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Series Foreword

The Information Processing Society of Japan (IPSJ) is the top academic institution in the information
processing field in Japan. It has about thirty thousand members and promotes a variety of research and
development activities covering all aspects of information processing and computer science.

One of the major activities of the society is publication of its transactions containing papers covering all
the fields of information processing, including fundamentals, software, hardware, and applications. Some of
the papers are published in English, but because the majority are in Japanese, the transactions are not
suitable for non-Japanese wishing to access advanced information technology in Japan. IPSJ therefore
decided to publish a book series titled “Advanced Information Technology in Japan.”

The series consists of independent books, each including a collection of top quality papers, from mainly
Japanese sources of a selected area in information technology. The book titles were chosen by the
International Publication Committee of IPSJ so that they enable easy access to information technology from
international readers. Each book contains original papers and/or those updated or translated from original
papers appearing in the transactions or internationally qualified meetings. Survey papers to aid
understanding of the technology in Japan in a particular area are also included.

As the chairman of the International Publication Committee of IPSJ, I sincerely hope that the books in the
series will improve communication between Japanese and non-Japanese specialists for their mutual benefit.

Tadao Saito
Series Editor

Chairman
International Publication Committee

the Information Processing Society of Japan 



Preface

Research and development activities related to Lisp have been quite active in Japan. Many Lisp languages
and many Lisp processors have been designed and developed here.

There were three booms in Lisp research; in the early seventies, in the mid-eighties, and in the late-
eighties. During the first boom, some experimental Lisp systems were developed, and some also came to be
practically used. At that time, available computing power and memory space were small, as was the Lisp
community. The second boom was triggered by the explosion of interest in AI, which was partly due to the
Fifth Generation Computer System Project in Japan. Although the FGCS project advocated Prolog as a
primary AI language, Lisp also shared the attention paid to AI research.

The third boom was caused by the emergence of Common Lisp. Available computing power and memory
space increased greatly, and the Lisp community also became larger. Many Lisp systems were developed at
this time. In particular, KCL (Kyoto Common Lisp) has been used not only in Japan but also in the world.
Major research and development activities up to 1990 were reported in the special section on “Lisp systems
in Japan” of Journal of Information Processing (vol.13, no.3, 1990).

Recently many parallel and distributed processors are available both experimentally and commercially,
which prompts academia and industry to do research in parallel and distributed processing. This book
focuses on recent activities, including parallel and distributed Lisp systems, memory managements for those
systems and other related topics.

The papers in this book are organized into groups by subject:

Part I: Parallel and Distributed Lisp Systems
Part II: Language Features
Part III: Memory Management
Part IV: Programming Environments

The papers in Part I report contributions to Lisp system design and implementation on a wide variety of
parallel and distributed computing environments, such as SMPs, distributed-memory parallel machines,
SIMD machines, and network-connected workstations. These systems attempt various strategies to provide
the base system with constructs for parallel computation, from low-level communication primitives to high-
level semi-automatic parallelizing constructs.



Most language features proposed in the papers in Part II are related with parallel and distributed Lisp
processors. Included features are: evaluation strategy for parallel symbolic computation, extension of first-
class continuations for parallel Scheme systems, and light-weight process for real-time symbolic
computation. The last paper in Part II proposes restricted but efficient first-class continuations.

Part III of this book consists of papers on memory management and garbage collection. Topics in these
Papers are: parallel garbage collection for parallel Lisp systems, hybrid incremental garbage collection for
parallel Lisp systems, garbage collection for Lisp systems on SIMD architectures, and stop-and-collect type
of garbage collection with sliding rather than copying.

Papers in Part IV are related with programming environment. The first paper handles system’s
management of Lisp macros. The second paper proposes user interface for Lisp printers.

As will be clear from the collection of papers in this book, the main interest of Lisp research in Japan has
been on parallel and distributed processing. The current movement is to develop new application areas,
which requires high productivity, dynamic features, and efficiency of Lisp in the information network
society, though it is too early to include papers along this movement in this book.

