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I want to note with sadness the passing of my former colleague,

Giuseppe Sant’Ambrogio, M.D. He was not only an inspiration to many

but, above all, a friend in the truest sense. His presence in the scientific

community will be sorely missed. I dedicate this book to his memory.





INTRODUCTION

Newborn and infant mortality has been a plague of public health for centuries.

However, during the 1900s, an extraordinary effort began to correct this

disgraceful situation. Especially remarkable have been the accomplishments of

the last 30 years or so. Although many challenges remain, very noticeable

progress has been made relative to some specific causes of death in babies.

In the United States, neonatal respiratory distress syndrome (NRDS) was

one of the main causes of death in premature newborns. However, an intensive

research effort led to a major reduction of the number of deaths due to this

condition—from about 55,000 per year in the 1960s to less than 5000 per year at

the end of the twentieth century—and the number is still going down.

Paralleling the NRDS epidemic was that of sudden infant death syndrome

(SIDS). Although some successes had occurred during the twentieth century, we

really had to wait for a public health campaign, the ‘‘Back to Sleep’’ campaign, to

witness more rapid declines.

In a way, NRDS and SIDS have some commonalities. NRDS relates to lung

development and its respiratory function (i.e., gas exchange), whereas SIDS is

one expression of dysfunction of the respiratory control system.
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The respiratory machinery is one of the most complex of the human body.

It has fascinated philosophers, teleologists, and biologists for a very long time,

maybe beginning with the Chinese as far back as 2000 B.C. Erasistratus (around

304 B.C.) and then Gallen (around 130 A.D.) were the first to connect the lungs to

the brain through ‘‘hollow’’ nerves, in which the blood was charged with ‘‘animal

spirit.’’ Since then, a long line of biologists have studied this machinery and its

control. All this work led to the realization that the ‘‘hollow’’ nerves were not

blood conduits at all, but ‘‘real’’ nerves conducting commands from the brain in

response to stimuli from various parts of the body.

The first chapter of this new volume gives a panoramic view of respiratory

control in the newborn. It is only the beginning of a journey that will show the

reader how this control works and what it does in health and disease—from

gasping to apnea, from feeding to gastroesophageal reflux, and many more

newborn respiratory control disorders. This is a book for investigators, but also

for clinical practitioners.

As the Executive Editor of the Lung Biology in Health and Disease series, I

cannot overstate how enthusiastic my response was to Dr. Oommen Mathew’s

expression of interest in editing this volume. I knew this would be an important

contribution, as well as a source of invaluable information and inspiration, for

researchers and for clinicians. I am grateful to him and to the contributors for the

opportunity to introduce this volume to the readership of the series.

Claude Lenfant, M.D.

Bethesda, Maryland, U.S.A.
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PREFACE

Since the inception of this series, several volumes have been devoted to

respiratory control. These contributions have critically reviewed the experimental

evidence (beginning with the observation by LeGallois) that the respiratory center

is located in the medulla. Until now, respiratory control in the newborn has been a

small part of the general discussion of respiratory control. In recent years, the

increasing interest in developmental neurobiology—more specifically, our quest

for understanding the cellular mechanisms involved in the control of breathing—

has put our knowledge of respiratory control disorders on a firmer footing. These

cellular events are complex and often show marked developmental changes.

Interpretation and integration of these cellular events into the system levels are

necessary for better understanding of the pathophysiology of various respiratory

control disorders, and, in turn, targeted therapeutic interventions can be devel-

oped. An excellent example of this undertaking is the discovery of surfactant

deficiency as the underlying cause of respiratory distress syndrome in premature

infants, and the subsequent development of natural and synthetic surfactants to

treat this ‘‘developmental disorder.’’ We hopefully anticipate the development of

drugs specifically targeted to enhance maturation of respiratory control in

premature infants and the rectification of abnormal cellular properties through

molecular genetics technology.
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This volume is devoted to the disorders of respiratory control in the

newborn. To refresh and enhance our understanding of respiratory control, the

first part deals with respiratory control in the normal newborn. Several chapters in

this section address the relevant topics critically, in the fetus and the newborn, at

both the system and cellular levels. These include chapters on development of

respiratory control, gasping, and neural and chemical control of breathing. This

section also features chapters on development of sleep states and metabolism—

two vitally important factors in determining respiratory output.

The second part, which focuses on respiratory control disorders, begins

with an overview. The diagnosis of these disorders in the neonate often begins

with cardiorespiratory monitoring in the neonatal intensive care unit. An

examination of the pros and cons of the cardiopulmonary monitoring techniques

used in the neonate follows. The main focus of this part is apnea of prematurity;

several chapters are dedicated to this clinically important topic. Congenital central

hypoventilation and neuromuscular syndromes are examined next, followed by

chapters on control of breathing in acute and chronic respiratory failure. A

discussion of the maturational aspect of the respiratory control mechanisms sets

the stage for the final chapter, which addresses modifiable risk factors in sudden

infant death syndrome.

I would like to thank this outstanding group of international contributors

for their comprehensive, critical, and up-to-date chapters.

Oommen P. Mathew
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France

Eric C. Eichenwald, M.D. Assistant Professor of Pediatrics, Harvard Medical

School, and Department of Newborn Medicine, Brigham and Women’s Hospital,

Boston, Massachusetts, U.S.A

Neil N. Finer, M.D., F.R.C.P.C Professor, Department of Pediatrics, and

Director, Division of Neonatology, University of California, San Diego, San

Diego, California, U.S.A.

John T. Fisher, Ph.D. Departments of Physiology, Paediatrics, and Medicine,

Queen’s University, Kingston, Ontario, Canada

Estelle B. Gauda, M.D. Associate Professor, Department of Pediatrics, The

Johns Hopkins University, Baltimore, Maryland, U.S.A.

Alison Graham, D.O. Division of Neonatology, University of California, San

Diego, San Diego, California, U.S.A.

ix



Anne Greenough, M.D., F.R.C.P., F.R.C.P.C.H., D.C.H. Children Nation-

wide Professor of Neonatology and Clinical Respiratory Physiology, Guy’s,

King’s and St Thomas’ School of Medicine, and Children Nationwide Regional

Neonatal Intensive Care Centre, King’s College Hospital, London, England

Gabriel G. Haddad, M.D.* Professor of Pediatrics and Cellular and Molecular

Physiology, Department of Pediatrics, Yale University School of Medicine, New

Haven, Connecticut, U.S.A.

Musa A. Haxhiu, M.D., Ph.D Director, Department of Physiology and

Biophysics, Howard University College of Medicine, Washington, D.C., U.S.A.

Miriam Katz-Salamon, Ph.D. Associate Professor, Department of Women’s

and Children’s Health, Karolinska Institute, and Department of Neonatology,

Karolinska Hospital, Stockholm, Sweden

Edward E. Lawson, M.D. Professor, Department of Pediatrics, John Hopkins

University School of Medicine, Baltimore, Maryland, U.S.A.

Richard J. Martin, M.D. Professor of Pediatrics, Reproductive Biology, Bio-

physics, and Physiology, Case Western Reserve University, Cleveland, Ohio,

U.S.A.

Oommen P. Mathew, M.D. Professor of Pediatrics, Department of Pediatrics,

Brody School of Medicine at East Carolina University, Greenville, North

Carolina, U.S.A.

Martha Jane Miller, M.D., Ph.D. Associate Professor, Department of Pedia-

trics, Case Western Reserve University, Cleveland, Ohio, U.S.A.

Jacopo P. Mortola, M.D. Professor, Department of Physiology, McGill

University, Montreal, Quebec, Canada

Taher Omari, Ph.D. Senior Research Officer, Department of Pediatrics,

University of Adelaide, and Gastroenterology Unit, Women’s and Children’s

Hospital, Adelaide, South Australia, Australia

Christian F. Poets, M.D. Department of Neonatology, University of Tübingen,
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Respiratory Control in the Newborn

Comparative Physiology and Clinical Disorders

GABRIEL G. HADDAD*

Yale University School of Medicine

New Haven, Connecticut, U.S.A.

