for node j .
Their strategyproof mechanism again is essentially the VCG mechanism. They gave a distributed method
such that each node i can compute a payment pk

i j > 0 to node k for carrying the transit traffic from node i
to node j if node k is on the LCP LCP(i, j). Anderegg and Eidenbenz 1 recently proposed a similar routing
protocol for wireless ad hoc networks based on the VCG mechanism again. They assumed that each link
has a cost and each node is a selfish agent.

For multicast flow, Feigenbaum et al.7 assumed that there is fixed multicast infrastructure, given any set
of receivers Q ⊂ V , that connects the source node to the receivers. Additionally, for each user qi ∈ Q, they
assumed a fixed path from the source to it, determined by the multicast routing infrastructure. Then for
every subset R of receivers, the delivery tree T(R) is merely the union of the fixed paths from the source to
the receivers R. They also assumed that there is a link cost associated with each communication link in the
network and the link cost is known to everyone. For each receiver qi , there is a valuation wi that this user
values the reception of the data from the source. This information wi is only known to qi . User qi will report
a number w ′

i , which is the amount of money he is willing to pay to receive the data. The source node then

Efficient Strategy-Proof Multicast in Selfish Wireless Networks 59

selects a subset R ⊂ Q of receivers to maximize the difference
∑

i∈R w ′
i − C(R), where C(R) is the cost of

the multicast tree T(R) to send data to all nodes in R. The approach of fixing the multicast tree is relatively
simple to implement but could not model the greedy nature of all network terminals in the network.

5.2.4 Problem Statement and Network Model

In this chapter, we consider a wireless ad hoc network composed of n selfish nodes V = {v1, v2, · · · , vn}.
Every node vi has a fixed transmission range ri , and nodes u and v can communicate with each other if and
only if |vi v j | ≤ min{ri , r j }. When node vi sends a packet to one of its neighbors, say v j , all vi ’s neighbors
can receive this packet. Thus, every node will broadcast its packet. We assume each node vi has a private
cost ci to broadcast a unit data (the unit data could be 1 byte or 1 Megabyte). In this chapter, we model this
wireless ad hoc network as a node weighted graph G = (V, E , c), where V is the set of wireless nodes and
e = vi v j ∈ E if and only if vi and v j can communicate with each other directly. Here, c = {c1, c2, · · · , cn}
is the cost profile of all nodes. Notice here that the graph is undirected.

Based on the node weighted graph, we now define the multicast problem as follows. Given a set of
receivers Q = {q0, q1, q2, · · · , qr−1} ⊂ V , when selecting node qi ∈ Q as the source, the multicast problem
is to find a tree T ⊂ G spanning all receiving terminals Q. For simplicity, we assume that q0 is the source
of the multicast. Each node vi is required to declare a cost di of relaying the message. Based on the declared
cost profile d = {d1, d2, · · · , dn}, the source node constructs the multicast tree and decides the payment
for each node. It is well known10,12 that it is NP-hard to find the minimum-cost multicast tree when given
an arbitrary node weighted graph G , and it is at least as hard to approximate as the set cover problem.
Klein and Ravi12 showed that it can be approximated within O(ln r), where r is the number of receivers.
The utility of an agent is its payment received, minus its cost if it is selected in the multicast tree. Instead
of reinventing the wheel, we will still use the previously proposed structures for multicast as the output of
our mechanism. Given a multicast tree, we will study the design of strategyproof payment schemes based
on these trees.

Given a graph G , we use ω(G) to denote the total cost of all nodes in this network. If we change the cost
of any agent i (link ei or node vi) to c ′

i , we denote the new network as G ′ = (V, E , c |i c ′
i), or simply c |i c ′

i . If
we remove one agent i from the network, we denote it as c |i ∞. Denote G\ei as the network without link
ei , and denote G\vi as the network without node vi and all its incident links. For simplicity of notation,
we use the cost vector c to denote the network G = (V, E , c) if no confusion is caused.

5.3 Strategyproof Multicast

In this section, we discuss in detail how to conduct truthful multicast when the network is modeled by a
node weighed communication graph. We specifically study the following three structures: (1) least cost
path star (LCPS), (2) virtual minimum spanning tree (VMST), (3) and node weighted Steiner tree (NST).
In practice, for various applications, receivers and senders in the same multicast group usually belong
to the same organization or company, so their behavior can be expected to be cooperative instead of
uncooperative. Thus, we assume that every receiver will relay the packet for other receivers for free.

5.3.1 Strategyproof Mechanism Based on LCPS

5.3.1.1 Least Cost Path Star (LCPS)

Given a network modeled by the graph G , a source node s , and a set of r receivers Q, the least cost path
star is the union of all r shortest paths from the source to each of the receivers in Q. In practice, this
is one of the most widely used methods of constructing the multicast tree because it takes advantage of
the unicast routing information collected by the distance-vector algorithm or link-state algorithm. Notice
that, although here we only discuss the use of least cost path star for the node weighted case, all results
presented in this subsection can be extended to the link weighted scenario without any difficulty, when
each link will incur a cost when transmitting data.

60 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

5.3.1.2 Constructing LCPS

For each receiver qi
= s , we compute the shortest path (least cost path), denoted by LCP(s , qi , d), from the
source s to qi under the reported cost profile d . The union of all least cost paths from the source to receivers
is called least cost path star, denoted by LCPS(d). Clearly, we can construct LCPS in time O(n log n + m).
The remaining issue is how to design a truthful payment scheme while using LCPS as output.