Taiichi Yuasa
Hiroshi G.Okuno
Kyoto and Tokyo

At the beginning of the 21st Century 
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1
A Multi-Threaded Implementation of PaiLisp Interpreter
and Compiler Using the Steal-Help Evaluation Strategy

Takayasu Ito
Shin-ichi Kawamoto
Masayoshi Umehara

Department of Computer and Mathematical Sciences
Graduate School of Information Sciences

Tohoku University, Sendai, Japan

ABSTRACT

PaiLisp is a parallel Lisp language with a rich set of concurrency constructs like pcall, pbegin, plet,
pletrec, par-and, pcond and future, and an extended call/cc is introduced to support P-continuation.
The Eager Task Creation (ETC, for short) is a commonly-used implementation strategy for
concurrency constructs. But ETC incurs excessive process creation which causes degradation of
performance in parallel evaluation of a program parallelized using concurrency constructs. The Steal-
Help Evaluation (SHE, for short) is introduced as an efficient parallel evaluation strategy which
enables to suppress excessive process creation. This paper explains a multi-threaded implementation
of PaiLisp interpreter and compiler, in which the ETC and SHE strategies for PaiLisp concurrency
constructs are realized. Some experimental results of using a set of benchmark programs show that the
SHE strategy is more efficient than the ETC strategy.

1
Introduction

There are several parallel Scheme languages like Multilisp3) and PaiLisp8), designed for shared memory
architectures. Multilisp may be considered to be a minimal extension of Scheme into concurrency,
introducing an interesting concurrency construct future. PaiLisp is an extension of Scheme with a rich set
of concurrency constructs like pcall, pbegin, plet, pletrec, pif, par-and, par-or, pcond and future.
PaiLisp may be considered to be a superset of Multilisp as a parallel Scheme language. A PaiLisp
interpreter was implemented using the Eager Task Creation (ETC, for short) as reported in the reference
10). ETC is a commonly-used technique in implementing various parallel programming languages, but it
usually incurs a serious problem of excessive process creation, in particular, in evaluating a recursively-
defined parallel program. Under the ETC strategy it often occurs that for a given sequential program its
parallelized version runs slower than the original sequential one. This is because when a concurrency
construct is encountered the ETC strategy creates processes specifiied by it without any concern of
availability of processors. The Steal-Help Evaluation (SHE, for short) is proposed as an efficient evaluation
strategy of concurrency constructs in parallel Scheme systems15, 16). SHE enables to suppress excessive
process creation, since it creates processes only when an idle processor is available in evaluating an



expression annotated by a concurrency construct. A multi-threaded implementation of PaiLisp interpreter
and compiler using the SHE strategy is implemented on a DEC7000 with six Alpha processors under OSF/1
OS. This paper explains a multi-threaded implementation of PaiLisp interpreter and compiler, called
PaiLisp/MT, in which the ETC and SHE strategies are realized. Some experimental results of PaiLisp/MT
are also given, using a set of benchmark programs, and they show that the SHE strategy is actually effective
and efficient as a parallel evaluation strategy.

2
PaiLisp

PaiLisp is designed as a parallel Scheme language with a rich set of concurrency constructs as follows.
The meanings of sequential constructs are same with those of Scheme1), and the meanings of concurrency

constructs are given so as to preserve meanings of their corresponding sequential ones15, 16). For example,
the meanings of pcall, pbegin, plet, pif, par-and and future are as follows.

(pcall f e1…en): After evaluating e1, …, en in parallel, f is evaluated, and its resultant value is applied to
the values of e1, …, en.

(pbegin e1…en): e1, …, en are evaluated in parallel, and after their termination the value of en are returned
as the value of this pbegin expression.

(plet ((x1 e1)…(xn en)) E1…Em): After evaluating e1, …, en in parallel and binding their values to the
corresponding variables, the environment is extended with these bindings. Then under the extended
environment E1, …, Em are evaluated in parallel, and after their termination the value of Em is returned as
the value of this plet expression.

(pif e1 e2 e3): The expressions e1, e2 and e3 are evaluated in parallel, and when the value of e1 becomes
true the value of e2 is returned, killing (that is, forcing termination of) evaluation of e3, and when the value
of e1 becomes false the value of e3 is returned, killing evaluation of e2. 