I. Introduction

The control of respiration is one of the most fascinating phenomena in

physiology, along with the genesis of heart pacing and rhythm, diurnal rhythm,

and other cyclical phenomena. Indeed, there are amazing short-term and long-

term cyclic phenomena that take place in nature from plants to humans. Consider,

for example, the diurnal cyclicity of gene expression that occurs in plants being

activated in the morning to protect plants from the heat of the sun and others

being activated in the evening to protect them from cold temperatures and

freezing! Cyclic phenomena are clearly intriguing, and it is well recognized

that cyclic phenomena occur in all tissues of the body, whether they are related to

regions of the brain that are responsible for diurnal rhythms (suprachiasmatic

nucleus) or not. Respiration is a short-term cyclical phenomenon that involves the

brain, lungs, heart, circulation, carotid bodies, and other sensors and interconnec-

tions among these various organs. This is clearly a crucial act for air-breathing

mammals; hence its regulation is of paramount importance.
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The control of respiration is not mature at birth in full-term infants, and it is

certainly not mature in premature infants. Keeping in mind that �10% of births in

the United States are premature, the basic understanding of respiration in the

immature infant takes on added significance. Although there are a number of

elements of the control system that are likely to be immature in the newly born,

especially in the premature infant, the aims of this chapter will be [1] to review

some of the salient features of respiratory control in the mature individual, [2]

highlight some of the major differences between the newly born and the mature

subject, and [3] illustrate how certain defects and=or abnormalities in the control

system lead to disease and clinical manifestations.

II. Overall Concepts of Respiratory Control

To describe the respiratory control system and highlight its main features, I

present below six concepts or main ideas that characterize the respiratory control

system. These concepts constitute a distillation of a considerable amount of work

done over more than two centuries, ever since LeGallois’s experiments. In these

experiments, done at the turn of the 19th century, he described the noeud vital in

famous rabbit experiments when he discovered that no breathing efforts occurred

when he severed the spinal cord from the noeud vital, located at the level of

‘‘origin of the nerves of the eighth pair’’ (1).

CONCEPT I: Respiration is controlled via a negative feedback system with a

controller present in the central nervous system (CNS) and a controlled organ

composed of respiratory muscles and lungs.

Animal models and humans have been studied extensively and these

investigations have clearly shown that the CNS integrates the drive and generates

the oscillatory respiratory motor pattern, depending on inputs from a variety of

feedback elements. This controller then adjusts the output of the system such as

to optimize the function desired. Inputs from the carotid bodies, airway receptors,

muscle receptors, and other sensors converge onto the CNS, which integrates and

formulates the output to the respiratory muscles. Therefore, this feedback loop

depends on several elements including sensors, comparators, integrators, and

effectors. With every disturbance sensed, the feedback system tries to change its

output to minimize the effect of the disturbance on the overall function of the

system and to attempt to return it to baseline.

CONCEPT II: The central neuronal processing and integration in the brainstem is

hierarchical in nature.

This idea is important from the point of view of neuronal network as well as

the ‘‘decision-making process’’ in the CNS when faced with competing inputs.

For example, many experiments have shown that the laryngeal afferent input into
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the brainstem is an extraordinarily potent inhibitory reflex to breathing and its

effect on the CNS integrator=pattern generator is instantaneous, taking place in

milliseconds (2,3) (Fig. 1)! This reflex is even more powerful during anesthesia,

when cortical input onto the brainstem is attenuated. We and others have

performed a variety of experiments in animal models and shown that, although

there is a major interplay between anesthesia and this reflex, laryngeal input

overwhelms other inputs coming to the brainstem (2,3).

CONCEPT III: The respiratory rhythm generation in central neurons is most likely

a result of an integration among network, synaptic, cellular, and molecular

characteristics of brainstem and other neurons involved.

Figure 1 Original record in an experiment in which the superior laryngeal nerve (SLN)

was chronically instrumented and the animal (piglet) was awake and unrestrained. Note the

potent respiratory inhibition (compare A, which is at rest, with B, 10min after the

stimulation of the SLN) and the intermittent breakthough or respiration when the SLN was

stimulated.
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This idea has been developed in the past decade, as we have been able to

utilize reduced preparations and study the membrane properties of individual

neurons (4–6). The nature of the rhythm generator is not well delineated, but there

are two potential scenarios. The respiratory controller may be a group of neurons

that either form an emergent network or are endogenous or conditional burster

neurons. In the first case, respiratory neurons would not have any special inherent

membrane properties (e.g., bursting properties) that would make their membrane

potential spontaneously oscillate (6). Rather, the output of the network they form

would oscillate because of the special synaptic interactions among these respira-

tory neurons (6). In the second case, respiratory neurons, similar to those forming

the sinus node of the heart, would have properties that make them individually

‘‘burst’’ or oscillate, even if they are not connected to any other neuron. This is

termed an endogenous burster, or pacemaker neuron. A conditional burster is a

neuron that oscillates only when exposed to certain chemicals (e.g., neurotrans-

mitters). The properties of these neurons are also very critical in shaping the

output of the network itself, irrespective of the properties of the respiratory

network as a whole.

Although the exact nature of how these respiratory neurons operate is not

known, more recent data have suggested that the respiratory rhythm is generated

by an oscillating network in the ventrolateral formation of the medulla oblongata

(7). The region that seems to be essential for the rhythm is the pre-Botzinger

complex, as all cranial nerve activity ceases totally after this region is separated

from lower brainstem levels (7–9). A number of questions clearly remain to be

answered: [1] what are properties of individual neurons in this area? [2] how

interconnected are these with others? and [3] what is the nature of their synapses

with neurons in the brainstem and other more rostral regions? Recently, Feldman

and colleagues have attempted to answer a number of these questions. For

example, we know now that glutamatergic receptors (AMPA) and glutamate as a

ligand play an important role in inducing the respiratory rhythm (10–12).

We and others have discovered a number of impressive membrane currents

that may shape their repetitive firing activity (6). These include not only the

classic sodium and potassium currents responsible for the action potential, but

also an A-current, two types of calcium currents, calcium-activated potassium

currents, inward rectifier currents, ATP-sensitive Kþ currents, and other currents

(6,13). There seems to be little disagreement about the presence of these channels

in respiratory neurons, since after their initial demonstration in brain slices, many

of these channels were studied in identified respiratory neurons in vivo (6).

Although the evidence is still insufficient, it has been suggested that delayed

excitation may be responsible for the firing activity of ‘‘late’’ inspiratory neurons

in the dorsal respiratory group (DRG) (6). If this is true, it is possible that the A-

current in these neurons works in conjunction with processes, such as synaptic

facilitation, to shape a ramp excitatory drive to phrenic motoneurons. Assignment
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of a role for this current in forming the activity of the dorsal group (DRG)

neurons is subject to study and speculation, and will ultimately require further

investigation in vivo. However, we should emphasize that one of the important

observations of the past several years is that these pre-Botzinger neurons do not

seem to have special membrane properties. They seem to have receptors, ion

channels, and transporters similar to those in other neurons in the CNS. Neurons

in the brainstem do not seem to have properties similar to those that oscillate by

themselves, i.e., oscillate by virtue of specific membrane properties, without the

need of input from surrounding neurons. It is therefore very likely that the

oscillations of brainstem respiratory neurons are based not on membrane proper-

ties alone but also on the integration of membrane, synaptic, and network

properties.

CONCEPT IV: Afferent information to the CNS is not essential for neuronal

rhythmicity but is important for modulation of respiration.

A considerable number of afferent messages converge on the brainstem at

any one time. For example, chemoreceptors and mechanoreceptors in the upper

airways constantly sense stretch, air temperature, and chemical changes over the

mucosa and relay this information to the brainstem. Afferent impulses from these

areas travel through the superior laryngeal nerve and the 10th cranial nerve

(vagus). Changes in O2 or CO2 tensions are also sensed at the carotid and aortic

bodies, and afferent impulses travel through the carotid and aortic sinus nerves.

Thermal or metabolic changes are sensed by superficial receptors or by hypo-

thalamic neurons and are carried through spinal tracts to the brainstem. Further-

more, afferent information to the controller in the brainstem need not be only

formulated and sensed by the peripheral nervous system. As an example, sensors

of CO2 lie on the ventral surface of the medulla oblongata and constitute a major

feedback regarding CO2 homeostasis.