5.3.1.3 VCG Mechanism on LCPS Is Not Strategyproof

Intuitively, we would like to use the VCG payment scheme in conjunction with the LCPS tree structure as
follows. The payment pk(d) to every node vk is

pk(d) = ω(LCPS(d |k ∞)) − ω(LCPS(d)) + dk .

We show by example that the above payment scheme is not strategyproof. Figure 5.1 illustrates such an
example where node V2 will have a negative utility when it reveals its true cost.

Notice that ω(LCPS(c)) = 2M +ε and ω(LCPS(c |1∞)) = M +ε. If v1 reveals its true cost, its payment
is p1(c) = ω(LCPS(c |1∞)) − ω(LCPS(c)) + M = M + ε − (2M + ε) + M = 0. Thus, its utility is
p1(c) − C1 = 0 − M < 0, which violates the IR property.

5.3.1.4 Strategyproof Mechanism on LCPS

Now we describe our strategyproof mechanism that does not rely on VCG payment. For each receiver
qi
= s , we compute the least cost path from the source s to qi , and compute a payment pi

k(d) to every
node vk on the LCP(s , qi , d) using the scheme for unicast

pi
k(d) = dk + |LCP(s , qi , d |k ∞)| − |LCP(s , qi , d)|.

Here, |LCP(s , qi , d)| denotes the total cost of the least cost path LCP(s , qi , d). The payment pi
k(d) = 0 if

node vk is not on LCP(s , qi , d). The total payment to a link vk is then

pk(d) = max
qi ∈Q

pi
k(d). (5.1)

Theorem 5.1 Payment (5.1) based on LCPS is truthful and it is minimum among all truthful payments
based on LCPS.

v2

v1

q1 q2

q0

+εM
M

FIGURE 5.1 The cost of terminals are v1 = M and v2 = M + ε.

Efficient Strategy-Proof Multicast in Selfish Wireless Networks 61

Proof Clearly, when node vk reports its cost truthfully, it has non-negative utility; that is, the payment
scheme satisfies the IR property. In addition, because the payment scheme for unicast is truthful, vk cannot
lie its cost to increase its payment pi

k(c) based on LCP(s , qi , d). Thus, it cannot increase maxqi ∈Q pi
k(d) by

lying its cost. In other words, our payment scheme is truthful.
We then show that the above payment scheme pays the minimum among all strategyproof mechanisms

using LCPS as the output. Before showing the optimality of our payment scheme, we give some definitions
first. Consider all paths from source node s to a receiver qi ; they can be divided into two categories: with
node vk or without node vk . The path with the minimum length among these paths with edge vk is denoted
as LCPvk (s , qi , d); and the path with the minimum length among these paths without edge vk is denoted
LCP−vk (s , qi , d).

Assume that there is another payment scheme p̃ that pays less for a node vk in a network G under a cost
profile d . Let δ = pk(d)− p̃k(d); then δ > 0. Without loss of generality, assume that pk(d) = pi

k(d). Thus,
node vk is on LCP(s , qi , d) and the definition of pi

k(d) implies that

|LCP−vk (s , qi , d)| − |LCP(s , qi , d)| = pk(d) − dk .

Then consider another cost profile d ′ = d |k (pk(d) − δ
2), where the true cost of node vk is pk(d) − δ

2 .
Under profile d ′, since |LCP−vk (s , qi , d ′)| = |LCP−ek (s , qi , d)|, we have

|LCPvk (s , qi , d ′)| = |LCPvk (s , qi , d |k 0)| + pk(d) − δ

2

= |LCPvk (s , qi , d)| + pk(d) − δ

2
− dk

= |LCP(s , qi , d)| + pk(d) − δ

2
− dk

= |LCP−vk (s , qi , d)| − δ

2
< |LCP−vk (s , qi , d)| = |LCP−vk (s , qi , d ′)|.

Thus, vk ∈ LCPS(d ′). From the following Lemma 5.1, we know that the payment to node vk is the
same for cost profile d and d ′. Thus, the utility of node vk under the profile d ′ by the payment scheme
p̃ becomes p̃k(d ′) − ck = p̃k(d) − ck = p̃k(d) − (pk(d) − δ

2) = − δ
2 < 0. In other words, under the

profile d ′, when the node ek reports its true cost, it gets a negative utility under payment scheme p̃. Thus,
p̃ is not strategyproof. This finishes our proof. ✷

Lemma 5.1 If a mechanism with output T and the payment function p̃ is truthful, then for every node
vk in network, if vk ∈ T, then payment function p̃k(d) should be independent of dk.

Proof We prove it by contradiction. Suppose that there exists a truthful payment scheme such that
p̃k(d) depends on dk . There must exist two valid declared costs x1 and x2 for node vk such that x1
= x2

and p̃k(d |k x1)
= p̃k(d |k x2). Without loss of generality we assume that p̃k(d |k x1) > p̃k(d |k x2). Now
consider the situation when node vk has an actual cost ck = x2. Obviously, node vk can lie its cost as x2 to
increase his utility, which violates the incentive compatibility (IC) property. This finishes the proof. ✷

Notice that the payment based on pk(d) = minqi ∈Q pi
k(d) is not truthful because a node can lie its cost

upward so it can discard some low payment from some receiver. In addition, the payment pk(d) =∑
qi ∈Q pi

k(d) is not truthful either.

