INTERNATIONAL ASSOCIATION OF HYDROGEOLOGISTS

Climate Change Effects on Groundwater Resources

A Global Synthesis of Findings and Recommendations

Editors: Holger Treidel Jose Luis Martin-Bordes Jason J. Gurdak

CLIMATE CHANGE EFFECTS ON GROUNDWATER RESOURCES

INTERNATIONAL CONTRIBUTIONS TO HYDROGEOLOGY

27

Series Editor: Dr. Nick S. Robins Editor-in-Chief, IAH Book Series British Geological Survey Wallingford, UK

INTERNATIONAL ASSOCIATION OF HYDROGEOLOGISTS

Climate Change Effects on Groundwater Resources

A Global Synthesis of Findings and Recommendations

Editors

Holger Treidel & Jose Luis Martin-Bordes UNESCO, International Hydrological Programme, Paris, France

Jason J. Gurdak San Francisco State University, California, USA

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

A BALKEMA BOOK

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2011 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works Version Date: 20120127

International Standard Book Number-13: 978-0-203-12076-7 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

TABLE OF CONTENTS

ABOUT THE EDITORS XV ACKNOWLEDGEMENTS XVII 1 Introduction 1 1.1 Rationale 1 1.2 Overview of the book 3 References 13

Tropical Climates

2	cryst	impacts of climate change and rapid development on weathered talline rock aquifer systems in the humid tropics of sub-Saharan ca: evidence from south-western Uganda	17	
	Richard Taylor & Callist Tindimugaya			
	2.1	Introduction	17	
		2.1.1 Purpose and scope	17	
		2.1.2 Description of the study area: the River Mitano		
		Basin	18	
	2.2	Results and discussion	21	
		2.2.1 Impacts of intensive groundwater abstraction	21	
		2.2.2 Impact of climate change on groundwater		
		recharge	23	
		2.2.3 Uncertainty in climate change impacts on		
		groundwater resources	26	
	2.3	Conclusions and recommendations	29	
	Acknowledgements			
	Refe	rences	30	
3	Grou	undwater recharge and storage variability in southern Mali	33	
	Chris M. Henry, Harm Demon, Diana M. Allen & Dirk Kirste			
	3.1	Introduction	33	
		3.1.1 Purpose and scope	33	
		3.1.2 Study area description: southern Mali	34	
		3.1.3 Methodology	36	
		3.1.4 Relevance for GRAPHIC	40	

VI	Conte	nts		
	3.2	Result	s and discussion	40
		3.2.1	Groundwater levels and storage anomalies	40
		3.2.2	Recharge modelling	42
	3.3	Policy	recommendations	45
	3.4	Future	work	46
	Ackn	owledge	ments	47
	Refe	rences		47
4			r discharge as affected by land use change	
		nall catch entral Br	nments: A hydrologic and economic case study razil	49
	Henr	rique M.L	. Chaves, Ana Paula S. Camelo &	
	Rejar	ne M. Me	ndes	
	4.1	Introdu	action	49
		4.1.1	Purpose and scope	50
		4.1.2	Description of the area: the Pipiripau river basin	50
		4.1.3	Relevance for GRAPHIC	51
	4.2	Metho	dology	53
		4.2.1	Correlating annual base flow discharge with	
			basin land use intensity	53
		4.2.2	Obtaining basin curve-number and base flow	
			discharge from stream flow data	53
		4.2.3	Empirical relationship between the base flow	
			index and the normalized runoff coefficient	54
		4.2.4	Estimating and valuing hydrological services resulting	
			from land conservation scenarios	54
	4.3		s and discussion	56
		4.3.1	Correlation between the dry season discharge	
			and basin land use intensity	56
		4.3.2	Base flow discharge hydrographs and basin	
			curve-number (baseline condition)	58
		4.3.3	Hydrological services resulting from land conservation	60
		D !!	scenarios	60
	4.4	•	recommendations	61
	4.5	Future	work	61
	Refe	rences		61
5			rm surges on groundwater resources,	63
	North Andros Island, Bahamas			
	John	Bowleg a	& Diana M. Allen	
	5.1	Introdu	action	63
		5.1.1	Purpose and scope	63
		5.1.2	Study area description: North Andros Island	63
		5.1.3	Methodology	67
		5.1.4	Relevance for GRAPHIC	68

			Contents	VII
	5.2	Results and discussion		69
		5.2.1 The well field on North Andros		69
		5.2.2 Hurricane Frances		70
		5.2.3 Consequences of the storm surge in 2004		70
	5.3	Policy recommendations		71
	5.4	Future work		71
	Ackr	owledgements		73
	Refe	rences		73
6	Redu	icing groundwater vulnerability in Carbonate Island		
	coun	tries in the Pacific		75
	Ian V	White & Tony Falkland		
	6.1	Introduction		75
		6.1.1 Purpose and scope		77
		6.1.2 Study area description: Pacific Island countries		77
		6.1.3 Methodology		77
		6.1.4 Relevance for GRAPHIC		77
	6.2	Results, discussion, and policy recommendations		79
		6.2.1 Characteristics of fresh groundwater lens		79
		6.2.2 Threats to fresh groundwater		89
		6.2.3 Reducing the vulnerability of groundwater systems		96
	6.3	Future work		103
	Ackr	owledgements		105
	Refe	rences		105
		Dry (Arid and Semiarid) Climates		
7	Grou	indwater resources increase in the Iullemmeden		
	Basi	n, West Africa		113
		'aume Favreau, Yahaya Nazoumou, Marc Leblanc, Abdou Guéro & 11 mBaba Goni		
	7.1	Introduction		113
		7.1.1 Purpose and scope		113
		7.1.2 Description of the study area: the Iullemmeden Basin		114
		7.1.3 Methodology		116
		7.1.4 Relevance to GRAPHIC		117
	7.2	Results and discussion		117
		7.2.1 Land use and land cover change		117
		7.2.2 Increased runoff and erosion		119
		7.2.3 Long-term changes in the water table		120
		7.2.4 Impacts of climate change and land use changes		
		on groundwater resources		122
	7.3	Policy-relevent Recommendations		122
	7.4	Future work		124
	Ackr	owledgements		125
	Refe	rences		125

VIII Contents

in Morocco: the case of the Souss-Massa basin Lhoussaine Bouchaou, Tarik Tagma, Said Boutaleb, Mohamed			
Hssa	Hssaisoune & Zine El Abidine El Morjani		
8.1	Introdu	iction	
	8.1.1	Purpose and scope	
	8.1.2	Description of the study area: the Souss-Massa basin	
	8.1.3	Methodology	
	8.1.4	Relevance to GRAPHIC	
8.2	Results and discussion		
	8.2.1	Rainfall variation	
	8.2.2	Temperature and heat waves	
	8.2.3	Impacts on groundwater level	
	8.2.4	Impacts on groundwater quality	
8.3	Policy	recommendations	
8.4	Future	work	
Ackn	owledge	ments	
Refe	rences		

9			of groundwater quality to human activity and climate ariability, High Plains aquifer, USA	145
	Jason	ı J. Gurd	ak, Peter B. McMahon & Breton W. Bruce	
	9.1	Introdu	action	145
		9.1.1	Purpose and scope	146
		9.1.2	Study area description: High Plains aquifer	146
		9.1.3	Methodology	150
		9.1.4	Relevance for GRAPHIC	151
	9.2	Results	s, discussion, and policy recommendations	152
		9.2.1	Groundwater availability and sustainability	
			are a function of quantity and quality	152
		9.2.2	Conversion of rangeland to irrigated cropland	
			affects water quality	152
		9.2.3	Chemical transport to the water table follows fast	
			and slow paths	154
		9.2.4	The quality of shallow and deep groundwater	
			are substantially different	155
		9.2.5	Mixing of groundwater by high-capacity wells	
			adversely affects water quality	159
		9.2.6	Limited ability to naturally attenuate some	
			contaminants	160
		9.2.7	Interannual to multidecadal climate variability	
			affects recharge and groundwater quality	160
		9.2.8	The quality of most water produced by private,	
			public-supply, and irrigation wells is suitable	
			for the intended uses	162

				Contents	IX
	9.3	Future	work		164
	9.4	Additio	nal information		165
	Ackn		165		
	Refer	ences			165
10	Grou	ndwater	change in the Murray basin from long-term		
	in-sit	u monito	ring and GRACE estimates		169
	Marc	Leblanc,	Sarah Tweed, Guillaume Ramillien, Paul Tregoning,		
	Frédé	ric Frapp	part, Adam Fakes & Ian Cartwright		
	10.1	Introdu	ction		169
		10.1.1	Purpose and scope		169
		10.1.2	Study area description		170
		10.1.3	Methodology		174
		10.1.4	Relevance to GRAPHIC		176
	10.2	Results	and discussion		176
		10.2.1	Long-term observations from in situ hydrographs		176
		10.2.2	GRACE observations		179
		10.2.3	Discussion		183
	10.3	Policy-	relevant recommendations		183
	10.4	Future	work		185
	Ackn	owledgen	nents		185
	Refer	ences			186

