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Preface

This book is devoted to a rapidly developing branch of the qualitative theory
of differential equations with or without delays. It summarizes the most recent
contributions of the authors and their colleagues in this area and will be a stimulus
to its further development.

There are eight chapters in this book. After the preliminaries in Chapter 1,
we present oscillatory and nonoscillatory properties of first order delay differential
equations and first order neutral delay differential equations in Chapters 2 and 3,
respectively. Classification schemes and existence of positive solutions of neutral
delay differential equations with variable coefficients are also considered. In Chap-
ter 4, oscillation and nonoscillation of second order nonlinear differential equations
without delays is investigated. Chapter 5 is devoted to classification schemes and
existence of positive solutions of second order delay differential equations with or
without neutral terms. Nonoscillation and oscillation of higher order delay dif-
ferential equations is considered in Chapter 6. Chapter 7 features oscillation and
nonoscillation for two-dimensional systems of nonlinear differential equations. Fi-
nally, in Chapter 8, we give some first results on the oscillation of dynamic equations
on time scales. Time scales have been introduced in order to unify continuous and
discrete analysis and to extend those theories to cases “in between”. Many results
given in the first seven chapters of this book may be generalized within the time
scales setting (hence accommodating differential equations and difference equations
simultaneously), and in this final chapter we present some of those results.

This book is addressed to a wide audience of specialists such as mathematicians,
physicists, engineers and biologists. It can be used as a textbook at the graduate
level and as a reference book for several disciplines.

Thanks are due to Xiao-Yun Cao for her assistance in typing portions of the
book and a very special thank you to Dr. Murat Adıvar, Dr. Elvan Akın-Bohner,
Dr. Xiang-Li Fei, and Dr. Hai-Feng Huo for their help in proofreading. Finally, we
wish to express our thanks to the staff of Marcel Dekker, Inc., in particular Maria
Allegra and Elizabeth Draper, for their cooperation during the preparation of this
book for publication.

Ravi Agarwal
Martin Bohner
Wan-Tong Li
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CHAPTER 1

Preliminaries

1.1. Introduction

This chapter is essentially introductory in nature. Its main purpose is to present
some basic concepts from the theory of delay differential equations and to sketch
some preliminary results which will be used throughout the book. In this respect,
this is almost a self-contained monograph. The reader may glance at the material
covered in this chapter and then proceed to Chapter 2.

Section 1.2 is concerned with the statement of the basic initial value problems
and classification of equations with delays. In Section 1.3 we provide definition
of oscillation of solutions with or without delays. Section 1.4 states some fixed
point theorems which are important tools in oscillation theory, especially, when
one proves the existence of nonoscillatory solutions.

1.2. Initial Value Problems

Let us consider the ordinary differential equation (ODE)

(1.1) x′(t) = f(t, x)

together with the initial condition

(1.2) x(t0) = x0.

It is well known that under certain assumptions on f the initial value problem (1.1)
and (1.2) has a unique solution and is equivalent to the integral equation

x(t) = x(t0) +
∫ t

t0

f
(
s, x(s)

)
ds for t ≥ t0.

Next, we consider a differential equation of the form

(1.3) x′(t) = f
(
t, x(t), x(t− τ)

)
with τ > 0 and t ≥ t0,

in which the right-hand side depends not only on the instantaneous position x(t),
but also on x(t − τ), the position at τ units back, that is to say, the equation has
past memory. Such an equation is called an ordinary differential equation with delay
or delay differential equation. Whenever necessary, we shall consider the integral
equation

x(t) = x(t0) +
∫ t

t0

f
(
s, x(s), x(s− τ)

)
ds,

which is equivalent to (1.3). In order to define a solution of (1.3), we need to have
a known function ϕ on [t0 − τ, t0], instead of just the initial condition x(t0) = x0.

1
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The basic initial value problem for a delay differential equation is posed as
follows: On the interval [t0, T ], T ≤ ∞, we seek a continuous function x that
satisfies (1.3) and an initial condition

(1.4) x(t) = ϕ(t) for all t ∈ Et0 ,

where t0 is an initial point, Et0 = [t0− τ, t0] is the initial set; the known function ϕ
on Et0 is called the initial function. Usually, it is assumed that ϕ(t0 + 0) = ϕ(t0).
We always mean a one-sided derivative when we speak of the derivative at an
endpoint of an interval.

Under general assumptions, the existence and uniqueness of solutions to the
initial value problem (1.3) and (1.4) can be established (see, for example, Győri
and Ladas [118]). The solution sometimes is denoted by x(t, ϕ). In the case of a
variable delay τ = τ(t) > 0 in (1.3), it is also required to find a solution of this
equation for t > t0 such that on the initial set

Et0 = t0 ∪
{
t− τ(t) : t− τ(t) < t0, t ≥ t0

}
,

x coincides with the given initial function ϕ. If it is required to determine the
solution on the interval [t0, T ], then the initial set is

Et0T = {t0} ∪
{
t− τ(t) : t− τ(t) < t0, t0 ≤ t ≤ T

}
.

Example 1.2.1. For the equation

y′(t) = f
(
t, y(t), y(t− cos2 t)

)
,

t0 = 0, E0 = [−1, 0], and the initial function ϕ must be given on the interval [−1, 0].

The initial set Et0 depends on the initial point t0, as can be seen from the
following example.

Example 1.2.2. For the equation

y′(t) = ay(t/2),

we have τ(t) = t/2 so that

E0 = {0} and E1 = [1/2, 1].

Now we consider the differential equation of nth order with l deviating argu-
ments, of the form

(1.5) y(m0)(t) = f
(
t, y(t), . . . , y(m0−1)(t), y(t− τ1(t)), . . . , y(m1−1)(t− τ1(t)), . . . ,

y(t− τl(t)), . . . , y(ml−1)(t− τl(t))
)
,

where the deviations τi(t) > 0, and max0≤i≤lmi = n.