It is well known that afferent information is not a prerequisite for the

generation and maintenance of respiration. When the brainstem and spinal cord

are removed from the body of the rat and maintained in vitro, rhythmic phrenic

activity can be detected for hours (7). Other experiments on chronically

instrumented dogs in vivo in which several sensory systems are simultaneously

blocked (cold vagal block, 100% O2 breathing to eliminate carotid discharges,

sleep to eliminate wakeful stimuli, and diuretics to alkalinize the blood) indicate

that afferent information is not necessary to generate the inherent respiratory

rhythm. However, both in vitro and in vivo studies demonstrate that, in the

absence of afferent information, the inherent rhythm of the central generator

(respiratory frequency) is slowed down considerably. Hence chemoreceptor

afferents can play an important role in modulating respiration and rhythmic

behavior. Furthermore, cortical and other central inputs are important afferent

inputs onto the brainstem. They have a major impact on the regulation of
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respiration, although they do not participate in rhythmogenesis. Consider for

example, the effect of emotions, the wake state, sight, hearing, etc., on breathing

(14).

CONCEPT V: The efferent limb of the respiratory control system (i.e., respiratory

musculature) is a possible site of respiratory failure due to neuromuscular failure.

Ventilation requires the coordinated interaction between the respiratory

muscles of the chest and those of the upper airways and neck. For example, the

activation of upper airway muscles occurs prior to and during the initial part of

inspiration; the genioglossus contracts to move the tongue forward and thus

increase the patency of the airways; and the vocal cords abduct to reduce

laryngeal resistance. Indeed, we have learned considerably about the efferent

limb and the respiratory muscles and the neuromuscular junction as potential sites

for failure of the whole system. Extramuscular (e.g., respiratory nerves, neuro-

muscular junction) and intramuscular (e.g., ionic homeostasis, energy stores, fiber

types, blood flow in the muscle) factors can play major roles in either contributing

to or precipitating the failure of ventilation (15).

CONCEPT VI: The output of the respiratory control system is distributed among a

number of respiratory muscles located in the airways, chest wall, and abdomen.

This is an important idea since it is often considered that the diaphragm is

the only muscle of respiration. Whereas the diaphragm is the major muscle, the

best illustration for the importance of the other respiratory muscles, such as those

in the upper airways, is related to the pathogenesis of upper airway obstruc-

tion=hypoventilation during sleep (OSAH) in children as well as in adults. The

coordination, tone, and activation of upper-airway muscles are very important

because it is the ‘‘uncoordinated’’ interactions between the diaphragm and upper

airway muscles that can lead to hypoventilation or obstruction in the upper

airways during sleep. It is therefore very essential to consider the functional state

of all respiratory muscles and their synchronization; it is their coordinated

activation that keeps the airways patent, especially under stress.

III. The Newborn’s Respiratory Control in Perspective

A. Peripheral Sensory Aspects

In this section, I shall review data on the primary O2 sensor in the body, the

carotids. I will show that there are major differences between the newborn and the

adult vis-à-vis the response of the carotids to low O2 and with respect to the

importance of this organ in overall respiratory function and survival in early life.

Recordings from single fiber afferents have demonstrated major differences

between the fetus and the newborn and between the newborn and the adult

(Fig. 2). Chemoreceptor activity is present in the fetus and a large increase in
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activity may be evoked by decreasing the PO2 of the ewe (16). The estimated

response curve was left-shifted such that PaO2 values below 20 torr were required

to initiate an increase in carotid sinus discharge. Furthermore, the large increase

in PaO2 at the time of birth virtually shuts off chemoreceptor activity. However,

this decreased activity does not last long, and a normal, adultlike sensitivity is

achieved after a few weeks (16,17). The mechanisms for the maturation of these

peripheral sensors are not all worked out, but there are a number of factors,

external or endogenous, that probably play a role in this process. For example,

arterial chemoreceptors are subject to hormonal influences, which may affect the

sensor or alter tissue PO2 within the organ. Neurochemicals may also play a

major role as they modulate chemosensitivity. For example, endorphins decrease

in the newborn period, and the effect of exogenous endorphin is inhibition of

chemoreceptor-mediated hypoxia sensitivity (18).

Even in studies in which hormonal or neural effects are minimized such as

in in vitro experiments, the chemosensitivity of the newborn carotid is less than

the adult. Nerve activity of rat carotid bodies, in vitro, following transition from

normoxia to hypoxia is about fourfold greater in carotid bodies harvested from

20-day-old rats as compared to 1 to 2-day-old rats (19). This corresponds well

Figure 2 Peak discharge from single units of a carotid body in vitro. Note the effect of

age on peak activity.
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with the maturational pattern of the respiratory response to hypoxia in the intact

animal (20) and suggests that major maturational changes occur within the carotid

body itself. For example, the maturational increase in chemosensitivity may be

attributed to a maturational change in the biophysical properties of glomus cells.

In one model, it seems that hypoxia directly inhibits a membrane-localized Kþ

channel which is active at rest, and the resulting depolarization leads to calcium

influx, secretion of neurotransmitter, and increased neural activity in adult carotid

cells (21). In comparison, glomus cells harvested from immature rats show a

decrease in whole-cell Kþ current during hypoxia but the decrease in Kþ current

is attributed to a decreased activation of a Caþ2-dependent Kþ current rather than

to a specialized Kþ channel sensitive to PO2 (22). How this leads to reduced

sensitivity and reduced firing is not well understood.

What role do the carotid bodies play in growing animals? And is this role

tied to O2 sensing? In comparison to the adult, peripheral chemoreceptors are

believed to assume a greater role in the newborn period. Peripheral chemo-

receptor denervation in the newborn results in severe respiratory impairments and

high probability of sudden death. This has been demonstrated in a number of

animal models. Lambs following denervation fail to develop a mature respiratory

pattern (23,24) and suffer 30% mortality rate, days, weeks, or months following

surgery. In other species, denervation also leads to lethal respiratory disturbances

(2,25). For instance, denervated rats suffer from severe desaturation during REM

sleep (25), and piglets suffer from profound apnea during quiet sleep (3). Of

particular interest is that these lethal impairments only occur during a fairly

narrow developmental window. Denervation before or after this window period in

early life results in only relatively minor alterations in respiratory function (3).

B. Central Neurophysiologic Aspects

Although recent studies in the neonatal rat in vitro (whole brainstem preparation)

were not targeted at understanding the neonate in particular, these studies have

shed light on basic fundamental issues pertaining to control mechanisms of

respiration in the newborn (7). In fact, we know now from several such studies

that the young rat (in the first week of life) does not need any external or

peripheral drive for the oscillator to discharge. The inherent respiratory rate (as

judged by cranial nerve output) is markedly downregulated. These studies

corroborate the idea that peripheral or central (rostral to the medulla and pons)

inputs are needed to maintain the respiratory output at a much higher frequency.

Another interesting observation is that the discharge pattern of each

neuronal unit in the neonate seems, from extracellular recordings, to be different

from that in the adult in two major ways. First, the inspiratory discharge is not

ramp in shape, but increases and decreases very fast within the same breath. The

second is that it is extremely brief, sometimes limited to even a few action
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potentials (26). In addition to differences in inspiratory discharge, expiratory

units discharge weakly and appear often only after the imposition of an expiratory

load (27,28).

Since the discharge pattern of central neurons in the adult or neonate (as

discussed above) is affected by peripheral input, including input from the vagus

nerve, one question that has been raised is whether the lack of myelination in the

neonatal nerve fibers affects function. This is indeed the case, because of lack of

myelination and potential delays in signaling. It is also because inspiratory and

expiratory discharge periods are so fast or short that they preclude the effect of

peripheral information on the CNS within the same breath. Therefore, one

important issue that can be raised is whether breath-by-breath feedback is as

potent in the young as in the adult.

Differences between neonates and adults are also observed in response to

neurotransmitters or modulators. Young animals respond differently to neuro-

transmitters than adult animals do; this has been mostly documented by work on

the opossum (29). Glutamate injected in various locations in the brainstem, even

in large doses, induces respiratory pauses while it is clearly stimulatory in the

older mature animal (29). Inhibitory neurotransmitters such as GABA have also

been used, and these have age-dependent effects in the opossum. GABA has also

been shown to be an excitatory neurotransmitter (Fig. 3) in the newborn but an

inhibitory one in the mature adult neuron (30). These differences between

newborns and adults are not quite understood at the fundamental level since

there are many variables that have not been controlled for such as the size of the

extracellular space, receptor development, and ability for sensitization, to name a

few.