Temperate Climates

11	on gr		ment of combined climate and management scenarios ter resources. The Inca-Sa Pobla hydrogeological unit ain)	191
	Lucile	a Candela	a, Wolf von Igel, F. Javier Elorza &	
	Joaqı	ıín Jimén	ez-Martínez	
	11.1	Introdu	ction	191
		11.1.1	Description of the study area: the Inca-Sa Pobla	
			hydrogeological unit	192
	11.2	Method	lology	194
		11.2.1	Recharge estimation	194
		11.2.2	Groundwater flow simulation model	195
		11.2.3	Climate change scenarios. Statistical downscaling	195
		11.2.4	Groundwater abstraction scenarios	196
		11.2.5	Sensitivity and uncertainty analysis	197
		11.2.6	Impact assessment by coupling climate and abstraction	
			scenarios	197
	11.3	Results	and discussion	197
		11.3.1	GCM and local predictions	197
		11.3.2	Climate change impact on groundwater resources and	
			natural recharge	198
		11.3.3	Sensitivity analysis of water abstraction spatial location	199

		11.3.4	Impact of combined climate change and management scenarios on spring flow rate	199
	11.4 Refer		sions and relevance for GRAPHIC	201 202
12		effect of c al aquife	climate and anthropogenic sea level changes on Israeli rs	205
	Yosep	h Yechiel	i, Uri Kafri & Eyal Shalev	
	12.1	Introdu	ction	205
		12.1.1	Description of the area: the Israeli Mediterranean and	
			the Dead Sea coastal aquifer systems	206
		12.1.2	Relevance for GRAPHIC	209
	12.2	Method		210
		12.2.1	Field studies	210
		12.2.2	Numerical simulation of the Mediterranean	
			coastal aquifer system	210
		12.2.3	Numerical simulation of the Dead Sea aquifer	
			system	210
	12.3		and discussion	211
			The Mediterranean coastal aquifer system	211
	10.4	12.3.2	1	216
	12.4		ry and conclusion	220
	12.5	•	recommendations	222
	Refer	owledgen	nents	223
	Refer	ences		223
13	Land	subsider	nce and sea-level rise threaten fresh water resources	
			groundwater system of the Rijnland water board,	
		Netherlar		227
	Guall	bert Oude	e Essink & Henk Kooi	
	13.1	Introdu		227
	13.1		Relevance for GRAPHIC	227
		13.1.1	Salinizing and freshening processes in Dutch	220
		13.1.2	coastal aquifers	230
		1313	Description of the area: the Rijnland Water Board	230
	13.2		bion of the numerical method	230
	10.2	13.2.1	Numerical code	233
		13.2.2	Scenarios of sea-level rise and land subsidence	234
		13.2.3		234
		13.2.4	Calibration of the 3D model	238
	13.3		and discussion	241
		13.3.1	Salinization of the groundwater system	241
		13.3.2	Compensating measures	243
	13.4	Conclu	sions	245

245 247

X Contents

References

Contents	XI

14			ge impacts on valley-bottom aquifers in mountain studies from British Columbia, Canada	249		
	Diand	ı M. Aller	i			
	14.1	Introdu	ction	249		
		14.1.1	Purpose and scope	249		
		14.1.2	Study area description: valley-bottom aquifers in			
			mountain regions	250		
		14.1.3	Methodology	253		
		14.1.4	Relevance for GRAPHIC	254		
	14.2.		and discussion	255		
			Okanagan Basin	255		
		14.2.2		257		
	14.3	•	recommendations	260		
	14.4			262		
		owledgen	nents	262		
	Refer	ences		263		
15	Possible effects of climate change on groundwater resources in the					
	centr	al region	of Santa Fe Province, Argentina	265		
	Ofelic	a Tujchne	ider, Marta Paris, Marcela Pérez & Mónica D'Elía			
	15.1	Introdu	ction	265		
		15.1.1	Purpose	265		
		15.1.2	Description of the area: the central region of			
			Santa Fe Province	266		
		15.1.3	Methods	268		
			Relevance for GRAPHIC	269		
	15.2		and discussion	271		
	15.3		recommendations	274		
	15.4			274		
		owledgen	nents	276		
	Refer	ences		276		
			Continental Climates			
16	-		ought on groundwater depletion in the Beijing	001		
		, China		281		
			n, Liya Wang, Jiurong Liu & Chao Ye			
	16.1	Introdu		281		
		16.1.1	Purpose and scope	281		
		16.1.2	Description of the study area: the Beijing Plain	282		
	16.2		and discussion	286		
		16.2.1	Detection of climate changes	286		
		16.2.2	Analysis of rapid decline of groundwater levels	289		
		16.2.3	Simulation of groundwater depletion under recent droughts	290		
		16.2.4	Options for mitigating further groundwater depletion	296		

XII	Conte	ents		
	16.3	Manage	ement issues	299
		16.3.1	Legal aspects	299
		16.3.2	Institutional aspects	300
		16.3.3	A drought management plan	301
	16.4	Conclus	sions and recommendations	301
	Ackn	owledgen	nents	302
	Refer	ences		302
17	Possi	ble effect	ts of climate change on hydrogeological systems: results	
	from	research	on Esker aquifers in northern Finland	305
	Bjørn Kløve, Pertti Ala-aho, Jarkko Okkonen & Pekka Rossi			
	17.1	Introdu	ction	305
		17.1.1	Study area description: esker aquifers,	
			northern Finland	307
		17.1.2	Importance of esker aquifers in climate	
			change studies	309
	17.2	Results	and discussion	310
		17.2.1	How should we assess climate change and	
			land-use changes?	310
		17.2.2	Models used and our experiences from modelling	311
		17.2.3	Impact of future climate change on hydrology	
			and recharge	312
		17.2.4	Surface water-groundwater interaction in lakes	314
		17.2.5	Impact of peatland drainage	316
	17.3	Policy 1	recommendations	317
	17.4	Future	work	317
	Ackn	owledgen	nents	318
	Refer	ences		318

Polar Climates

18	-		mate change on groundwater in permafrost areas: case albard, Norway	323
	Sylvi Haldorsen, Michael Heim & Martine van der Ploeg			
	18.1	Introdu	ction	323
		18.1.1	Purpose and scope	323
		18.1.2	Area description	325
		18.1.3	Methodology	325
		18.1.4	Relevance to GRAPHIC	326
	18.2	Results	and discussion: Subpermafrost groundwater	326
		18.2.1	Discontinuous permafrost	326
		18.2.2	Continuous permafrost, case study Svalbard: results	
			and discussion of previous work	327
	18.3	Policy-	relevant recommendations	332
	18.4	Future	work	333
	Refere	ences		334

		various Chinates				
19		Indwater management in Asian cities under the pressures Iman impacts and climate change	341			
	Makoto Taniguchi					
	19.1	Introduction	341			
		19.1.1 Relevance for GRAPHIC	342			
	19.2	Results and discussion	343			
		19.2.1 Satellite GRACE	343			
		19.2.2 Subsurface warming	344			
		19.2.3 Groundwater assessment as natural capacity	347			
	19.3	5	348			
			349			
	Refer	rences	349			
20		uation of future climate change impacts on European ndwater resources	351			
	-	n Hiscock, Robert Sparkes & Alan Hodgson	551			
	20.1	Introduction	351			
	20.1	20.1.1 Description of the areas: aquifer units in northern	551			
		and southern Europe	353			
	20.2		353			
	20.3	Results and discussion	356			
	20.4		362			
	20.5	Future work and relevance to GRAPHIC	362			
	Ackn	owledgements	363			
	Refer	rences	363			
21		ainable groundwater management for large aquifer				
	-	ms: tracking depletion rates from space	367			
		Swenson & James Famiglietti	2(7			
	21.1	Introduction	367			
		21.1.1 Purpose and Scope21.1.2 Description of the study area	368 368			
		21.1.2 Description of the study area 21.1.3 Relevance to GRAPHIC	368			
	21.2	Methods and Results	369			
	21.2	21.2.1 Ground-based well measurements	369			
		21.2.1 Ground based wen measurements 21.2.2 Hydrologic Modelling	369			
		21.2.3 The GRACE-based approach: case studies	507			
		from the Central Valley of California				
		(USA) and northern India	370			
	21.4.		373			
		Acknowledgements				
		References				

Various Climates

XIV	Cont	ents			
22	Majo	jor science findings, policy recommendations, and future work			
	22.1	Overvie	W	377	
	22.2	Tropical climates		377	
		22.2.1	Science findings	377	
		22.2.2	Policy recommendations	379	
	22.3	Dry (ari	d and semiarid) climates	381	
		22.3.1	Science findings	381	
		22.3.2	Policy recommendations	382	
	22.4	Tempera	ate climates	382	
		22.4.1	Science findings	383	
		22.4.2	Policy recommendations	384	
	22.5	Continental climates		384	
		22.5.1	Science findings	384	
		22.5.2	Policy recommendations	385	
	22.6	imates	386		
		22.6.1	Science findings	386	
		22.6.2	Policy recommendations	387	
	22.7	Various	climates	387	
		22.7.1	Science findings	388	
		22.7.2	Policy recommendations	389	
	22.8	Future v	vork	392	
	Refere	ences		393	
Cont	tributi	ng autho	rs and contact information	395	
Subj	ect ind	lex		399	

ABOUT THE EDITORS

Holger Treidel is an environmental scientist and works as project coordinator with UNESCO's International Hydrological Programme in Paris. His work is related to the sustainable management of groundwater resources under the effects of climate change & variability, with particular focus on the complex challenges related to the management of transboundary aquifer systems. He is coordinating the UNESCO project Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC) and global and regional transboundary groundwater management projects in cooperation with the Global Environmental Facility (GEF).

