


commutative ring theory 
and applications 



PURE AND APPLIED MATHEMATICS 

A Program of Monographs, Textbooks, and Lecture Notes 

EXECUTNE EDITORS 

Earl J. Taft Zuhair Nashed 
Rutgers University University of Delaware 

New Brunswick, New Jersey Newark, Delaware 

EDITORIAL BOARD 

M. S. Baouendi AnilNerode 
University of California, Cornell University 

San Diego 
Donald Passman 

Jane Cronin University of Wisconsin, 
Rutgers University Madison 

JackK. Hale Fred S. Roberts 
Georgia Institute of Technology Rutgers University 

S. Kobayashi David L. Russell 
University of California, Virginia Polytechnic Institute 

Berkeley and State University 

Marvin Marcus Walter Schempp 
University of California, Universitiit Siegen 

Santa Barbara 
Mark Teply 

W. S. Massey University of Wisconsin, 
Yale University Milwaukee 



LECTURE NOTES IN PURE AND APPLIED MATHEMATICS 

1. N. Jacobson, Exceptional Lie Algebras 
2. L.-A. Undah/ and F. Poulsen, Thin Sets in Harmonic Analysis 
3. /. Satake, Classification Theory of Semi-Simple Algebraic Groups 
4. F. Hirzebruch eta/., Differentiable Manifolds and Quadratic Forms 
5. I. Chave/, Riemannian Symmetric Spaces of Rank One 
6. R. B. Burckel, Characterization of C(X) Among Its Subalgebras 
7. B. R. McDonald eta/., Ring Theory 
8. Y.-T. Siu, Techniques of Extension on Analytic Objects 
9. S. R. Caradus eta/., Calkin Algebras and Algebras of Operators on Banach Spaces 

10. E. 0. Roxin eta/., Differential Games and Control Theory 
11. M. Orzech and C. Small, The Brauer Group of Commutative Rings 
12. S. Thornier, Topology and Its Applications 
13. J. M. Lopez and K. A. Ross, Sidon Sets 
14. W. W. Comfort and S. Negrepontis, Continuous Pseudometrics 
15. K. McKennon and J. M. Robertson, Locally Convex Spaces 
16. M. Carmeli and S. Malin, Representations of the Rotation and Lorentz Groups 

17. G. B. Seligman, Rational Methods in Lie Algebras 
18. D. G. de Figueiredo, Functional Analysis 
19. L. Cesari eta/., Nonlinear Functional Analysis and Differential Equations 
20. J. J. Schaffer, Geometry of Spheres in Normed Spaces 
21. K. Yano and M. Kon, Anti-Invariant Submanifolds 
22. W. V. Vasconcelos, The Rings of Dimension Two 
23. R. E. Chandler, Hausdorff Compactifications 
24. S. P. Franklin and B. V. S. Thomas, Topology 
25. S. K. Jain, Ring Theory 
26. B. R. McDonald and R. A. Morris, Ring Theory II 
27. R. B. Mura and A. Rhemtulla, Orderable Groups 
28. J. R. Graef, Stability of Dynamical Systems 
29. H.-C. Wang, Homogeneous Branch Algebras 
30. E. 0. Roxin eta/., Differential Games and Control Theory II 
31. R. D. Porter, Introduction to Fibre Bundles 
32. M. Altman, Contractors and Contractor Directions Theory and Applications 
33. J. S. Golan, Decomposition and Dimension in Module categories 
34. G. Fairweather, Finite Element Galerkin Methods for Differential Equations 

35. J. D. Sally, Numbers of Generators of Ideals in Local Rings 
36. S. S. Miller, Complex Analysis 
37. R. Gordon, Representation Theory of Algebras 
38. M. Goto and F. D. Grosshans, Semisimple Lie Algebras 
39. A. I. Arruda eta/., Mathematical Logic 
40. F. Van Oystaeyen, Ring Theory 
41. F. Van Oystaeyen and A. Verschoren, Reflectors and Localization 
42. M. Satyanarayana, Positively Ordered Semigroups 
43. D. L Russell, Mathematics of Finite-Dimensional Control Systems 
44. P.-T. Uu and E. Roxin, Differential Games and Control Theory Ill 
45. A. Geramita and J. Seberry, Orthogonal Designs 
46. J. Cigler, V. Losert, and P. Michor, Banach Modules and Functors on Categories of Banach 

Spaces 
47. P.-T. Uu and J. G. Sutinen, Control Theory in Mathematical Economics 
48. C. Byrnes, Partial Differential Equations and Geometry 
49. G. Klambauer, Problems and Propositions in Analysis 
50. J. Knopfmacher, Analytic Arithmetic of Algebraic Function Fields 
51. F. Van Oystaeyen, Ring Theory 
52. B. Kadem, Binary Time Series 
53. J. Barros-Neto and R. A. Artino, Hypoelliptic Boundary-Value Problems 

and 54. R. L. Sternberg eta/., Nonlinear Partial Differential Equations in Engineering Applied Science 

55. B. R. McDonald, Ring Theory and Algebra Ill 
56. J. S. Golan, Structure Sheaves Over a Noncommutative Ring 

in Groups 57. T. V. Narayana eta/., Combinatorics, Representation Theory and Statistical Methods 

58. T. A. Burton, Modeling and Differential Equations in Biology 
59. K. H. Kim and F. W. Roush, Introduction to Mathematical Consensus Theory 



60. J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces 
61. 0. A. Nielson, Direct Integral Theory 
62. J. E. Smith et a/., Ordered Groups 
63. J. Cronin, Mathematics of Cell Electrophysiology 
64. J. W Brewer, Power Series Over Commutative Rings 
65. P. K. Kamthan and M. Gupta, Sequence Spaces and Series 
66. T. G. McLaughlin, Regressive Sets and the Theory of lsols 
67. T. L. Herdman eta/., Integral and Functional Differential Equations 
68. R. Draper, Commutative Algebra 
69. W. G. McKay and J. Patera, Tables of Dimensions, Indices, and Branching Rules for Repre-

sentations of Simple Lie Algebras 
70. R. L. Devaney and Z. H. Nitecki, Classical Mechanics and Dynamical Systems 
71. J. Van Gee/, Places and Valuations in Noncommutative Ring Theory 
72. C. Faith, Injective Modules and Injective Quotient Rings 
73. A. Fiacco, Mathematical Programming with Data Perturbations I 
7 4. P. Schultz et a/., Algebraic Structures and Applications 
75. L Bican et a/., Rings, Modules, and Preradicals 
76. D. C. Kay and M. Breen, Convexity and Related Combinatorial Geometry 
77. P. Fletcher and W F. Undgren, Quasi-Uniform Spaces 
78. C.-C. Yang, Factorization Theory of Meromorphic Functions 
79. 0. Taussky, Ternary Quadratic Forms and Norms 
80. S. P. Singh and J. H. Burry, Nonlinear Analysis and Applications 
81. K. B. Hannsgen eta/., Volterra and Functional Differential Equations 
82. N. L. Johnson et a/., Finite Geometries 
83. G. I. Zapata, Functional Analysis, Holomorphy, and Approximation Theory 
84. S. Greco and G. Valla, Commutative Algebra 
85. A. V. Fiacco, Mathematical Programming with Data Perturbations II 
86. J. -B. Hiriart-Urruty et a/., Optimization 
87. A. Figa Talamanca and M.A. Picardello, Harmonic Analysis on Free Groups 
88. M. Harada, Factor Categories with Applications to Direct Decomposition of Modules 
89. V. I. /strlltescu, Strict Convexity and Complex Strict Convexity 
90. V. Lakshmikantham, Trends in Theory and Practice of Nonlinear Differential Equations 
91. H. L. Manocha and J. B. Srivastava, Algebra and Its Applications 
92. D. V. Chudnovsky and G. V. Chudnovsky, Classical and Quantum Models and Arithmetic 

Problems 
93. J. W. Longley, Least Squares Computations Using Orthogonalization Methods 
94. L. P. de Alcantara, Mathematical Logic and Formal Systems 
95. C. E. Aull, Rings of Continuous Functions 
96. R. Chuaqui, Analysis, Geometry, and Probability 
97. L. Fuchs and L. Salce, Modules Over Valuation Domains 
98. P. Fischer and W. R. Smith, Chaos, Fractals, and Dynamics 
99. W. B. Powell and C. Tsinakis, Ordered Algebraic Structures 

100. G. M. Rassias and T. M. Rassias, Differential Geometry, calculus of Variations, and Their 
Applications 

101. R.-E. Hoffmann and K. H. Hofmann, Continuous Lattices and Their Applications 
1 02. J. H. Lightboume Ill and S. M. Rankin Ill, Physical Mathematics and Nonlinear Partial Differential 

Equations 
103. C. A. Baker and L. M. Batten, Finite Geometries 
104. J. W Brewer et a/., Linear Systems Over Commutative Rings 
105. C. McCrory and T. Shifrin, Geometry and Topology 
106. D. W. Kueke eta/., Mathematical Logic and Theoretical Computer Science 
107. B.-L. Un and S. Simons, Nonlinear and Convex Analysis 
108. S. J. Lee, Operator Methods for Optimal Control Problems 
109. V. Lakshmikantham, Nonlinear Analysis and Applications 
110. S. F. McCormick, Multigrid Methods 
111. M. C. Tangora, Computers in Algebra 
112. D. V. Chudnovsky and G. V. Chudnovsky, Search Theory 
113. D. V. Chudnovsky and R. D. Jenks, Computer Algebra 
114. M. C. Tangora, Computers in Geometry and Topology 
115. P. Nelson eta/., Transport Theory, Invariant Imbedding, and Integral Equations 
116. P. Clement et a/., Semigroup Theory and Applications 
117. J. Vinuesa, Orthogonal Polynomials and Their Applications 
118. C. M. Dafermos eta/., Differential Equations 
119. E. 0. Roxin, Modem Optimal Control 
120. J. C. Diaz, Mathematics for Large Scale Computing 



121. P. S. Milojevi~ Nonlinear Functional Analysis 
122. C. Sadosky, Analysis and Partial Differential Equations 
123. R. M. Shortt, General Topology and Applications 
124. R. Wong, Asymptotic and Computational Analysis 
125. D. V. Chudnovsky and R. D. Jenks, Computers in Mathematics 
126. W. D. Wallis eta/., Combinatorial Designs and Applications 
127. S. Elaydi, Differential Equations 
128. G. Chen eta/., Distributed Parameter Control Systems 
129. W. N. Everitt, Inequalities 
130. H. G. Kaper and M. Garbey, Asymptotic Analysis and the Numerical Solution of Partial Differ-

ential Equations 
131. 0. Arino et at., Mathematical Population Dynamics 
132. S. Coen, Geometry and Complex Variables 
133. J. A Goldstein et at., Differential Equations with Applications in Biology, Physics, and Engineering 
134. S. J. Andima et at., General Topology and Applications 
135. P Clement et at., Semigroup Theory and Evolution Equations 
136. K. Jarosz, Function Spaces 
137. J. M. Bayod et a/., p-adic Functional Analysis 
138. G. A. Anastassiou, Approximation Theory 
139. R. S. Rees, Graphs, Matrices, and Designs 
140. G. Abrams et at., Methods in Module Theory 
141. G. L. Mullen and P. J.-S. Shiue, Finite Fields, Coding Theory, and Advances in Communications 

and Computing 
142. M. C. Joshi and A. V. Balakrishnan, Mathematical Theory of Control 
143. G. Komatsu andY. Sakane, Complex Geometry 
144. /. J. Bake/man, Geometric Analysis and Nonlinear Partial Differential Equations 
145. T. Mabuchi and S. Mukai, Einstein Metrics and Yan!rMills Connections 
146. L. Fuchs and R. GObel, Abelian Groups 
147. A. D. Pollington and W. Moran, Number Theory with an Emphasis on the Markoff Spectrum 
148. G. Dora et a/., Differential Equations in Banach Spaces 
149. T. West, Continuum Theory and Dynamical Systems 
150. K. D. Bierstedt et at., Functional Analysis 
151. K. G. Fischer et at., Computational Algebra 
152. K. D. Elworthy et at., Differential Equations, Dynamical Systems, and Control Science 
153. P . ..J. Cahen, eta/., Commutative Ring Theory 
154. S.C. Cooper and W J. Thron, Continued Fractions and Orthogonal Functions 
155. P. Clement and G. Lumer, Evolution Equations, Control Theory, and Biomathematics 
156. M. Gyllenberg and L. Persson, Analysis, Algebra, and Computers in Mathematical Research 
157. W. 0. Bray et at., Fourier Analysis 
158. J. Bergen and S. Montgomery, Advances in Hopf Algebras 
159. A. R. Magid, Rings, Extensions, and Cohomology 
160. N.H. Pavel, Optimal Control of Differential Equations 
161. M. /kawa, Spectral and Scattering Theory 
162. X. Uu and D. Siegel, Comparison Methods and Stability Theory 
163. J.-P. Zotesio, Boundary Control and Variation 
164. M. Kffiek eta/., Finite Element Methods 
165. G. Da Prato and L. Tubaro, Control of Partial Differential Equations 
166. E. Ballico, Projective Geometry with Applications 
167. M. Costabel eta/., Boundary Value Problems and Integral Equations in Nonsmooth Domains 
168. G. Ferreyra, G. R. Goldstein, and F. Neubrander, Evolution Equations 
169. S. Huggett, Twistor Theory 
170. H. Cook eta/., Continua 
171. D. F. Anderson and D. E. Dobbs, Zero-Dimensional Commutative Rings 
172. K. Jarosz, Function Spaces 
173. V. Ancona eta/., Complex Analysis and Geometry 
174. E. Casas, Control of Partial Differential Equations and Applications 
175. N. Kaftan et a/., Interaction Between Functional Analysis, Harmonic Analysis, and Probability 
176. Z. Deng et a/., Differential Equations and Control Theory 
177. P. Marcellini eta/. Partial Differential Equations and Applications 
178. A. Kartsatos, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type 
179. M. Maruyama, Moduli of Vector Bundles 
180. A. Ursini and P. Agliano, Logic and Algebra 
181. X. H. Gao et a/., Rings, Groups, and Algebras 
182. D. Amold and R. M. Rangaswamy, Abelian Groups and Modules 
183. S. R. Chakravarthy and A. S. Alfa, Matrix-Analytic Methods in Stochastic Models 