C. The Efferent System

There is a multitude of neuromuscular and skeletal changes that take place early

in life. These include alterations in muscle cells, the neuromuscular junction, the

nerve terminals and synapses, and the chest wall properties. Therefore, since

muscle and chest wall properties change with age, it is likely that neural

responses can be influenced by pump properties, especially that these muscles

execute neural commands. One of the important maturational aspects of respira-

tory muscles is their pattern of innervation. In the adult, one muscle fiber is

innervated by one motoneuron. In the newborn, however, each fiber is innervated

by two or more motoneurons, and the axons of different motoneurons can

synapse on the same muscle fiber; thus, the term polyneuronal innervation.

Synapse elimination takes place postnatally, and in the case of the diaphragm, the

adult type of innervation is reached by several weeks postnatally, depending on

the animal species. The time course of polyneuronal innervation of the diaphragm

in the human newborn is not known (15).
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The neuromuscular junctional folds, postsynaptic membranes, and acetyl-

choline receptors and metabolism undergo major postnatal maturational changes.

The acetylcholine quantal content per end plate potential is lower in the newborn

than in the adult rat diaphragm (15). The newborn diaphragm is also more

Figure 3 Top panel of four records. Left, above and below: Compare action potential

discharge from one nerve cell in vitro after a hyperpolarization in the presence of 4-AP (IA
current blocker) or picrotoxin (GABAA receptor blocker). Note the lack of excitatory

discharge in the presence of picrotoxin. Right panel shows spontaneous discharge. Bottom

panel. Action potential discharge with depolarization with and without GABA agonist.

10 Haddad



susceptible to neuromuscular transmission failure than that in the adult, especially

at higher frequencies of stimulation (15). The reason for this is not clear.

IV. Disease States

A. Respiratory Pauses and Apneas

Although there are numerous studies on apnea in the newborn and adult human,

there are still major controversies. The length of the respiratory pause, usually

defined as apnea, varies and has been subject to debate. Statistically, apnea can be

defined as a respiratory pause that exceeds 3 standard deviations of the mean

breath time at any particular age. This definition requires data from a population

of subjects, lacks physiologic value, and does not differentiate between relatively

shorter or longer respiratory pauses. This definition may therefore not be the best

from a functional viewpoint. Alternatively, the definition of apnea may be based

on the sequelae of pauses, such as associated cardiovascular or neurophysiologic

changes. Such definition relies on the functional assessment of pauses and is

therefore more relevant clinically. It is important to note here that, because infants

have a higher O2 consumption (per unit weight) than the adult and relatively

smaller lung volumes and O2 stores, it is possible that relatively shorter (e.g.,

seconds) respiratory pauses, which may not be clinically important in the adult,

can be serious in the very young or premature infant. Furthermore, independent

of age, respiratory pauses are more prevalent during sleep than during wakeful-

ness. And the frequency and duration of respiratory pauses depend on sleep state.

Respiratory pauses are more frequent and shorter in REM than in quiet sleep, and

more frequent in the younger than in the older child or adult.

Although there is a controversy regarding the pathogenesis of respiratory

pauses, there is a consensus about certain observations. Normal full-term infants,

children, and adult humans exhibit respiratory pauses during sleep. It is also

believed that the presence of respiratory pauses and breathing irregularity is a

‘‘healthy’’ sign and that the complete absence of such pauses may be indicative of

abnormalities. This parallels well the concept of heart rate variability, and a lack

of short-term or long-term variability in heart rate can be a sign of disease or

immaturity. Prolonged apneas, however, can be life-threatening, and the patho-

genesis of these apneas may relate to the clinical condition of the patient at the

time of the apneas, associated cardiovascular (systemic or pulmonary) changes,

the chronicity of the clinical condition, and whether the etiology is central or

peripheral. Prolonged apneic spells require therapy, but optimally, treatment

should be targeted to the underlying pathophysiology.

The pathogenesis of apneas can vary considerably. The etiology can be in

the CNS, in the periphery, such as in the airways, or in the coordination between

peripheral and central events. Upper-airway obstruction (UAO), for example, is

an entity that is characterized by having lack of normal airflow (or complete lack

Respiratory Control in the Newborn 11



of airflow) not because of lack of phrenic output but because of obstruction in the

airways. This is very different from abnormal (or lack of ) airflow on the basis of

absent phrenic impulses coming to the diaphragm. One reason for distinguishing

the two conditions is to provide the optimal form of therapy.

Upper-airway obstruction during sleep is recognized with increasing

frequency in children and adults. In contrast to adults with UAO in whom the

etiology of obstruction often remains obscure, many children have anatomic

abnormalities. A common cause of UAO in children is tonsillar and adenoidal

hypertrophy, partly due to repeated upper respiratory infections. Other associated

abnormalities include craniofacial malformations, micrognathia, and muscular

hypotonia from a variety of causes. The usual site of obstruction of UAO in both

infants and adults is the oropharynx, between the posterior pharyngeal wall, the

soft palate, and the genioglossus. During sleep (especially REM sleep), upper-

airway muscles, including those of the oropharynx, lose tone, and trigger an

episode of UAO.

B. O2 Deprivation and Cell Injury

A number of pathophysiologic conditions lead to respiratory failure with

hypercapnia and tissue O2 deprivation. Practically, all cardiorespiratory diseases

can potentially produce failure of this system. This outcome may be deleterious to

other organs because of the ensuing acidosis and hypoxia. However, it is the

hypoxia that should be avoided at all cost since human tissues, especially the

CNS, have relatively low tolerance to a microenvironment that is devoid of O2

(31,32).

In the past decade, we have learned a great deal about the effect of lack of

oxygenation on various mammalian and nonmammalian (vertebrate and non-

vertebrate) tissues and at various ages, including fetal, postnatal, and adult. There

is a vast array of cellular and molecular responses to lack of O2. From an

organismal point of view, the carotid bodies would seem to discharge and have an

effect on ventilation when the PaO2 reaches below 50 torr. It is probably the case

that, in general, other tissues in the body do not respond or react to PaO2 above

50 torr. Indeed, most tissues would start ‘‘sensing’’ a decrease in PaO2 only below

35–40 torr. For example, the brain, which is one of the very sensitive tissues to

lack of O2, has a resting (no hypoxia induced) interstitial O2 tension probably in

the range of 20–35 torr depending on age, area (white vs. gray matter), neuronal

metabolism, temperature, proximity to blood vessels, etc.

Although advances have been made in understanding the effect of lack of

oxygenation on tissue metabolism, excitability, and function, major questions

remain unanswered with respect to the mechanisms that lead to injury or those

that protect tissues from it. This area of research is very complex, and we and

others have focused on it for a number of years. In the case of the nervous system,
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for example, a number of mechanisms are activated during O2 deprivation.

Membrane biophysical events such as those pertaining to Naþ and Kþ channels,

and others such as increased anaerobic metabolism, increased intracellular levels

of Hþ and Ca2þ, increased concentrations in extracellular neurotransmitters (e.g.,

glutamate and aspartate), radical production, activation of kinases, protease, and

lipase; injury and destruction of important cytoskeletal proteins; gene regulation

of a number of proteins (e.g., c-fos, NGF, HSP-70, -actin) are just some events

that take place during lack of O2 (32–40).

V. Summary

The newborn seems to have either different mechanisms of control of respiration

or an immature set of mechanisms that, with differentiation, arrive at the adult

respiratory mechanisms. However, it is important to stress that it is not clear from

studies that have been done at either the sensory limb, the central controller, or

the efferent limb that the newborn is at an overall increased risk for injury. In fact,

there is a considerable amount of data to demonstrate that the young are at an

advantage from the viewpoint of stress-related hypoxic injury.
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Gasping and Autoresuscitation

WALTER M. ST.-JOHN

Dartmouth Medical School and Dartmouth-Hitchcock Medical Center

Lebanon, New Hampshire, U.S.A.

I. Introduction

Gasping is the first and last breaths of life. At birth, initial breaths appear to

represent the brief and maximal inspiratory efforts characteristic of gasps. Such

maximal inspiratory efforts, which may be induced by the asphyxia present at

birth, serve to inflate the lungs. With the establishment of adequate oxygenation,

gasps are superseded by normal eupneic ventilatory activity. The supersedure of

gasping by brainstem mechanisms which generate eupnea is so complete that

gasping may not again emerge for many years, with the agonal gasping prior to

death being the extreme for reemergence. However, gasping may also reemerge at

any time when a failure of eupnea results in severe hypoxia or when severe

hypoxia or ischemia has itself caused an elimination of eupnea (Fig. 1). Once

recruited, gasping provides a powerful mechanism for ‘‘autoresuscitation,’’ with a

return to eupnea and normal cardiac function. Such autoresuscitation is much

more effective in the neonate than in the adult (1,2).