Jose Luis Martin-Bordes is a civil engineer specialized in groundwater resources management and works as project coordinator in the International Hydrological Programme (IHP) within the Division of Water Sciences of UNESCO, Paris, France. He provides support to the coordination of the IHP Groundwater activities including the Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC), the International Shared Aquifer Resources Management Initiative (ISARM), Groundwater Dependent Ecosystems and Groundwater for Emergency Situations (GWES).

Jason J. Gurdak is Assistant Professor of hydrogeology in the Department of Geosciences at San Francisco State University, California, USA. He and his research group address basic and applied questions about sustainable groundwater management, vadose zone and soil-water processes that affect recharge and contaminant transport, groundwater vulnerability to contamination and climate extremes, and the effects of climate change and interannual to multidecadal climate variability on water resources. Since 2004 he has served on the UNESCO project Groundwater Resources Assessment under the Pressures of Humanity and Climate Change (GRAPHIC) that promotes science, education, and awareness of the coupled effects of climate change and human stresses on global groundwater resources.

This page intentionally left blank

ACKNOWLEDGEMENTS

Compiling this book was a collaborative effort. We are sincerely grateful to all authors for their contributions. Their enthusiastic involvement and insightful feedback have allowed us to put together an interesting and valuable publication.

The preparation of this publication would have not been possible without the support of UNESCO's International Hydrological Programme (IHP) and its *Groundwater Resources Assessment under the Pressures of Humanity and Climate Change* (GRAPHIC) project, which has helped create an active and global group of scientists dedicated to unraveling groundwater and climate interactions and raising attention for a topic that has received only little attention previously. We would like to thank in particular Alice Aureli for her guidance and overall coordination and to Timothy Green for his continued support of the GRAPHIC expert group. Our thanks also go to the many cooperating universities, institutions, and organizations – too many to mention – that support GRAPHIC.

The Editors are grateful to the following people and many anonymous reviewers for their assistance with the external peer review of papers submitted for publication in this volume:

Giovanni Barrocu	University of Cagliari, Department of Land Engineering, Italy
John Bloomfield	British Geological Survey, UK
Elisabetta Carrara	Water Resource Assessment, Climate & Water Division/ Bureau of Meteorology, Melbourne, Australia
Dioni Cendon Sevilla	ANSTO Institute for Environmental Research, Australia
Jianyao Chen	Department of Water Resource and Environment, School of Geographical Science and Planning, Sun Yatsen University, China
Ian Ferguson	U.S. Bureau of Reclamation, Lakewood, Colorado, USA
Timothy Green	U.S. Department of Agriculture, Agricultural Systems Research Unit, USA
Ian Holman	Cranfield Water Science Institute (CWSI), Cranfield University, UK
Neno Kukuric	International Groundwater Resources Assessment Centre (IGRAC), The Netherlands
James Terry	Department of Geography, National University of Singapore, Kent Ridge, Singapore
Tristan Wellman	U.S. Geological Survey, Lakewood, Colorado, USA
Kamel Zouari	Laboratory of Radio-Analysis and Environment of the National School of Engineers, Sfax, Tunisia

This page intentionally left blank

CHAPTER 1

Introduction

1.1 RATIONALE

Groundwater is an essential part of the hydrological cycle and is a valuable natural resource providing the primary source of water for agriculture, domestic, and industrial uses in many countries. Groundwater is now a significant source of water for human consumption, supplying nearly half of all drinking water in the world (WWAP 2009) and around 43 percent of all water effectively consumed in irrigation (Siebert et al. 2010). Groundwater also is important for sustaining streams, lakes, wetlands, and ecosystems in many countries.

The use of groundwater has particular relevance to the availability of many potablewater supplies because groundwater has a capacity to balance large swings in precipitation and associated increased demands during drought and when surface water resources reach the limits of sustainability. During extended droughts the utilization of groundwater for irrigation is expected to increase, including the intensified use of non-renewable groundwater resources, which may impact the sustainability of the resource. However, global groundwater resources may be threatened by human activities and the uncertain consequences of climate change.

Global change encompasses changes in the characteristics of inter-related climate variables in space and time, and derived changes in terrestrial processes, including human activities that affect the environment. Changes in global climate are expected to affect the hydrological cycle, altering surface-water levels and groundwater recharge to aquifers with various other associated impacts on natural ecosystems and human activities. Also groundwater discharge, storage, saltwater intrusion, biogeochemical reactions, and chemical fate and transport may be modified by climate change. Although the most noticeable impacts of climate change could be changes in surface water levels and quality, there are potential effects on the quantity and quality of groundwater. While recognizing that groundwater is a major source of water across much of the world, particularly in rural areas in arid and semi-arid regions, the Intergovernmental Panel on Climate Change (IPCC) 3rd and 4th Assessment Reports state that there has been very little research on the potential effects of climate change (IPCC 2001, 2007; Bates 2008). In recent decades, a wide array of scientific research has been carried out to better understand how water resources might respond to global change (Green et al. 2011). Recent research has been focused predominantly on surface-water systems, due to their visibility, accessibility and more obvious recognition of surface waters being affected by global change. However, little is known about how subsurface waters in the vadose zone and groundwater might respond to climate change and affect the current availability and future sustainability of groundwater resources (UNESCO 2008). It is important to mention that in the past ten years the number of peer-reviewed journal paper publications addressing groundwater and climate change has increased considerably as shown in Fig. 1.1. Also only recently, water resources managers and politicians are progressively recognising the important role of groundwater resources in meeting the demands for drinking water, agricultural and industrial activities, and sustaining ecosystems, as well as in the adaptation to and mitigation of the impacts of climate change and coupled human activities (Green et al. 2011).

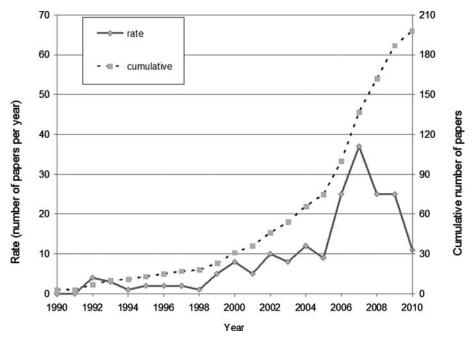


Figure 1.1. Rate of peer-reviewed journal paper publications addressing groundwater and climate change from 1990 to 2010. A total of 198 papers addressing subsurface water and climate change are included. Final references were compiled in February 2011, so some papers published late in 2010 may be missing (modified from Green et al. 2011).

Besides the direct impacts of climate change on the natural processes of the global hydrological cycle, it is crucial to also consider the indirect impacts. These are human responses to the direct impacts, such as increased utilization of groundwater in times of drought and non-availability of surface water and may lead to increased and unsustainable abstraction and utilization of groundwater resources, including non-renewable groundwater reserves. Thus, there are urgent and ongoing needs to address the expected coupled effects of human activities and climate change on global groundwater resources.

To address these concerns, the United Nations Educational, Scientific, and Cultural Organisation (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC project (*Groundwater Resources Assessment under the Pressures of Humanity and Climate Change*) in 2004. GRAPHIC seeks to improve our understanding of how groundwater interacts within the global water cycle, supports ecosystems and humankind and, in turn, responds to complex and coupled pressures of human activities and climate change. To successfully achieve these objectives within a global context, GRAPHIC was developed to incorporate a collaborative effort and umbrella for international research and education. GRAPHIC outlines areas of desired international investigations covering major geographical regions, groundwater resource topics, and methods to help advance the combined knowledge needed to address scientific and social aspects (UNESCO 2008).