5.3.2 Strategyproof Mechanism Based on VMST

5.3.2.1 Constructing VMST

We first describe our method to construct the virtual minimum spanning tree.

62 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

Algorithm 5.1

Virtual MST Algorithm.

1. First calculate the pairwise least cost path LCP(qi , q j , d) between any two terminals qi , q j ∈ Q when
the cost vector is d .

2. Construct a virtual complete link weighted network K (d) using Q (including the source node
here) as its terminals, where the link qi q j corresponds to the least cost path LCP(qi , q j , d), and its
weight w(qi q j) is the cost of the path LCP(qi , q j , d), i.e., w(qi q j) = |LCP(qi , q j , d)|.

3. Build the minimum spanning tree (MST) on K (d). The resulting MST is denoted as VMST(d).
4. For every virtual link qi q j in VMST(d), we find the corresponding least cost path LCP(qi , q j , d) in

the original network. Combining all these paths can generate a subgraph of G , say VMSTO(d).
5. All nodes on VMSTO(d) will relay the packets.

Notice that a terminal vk is on VMSTO(d) iff vk is on some virtual links in the VMST(d), so we can
focus our attention on these terminals in VMST(d). It is not very difficult to show that the cost of VMST
could be very large compared to the optimal. But when all nodes have the same transmission ranges in the
original wireless ad hoc network, which can be modeled as UDG, the following theorem shows that the
virtual minimum spanning tree can approximate the cost of the optimal tree within a constant factor.

Theorem 5.2 VMST(G) is a 5-approximation of the optimal solution in terms of the total cost if the
wireless ad hoc network is modeled by a unit disk graph.

Proof Assume that the optimal solution is a tree called Topt. Let V(Topt) be the set of nodes used in
the tree Topt. Clearly, ω(Topt) = ∑

vi ∈V(Topt) ci . Similarly, for any spanning tree T of K (G , Q), we define
ω(T) = ∑

e∈T w(e). Following we will prove 5 · ω(Topt) ≥ ω(VMST(G)).
First, for all nodes in Topt, when disregarding the node weight, there is a spanning tree T ′

opt on V(Topt)
with node degree at most 5 because the wireless network is modeled by a unit disk graph. This is due to
the well-known fact that there is a Euclidean minimum spanning tree with the maximum node degree at
most 5 for any set of two-dimensional points. Note here that we only need to know the existence of T ′

opt;
we do not need to construct such a spanning tree explicitly. Obviously, ω(Topt) = ω(T ′

opt). Thus, tree T ′
opt

is also an optimal solution with maximal node degree of at most 5.
For spanning tree T ′

opt, we root it at an arbitrary node and duplicate every link in T ′
opt (the resulting

structure is called DT ′
opt). Clearly, every node in DT ′

opt has even degree now. Thus, we can find a Euler
circuit, denoted by EC(DT ′

opt), that visits every vertex of DT ′
opt and uses every edge of DT ′

opt exactly once,
which is equivalent to saying that every edge in T ′

opt(G) is used exactly twice. Consequently, we know that
every node vk in V(Topt) is used exactly degT ′

opt
(vk) times. Here, degG (v) denotes the degree of a node v in

a graph G . Thus, the total weight of the Euler circuit is at most 5 times the weight ω(T ′
opt); that is,

ω(EC(DT ′
opt)) ≤ 5 · ω(T ′

opt).

Notice that here if a node vk appears multiple times in EC(DT ′
opt), its weight is also counted multiple times

in ω(EC(DT ′
opt)).

If we walk along EC(DT ′
opt), we visit all receivers, and the length of any subpath between receivers qi

and q j is no smaller than |LCP(qi , q j , G)|. Thus, the cost of EC(DT ′
opt) is at least ω(VMST(G)) because

VMST(G) is the minimum spanning tree spanning all receivers and the cost of the edge qi q j in VMST(G)
corresponds to the path with the least cost |LCP(qi , q j , G)|. In other words,

ω(EC(DT ′
opt)) ≥ ω(VMST(G)).

Consequently, we have

ω(VMST(G)) ≤ ω(EC(DT ′
opt)) ≤ 5 · ω(T ′

opt).

This finishes the proof. ✷

Efficient Strategy-Proof Multicast in Selfish Wireless Networks 63

v1 v2

v3

q1 q2

q0

+εM

MM

(a) Graph G (b) VMST (C) VMST with lie

v1 v2

v3

q1 q2

q0

+εM

MM
v1 v2

v3

q1 q2

q0

+εM

MM

FIGURE 5.2 The cost of terminals are c4 = c5 = M and c3 = M + ε.

5.3.2.2 VCG Mechanism on VMST Is Not Strategyproof

In this subsection, we show that a simple application of VCG mechanism on VMST is not strategyproof.
Figure 5.2 illustrates such an example where terminal v3 can lie its cost to improve its utility when the output
is VMST. The payment to terminal v3 is 0 and its utility is also 0 if it reports its cost truthfully. The total
payment to terminal v3 when v3 reported a cost d3 = M−ε is ω(VMST(c |3∞))−ω(VMST(c |3d3))+d3 =
2M −(M −ε)+ M −ε = 2M and the utility of terminal v3 becomes u3(c |3d3) = 2M −(M +ε) = M −ε,
which is larger than u3(c) = 0. Thus, the VCG mechanism based on VMST is not strategyproof.