Inherent to the above is the concept that neuronal mechanisms underlying

the generation of the gasp may differ from those generating eupnea (3–5). If this

concept is valid, then the question arises as to the status of these neuronal

mechanisms for gasping during most of life. It appears improbable that these

neuronal mechanisms would be quiescent for years and only emerge when
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activated in severe hypoxia or ischemia. Rather, these neuronal mechanisms for

gasping are incorporated into and function as part of the brainstem neuronal

circuit generating eupnea. Severe hypoxia or ischemia suppresses components of

this brainstem neuronal circuit and=or activates mechanisms for gasping. The

mechanism of this activation and the relatively greater efficiency of ‘‘autoresus-

citation’’ in the neonate than in the adult are also topics for consideration.

II. Elicitation of Gasping

A systematic comparison of gasping with normal eupneic ventilation was first

performed by Thomas Lumsden in a series of papers in 1923 and 1924 (6–9). In

addition to exposure to severe hypoxia or ischemia, Lumsden found that eupnea

was replaced by gasping following a brainstem transection at the pontomedullary

junction. Hence, hypoxia-induced gasping was envisaged to result from the

suppression of mesencephalic and pontile components of the brainstem ventila-

tory control system and a freeing of mechanisms for gasping within the medulla.

Many subsequent investigators have confirmed and extended Lumsden’s

observations (see 3–5 for reviews). Concerning the elicitation of gasping in

severe hypoxia, a stereotypical pattern of changes precedes the replacement of

eupnea by gasping. Upon exposure to severe hypoxia, ventilatory activity

increases, with tidal volume and frequency being progressively elevated. Both

variables then decline to a ‘‘primary apnea’’ which is ultimately succeeded by the

large, but somewhat infrequent inspiratory efforts of gasping. If hypoxia is

Figure 1 Autoresuscitation in the newborn. Tracing represents airflow from a plethys-

mograph in which an unanaesthetized 1-day-old rat had been placed. Animal was

breathing 100% oxygen. At the first arrow, the inspired gas was altered to 8% oxygen

in nitrogen. At the second arrow, 100% nitrogen was introduced. Note transient increase in

ventilatory activity and then apnea. Apnea was succeeded by gasping, as evidenced by

large excursions. Air was then re-introduced and the animal recovered a eupneic

ventilatory pattern. (From Ref. 49.)
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continued, the frequency and peak height of gasps ultimately decline to a

‘‘secondary’’ or ‘‘terminal’’ apnea (1–5). Importantly, however, periodic gasps

may continue for minutes or, in neonates, for hours before terminal apnea (10). If

during this extended period of gasping, hypoxia is removed and normoxia or

hyperoxia is reintroduced, the frequency of gasps progressively increases and they

are gradually replaced by eupneic ventilatory activity. This process is termed

‘‘autoresuscitation’’ (1,2) (Fig. 1).

Inherent to the above considerations is the observation that eupnea and

gasping are distinctive patterns of automatic ventilatory activity from the day of

birth. However, in the transition from eupnea to gasping, the duration of the

period of ‘‘primary apnea’’ is exceedingly variable. In fact, this period may be

entirely absent, with the augmented eupneic ventilatory activity being replaced by

gasping. With such a transition, a distinction between the last eupneic inspirations

and the first gasp is not obvious (11–15). This lack of distinction has led to the

concept that eupnea and gasping might be variants of a single respiratory rhythm

(11,14). While this concept remains possible, there is substantial evidence that

different neuronal mechanisms underlie the neurogenesis of eupnea and gasping.

Most prominent upon this evidence is the finding that destruction of neurons in a

discrete region of medulla irreversibly eliminates gasping but not eupnea (see

Sec. VI below). Mechanisms that may underlie the neurogenesis of gasping, and

the relationship of these mechanisms to those generating eupnea, will be

considered in Section IV.

In addition to exposure to severe hypoxia, eupnea is replaced by gasping

following a brainstem transaction at the pontomedullary junction (see 3–5 for

reviews) (Fig. 2). Hence, gasping represents the pattern of ventilatory activity

which can be generated by the isolated medulla. Analyses of gasping resulting

from brainstem transactions with hypoxia-induced gasping has revealed a virtual

identity of characteristics; these characteristics are detailed in Section III.

III. Characteristics of Gasping

A. Neural Activities

Compared to eupnea, gasping might be considered as a greatly simplified pattern

of ventilatory activity. As described in detail in a number of recent reviews

(5,17,18), the eupneic ventilatory cycle consists of three phases: inspiration, and

phases I and II of expiration. The eupneic inspiratory phase is typically defined as

the ‘‘ramplike’’ rise of activity of the phrenic nerve. Bursts of activity, concomi-

tant with that of the phrenic nerve, are recorded from spinal intercostals nerves

and the facial, vagal, and hypoglossal nerves.
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Phase I of expiration is marked by the burst of activity of the branch of the

recurrent laryngeal nerve innervating the thyroarytenoid muscle of the larynx

(Fig. 3). Activity may also be recorded during phase I of expiration from the

mylohyoid branch of the trigeminal nerve, as well as the facial and hypoglossal

nerves. After phase I activities have terminated, activities of spinal nerves

typically commence or augment greatly. These activities of spinal nerves define

phase II of expiration.

The gasping ventilatory cycle consists of two phases: inspiration and

expiration. In fact, the expiratory phase of gasping might be characterized as

the ‘‘absence of inspiration’’ (Fig. 3).

A hallmark of gasping is the extremely rapid rise of inspiratory activity, as

evidenced by the rate of rise of phrenic activity (see 3–5 for review). As opposed

to the ramplike rise of phrenic activity in eupnea, phrenic activity in gasping

reaches a peak value soon after onset and then declines. Hence, phrenic activity

may be ‘‘decrementing’’ in gasping (Fig. 3).

Figure 2 Patterns of automatic ventilatory activity after transections of the brainstem.

Drawing is of the brainstem of the cat, with the cerebellum removed. IC, inferior

colliculus; BP, brachium pontis; scale is in millimeters. Schematic records are of integrated

activity of the phrenic nerve. Eupnea is recorded after a midcollicular transection (level E).

After a rostral pontile transection (level A), apneusis is obtained. Gasping is recorded after

a transection at the pontomedullary junction (level G). (From Ref. 4.)
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Activities of spinal and cranial nerves are like that of the phrenic in

gasping, with all exhibiting a decrementing discharge pattern. Compared to

eupnea, activities during neural expiration, synonymous with the period between

phrenic bursts, are greatly reduced or totally eliminated. Such a reduction of

expiratory activities requires some clarification as, in recovery from severe

Figure 3 Activities of spinal and cranial nerves in eupnea and gasping in the adult cat.

In upper panel, integrated activities of the phrenic nerve (Phr.), ‘‘expiratory’’ intercostal

nerve (T10-11), and ‘‘inspiratory’’ intercostal nerve (T4) are shown. Note alteration of

pattern of integrated phrenic activity from ‘‘incrementing’’ in eupnea to ‘‘decrementing’’ in

gasping. Expiratory intercostal activity was eliminated. In lower panel, integrated activities

of the phrenic nerve (Phr.), recurrent laryngeal nerve (RLN), and branches of the RLN

innervating the posterior cricoarytenoid muscle (PCA) and thyroarytenoid muscle (TA) are

shown. Note that activities during neural expiration of eupnea were eliminated in gasping.

(From Ref. 28.)
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hypoxia or ischaemia, appreciable activities may be observed in the periods

between gasps (19,20). This observation is perhaps not surprising since, as

discussed below, eupnea and gasping share some common medullary neuronal

circuits. However, this reduction or absence of expiratory activities in hypoxia-

induced gasping strongly implies that a neuronal circuit, including expiratory

activities, does not play an essential role in the neurogenesis of the gasp.

B. Response to Chemoreceptor Stimuli

Again, responses in eupnea and gasping differ fundamentally. In eupnea, it is well

accepted that exposure to hypercapnia causes an increase in peak phrenic activity

and the frequency of phrenic bursts and, hence, in both the tidal volume and

frequency of ventilation. Both variables likewise increase upon exposure to

hypoxia. This response is dependent upon the peripheral chemoreceptors.