The GRAPHIC project was designed with the understanding that groundwater resources can have nonlinear responses to atmospheric conditions associated with climate change and/or terrestrial-surface conditions associated with human activities. Therefore, groundwater assessments under the coupled pressures of human activities and climate change and variability involve the exploration of complex-system interactions. GRAPHIC incorporates a multidisciplinary scientific approach as the most rigorous platform to address such complexity. Furthermore, the GRAPHIC project extends investigations beyond physical, chemical, and biological interactions to include human systems of resource management and governmental policies. The structure of the GRAPHIC project has been divided into subjects, methods, and regions. The subjects encompass (i) groundwater quantity (recharge, discharge, and storage), (ii) quality, and (iii) management aspects. A variety of scientific methods and tools are being applied in the framework of GRAPHIC, including analysis of field data, geophysics, geochemistry, paleohydrology, remote sensing (in particular GRACE satellite gravimetry), information systems, modelling, and simulation. GRAPHIC consists of regional components (Africa, Asia and Oceania, Europe, Latin America, and the Caribbean and North America) where case studies have been identified and carried out.

The management of groundwater resources under the coupled pressures of climate change and human activities is a challenge. Sound understanding of the functioning of groundwater systems and their interactions with numerous and interlinked external factors is an indispensable basis for informed management. GRAPHIC strives to facilitate cooperation between scientists of different disciplines and from different countries. The basin/aquifer scale case studies presented in this book have been selected in each region by local scientists and experts of the respective subject.

1.2 OVERVIEW OF THE BOOK

Climate Change Effects on Groundwater – A Global Synthesis of Findings and Recommendations is a compilation of 20 case studies from more 30 different countries that have been carried out under the framework of the UNESCO-IHP GRAPHIC project. The approximate location of each case study is displayed on the "Groundwater Resources of the World" map (WHYMAP 2008) (Fig 1.2).

The case studies presented in this volume represent aquifers from all the major climate regions of the world. The studies address groundwater resources in a range of hydrogeological settings from mountainous to coastal aquifer systems, including unconfined, semi-confined, and confined aquifers in unconsolidated to fractured-rock material. More details on each case study location, climate, hydrogeological setting, land use, groundwater use, as well as subjects addressed and methods applied are presented in the overview table (Table 1.1).

This volume is organized by case study according to the major climate groups of the Köppen-Geiger climate classification scheme (Köppen 1936): tropical, dry (arid and semi-arid), temperate, continental, and polar climates. Three chapters that cover several study areas and different climate groups are presented under "various climates" and are displayed in Figure 1.2 as one large circle or multiple circles indicating the regional scope of the respective chapter. The case study chapters (Chapters 2 to 21) each follow a similar organization and structure. The introduction of each chapter describes the purpose and scope, study area, methodology, and relevance to the GRAPHIC project. The results and discussion are followed by recommendations for water managers and planners, as well as policy and decision makers. Finally, the continuation of research activities and future work are outlined.

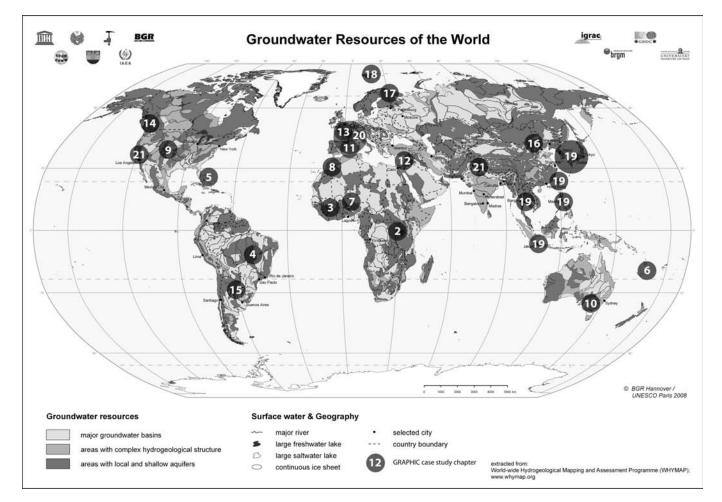


Figure 1.2. Approximate location of case study displayed on the "Groundwater Resources of the World" map (WHYMAP 2008). Numbers refer to the chapters in this volume. Case studies that cover several study areas and different climate groups are displayed as one large circle or multiple circles indicating the regional scope of the respective chapter.

Location	Climate	Hydrogeological setting	Land use	Groundwater use	Quantity or Quality	Methods
		Rapid Development on Wea Fropics of sub-Saharan Afri		outh-Western Uganda		
East Africa, South- western Uganda, River Mitano Basin	Tropical (humid)	Deeply weathered, crystalline rock aquifers	Agriculture, grassland, small areas of wetland, forest and plantations	Irrigation, livestock, drinking	Quantity: recharge, discharge, storage	Modelling
Chapter 3: Groundwa	ter Recharge and Storage	Variability in Southern Mali	i, Africa			
Western Sub-Saharan Africa, southern Mali, Niger river basin	Tropical (wet and dry), and partly dry (semiarid)	Clayey laterites overlying unconfined/semi-confined fractured sandstone aquifers	Savanna, shrubland, agriculture	Drinking, agriculture, livestock	<u>Quantity:</u> recharge, storage	GRACE, Modelling, Monitoring
	ter Discharge as Affected h logic and Economic Case S	y Land Use Change in Sma tudy in Central Brazil	11			
South America, central Brazil, Pipiripau river basin	Tropical (humid)	Deep, well drained soils (red oxisols and ultisols), underlain by quartzites, phyllites, and rhythmites	Agriculture, pastureland, natural savannah, woodland, grassland	Support aquatic ecosystems and hydrological services	<u>Quantity:</u> base flow discharge	Data correlation, empirical method
Chapter 5: Effects of 8	Storm Surges on Groundwa	ater Resources, North Andro	os Island, Bahamas			
The Caribbean, The Bahamas, North Andros Island	Tropical (humid)	Shallow, fresh groundwater lens in limestone and limesand aquifers	Forest, shrubland, rural communities	Local drinking and domestic needs; primary water supply for New Providence Island	Quantity: recharge, storage Quality: saltwater intrusion, salinity, septic systems	Monitoring

Table 1.1 Overview of case studies.

(Continued)

Table 1.1 Continued

Chapter 6: Reducing	Groundwater Vulnerabilit	ty in Carbonate Island Count	ries in the Pacific			
Central and southern Pacific Ocean, small island nations	Tropical/Sub-Tropical	Shallow, fresh groundwater lens in permeable coral sand and karst limestone aquifers	Forest, shrubland, urban	Drinking, agriculture	<u>Quantity:</u> recharge, abstraction, storage; <u>Quality:</u> saltwater intrusion	Modelling, Monitoring
Chapter 7: Groundwa	ater Resources Increase in	the Iullemmeden Basin, Wes	t Africa			
West Africa, Nigeria and Niger, Iullemmeden Basin	Dry (semiarid)	Sedimentary basin, largely unconfined. Several confined aquifers exists at depth. (Continental Terminal aquifer – unconfined)	Mainly rainfed agriculture, livestock breeding (in the North)	Drinking, livestock breeding. Use for irrigation very limited spatially	Quantity: groundwater dynamics and recharge	Remote sensing, subsurface geophysics, environmental geochemistry hydrodynamics, monitoring, numerical modeling at various scales
Chapter 8: Climate C	hange and its Impacts on	Groundwater Resources in M	lorocco: the Case of	the Souss-Massa Basin		
North Africa, Morocco, Souss-Massa basin	Dry (arid to semiarid)	Shallow aquifer of the Souss-Massa plain, coastal aquifer	Irrigated agriculture	Irrigation, drinking, industry	Quantity: storage, recharge Quality: salinization, nitrate	Trend analyses (precipitation and temperature), monitoring (gw level), hydrochemical

hydrochemical and isotopic tracers

Chapter 9: Vulnerability of Groundwater Quality to Human Activity and Climate Change and Variability, High Plains Aquifer, USA

North America, central United States, Great Plains province	Dry (semiarid)	High Plains aquifer: primarily unconsolidated, unconfined aquifers	Irrigated and dryland agriculture, rangeland	Irrigation, livestock, drinking	Quality: nitrate, other chemical constituents Quantity: recharge, abstraction	Age dating, GIS, Modelling, Monitoring
Chapter 10: Groundw	ater Change in the Murray	y Basin from Long-Term In-	Situ			
Monitoring and GRA	CE Estimates (Australia)					
Southeastern Australia, Murray Basin	Dry (semiarid)	Unconsolidated sediments and sedimentary rocks. Confined and unconfined. Specific aquifers: Murray Group, Pliocene Sands aquifer, Shepparton Formation	Farming land, native and plantation forests, livestock production (cattle and sheep)	Irrigation, livestock, drinking	Quantity: recharge, discharge; Quality: salinization	GRACE, Monitoring
Chapter 11: Impact A (Majorca, Spain)	ssessment of Combined Cli	imate and Management Scer	narios on Groundwa	ater Resources. The Inca	a-Sa Pobla Hydrog	eological Unit
Europe, Mediterranean Balearic island, Majorca, Spain	Mediterranean climate, temperate/semi-arid	Four different hydrostratigraphic units and three aquitard units, grouped into an upper and lower aquifer system	Agriculture	Irrigation, tourism, ecosystems	Quantity: recharge, discharge, exploitation	Modelling, simulations, management