5.3.2.3 Strategyproof Mechanism on VMST

Before discussing the strategyproof mechanism based on VMST, we give some related definitions first.
Given a spanning tree T and a pair of terminals p and q on T , clearly there is a unique path connecting
them on T . We denote such path as
T (p, q), and the edge with the maximum length on this path as
LE(p, q , T). For simplicity, we use LE(p, q , d) to denote LE(p, q , VMST(d)) and use LE(p, q , d |k d ′

k) to
denote LE(p, q , VMST(d |k d ′

k)).
Following is our truthful payment scheme when the output is the multicast tree VMST(d).

Algorithm 5.2

Truthful payment scheme based on VMST.

1. For every terminal vk ∈ V\Q in G , first calculate VMST(d) and VMST(d |k ∞) according to the
terminals’ declared costs vector d .

2. For any edge e = qi q j ∈ VMST(d) and any terminal vk ∈ LCP(qi , q j , d), we define the payment
to terminal vk based on the virtual link qi q j as follows:

pi j
k (d) = |LE(qi , q j , d |k ∞)| − |LCP(qi , q j , d)| + dk .

Otherwise, pk
i j (d) is 0. The final payment to terminal vk based on VMST(d) is

pk(d) = max
qi q j ∈VMST(d)

pi j
k (d). (5.2)

Theorem 5.3 Our payment scheme (5.2) is strategyproof and minimum among all truthful payment
schemes based on VMST structure.

Instead of proving Theorem 5.3, we prove Theorem 5.4, Theorem 5.5, and Theorem 5.6 in the remainder
of this subsection.

64 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

Before the proof of Theorem 5.3, we give some related notations and observations. Considering the
graph K (d) and a node partition {Qi , Q j } of Q, if an edge’s two end-nodes belong to different node sets
of the partition, we call it a bridge. All bridges qs qt over node partition Qi , Q j in the graph K (d) satisfying
vk
∈ LCP(qs , qt , d) form a bridge set B−vk (Qi , Q j , d). Among them, the bridge with the minimum length
is denoted as MB−vk (Qi , Q j , d) when the nodes’ declared cost vector is d . Similarly, all bridges qs qt over
node partition Qi , Q j in the graph K (d) satisfying vk ∈ LCP(qs , qt , d) form a bridge set Bvk (Qi , Q j , d).
The bridge in Bvk (Qi , Q j , d) with the minimum length is denoted as B Mvk (Qi , Q j , d). Obviously,
we have

BM(Qi , Q j , d) = min{BMvk (Qi , Q j , d), BM−vk (Qi , Q j , d)}.

We then state our main theorems for the payment scheme discussed above.

Theorem 5.4 Our payment scheme satisfies IR.

Proof First of all, if terminal vk is not chosen as a relay terminal, then its payment pk(d |k ck) is clearly
0 and its valuation is also 0. Thus, its utility uk(d |k ck) is 0.

When terminal vk is chosen as a relay terminal when it reveals its true cost ck , we have |LE(qi , q j , d |k

∞)| ≥ |LCP(qi , q j , d |k ck)|. This is due to the following observation: for any cycle C in a graph G , assume
ec is the longest edge in the cycle; then ec
∈ MST(G). The lemma immediately follows from

pk
i j (d |k ck) = |LE(qi , q j , d |k ∞)| − |LCP(qi , q j , d |k ck)| + ck > ck .

This finishes the proof. ✷

From the definition of the incentive compatibility (IC), we assume that the d−k is fixed throughout the
proof. For our convenience, we will use G(dk) to represent the graph G(d |k dk). We first prove a series of
lemmas that will be used to prove that our payment scheme satisfies IC.

Lemma 5.2 If vk ∈ qi q j ∈ VMST(d), then pi j
k (d) does not depend on dk.

Proof Remember that the payment based on a link qi q j is pi j
k (d) = |LE(qi , q j , d |k ∞)|−|LCP(qi , q j , d)|

+ dk . The first part LE(qi , q j , d |k ∞) is the longest edge of the unique path from qi to q j on tree
VMST(d |k ∞). Clearly, it is independent of dk . Now consider the second part LCP(qi , q j d) − dk . From
the assumption, we know that vk ∈ LCP(qi , q j , d), so the path LCP(qi , q j , d) remains the same regardless
of vk ’s declared cost dk . Thus, the summation of all terminals’ cost on LCP(qi , q j , d) except terminal vk

equals

|LCP(qi , q j , d |k 0)| = |LCP(qi , q j , d)| − dk .

In other words, the second part is also independent of dk . Now we can write the payment to a terminal vk

based on an edge qi q j as follows:

pi j
k (d) = |LE(qi , q j , d |k ∞)| − |LCP(qi , q j , d |k 0)|,

Here, terminal vk ∈ LCP(qi , q j , d) and qi q j ∈ VMST(d). ✷

If a terminal vk lies its cost ck upward, we denote the lied cost as ck . Similarly, if terminal vk lies its cost ck

downward, we denote the lied cost as ck . Let E k(dk) be the set of edges qi q j such that vk ∈ LCP(qi , q j , d)
and qi q j ∈ VMST(d) when terminal vk declares a cost dk . From lemma 5.2, the non-zero payment to vk is
defined based on E k(dk). The following lemma reveals the relationship between dk and E k(dk). The proof
of the lemma is omitted due to its simplicity.

Efficient Strategy-Proof Multicast in Selfish Wireless Networks 65

Lemma 5.3 E k(dk) ≤ E k(d ′
k).