Following sectioning of the carotid sinus nerves and vagi, hypoxia causes a

fall in eupneic ventilatory activity in decerebrate or anesthetized preparations

(5,21).

In gasping, following transection of the brainstem at the pontomedullary

junction, neither the peak height of phrenic activity nor the frequency of gasping

is systematically altered in hypercapnia. In these preparations, hypoxia does cause

a transient increase in the frequency, but not the height, of gasps. However, these

transient changes in hypoxia are the same in preparations having intact and those

with sectioned carotid sinus nerve and vagi (22). Hence, the characteristics of the

gasping ventilatory pattern appear to be defined by conditions in the environment

of the medulla. Fitting with this concept is the finding that, in paralyzed

preparations, variables of hypoxia-induced gasping are independent of the

concomitant levels of carbon dioxide (23). Moreover, in these same paralyzed

preparations, various levels of hypoxia result in gasping having the same peak

height and frequency (23).

C. Responses to Mechanoreceptor and Other Afferent
Stimulation

A classic reflex in respiratory physiology is the Hering-Breuer reflex, in which

inflation of the lungs causes a premature termination of the eupneic inspiration.

Following bilateral vagotomy, the duration of the inspiratory and expiratory

phases is greatly prolonged, the respiratory frequency is greatly reduced, and the

tidal volume is augmented (24). Such changes following bilateral vagotomy are

most marked in the neonate. Following vagotomy, the decline of respiratory

frequency is so severe that some newborns are unable to maintain a level of
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ventilatory activity which is sufficient for adequate oxygenation (25–27). Hence,

feedbacks from mechanoreceptors of the lungs can markedly influence eupneic

ventilatory activity.

Whether activation of mechanoreceptors of the lung alters the gasping

ventilatory cycle has not been adequately examined. A number of investigators,

beginning with Lumsden, have reported that the pattern of gasping appears the

same before and after bilateral vagotomy and that lung inflation appeared not to

alter the gasping pattern (6,27–29). Concerning Lumsden’s work, the vagi were

apparently inadvertently damaged during dissections in some of his preparations

(see discussion in Ref. 4). In other studies, values before and after vagotomy or in

the presence or absence of lung inflation were obtained during severe hypoxia or

ischaemia (27–29). Hence, any influence of vagal mechanisms upon the gasping

pattern may have been overshadowed.

Some reports do imply an influence, albeit subtle, of activation of

pulmonary stretch receptors upon gasping. In one study (28), gasping was

produced by ligation of the basilar artery, and the lungs were inflated by a

servorespirator, in parallel with activity of the phrenic nerve. Phrenic activity was

modestly altered when these lung inflations were withheld. However, given the

modest frequency of phrenic bursts in gasping, withholding lung inflation would

certainly cause an alteration in blood oxygenation. Two other studies (30,31) were

performed using an in vitro mammalian preparation, which exhibits a pattern of

rhythmic activity which is identical to gasping (4,5). In this preparation, with

attached lungs, lung inflation did produce modest alterations in the duration of the

phrenic burst and interval between bursts. The peak height of bursts was not

altered (30,31). Using an in situ perfused rat preparation, we have reproduced the

findings from the in vitro mammalian preparation during gasping (unpublished

observation). Hence, in this preparation, in which oxygenation is maintained by

an extracorporeal circuit, lung inflation alters the respiratory cycle in gasping,

primarily by changing the period between phrenic bursts.

As in eupnea, gasping was markedly altered by stimulation of the superior

laryngeal nerves (14). Such stimulation altered the duration of the gasp, its peak

height, and the period between gasps. In this same context, gasping is inhibited

by elicitation of a laryngeal chemoreflex, by placement of water or saline in the

larynx (32).

It is perhaps not surprising that the activation of laryngeal and pulmonary

receptors would alter both eupnea and gasping since afferents from both sets of

receptors terminate in the region of the nucleus of tractus solitarius (33–35). It is

well accepted that neurons in this region, termed the dorsomedullary respiratory

nucleus, constitute a portion of the pontomedullary circuit responsible for

defining activity of the phrenic nerve in eupnea and the medullary circuit

which defines the gasp. However, neuronal activities in this region do not play

a fundamental role in the genesis of either the gasp or eupneic inspiration. As
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discussed in Section V below, eupnea is generated by a pontomedullary neuronal

circuit and gasping is generated by a neuronal activities within a discrete region

of the ventrolateral medulla.

IV. Effectiveness of Gasping in Autoresuscitation

In every mammalian species examined, gasping has been found to be a potent

physiological mechanism for restoring ventilatory and also cardiovascular activity

following a severe depression of these activities (1–6,10,11,13,36–38). Hence,

gasping can be a critical mechanism for ensuring survival of the organism. Such

survival mechanisms are most rigorous in the newborn. It is well established that,

within the first few days after birth, many species can successfully ‘‘autoresusci-

tate’’ after being in an environment of complete anoxia for more than an hour.

This maximal period of anoxia declines markedly with development such that, in

the adult, this period is minutes or even seconds (2,10,36,39).

Without doubt, the major factor promoting the exceeding long survival of

neonates in anoxia is the marked reduction in metabolic rate (see 40 for review).

Concomitant with the onset of hypoxia, metabolic rate and, hence, consumption

of oxygen and production of carbon dioxide fall dramatically in the neonate, but

to a much lesser degree in the adult. Evidence of this marked reduction in

metabolic rate is the reduction in core temperature. Also, during this period,

cardiovascular activity is greatly altered with a profound bradycardia and

hypotension (41–43). In addition, there is a redistribution of blood flow, with

preferential maintenance of perfusion to vital organs, including the heart and

brain, and a reduction in perfusion to skin and viscera. With this reduction of

metabolism, gasps become infrequent, even in the newborn. However, if oxygen

becomes available, gasps become more frequent, heart rate and arterial blood

pressure rise, and eupnea gradually replaces gasping (37,41,44).

In addition to a single incidence of anoxia, gasping is very effective in

promoting multiple autoresuscitations from multiple exposures to anoxia. Again,

such autoresuscitation is more effective in the newborn, with animals surviving

numerous exposures to anoxia over limited intervals (45).

V. Failure of Gasping in Autoresuscitation

The corollary of the above discussion is that gasping is ultimately unsuccessful in

autoresuscitation, and such failure is more prevalent in the adult than the

newborn. Since the metabolic energy during periods of anoxia is derived

primarily from glycolysis, a depletion of energy substrates appears to represent

the initial factor accounting for a failure of autoresuscitation. This depletion of

energy substrates occurs in the cardiovascular system before the central nervous
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system. Hence, even though the brainstem ventilatory control system may

generate gasps, in terms of activities of the diaphragm and other ‘‘respiratory

muscles,’’ animals may not survive because of a failure of the heart to recover its

normal functioning (2,42). In this context, such a failure of the cardiovascular

system, before the brainstem ventilatory control system, is also observed in

decerebrate, paralyzed, and ventilated preparation in which ‘‘fictive gasping’’ is

monitored by activity of the phrenic nerve. Following a period of anoxia or

asphyxia, the failure of heart rate to recover from bradycardia after the

reintroduction of oxygen always precedes the failure to reestablish an eupneic

pattern of phrenic activity (unpublished observation). Ultimately, however, the

brainstem ventilatory control system fails and gasping ceases. Such a cessation is

also observed in fictive gasping, recorded from activities of the phrenic nerve in

paralyzed and ventilated preparations or, indeed, in a preparation in which the

cardiovascular system has been replaced by an extracorporeal circuit (16,46).

Again, such a failure of gasping doubtless reflects a failure to provide sufficient

energy for maintenance of neuronal function.

This consideration of a ‘‘failure of gasping’’ should not obscure rigorous-

ness of gasping, especially in the newborn. Indeed, it is difficult to induce a

failure of gasping. In this context, a failure of gasping has been proposed as the

basis of the ‘‘sudden infant death syndrome’’ (3,4,38,42,47). Based on this

proposal, a number of risk factors for SIDS in humans have been reproduced in

experimental preparations. Included in such risk factors are maternal use of

nicotine and cocaine. However, even after prenatal exposure to relatively massive

doses of nicotine and cocaine, newborn rats were still very successful in

autoresuscitation in response to anoxia. The maximum number of successful

autoresuscitations was reduced after exposure to nicotine, but multiple successes

were still present (48–50).