Figure 1: Syntax of PaiLisp
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(par-and e1…en): e1, …, en are evaluated in parallel, and if one of them yields false then false is returned,
killing all the remaining processes created in evaluating e1, …, en. If none of e1, …, en yields false then the
value of en is returned.

(future e): When this expression is encountered the future-value for e is returned, and a new child
process of evaluating e is created. The evaluation on the parent process is continued, using the future-value
for e. When the true value of the future-value for e is required, the force operation is performed to obtain it.

PaiLisp is featured in introducing a parallel construct corresponding to each sequential Scheme construct,
and in addition, PaiLisp-Kernel is extracted. PaiLisp-Kernel=Scheme+{spawn, suspend, exlambda, call/
pcc} is a small subset of PaiLisp, in which the meanings of other PaiLisp constructs can be expressed8).

3
Outline of PaiLisp Interpreter and Compiler

In this section we outline PaiLisp/MT, a multi-threaded implementation of PaiLisp interpreter and compiler
realized on a DEC7000 with six Alpha processors using the P-thread library of OSF/1 OS. PaiLisp/MT is
implemented using the Register Machine (RM) model of Abelson and Sussman1), and the ETC and SHE
strategies are used in evaluating concurrency constructs of PaiLisp. The PaiLisp interpreter is a parallel
evaluator which consists of six sequential Scheme interpreters under a shared memory, and the PaiLisp
compiler is a compiler to translate a PaiLisp program into the corresponding concurrent RM program, which
is eventually translated into the corresponding C program. The resultant compiled C program is executed
under the run-time mechanism equipped to PaiLisp/MT. Thus, PaiLisp/MT consists of the following.

(1) PaiLisp/MT is implemented on a DEC7000 with six Alpha processors using the P-thread library of
OSF/1 OS.

(2) PaiLisp/MT is realized, using the RM model, in which an evaluator (Evaluator) resides, and each RM
is realized as a thread of P-thread library of OSF/1 OS. Note that the RM used in PaiLisp/MT is
extended to include several registers and their related commands to handle concurrency constructs.

(3) PaiLisp/MT is organized as Figure 2 (a), and its interpreter is a parallel Scheme interpreter, whose
evaluator (Evaluator) resides in each RM. The Evaluator consists of five modules as shown in
Figure 2 (b).

(4) In the Evaluator of PaiLisp/MT three parallel evaluation strategies are implemented in the parallel
construct module to support the ETC, SHE and LTC strategies. Note that the LTC submodule is
applicable only to an expression annotated by future.

(5) The SST (Stealable Stack) is introduced to implement and support the SHE strategy; that is, the SST is
equipped into each RM as shown in Figure 2 (a).

(6) The PaiLisp/MT compiler is designed to be a compiler linked to the PaiLisp interpreter to support its
run-time routine; that is, compiled codes of a PaiLisp program are executed, linking to the PaiLisp/MT
interpreter.

(7) The PaiLisp compiler translates a PaiLisp program into a RM program, which will be eventually
translated into the corresponding C program for evalation.

(8) Parallel evaluation strategies equipped in PaiLisp/MT are ETC and SHE, and in addition the LTC
(Lazy Task Creation) strategy is realized for the future construct to compare the SHE-based future and
the LTC-based future.
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3.1
Register Machine Model and Behaviors of PaiLisp/MT

Each RM is an extended version of the Abelson-Sussman Register Machine1), consisting of registers, stacks
and an evaluator, as shown in Figure 2. In addition to the val, fun, env, argl, cont, exp and unev registers, two
registers for the compiler are introduced; the process register, which is an internal register to keep record of
the current process-id, and the argcount register to record the number of argument expressions. The
environment in each RM will be updated in deep-binding. The set of RM commands is given in Appendix;
they are extended from that of Abelson-Sussman’s RM model so as to accommodate PaiLisp’s facilities in
compilation. 
Under the ETC strategy the PaiLisp/MT interpreter works as follows. Six RMs will be executed in parallel,
running each RM on the corresponding processing element (PE). When an expression containing a
concurrency construct is evaluated new concurrent processes will be created. The newly created processes
will be stored into the New Queue. If an idle processor is available a process in the New Queue will be
executed. When a suspended process is resumed for execution, it will be stored into the Resume Stack. An
idle RM checks the Resume Stack, and if there is any PaiLisp process the RM gets a process from the
Resume Stack for evaluation. If there is no process in the Resume Stack then the RM checks the content of
the New Queue, and if there exist any PaiLisp processes the RM gets a process from the New Queue for
evaluation. The RMs share a heap area for their evaluation. In the case of the SHE strategy the SST will be
used instead of the New Queue in process creation, as is explained below.