We now state the proof that the payment scheme (5.2) satisfies IC.

Theorem 5.5 Our payment scheme satisfies the incentive compatibility (IC).

Proof For terminal vk , if it lies its cost from ck to ck , then E k(ck) ⊆ E k(ck), which implies that payment

pk(d |k ck) = max
qi q j ∈E k (ck)

pi j
k (d |k ck)

≤ max
qi q j ∈E k (ck)

pi j
k (d |k ck) = pk(d |k ck).

Thus, terminal vk will not lie its cost upward, so we focus our attention on the case when terminal vk lies
its cost downward. ✷

From lemma 5.3, we know that E k(ck) ⊆ E k(ck). Thus, we only need to consider the payment based
on edges in E k(ck) − E k(ck). For edge e = qi q j ∈ E k(ck) − E k(ck), let q k

I q k
J = LE(qi , q j , d |k ∞)

in the spanning tree VMST(d |k ∞). If we remove the edge q k
I q k

J , we have a vertex partition {Qk
I , Qk

J },
where qi ∈ Qk

I and q j ∈ Qk
J . In the graph K (d), we consider the bridge BM(Qk

I , Qk
J , d) whose weight

is minimum when the terminal cost vector is d . There are two cases to consider about BM(Qk
I , Qk

J , d):
(1) vk
∈ BM(Qk

I , Qk
J , d |k ck) or (2) vk ∈ BM(Qk

I , Qk
J , d |k ck). We discuss them individually.

Case 5.1 vk
∈ BM(Qk
I , Qk

J , d |k ck). In this case, edge q k
I q k

J is the minimum bridge over Qk
I and Qk

J .
In other words, we have |LE(qi , q j , |k∞)| ≤ |LCP(qi , q j , d |k ck)|. Consequently

pi j
k (d |k ck) = |LE(qi , q j , d |k ∞)| − |LCP(qi , q j , d |k ck)| + ck

= |LE(qi , q j , d |k ∞)| − |LCP(qi , q j , d |k ck)| + ck

≤ ck ,

which implies that vk will not get benefit from lying its cost downward.

Case 5.2 vk ∈ BM(Qk
I , Qk

J , d |k ck). From the assumption that qi q j
∈ VMST(G(d |k ck)), we
know edge qi q j cannot be BM(Qk

I , Qk
J , d |k ck). Thus, there exists an edge qs qt
= qi q j such that

vk ∈ LCP(qs , qt , d |k ck) and qs qt = BM(Qk
I , Qk

J , d |k ck). This guarantees that qs qt ∈ VMST(d |k ck).

Obviously, qs qt cannot appear in the same set of Qk
I or Qk

J . Thus, q k
I q k

J is on the path from qs to qt in graph
VMST(d |k ∞), which implies that |LCP(q k

I , q k
J , d |k ∞)| = |LE(qi , q j , d |k ∞)| ≤ |LE(qs , qt , d |k ∞)|.

Using lemma 5.3, we have LCP(qs , qt , d |k ck) ∈ VMST(d |k ck)). Thus,

pi j
k (d |k ck) = |LE(qi , q j , d |k ∞)| − |LCP(qi , q j , d |k ck)| + ck

= |LE(qi , q j , d |k ∞)| − |LCP(qi , q j , d |k ck)| + ck

≤ |LE(qs , qt , d |k ∞)| − |LCP(qi , q j , d |k ck)| + ck

≤ |LE(qs , qt , d |k ∞)| − |LCP(qs , qt , d |k ck)| + ck

= ps t
k (d |k ck).

This inequality concludes that even if vk lies its cost downward to introduce some new edges in E k(ck),
the payment based on these newly introduced edges is not larger than the payment on some edges already
contained in E k(ck). In summary, node vi does not have the incentive to lie its cost upward or downward,
which proves the IC property.

66 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

Before proving Theorem 5.6, we prove the following lemma regarding all truthful payment schemes
based on VMST.

Lemma 5.4 If vk ∈ VMST(d |k ck), then as long as dk < pk(d |k ck) and d−k fixed, vk ∈ VMST(d).

Proof Again, we prove it by contradiction. Assume that vk
∈ VMST(d). Obviously, VMST(d) =
VMST(d |k ∞). Assume that pk(d |k ck) = pi j

k (d |k ck); that is, its payment is computed based on edge
qi q j in VMST(d |k ck). Let qI q J be the LE(qi , q j , d |k ∞) and {Qi , Q j } be the vertex partition introduced
by removing edge qI q J from the tree VMST(d |k ∞), where qi ∈ Qi and q j ∈ Q j . The payment to terminal
vk in VMST(d |k ck) is pk(d |k ck) = |LCP(qI , q J , d |k ∞)| − c vk

i j , where c vk
i j = |LCP(qi , q j , d |k 0|.

When vk declares its cost as dk , the length of the path LCP(qi , q j , d) becomes c vk
i j + dk = |LCP(qI , q J , d |k

∞)| − pk(d |k ck) + dk < |LCP(qI , q J , d |k ∞)|.
Now consider the spanning tree VMST(d). We have assumed that vk
∈ VMST(d), that is, VMST(d) =

VMST(d |k ∞). Thus, among the bridge edges over Qi ,Q j , edge qI q J has the least cost when the graph
is G\vk or G(d |k dk). However, this is a contradiction to what we just proved: |LCP(qi , q j , d |k dk)| <

|LCP(qI , q J , d |k ∞)|. This finishes the proof. ✷

We are now ready to show that our payment scheme is optimal among all truthful mechanisms using
VMST.