184. J. E. Andersen eta/., Geometry and Physics 
185. P.-J. Cahen eta/., Commutative Ring Theory 
186. J. A. Goldstein et a/., Stochastic Processes and Functional Analysis 
187. A. Sorbi, Complexity, Logic, and Recursion Theory 
188. G. Da Prato and J.-P. Zolesio, Partial Differential Equation Methods in Control and Shape 

Analysis 
189. D. D. Anderson, Factorization in Integral Domains 
190. N. L. Johnson, Mostly Finite Geometries 
191. D. Hinton and P. W. Schaefer, Spectral Theory and Computational Methods of Sturm-Liouville 

Problems 
192. W. H. Schikhof eta/., p-adic Functional Analysis 
193. S. Sertoz, Algebraic Geometry 
194. G. Caristi and E. Mitidieri, Reaction Diffusion Systems 
195. A. V. Fiacco, Mathematical Programming with Data Perturbations 
196. M. KriZek et a/., Finite Element Methods: Superconvergence, Post-Processing, and A Posteriori 

Estimates 
197. S. Caenepeel and A. Verschoren, Rings, Hopf Algebras, and Brauer Groups 
198. V. Drensky et a/., Methods in Ring Theory 
199. W. B. Jones and A. Sri Ranga, Orthogonal Functions, Moment Theory, and Continued Fractions 
200. P. E. Newstead, Algebraic Geometry 
201. D. Dikranjan and L. Salce, Abelian Groups, Module Theory, and Topology 
202. Z. Chen eta/., Advances in Computational Mathematics 
203. X. Caicedo and C. H. Montenegro, Models, Algebras, and Proofs 
204. C. Y. YlldJflm and S. A. Stepanov, Number Theory and Its Applications 
205. D. E. Dobbs eta/., Advances in Commutative Ring Theory 
206. F. Van Oystaeyen, Commutative Algebra and Algebraic Geometry 
207. J. Kakol eta/., p-adic Functional Analysis 
208. M. Boulagouaz and J.-P. Tignol, Algebra and Number Theory 
209. S. Gaenepeel and F. Van Oystaeyen, Hopf Algebras and Quantum Groups 
210. F. Van Oystaeyen and M. Saorin, Interactions Between Ring Theory and Representations of 

Algebras 
211. R. Costa eta/., Nonassociative Algebra and Its Applications 
212. T.-X. He, Wavelet Analysis and Multiresolution Methods 
213. H. Hudzik and L. Skrzypczak, Function Spaces: The Fifth Conference 
214. J. Kajiwara eta/., Finite or Infinite Dimensional Complex Analysis 
215. G. Lumer and L. Weis, Evolution Equations and Their Applications in Physical and Life Sciences 
216. J. Cagnol eta/., Shape Optimization and Optimal Design 
217. J. Herzog and G. Restuccia, Geometric and Combinatorial Aspects of Commutative Algebra 
218. G. Chen eta/., Control of Nonlinear Distributed Parameter Systems 
219. F. Ali Mehmeti eta/., Partial Differential Equations on Multistructures 
220. D. D. Anderson and I. J. Papick, Ideal Theoretic Methods in Commutative Algebra 
221. A. Granja et a/., Ring Theory and Algebraic Geometry 
222. A. K. Katsaras eta/., p-adic Functional Analysis 
223. R. Salvi, The Navier-Stokes Equations 
224. F. U. Coelho and H. A. Merl<len, Representations of Algebras 
225. S. Aizicovici and N. H. Pavel, Differential Equations and Control Theory 
226. G. Lyubeznik, Local Cohomology and Its Applications 
227. G. Da Prato and L. Tubaro, Stochastic Partial Differential Equations and Applications 
228. W. A. Camielli eta/., Paraconsistency 
229. A. Benkirane and A. Touzani, Partial Differential Equations 
230. A. 11/anes eta/., Continuum Theory 
231. M. Fontana eta/., Commutative Ring Theory and Applications 

Additional Volumes in Preparation 



commutative ring theory 
and applications 

proceedings of the fourth international 
conference 

edited by 

Marco Fontana 
Universita degli Studi Roma Tre 
Rome, Italy 

Salah-Eddine Kabbaj 
King Fahd University of Petroleum 
and Minerals 

Dharan, Saudi Arabia 

Sylvia Wiegand 
University of Nebraska-Lincoln 
Lincoln, Nebraska, U.S.A. 

0 Press 
Taylor & Francis Group 

Boca Raton London New York 

CRC Press is an imprint of the 
Taylor & Francis Group, an informa business 



This book contains information obtained from authentic and highly regarded sources. Reason-
able efforts have been made to publish reliable data and information, but the author and publisher 
cannot assume responsibility for the validity of all materials or the consequences of their use. The 
authors and publishers have attempted to trace the copyright holders of all material reproduced in 
this publication and apologize to copyright holders if permission to publish in this form has not 
been obtained. If any copyright material has not been acknowledged please write and let us know so 
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information 
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. 
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza-
tion that provides licenses and registration for a variety of users. For organizations that have been 
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and 
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

First issued in hardback 2017

Copyright © 2003 by Taylor & Francis.
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

ISBN 13: 978-1-138-40191-4 (hbk)
ISBN 13: 978-0-8247-0855-9 (pbk)



Preface 

This volume draws on the contributors' talks at the Fourth International Conference on 
Commutative Algebra held in Fez, Morocco. The goal of this conference was to 
present recent progress and new trends in the growing area of commutative algebra, 
with primary emphasis on commutative ring theory and its applications. The 
conference also facilitated a fruitful interaction among the participants, whose various 
mathematical interests shared the same (commutative) algebraic roots. 

The book consists of 34 chapters which, while written as separate articles, provide 
nonetheless a comprehensive report on questions and problems of contemporary 
interest. Some articles are surveys of their subject, while others present a narrower, in
depth view. All the manuscripts were subject to a strict refereeing process. 

This volume encompasses wide-ranging topics in commutative ring theory (along 
with connections to algebraic number theory, algebraic geometry, homological algebra, 
and model-theoretic algebra). The topics covered include: algebroid curves, arithmetic 
rings, chain conditions, class groups, constructions of examples, divisibility and 
factorization, linear Diophantine equations, the going-down and going-up properties, 
graded modules and analytic spread, Grabner bases and computational methods, 
homological aspects of commutative rings, ideal and module systems, integer-valued 
polynomials, integral dependence, Krull domains and generalizations, local 
cohomology, prime spectra and dimension theory, polynomial rings, power series 
rings, pullbacks, tight closure, ultraproducts, and zero-divisors. 

Graduate students and established commutative algebraists will find the book a 
valuable and reliable source, as will researchers in many other branches of 
mathematics. 

The conference was organized by the University of Fez with the scientific 
collaboration of the Universita degli Studi "Roma Tre," Italy, and the University of 
Nebraska, U.S.A. Financial support was provided by the Commutative Algebra and 
Homological Aspects Laboratory, the Faculty of Sciences "Dhar Al-Mehraz," the 
International Mathematical Union (CDE), the "Espace Sciences & Vie" Association, 
and the Universita degli Studi "Roma Tre." 

We wish to express our gratitude to the local organizing committee, especially 
Professors A. Benkirane, Chairman of the Department of Mathematics, R. Ameziane 
Hassani, and A. Touzani, as well as to Professor M. H. Kadri and Mr. M. A. Chad, 
Dean and Secretary-General, respectively, of the Faculty of Sciences "Dhar Al
Mehraz" at Fez. Special thanks are due to Mr. A. Bennani and Mrs. T. Ibn Abdelmoula 
for their constant help with conference arrangements. The efforts of the contributors 
and the referees are greatly appreciated; without their work this volume would never 
have been produced. Last, we thank the editorial staff at Marcel Dekker, Inc., in 
particular, Maria Allegra and Ana Pacheco, for their patience, hard work, and 
assistance with this volume. 

iii 

Marco Fontana 
Salah-£ddine Kabbaj 

Sylvia Wiegand 
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1. INTRODUCTION 

Let D be an integral domain with identity and quotient field K. In this paper, we 

study the ring D[X2 , X 3] = D + X 2 D[X] c D[X], and we compare its behavior 

to its polynomial averring D[X]. Of course, D[X2 , X 3] is never integrally closed 

(or seminormal, root closed, etc.); so in this paper, we are mainly interested in 

ring-theoretic properties that do not involve "closedness" conditions. Quite often 

D[X2 , X 3] satisfies a given ring-theoretic property if and only if D[X] satisfies 

that property. However, in Section 3, the characteristic of D plays an important 

role. The ring K[X2, X3] has proved useful in constructing examples concerning 

the Picard group (see Theorem 3.4) and nonunique factorization (see [10]). This 

paper gives several other cases where the ring D[X2 , X 3] can be used to construct 

1 
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interesting, elementary examples (for instance, see Section 3). Many of the results 

in this paper generalize to monoid domains; we leave this to a future paper. 

We first recall some of the properties we will investigate in this paper. An integral 

domain Dis said to be a weakly factorial domain (WFD) [4] if each nonzero nonunit 

of D is a product of primary elements. Following [9], D is called a genemlized weakly 

factorial domain (GWFD) if each nonzero prime ideal of D contains a primary 

element. Clearly, WFDs are GWFDs; however, if D is a Dedekind domain with 

nonzero torsion divisor class group, then R is a GWFD, but not a WFD (cf. [7, 

p. 912], [9, Proposition 3.1]). Following [5], D is called _a weakly Krull domain 

if D = nPeX<l>(D)DP and the intersection has finite character, where x<1l(D) is 

the set of height-one prime ideals of D. A Krull domain is weakly Krull, and a 

Noetherian domain is weakly Krull if and only if every grade-one prime ideal has 

height one. In [7, Theorem], it was shown that D is a WFD if and only if D is a 

weakly Krull domain and Clt(D) = 0. A Krull domain Dis called almost factorial 

if Cl(D) is torsion. As in [5], we say that an integral domain D is an almost weakly 

factorial domain ( AWFD) if for each nonzero nonunit x E D, there is an integer 

n = n(x) ;::: 1 such that xn is a product of primary elements. Thus an AWFD is a 

GWFD. It was shown in [5, Theorem 3.4] that D is an AWFD if and only if D is 

a weakly Krull domain and Clt(D) is torsion. We say that an integral domain D 

is an almost GCD-domain ( AGCD-domain} if for all nonzero x, y E D, there exists 

an integer n = n(x, y) ;::: 1 such that (xn, yn)v is principal. In [6, Theorem 3.4], it 

was proved that Clt(D) is torsion when Dis an AGCD-domain. 

Throughout this paper, D denotes an integral domain with quotient field K, 

Spec(D) its set of prime ideals, and x<1>(D) its set of height-one prime ideals. For 

f E K[X], let At be the fractional ideal of D generated by the coefficients of f. 
Recall that for a nonzero fractional ideal A of D, we have A- 1 = {x E KlxA £;; D}, 

Av = (A-1)-1, and At= U{(ab ... ,an)viO :f: (a1, ... ,an)£;; A}. A nonzero fractional 

ideal A of D is called a divisorial ideal (resp., t-ideaQ if A11 = A (resp., At = A). 

We say that D hast-dimension one, written t-dimD = 1, if each prime t-ideal of 

D has height one (note that a height-one prime ideal is necessarily a t-ideal). A 

weakly Krull domain D has t-dimD = 1 [5, Lemma 2.1]. An integral ideal of Dis 

said to be a maximal t-ideal if it is maximal with respect to being at-ideal, and a 
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maximal t-ideal is necessarily a prime ideal. 

A nonzero fractional ideal A of D is said to be t-invertible if there exists a 

fractional ideal B of D with (AB)t = D, and in this case we can take B = A-1. It is 

well known that if A is at-invertible t-ideal, then A= Jv for some finitely generated 

subideal J of A. The set of t-invertible t-ideals of D forms an abelian group under 

the t-product A* B = (AB)t. The t-class group of D is Clt(D) - the group oft

invertible fractional t-ideals of D modulo its subgroup of principal fractional ideals. 