The PaiLisp/MT compiler translates a source PaiLisp program into the corresponding RM program,
which will be translated into the C program. The compiled object code of the resultant C program will be
executed under the run-time routines equipped to the PaiLisp/MT interpreter. The run-time routines consist
of the codes for primitive functions, function application, process management and code-loading.

3.2
Evaluator of the PaiLisp/MT interpreter

The Evaluator that resides in each RM is a Scheme interpreter, consisting of five modules; eval, apply,
primitive, construct, and parallel construct. Note that the parallel construct module consists of three

Figure 2: Organization of PaiLisp/MT
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modules, the ETC, SHE and LTC modules to realize parallel evaluation of PaiLisp expressions. Among six
RMs there is one RM, called the Master Processor, equipped with Reader and Printer. Other processors,
called the Slave Processor, are those obtained from the Master Processor, removing Reader and Printer.

The PaiLisp/MT interpreter is realized as a system with multiple evaluation strategies; the sequential
evaluation, ETC and SHE. Similarly, the PaiLisp/MT compiler is realized as a system with the multiple
evaluation strategies.

4
The Steal-Help Evaluation Strategy and Its Implementation in the PaiLisp/MT

Interpreter

The Steal-Help Evaluation (SHE) strategy15, 16) is an efficient parallel evaluation strategy that can suppress
excessive process creation. In the SHE strategy a processor called the home processor starts evaluating a
parallel expression in a sequential evaluation mode, obtaining an expression from the top of the Stealable
Stack (SST), while an idle processor steals and evaluates an expression, obtaining it from the bottom of the
SST. The SHE strategy for (pcall f e1…en) works as follows.

A processor called the home processor that invoked (pcall f e1…en) starts evaluating e1, and after
evaluating e1 the home processor proceeds to evaluating an expression obtaining a pair of an expression and
its shared object from the top of the SST sequentially, while an idle processor called the helper steals a pair
of an expression and its shared object from the bottom of the SST, and the stolen expression will be
evaluated under the environment contained in the shared object. Note that when a parallel expression like
(pcall f e1…en) is nested in another parallel expression it may be stolen by an idle processor, which will
become a home processor of the stolen expression.

The SHE strategy for a parallel expression consists of the sequential evaluation mode and the steal-help
evaluation mode15, 16). Before explaining these two modes we explain about the stealable stack and the
shared object, required in correct implementation of the SHE strategy.

Stealable Stack

The Stealable Stack (SST, for short) with the pointers top and bottom is equipped in each RM, and a slot of
the SST is formed from a pointer to an expression and a pointer to a shared object. An idle processor (a
helper) will obtain a pair of an expression and a shared object from the bottom of the SST of the home
processor. The helper’s action of obtaining the pair is called a stealing action.

Shared Object

A shared object (SO, for short) is necessary for correct evaluation of an expression stolen from the SST by
a helper. A shared object is formed from (a pointer to) the environment, together the name of the current
concurrency construct, the name of the process that invoked the current parallel expression, the counter of
counting the number of unevaluated expressions, and a mutex variable of a thread for exclusive access to
the counter. 
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4.1
SHE-based Implementation of pcall

The SHE strategy consists of two evaluation modes, the sequential evaluation mode and the steal-help
evaluation mode. We explain here how the SHE strategy for pcall is implemented in the PaiLisp/MT
interpreter.

(1) Sequential evaluation mode for (pcall f e1…en)
When RMi encounters (pcall f e1…en) for evaluation, the RMi becomes the home processor for this pcall

expression, and its evaluation is performed in the sequential evaluation mode as follows.