Theorem 5.6 Our payment scheme is the minimum among all truthful payment schemes based on the
VMST structure.

Proof We prove it by contradiction. Assume that there is another truthful payment scheme, say A,
based on VMST, whose payment is smaller than our payment for a terminal vk under a cost profile d .
Assume that the payment calculated byA for terminal vk is p̃k(d) = pk(d)−δ, where pk(d) is the payment
calculated by our algorithm and δ > 0.

Now consider another profile d |k d ′
k , where the terminal vk has the true cost ck = d ′

k = pk(d) − δ
2 .

From lemma 5.4, we know that vk is still in VMST(d |k d ′
k). Using lemma 5.1, we know that the payment

for terminal vk using algorithmA is pk(c) − δ, which is independent of terminal vk ’s declared cost. Notice
that dk = pk(d) − δ

2 > pk(d) − δ. Thus, terminal vk has negative utility under the payment scheme A
when node vk reveals it true cost under cost profile d |k d ′

k , which violates the incentive compatibility (IC).
This finishes the proof. ✷

By summarizing Theorem 5.4, Theorem 5.5, and Theorem 5.6, we obtain Theorem 5.3.

5.3.3 Strategyproof Mechanism Based on Spider

For a general node weighted network, in the worst case, the cost of the structure LCPS and VMST could
be θ(n) times the cost of the optimal tree. It is known10,12 that it is NP-hard to find the minimum cost
multicast tree when given an arbitrary node weighted graph G , and it is at least as hard to approximate as
the set cover problem. Klein and Ravi12 showed that it can be approximated within O(ln r), where r is the
number of receivers, which is within a small constant factor of the best achievable approximation ratio
among all polynomial time computable trees if N
= NP.

5.3.3.1 Constructing the Spider

Here we review the method used by Klein and Ravi12 to find a node weighted Steiner tree (NST). Klein
and Ravi used a special structure called a spider to approximate the optimal solution. A spider is defined
as a tree having at most one node of degree more than two. Such a node (if it exists) is called the center of
the spider. Each path from the center to a leaf is called a leg. The cost of a spider S is defined as the sum of
the cost of all nodes in spider S, denoted as ω(S). The number of terminals or legs of the spider is denoted

Efficient Strategy-Proof Multicast in Selfish Wireless Networks 67

v2k-1

v2k-2vk+ivk

qk-1
qiq1

s

FIGURE 5.3 Terminals Vi , 1 ≤ i ≤ k are receivers; the cost of terminal v2k−1 is 1. The cost of each terminal
vi , k ≤ i ≤ 2k2 is 2

2k − i − ε, where ε is a sufficiently small positive number.

by t(S), and the ratio of a spider S is defined as

ρ(S) = ω(S)

t(S)
.

Contraction of a spider S is the operation of contracting all vertices of S to form one virtual terminal
and connecting this virtual terminal to each vertex v when uv is a link before the contraction and u ∈ S.
The new virtual terminal has weight zero.

Algorithm 5.3

Construct NST.

Repeat the following steps until no receivers are left and there is only one virtual terminal remaining.

1. Find the spider S with the minimum ρ(S) that connects some receivers and virtual terminals.∗

2. Contract the spider S by treating all nodes in it as one virtual terminal. We call this one round.

All nodes belong to the final unique virtual terminal to form the NST.
The following theorem is proved in Klein and Ravi.12

Theorem 5.712 Given k receivers, the tree constructed above has cost at most 2 ln k times of the optimal.

5.3.3.2 VCG Mechanism on NST Is Not Strategyproof

Again, we may want to pay terminals based on the VCG scheme; that is, the payment to a terminal
vk ∈ NST(d) is

pk(d) = ω(NST(d |k ∞)) − ω(NST(d)) + dk .

We show by example that the payment scheme does not satisfy the IR property: it is possible that some
terminal has negative utility under this payment scheme. Figure 5.3 illustrates such an example. It is not
difficult to show that, in the first round, terminal vk is selected to connect terminals s and q1 with cost ratio
1
k − ε

2 (while all other spiders have cost ratios of at least 1
k). Then, terminals s , vk , and q1 form a virtual

∗For simplicity of the proof, we assume that there does not have to be two spiders with the same ratio. Dropping
the assumption will not change our results.

68 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

terminal. At the beginning of round r , we have a virtual terminal, denoted by Vr formed by terminals
vk+i−1, 1 ≤ i ≤ r − 1, and receivers qi , 1 ≤ i ≤ r ; all other receivers qi , r < i ≤ k are the remaining
terminals. It is easy to show that we can select terminal qk+r−1 at round r to connect Vr and qr+1 with cost

1
k+1−r − ε

2 . Thus, the total cost of the tree NST(G) is
∑k−1

i=1 (2
k+1−i − ε) = 2H(k) − 2 − (k − 1)ε.

When terminal vk is not used, it is easy to see that the final tree NST(G\u1) will only use the terminal
v2k−1 to connect all receivers with cost 1

k when 1
k−1 − ε

2 > 1
k . Notice that this condition can be trivially satis-

fied by letting ε = 1
k2 . Thus, the utility of terminal vk is p1(d) − c(vk) = ω(NST(G\vk)) −ω(NST(G)) =

−2H(k) + 3 + (k − 1)ε, which is negative when k ≥ 8 and ε = 1/k2.