VI. Critical Region for Neurogenesis of Gasping

Since gasping is expressed following a transection of the brainstem between pons

and medulla (Fig. 2), gasping must be generated within the medulla. In a series of

experiments, we found that gasping was irreversibly eliminated following

physical lesions or injections of neurotoxins into a region of the rostral medulla.

These lesions, which eliminated gasping following unilateral placement, did not

disrupt the eupneic rhythm. This critical region for gasping has been termed the

‘‘gasping center’’ (2–5,51–56) (Fig. 4).

The gasping center lies medial and dorsal to the ventral medullary

respiratory nucleus, in the region of the nucleus ambiguus. At its ventrolateral

margin, the gasping center overlaps with a region of the ventral nucleus termed

the ‘‘pre-Botzinger’’ complex (Fig. 4). Neuronal activities within this pre-
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Botzinger complex have been shown to be responsible for the neurogenesis of

rhythmic ‘‘respiratory’’ activities of in vitro preparations of neonatal rodents.

However, as discussed in detail in a number of reviews, this ‘‘respiratory’’ activity

in vitro differs markedly from eupnea in vivo but is very similar to gasping

(4,5,56a). Indeed, it is very probable that these preparations are exhibiting

Figure 4 Locations of the gasping center and pre-Botzinger (pre-Botc) complex in adult

rat and cat. Circles and squares in left panels designate regions in which injections of

neurotoxins or physical lesions eliminated gasping, but not eupnea. Right panels show

location of neurons—designated by cross, filled circles, and shading—taken to be within

the pre-Botzinger complex. Scale is 1mm. Amb, nucleus ambiguus; CX, nucleus cuneatus

externus; DMV, dorsal motor nucleus of vagus; GI, gigantocellular reticular nucleus; IOD,

nucleus dorsalis olivaris inferioris; IOP, nucleus principalis olivaris inferioris; IVN, inferior

vestibular nucleus; NTS, nucleus of solitary tract; p and py, medullary pyramid; PP,

nucleus prepositus; RFN, retrofacial nucleus; SpV, nucleus spinalis nervi trigemini; STN,

spinal trigeminal nucleus; STT, spinal trigeminal tract; VeI, nucleus vestublaris inferior;

VII, facial nucleus; XII, hypoglossal nucleus; 5SP, spinal trigeminal nucleus. (From

Ref. 4.)
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gasping and, as detailed in Section VII below, mechanisms of respiratory rhythm

generation in vitro provide important insights into the neurogenesis of gasping in

vivo.

Given the above, the question arises as to the relationship between the

gasping center and pre-Botzinger complex. In a recent review, these regions are

presented as two separate entities, both of which are essential for the neurogenesis

of gasping (58). However, based on neuroanatomical and physiological evidence,

it appears that these adjoining regions may contain elements of the same neurons,

with soma in the pre-Botzinger complex and dendrites and=or axons in the

gasping center. Anatomical evidence in support of this concept is the finding that

filling of neurons of the pre-Botzinger complex with various dyes reveals

extensive dendritic arborizations in the region of the gasping center (59,60). In

a complementary study, injections of dyes into the region of the gasping center

results in labeling of soma in the pre-Botzinger complex (61).

Physiological evidence that the gasping center and pre-Botzinger complex

represent the same neurons is derived from studies involving injections of

neurotoxins into the regions. Hence, as noted above, injections of such toxins

into the gasping center irreversibly eliminates gasping (51–54). Similar injections

into the pre-Botzinger complex, if performed bilaterally, transiently interrupt

eupnea but irreversibly eliminate gasping (55,56). However, the volume of

neurotoxin which must be injected into the pre-Botzinger complex to eliminate

gasping is greater than if injected into the gasping center. This greater ‘‘effi-

ciency’’ for the gasping center is perhaps reflective of the extensive dendritic

arborizations of neurons of the pre-Botzinger complex into the gasping center. In

any case, it appears probable that neurons of the gasping center–pre-Botzinger

complex represent one component of the pontomedullary neuronal circuit which

is necessary for the neurogenesis and expression of eupnea. However, these same

neurons represent a unique source for the neurogenesis and expression of

gasping.

VII. Mechanisms for the Neurogenesis of Gasping

A. Neuronal Activities Which May Generate the Gasp

Ablation of neurons in a circumscribed region of the rostral medulla irreversibly

eliminates gasping in vivo and its analogue, the ‘‘rhythmic activity’’ of en bloc

and slice preparations in vitro (see discussion in 4,5). Neuronal activities in this

region must therefore be essential for the neurogenesis of gasping. An initial

enigma arises concerning these neuronal activities which might generate the gasp.

Since gasping is elicited only under conditions of extreme hypoxia or asphyxia,

neuronal activities that generate the gasp might be quiescent for most of life. This

concept of neuronal quiescence for many years seems improbable. More probable
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is the incorporation of these neuronal activities which generate the gasp into the

pontomedullary neuronal circuit responsible for the genesis and expression of

eupnea. This pontomedullary circuit is reduced and reorganized in hypoxia, in

ischemia, or following brainstem transactions at the pontomedullary junction, and

neuronal mechanisms for gasping are released.

If a neuronal activity is responsible for generating inspiratory activity, its

activity must commence before the start of activity of the phrenic nerve. For

in vitro preparations, which exhibit gasping, a group of neuronal activities,

termed preinspiratory, commence activity in late neural expiration and fire

through the initial portion of the phrenic burst. These neuronal activities thus

have a discharge consonant with generating the ‘‘burst’’ in vitro. The preinspira-

tory discharge of these neurons is by an intrinsic pacemaker mechanism (60–64).

During eupnea in vivo, the closest analogs to the preinspiratory activities

in vitro are expiratory-inspiratory phase spanning neuronal activities (59,65).

However, such activities cannot play an essential role in the neurogenesis of

gasping, since, in fact, these activities cease in gasping. However, one group of

neuronal activities, which discharge during all or the last portion of the phrenic

burst in eupnea, acquires preinspiratory discharges in gasping (Fig. 5) (20,66).

Thus, these neuronal activities, which have discharge characteristics that are

compatible with generating the gasp, have markedly different discharges in

eupnea. Such a change in discharge characteristics fits with the concept that

neuronal activities that generate the gasp are superseded and captured by the

pontomedullary neuronal circuit generating eupnea.

B. Release of Medullary Mechanisms for Gasping

The question obviously arises as to how severe hypoxia or ischemia or brainstem

transactions between pons and medulla suppress components of the pontome-

dullary neuronal circuit for eupnea such that proposed medullary pacemaker

mechanisms for gasping are released. Again, evidence as to the release of

medullary mechanisms for gasping is derived from studies using in vitro

preparations.

Evidence is now substantial that the rhythmic activity of in vitro en bloc or

slice preparations is generated by the discharge of pacemaker neurons in the

rostral medullary gasping center–pre-Botzinger complex. Fitting with a pace-

maker mechanism for rhythm generation is the finding that in vitro rhythmic

activities are only modestly altered following a blockade of inhibitory synaptic

transmission within the preparation (61,62,64,67,68). This in vitro finding has

been considered as enigmatic as a similar blockade of inhibitory synaptic

transmission severely distorts the eupneic rhythmic activity of in situ preparations

(69). Moreover, injections of blockers of inhibitory neurotransmitter into the

region of the gasping center–pre-Botzinger complex of in vivo preparations
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causes an alteration of the eupneic rhythm to apneusis (70) or a ‘‘gasplike

pattern’’ (57). This enigma concerning inhibitory synaptic transmission has been

resolved by the finding that a blockade of this transmission causes a profound

distortion of the eupneic rhythm of in situ preparations but only minimal changes

of the gasping rhythm of this same preparation (71). The lack of sensitivity of

medullary mechanisms for gasping to a blockade of inhibitory synaptic transmis-

sion fits with concept that, as in vitro, the discharge of pacemaker neurons in the

gasping center–pre-Botzinger complex underlies the neurogenesis of the gasp.