For D a Krull domain, Clt(D) = Cl(D), the divisor class group; while for D a 

Priifer domain or one-dimensional integral domain, Clt(D) = C(D) = Pic(D), the 

ideal class group (or Picard group). For a recent survey article on the t-class group, 

see [8]. 

In this section, we study the ring D[X2,X3] = D+X2 D[X] and prove some analogs 

of the polynomial ring D[X]. Our first goal is to show that D[X2 , X 3] is a UMT

domain if and only if D is a UMT -domain. The next lemma also holds for monoid 

domains (cf. [11, Lemma 2.3]). 

LEMMA 2.1. Let I be a nonzero fractional ideal of D. Then 

(1) (ID[X2,X3])-1 = J-1D[X2,X3]. 

(2) (ID[X2,X3])v = IvD[X2 ,X3]. 

(3) (ID[X2,X3])t = ItD[X2,X3]. 

Proof. (1) It is clear that J-1D[X2,X3] ~ (ID[X2,X3])-1 . Note that since 

I(ID[X2,X3])-1 ~ D[X2,X3] ~ K[X2,X3], we have (ID[X2,X3])-1 ~ K[X2,X3]. 

Iff E (ID[X2 ,X3])-1 , then At I~ D, and hence At~ I-1 . So f E AtD[X2 ,X3] ~ 

I-1D[X2,X3]. Therefore, (ID[X2,X3])-1 = J-1D[X2,X3]. 

(2) (ID[X2 ,X3])v = ((ID[X2,X3])-1)-1 = (I-1D[X2,X3])-1 = IvD[X2,X3] 

by (1). 

(3) It is clear that if !1,/2, ... ,/k E ID[X2,X3], then 
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So (ID[X2 ,X3])t ~ ItD[X2 ,X3]. For the converse, let J be a nonzero finitely gen

erated subideal of I. Then JvD[X2,X3] = (JD[X2,X3])v ~ (JD[X2 ,X3])t by (2). 

Thus ItD[X2 ,X3] ~ (JD[X2 ,X3])t, and hence (JD[X2,X3])t = ItD[X2,X3]. 0 

LEMMA 2.2. ( cf. {18, Proposition 1.1}) Let Q be a maximal t-ideal of D[X2 , X 3] 

such that QnD ¥:-0. Then Q = (QnD)[X2 ,X3]. In particular, QnD is a maximal 

t-ideal of D. 

Proof It suffices to show that c(Q)[X2 ,X3] ~ Q, where c(Q) is the ideal of D 

generated by the coefficients of all the polynomials in Q. If c(Q) i Q, then Q ~ 

c(Q)[X2 , X 3]. Since Q is a maximal t-ideal, we have c(Q)t[X2 ,X3] = (c(Q)[X2,X3])t 

= D[X2 ,X3 ]. So c(Q)t = D; whence there is a polynomial f E Q such that 

(AJ )v =D. Let 0 #-a E Q n D. 

We claim that (a,f)-1 = D[X2,X3]. First note that (a,f)-1 ~ K[X2,X3] 

because for g E (a,f)-1, ag E D[X2,X3] ~ K[X2,X3]. Next, if g E (a,f)-1 , 

then there is an integer m ~ 1 such that Aj+l A9 = Aj Afg [16, Theorem 28.1]. 

Thus (Aj+ 1 A9 )v = (Aj AJ9 )v and A9 ~ (A9 )t = ((Aj+ 1)vA9 )v = (Aj+ 1 A9 )v = 
(AjAJ9 )v = ((Aj)vAJ9 )v = (A,9 )v ~D. Hence g E A9[X2 ,X3] ~ D[X2 ,X3]. 

Thus (a,f)-1 = D[X2 ,X3 ], and hence (a,/)v = D[X2 ,X3], which is a con

tradiction since Q is a t-ideal. Therefore c(Q)[X2,X3] = Q, and hence Q = 
(Q n D)[X2 ,X3]. 0 

As in [18], D is called a UMT-domain if every upper to zero (a nonzero prime 

ideal of D[X] which contracts to zero in D) of D[X] is a maximal t-ideal. Recall 

that D[X] is a UMT-domain if and only if Dis a UMT-domain [14, Theorem 3.4]. 

Thus, as a consequence of our next result, D[X2 , X 3] is a UMT-domain if and only 

if D[X] is a UMT-domain. 

THEOREM 2.3. D[X2, X 3] is a UMT-domain if and only if D is a UMT-domain. 

Proof (::::}) Suppose that D[X2,X3] is a UMT-domain. Let P be a maximal t
ideal of D. Then P D[X2 , X 3] is a maximal t-ideal of D[X2 , X 3] by Lemma 2.2. 

Also, note that D[X2,X3]PD[X2,X3] = D[X]P[X)· Since D[X2,X3] is a UMT

domain, D[X]P[X) is a t-linkative UMT-domain [14, Theorem 1.5], and hence Dp 
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is a t-linkative UMT-domain (see the proof of [14, Theorem 2.4]). Thus D is a 

UMT-domain (14, Theorem 1.5]. 

(<=) Suppose that Dis a UMT-domain. To show that D[X2,X3] is a UMT

domain, it is enough to show that if Q is a maximal t-ideal of D[X2 ,X3], then the 

integral closure of D[X2 , X 3]Q is a Priifer domain [14, Theorem 1.5]. 

Let Q be a maximal t-ideal of D[X2 ,X3] and let QnD = P. If P '# 0, then Q = 
P[X2,X3] by Lemma 2.2. Moreover, since X 2 fl. P[X2 ,X3] we have D[X2 ,X3]Q = 

D(X]P[X]· Thus the integral closure of D(X2 , X 3 ]Q is a Priifer domain by [14, 

Theorem 1.5] (note that D(X} is a UMT-domain (14, Theorem 2.4] and P[X] is 

a prime t-ideal of D[X]). If P = 0, then D(X2,X3]Q = K(X2,X3]QK(Xl,xs], 

and hence D[X2 , X 3]Q is a one-dimensional Noetherian domain. Thus the integral 

closure of D[X2 ,X3]Q is a Dedekind domain (cf. (22, Theorem 33.10]), and hence 

a Priifer domain. 0 

LEMMA 2.4. If Q is a prime ideal of D[X2 , X 3], then there is a unique prime 

ideal of D[X]lying over Q. Thus the natural map Spec(D[X]) -+ Spec(D[X2 , X 3 ]), 

given by P -+ P n D(X2 , X 3], is an order-preserving bijection. 

Proof. Let Q be a prime ideal of D[X2 ,X3], P = Q n D, and S = {Xnln = 
0,2,3, ... }. 

Case 1. P = 0. If QD(X2 ,X3]s = D(X2 ,X3]s, then Q = XD[X] n D(X2 ,X3] 

and X D[X] is the unique prime ideal of D[X]lying over Q. Assume that QD[X2 , X 3]s 

£:; D[X]s. Note that D[X2 ,X3]s = D[X]s = D(X,X-1]. So QD[X2 ,X3 ]s n D(X] 

is the unique prime ideal of D[X]lying over Q. 

Case 2. P '# 0. If Q = P(X2 , X 3], then P(X] is the unique prime ideal of D(X] 

lying over Q. Assume that P[X2 ,X3] £:; Q. Note that D(X2 ,X3]/P[X2 ,X3] ~ 

(D/P)[X2 ,X3], D[X]/P[X] ~ (D/P)[X], and (Q/P[X2 ,X3]) n (D/P)[X2 ,X3] = 
0. Thus there is a unique prime ideal of (D/P)[X]lying over Q/P(X2 ,X3] by Case 

1. Since every prime ideal of D[X]lying over Q contains P[X], there is a unique 

prime ideal of D(X]lying over Q. 0 

We next show that the bijection in Lemma 2.4 preserves t-ideals. 

THEOREM 2.5. Let Q be a prime ideal of D[X] and let Q' = Q n D(X2,X3]. 

Then Q' is a prime t-ideal of D[X2 , X 3] if and only if Q is a prime t-ideal of D[X] . 
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Proof Let P = QnD = Q' nD and S = {Xnln = 0,2,3, ... }. 

Case 1. P = 0. Then htQ' = htQ = 1 by Lemma 2.4. Thus Q and Q' are prime 

t-ideals of D[X] and D[X2,X3], respectively. 

Case 2. P =f. 0. Then Q = P[X] if and only if Q' = P[X2 , X 3] (Lemma 2.4). 

Thus, by Lemma 2.1, Q is a prime t-ideal of D[X] if and only if Pis a prime t-ideal 

of D, if and only if Q' is a prime t-ideal of D[X2,X3]. 

Case 3. P =f. 0. Then P[X] ~ Q if and only if P[X2 , X 3] ~ Q'. Note that if 

either Q or Q' is at-ideal, then X~ Q. For if 0 =f. a E P, then ({a,X)D[X])11 = 
D[X] and ({a,X2)D[X2 ,X3]) 11 = D[X2 ,X3]. Note that D[X2,X3]s = D[X]s, 

Q'D[X2 ,X3]s = QD[X]s, Q = QD[X]s n D[X], and Q' = Q'D[X2,X3]8 n 

D[X2 , X 3]. Thus it suffices to show that if either Q or Q' is a t-ideal, then 

Q' D[X2,X3]s = QD[X]s is at-ideal of D[X]s by [19, Lemma 3.17]. 

Let A be a fractional ideal of D[X] such that A n D =f. 0. We claim that 

{AD[X]s)-1 = A-1 D[X]s. It is clear that A- 1 D[X]s ~ {AD[X]s)-1. For the 

converse, let u E (AD[X]s)-1. Then uA ~ u(AD[X]s) ~ D(X]s. Since AnD =f. 0, 

u E K(X]s. Thus u = jm for some g E K[X] and integer m ~ 0. For any 

f E A, since uf = (jm)f E D[X]s, fgXn E D[X] for some integer n ~ 0, 

and hence fg E D[X]. Thus g E A-1 and u = jm E A-1D[X]s. Hence 

{AD[X]s)-1 ~ A-1 D[X]s, and thus (AD[X]s)- 1 = A-1 D[X]s. A similar ar

gument shows that if A is a fractional ideal of D[X2, X 3] with A n D =f. 0, then 

(AD[X]s)-1 = A-1 D[X]s. 

Suppose that Q is at-ideal of D[X] and let B be a finitely generated subideal of 

Q. Note that P =f. 0, and for any a E Q, {B, a) is also a finitely generated subideal 

of Q and (BD[X]s) 11 ~ ((B,a)D[X]s) 11 • So we may assume that B n D =f. 0. By 

the previous paragraph, we have that (BD[X]s) 11 = B11D[X]s. Thus QD[X]s is a 

t-ideal. Similarly, we have that if Q' is a t-ideal of D[X2, X 3], then Q' D[X2, X 3]s 

is a t-ideal. Therefore, the proof is completed. 0 

Recall that D is a Mori domain if it satisfies the ascending chain condition on 

integral divisorial ideals. The class of Mori domains includes Noetherian domains 

and Krull domains, and is closed under finite intersections. Recall that D[X] is a 

Mori domain if D is an integrally closed Mori domain [24]. However, an example 

is given in [25] of a Mori domain D for which D[X] is not a Mori domain. We 



D[XZ, X3] Over an Integral Domain D 7 

say that an integral domain D satisfies the Principal Ideal Theorem {PIT) if each 

prime ideal of D which is minimal over a nonzero principal ideal has height one. 

It follows from [12, Proposition 3.1(b)] that an integral domain D satisfies PIT if 

and only if each nonzero prime ideal of D is a union of height-one prime ideals. An 

integral domain D is called an S-domain if htP[X] = 1 for each prime ideal P of 

D with htP = 1 [20]. Note that D[X] is an S-domain for any integral domain D 

[2, Theorem 3.2]. Also, note that if D[X] satisfies PIT, then D satisfies PIT and 

D is an S-domain [12, Proposition 6.1]; but, D satisfies PIT does not imply that 

D[X] satisfies PIT [12, Remark 6.2]. However, if D is integrally closed, then D[X] 

satisfies PIT if and only if D satisfies PIT and D is an S-domain [13, Theorem 4]. 

We next show that D[X2 , X 3] satisfies any of the above three properties if and 

only if D[X] does. 

THEOREM 2.6. Let D be an integral domain. Then 

(1) D[X2 , X 3] is an 8-domain. 

(2) D[X2 , X 3] satisfies PIT if and only if D[X] satisfies PIT. 

(3) D[X2 , X 3] is a Mori domain if and only if D[X] is a Mori domain. 

Proof. (1) Since D[X] is integral over D[X2 ,X3] (or by Lemma 2.4) and D[X] is 

an 8-domain, D[X2 , X 3] is also an 8-domain. 