(Continued)

Table 1.1 Continued

Chapter 12: The Effect	ct of Climate and Sea Leve	l Changes on Israeli Coastal	Aquifers			
,	Mediterranean climate, dry (arid and semiarid)	Israeli coastal aquifer: inter-layered sandstone, calcareous sandstone, siltstone, and red loam Dead Sea coastal aquifer: Upper Cretaceous Judea Group Aquifer and the Quaternary alluvial coastal aquifer	Agriculture	Irrigation, domestic	Quantity: recharge Quality: saltwater intrusion, salinization	Modelling, simulations, monitoring
Chapter 13: Land Sub The Netherlands	osidence and Sea-Level Ris	e Threaten Freshwater Reso	urces in the Coastal	Groundwater System of	the Rijnland Wat	er Board,
Europe, Coastal groundwater system, Rijnland, The Netherlands	Temperate, Continental	Quaternary deposits, intersected by loamy aquitards and overlain by a Holocene aquitard of clay and peat	Agriculture	Irrigation, domestic and industrial	Quality: saltwater intrusion, salinization	Modelling, simulations
Chapter 14: Climate (Change Impacts on Valley-	Bottom Aquifers in Mountai	n Regions: Case Stu	dies from British Colum	bia, Canada	
North America, western Canada, mountain regions British Columbia	Dry (semi-arid to arid)	Okanagan Basin, Grand Forks: valley-bottom unconsolidated aquifers	Forest, shrubland, urban	Drinking, agriculture, industry	<u>Quantity:</u> recharge	GCM downscaling, Modelling, GI
Chapter 15: Possible I	Effects of Climate Change	on Groundwater Resources i	n the Central Regio	on of Santa Fe Province, A	Argentina	
South America, Argentina, Santa Fe Province	Temperate (humid)	Upper unconfined aquifer: aeolian sedimentary deposits Semi-unconfined aquifer: sands of fluvial origin	Agriculture, livestock, rearing	Drinking, food production (agriculture, livestock rearing), industry	Quantity: recharge, discharge Quality: chemical compound input, salinization	Modelling

East Asia, China, Continental (dry) Sedimentary (alluvial), Agriculture. Irrigation from shallow **Ouantity:** Monitoring, shallow aquifer mainly aquifer; drinking, **Beijing** Plain industry, drinking recharge, modelling unconfined, deep aquifers industry mainly from storage confined deep aquifer) Chapter 17: Possible Effects of Climate Change on Hydrogeological Systems: Results from Research on Esker Aquifers in Northern Finland Europe, northern Continental (polar) Esker aquifers: Forest, peatland Ecosystems, drinking, Monitoring, **Ouantity**: Finland unconsolidated. recharge. modelling recreation unconfined or confined discharge **Ouality**: temperature, dissolved oxygen, salts Chapter 18: Climate Change Effects on Groundwater in Permafrost Areas - Case Study from the Arctic Peninsula of Svalbard, Norway Europe, Norway, Polar (arctic) Subpermafrost none (60% Drinking (very limited) Monitoring, **Ouantity:** covered by Svalbard peninsula groundwater recharge, rock cores, discharge simulation and glaciers, large part is declared modelling National Park) Chapter 19: Groundwater Management in Asian Cities under the Pressures of Human Impacts and Climate Change Asian coastal cities: Temperate, Continental Coastal alluvial plain, Urban Domestic use, industry GRACE. **Ouantity:** Tokyo, Osaka, Seoul, Tropical urban subsurface soil recharge, modelling, GIS Taipei, Bangkok, storage Jakarta and Manila **Ouality**: contamination

Chapter 16: Impacts of Drought on Groundwater Depletion in the Beijing Plain, China

(Continued)

Table 1.1 Continued

Valley aquifer; and

northern India

Dry-Continental

Chapter 20: Evaluation of Future Climate Change Impacts on European Groundwater Resources

semiconfined, and

confined aquifers

Northern and southern Europe, centred on the Å (Denmark), Medway (UK), Seine (France), Guadalquivir (Spain) and Po (Italy) river basins	Temperate, Continental Mediterranean	<u>River Å:</u> glacial sands and gravels <u>River Medway:</u> Cretaceous Chalk and Lower Cretaceous Sands <u>River Seine:</u> Cretaceous Chalk and Lower Cretaceous Sands <u>River Guadalquivir:</u> dolomitic limestone and alluvial deposits <u>River Po:</u> alluvial sediments	<u>River Å:</u> agriculture, industry <u>River Medway:</u> agriculture, pasture, urban <u>River Seine:</u> agriculture, urban, semi-urban <u>River Guadalquivir</u> irrigated agriculture <u>River Po:</u> irrigated agriculture, urban, industry	Drinking water, irrigation	Quantity: recharge, water-stress	Modelling, simulations
Chapter 21: Sustainab	le Groundwater Managem	ent for Large Aquifer System	ms: Tracking Deplet	tion Rates from Space		
North America, western US, California, Central	Central Valley: Temperate (Mediterranean climate); northern India:	Central Valley and northern India: confining units and unconfined,	Agriculture	Irrigated agriculture, drinking, and industry	<u>Quantity:</u> discharge, storage	GRACE, monitoring, and modelling

Tropical climate case studies (Chapters 2 to 6) include those from Africa (Uganda and Mali), Latin America (Brazil), the Caribbean (The Bahamas), and Pacific Island countries. Based on findings from south-western Uganda, Chapter 2 addresses whether intensive groundwater abstraction from weathered crystalline rock aquifers is a viable option to meet rapidly rising demand for domestic and agricultural water in Sub-Saharan Africa. The chapter also analyses projections of climate change impacts on groundwater resources and discusses opportunities and risks of their application to inform decision making. Chapter 3 describes the combined application of several methodologies, including measured field data, remote sensing, and modelling for estimating groundwater recharge and storage variability in southern Mali. The integration of these methods may be a promising tool for assessing groundwater resources in data scarce regions. The chapter also provides a preliminary assessment of the impacts of future climate change on groundwater recharge. The case study from Brazil (Chapter 4) uses an empirical method to assess the hydrological and economical effects of land-use change on groundwater discharge in a small tropical catchment.

Groundwater is the main source of freshwater on many islands. The resource is particularly vulnerable to extreme climate events, sea-level rise, and human-induced perturbations. Chapter 5 describes a storm surge from Hurricane Frances in 2004 that contaminated the groundwater supply on North Andros Island, The Bahamas. Chapter 6 presents key climatic, hydrogeological, physiographic, and management factors that influence groundwater quantity and saline intrusion into freshwater lenses beneath small Pacific Island countries.

Dry (arid and semiarid) climate case studies (Chapters 7 to 10) focus on the effects of climate change and human activities on groundwater resources in Africa (Morocco, Niger, and Nigeria), the United States (US), and Australia. Chapter 7 describes large-scale land clearing in the southern part of the Iullemmeden Basin that experiences increased groundwater recharge and rising water levels over the past several decades. Management responses to outcropping water tables and salinization of soils are discussed. The Morocco case study (Chapter 8) analyses trends in temperature and precipitation and the effects of projected changes on groundwater recharge and water quality in the arid Souss-Massa Basin.

The quality of groundwater is often as critically important as its quantity in terms of groundwater sustainability. Chapter 9 presents the coupled effects of human and climate stresses on groundwater quality in the High Plains aquifer, which is the most heavily used aquifer in the US and supplies about 30% of the groundwater used for irrigation in the US. Focusing, in turn, mainly on groundwater quantity aspects, Chapter 10 shows the complex and coupled effects of human activity (land clearing) on groundwater (increase of recharge and groundwater levels), and subsequent multi-year drought (decrease of groundwater levels) in the Murray Basin in south-eastern Australia. A comparison of borehole data with space gravimetry (GRACE) and soil moisture estimates from hydrological models is used to test the capability of the GRACE mission and provide regional estimates of change in groundwater storage so that it can be applied for the monitoring of insufficiently instrumented regions.

Temperate climate case studies (Chapters 11 to 15) include those from coastal aquifers in Spain, Israel, and The Netherlands, mountain regions of British Columbia, and the Santa Fe Province of Argentina. The Mediterranean region faces an increasing water demand for agriculture and tourism, while climate change projections forecast an

12 Introduction

increase of temperature, decrease of precipitation, and increased occurrence of extreme events. Chapter 11 analyses combinations of climate scenarios and management strategies on the island of Majorca (Spain) in view of preserving groundwater resources under predicted climate change.