1: create a shared object SO;
2: store the expressions e2, …, en together with their shared object SO into the SSTi in the order of placing

(en . SO) at the bottom towards (e2 . SO) at the top;
3: evaluate e1 with the SO on the home processor, and store the resultant value into the first place of the

arg list;
4: counter :=counter–1;
5: while (counter > 0)
6: if (SSTi is not empty)
7: then get an argument expression from the SSTi pointed by topi;

     evaluate it;
     save the resultant value into the corresponding arg list;
     counter:=counter–1;

8: else wait until completion of handling all the argument expressions;
9: evaluate f, and apply its resultant value to the values of the argument expressions stored in the arg list;

10: return the resultant value to the val register of RMi.

(2) Steal-help evaluation mode for (pcall f e1…en)
A processor RMj would become idle after completion of evaluating expressions, and also it would

become idle by suspension of evaluation. Such an idle processor RMj can perform the following actions in
evaluating an expression.

(a) if there exist any processes in the Resume Stack (RS) then a process in the RS is evaluated on the RMj
until no process becomes available from the RS; otherwise, the following steal-help evaluation mode is
performed.

(b) the idle processor RMj will find a processor RMi whose SSTj is not empty, and the RMj performs the
following actions in the steal-help evaluation mode for the SSTi.

1: RMj will steal an expression and its shared object SO from the SSTi in RMi; 
2: RMj creates the process object for evaluating the expression stolen from SSTi;
3: RMj will evaluate the stolen expression, and the resultant value will be saved into the corresponding

place of the arg list in the RMj;
4: counter :=counter–1;
5: if (counter=0)
6: then resume the evaluation on RMi;
7: terminate the process of evaluating the stolen expression;
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The SST and its pointer organization is shown in Figure 3. The scheduling strategy in stealing an expression
from the RMs is the one like Round-Robin scheduling, designed so as to reduce access competition among
the RMs.

4.2
On SHE-based implementations of other concurrency constructs

Other PaiLisp concurrency constructs can be implemented, following the method explained in the
references 6) and 7), but some implementational considerations must be taken into account as in the case of
pcall. In this paragraph we give only some short comments on such implementations.

(1)
par and pbegin

These constructs can be easily implemented by modifying the SHE-based implementation of pcall. Their
implementations are slightly simpler than that of pcall, since there is no need of implementing function
application.

(2)
plet and pletrec

Note that local bindings in these constructs are performed sequentially, because the cost of local binding is
much smaller than the cost of a stealing action, which is the cost of process creation in the ETC strategy.
See below for the cost in the PaiLisp/MT interpreter.

(3)
par-and, par-or and pif

The argument expressions in these concurrency constructs are evaluated in parallel. In the case of the par-
and expression, when the value of one of the argument expressions becomes false, the value of the entire
expression will become false, and the rest of computation at the point is killed by a kill signal sent from the
RM which evaluated the corresponding argument expression. An actual killing action is realized by sending/

Figure 3: SST and its pointer organization
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receiving a kill signal. The similar arguments hold for the par-or expression, replacing false into true. The
costs of sending and receiving a kill signal are 11 [µsec] and 16 [µsec], respectively, in the PaiLisp/MT
interpreter, pif is a parallelization of if that the argument expressions e1, e2, e3 are evaluated in parallel; they
are evaluated as if (pbegin e1 e2 e3) is evaluated in the SHE strategy with the following modification. e2 and
e3 are stored into the SSTi of RMi together with their shared object SO, and then the RMi starts evaluating
the expression e1. If the value of e1 is false then the following actions are taken. If the values of e2 and e3 are
obtained then the value of e3 is returned else if e2 is stolen and evaluated by an idle processor then a kill
signal is sent to the processor of evaluating e2. After evaluating e3 its resultant value is returned as the value
of the pif expression. If the value of e1 is not false then the similar actions are taken for the expressions e2
and e3.

(4)
On other PaiLisp concurrency constructs

Other PaiLisp concurrency constructs are also realized, pcond and pcond# are implemented in a similar
manner with pif and par-and. Following the SHE-based implementation strategy of future given in the
reference 7), the SHE-based future is realized in the PaiLisp/MT interpreter, call/pcc and call/pep are the
extensions of the sequential call/cc and call/ep to support P-continuation, and they are implemented in the
manner explained in the reference 9) and 10).