In order to formulate the initial value problem for (1.5), we shall need the
following notation. Let t0 be the given initial point. Each deviation τi(t) defines
the initial set E(i)

t0 given by

E
(i)
t0 = {t0} ∪

{
t− τi(t) : t− τi(t) < t0, t ≥ t0

}
.
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We denote Et0 = ∪li=1E
(i)
t0 , and on Et0 continuous functions ϕk, k = 0, 1, . . . , µ,

must be given, with µ = max0≤i≤lmi. In applications, it is most natural to consider
the case where on Et0 ,

ϕk(t) = ϕ
(k)
0 (t) for k = 0, 1, . . . , µ,

but it is not generally necessary.

For the nth order differential equation, there should be given initial values y(k)
0 ,

k = 0, 1, 2, . . . , n − 1. Now let y(k)
0 = ϕk(t0), k = 0, 1, 2, . . . , µ. If µ < n − 1, then,

in addition, the numbers y(µ+1)
0 , ..., y

(n−1)
0 are given. If the point t0 is an isolated

point of Et0 , then y
(0)
0 , . . . , y

(n)
0 are also given.

For (1.5), the basic initial value problem consists of the determination of an
(n − 1) times continuously differentiable function y that satisfies (1.5) for t > t0
and the conditions

y(k)(t0 + 0) = y
(k)
0

for k = 0, 1, . . . , n− 1, and

y(k)(t− τi(t)) = ϕk(t− τi(t)) if t− τi(t) < t0

for k = 0, 1, . . . , µ and i = 1, 2, . . . , l. At the point t0 + (k − 1)τ the derivative
y(k)(t), generally speaking, is discontinuous, but the derivatives of lower order are
continuous.

Example 1.2.3. Consider

(1.6) y′′(t) = f

(
t, y(t), y′(t), y(t− cos2 t), y

(
t

2

))
.

For t0 = 0, we have n = 2, l = 2, µ = 0, the initial sets E(1)
0 = [−1, 0], E(2)

0 = {0},
and E0 = [−1, 0], on which is given the initial function ϕ0, y(0)

0 = ϕ0(0), and y
(1)
0

is any given number.

For (1.5) a classification method was proposed by Kamenskĭı [141]. We let
λ = m0 − µ. If λ > 0, (1.5) is called an equation with retarded arguments or with
delay. If λ = 0, it is called an equation of neutral type. If λ < 0, it is called an
equation of advanced type.

Example 1.2.4. The equations

y′(t) + a(t)y(t− τ) = 0 with τ > 0,

y′(t) + a(t)y(t+ τ) = 0 with τ > 0,

and

y′(t) + a(t)y(t) + b(t)y′(t− τ) = 0 with τ > 0

are of retarded type (λ = 1), advanced type (λ = −1), and neutral type (λ = 0),
respectively.

In applications, the equation with retarded arguments is most important; the
theory of such equations has been developed extensively. In this book we study
mainly equations with or without delays.
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1.3. Definition of Oscillation

Before we define oscillation of solutions, let us consider some simple examples.

Example 1.3.1. The equation

y′′ + y = 0

has periodic solutions y1(t) = cos t and y2(t) = sin t.

Example 1.3.2. Consider the equation

y′′(t)− 1
t
y′(t) + 4t2y(t) = 0,

whose solution is y(t) = sin t2. This solution is not periodic but has an oscillatory
property.

Example 1.3.3. Consider the equation

(1.7) y′′(t) +
1
2
y′(t)− 1

2
y(t− π) = 0 for t ≥ 0,

whose solution y(t) = 1 − sin t has an infinite sequence of multiple zeros. This
solution also has an oscillatory property.

Example 1.3.4. Consider the equation

y′′(t)− y(−t) = 0.

This equation has an oscillatory solution y1(t) = sin t and a nonoscillatory solution
y2(t) = et + e−t.

Let us now restrict our discussion to those solutions y of the equation

(1.8) y′′(t) + a(t)y(t− τ(t)) = 0

which exist on some ray [Ty,∞) and satisfy sup{|y(t)| : t ≥ T} > 0 for every
T ≥ Ty. In other words, |y(t)| 6≡ 0 on any infinite interval [T,∞). Such a solution
sometimes is said to be a regular solution.

We usually assume that a(t) ≥ 0 or a(t) ≤ 0 in (1.8), and in doing so we mean
to imply that a(t) 6≡ 0 on any infinite interval [T,∞).

There are various possibilities of defining oscillation of solutions of ODEs (with
or without delays). In this section, we give two definitions of oscillation, which
are used in the rest of the book; these are the ones most frequently used in the
literature.

As we see from the above examples, the definition of oscillation of regular solu-
tions can have two different forms.

Definition 1.3.5. A nontrivial solution y (implying a regular solution always) is
said to be oscillatory if it has arbitrarily large zeros for t ≥ t0, that is, there exists a
sequence of zeros {tn} (i.e., y(tn) = 0) of y such that limn→∞ tn =∞. Otherwise,
y is said to be nonoscillatory.

For nonoscillatory solutions there exists t1 such that

y(t) 6= 0 for all t ≥ t1.

Definition 1.3.6. A nontrivial solution y is said to be oscillatory if it changes sign
on (T,∞), where T is any number.
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When τ(t) ≡ 0 and a(t) is continuous in (1.8), the two definitions given above
are equivalent. This is because of the fact that the uniqueness of the solution
makes multiple zeros impossible. However, as Example 1.2.3 suggests, a differential
equation with delay can have solutions with multiple zeros. Then the two definitions
are different, especially for higher order ordinary differential equations which may
have solutions with multiple zeros.

Definition 1.3.5 is more general than Definition 1.3.6. The solution y(t) = 1−sin t
of (1.7) is oscillatory according to Definition 1.3.5 and is nonoscillatory according
to Definition 1.3.6.

In Example 1.3.3, the possibility of multiple zeros of nontrivial solutions is a
consequence of the retardation, since if τ(t) ≡ 0, the corresponding equation has
no solutions with multiple zeros.