Seawater intrusion into coastal aquifers is a concern in the Mediterranean. Chapter 12 describes the coupled effect of climate and anthropogenic sea level changes on Israeli coastal aquifers of the Mediterranean Sea and the Dead Sea. Chapter 13 presents the impacts of land subsidence and sea-level rise on freshwater resources in coastal groundwater systems of The Netherlands. In these systems, saline groundwater comes from the sea and from deep saline aquifers, and subsequently intrudes near-surface coastal groundwater systems. The salinization of the subsoil is caused by human-driven processes of land subsidence that have been going on for nearly a millennium.

Mountain watersheds or basins are unique high-relief environments that are important sources of water for local and downstream ecosystems and human population. Chapter 14 provides an overview of hydrogeological processes in temperate mountain regions as a basis for understanding how climate change may influence the groundwater systems. Case study examples of two valley-bottom aquifer systems in southern British Columbia, Canada highlight the complex interactions that need to be considered for climate change impact and adaptation assessment. Applying a modelling approach, the chapter explores recharge mechanisms and evaluates how the magnitude and timing of recharge may change under future climate conditions.

In the temperate central region of the Santa Fe Province in Argentina (Chapter 15) groundwater is the only source of water supply for all regional demands. The case study analyses available hydrogeological data to describe the aquifer system and quantify present groundwater availability. Future recharge to the aquifer system is estimated, and incorporated into a numerical groundwater flow model to assess future groundwater availability for drinking and food production under different climate scenarios.

Continental climate case studies (Chapters 16 and 17) include those from China and Finland. Chapter 16 analyses the impacts of prolonged drought on groundwater resources in the Beijing Plain where the combined effects of decreasing natural recharge and increasing abstraction have caused rapid depletion of groundwater storage. The chapter elaborates on direct and indirect impacts of climate change and proposes management responses based on simulations of groundwater depletion under various scenarios. Chapter 17 describes possible effects of climate change on esker aquifers in northern Finland. Eskers are an important source of potable groundwater in Finland and support many ecosystem services. However, groundwater in eskers is threatened by peatland drainage, agriculture, roads, and other land uses. This chapter describes the possible impacts of climate change and land use on esker groundwater systems with focus on the impact of peatland drainage in the esker discharge zone.

The polar climate case study (Chapter 18) is from Svalbard, Norway. Polar regions are sparsely populated, but have gained a lot of interest in the discussions about climate change because high-latitude areas are predicted to experience the most dramatic global climate change in this century. Moreover, large parts of these areas are regarded as pristine, with unique and highly specialized habitats for animals and plants. Groundwater forms part of this system that is – and will be – highly impacted by climate change. Chapter 18 presents a case study that examines climate change impacts on arctic sub-permafrost groundwater from the Arctic Peninsula of Svalbard, Norway.

Chapters 19 to 21 present case studies that encompass different climatic zones. Chapter 19 assesses the effects of climate change and human activities on urban subsurface environments and groundwater, which is an important but largely unexamined field of human-environment interactions. In this chapter, the subsurface environments of seven Asian coastal cities are studied with respect to water shortage, land subsidence, groundwater storage and contamination, thermal anomalies, and the urban heat island effect.

Similar to other regions of the world, groundwater in Europe is a substantial economic resource that is threatened by over-abstraction and contamination from surface-derived pollutants, which could be exacerbated by climate change. Chapter 20 evaluates future climate change effects on European groundwater resources in five study areas in northern and southern Europe, centred on the Å (Denmark), Medway (UK), Seine (France), Guadalquivir (Spain), and Po (Italy) river basins.

Chapter 21 describes the application of satellite gravimetry (GRACE) for characterizing groundwater storage changes in large aquifer systems – a method that provides new opportunities for water-resources monitoring, particularly in data sparse regions. Two case studies of groundwater depletion are presented, one in the relatively data-rich Central Valley aquifer of California (US) and in the other in more data-poor northern India.

The last chapter, Chapter 22, summarizes the main findings of the book in terms of new scientific insight and policy recommendations. This chapter, in particular, is expected to be of great interest to water resource managers, planners, and decision makers entrusted with the management of a valuable resource. In the light of global change, and climate change in particular, groundwater will continue to be an important resource that supports human health and livelihoods and many natural ecosystems. A sound understanding of the resource and current and future pressures from climate and human activities are necessary to guide adaptive management towards long-term groundwater sustainability.

REFERENCES

- Bates, B., Kundzewicz, Z.W., Wu, S. & Palutikof, J.P. (2008) Climate change and water. *Technical Paper VI of the Intergovernmental Panel on Climate Change*. Geneva, Intergovernmental Panel on Climate Change Secretariat. 210 pp.
- Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., Treidel, H. & Aureli, A. (2011) Beneath the surface of global change: Impacts of climate change on groundwater. *Journal of Hydrology*. doi:10.1016/j.jhydrol.2011.05.002 [Online] Available from: http:// www.sciencedirect.com/science/article/pii/S0022169411002988. Accessed 1 October 2011
- IPCC. (2001): Working Group II: Climate Change 2001, Impacts, Adaptation and Vulnerability. [Online] Available from: http://www.grida.no/publications/other/ipcc_tar/?src=/climate/ipcc_tar/wg2/377.htm. Accessed 30 September 2011
- IPCC. (2007) Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, Cambridge University Press.
- Köppen, W. (1936) Das geographische System der Klimate. In: Köppen, W. and Geiger, G. (eds.) *Handbuch der Klimatologie*. Vol. 1, part C. Berlin, Gebr, Borntraeger. pp. 1–44.
- Siebert, S., Burke, J., Faures, J.M., Frenken, K., Hoogeveen, J., Döll, P. & Portmann, F.T. (2010) Groundwater use for irrigation – a global inventory. *Hydrology and Earth System Sciences*.

14 Introduction

[Online]14,1863–1880.Availablefrom:www.hydrol-earth-syst-sci.net/14/1863/2010/doi:10.5194/ hess-14-1863-2010 (direct link to the paper: http://www.hydrol-earth-syst-sci.net/14/1863/2010/ hess-14-1863-2010.pdf) . Accessed 1 October 2011

- UNESCO. (2008) International Hydrological Programme of the United Nations Educational, Scientific and Cultural Organization (UNESCO). GRAPHIC framework document. [Online] Available from: http://unesdoc.unesco.org/images/0016/001631/163172e.pdf [Cited 20th July 2011].
- WHYMAP. (2008) Worldwide Hydrogeological Mapping and Assessment Programme, Groundwater Resources of the World 1:25,000,000. BGR/UNESCO. [Online]. Available from: http:// www.whymap.org/whymap/EN/Downloads/Global_maps/globalmaps_node_en.html. Accessed 1 October 2011
- WWAP. (2009) The United Nations World Water Development Report 3: Water in a Changing World, World Water Assessment Programme. Paris, UNESCO Publishing, UNESCO 2009. 349 p.

Tropical Climates

This page intentionally left blank

CHAPTER 2

The impacts of climate change and rapid development on weathered crystalline rock aquifer systems in the humid tropics of sub-Saharan Africa: evidence from south-western Uganda

Richard Taylor & Callist Tindimugaya

ABSTRACT

Deeply weathered crystalline rock aquifer systems underlie much of the continental land masses in the tropics including sub-Saharan Africa, India and South America. Detailed catchment-scale studies in south-western Uganda reveal three key characteristics of the impacts of climate change and rapid development on weathered crystalline rock aquifer systems in the humid tropics. First, rapid development of groundwater resources is expected over the next two decades to have a more pronounced impact on groundwater resources than climate change. Second, projected changes in the seasonality and intensity of rainfall, though rarely considered, substantially influence the timing and magnitude of groundwater recharge. Third, quantified uncertainty in climate change impacts on groundwater discharges is substantial and arises primarily from the structure of general circulation models to simulate future rainfall and algorithms to estimate climate change impacts on potential evapotranspiration. In light of substantial uncertainty in current hydrological projections, groundwater management in the humid tropics will necessarily need to be adaptive and informed by groundwater and meteorological monitoring systems that reveal the response of groundwater systems to increased abstraction and climate change. A concerted, collaborative research effort between climate and water scientists is also required to reduce current uncertainty in hydrological projections; research in Uganda shows furthermore that employed models of groundwater recharge need to explicitly consider projected changes in rainfall intensity.