4.3
Experimental Results of the PaiLisp/MT Interpreter

The PaiLisp/MT interpreter is a parallel Scheme system equipped with multiple evaluation strategies (ETC,
SHE, LTC, Sequential Evaluation), implemented on a DEC7000 system with six Alpha Processors under
OSF/1 OS. In this section we give some basic costs in the evaluation strategies implemented in the PaiLisp/
MT interpreter, and then we give some results of running several programs on the PaiLisp/MT interpreter. 

4.3.1
Basic costs in the PaiLisp/MT interpreter

• The cost of a Scheme primitive (a constant, a variable, and a quote expression) is smaller than 2 [µsec].
• The cost of applying a primitive Scheme function (like cons, car, cdr, +, −, =, null?, eq?, etc.) is about 5

[µsec].
• The cost of binding a value to a variable is about 2 [µsec], and the cost of forming a lambda closure is

about 2.2 [µsec].
• The cost of function application is about 5 [µsec].
• The cost of creating a shared object is 9 [µsec].
• The cost of stealing a pair of an expression and its shared object from SST is 70 [µsec], while the cost of

process creation in the ETC strategy is 60 [µsec].
• The cost of exclusive access to SST by the home processor is 11 [µsec], and the costs that a helper

accesses to the Resume Stack and to the SST of the home processor are about 4 [µsec].
• The cost of sending a kill signal is about 11 [µsec], and the cost of receiving a kill signal is about 16

[µsec].
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• The cost of creating a future-value is 15 [µsec], and the cost of the force operation to obtain an actual
value for a future-value is about 14 [µsec].

4.3.2
Running several programs on the PaiLisp/MT interpreter

The following programs1 were used for an experimental evaluation of the PaiLisp/MT interpreter.

Fibonacci (fib n), (pfib n), (ffibl n), (ffib2 n), (ffib3 n)
Tarai (tarai x y z), (ptarai x y z), (ftarai100 x y z),

(ftarai010 x y z), (ftarai001 x y z), (ftarai110 x y z),
(ftarai101 x y z), (ftarai011 x y z), (ftarai111 x y z)

Merge sort (msort d), (pmsort d), (fmsort d)
N Queen (queen 8), (pqueen 8), (fqueen 8)

Figure 4 shows the results of running these programs on the PaiLisp/MT interpreter, using six processors in
the SEQ, ETC, SHE and LTC strategies, where SEQ means Sequential Evaluation. In the above benchmark
programs fib, tarai, msort and queen are sequential programs of evaluating the Fibonacci function, the tarai
function, the merge sorting of data and the N Queen problem, respectively, pfib, ptarai, pmsort and
pqueen are their parallelized versions, using the pcall construct,  while ffibi, ftaraiijk, fmsort and fqueen are
their parallelized versions, using the future construct. Note that the suffices in ffibi and ftaraiijk indicate the
places where future is inserted.

From the results of Figure 4 we can observe the following:

• The SHE strategy always runs faster than the ETC strategy.
• The LTC strategy sometimes runs slower than the ETC strategy, and the effectiveness of the LTC

strategy depends upon the places where future is inserted for parallelization.
• The SHE strategy sometimes runs slower than the LTC strategy, although their differences are small. But

the SHE strategy for a program runs faster and more stable than the LTC strategy for the corresponding
program.

Thus, we would be able to say that the SHE strategy is a more stable and sound parallel evaluation strategy
than the ETC and LTC strategies.

5
PaiLisp/MT Compiler

The PaiLisp/MT compiler is a compiler of translating a PaiLisp program into a RM program, and the
resultant RM program is translated into the C language program. Then the resultant C program is executed
under the PaiLisp/MT interpreter. The input/output routines, the heap area and the garbage collector of the
PaiLisp/MT interpreter is commonly used in the compiler. The PaiLisp/MT compiler consists of two parts:

1 These programs are available by anonymous ftp through ftp://ftp.ito.ecei.tohoku.ac.jp/pub/pailisp/
benchmarks.tar.gz 
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(1) Compiler for Scheme expressions.
(2) Compiler for PaiLisp concurrency constructs.

Compiled codes are dynamically linked under the interpreter. Separate compiling of procedures is possible,
even if they mutually invoke and reference each other, and also compiled procedures and interpreted
procedures can invoke and reference each other. Note that for PaiLisp concurrency constructs two code
generation rules based on the ETC and SHE strategies are available.

