commutative ring theory and applications

edited by
Marco Fontana
Salah-Eddine Kabbaj
Sylvia Wiegand

commutative ring theory and applications

PURE AND APPLIED MATHEMATICS

A Program of Monographs, Textbooks, and Lecture Notes

EXECUTIVE EDITORS

Earl J. Taft
Rutgers University New Brunswick, New Jersey

Zuhair Nashed
University of Delaware
Newark, Delaware

EDITORIAL BOARD

M. S. Baouendi University of California, San Diego	Anil Nerode
	Cornell University
	Donald Passman
Jane Cronin	University of Wisconsin,
Rutgers University	Madison
Jack K. Hale	Fred S. Roberts
Georgia Institute of Technology	Rutgers University
S. Kobayashi	David L. Russell
University of California, Berkeley	Virginia Polytechnic Institute and State University
Marvin Marcus University of California, Santa Barbara	Walter Schempp
	Universität Siegen
	Mark Teply
W. S. Massey	University of Wisconsin,
Yale University	Milwaukee

LECTURE NOTES IN PURE AND APPLIED MATHEMATICS

1. N. Jacobson, Exceptional Lie Algebras
2. L. $-\AA$. . Lindahl and F. Poulsen, Thin Sets in Harmonic Analysis
3. I. Satake, Classification Theory of Semi-Simple Algebraic Groups
4. F. Hirzebruch et al., Differentiable Manifolds and Quadratic Forms
5. I. Chavel, Riemannian Symmetric Spaces of Rank One
6. R. B. Burckel, Characterization of $\mathrm{C}(\mathrm{X})$ Among Its Subalgebras
7. B. R. McDonald et al., Ring Theory
8. Y.-T. Siu, Techniques of Extension on Analytic Objects
9. S. R. Caradus et al., Calkin Algebras and Algebras of Operators on Banach Spaces
10. E. O. Roxin et al., Differential Games and Control Theory
11. M. Orzech and C. Small, The Brauer Group of Commutative Rings
12. S. Thomier, Topology and Its Applications
13. J. M. Lopez and K. A. Ross, Sidon Sets
14. W. W. Comfort and S. Negrepontis, Continuous Pseudometrics
15. K. McKennon and J. M. Robertson, Locally Convex Spaces
16. M. Carmeli and S. Malin, Representations of the Rotation and Lorentz Groups
17. G. B. Seligman, Rational Methods in Lie Algebras
18. D. G. de Figueiredo, Functional Analysis
19. L. Cesari et al., Nonlinear Functional Analysis and Differential Equations
20. J. J. Schäffer, Geometry of Spheres in Normed Spaces
21. K. Yano and M. Kon, Anti-Invariant Submanifolds
22. W. V. Vasconcelos, The Rings of Dimension Two
23. R. E. Chandler, Hausdorff Compactifications
24. S. P. Franklin and B. V. S. Thomas, Topology
25. S. K. Jain, Ring Theory
26. B. R. McDonald and R. A. Morris, Ring Theory II
27. R. B. Mura and A. Rhemtulla, Orderable Groups
28. J. R. Graef, Stability of Dynamical Systems
29. H.-C. Wang, Homogeneous Branch Algebras
30. E. O. Roxin et al., Differential Games and Control Theory II
31. R. D. Porter, Introduction to Fibre Bundles
32. M. Altman, Contractors and Contractor Directions Theory and Applications
33. J. S. Golan, Decomposition and Dimension in Module Categories
34. G. Fairweather, Finite Element Galerkin Methods for Differential Equations
35. J. D. Sally, Numbers of Generators of Ideals in Local Rings
36. S. S. Miller, Complex Analysis
37. R. Gordon, Representation Theory of Algebras
38. M. Goto and F. D. Grosshans, Semisimple Lie Algebras
39. A. I. Arruda et al., Mathematical Logic
40. F. Van Oystaeyen, Ring Theory
41. F. Van Oystaeyen and A. Verschoren, Reflectors and Localization
42. M. Satyanarayana, Positively Ordered Semigroups
43. D. L Russell, Mathematics of Finite-Dimensional Control Systems
44. P.-T. Liu and E. Roxin, Differential Games and Control Theory III
45. A. Geramita and J. Seberry, Orthogonal Designs
46. J. Cigler, V. Losert, and P. Michor, Banach Modules and Functors on Categories of Banach Spaces
47. P.-T. Liu and J. G. Sutinen, Control Theory in Mathematical Economics
48. C. Bymes, Partial Differential Equations and Geometry