For the system of first order equations with deviating arguments{
x′ = f1(t, x, x ◦ τ1, y, y ◦ τ2),
y′ = f2(t, x, x ◦ τ1, y, y ◦ τ2),

the solution (x, y) is said to be strongly (weakly) oscillatory if each (at least one) of
its components is oscillatory. Otherwise, it is said to be strongly (weakly) nonoscil-
latory if each (at least one) of its nontrivial components is nonoscillatory.

1.4. Some Fixed Point Theorems

Fixed point theorems are important tools in proving the existence of nonoscil-
latory solutions. In this section we state some fixed point theorems that we need
later. Let us begin with the following notation.

Let S be any fixed set and CS be the relation of strict inclusion on subsets of S:

CS =
{

(A,B) : A ⊆ B ⊆ S and A 6= B
}

We write A ⊂S B instead of the notation (A,B) ∈ CS .
For the set of real numbers, we have the usual ordering relation <. For any

distinct real numbers x and y, either x < y or y < x.

Definition 1.4.1. A partial ordering is a relation R satisfying

(i) if xRy and yRz, then xRz (i.e., R is transitive),
(ii) if xRy and yRx, then x = y (i.e., R is antisymmetric).

If < is such a relation, then we can define x ≤ y if either x < y or x = y. It is
easy to see that x ≤ y < z implies x < z.

Lemma 1.4.2. Assume that < is a partial ordering. Then for any x, y, and z, at
most one of the three alternatives

x < y, x = y, y < x

can hold. Also, x ≤ y ≤ x implies x = y.

Definition 1.4.3. Suppose that < is a partial ordering on A, and consider a subset
C of A. An upper bound of C is an element b ∈ A such that x ≤ b for all x ∈ C.
Here b may or may not belong to C. If b is the least element of the set of all upper
bounds for C, then b is called the least upper bound (or supremum) of C. We write
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b = supC. Similarly we define the greatest lower bound or infimum a of C and
write a = inf C.

Example 1.4.4. Consider a fixed set S. The set consisting of all subsets of S is
denoted by P(S). Let the partial ordering be ⊂S on S. For A and B in P(S), the
set {A,B} has a least upper bound (w.r.t. ⊂S), namely A ∪B.

Theorem 1.4.5. Let < be a partial ordering relative to a field A, and suppose that
every B ⊆ A has a least upper bound and that inf A ∈ A. Suppose that F maps A
into A in such a way that for all x, y ∈ A,

x ≤ y implies Fx ≤ Fy.
Then F has a fixed point in A, i.e., Fx = x for some x ∈ A.

Definition 1.4.6. A subset S of a normed space X is called bounded if there is a
number M such that ‖x‖ ≤M for all x ∈ S.

Definition 1.4.7. A set S in a vector space X is called convex if, for any x, y ∈ S,
λx+ (1− λ)y ∈ S for all λ ∈ [0, 1].

Definition 1.4.8. Let M,N be normed linear spaces, and X ⊂ N . An operator
T : X →M is called continuous at a point x ∈ X if for any ε > 0 there exists δ > 0
such that ‖Tx− Ty‖ < ε whenever y ∈ X with ‖x− y‖ < δ. The operator T is
called continuous on X, or simply continuous, if it is continuous at all points of X.

Theorem 1.4.9. Every continuous mapping of a closed bounded convex set in Rn

into itself has a fixed point.

Definition 1.4.10. A subset S of a normed space B is called compact if every
infinite sequence of elements of S has a subsequence which converges to an element
of S.

We can prove that compact sets are closed and bounded, but vice versa this is
in general not true.

Lemma 1.4.11. Continuous mappings take compact sets into compact sets. In
other words, if M,N are normed linear spaces, X ⊂M is compact, and T : X → N
is continuous, then the image of X under T , i.e., the set T (X) = {Tx : x ∈ X}, is
compact.

Definition 1.4.12. A subset S of a normed linear space N is called relatively
compact if every sequence in S has a subsequence converging to an element of N .

It is obvious that every subset of a compact or relatively compact set is relatively
compact.

Lemma 1.4.13. The closure of a relatively compact set is compact, and a closed
and relatively compact set is compact.

Definition 1.4.14. A function f : R → C is called bounded on an interval I ⊂ R
if there exists M > 0 such that |f(x)| ≤ M for all x ∈ I. A family F of functions
is called uniformly bounded on I if there exists M > 0 such that |f(x)| ≤M for all
x ∈ I and all f ∈ F .

Lemma 1.4.15. Continuous mappings on compact sets are uniformly continuous.
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Definition 1.4.16. A family F of functions is called equicontinuous on an interval
I ⊂ R if for every ε > 0 there exists δ > 0 such that for all f ∈ F , |f(x)− f(y)| < ε
whenever x, y ∈ I with |x− y| < δ.

Theorem 1.4.17 (Arzelà–Ascoli). A set of functions in C[a, b] with

‖f‖ = sup
x∈[a,b]

|f(x)|

is relatively compact iff it is uniformly bounded and equicontinuous on [a, b].

Theorem 1.4.18 (Schauder’s First Fixed Point Theorem). If S is a convex and
compact subset of a normed linear space, then every continuous mapping of S into
itself has a fixed point.

Theorem 1.4.19 (Schauder’s Second Fixed Point Theorem). If S is a convex
closed subset of a normed linear space and R a relatively compact subset of S, then
every continuous mapping of S into R has a fixed point.

Theorem 1.4.19 is the more useful form for the theory of ordinary differential
equations or delay differential equations.

Remark 1.4.20. We should point out that we need to use Theorem 1.4.17 care-
fully, because we usually discuss problems on the infinite interval [t0,∞) in the
qualitative theory of ODEs. That is, we usually want to prove that the family
of functions is uniformly bounded and equicontinuous on [t0,∞). Levitan’s result
[168] provides a correct formulation. According to his result, the family of func-
tions is equicontinuous on [t0,∞) if for any given ε > 0, the interval [t0,∞) can
be decomposed into a finite number of subintervals in such a way that on each
subinterval all functions of the family have oscillations less than ε.