5.3.3.3 Strategyproof Mechanism on Spiders

Notice that the construction of NST is by rounds. Following, we show that if terminal vk is selected as part
of the spider with the minimum ratio under a cost profile d in a round i , then vk is selected before or in
round i under a cost profile d ′ = d |k d ′

k for d ′
k < dk . We prove this by contradiction, which assumes that

the terminal vk will not appear before round i +1. Notice that the graph remains the same for round i after
the profile changes, so spider Si (d) under the cost profile d is still a valid spider under the cost profile d ′.
Its ratio becomes ωk

i (d) − dk + d ′
k < ωk

i (d), while all other spider ratios remain the same if they do not
contain vk . Thus, the spider Sk

i (d) has the minimum ratio among all spiders under cost profile d ′, which
is a contradiction. So, for terminal vk , there exists a real value Bi

k(d−k) such that the terminal vk is selected
before or in round i iff dk < Bi

k(d−k). If there are r rounds, we have an increasing sequence

B1
k (d−k) ≤ B2

k (d−k) ≤ · · · ≤ Br
k (d−k) = Bk(d−k).

Obviously, the terminal vk is selected in the final multicast tree iff dk < Bk(d−k). Following is our payment
scheme based on NST.

Definition 5.2 For a node vk , if vk is selected in NST, then it gets payment

pk(d) = Bk(d−k). (5.3)

Otherwise, it gets payment 0.

Regarding this payment, we have the following theorem.

Theorem 5.8 Our payment scheme (5.3) is truthful, and is minimum among all truthful payment schemes
for multicast trees based on spider.

Proof To prove that it is truthful, we prove that it satisfies IR and IC, respectively. Notice that vk is
selected iff dk < Bi

k(d−k), and we have uk(d) = Bk(d−k) − dk > 0, which implies IR. Now we prove
that our payment scheme (5.3) satisfies IC by cases. Notice that when vk is selected, its payment does not
depend on dk , so we only need to discuss the following two cases:

Case 5.1 When vk declares ck , it is not selected. What happens if it lies its cost upward as dk to make it
not selected? From the IR property, vk gets positive utility when it reveals its true cost, while it gets utility 0
when it lies its cost as dk . So, it better for vk not to lie.

Case 5.2 When vk declares a cost ck , it is not selected. What happens if it lies its cost downward as
dk to make it selected? When vk reveals ck , it has utility 0; after lying, it has utility Bk(d−k) − ck . From
the assumption that vk is not selected under cost profile d |k ck , we have Bk(d−k) ≤ ck . Thus, vk will get
non-positive utility if it lies, which ensures vk revealing its true cost ck .

So overall, vk will always choose to reveal its actual cost to maximize its utility (IC property).

Efficient Strategy-Proof Multicast in Selfish Wireless Networks 69

Following we prove that our payment is minimal. We prove it by contradiction. Suppose that there exists
such a payment scheme P̃ such that for a terminal vk under a cost profile d , the payment to P̃i (d) is smaller
than our payment. Notice that in order to satisfy the IR, the terminal must be selected, so we assume
P̃i (d) = Bk(d−k) − δ, where δ is a positive real number. Now consider the profile d ′ = d |k (Bk(d−k) − δ

2)
with vk ’s actual cost being ck = Bk(d−k) − δ

2 . Obviously, vk is selected; from lemma 5.1, the payment to
vk is Bk(d−k) − δ. Thus, the utility of vk becomes uk(d ′) = Bk(d−k) − Bk(d−k) − δ + δ

2 = − δ
2 < 0, which

violates the IR property. This finishes our proof. ✷

We then study how to compute such payment to a selected node vk . With Theorem 5.8, we only need
to focus attention on how to find the value Bi

k(d−k). Before we present our algorithm to find Bi
k(d−k), we

first review in detail how to find the minimum ratio spider. To find the spider with the minimum ratio,
we find the spider centered at every vertex v j with the minimum ratio over all vertices v j ∈ V and choose
the minimum among them. The algorithm is as follows.

Algorithm 5.4

Find the minimum ratio spider.

Do the following process for all v j ∈ V :

1. Calculate the shortest path tree rooted at v j that spans all terminals. We call each shortest path a
branch. The weight of the branch is defined as the length of the shortest path. Here, the weight of
the shortest path does not include the weight of the center node v j of the spider.

2. Sort the branches according to their weights.
3. For every pair of branches, if they have terminals in common, then remove the branch with a larger

weight. Assume that the remaining branches are

L (v j) = {L 1(v j), L 2(v j), · · · , L r (v j), }
sorted in ascending order of their weights.

4. Find the minimum ratio spider with center v j by linear scanning: the spider is formed by the first
t branches such that

c j +
t
k=1 L k

t ≤ c j +
h
k=1 L k

h for any h
= t.
Assume the spider with the minimum ratio centered at terminal v j is S(v j) and its ratio is ρ(v j).

5. The spider with minimum ratio for this graph is then S = minv j ∈V S(v j).

In Algorithm 5.5, ω(L i (v j)) is defined as the sum of the terminals’ cost on this branch, and �i (L (v j)) =

i

s=1ω(L s (v j))+c j . If we remove node vk , the minimum ratio spider with center v j is denoted as S−vk (v j)
and its ratio is denoted as ρ−vk (v j). Assume that L−vk

1 (v j), L−vk
2 (v j), · · · , L−vk

p (v j) are those branches in
ascending order before linear scan.