(2)( =>) Suppose that D[X2 , X 3] satisfies PIT. Let Q be a prime ideal of D[X] 

and P = Q n D[X2,X3]. We need to show that Q = UQa, where {Qa} is the set 

of height-one prime ideals of D[X] contained in Q. Since D[X2 , X 3] satisfies PIT, 

P = U(Qa n D[X2,X3]) by Lemma 2.4. If X E Q, then Q = (Q n D,X). Thus 

P = (Q n D,X2,X3). Hence Q = (Q n D,X) ~ UQa; so Q = UQa. If X fj. Q, 

then fX 2 E P for any f E Q. Then JX2 E Qa for some Qa, and hence f E Qa; so 

Q = UQa. Thus D[X] satisfies PIT.(<=) Suppose that D[X] satisfies PIT. Let P 

be a prime ideal of D[X2 , X 3]. By Lemma 2.4, P = Q n D[X2 , X 3] for some prime 

ideal Q of D[X]. Since D[X] satisfies PIT, Q is a union of height-one prime ideals of 

D[X]. Since each height-one prime ideals of D[X] contracts to a height-one prime 

ideal of D[X2, X 3] by Lemma 2.4, P is thus a union of height-one prime ideals. 

Hence D[X2 , X 3] satisfies PIT. 

(3)( =>) Suppose that D[X2 I X 3] is a Mori domain. Let 8 = { xn In = 0, 2, 3, ... } . 
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Then D[X] = K[X] n D[X2, X 3]s and D[X2, X 3]s is a Mori domain [23, Corollary 

3]. Thus D[X] is also a Mori domain. ({:::)This follows since D[X2,X3] = D[X] n 

K[X2,X3] and K[X2,X3] is a one-dimensional Noetherian domain (and hence a 

Mori domain). 0 

Our next result is the D[X2, X 3] analog of [3, Proposition 4.11] that D[X] is a 

weakly Krull domain if and only if Dis a weakly Krull UMT-domain. 

PROPOSITION 2.7. (cf. {3, Proposition 4.11}) D[X2,X3] is a weakly Krull 

domain if and only if D is a weakly Krull UMT-domain. 

Proof (~)Suppose that D[X2,X3] is a weakly Krull domain, and hence D[X2,X3] 

has t-dimension one. Let P be a prime t-ideal of D. Then P D[X2, X 3] is a prime 

t-ideal of D[X2,X3], and hence htP = htP[DX2,X3] = 1; whence t-dimD = 1. 

Moreover, if 0 ::/: a E D, then the number of height-one prime ideals of D [X2, X 3] 

that contain a is finite. Hence {P E X 1(D)Ia E P} is finite, and thus Dis weakly 

Krull. 

Let P E X 1(D). Then htP[X2 ,X3 ] = 1, and hence htP[X] = 1, which implies 

that D is a UMT -domain because t-dimD = 1. 

({:::)Suppose that Dis a weakly Krull UMT-domain, and let P E X 1(D). Then 

ht(P[X2 , X 3]} = 1 by Lemma 2.4. Thus t-dim(D[X2, X 3]) = 1 by Lemma 2.2 (note 

that t-dimD = 1 since D is weakly Krull}. Hence by [17, Proposition 4] or [19, 

Proposition 2.8], 

p[X2 , X 3] = nQeXl(D[X2,X3])D[X2, X 3]Q· 

Let 0 ::/:IE D[X2,X3], A= {PD[X2 ,X3]IP E X 1(D) and IE PD[X2,X3]}, 

and B = {Q E X 1(D[X2 ,X3])IQ n D = 0 and IE Q}. Since Dis weakly Krull, A 

is finite. Moreover, since K[X2, X 3] is a one-dimensional Noetherian domain, B is 

also finite. Therefore, D[X2, X 3] is weakly Krull. 0 

The final result of this section is the D[X2,X3] analog of [24, Lemme 1]. 

PROPOSITION 2.8. Let D be integrally closed and 0 ::/: I E K[X2, X 3]. Then 

(1) IK[X2,X3] nD[X2 ,X3] = IA/1 [X2,X3]. 

(2} IK[X] n D[X2,X3] = ~1 ' ' . -r { I A-1 [X2 X 3] ifi(O} 4 0 

IA, [X], lf 1(0} = 0. 
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Proof {1) Let fg E /K(X2,X3] n D(X2,X3]. Then A1A9 ~ (AJAg)v = (AJ9 )v ~ 

D because Dis integrally closed (cf. (16, Proposition 34.8]). Thus g E Aj1 (X2,X3] 

and JK(X2,X3] n D(X2,X3] ~ /Aj1 (X2,X3]. The converse is clear. 

(2) Case 1. f(O) = 0. Let fg E /K(X] n D(X2 ,X3], where g E K(X]. Since 

D is integrally closed, A1A9 ~ (AJAg)v = (AJg)v ~ D (cf. (16, Proposition 

34.8]). Thus g E (AJ)-1 (X], and hence /K(X] nD(X2,X3] ~ /Aj1 (X]. Moreover, 

since /{0) = 0, we have fh E D(X2,X3] for any h E (AJ)-1 (X]. Therefore, 

JK(X] n D(X2,X3] = /Aj1 (X] for any hE {AJ)-1(X]. 

Case 2. /(0) # 0. Since /{0) # 0, fg ~ K(X2,X3] for any g E K(X]-K[X2,X3], 

which implies that the proof is identical to the proof of Case 1. 0 

3. GENERALIZED WEAKLY FACTORIAL DOMAINS 

One of the purposes of this section is to find equivalent conditions for D(X2 , X 3], 

over an almost factorial domain D, to be a GWFD. The other is to study the t-class 

group Clt(D(X2,X3]). Recall that a GWFD is weakly Krull and hast-dimension 

one (9, Corollary 2.3], and that an almost factorial domain is a Krull domain with 

torsion divisor class group. 

THEOREM 3.1. The following statements are equivalent for an almost factorial 

domain D. 

{1) D(X2 ,X3] is an AGCD-domain. 

{2) D(X2,X3] is an AWFD. 

{3) D(X2 , X 3] is a GWFD. 

(4) charD= p # 0. 

Proof {1) => {2): Recall that a Krull domain is a weakly Krull UMT-domain. 

Thus D(X2 ,X3] is a weakly Krull domain by Proposition 2.7. Also, note that an 

AGCD-domain has torsion t-class group. Hence D(X2 , X 3] is an AWFD. 

(2) => (3): Let Q be a nonzero prime ideal of D(X2 , X 3] and let 0 # f E Q. 

By the definition of an AWFD, there is an integer n ~ 1 such that r is a product 

of primary elements. Thus Q contains a nonzero primary element of D(X2,X3]. 

Therefore, D[X2,X3] is a GWFD. 
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(3)::} (4): Since D[X2 ,X3 ] is a GWFD, D[X2 ,X3Jv-{o} = K[X2 ,X3] is also a 

GWFD by [9, Remark 2.5(4)]. Moreover, since charD= charK, it suffices to show 

that charK # 0. 

Suppose that charK = 0, and let Q = (1+X)K[X]nK[X2 ,X3 ]. Since K[X2 ,X3] 

is a GWFD, there is a primary element f E Q such that Q = )JK[X2 ,X3J. Let 

S = {Xnln = 0,2,3, ... }. Then K[X2,X3]8 = K[X]s = K[x,x-1]. Note that 

K[X]s is a PID and QK[X]s = (1 + X)K[X]s. Thus f K[X]s = (1 + X)n K[X]s 

for some integer n 2: 1, and hence f = u<r_::>" for some integer m and 0 # u E K. 
If m 2: 0, then xm f = u(1 + X)n, and hence m = 0. Thus f = u(1 + X)n, 

and u(1 + X)n E K[X2 , X 3 ] *> nuX E K(X2 , X 3 ] *> X E K[X2 , X 3 ] (note that 

charK = 0), a contradic~ion. Hence m < 0 and f = u(1+X)n x-m E Qn(XK(X]n 

K[X2 ,X3]), which contradicts that f is primary. Thus charK # 0. 

(4) ::} (1): Let 0 # J,g E D(X2,X3]. Then there is an integer k 2: 1 and 

hE K(X] such that (((f,g)D[XJ)k)v = ((Jk,gk)D[XJ)v = hD[XJ (note that D(X] 

is a Krull domain with torsion divisor class group) (6, Lemma 3.3]. Thus fk = hfr 

and gk = hg1 for some Jr,g1 E D[X], and ((/r.9I)D[X])v = D[X]. Since charD= 

p ::/:0, fi,gf E D(X2 ,X3]. 

Assume that (ff,gf)v ~ D[X2 ,X3]. Then there is a height-one prime ideal 

Q of D(X2 ,X3] such that (ff,gf)v ~ Q (note that t-dim(D(X2,X3]) = 1 since 

D(X2 ,X3] is weakly Krull). Since D[X] is integral over D[X2 ,X3] (or by Lemma 

2.4), there is a height-one prime ideal Q' of D[XJ such that Q' n D[X2 , X 3] = Q. 

Thus 

D[XJ 2'Q' = Q~ ;2 ((ff,gf)D[XJ)v = (((Jr,gi)D[X])P)v 

= ((((/1,9l)D[X])v)P)v = (D[XJP)v = D[X], 

a contradiction. Hence (ff, gf)v = D[X2 , X 3]. Therefore, 

Thus D[X2 , X 3] is an AGCD-domain. 0 

COROLLARY 3.2. The following statements are equivalent for a field K. 

(1) K[X 2 , X 3 ] is an AGCD-domain. 

(2) K[X 2 , X 3] is an AWFD. 
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{3) K[X2, X3] is a GWFD. 

{4) charK = p "# 0. 

Our next result generalizes Theorem 3.1. 

11 

THEOREM 3.3. (cf. [9, Theorem 3.3}} Let D be 8Jl integrally closed domain 

with charD= p "# 0. Then the following statements are equivalent. 

{1) D[X2,X3] is BJ1 AWFD. 

{2) D[X2, X 3] is a GWFD. 

{3) D[X] is BJ1 AWFD. 

{4) D[X] is a GWFD. 

(5) Dis a generalized weakly factorial AGCD-domain. 

( 6) D is 8Jl almost weakly factorial AGCD-domain. 

{7) Dis a weakly Krull AGCD-domain. 

Proof (1) '* {2) : This follows from the definitions. 

{2) '* (4) : By [9, Theorem 2.2], it suffices to show that if Q is a maximal 

t-ideal of D[X], then Q = J f D[X] for some f E D[X] because t-dimD[X] = t

dimD[X2,X3] = 1. Let P = Q n D. If P-# 0, then Q = P[X] and P[X2,X3] = 

JaD[X2,X3] for some a E P (note that P[X2,X3] is a height-one prime ideal). 

Thus P[X] = JaD[X]. 

Assume that P = 0, and let Q n D[X2, X 3] = J f D[X2, X3]. Note that if 

g E D[X], then gP E D[X2,X3] because charD= p "# 0. Thus Q = J fD[X]. 

{3) '* {1) : Recall that D[X] is a weakly Krull domain <=> D is a weakly Krull 

UMT-domain <=> D[X2,X3] is a weakly Krull domain. Hence it suffices to show 

that Clt(D[X2, X 3]) is torsion. 

Let Q be a t-invertible t-ideal of D[X2,X3]. Then ((QD[X])(Q-1 D[X]))t = 

(QQ-1 D[X])t ~ D[X]. Since Q is t-invertible, QQ-1 is not contained in any 

height-one prime ideal of D[X2,X3] (note that t-dimD[X] = t-dimD[X2,X3] = 1). 

Thus (QD[X])(Q-1D[X]) is not contained in any height-one prime ideal of D[X], 

and hence ((QD[X])(Q-1 D[X]))t = D[X]. Since D[X] is an AWFD and thus 

has torsion t-class group, there is an integer n ~ 1 and an f E D[X] such that 

((QD[X])n)v = (QnD[X])v = JD[X]. Since Q is a finite type t-ideal, by the same 
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argument as in the proof of (4) :::} (1) in Theorem 3.1, we have that (QPn)v = 
fPD[X2 ,X3]. Therefore, D[X2,X3] is an AWFD. 

(3) *> (4) *> (5) *> (6) *> (7): These implications are in [9, Theorem 3.3]. 0 

We close this paper with a discussion of Clt(D[X2 , X 3]). Recall that an integral 

domain D with quotient field K is semi normal if whenever x2 , x3 E D for some 

x E K, then xED; and that Pic(D[X]) = Pic(D) if and only if Dis seminormal. 

Using the Mayer-Vietoris exact sequence for (U,Pic) (cf. [21, pp. 39-40]), one may 

show that Pic(D[X2 ,X3]) =Pic( D) EB D (as additive abelian gToups) when Dis 

seminormal. Also, Clt(D[X]) = Clt(D) if and only if D is integrally closed [15, 

Theorem 3.6]. In analogy with the Picard group case, we ask if Clt(D[X2 , X 3]) = 

Clt(D) EB K (as additive abelian groups) when D is integrally closed. Our final 

theorem shows that this does hold in the special case when D is a GCD-domain 

since then Clt(D) = 0. For example, letting D = Z, we have Pic(Z[X2 , X 3]) = Z 

and Clt(Z[X2,X3]) = Q. 

THEOREM 3.4. Let D be a GCD-domain with quotient field K. Then, as 

additive abelian groups, 

(1) Pic(D[X2,X3]) =D. 

(2) Clt(D[X2 , X 3]) = K. 