Definition 1.4.21. A real-valued function ρ defined on a linear space X is called
a seminorm on X if

(i) ρ(x+ y) ≤ ρ(x) + ρ(y) for all x, y ∈ X,
(ii) ρ(αx) = |α| ρ(x) for all x ∈ X and all scalars α.

From this definition, we can prove that a seminorm ρ satisfies ρ(0) = 0,

ρ(x1 − x2) ≥ |ρ(x1)− ρ(x2)| ,
and in particular ρ(x) ≥ 0. However, it may happen that ρ(x) = 0 for x 6= 0.

Definition 1.4.22. A family P of semimorms on X is said to be separating if to
each x 6= 0 there corresponds at least one ρ ∈ P with ρ(x) 6= 0.

For a separating seminorm family P, if ρ(x) = 0 for every ρ ∈ P, then x = 0.

Definition 1.4.23. A topology T on a linear space E is called locally convex if
every neighborhood of the element 0 includes a convex neighborhood of 0.

A locally convex topology T on a linear space E is determined by a family of
seminorms {ρα : α ∈ I}, I being the index set.

Let E be a locally convex space, x ∈ E, {xn} ⊂ E. We say that xn → x in E if
ρα(xn − x)→ 0 as n→∞ for every α ∈ I.

A set S ⊂ E is bounded if and only if the set of numbers {ρα(x) : x ∈ S} is
bounded for every α ∈ I.
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Definition 1.4.24. A complete metrizable locally convex space is called a Fréchet
space.

Theorem 1.4.25 (Schauder–Tychonov Theorem). Let X be a locally convex topo-
logical linear space, C a compact convex subset of X, and f : C → C a continuous
mapping such that f(C) is compact. Then f has a fixed point in C.

For example, C([t0,∞),R) is a locally convex space consisting of the set of all
continuous functions. The topology of C is the topology of uniform convergence
on every compact interval of [t0,∞). The seminorm of the space C([t0,∞),R) is
defined by

ρα(x) = max
t∈[t0,α]

|x(t)| for x ∈ C and α ∈ [t0,∞).

Let X be any set. A metric in X is a function d : X × X → R having the
following properties for all x, y, z ∈ X:

(i) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);
(iii) d(x, z) ≤ d(x, y) + d(y, z).

A metric space is a set X together with a given metric in X. A complete metric
space is a metric space X in which every Cauchy sequence converges to a point in
X. A Banach space is a normed space that is complete with respect to the metric
d(x, y) = ‖x− y‖ defined by the norm.

Let (X, d) be a metric space and let T : X → X. If there exists a number
L ∈ [0, 1) such that

d(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X,
then we say that T is a contraction mapping on X.

Theorem 1.4.26 (Banach’s Contraction Mapping Principle). A contraction map-
ping on a complete metric space has exactly one fixed point.

Theorem 1.4.27 (Krasnosel′skĭı’s Fixed Point Theorem). Let X be a Banach
space, let Ω be a bounded closed convex subset of X, and let A,B be maps of Ω into
X such that Ax + By ∈ Ω for every pair x, y ∈ Ω. If A is a contraction and B is
completely continuous, then the equation

Ax+Bx = x

has a solution in Ω.

A nonempty and closed subset K of a Banach space X is called a cone if it
possesses the following properties:

(i) If α ∈ R+ and x ∈ K, then αx ∈ K;
(ii) if x, y ∈ K, then x+ y ∈ K;
(iii) if x ∈ K \ {0}, then −x /∈ K.

Theorem 1.4.28 (Knaster’s Fixed Point Theorem). Let X be a partially ordered
Banach space with ordering ≤. Let M be a subset of X with the following properties:
The infimum of M belongs to M and every nonempty subset of M has a supremum
which belongs to M . Let T : M →M be an increasing mapping, i.e., x ≤ y implies
Tx ≤ Ty. Then T has a fixed point in M .
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Let X be a Banach space, let K be a cone in X, and let ≤ be the ordering in
X induced by K, i.e., x ≤ y if and only if y − x ∈ K. Let D be a subset of K and
T : D → K a mapping.

We denote by 〈x, y〉 the closed ordered interval between x and y, i.e.,

〈x, y〉 =
{
z ∈ X : x ≤ z ≤ y

}
.

We assume that the cone K is normal in X, which implies that ordered intervals
are norm bounded. The cones of nonnegative functions are normal in the space of
continuous functions with supremum norm and in the space Lp.

Theorem 1.4.29. Let X be a Banach space, K a normal cone in X, D a subset
of K such that if x, y ∈ D with x ≤ y, then 〈x, y〉 ⊂ D, and let T : D → K be
a continuous decreasing mapping which is compact on any closed ordered interval
contained in D. Suppose that there exists x0 ∈ D such that T 2x0 is defined (where
T 2x0 = T (Tx0)) and furthermore Tx0, T 2x0 are (order) comparable to x0. Then
T has a fixed point in D provided that either

(i) Tx0 ≤ x0 and T 2x0 ≤ x0, or Tx0 ≥ x0 and T 2x0 ≥ x0, or
(ii) the complete sequence of iterates {Tnx0}∞n=0 is bounded and there exists

y0 ∈ D such that Ty0 ∈ D and y0 ≤ Tnx0 for all n ∈ N0.

Theorem 1.4.30. Let X be a Banach space and A : X → X a completely con-
tinuous mapping such that I − A is one-to-one. Let Ω be a bounded set with
0 ∈ (I − A)(Ω). Then the completely continuous mapping S : Ω → X has a
fixed point in the closure Ω if for any λ ∈ (0, 1), the equation

x = λSx+ (1− λ)Ax

has no solution x on the boundary ∂Ω of Ω.

1.5. Notes

The material in Chapter 1 is based on Erbe, Kong, and Zhang [92], Ladde,
Lakshmikantham, and Zhang [166], and Zhong, Fan, and Chen [304].