From now on, we fix d−k and the graph G to study the relationship between the minimum ratio ρ(v j)
of the spider centered at v j and the cost dk of a node vk .

Observation 5.1 The number of the legs of the minimum ratio spider decreases over dk.

If the minimum ratio spider with the terminal vk has t legs, then its ratio will be a line with slope of 1
t . So,

the ratio-cost function is formed by several line segments. From the Observation 5.1, these line segments
have decreasing slopes and thus they have at most r segments, where r is the number of receivers. So, given
a real value y, we can find the corresponding cost of vk in time O(log r) such that the minimum cost ratio
spider S(v j) centered at node v j has a ratio y. We the present our algorithm to find these line segments
as follows.

Algorithm 5.5

Find the ratio-cost function y = Rv j (x) over the cost x of vk .

There are two cases here: j = k or j
= k.

70 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

Case 5.1 j = k, we apply the following procedures:

Apply steps 1, 2, and 3 of Algorithm 5.4 to get L (vk).
Set the number of legs to t = 1, lower bound lb = 0, and upper bound ub = 0.

While t < r do the following:
{ub = (t + 1) ∗ ω(L t+1(vk)) − �t+1(L (vk))
y = �t (L (vk))+x

t for x ∈ [lb, ub)
Set lb = ub and t = t + 1 }

Let y = �r (L (vk))+x
r for x ∈ [lb, ∞).

Case 5.2 j
= k, we apply the following procedures:

1. Remove terminal vk ; apply Algorithm 5.4 to find S−vk (v j).
2. Find the shortest path with terminal vk from v j to every receiver; sort these paths according to their

length in descending order, say sequence

L vk (v j) = {
L vk

1 (v j), L vk
2 (v j), · · · , L vk

r (v j)
}
.

Here, r is the number of terminals and ω(L vk
i (v j)) is the sum of terminals on path L vk

i (v j) excluding
terminal vk .

3. Hereafter, t is the index for branches in L vk (v j) and l is the index for paths in L−vk (v j).
4. For L vk

t (v j) (1 ≤ t ≤ r), there may exist one or more branches in L−vk (v j) such that they have
common terminals with L vk

t (v j). If there is more than one such branch, choose the branch with the
minimum cost, say L−vk

l (v j). We define upper bound uppert for L vk
t (v j) equal to ω(L−vk

l (v j)) −
ω(L vk

t (v j)). If there does not exist such a branch, we set uppert = ∞.
5. Initialize lower bound lb = 0 and upper bound ub = 0. Apply the following algorithm:

For t = 1 to r do {
While lb < uppert do

Set l = 1.
Obtain a new sequence L T−vk (v j) from L−vk (v j) by removing all branches that have
common nodes with L vk

t (v j). Let r t be the number of branches in sequence L T−vk (v j).
While l ≤ rt do

While ω(L vk
t (v j) + lb > lω(L T−vk

l (v j)) − �l−1(L T−vk (v j)) − c j and l ≤ r t
l = l + 1

If l ≤ r t then
Set ub = ω(L T−vk

l (v j)) − �l−1(L T−vk (v j)) − ω(L vk
t (v j) − c j

If ub ≥ uppert break;

Set y = �l−1(L T−vk (v j))+ω(L T
vk

t (v j))+x
l for x ∈ [lb, ub)

Set lb = ub.
Set l = l + 1.

Set y = �l−1(L T−vk (v j))+ω(L
vk
t (v j))+x

l for x ∈ [lb, uppert).
Set lb = uppert .

}

Given a real value x , the corresponding cost for terminal vk is denoted asR−1
v j

(x). Finally, we give the
algorithm to find value Bk(d−k).

Algorithm 5.6

Algorithm to find Bk(d−k).

1. Remove the terminal vk and find the multicast tree using the spider structure.
2. For every round i in the first step, we have a graph called G i and a selected spider with ratio ρ

−vk
i .

Adding the node vk and all its incident edges to G i , we get a graph G ′
i .

Efficient Strategy-Proof Multicast in Selfish Wireless Networks 71

3. Find the function y = R−1
v j

(x) for every terminal v j in the graph G ′
i using Algorithm 5.5.

4. Calculate Br
k (d−k) = maxv j ∈V(G ′

i){R−1
v j

(ρ−vk
i)}.

5. Bk(d−k) = max1≤i≤r B i
k(d−k).

The correctness of our algorithms is omitted due to space limitations. Notice that for practical im-
plementations, we do not actually have to compute the functions. We are more interested in given some
value y, what is the corresponding cost dk such that the minimum ratio spider centered at the node vk has
a ratio y.

UDG LCPS

VMST NST

FIGURE 5.4 Multicast structures for node weighted network.

72 Theoretical and Algorithmic Aspects of Sensor, Ad Hoc, and P2P Networks

100 150 200 250 300 350
0

200

400

600

800

1000

1200

1400

1600

1800

2000

number of nodes

Average network cost/payment

av
er

ag
e

ne
tw

or
k

co
st

/p
ay

m
en

t

Cost of LCPS
Cost of VMST
Cost of NST
Pay of LCPS
Pay of VMST
Pay of NST

100 150 200 250 300 350
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

number of nodes

av
er

ag
e

ov
er

pa
ym

en
t r

at
io

LCPS
VMST
NST

Average overpayment ratio

FIGURE 5.5 Results when the number of nodes in the networks are different (from 100 to 320). Here, we fix the
transmission range at 300 ft.