Proof. (1) This follows using the Mayer-Vietoris exact sequence for (U,Pic). 
(2) Let S = D- {0}. Then S is an lcm splitting set in D[X2 , X 3]. Thus 

by [1, Theorem 4.1]. 0 

QUESTION 3.5. Compute Clt(D[X2 , X 3]) for an arbitrary integral domain D 
with quotient field K. In particular, does Clt(D[X2,X3 ]) = Clt(D)EBK (as additive 

abelian groups) when D is integrally closed? 
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On the Complete Integral Closure of 
Rings that Admit a ~-Strongly Prime 
Ideal 

AYMAN BADAWI, Department of Mathematics, Birzeit University, Box 14, Birzeit, 
West Bank, Palestine, via Israel. E-Mail: abring@birzeit.edu 

ABSTRACT: 
Let R be a commutative ring with 1 and T(R) be its total quotient ring such 

that Nil(R) (the set of all nilpotent elements of R) is a divided prime ideal of 
R. Then R is called a <P-chained ring (<P-GR) if for every x, y E R \ Nil(R), either 
x I y or y I x. A prime ideal P of R is said to be a tf>-strongly prime ideal if for 
every a, bE R \ Nil(R), either a I b or aP c bP. In this paper, we show that if R 
admits a regular tf>-strongly prime ideal, then either R does not admit a minimal 
regular prime ideal and c(R) (the complete integral closure of R inside T(R)) = 
T(R) is a tf>-CR orR admits a minimal regular prime ideal Q and c(R) = (Q : Q) 
is a tf>-CR with maximal ideal Q. We also prove that the complete integral closure 
of a conducive domain is a v-cl.luation domain. 

1 INTRODUCTION 

We assume throughout that all rings are commutative w:th 1 "I 0. We begin by 
recalling some backgrouud material. As in [17], an integral domain R, with quotient 
field K, is called a pseudo-valuation domain (PVD) in case each prime ideal P of 
R is strongly prime, in the sense that xy E P, x E K, y E K implies that either 
x E P or yEP. In [4], Anderson, Dobbs and the author generalized the study of 
pseudo-valuation domains to the context of arbitrary rings (possibly with nonzero 
zerodivisors). Recall from [4] that a prime ideal P of R is said to be strongly prime 
(in R) if aP and bR are comparable (under inclusion) for all a, bE R. A ring R is 
called a pseudo-valuation ring (PVR) if each prime ideal of R is strongly prime. A 
PVR is necessarily quasilocal [ 4, Lemma 1 (b)]; a chained ring is a PVR [4, Corollary 
4]; and an integral domain is a PVR if and only if it is a PVD (cf. [1, Proposition 
3.1], [2, Proposition 4.2], and [6, Proposition 3]). Recall from [7] and [14] that a 
prime ideal P of R is called divided if it is comparable (uuder inclusion) to every 
ideal of R. A ring R is called a divided ring if every prime ideal of R is divided. 

In [8], the author gave another generalization ofPVDs to the context of arbitrary 
rings (possibly with nonzero zerodivisors). As in [8], for a ring R with total quotient 
ring T(R) such that Nil(R) (the set of all nilpotent elements of R) is a divided 
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prime ideal of R, let 4> : T(R) -+ K := RNii(R) such that rf>(a/b) = afb for every 
a E Rand every b E R \ Z(R). Then 4> is a ring homomorphism from T(R) into 
K, and 4> restricted to R is also a ring homomorphism from R into K given by 
rf>(x) = x/1 for every x E R. A prime ideal Q of rf>(R) is called a K-strongly prime 
ideal if xy E Q, x E K, y E K implies that either x E Q or y E Q. If each prime 
ideal of rf>(R) is K-strongly prime, then rf>(R) is called a K-pseudo-valu.ation ring (K
PVR). A prime ideal P of R is called a rf>-strongly prime ideal if rf>(P) is a K-strongly 
prime ideal of rf>(R). If a rf>-strongly prime ideal P of R contains a nonzerodivisor, 
then we say that P is a regular rf>-strongly prime ideal. If each prime ideal of R is 
rf>-strongly prime, then R is called a rf>-pseu.do-valuation ring (4> - PV R). For an 
equiv-d.lent characterization of a rf>-PVR, see Proposition 1.1(7). It was shown in (9, 
Theorem 2.6] that for each n :;::: 0 there is a 4>-PVR of Krull dimension n that is 
not a PVR.. Also, recall from (10], that a ring R is called a rf>-chained ring (4>-CR) 
if Nil(R) is a divided prime ideal of Rand for every x E RNii(R) \ rp(R}, we have 
x-1 E rf>(R). For an equivalent characterization of a rf>-CR, see Proposition 1.1(9). 
A 4>-CR is a divided ring (10, Corollary 3.3{2)], and hence is quasilocal. It was 
shown in (10, Theorem 2. 7] that for each n :;::: 0 there is a rf>-CR of Krull dimension 
n that is not a chained ring. 

Suppose that Nil(R) is a divided prime ideal of a commutative ring R such 
that R admits a regular rf>-strongly prime. In this paper, we show that c(R) {the 
complete integral closure of R inside T(R)) is a rf>-chained ring. In fact, we will 
show that either c(R) = T(R) or c(R) = (Q: Q) = {x E T(R): xQ C Q} for some 
minimal regular rf>-strongly prime ideal Q of R. 

In the following proposition, we summarize some basic properties of PVRs, 4>
PVRs, and rf>-CRs. 

PROPOSITION 1.1. 1. An integral domain is a PVR if and only if it is a 4>-
PVR if and only if it is a PVD( [1, Proposition 3.1}, [2, Proposition 1,.2}, [6, 
Proposition 3}, and [8}). 

2. A PVR is a divided ring [4, Lemma 1}, and hence is quasilocal. 

3. A ring R is a PVR if and only if for every a, bE R, either a I b in R orb I ac 
in R for each nonunit c in R [4, Theorem 5}. 

1,. If R is a PVR, then Nil(R) and Z(R) are divided prime ideals of R (/4}, [8}). 

5. A PVR is a rp-PVR [8, Corollary 7(3)]. 

6. If P is a rf>-strongly prime ideal of R, then P is a divided prime. In particular, 
if R is a rf>-PVR, then R is a divided ring [8, Proposition 4}, and hence is 
quasilocal. 

7. Suppose that Nil(R) is a divided prime ideal of R. Then a prime ideal P of 
R is rf>-strongly prime if and only if for every a, b E R \ Nil ( R), either a I b 
in R or aP C bP. In particular, a ring R is a 4>-PVR if and only if for every 
a, bE R \ Nil(R), either a I b in R orb I ac in R for every nonunit c E R [8, 
Corollary 7}. 

8. Suppose that Nil(R) is a divided prime ideal of R. If P is a rf>-strongly prime 
ideal of R and Q is a prime ideal of R contained in P, then Q is a rf>-strongly 
prime ideal of R [8, Proposition 5]. 
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9. Suppose that Nil(R) is a divided prime ideal of R. Then a ring R is a ¢-CR 
if and only if for every a, bE R \ Nil(R), either a I b in R orb I a in R {10, 
Proposition 2.9]. 

10. A ¢-CR is a ¢-PVR {10, Corollary 2.9]. o 

2 The COMPLETE INTEGRAL CLOSURE OF 
RINGS THAT ADMIT A REGULAR 
¢-STRONGLY PRIME IDEAL 

Throughout this section, Nil(R) denotes the set of all nilpotent elements of R, 
Z(R) denotes the set of all zerodivisor elements of R, and c(R) denotes the complete 
integral closure of R inside T(R). The following two lemmas are needed in the proof 
of Proposition 2.3. 

LEMMA 2.1. Suppose Nil(R) is a divided prime ideal of R and P is a regular¢
strongly prime ideal of R. If s is a regular element of R and z E Z(R), then s I z 
in R. In particular, Z(R) C P. 

Proof: Let s be a regular element of P and z E Z(R). Suppose that s Y z in R. 
Then sP C zP by Proposition 1.1(7). Since s E P, we have z I s2 in R, which 
is impossible. Hence, s I z in R. Thus, Z(R) C P. Now, suppose that s is a 
regular element of R \ P. Since P is divided by Proposition 1.1(6}, we conclude 
that PC (s). Hence, since Z(R) C P, we conclude that s I z in R. 0 

LEMMA 2.2. Suppose that Nil(R) is a divided prime ideal of R and P is a regular 
¢-strongly prime ideal of R. Then x-1 PCP for each x E T(R) \ R. In particular, 
if x E T(R) \ R, then x is a unit of T(R). 

Proof: First, observe that Z(R) C P by Lemma 2.1. Now, let x = afb E T(R) \ R 
for some a E R and for some b E R \ Z(R). Since b Ya in R, Z(R) C P, and P is 
divided, we conclude that a E R \ Z(R). Hence, x-1 E T(R). Thus, since b Ya in 
R, we have bP CaP by Proposition1.1(7). Thus x-1 P = *p C P. 0 

In light of the Lemmas 2.1 and 2.2, we have the following proposition. 

PROPOSITION 2.3. Suppose that Nil(R) is a divided prime ideal of R and P is a 
regular prime ideal of R. Then the following statements are equivalent: 

1. P is a ¢-strongly prime ideal of R. 

2. (P: P) is a ¢-CR with maximal ideal P. 

Proof: (1) ==> {2). First, we show that Pis the maximal ideal of (P : P). Let 
s E R \ P. Then s is a regular element of R (because P is a divided regular prime 
ideal of R, and therefore Z(R) c P). Hence 1/s E (P: P). Thus, s is a unit of 
(P: P). Hence, Pis the maximal ideal of (P: P). Now, we show that (P : P) is 
a ¢-CR.. Since Nil(R) is a divided prime ideal of R, Nil((P : P)) = Nil(R). Let 
x,y E (P: P) \Nil(R) and suppose that x YY in (P: P). Then x = afs, y = b/s 
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for some a, b E R \ Nil(R), and some s E R \ Z(R). Since x YY in (P : P), it is 
impossible that a be a regular element of Rand bE Z(R). Thus, we consider three 
cases. Case 1: suppose that a E Z(R) and bE R\Z(R). Then b I a in R by Lemma 
2.1. Hence, y I x in (P : P). Case 2: suppose that a, b E R \ Z(R). Since x Y y 
in (P: P), we conclude that w = yfx E T(R) \ R. Hence, w-1 P = ~p c P by 
Lemma 2.2. Hence, y I x in (P: P). Case 3: suppose that a,b E Z(R). Since x yY 
in (P: P), we conclude that a Yb in R. Thus, aP c bP by Proposition 1.1(7). Let 
h be a regular element of P. Then ah =be for some e E P. Suppose that hIe in 
R. Then b I a in R. Hence, y I x in (P : P). Thus, suppose that h Y e in R. Then, c 
is a regular element of P. Hence, f = c/h E T(R) \ R. Thus, /-1 P = ~p c P by 
Lemma 2.2. Hence, f- 1 E (P : P). Thus, ah = be implies that xf-1 = y. Hence, 
x I yin (P : P), a contradiction. Thus, hI c in R, and therefore y I x in (P: P). 
Hence, (P : P) is a cf>-CR by Proposition 1.1(9). (2) ==> (1). This is clear by 
Proposition 1.1(10). 0 

PROPOSITION 2.4. Suppose that Nil(R) is a divided prime ideal of R and Pis a 
regular ¢-strongly prime ideal of R. Then Q = n~1 (si) is a prime ideal of R for 
every regular element s of P. 

Proof: Suppose that xy E Q for some x, y E R. Since Z(R) c (si) for each i ~ 1 
by Lemma 2.1, we conclude that Z(R) C Q. Hence, we may assume that neither 
x E Z(R) nor y E Z(R). Thus, assume that x ¢ Q. Then sn Y x for some n ~ 1. 
Hence, sn P C xP by Proposition 1.1(7). In particular, since sn E P, we have 
s211 C xP. Hence, we have xy E (s2n+i) C xsi P C (xsi) for every i ~ 1. Thus, 
y E (si) for every i ~ 1. Hence, y E Q. 0 

PROPOSITION 2.5. Let P be a regular prime ideal of R. Then (P: P) c c(R). 

Proof: Let x E (P : P), and let s be a regular element of P. Then sxn E P for 
every n ~ 1. Hence, xis an almost integral element of R. Thus, x E e(R). 0 

PROPOSITION 2.6. Suppose that Nil(R) is a divided prime ideal of Rand Pis a 
regular ¢-strongly prime ideal of R. Then T(R) is a cf>-CR. 