CHAPTER 2

First Order Delay Differential Equations

2.1. Introduction

In this chapter, we will describe some of the recent developments in oscillation
theory of first order delay differential equations. This theory is interesting from the
theoretical as well as the practical point of view. It is well known that homogeneous
ordinary differential equations (ODEs) of first order do not possess oscillatory solu-
tions. But the presence of deviating arguments can cause oscillation of solutions. In
this chapter we will see these phenomena and we will show various techniques used
in oscillation and nonoscillation theory of differential equations with delays. We
will present some criteria for oscillation and for the existence of positive solutions
of delay differential equations of first order.

2.2. Equations with a Single Delay: General Case

We consider linear delay differential inequalities and equations of the form

x′(t) + p(t)x (τ(t)) ≤ 0,(2.1)

x′(t) + p(t)x (τ(t)) ≥ 0,(2.2)

and

x′(t) + p(t)x (τ(t)) = 0,(2.3)

where p, τ ∈ C([t0,∞),R+), τ(t) ≤ t, and limt→∞ τ(t) =∞. Set

(2.4) m = lim inf
t→∞

∫ t

τ(t)

p(s)ds and M = lim sup
t→∞

∫ t

τ(t)

p(s)ds.

The following lemmas will be used to prove the main results of this section. All in-
equalities in this section and in the later parts hold eventually if it is not mentioned
specifically.

Lemma 2.2.1. Suppose that m > 0 and set

δ(t) = max
{
τ(s) : s ∈ [t0, t]

}
.

Then we have

(2.5) lim inf
t→∞

∫ t

δ(t)

p(s)ds = lim inf
t→∞

∫ t

τ(t)

p(s)ds = m.

Proof. Clearly, δ(t) ≥ τ(t) and so∫ t

δ(t)

p(s)ds ≤
∫ t

τ(t)

p(s)ds.

11
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Hence

lim inf
t→∞

∫ t

δ(t)

p(s)ds ≤ lim inf
t→∞

∫ t

τ(t)

p(s)ds.

If (2.5) does not hold, then there exist m′ > 0 and a sequence {tn} such that
tn →∞ as n→∞ and

lim
n→∞

∫ tn

δ(tn)

p(s)ds < m′ < m.

By definition, δ(tn) = max{τ(s) : s ∈ [t0, tn]}, and hence there exists t′n ∈ [t0, tn]
such that δ(tn) = τ(t′n). Hence∫ tn

δ(tn)

p(s)ds =
∫ tn

τ(t′n)

p(s)ds >
∫ t′n

τ(t′n)

p(s)ds.

It follows that
{∫ t′n

τ(t′n)
p(s)ds

}∞
n=1

is a bounded sequence having a convergent sub-
sequence, say ∫ t′nk

τ(t′nk
)

p(s)ds→ c ≤ m′ as k →∞,

which implies that

lim inf
t→∞

∫ t

τ(t)

p(s)ds ≤ m′,

contradicting the first definition in (2.4).

Lemma 2.2.2. Let x be an eventually positive solution of (2.1).

(i) If m > 1
e , then

(2.6) lim
t→∞

x(τ(t))
x(t)

=∞.

(ii) If m ≤ 1
e , then

lim
t→∞

x(τ(t))
x(t)

≥ λ,

where λ is the smallest positive root of the equation

(2.7) λ = emλ.

Proof. Let t1 be a sufficiently large number so that x(τ(t)) > 0 for t ≥ t1. Hence x
is decreasing on [t1,∞) and

(2.8)
x′(t)
x(t)

≤ −p(t)x(τ(t))
x(t)

≤ −p(t).

Integrating (2.8) from τ(t) to t we have that eventually

x(τ(t))
x(t)

≥ exp

(∫ t

τ(t)

p(s)ds

)
.

Then, for any ε > 0, there exists Tε such that

(2.9)
x(τ(t))
x(t)

≥ em − ε for all t ≥ Tε.
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Substituting (2.9) into (2.8) we have x′(t)
x(t) ≤ −(em − ε)p(t) for t ≥ Tε, and hence

lim inf
t→∞

x(τ(t))
x(t)

≥ exp (mem) .

Set λ0 = 1 and recursively λn = exp(mλn−1) for all n ∈ N. For a sequence {εn}
with εn > 0 and εn → 0 as n→∞, there exists a sequence {tn} such that tn →∞
as n→∞ and

x(τ(t))
x(t)

≥ λn − εn for all t ≥ tn.

If m > 1
e , then limn→∞ λn = ∞, and (2.6) holds. If m = 1

e , then limn→∞ λn = e,
and if m < 1

e , then λn tends to the smallest root of (2.7).

Remark 2.2.3. From Theorem 2.2.6 we will see that (2.1) has no eventually pos-
itive solutions if m > 1

e .

Lemma 2.2.4. Assume τ is nondecreasing, 0 ≤ m ≤ 1
e , and x is an eventually

positive solution of (2.1). Set

r = lim inf
t→∞

x(t)
x(τ(t))

.

Then

(2.10) A(m) :=
1−m−

√
1− 2m−m2

2
≤ r ≤ 1.

Proof. Assume that x(t) > 0 for t > T1 ≥ t0 and that there exists a sequence {Tn}
such that T1 < T2 < T3 < . . . and τ(t) > Tn for t > Tn+1, n ∈ N. Hence x(τ(t)) > 0
for t > T2. In view of (2.1), x′(t) ≤ 0 on (T2,∞). Clearly, (2.10) holds for m = 0.
If 0 < m ≤ 1

e , for any ε ∈ (0,m), there exists Nε such that

(2.11)
∫ t

τ(t)

p(s)ds > m− ε for t > Nε.

Let ε > 0 and t > Nε. Then

f(λ) :=
∫ λ

t

p(s)ds is continuous and lim
λ→∞

f(λ) > m− ε > 0 = f(t).

Hence there exists λt > t such that f(λt) = m− ε, i.e.,∫ λt

t

p(s)ds = m− ε

holds. From (2.11) we have∫ λt

τ(λt)

p(s)ds > m− ε =
∫ λt

t

p(s)ds

and therefore τ(λt) < t.

Integrating (2.1) from t > max{T4, Nε} to λt we have

(2.12) x(t)− x(λt) ≥
∫ λt

t

p(y)x(τ(y))dy.