2.1 INTRODUCTION

2.1.1 Purpose and scope

The tropics¹ is home to \sim 40% of the world's population, the highest levels of population growth, and the majority of the world's poor. It is also where most of the sun's energy that drives global climate is absorbed and, as such, where changes in the water-holding capacity of the atmosphere as a result of anthropogenic warming are highest (Allen and Ingram 2002; Trenberth et al. 2003). Consequently, it is in the tropics where the impacts of rapid development and climate change on water resources are expected to be the most severe and where the need for sustainable adaptive management strategies in the water sector is greatest. Perversely, it is the tropics where the human and institutional capacity

¹The region between latitudes 23.45°N and 23.45°S.

and hydrological knowledge base to devise adaptive water strategies are the most limited. Groundwater has for decades enabled communities across the tropics to adapt to seasonal or perennial shortages in surface water by providing water for drinking, watering livestock, and more recently irrigation. It is unclear, however, whether more intensive groundwater abstraction to meet rapidly rising demand for domestic and agricultural water is viable. Furthermore, a quantitative understanding of the impact of climate change on groundwater resources in the tropics remains elusive.

Large areas of the tropics including 40% of Sub-Saharan Africa (SSA) are underlain by deeply weathered crystalline rock aquifers (Taylor and Howard 2000; Maréchal et al. 2004; MacDonald et al. 2005). Aquifers comprising fractured bedrock (saprock) and a primarily *in situ* weathered, unconsolidated regolith (saprolite) possess low transmissivities typically ranging from 1 to $10 \text{ m}^2 \cdot \text{day}^{-1}$ (e.g. Houston and Lewis 1988; Howard et al. 1992; Briz-Kishore 1993; Owoade 1995; Chilton and Foster 1995) Higher transmissivities exceeding $10 \text{ m}^2 \cdot \text{day}^{-1}$ have recently been observed in tropical regoliths where alluvial and fluvio-laustrine deposits are present (Bradley 2011). Saprock and saprolite aquifers can operate as an integrated aquifer system wherein the overlying, more porous saprolite provides storage to underlying more transmissive fracture bedrock (Rushton and Weller 1985; Sekhar et al. 1994; Chilton and Foster 1995; Taylor and Howard 2000; Taylor et al. 2010). Further research is, however, required to resolve more completely the groundwater flowpaths and storage characteristics of this aquifer system.

In SSA, over half of the population depends in part or in whole on groundwater resources from saprolite-saprock aquifer systems for domestic water supplies. Of major concern is whether this aquifer system can sustain greater and more widespread groundwater withdrawals for rising domestic water demand and irrigation. The latter is recommended by both the Agricultural Water for Africa Initiative (AgWA) and Comprehensive Africa Agriculture Development Programme (CAADP) to improve food production and the resilience of the still predominantly rural population of small-scale farmers in SSA to climate variability and change.

At present, the duration and coverage of monitoring data for saprolite-saprock aquifer systems in the tropics are limited. With few exceptions (e.g. Groundwater Resilience in Africa²), research into these aquifer systems has focused on specific locations or basins (e.g. Nkotagu 1996; Taylor and Howard 2000; Maréchal et al. 2004; Giertz et al. 2006a) that are intended to be representative of more widespread hydrogeological conditions in saprolite and saprock aquifers. Here, we review evidence from a series of recent studies focused on the River Mitano Basin (Tindimugaya 2008; Mileham et al. 2008, 2009; Kingston et al. 2009; Kingston and Taylor 2010) of south-western Uganda which features the longest continuous record of daily river discharge in Uganda (1965 to present) and a time series of groundwater level and abstraction observations. Following a description of the basin, we describe three key outcomes from this research regarding the impacts of rapid development and climate change on groundwater resources in saprolite-saprock aquifer systems of the humid tropics.

2.1.2 Description of the study area: the River Mitano Basin

The River Mitano Basin is located within the humid, inner tropics just south of the equator in south-western Uganda (Fig. 2.1a). The basin is underlain by deeply weathered

²www.bgs.ac.uk/gwresilience

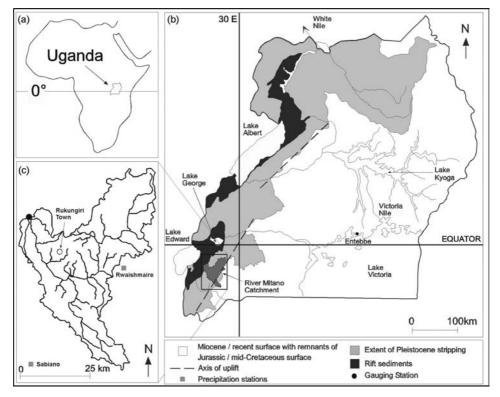


Figure 2.1. (a) Location of Uganda; (b) location of the basin within the weathered land surfaces of Uganda (Taylor & Howard, 1999a); and (c) map of the catchment drainage system showing gauging stations.

Precambrian crystalline rocks including gneisses, schists, phyllites and granites. The River Mitano flows in a north-westerly direction from upland areas, 2500 m above mean sea level (mamsl) in the south of the catchment, to the depression (graben) containing Lake Edward (975 mamsl) in the western arm of the East African Rift (Fig. 2.1b-c). The river's gauging station, located 20 km upstream of Lake Edward, represents an area of 2098 km². Detailed descriptions of the basin's geology, geomorphology and hydroclimatology are given in Tindimugaya (2008), Mileham et al. (2009), and Kingston and Taylor (2010). The weathered overburden (or regolith) comprises commonly truncated profiles composed primarily of coarse, less weathered material and there are frequent exposures of the Precambrian bedrock (Taylor and Howard 1999a). Fractures within the bedrock have developed from regional tectonic activity associated with rifting and more commonly from isostatic uplift resulting from the long-term weathering processes (Taylor and Howard 2000; Tindimugaya 2008). Groundwater from the weathered overburden (where it exists) and underlying fractured bedrock commonly form an integrated aquifer system that discharges into the River Mitano drainage network. The basin's high relief and incised drainage reflect, however, a runoff-dominated regime (Taylor and Howard 1999b). Land use is primarily agrarian (79%). Principal crops are millet, cassava, sugarcane, simsim, maize, groundnuts, soybeans, bananas, rice, maize, cotton,

coffee and tobacco. Grassland dominates the remainder of the catchment (17%) with small areas of wetland (3%), forest and plantations.

Similar to other humid equatorial environments, the River Mitano basin experiences a bi-modal rainfall regime in which the dominant modes (wet seasons) occur in March-May (MAM) and September-November (SON) as a result of the movement of the Inner-Tropical Convergence Zone (Fig. 2.2). Mean annual catchment precipitation observed between 1965 and 1979 ranges from 963 mm in the east at Rwaishmaire to 1699 mm in the southwest at Sabiano (Fig. 2.1c). Mean annual pan evaporation observed over the period 1967–1977 at Mbarara, approximately 50 km to the east of the catchment, is 1535 mm. Monthly pan evaporation is relatively constant throughout the year, varying by less than 15% and exceeds precipitation in all months except peak wet season precipitation. Diurnal mean temperatures range from 13 to 26°C and this range is significantly greater than the variation (2°C) in mean monthly maximum and minimum temperature. Discharge records (1965–1979) for the River Mitano reflect bi-modal precipitation (Fig. 2.2) but lag peak precipitation by approximately 2 to 6 weeks. Mean river discharge is highest during SON $(35 \text{ m}^3 \cdot \text{s}^{-1})$, equivalent to a specific discharge of $520 \text{ mm} \cdot \text{a}^{-1}$) and lowest during the dry season after MAM ($6 \text{ m}^3 \cdot \text{s}^{-1}$, equivalent to $90 \,\mathrm{mm} \cdot a^{-1}$).

Both the regolith and fractured bedrock form relatively weak aquifers. Of 51 tested wells in the basin, well yields range from 0.1 to $23 \text{ m}^3 \cdot \text{hour}^{-1}$. Half of these wells possess yields of $<2 \text{ m}^3 \cdot \text{hour}^{-1}$ whereas 15 wells had yields exceeding $5 \text{ m}^3 \cdot \text{hour}^{-1}$. Low yielding boreholes are predominantly located in upland areas where the regolith is thin whereas high yielding boreholes are most commonly located in low-lying areas underlain by a comparatively thicker regolith. Across the basin, low-intensity (handpump) abstraction of groundwater ($<0.7 \text{ m}^3 \cdot \text{hour}^{-1}$ per borehole) has taken place for decades from boreholes installed primarily into the fractured bedrock aquifer to supply potable water to the overwhelmingly rural population. Consequently, the predominance of higher yields observed in boreholes in low catena positions likely reflects one or both of enhanced bedrock transmissitivities associated with greater fracturing and enhanced groundwater storage, sustaining higher yields, where the regolith is thicker. More recently, intensive

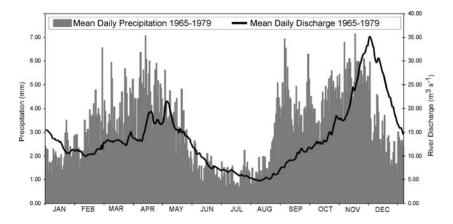


Figure 2.2. Mean daily rainfall (20 stations) and river discharge in the River Mitano basin from 1965 to 1980 (Mileham 2008).

groundwater abstraction from the saprock-saprolite aquifer system by motorised pumps $(>3.6 \,\mathrm{m^3 \cdot hour^{-1}})$ per borehole) has been conducted to supply the rapidly growing town of Rukungiri located in the north-central part of the basin.