49. G. Klambauer, Problems and Propositions in Analysis
50. J. Knopfmacher, Analytic Arithmetic of Algebraic Function Fields
51. F. Van Oystaeyen, Ring Theory
52. B. Kadem, Binary Time Series
53. J. Barros-Neto and R. A. Artino, Hypoelliptic Boundary-Value Problems
54. R. L. Stemberg et al., Nonlinear Partial Differential Equations in Engineering and Applied Science
55. B. R. McDonald, Ring Theory and Algebra III
56. J. S. Golan, Structure Sheaves Over a Noncommutative Ring
57. T. V. Narayana et al., Combinatorics, Representation Theory and Statistical Methods in Groups
58. T. A. Burton, Modeling and Differential Equations in Biology
59. K. H. Kim and F. W. Roush, Introduction to Mathematical Consensus Theory
60. J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces
61. O. A. Nielson, Direct Integral Theory
62. J. E. Smith et al., Ordered Groups
63. J. Cronin, Mathematics of Cell Electrophysiology
64. J. W. Brewer, Power Series Over Commutative Rings
65. P. K. Kamthan and M. Gupta, Sequence Spaces and Series
66. T. G. McLaughlin, Regressive Sets and the Theory of Isols
67. T. L. Herdman et al., Integral and Functional Differential Equations
68. R. Draper, Commutative Algebra
69. W. G. McKay and J. Patera, Tables of Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras
70. R. L. Devaney and Z. H. Nitecki, Classical Mechanics and Dynamical Systems
71. J. Van Geel, Places and Valuations in Noncommutative Ring Theory
72. C. Faith, Injective Modules and Injective Quotient Rings
73. A. Fiacco, Mathematical Programming with Data Perturbations I
74. P. Schultz et al., Algebraic Structures and Applications
75. L Bican et al., Rings, Modules, and Preradicals
76. D. C. Kay and M. Breen, Convexity and Related Combinatorial Geometry
77. P. Fletcher and W. F. Lindgren, Quasi-Uniform Spaces
78. C.-C. Yang, Factorization Theory of Meromorphic Functions
79. O. Taussky, Ternary Quadratic Forms and Norms
80. S. P. Singh and J. H. Burry, Nonlinear Analysis and Applications
81. K. B. Hannsgen et al., Volterra and Functional Differential Equations
82. N. L. Johnson et al., Finite Geometries
83. G. I. Zapata, Functional Analysis, Holomorphy, and Approximation Theory
84. S. Greco and G. Valla, Commutative Algebra
85. A. V. Fiacco, Mathematical Programming with Data Perturbations II
86. J.-B. Hiriart-Uruty et al., Optimization
87. A. Figa Talamanca and M. A. Picardello, Harmonic Analysis on Free Groups
88. M. Harada, Factor Categories with Applications to Direct Decomposition of Modules
89. V. I. Istrătescu, Strict Convexity and Complex Strict Convexity
90. V. Lakshmikantham, Trends in Theory and Practice of Nonlinear Differential Equations
91. H. L. Manocha and J. B. Srivastava, Algebra and Its Applications
92. D. V. Chudnovsky and G. V. Chudnovsky, Classical and Quantum Models and Arithmetic Problems
93. J. W. Longley, Least Squares Computations Using Orthogonalization Methods
94. L. P. de Alcantara, Mathematical Logic and Formal Systems
95. C. E. Aull, Rings of Continuous Functions
96. R. Chuaqui, Analysis, Geometry, and Probability
97. L. Fuchs and L. Salce, Modules Over Valuation Domains
98. P. Fischer and W. R. Smith, Chaos, Fractals, and Dynamics
99. W. B. Powell and C. Tsinakis, Ordered Algebraic Structures
100. G. M. Rassias and T. M. Rassias, Differential Geometry, Calculus of Variations, and Their Applications
101. R.-E. Hoffmann and K. H. Hofmann, Continuous Lattices and Their Applications
102. J. H. Lightboume III and S. M. Rankin III, Physical Mathematics and Nonlinear Partial Differential Equations
103. C. A. Baker and L. M. Batten, Finite Geometrics
104. J. W. Brewer et al., Linear Systems Over Commutative Rings
105. C. McCrory and T. Shifrin, Geometry and Topology
106. D. W. Kueke et al., Mathematical Logic and Theoretical Computer Science