On implementing call/cc and call/ep

Besides the above considerations we have to consider how to implement continuations. In case of Scheme it
is enough to support sequential continuation, captured by call/cc. However, in implementations of PaiLisp
we have to consider two aspects in supporting continuations. One is in introducing call/pcc to support P-
continuation, which is an extension of Scheme continuation (S-continuation) into concurrency. Another is a
restricted version of call/cc, written as call/ep, to support only a single-use continuation, and similarly a
restricted version of call/pcc, written as call/pep,  to support a single-use P-continuation8, 10). There are a
number of strategies of implementing continuations2). The stack strategy is a commnonly-used technique of
implementing continuations, and it is efficient for a program which does not contain any call/cc construct.
However, call/cc implemented in the stack strategy is slow and heavy, since it requires the actions of
copying contents of the control stack in capturing and throwing continuations, call/ep and call/pep are
introduced, since call/cc and call/pec are usually used in a single-use style of continuations in practical
programs. They can be efficiently implemented only in handling tag-objects stored in the control stack
without copying contents of the stack10, 11). Note that the stack/heap strategy2) is efficient in implementing
call/cc and call/pcc, since it does not require copying contents of the stack in throwing continuations. But it
is not applicable in implementing call/ep and call/pep, because the tag information will be sometimes lost
under the stack/heap strategy.

5.1
Compiler for Scheme Expressions

A Scheme compiler is implemented, slightly extending the Abelson-Sussman’s compiler1). Let C [E, ctenv,
cont] be the compiler of a Scheme expression E to generate the corresponding RM code program under
ctenv and cont, where ctenv means the compile-time-environment, and cont is a keyword to be used during
compilation, cont will be one of return, next and LABEL, as explained below. The compilation rules for
major Scheme constructs can be given as follows.

(1)
Compilation rules for quote and a constant

C [(quote number), ctenv, any] C [number, ctenv, any] C [(quote boolean), ctenv, any]
C [booleant, ctenv, any] C [(quote TextOfQuotation), ctenv, return]      (assign val ’TextOf
Quotation)      (restore cont)      (goto cont) C [(quote TextOf Quotation), ctenv, next]      
(assign val ’TextOf Quotation) C [(quote TextOf Quotation), ctenv, LABEL]      (assign val

’TextOf Quotation)      (goto LABEL)
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Remark: return, next, LABEL, and any

program SEQ
[sec]

ETC
[sec]

SHE
[sec]

LTC
[sec]

(fib 20) 0.655
(0)

– – –

(pfib 20) – 0.767
(21890)

0.167
(50)

–

(ffibl 20) – 0.519
(10945)

0.187
(51)

0.162
(66)

(ffib2 20) – 2.011
(10945)

1.121
(531)

1.867
(10945)

(ffib3 20) – 0.922
(21890)

0.251
(92)

0.210
(173)

(tarai 840) 0.424
(0)

– – –

(ptarai 840) – 0.321
(9453)

0.097
(140)

–

(ftarai100 840) – 0.231
(3151)

0.152
(137)

0.143
(84)

(ftarai010 840) – 0.822
(3151)

0.829
(3151)

0.860
(3151)

(ftarai001 840) – 0.003
(73)

0.003
(22)

0.034
(32)

(ftarai110 840) – 0.353
(6302)

0.197
(190)

0.191
(156)

(ftarai101 840) – 0.078
(246)

0.004
(7)

0.094
(74)

(ftarai011 840) – 0.352
(4323)

0.004
(22)

0.063
(59)

(ftarai111 840) – 0.151
(2910)

0.004
(30)

0.312
(60)

(queen 8) 2.144
(0)

– – –

(pqueen 8) – 0.613
(11016)

0.389
(194)

–

(fqueen 8) – 0.522
(5508)

0.411
(75)

0.394
(191)

(msort d) 0.535
(0)

– – –

(pmsort d) – 0.182
(1000)

0.148
(17)

–

(fmsort d) – 0.166
(500)

0.149
(18)

0.158
(22)

Figure 4: Results of running several benchmark programs on the PaiLisp/MT interpreter 
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