Proof: First, observe that Nil(T(R)) = Nil(R). Hence, it suffices to show that 
if a,b E R \ Nil(R), then either a I b in T(R) or b I a in T(R). Hence, let 
a, bE R\ Nil(R). Suppose that a Yb in T(R). Then a Yb in R. Hence, aP C bP by 
Proposition 1.1(7). Thus, lets be a regular element of P. Then as= be for some 
c E P. Thus, a= bi. Hence, b I a in T(R). 0 

Now, we state our main result in this section 

THEOREM 2.7. Suppose that Nil(R) is a divided prime ideal of R and P is a 
regular ¢-strongly prime ideal of R. Then exactly one of the following statements 
must hold: 

1. R does not admit a minimal regular prime ideal and c(R) = T(R) is a cf>-CR. 

!J. R admits a minimal regular prime ideal Q and c(R) = (Q: Q) is a cf>-CR with 
maximal ideal Q. 
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Proof: (1). Suppose that R does not admit a minimal regular prime ideal. We 
will show that 1/ s E c(R) for every regular element s E R. Hence, let s be a regular 
element of R. Suppose that s E R \ P. Then 1/ s E (P: P) because Pis a divided 
prime ideal of R by Proposition 1.1(6). Hence 1/s E (P: P) c c(R) by Proposition 
2.5. Thus, suppose that s E P. We will show that there is regular prime ideal 
H C P such that s ¢ H. Deny. Let F = { D : D is a regular prime ideal of R 
and D c P} and N = nnEFD. Then, s EN. Now, by Proposition 1.1(8) and (6), 
we conclude that the prime ideals in the set F are linearly ordered. Hence, N is a 
minimal regular prime ideal of R, which is a contradiction. Thus, there is a regular 
prime ideal H c P such that s ¢H. Hence, once again 1/s E (H :H) c c(R) by 
Proposition 2.5. Thus, c(R) = T(R). Now, T(R) is a ¢-CR by Proposition 2.6. 

(2). Suppose that Q is a minimal regular prime ideal of R. First, observe that 
Q c P by Proposition 1.1(6). Thus, Q is a minimal ¢-strongly prime ideal of R by 
Proposition 1.1(8). Now, (Q : Q) C c(R) by Proposition 2.5. We will show that 
c(R) C (Q : Q). Suppose there is an x E c(R) \ R. Then xis a unit of T(R) by 
Lemma 2.2. We consider three cases. Case 1: suppose that x-1 E T(R) \ R. Then 
xQ c Q by Lemma 2.2. Hence, x E (Q: Q). Case 2: suppose that x-1 E R \ Q. 
Then Q c (x- 1 ) by Proposition 1.1(6). Thus, x E (Q : Q). Case 3: suppose 
that x-1 E Q. This case can not happen, for if x-1 E Q, then D = nF:,1 (x-1 )i 
contains a regular element of R because x E c(R). But D is a prime ideal of R by 
Proposition 2.4. Hence, D is a regular prime ideal of R that is properly contained 
in Q. A contradiction, since Q is a minimal regular prime ideal of R. Hence, 
c(R) = (Q: Q). Now, c(R) = (Q: Q) is a ¢-CR by Proposition 2.3. 0 

Suppose that Nil(R) is a divided prime ideal of R and P f. Nil(R) is a ¢
strongly prime ideal of R. Then observe that Nil(¢(R)) is a divided prime ideal of 
4>(R) and ¢(P) is a regular K-strongly prime ideal of ¢(R) (recall that K = RNit(R))· 
Now, since 4>(R)Nil(tfl(R)) = KNii(R)• we may think of ¢(P) as a ¢-strongly prime 
ideal of 4>(R). In light of this argument and Theorem 2.7, we have the following 
corollary. 

COROLLARY 2.8. Suppose that Nil(R) is a divided prime ideal of R and P f. 
Nil (R) is a ¢-strongly prime ideal of R. Then exactly one of the following state
ments must hold: 

1. 4>(R) does not admit a minimal regular prime ideal and c(¢(R)) = T(¢(R)) = 

KNit(R) is a K -CR. 

2. 4>(R) admits a minimal regular prime ideal Q and c(f/>(R)) = (Q : Q) is a 
K-CR.O 

COROLLARY 2.9. Suppose that R admits a regular strongly prime ideal. Then 
exactly one of the statements in Theorem 2. 7 must hold. 0 

COROLLARY 2.10. Suppose that an integral domain R admits a nonzero strongly 
prime ideal of R. Then exactly one of the statements in Theorem 2. 7 must hold 
(observe that in this case c(R) is a valuation domain). 0 

COROLLARY 2.11. Suppose that Nil(R) is a divided prime ideal of R and P is a 
regular ¢-strongly prime ideal of R. If P contains a finite number, say n, of regular 
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prime ideals of R, P1 C P2 C · · · C Pn-1 C Pn = P, then c(R) = (P1 : PI). 0 

Let J(R) denotes the Jacobson radical ideal of R. We have the following result. 

COROLLARY 2.12. Suppose that R is a Prilfer domain such that J(R) contains a 
nonzero prime ideal of R. Then exactly one of the statements in Theorem 2. 7 mwt 
hold (once again, observe that in this case c(R) is a valuation domain). 

Proof: Let P be a nonzero prime ideal of R such that P C J(R). Then Pis a 
strongly prime ideal by [11, Proposition 1.3, and the proof of Theorem 4.3}. Hence, 
the claim is now clear. 0 

It is well-known [17, Proposition 3.2} that if R is a Noetherian pseudo-valuation 
domain (which is not a field), then R has Krull dimension one. The following is an 
alternative proof of this fact. 

PROPOSITION 2.13. ({17, Proposition 3.2]). If R is a Noetherian pseudo-valuation 
domain (which is not a field), then R has Krull dimension one. 

Proof: Deny. Let M be the maximal ideal of R. Then there is a nonzero prime 
ideal P of R such that P C M and M I P. Hence, there is an element m E M \ P. 
Since Pis divided, we have P c (m). Thus, 1/m E c(R). Since R is Noetherian, 
1/m is also integral over R, which is impossible. Hence, R has Krull dimension one. 
0 

3 THE COMPLETE INTEGRAL CLOSURE OF 
CONDUCIVE DOMAINS 

Throughout this section, R denotes an integral domain with quotient field K, and 
c(R) denotes the integral closure of R inside K. HI is a proper ideal of R, then 
Rad(I) denotes the radical ideal of R. Recall from [11}, that Houston and the author 
defined an ideal I of R to be powerful if, whenever xy E I for elements x, y E K, 
we have x E R or y E R. Also, recall that in [13, Theorem 4.5} Bastida and Gilmer 
proved that a domain R shares an ideal with a valuation domain iff each averring 
of R which is different from the quotient field K of R has a nonzero conductor to 
R. Domains with this property, called conducive domains, were explicity defined 
and studied by Dobbs and Fedder [15}, and further studied by Barucci, Dobbs, and 
Fontana (12} and [16}. In [11, Theorem 4.1}, Houston and the. author proved the 
following result. 

PROPOSITION 3.1. ({11, Theorem .1,.1}} An integral domain R is a conducive 
domain if and only if R admits a powerful ideal. 0 

The following proposition is needed in the proof of Theorem 3.2. 

PROPOSITION 3.2. ({11, Theorem 1.5 and Lemma 1.1}). Suppose that I is a 
proper powerful ideal of R. Then [2 C (s) for every s E R\Rad(I}, and x-1 PC R 
for every x E K \ R. 0 
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Now, we state the main result of this section. 

THEOREM 3.3. Suppose that R admits a nonzero proper powerful ideal I, that is, 
R is a conducive domain. ·Then ezactly one of the following two statements must 
hold: 

1. n~=1 1" ¥ 0 and ezactly one of the following two statements must hold: 

(a) R does not admit a minimal regular prime ideal and c(R) = K is a 
valuation domain. 

(b) R admits a minimal regular prime ideal Q and c(R) = (Q : Q) is a 
valuation domain. 

2. n~=Jn = 0 and c(R) = {x E K : x-n ¢ Rad(I) for every n ~ 1} is a 
valuation domain. 

Proof: {1). Suppose that P = n~=1 In I 0. Then Pis a nonzero strongly prime 
ideal of R by [11, Proposition 1.8]. Hence, the claim is now clear by Theorem 2.7. 

(2) Suppose that P = n~1 In = 0. LetS= {x E K: x-n ¢ Rad(I) for every 
n ~ 1}, and let x E c(R). We will show that x E S. Since P = 0 and x E c(R), 
x-" ¢I for every n ~ 1. Hence, x E S. Thus, c(R) C S. Now, let s E S. We will 
show that s E c(R). Let d be a nonzero element of J2. Hence, for every n ~ 1 we 
have either s-n E K \ R or s-n E R \ Rad(I). Thus, dsn E R for every n ~ 1 by 
Proposition 3.2. Hence, s E c(R). Thus, S ~ c(R). Therefore, S = c(R). Now, we 
show that c(R) = Sis a v-d.luation domain. Let x E K \ S. Then x-n E Rad(I) 
for some n ~ 1. Hence, xn ¢ Rad(I) for every n ~ 1. Thus·; x-1 E S. Therefore, 
c(R) =Sis a valuation domain. 0 
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ABSTRACT. We denote by No the set of nonnegative integers. Let d 2:: 1 and A = 
{a1 , ..• , ac~} a set of positive integers. For every n E No, we write s(n) for the number 

of solutions (xi, ... 'X d) E wg of the equation a! X! + ... + adXcl = n. We set g(A) = 
sup{n I s(n) = 0} U {-1} the Frobenius number of A. Let S(A) be the subsemigroup of 
(No,+) generated by A. We set S'(A) = No\S(A), N'(A) = CardS'(A) and N(A) =Card 

S(A)n{o, 1, .. ,g(A)}. Let p be a multiple oflcm(A) and Fp(t) = nt=l E"fl;l tl"i. We give 
an upper bound for g(A) and reduction formulas for g(A), N'(A) and N(A). Characteriza
tions of these invariants as well as numerical symmetric and pseudo-symmetric semigroups 
in terms of Fp(t), are also obtained. 

1 INTRODUCTION 

We denote by No (resp. N) the set of nonnegative (resp. positive) integers. Let 
dEN and A= {a1, ... ,ad} C N. We set p = gcd(A) and l =lcm(A). For every 
n E No, we write s(n) for the number of solutions (x1, ... , xd) ENg of the equation 
a1x1+· · +adxd = n. We set g(A) = sup{n I s(n) = O}U{-1} the Frobenius number 
of A. Let S(A) be the subsemigroup of (No,+) generated by A, S' (A) =No\ S(A), 
N'(A) = Card S'(A) and N(A) = Card S(A) n {0, 1, .. ,g(A)}. We say that S(A) 
is symmetric (resp. pseudo-symmetric) if gcd(A) = 1 and N'(A) = N(A) (resp. 
N'(A) = N(A) + 1). The generating function of the s(n) is 

1 
~(t) = n:=l (1- ta•). 

Indeed, we have 

23 
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For p E IN, we define the Frobenius polynomial 

d ..1!.._1 
•, {1 tP)d 

Fp(t) =II L tia, = d - a 
i=l i=O rri=l {1- t ·) 

and we write 

{1) 

In theorem 3.1 we give formulas for g(A), N'(A) and N(A) in terms of Fp(t). As 
a consequence we obtain an upper bound for the Frobenius number (corollary 3.2) 
which improves the upper bound given by Chrzastowski-Wachtel and mentioned in 
[9]. A characterization of numerical symmetric and pseudo-symmetric semigroups 
(corollary 3.4) is also obtained. In theorem 3.7 we prove reduction formulas for 
g(A), N'(A) and N(A). The first one generalizes a Raczunas and Chrzastowski
Wachtel theorem [9]. As a consequence (corollary 3.10) we obtain a generalization 
of a Rodseth formula [10]. It is known that the Hilbert function of a graded module 
over a polynomial graded ring as well as s(n) are numerical quasi-polynomial func
tions. In examples 4.9 and 4.10 we give a description of these functions in terms of 
the Frobenius polynomial. 

2 PRELIM IN ARIES 

Given Q(t) = L; q;ti E Q[t, r 1] and an integer p ~ 1, there exists a unique 

sequence Qo, ... ,Qp-1 E Q[t,r 1] such that Q(t) = L:~:;;~trQr(tP). Namely, 
Qr(t) = Lk qr+pktk. The Qr are called the p-components of Q. We denote by 
w(Q) = inf{j I qi =j:. 0} the valuation of Q and deg(Q) = sup{j I q; =j:. 0} the 
degree of Q, with w(O) = +oo and deg(O) = -oo. The following invariants will be 
associated with Q 

Thus we have 

sup{wWQr(tP)) I 0 ~ 7' ~ p- 1} the p-valuation of Q. 
inf{degWQr(tP)) I 0 ~ r ~ p -1} the p-degree of Q. 
p-1 

Lw(Qr)· 
r=O 
p-1 

Ldeg(Qr)· 
r=O 

wp(Q) = +oo = np(Q) and op(Q) = -oo = ~p(Q) if Qr = 0 for some r. 

We fix an integer n E /Z and we set 

~ 

So we have Q = Q and 

deg(Q) + w(Q) = n = deg(Q) + w(Q) if Q =j:. 0. {2) 
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The p-components Qr of Q can be deduced from the p-components of Q. Namely, 
we write n = p).. + 'Y with 0 $ 'Y < p, so we get 

p-1 ~ p-1 

Q(t) = L:tPA+~-rQr(CP) = L:t~-r(tP)AQr(CP) + L: tP+~-r(tP)A-1Qr(CP). 
r=O r=O 

It follows from the uniqueness of the p-components that 

~ A -1 Qr(t) = t Q~-r(t ) for 0 $ r $ 'Y 

and 

So we obtain 

Qr = 0 <=> Q~-r = 0 for 0 $ r $ 'Y 

and 

Qr = 0 <=> Qp+~-r = 0 for r > "f· 

If Qr ;f. 0, we also deduce from (2)-(4) that 

).. = deg(Qr) +w(Q~-r) when 0$ r $ 'Y 

and 

).. -1 = deg(Qr) +w(Qp+~-r) when r > -y. 