We see that τ(t) ≤ τ(y) ≤ τ(λt) < t for t ≤ y ≤ λt.
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Integrating (2.1) from τ(y) to t we have that for t ≤ y ≤ λt

x(τ(y))− x(t) ≥
∫ t

τ(y)

p(u)x(τ(u))du(2.13)

≥ x(τ(t))
∫ t

τ(y)

p(u)du

= x(τ(t))

(∫ y

τ(y)

p(u)du−
∫ y

t

p(u)du

)

> x(τ(t))
[
(m− ε)−

∫ y

t

p(u)du
]
.

From (2.12) and (2.13) we have

x(t) ≥ x(λt) +
∫ λt

t

p(y)x(τ(y))dy(2.14)

> x(λt) +
∫ λt

t

p(y)
{
x(t) + x(τ(t))

[
(m− ε)−

∫ y

t

p(u) du
]}

dy

= x(λt) + x(t)(m− ε) + x(τ(t))

[
(m− ε)2 −

∫ λt

t

p(y)
∫ y

t

p(u)dudy

]
.

Noting the known formula∫ λt

t

∫ y

t

p(y)p(u)dudy =
∫ λt

t

∫ λt

u

p(y)p(u)dydu =
∫ λt

t

∫ λt

y

p(y)p(u)dudy,

we have∫ λt

t

∫ y

t

p(y)p(u)dudy =
1
2

[∫ λt

t

∫ y

t

p(y)p(u)dudy +
∫ λt

t

∫ λt

y

p(y)p(u)dudy

]

=
1
2

∫ λt

t

∫ λt

t

p(y)p(u)dudy

=
1
2

[∫ λt

t

p(s)ds

]2

=
1
2

(m− ε)2.

Substituting this into (2.14) we have

(2.15) x(t) > x(λt) + (m− ε)x(t) +
1
2

(m− ε)2x(τ(t)).

Hence (note that 1−m+ ε > 0)

(2.16)
x(t)

x(τ(t))
>

(m− ε)2

2(1−m+ ε)
=: d1,

and then

x(λt) >
(m− ε)2

2(1−m+ ε)
x(τ(λt)) = d1x(τ(λt)) ≥ d1x(t).

Substituting this into (2.15) we obtain

x(t) > (m+ d1 − ε)x(t) +
1
2

(m− ε)2x(τ(t)),
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and hence
x(t)

x(τ(t))
>

(m− ε)2

2(1−m− d1 + ε)
=: d2.

In general we have

x(t)
x(τ(t))

>
(m− ε)2

2(1−m− dn + ε)
=: dn+1 for n ∈ N.

It is not difficult to see that if ε is small enough, then 1 ≥ dn+1 > dn for all n ∈ N.
Hence limn→∞ dn = d exists and satisfies

−2d2 + 2d(1−m+ ε) = (m− ε)2,

i.e.,

d =
1−m+ ε±

√
1− 2(m− ε)− (m− ε)2

2
.

Therefore, for all large t,

x(t)
x(τ(t))

≥
1−m+ ε−

√
1− 2(m− ε)− (m− ε)2

2
.

Letting ε→ 0, we obtain that

x(t)
x(τ(t))

≥ 1−m−
√

1− 2m−m2

2
= A(m).

This shows that (2.10) holds.

Lemma 2.2.5. Assume that M ∈ (0, 1] and that τ is nondecreasing. Let x be an
eventually positive solution of (2.1). Set

lim inf
t→∞

x(τ(t))
x(t)

= l.

Then

(2.17) l ≤ B(M) :=
(

1 +
√

1−M
M

)2

.

Proof. For a given ε ∈ (0,M), there exists a sequence {tn} such that tn → ∞ as
n→∞ and ∫ tn

τ(tn)

p(s)ds > M − ε, tn > T, n ∈ N.

Set θε = 1 −
√

1− (M − ε). It is easy to see that 0 < θε < M − ε for small ε.
Hence there exists {λn} such that τ(tn) < λn < tn and∫ tn

λn

p(s)ds = θε for n ∈ N.

Integrating (2.1) from λn to tn, we obtain

x(λn)− x(tn) ≥
∫ tn

λn

p(s)x(τ(s))ds ≥ x(τ(tn))
∫ tn

λn

p(s)ds = θεx(τ(tn)).
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Similarly, we have

x(τ(tn))− x(λn) ≥
∫ λn

τ(tn)

p(s)x(τ(s))ds

≥ x(τ(λn))
∫ λn

τ(tn)

p(s)ds

= x(τ(λn))

[∫ tn

τ(tn)

p(s)ds−
∫ tn

λn

p(s)ds

]
> x(τ(λn))(M − ε− θε).

From the above inequalities we get

x(λn) > θεx(τ(tn)) > θε

(
x(λn) + x(τ(λn))(M − ε− θε)

)
and then

x(τ(λn))
x(λn)

<
1− θε

θε(M − ε− θε)
for n ∈ N,

which implies that

l ≤ 1− θε
θε(M − ε− θε)

for all ε ∈ (0,M).

Now, θε → 1−
√

1−M as ε→ 0, and then we obtain

l ≤
√

1−M
(1−

√
1−M)(M − 1 +

√
1−M)

=
(

1 +
√

1−M
M

)2

,

which is (2.17).

We are now in a position to state oscillation criteria for (2.3).

Theorem 2.2.6. Assume m > 1
e . Then

(i) (2.1) has no eventually positive solutions;
(ii) (2.2) has no eventually negative solutions;
(iii) every solution of (2.3) is oscillatory.

Proof. It is sufficient to prove (i) as (ii) and (iii) follow from (i). Suppose the
contrary is true, and let x be an eventually positive solution of (2.1). In view of
Lemma 2.2.1, we may assume that τ is nondecreasing. By Lemma 2.2.2,

lim inf
t→∞

x(τ(t))
x(t)

=∞.

On the other hand, from (2.16), x(τ(t))
x(t) is bounded above. This contradiction proves

(i).