Following the blockade of inhibitory synaptic transmission in situ, the

eupneic rhythm was severed distorted but gasping was not elicited (71). However,

as noted above, ‘‘gasplike’’ discharges have been recruited in some preparations

following microinjections of bicuculline, a blocker of GABAA into the pre-

Botzinger complex (57). Thus, in general, it would appear that a blockade of

inhibitory synaptic transmission alone is not sufficient to release gasping. In this

context, however, it is recognized that inhibitory synaptic transmission within the

Figure 5 Neuronal activity of pre-Botzinger complex in eupnea and gasping. Left

panels show integrated activity of the phrenic nerve (Phr.) and discharge of neuron (Unit)

in eupnea (E) and gasping (G). Right panels show instantaneous discharge frequency of the

neuron during ventilatory cycles of left panels. Arrows designate onsets of phrenic bursts.

Insert is waveform of activity on extended time scale (1 msec). Note neuronal activity

which commenced ‘‘late’’ in neural inspiration in eupnea began before the phrenic burst in

gasping (From Ref. 20.)
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brainstem fails in mild hypoxia (72). Likewise, pontile elements are recognized as

one primary source of neurons whose discharge inhibits activities of medullary

respiratory neurons (5,35,70,73,74). Thus, hypoxia or brainstem transactions

would remove one element suppressing medullary mechanisms for gasping, the

element being inhibitory synaptic transmission, largely of pontile origin.

In contrast to the reduction in inhibitory synaptic transmission, hypoxia is

reported to cause an additional release of glutamate in some regions of the brain

(57,75,76). Such a release might contribute to activation of persistent sodium

channels of neurons in the gasping center–pre-Botzinger complex. As considered

below, activation of these persistent sodium channels may be necessary to release

pacemaker activities of these neurons. Such an activation by glutamate might

underlie the finding that microinjections of the potent glutamate analog DL-

homocysteic acid into the pre-Botzinger complex elicit an alteration from eupnea

to gasping in some preparation (77).

Concerning ionic mechanisms underlying the release of medullary mechan-

isms for gasping, hypoxia causes an increase in the extracellular concentration of

potassium (78). This augmentation probably results from the increased neuronal

activity and occurs immediately prior to and immediately after the onset of

gasping (14,78). In computational models, such an augmentation shifts the

reversal potential for potassium to more positive values of voltage and, hence,

reduces all potassium currents (79). This reduction of potassium currents is

significant since computational studies have demonstrated that the activity of

certain potassium channels may affect the conductance state of persistent sodium

channels. Conductances through such persistent sodium channels are necessary

for the intrinsic bursting behavior of some medullary neurons to be expressed

(79), and are considered to play a major role in the generation of pacemaker-

driven oscillations in vitro (80,81). Thus, reducing potassium currents may

release intrinsic busting behavior in conditional pacemaker neurons and hence

create necessary conditions, along with the elimination of inhibitory synaptic

transmission, for pacemaker-driven gaspinglike oscillations in respiratory motor

outflows (79).

The augmentation in the extracellular concentration of potassium is not the

only mechanism by which conductances of potassium channels are reduced.

Hence, hypoxia per se suppresses several types of potassium channels and

activates low- and high-voltage calcium channels and also persistent sodium

channels in neurons located in many brain regions (e.g., 82–91). The exact

mechanisms intermediating the hypoxia-induced changes in the functioning of

ionic channels and other intrinsic neuronal properties are not well defined. These

mechanisms may involve signaling pathways, such as a change in nitric oxide

(92), and second-messenger systems at the intracellular level. Moreover, hypoxia

may modify channel conductances and neuronal firing properties through

multiple cellular=intracellular mechanisms (92).
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The hypoxia-induced processes, such as alteration of the ionic=metabolic

extracellular environment, modulation of the intrinsic neuronal properties, and

suppression of synaptic inhibition, cannot of course be limited to the region for

neurogenesis of gasping in the rostral ventrolateral medulla. Rather, hypoxia-

induced processes would be altered in many regions of the brainstem and, in

intact animals, in the rest of the brain as well. However, recent studies have

demonstrated that neurons in the rostral ventrolateral medulla have a high

intrinsic chemosensitivity to hypoxia (87,93). It is unknown what intrinsic

properties of these neurons define their special role in genesis of pacemaker-

driven gaspinglike oscillations.

In summary, based on both theoretical and experimental studies, it is

proposed that hypoxia or ischemia suppresses the pontomedullary neuronal

circuit and releases medullary mechanisms for gasping by four interrelated

changes: [1] a suppression of inhibitory synaptic transmission; [2] an augmenta-

tion in extracellular potassium concentration; [3] a decreased conductance

through potassium channels; [4] an increased conductance through persistent

sodium channels. These hypothesized mechanisms for the release of medullary

mechanisms for gasping have been validated in an experimental study using an

in situ preparation of the juvenile rat. In this preparation, a blockade of

glycinergic transmission with strychnine, an augmentation in extracellular potas-

sium concentration, and a block of potassium channels with 4-aminopyridine

resulted in an elimination of eupnea and elicitation of gasping. Importantly, such

an elicitation of gasping occurred under conditions of hyperoxia (94).

Gasping is also elicited under conditions of hyperoxia following micro-

injections of sodium cyanide into the region of the gasping center–pre-Botzinger

complex (93). However, such injections would induce a region of localized

‘‘hypoxia’’ and thus might cause a release of gasping by mechanisms similar to

those in generalized hypoxia or ischemia.

The basis for the release of gasping following several other perturbations is

undefined. Hence, brainstem transactions at the pontomedullary junction would

obviously remove any inhibitory synaptic transmission of pontile origin. Yet, as

noted above, a blockade of inhibitory synaptic transmission alone is typically not

sufficient to release gasping. For in vivo preparations, brainstem transactions

result in a marked fall in arterial blood pressure and, of course, a varying region of

tissue necrosis (22,95–97). Thus, the local environment in the region of the

gasping center–pre-Botzinger complex might be hypoxic and=or acidotic follow-
ing a brainstem transection. Yet, gasping also follows a transection at the

pontomedullary junction of perfused in situ preparations of the neonatal and

juvenile rat (46,94). In such preparations, perfusion of the brainstem should be

relatively constant. Thus, in addition to inhibitory synaptic transmission, another

‘‘factor’’ of pontile origin appears capable of suppressing medullary mechanisms

for gasping. In this context, removal of all pontile influences cannot reasonably be
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equated simply with a removal of synaptic inhibition upon medullary neurons. As

shown in many studies, apneusis follows removal of the rostral pontile pneumo-

taxic center whereas a complete removal of caudal pons is necessary to release

gasping (see discussions in 3,4). Indeed, the pneumotaxic center alone exerts

multiple functions in the control of ventilatory activity (98). It is obviously

unknown whether removal of all pontile influences causes a switch to gasping by

removal of synaptic inhibition upon neurons of the gasping center–pre-Botzinger

complex, combined with depolarization of these neurons and activation of

persistent sodium channels.

The mechanism by which another procedure releases gasping is undefined.

Hence, under conditions of hyperoxia, eupneic ventilatory is replaced by gasping

following elicitation of the ‘‘aspiration reflex’’ by stimulation of the pharyngeal

mucosa (99). A series of studies have validated that gasping following pharyngeal

stimulation is identical to that following brainstem transactions or exposure to

severe hypoxia (54,100,101).

VIII. Summary

Thomas Lumsden’s papers in 1923 and 1924 (6–9) formed the foundation for

contemporary studies of the neurogenesis of automatic ventilatory activity.

Lumsden considered that gasping was a ‘‘relic of some transitory primitive

respiratory process’’ which ‘‘does not appear to influence true rhythmic breathing

of normal type.’’ Yet, presaging the concept of ‘‘autoresuscitation,’’ Lumsden

notes that he ‘‘feels no surprise that the facility has persisted in the evolutional

struggle’’ since ‘‘gasping has been sufficient to revive animals whose higher

respiratory centres have temporarily failed.’’ Gasping represents the expression of

a fundamental respiratory rhythm, generated by the discharge of pacemaker

neurons in the rostral medullary gasping center–pre-Botzinger complex. For most

of life, these pacemaker mechanisms are suppressed, and these rostral medullary

neuronal activities are incorporated into the pontomedullary neuronal circuit

responsible for the neurogenesis of eupnea. Under conditions of severe hypoxia

or ischemia, many components of this pontomedullary neuronal circuit, including

inhibitory synaptic transmission, are depressed. These depressions release the

latent medullary pacemaker discharge and the gasp is generated.
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