Moreover, writing n = p).. + r + ("!- r) = p()..- 1} + r + (p + -y- r) we get 

n = degWQr(tP)) + w(t~-rQ..,-r(tP)) for 0 $ r $ 'Y 

and 

Hence 

Furthermore, using (7) and (8) we get 

~ p-1 

L(deg(Qr)+w(Q~-r)) + L (deg(Qr)+w(Qp+"f-r)) 
r=O r=~+1 

= (-y + 1)).. + (p- 'Y- 1)()..- 1) = n- p + 1. 

It follows that 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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Given m, j E Z, we consider the following polynomials 

m-1 

Nm,.i(t) = (m ~ 1)! n (t- j + i) if m > 1, Nm,j(t) = 0 if m S 0 and N1,i(t) = 1. 
1=1 

For Q(t) = Lj qiti E Q[t, t-1] such that Q(1) ::j:. 0, we define 

Vm(Q, t) = L qjNm,j(t). 
j 

Furthermore, let Qo, ... , Qp- 1 E Q[t, t- 1] be the p-components of Q. We consider 
the polynomials Uo, ... , Up- 1 E Q[t, t- 1] defined as follows Ur = 0 if Qr = 0 and 

Qr(t) = (1- t)irUr(t) with Ur(1) ::j:. 0 otherwise. For all 0 S r S p- 1, we put 

m,. = m - ir and we define the function 

Hm(Q, .) : Z--+ Q by Hm(Q, r + pk) = Vmr (U,., k). 

In order to illustrate these definitions we give the following examples. 

EXAMPLE 2.1 Let Q(t) = F12 = ( 1 £1t;)\1;~2t 3 ) = 1 + t 2 + t 3 + t 4 + t5 + 2t6 + 

t' + 2t8 + 2t9 + 2t10 + 2tll + t12 + 2tl3 + tl4 + tl5 + tl6 + tl7 + t19_ 
We take p = 12, n = 19 and m = 2. 
We write Q(t) = (1 + t 12 ) + t(2t 12 ) + t 2(1 + t 12) + t3(1 + t 12 ) + t4(1 + t12) + t 5(1 + 
t 12 ) + 2t6 + t7 ( 1 + t 12 ) + 2t8 + 2t9 + 2t 10 + 2t 11 . 
We see that the 12-components of Q(t) are Qo(t) = Q2(t) = Q3(t) = Q4(t) = 
Qs(t) = Q7(t) = (1 + t),Q1(t) = 2t and Q5(t) = Qs(t) = Qg(t) = Qto(t) = 
Qu(t) = 2. 
We also have 
Q(t) = t 19Q(c 1) = Q(t). 
w12(Q) = 13, <~"12(Q) = 6, n12(Q) = 1, ~12(Q) = 7. 
N2,o(t) = t + 1, N2,1(t) = t. 
Ur = Qr for all r. 
V2(Ur,t) = 2t+ 1 for 1' E {0,2,3,4,5, 7}, V2(U1,t) = 2t and V2(Ur,t) = 2(t+ 1) for 
r E {6, 8, 9, 10, 11}. 
We obtain H2(Q, 12k+ r) = 2k + 1 for r E {0, 2, 3, 4, 5, 7}, H2(Q, 12k+ 1) = 2k and 

H2(Q, 12k + r) = 2(k + 1) for r E {6,8, 9, 10, 11}. 

EXAMPLE 2.2 Let Q(t) = F6(t) = 1 + t2 + t3 + t4 + t5 + t7 = ( 1 i!~(:rt3). 
We take p = 6, n = 7 and m = 2. 
We obtain 
ws(Q) = 7, ds(Q) = 0, f!s(Q) = 1, ~6(Q) = 1. 
Ur = Q,. for all r. 
N2,o(t) = t + 1, N2,1(t) = t. 
V2(Ur, t) = t + 1 for r E {0, 2, 3, 4, 5} and V2(U1, t) = t. 
H2(Q, 6k + r) = k + 1 for r E {0, 2, 3, 4, 5} and H2(Q, 6k + 1) = k. 
We observe that H2(Fs, .) = H2(F12, .). 
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Given ~(t) EQ[[t, r 1]], we write ~(t) = Ln <p(n)tn and we introduce 

g(~) = sup{n I c/l(n) = 0}. 

S'(~) = {n 2: 0 I <p(n) = 0}. 

S(~) = {0 ~ n ~ g(~) I <p(n) f. 0}. 

N'(~) = CardS'(~). 

N(~) = CardS(~). 

LEMMA 2.3 Given mE Z and Q(t) = Lj qiti E Q[t,r 1] such that Q(l) f. 0, 

we consider ~(t) = Ln <p(n)tn the expansion of (1- t)-mQ(t) as a formal power 
series. Then, the following conditions hold 

1. <p(n) = Vm(Q, n) for all n > deg(Q)- m. 

2. We suppo.se that m > 0 and Q(t) has nonnegative coefficients. Then, 

(a) cp(n) = 0 ¢:? n < w(Q). 

(b) g(~)=w(Q) -1. 

(c) N'(~),= max{w(Q), 0}. In particular, N'(~) = w(Q) if Q(t) E Q[t]. 

PROOF. I. Suppose m > 0. Wehave~(t) = (1-t)-mQ(t) = (Lj qjti) Lr~o e!:.1 1)ti. 

S ( ) """ (n-j+m-1) M h o cp n = L...,j=w(Q) qi m- 1 . oreover, we ave 

( 
. ) m-1 n - J + m - 1 _ 1 IT ( . .) . f . 

- ( )I n- J + z 1 n 2: J. 
m-1 m-1 .. •=1 

Hence cp(n) = V;11 (Q, n) ifn 2: deg(Q), in particular, the statement is true form= 1. 

Now, suppose m > 1 and deg(Q) - m < n < deg(Q) then -m < n- cleg(Q) ~ 

n- j < 0 for all j such that n < j ~ cleg( Q). It follows that there exists 1 :::; i ~ m-1 

such that n- j+ i = 0 thus Nm,j(n) = 0. So we can write 

n n (n - j + m - 1) 
Vm(Q,n) = L qjNm,j(n) = L qi m _ 1 = cp(n). 

i=w(Q) i=w(Q) 

Furthermore, if m ~ 0 then cp(n) = 0 for n > deg(Q)- m because ~(t) E Q[t, r 1] 

and deg(Q)- m = cleg ~(t). 
2. Follows from the fact that cp(n) = I:7=w(Q) qj(n-~+_:r;- 1 ) > 0 if n 2: w(Q) and 

cp(n) = 0 ifn < w(Q) 0 

THEOREM 2.4 Let mE Z and p E .N. Given Q(t) = Lj qiti E Q[t,r 1] such 
that Q(1) f. 0, we consider ~(t) = Ln cp(n)t" the expansion of (1- tP)-mQ(t) 
as a formal power series. Then the following conditions hold 

1. cp(n) = Hm(Q, n) for all n > deg(Q)- mp. 

2. We suppose that m > 0 and Q(t) has nonnegative coefficients. Then, 

(a) cp(pk + r) = 0 ¢:? k < w(Qr)· 
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(b) g(~) = wp(Q) - p = deg(Q) -p-Op (Q) where Q(t) = tdeg(QlQ(t- 1 ). 

(c) N'(~) = L:~:~max{w(Qr),O}. 
In particular, N'(~) = Dp(Q) if Q(t) E Q[t]. 

PROOF. We write ~(t) = L~=~ tr (1- tP)-mQr(tP) = L~=~ tr (1-tP)-mrU,.(tP) = 
L~=~ tr~r(tP) where ~r(t) = (1- tP)-mrU,. (tP) = Lk <f'r(k)tk. It follows from 

lemma 2.3.1, that <p(pk + 1') = <t'r (k) = Vmr (Ur, k) for all k > deg(Ur)- mr. There

fore, rp(n) = Hm(Q, n) for n > deg(Q)- pm because n = pk + 7' > deg(Q)- pm 2:: 
p(deg(Qr)- m) + r => k > deg(Qr)- m = deg(Ur)- mr. 
2 (a) follows from lemma 2.3.2 (a). 

b) We have g(~) = max{pg(~r) + r I 0 :S r :S p- 1} = max{p(w(Qr)- 1) + r I 
0 :S 1" :S p- 1} = wp(Q)- p. Moreover, if Qr =f. 0 for all r we have wp(Q)- p = 
deg(Q)- p- c5p(Q) by (9). Since wp(Q) = +oo = -op(Q) if Qr = 0 for some r, the 

equality is still true in this case. 
c) Follows from lemma 2.3.2 (c) D 

LEMMA 2.5 Let~= e 2~w be a primitive p-th root of unity and Q(t) = L~=~ t"Qr(tP) E 

Q[t, r 1]. Then, the following conditions are equivalent 

1. QW) = 0 for 0 < j < p. 

2. Q(1) = pQr(1) for 0 :S 1' :S p- 1. 

PROOF. By successive substitutions of 1,~, ... ,~P- 1 fort in Q(t) = L~=~ trQr(tP) 
we obtain a Vandermonde linear system L~=~ ~rj Qr ( 1) = Q ( ~i) for j = 0, ... , p -1. 
If Q(~) = ... = Q(~P- 1 ) = 0, the unique solution is Qr(1) = ~Q(1) for ev-

ery 0 ::; r ::; p- 1. Conversely, if Q~1 ) is the common value of the Qr(1) then 

Q~1 ) L:~:6 ~rj = 0 = Q(~i) for j = 1, ... ,p-1 D 

LEMMA 2.6 Let p, q, tt be posit-ive intege1·s and Q(t), K(t) E Q(t, t- 1] such that 
p = qtt and KW') = Q(t). We denote by Q,. (resp. Ks) the p-components of Q 
(resp. the q-components of [( ). Then, 

1. Qstl = Ks and Qr = 0 for all r (/. ttZ. 

2. We set ~ = e >~w, then the following conditions a1·e equivalent 

(a) QW) = 0 for 0 < j < q. 
(b) Q(~q) = qQr(1) = K(1) for all r E ttZ. 

PROOF. We can write Q(t) = KW) = L:;:~ t1.1s Ks(tP). It follows from ~he uniqu~
ness of the Qr that Q8 1.1 = Ks for 0 :S s < q. Now, Q(~q) = K(1) and Q(~J) = K(a3 ) 

with a = e 2~w = ~u. We apply lemma 2.5 D 

d L-1 . 
For every p E lN, we set Fp(t) = f1i= 1 l:j~0 tJa; the Frobenius polynomial of A. 

We write Fp,r for the p-components of Fp. It is easy to see that for n = deg(Fp) = 
d ~ 0 

pd- Li=1 ai, we have Fp(t) = tnFp(t- 1 ) = Fp(t). Let us wnte p = qp and ai = bip 
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for all1 ~ i ~ d, where p = gcd(A). So we can write Fp(t) = K(tP) with 

. (1-tq)d 
[\ (t) = d • 

Ili=l (1- tb;) 
. :ill.!. d 

Moreover, for 0 < j < q the number e1 = e • is a root of fli=t (1 - tb•) of 
multiplicity< d because gcd(bt' .. , bd) = 1 whereas ej is a root of (1 - tq)d of mul
tiplicity= d, then K(ei) = 0. It follows from lemma 2.6 that Fp,r = K ~ if r E p71.. 

1 d-1 
and Fp,r = 0 otherwise. We also deduce that Fp,r(1) = q-K(1) = nL a; if I· E p71.. 0 

3 FROBENIUS NUMBER AND NUMERICAL SEMIGROUPS 

In the case of the Frobenius polynomial Fp we set wp(Fp) = wp(A), dp(Fp) = &p(A), 
Op(Fp) = Op(A), ~p(F) = ~p(A). 

THEOREM 3.1 For eve1·y p E IN, we have 

1. g(A) = Wp(A)- p = p(d- n- E1=1 Oi- dp(A) = l(d -1)- E1=t aj- dt(A). 

2. N'(A) = Op(A) = Ot(A). 

3. N(A) = ~p(A)- &p(A) = ~t(A)- &t(A). 

PROOF. We see that for every p E l.N, the function ~(t) = {1 - tP)-d Fp(t) = 
Ln s(n)tn is the generating function of the s(n) so g(A) = g(~). 
1. follows from theorem 2.4.2 (b). 
2. follows from theorem 2.4.2 (c). 
3. is a consequence of (10)0 

COROLLARY 3.2 

1. For every p E lN, we have 
d 

g(A) =- p(d- 1)- l:ai if and only if dp(A) = 0. 
i=l 

2. g(A) = +oo if and only if p > 1. 