Remark 2.2.7. If τ is nondecreasing and M ∈ (0, 1], then the condition m > 1
e in

Theorem 2.2.6 can be replaced by

(2.18) m >
ln b
b

with b = min{e,B(M)},

where B(M) is defined in (2.17).
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Proof. To see this, let x be a positive solution of (2.1). Set w(t) = x(τ(t))
x(t) . By

Lemma 2.2.5, lim inft→∞ w(t) = l ≤ B(M). From (2.1), we obtain

−x
′(t)
x(t)

≥ p(t)w(t) for all t ≥ T,

where T is sufficiently large. Integrating from τ(t) to t we obtain

lnw(t) ≥
∫ t

τ(t)

p(s)w(s)ds = w(ξt)
∫ t

τ(t)

p(s)ds

for some ξt ∈ [τ(t), t] and hence

ln l = lim inf
t→∞

lnw(t) ≥ lm

and

m ≤ ln l
l
≤ ln b

b
which contradicts (2.18). Therefore (2.1) has no eventually positive solutions.

Theorem 2.2.8. Assume 0 ≤ m ≤ 1
e and τ is nondecreasing. Furthermore, sup-

pose

(2.19) M > 1−A(m),

where A(m) is defined in (2.10), or

(2.20) M >
lnλ+ 1

λ
,

where λ is the smallest positive root of the equation (2.7). Then the conclusions of
Theorem 2.2.6 are true.

Proof. As in Theorem 2.2.6, it is sufficient to show that under our assumptions (2.1)
has no eventually positive solutions. We assume that x is an eventually positive
solution of (2.1). Integrating (2.1) from τ(t) to t we obtain

x(τ(t))− x(t) ≥
∫ t

τ(t)

p(s)x(τ(s))ds ≥ x(τ(t))
∫ t

τ(t)

p(s)ds.

Then if (2.19) holds, by Lemma 2.2.4, we have

M = lim sup
t→∞

∫ t

τ(t)

p(s)ds ≤ lim sup
t→∞

[
1− x(t)

x(τ(t))

]
(2.21)

= 1− lim inf
t→∞

x(t)
x(τ(t))

= 1− r ≤ 1−A(m),

which contradicts (2.10).
If (2.20) holds, choose m′ < m sufficiently close to m such that

(2.22) M = lim sup
t→∞

∫ t

τ(t)

p(s)ds >
lnλ′ + 1

λ′
,

where λ′ is the smallest root of the equation λ = em
′λ.

Clearly, λ′ < λ and hence lnλ′+1
λ′ > lnλ+1

λ . By Lemma 2.2.2, we have

(2.23)
x(τ(t))
x(t)

> λ′ for all large t.
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From (2.22), there exists t1 so that (2.23) holds for all t > τ(τ(t1)), and

(2.24)
∫ t1

τ(t1)

p(s)ds >
lnλ′ + 1

λ′
.

Without loss of generality denote t0 = τ(t1). We shall show that x(t) > 0 on
[t0, t1] will lead to a contradiction. In fact, let t2 ∈ [t0, t1] be a point at which
x(t0)/x(t2) = λ′. If such a point does not exist, take t2 = t1. Integrating (2.1) over
[t2, t1] and noting that x(τ(t)) ≥ x(t0), we have

(2.25)
∫ t1

t2

p(s)ds ≤ 1
λ′
.

On the other hand, dividing (2.1) by x(t) and integrating it over [t0, t2] we find

(2.26)
∫ t2

t0

p(s)ds ≤ − 1
λ′

∫ t2

t0

x′(s)
x(s)

ds =
lnλ′

λ′
.

Combining (2.25) and (2.26) we get∫ t1

t0

p(s)ds ≤ lnλ′ + 1
λ′

,

which contradicts (2.24).

Example 2.2.9. Consider the equation

(2.27) x′(t) +
0.85

aπ +
√

2
(2a+ cos t)x

(
t− π

2

)
= 0,

where a = 1.137. Then (2.27) is in the form (2.3) with

p(t) =
0.85

aπ +
√

2
(2a+ cos t) and τ(t) = t− π

2
.

We have ∫ t

τ(t)

p(s)ds =
0.85

aπ +
√

2

(
aπ +

√
2 cos

(
t− π

4

))
.

Hence

m = lim inf
t→∞

∫ t

τ(t)

p(s)ds = 0.85
aπ −

√
2

aπ +
√

2
= 0.367837 <

1
e

and

M = lim sup
t→∞

∫ t

τ(t)

p(s)ds = 0.85.

It is easy to see that (2.19) holds. Therefore every solution of (2.27) is oscillatory.

In the following we will consider the existence of positive solutions of a linear
delay differential equation of the form

(2.28) x′(t) + x (t− τ(t)) = 0,

where τ ∈ C([t0,∞),R+) and limt→∞(t− τ(t)) =∞. Set T0 = inft≥t0{t− τ(t)}.

Definition 2.2.10. A solution x is called positive with respect to the initial point
t0, if x is a solution of (2.28) on (t0,∞) and x(t) > 0 for all t ∈ [T0,∞).
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Theorem 2.2.11. Equation (2.28) has a positive solution with respect to t0 if and
only if there exists a real continuous function λ0 on [T0,∞) such that λ0(t) > 0 for
all t ≥ t0 and

(2.29) τ(t) ≤ t− Λ−1
0

(
Λ0(t)− lnλ0(t)

)
for all t ≥ t0,

where Λ0(t) =
∫ t
T0
λ0(s)ds, and Λ−1

0 denotes the inverse function of Λ0.

Proof. We first prove necessity. Let x0 be a positive solution of (2.28) with respect
to t0. Then x0(t) > 0 for all t ∈ [T0,∞). Set

λ0(t) =
x0(t− τ(t))

x0(t)
for all t ≥ T0.

Clearly, λ0(t) > 0 for all t ≥ t0 and hence Λ0(t) =
∫ t
T0
λ0(s)ds defines a function

Λ0 on [T0,∞), which is strictly increasing on [t0,∞). We have for t ≥ t0

lnλ0(t) = ln
(
x0(t− τ(t))

x0(t)

)
= −

∫ t

t−τ(t)

x′0(s)
x0(s)

ds

=
∫ t

t−τ(t)

λ0(s)ds = Λ0(t)− Λ0(t− τ(t))

and therefore
t− τ(t) = Λ−1

0

(
Λ0(t)− lnλ0(t)

)
.