2.2 RESULTS AND DISCUSSION

2.2.1 Impacts of intensive groundwater abstraction

Intensive groundwater abstraction in Sub-Saharan Africa (SSA) is primarily conducted for town and city water supplies as either a primary (e.g. Dodoma, Tanzania; Lusaka, Zambia) or supplementary (e.g. Nairobi, Kenya; Dar es Salaam, Tanzania) source of potable water. Smaller towns throughout SSA can be entirely dependent on groundwater as a source of potable water because such systems do not require the expense and expertise of sophisticated water treatment. For many towns, groundwater is their only source of water for some or all of the year. Intensive groundwater abstraction was promoted in many parts of SSA during the 1990s under a number of schemes including the Small Towns Water and Sanitation Project funded among others by the World Bank, DANIDA, the European Union, and African Development Bank. Intensive groundwater abstraction for irrigation in SSA is currently minimal and restricted to few locations (e.g. Kabwe, Zambia). Regionally, less than 5% of the arable land in SSA is under irrigation from either surface water or groundwater withdrawals (Giordano 2006). Substantial increases in groundwater withdrawals for irrigation are, however, proposed (World Bank 2007) to improve food production and the resilience of agricultural systems in SSA to climate variability and change.

The town of Rukungiri in the River Mitano Basin with an estimated population of 18,600 in 2006 relies exclusively upon groundwater for its piped water supply that is based on two high yielding boreholes. Motorised abstraction from one borehole commenced in 1998 but substantially increased after February 2003 to between 150 and $200 \,\mathrm{m^3 \cdot day^{-1}}$ using both boreholes following a sharp rise in demand (MWLE 2006). This piped water supply is unable to meet demand and currently supplemented by 14 hand-pumped boreholes and 47 springs in the town in addition to another motorised borehole privately operated by a local hospital. The percentage of the population with access to safe water in the town is 71%. Of this, 56% are supplied by the piped water supply system whereas 15% are supplied by the point water sources (MWE 2006).

Both production boreholes are located in a wellfield near the base of a valley and installed into a thick (60 to 70 m) sequence of not only *in situ* weathered rocks but also colluvial and possibly alluvial fine, medium and coarse-grained sands. Surface geophysical investigations employing using electrical resistivity indicate that the wellfield is bounded geologically by dense, relatively unfractured bedrock (Tindimugaya 2008). The discontinuous nature of aquifers in the unconsolidated regolith is expected on stripped surfaces where the rejuvenation of drainage promotes colluvial and alluvial erosion (Taylor and Howard 2000). In Rukungiri Town and Mitano Basin, erosion to a new base level for drainage was triggered by downfaulting of the western arm of the East African Rift and creation of Lake Edward during the Pleistocene (Fig. 2.1b). On low-relief surfaces where the regolith is regionally extensive, it remains unclear whether aquifers within the regolith are regional or effectively discontinuous due to substantial variability in the regolith's lithology and hydraulic conductivity.

22 Richard Taylor & Callist Tindimugaya

Combined rainfall and groundwater-level monitoring around the two production wells in Rukungiri Town was initiated after the commissioning of the town's piped water supply system (Fig. 2.3). Monitoring records for the production borehole (Ruk 5) that was unpumped show initially the response of the aquifer from September 2001 to January 2003 to estimated rainfall-fed recharge (Mileham et al. 2008) and subsequently intensive abstraction from February 2003 to August 2005. Small positive deflections in the groundwater-level record reveal episodic recharge events that are restricted to heavy rainfall events (>10 mm $\cdot d^{-1}$) during monsoons. This pattern has been observed elsewhere in Uganda (Taylor and Howard 1996; Owor et al., 2009) and is discussed further in the next section.

A sharp drop and sustained decline in the observed groundwater level from 10 m below ground level (mbgl) in February 2003 to 25 mbgl by August 2004 (Fig. 2.3) occur in response to groundwater abstraction in the order of $120 \text{ m}^3 \cdot \text{day}^{-1}$. This substantial (~15 m) and sustained decline in observed groundwater level suggests that abstraction has drawn from long-term storage. Strong positive deflections in the hydrograph after February 2003 not only correspond well with estimated recharge events but suggest further that the pumping borehole captures more recharge than under previous, non-pumping conditions. The extent to which positive deflections in groundwater

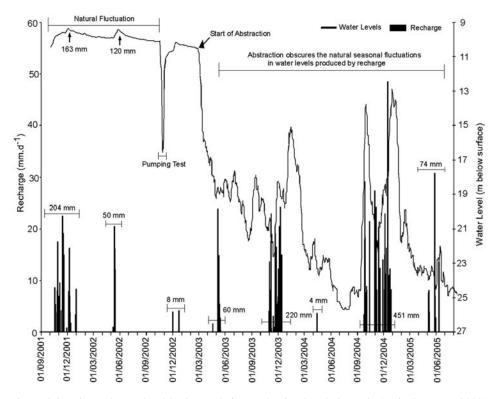


Figure 2.3. Groundwater-level hydrograph for production borehole, Ruk 5 (Tindimugaya 2008) and estimated recharge (Mileham 2008) in Rukungiri Town from September 2001 to August 2005.

levels arise from variability in daily abstraction is, however, unclear. Continued pumping has led to shorter but more frequent periods of pumping as maximum pumping depths (determined by the depth of the submersible pump and borehole itself) are realised more quickly. A third production borehole, approximately 2km away, has recently been commissioned to supplement the water from the two existing boreholes but the town's current water demand still remains unmet. Monitoring of groundwater levels in Rukungiri Town highlights how the localised nature of aquifers in deeply weathered crystalline rock environments constrains the long-term sustainability of intensive abstraction using submersible pumps (i.e. rates exceeding $> 1 L \cdot s^{-1}$ per borehole).

2.2.2 Impact of climate change on groundwater recharge

An important, generic impact of human-induced warming on the global hydrological system is an increased frequency of very heavy rainfall events, specifically those in the uppermost quantiles of the rainfall distribution (Allen and Ingram 2002; Trenberth et al. 2003; Pall et al. 2007). The shift to more intensive rainfall is explained by the fact that water-holding capacity of the atmosphere increases according to the Clausius–Clapeyron relation ($\sim 6.5\%$ K⁻¹ rise in air temperature) and the observation that heaviest rainfall events tend to deplete air of all of its available moisture. Recent analyses (Allan and Soden 2008; Min et al. 2011) verify this conceptual model and suggest further that the amplification of very heavy rainfall events under a warmer atmosphere is greater than that currently projected by General Circulation Models (GCMs). As warmer air temperatures in the humid tropics lead to larger absolute rises in the moisture content of the atmosphere, it is here where increased rainfall intensities are expected to be especially pronounced.

In the humid tropics, effective precipitation (i.e. that which contributes to groundwater recharge and runoff) depends upon heavy rainfall events when the rate of incoming rainfall temporarily exceeds high rates (>4 mm \cdot day⁻¹) of potential evapotranspiration (PET) and soil moisture deficits that have accrued from this flux. In tropical Africa, there is a growing body of evidence from stable isotope tracers (Vogel and Urk 1975; Taylor and Howard 1999a), soil-moisture balance models (Taylor and Howard 1996; Eilers et al. 2007; Mileham et al. 2008) and borehole hydrographs (Owor et al. 2009) that demonstrates the importance of heavy rainfall events (>10 mm day⁻¹) in determining the magnitude and timing of direct, rainfall-fed recharge. Using a dataset of coincidental, daily observations of rainfall and groundwater levels remote from abstraction at 4 stations in the Upper Nile Basin of Uganda over the period 1999 to 2008, Owor et al. (2009) show that the magnitude of observed recharge events is better related to the sum of heavy rainfalls that exceed a threshold of $10 \text{ mm} \cdot \text{day}^{-1}$ compared to that of all daily rainfall events. Consequently, a shift toward more frequent heavy rainfall events under an anthropogenically warmed climate should promote rather than restrict groundwater recharge in similar environments of the tropics.

Substantial (70%) declines in groundwater recharge have been projected in northeast Brazil and southwest Africa in association with higher air temperatures and lower rainfall (Döll and Florke 2005, cited in IPCC Fourth Assessment Report) yet these projections failed to consider changes in the distribution of projected daily precipitation (Kundzewicz et al. 2008). Indeed, this oversight is commonly perpetuated through the use of "delta factors" to simulate climate change impacts on basin hydrology (e.g. Tate