3. If p = 1, we have the following upper bound for the Frobenius number 
d 

g(A) ~ l(d- 1)-I: ai. 
i=l 

4. If there exists h such that 1 ~ h ~ d and gcd(at, ... , ah) = 1 then 
g(A) ~lcm(at, ... ,ah)(h -1)- L~=l ai. 

REMARK 3.3 The upper bound we give in 3) improves the following inequality 

g(A) ~ l(d- 1) 

proved by Chrzastowski-Wachtel and mentioned in [9]. 

COROLLARY 3.4 Suppose gcd(A) = 1. Then the following conditions hold 
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1. S(A) is symmetric ¢:> ~p(A) = Op(A) + Op(A) for some p E lN ¢:> ~p(A) = 
Op(A.) + op(A) for all p E lN. 

2. S(A) is peudo-symmetric ¢:> ~p(A) + 1 = Op(A) + op(A) for some p E lN ¢:> 

~p(A) + 1 = Op(A) + op(A) for all p E lN. 

We suppose gcd(A) = 1. Let q1, .. , qd be positive integers such that for all 
1 SiS d, qi is a divisor of gcd(a1, .. ,ai-1,ai+l•···ad)· So gcd(q;,qj) = 1 for 

i -:/: j because gcd(A) = 1. We set ij = TI1=1 qi, iii = f1ifi qi, a; = b;iji and 
B = {b1, .. , bd}· We have gcd(B) = 1 and l = lcm(A) = cjlcmtB). For p E lN, we 
write p = cju with u E lcm(B)l\1. 

THEOREM 3.5 The following formulas hold 

1. op(A) = ijou(B). 

2. wp(A) = ijwu(B) + L:t=1(q; -1)ai. 

3. Op{A) = ijOu(B) + ~ (L:t=1 (q;- 1)a;- ij + 1). 

4. ~p(A) = ii~u(B) + ~ (L:t=l (q;- 1)ai- ij + 1) · 

In order to prove this theorem we need a lemma. 

LEMMA 3.6 Let q and c be two positive integers, B = { b1, .. , bd-1, c}, and A = 
{a1, .. ,ad-1,c} where a1 = qbl, .. ,ad-1 = qbd-1· Suppose gcd(A) = 1 and choose 
p E lcm(B)N so gcd{q, c) = 1 and qp E lcm(A)N. Then, the following formulas 
hold 

1. oqp(A) = qop(B). 

2. Wqp(A) = qwp(B) + (q- 1)c. 

3. Oqp(A) = qOp(B) + Hq- 1)(c- 1). 

4. ~qp(A) = q~p(B) + ~(q -1)(c- 1). 

PROOF. We denote by 

the Frobenius polynomial associated with B and 
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the Frobenius polynomial associated with A. We see that 

p-1 

G{t) = {1 + tc + .. + t(q-l)c)F(tq) = {1 + tc + .. + t(q-l)c) LW Fr(tqP). 
r=O 

So we obtain 

G(t) = L tk Fj(tqp) = L tk FjWP) + L tk-qptqp Fj(tqp) 
k:ic+jq o<k=ic+iv<qp-i k>qp-i 
O$i~q-1 - O$i~q::.l O~i~q-1 

By identification we deduce that G,(tqP) = Fj(tqP) when s = ic+ jq and G,(tqP) = 
tqp Fj(tqP) when s = ic + jq- qp = ic- (p- j)q. In particular, we have deg(G,) = 
deg(Fj) and w(G,) = w(Fi) when s = ic + jq and deg(G,) = 1 + deg(Fj) and 
w(G,) = 1 + w(Fj) when s = ic + jq- qp. Therefore, for all s which can be 
written in the form s = ic + jq we get deg(t'G,(tqP)) = ic + jq + qpdeg(Fj) 
and w(t'G,(tqP)) = ic + jq + qpw(Fj)- For all s which can be written in the 
forms= ic + jq- qp, we get deg(t'G,(tqP)) = ic + jq- qp + qp(1 + deg(Fj)) = 
ic + jq + qpdeg{Fj} and w(t'G,(tq")) = ic + jq- qp + qp(1 + w(Fj}· It follows 
that dqp(G)::::: min{ic+jq+qpdeg(Fj)} = qmin{j+pdeg(Fj)} = q6,(F) and 
Wqp(G) = max{ic+jq+qpw(Fj)} = (q-1)c+qmax{j+pw(Fj)} = qw,(F)+(q-1)c. 
We also have 

Oqp(G) = L w(G,) + L w(G,) = L w(Fj) + L (w(Fj) + 1) 
. •=ic+jq •=ic+jq-qp •=ic+jq s=ic-jq 

= qO,(F) + N'(c, q) = qO,(F) + ~(q- 1}(c- 1}. It follows that 
Llqp(G) = Oqp(G) + dqp(G) = q(O,(F) + 6,(F)) + Hq- 1}(c- 1)0 

PROOF OF THEOREM 3.5. By induction on the number h = d - k + 1 such 
q1 = q2 = .. = qk-1 = 1. If h = 1 the result is given by lemma 3.6. Suppose that 
the result is true when q1 = q2 = .. = qk-1 = 1. We choose p Elcm(A)~ and we set 
v = L, t; = q; fori =f. k and tk = 1. Then, we get i; = ii.. for all i -I- k, ik = qk and . qk . qk ~ 
• • b • • • • 
t = q.!L· We also have =qa· = ~q' ' = b;t; for all i -I- k and a;., = bktk. We put c; = b;t; k k k ..,... . . 

for all i and C = { c11 .. , cd}, thus a; = qkc; for all i =f. k and ak = Ck. It follows 
from lemma 3.6 and the induction hypothesis that 
1) 6,(A) = qk6v(C) = qki6u(B) = q6u(B). 
2} w,(A) = qkwv(C) + (qk- 1)ck = qk{iwu(B) + L:1=1(t;- 1)c;} + (qk- 1)ck = 
qwu(B) + L:1=1(q; -1)a;. 

3)0,(A) = qkOv(C) + ~(qk -1)(ak -1} = qk{tOu(B) + ~(L1=1 (t; -1)c; -i + 1}} + 

t(qk- 1}(ak- 1} = qOu(B) + t (L:1=l (q;- 1)a;- q + 1) . 

4) Ll,(A) = n,(A) + 6,(A) = qllu(B) + ~ (L:t=l (q;- 1}a;- q + 1) 0 

THEOREM 3.7 The following formulas hold 

1. g(A) = qg(B) + L:t=1(q;- 1}a;. 

2. N'(A) = qN'(B) + t (L:t=l (q;- 1}a; - ij + 1). 
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3. N(A) = qN(B) + t (E1=1 (q;- 1)a;- q + 1). 

REMARK 3.8 In formula 1) if we take q1 = .. = qd-1 = 1 then we obtain a Brauer 
and Shockley formula (5] and if we take q; = gcd(A\{a;}) for all i, we obtain a 
Raczunas and Chrzastowski-Wachtel formula [9]. Moreover formula 2) is a general
ization of a ROdseth formula [10) which is obtained for ql = .. = qd_ 1 = 1. 

THEOREM 3.9 The following conditions hold 

1. S(A) is symmetric if and only if S(B) is symmetric. 

2. If ij > 1 then S(A) is not pseudo-symmetric. 

COROLLARY 3.10 Suppose there exists i such that b; = 1 (i.e. a; = ij;). Then, 
S(A) is symmetric and we have 

1. (a) g(A) = E1=1 (q;- 1)a;- ij. 

(b) N(A) = N'(A) = HE1=1 (q;- 1)a;- ij + 1). 

2. Suppose, in addition, that b; = 1 (i.e. a; = ij;) for all i. Then, tue have 

(a) g(A) = l(d- 1)- E1=l a;. 

{b) N(A) = N'(A) = ~(l(d- 1) - E1=l a;+ 1). 

PROOF. Since 1 E B, we have S(B) =No then g{B) = -1 and N{B) = N'(B) = 0. 
So 1. follows from theorem 3.7. To prove 2., we observe that q;a; = ij = l = lcm(A) 
if a; = q; for all iD 

COROLLARY 3.11 Let b, d, h, v be positive integers such that b ;?: d ;?: 2 and 
gcd(b, v) = 1. Let B = {b, hb + v, .. , hb + (i- 1)v, .. , hb + (d- l)v}, ((61, .. , bd) 1s 

called an "almost" arithmetic sequence). Then, 
S(A) is symmetric<=> S(B) is symmeh·ic <=> d = 2 orb= 2 mod(d- 1). 

PROOF. We write b- 1 = {J(d- 1) +a with 0 $ a < d- 1, and we use the 

following known formulas g{B) = (h l ~=i J + h- 1) b + bv - v (8] and N'(B) = 
~{{b- l)(h/3 + v + h- 1) + ha(/3 + 1)} [11] 0 

EXAMPLE 3.12 Let A= {150, 462,840, 1365} = {5(2 x 3 x 5), 11(2 x 3 x 7), 12(2 x 
5 x 7), 13(3 x 5 x 7)}. We set q1 = 7, q2 = 5, q3 = 3, q4 = 2 and B = {5, 11, 12, 13}. 
This is an almost arithmetic sequence with b = 5, v = 1, h = 2, d = 4. We see 
that b = 2 mod(d- 1) hence S(B) is symmetric and we have g(B) = 19, N'(B) = 
N(B) = 10. Moreover, it follows from theorem 3.9 that S(A) is symmetric. Using 
theorem 3.7 we obtain g(A) = 210 x 19 + 6 x 150 + 4 x 462 + 2 x 840 + 1365 = 9783. 
N'(A) = N(A) = 210 X 10+ ~(6 X 150+4 X 462+ 2 X 840+ 1365- 210+ 1) = 4892. 

4 QUASI-POLYNOMIALS 

DEFINITION 4.1 A quasi-polynomial P of period p and degree d is a sequence 
P =(Po, ... , Pp-1) with PrE !Q(t] such that d = sup{deg(Pr) I 0$ r $ p- 1}. 
A quasi-polynomial P is said to be uniform if all the Pr have the same degree d 
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and the same leading coefficient c(P). Given a function h : iE-+ Q and r E Z, we 
define hr : Z-+ Q, k 1---t h(pk + r). We say that h is a quasi-polynomial function 
ifthere exists aquasi-polynomiaiP =(Po, ... ,Pp-1) such that hr(k) = Pr(k) for 
all k » 0 and 0 ~ r ~ p. We also say that h is P-quasi-polynomial. It is easily 
seen that a quasi-polynomial function h has a minimal period and every period 
of h is a multiple of this minimal period. Furthermore, for a fixed period p, h 
is a P-quasi-polynomial for a unique sequence P = (Po, ... , Pp-d· A P-quasi
polynomial h is said to be uniform if P is uniform. We write deg(h) = deg(P) 
and c(h) = c(P). We denote by F(Z) the set of all functions h : Z -+ Q. For 
every integer i ~ 0 we consider the operators Ei and ~i, which act as follows: 
(Eih)(n) = h(n + i), (~ih)(n) = h(n + i)- h(n). We set E0 = I, E 1 = E and 
~1 =~so~= E- I, ~o = 0 and ~i = Ei- I. For a~ 0 and n ~ 1, we have 
(I+ Ea + ... + E(n-l)a) o (Ea -I) = Ena- I= ~na· 

LEMMA 4.2 Given hE F(Z), then the following identities hold 

1. (EPih)r = Eihr fori~ 0. 

2. (~;ah)r = ~mhr form~ 0. 

PROOF. 1. We write (EPih)r(k) = (EPih}(pk + r) = h(p(k + i) + r) = hr(k + i) = 
(Eihr)(k). 
2. We have ~~1 = (EP- I)m = 2:~0 (-l)m-i(7)EPi. Therefore, (~;ah)r 
L~o(-l)m-i (7)(EPih)r = L~o(-l)m-i (7)Eihr = (E- I)mhr = ~mhrO 

PROPOSITION 4.3 A function h E F(Z) is quasi-polynomial of period p and de
greed if and only if there exists (co, ... , Cp-1) -:f. (0, ... , 0) such that (.Q.~h)r(k) = 
Cr for all k » 0 and 0 ~ r ~ p - 1. 

PROOF. Follows from lemma 4.2 and [6, lemma 4.1.2] 0 

COROLLARY 4.4 For h E F(Z) , if il1=1(E0 '- I)(h}(n) = 0 for n » 0, 
then h is quasi-polynomial of period p E lfil and degree < d. 

d ..l!..-1 d 
PROOF. Follows from 4; = (EP - I)d = (ili=1 (2:j~0 Eia,)) o (ili=l (E 0 ' - I) 0 

EXAMPLE 4.5 Given m E Z and Q(t) E Q[t,r1] such that Q(1) -:f. 0. The 
function Hm(Q, .) associated with Q is a P-quasi-polynomial of period p, where 
P =(Po, .. , Pp-1) is given by Pr = Vm.(Ur, .). 

REMARK 4.6 Suppose m > 0. Then, we have 

1. deg(Hm(Q, .)) = m- 1. 

2. mr > 0 => deg(Pr) = mr - 1 and c(Pr) = (~~!!fw 

3. If Q(1) = pQr(l) =F 0 for all 0 ~ r ~ p-1, then Hm(Q, .) is uniform of degree 

m- 1 and its leading coefficient is c(Hm(Q, .)) = ~:.W = P~~f)!" 