Then
τ(t) = t− Λ−1

0

(
Λ0(t)− lnλ0(t)

)
so that (2.29) holds.

Now we prove sufficiency. If there exists a function λ0 such that (2.29) holds,
then

Λ0 (t− τ(t)) ≥ Λ0(t)− lnλ0(t)

and

λ0(t) ≥ exp

(∫ t

t−τ(t)

λ0(s)ds

)
.

Define

λ1(t) =


exp

(∫ t

t−τ(t)

λ0(s)ds

)
if t ≥ t0

λ1(t0) + λ0(t)− λ0(t0) if t ∈ [T0, t0).

Clearly, λ1(t) ≤ λ0(t) for t ≥ T0 and 0 ≤ λ1(t) ≤ λ0(t) for t ≥ t0. In general, we
define

λn(t) =


exp

(∫ t

t−τ(t)

λn−1(s)ds

)
a if t ≥ t0

λn(t0) + λ0(t)− λ0(t0) if t ∈ [T0, t0).

Thus

λ0(t)− λ0(t0) ≤ λn(t) ≤ λn−1(t) ≤ . . . ≤ λ0(t) for all t ≥ T0
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and λn(t) ≥ 0 for all t ≥ t0. Then limn→∞ λn(t) = λ(t) exists for t ≥ T0 and

lim
n→∞

∫ t

t−τ(t)

λn(s)ds =
∫ t

t−τ(t)

λ(s)ds for all t ≥ t0.

Hence

λ(t) = exp

(∫ t

t−τ(t)

λ(s)ds

)
for all t ≥ t0.

Set

x(t) = exp
(
−
∫ t

T0

λ(s)ds
)

for t ≥ T0.

Then x is a positive solution of (2.28) with respect to t0.

Remark 2.2.12. If we take λ0(t) ≡ λ > 0 in Theorem 2.2.11, then condition (2.29)
becomes

(2.30) τ(t) ≤ lnλ
λ

for all t ≥ t0.

In particular, if λ = e, then (2.30) becomes

(2.31) τ(t) ≤ 1
e

for all t ≥ t0,

i.e., (2.31) is a sufficient condition for the existence of positive solutions of (2.28).

Let t0 = 1
2 and λ0(t) = 2t. Then by Theorem 2.2.11, if

τ(t) = t−
√
t2 − ln 2t,

then (2.28) has a positive solution with respect to t0 = 1
2 . In fact, x(t) = e−t

2
is

such a solution. We note that

τ
(e

2

)
=
e

2
−
√(e

2

)2

− 1 >
1
e
.

This example shows that (2.31) is not necessary for the existence of a positive
solution of (2.28).

We now consider the linear equation of the form

(2.32) x′(t) + p(t)x (t− τ(t)) = 0,

where p, τ ∈ C([t0,∞),R+), τ(t) ≤ t, and limt→∞(t − τ(t)) = ∞. As before, set
T0 = inft≥t0{t − τ(t)}. Similarly as in Theorem 2.2.11 we can prove the following
result.

Theorem 2.2.13. Equation (2.32) has a positive solution with respect to t0 if and
only if there exists a continuous function λ0 on [T0,∞) such that λ0(t) > 0 for
t ≥ t0 and

(2.33) λ0(t) ≥ p(t) exp

(∫ t

t−τ(t)

λ0(s)ds

)
for all t ≥ t0.

Remark 2.2.14. If p(t) > 0, then (2.33) can be replaced by

τ(t) ≤ t− Λ−1
0

(
Λ0(t)− ln

λ0(t)
p(t)

)
for all t ≥ t0.
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Corollary 2.2.15. If ∫ t

t−τ(t)

p(s)ds ≤ 1
e

for all t ≥ t0,

then (2.32) has a positive solution with respect to t0.

Proof. If we take λ0(t) = ep(t), then (2.33) is satisfied. Then the corollary follows
from Theorem 2.2.13.

Theorem 2.2.16. Assume that τ(t) ≡ τ > 0 and
∫∞
t0
p(t)dt = ∞. Then (2.32)

has a positive solution with respect to t0 if and only if there exists a continuous
function λ0 on [t0 − τ,∞) such that

(2.34)
∫ t

t−τ
p(s)ds ≤ t− Λ−1

0

(
Λ0(t)− lnλ0(t)

)
for all t ≥ t0.

Proof. Set u = P (t) =
∫ t
t0
p(s)ds for t ≥ t0. Then

t− τ = P−1

(
u−

∫ P−1(u)

P−1(u)−τ
p(s)ds

)
.

Denote
z(u) = x

(
P−1(u)

)
.

Then (2.32) becomes

(2.35) z′(u) + z

(
u−

∫ P−1(u)

P−1(u)−τ
p(s)ds

)
= 0.

By Theorem 2.2.11, (2.34) is a necessary and sufficient condition for (2.35) to have
a positive solution with respect to 0. From the transformation, it is equivalent to
(2.32) having a positive solution with respect to t0.

Remark 2.2.17. If we choose λ0(t) ≡ e in (2.34), then we obtain

(2.36)
∫ t

t−τ
p(s)ds ≤ 1

e
for all t ≥ t0.

As we have mentioned, (2.36) is a sufficient condition and is not a necessary condi-
tion for the existence of a positive solution of (2.32).

Combining Theorem 2.2.6 and (2.36), we obtain the following corollary.

Corollary 2.2.18. Let p(t) ≡ p > 0 and τ(t) ≡ τ > 0. Then a necessary and
sufficient condition for all solutions of (2.32) to be oscillatory is that pτe > 1.

Remark 2.2.19. The above techniques can be used on the first order advanced
type equations

(2.37) x′(t) = x (t+ τ(t))

and

(2.38) x′(t) = p(t)x (t+ τ(t)) ,