107. B.-L. Lin and S. Simons, Nonlinear and Convex Analysis
108. S. J. Lee, Operator Methods for Optimal Control Problems
109. V. Lakshmikantham, Nonlinear Analysis and Applications
110. S. F. McCormick, Multigrid Methods
111. M. C. Tangora, Computers in Algebra
112. D. V. Chudnovsky and G. V. Chudnovsky, Search Theory
113. D. V. Chudnovsky and R. D. Jenks, Computer Algebra
114. M. C. Tangora, Computers in Geometry and Topology
115. P. Nelson et al., Transport Theory, Invariant Imbedding, and Integral Equations
116. P. Clément et al., Semigroup Theory and Applications
117. J. Vinuesa, Orthogonal Polynomials and Their Applications
118. C. M. Dafermos et al., Differential Equations
119. E. O. Roxin, Modem Optimal Control
120. J. C. Díaz, Mathematics for Large Scale Computing
121. P. S. MilojeviǦ Nonlinear Functional Analysis
122. C. Sadosky, Analysis and Partial Differential Equations
123. R. M. Shortt, General Topology and Applications
124. R. Wong, Asymptotic and Computational Analysis
125. D. V. Chudnovsky and R. D. Jenks, Computers in Mathematics
126. W. D. Wallis et al., Combinatorial Designs and Applications
127. S. Elaydi, Differential Equations
128. G. Chen et al., Distributed Parameter Control Systems
129. W. N. Everitt, Inequalities
130. H. G. Kaper and M. Garbey, Asymptotic Analysis and the Numerical Solution of Partial Differential Equations
131. O. Arino et al., Mathematical Population Dynamics
132. S. Coen, Geometry and Complex Variables
133. J. A. Goldstein et al., Differential Equations with Applications in Biology, Physics, and Engineering
134. S. J. Andima et al., General Topology and Applications
135. P Clément et al., Semigroup Theory and Evolution Equations
136. K. Jarosz, Function Spaces
137. J. M. Bayod et al., p-adic Functional Analysis
138. G. A. Anastassiou, Approximation Theory
139. R. S. Rees, Graphs, Matrices, and Designs
140. G. Abrams et al., Methods in Module Theory
141. G. L. Mullen and P. J.-S. Shiue, Finite Fields, Coding Theory, and Advances in Communications and Computing
142. M. C. Joshi and A. V. Balakrishnan, Mathematical Theory of Control
143. G. Komatsu and Y. Sakane, Complex Geometry
144. I. J. Bakelman, Geometric Analysis and Nonlinear Partial Differential Equations
145. T. Mabuchi and S. Mukai, Einstein Metrics and Yang-Mills Connections
146. L. Fuchs and R. Göbel, Abelian Groups
147. A. D. Pollington and W. Moran, Number Theory with an Emphasis on the Markoff Spectrum
148. G. Dore et al., Differential Equations in Banach Spaces
149. T. West, Continuum Theory and Dynamical Systems
150. K. D. Bierstedt et al., Functional Analysis
151. K. G. Fischer et al., Computational Algebra
152. K. D. Elworthy et al., Differential Equations, Dynamical Systems, and Control Science
153. P.-J. Cahen, et al., Commutative Ring Theory
154. S. C. Cooper and W. J. Thron, Continued Fractions and Orthogonal Functions
155. P. Clément and G. Lumer, Evolution Equations, Control Theory, and Biomathematics
156. M. Gyllenberg and L. Persson, Analysis, Algebra, and Computers in Mathematical Research
157. W. O. Bray et al., Fourier Analysis
158. J. Bergen and S. Montgomery, Advances in Hopf Algebras
159. A. R. Magid, Rings, Extensions, and Cohomology
160. N. H. Pavel, Optimal Control of Differential Equations
161. M. Ikawa, Spectral and Scattering Theory
162. X. Liu and D. Siegel, Comparison Methods and Stability Theory
163. J.-P. Zolésio, Boundary Control and Variation
164. M. Kíž̌̌ek et al., Finite Element Methods
165. G. Da Prato and L. Tubaro, Control of Partial Differential Equations
166. E. Ballico, Projective Geometry with Applications
167. M. Costabel et al., Boundary Value Problems and Integral Equations in Nonsmooth Domains
168. G. Ferreyra, G. R. Goldstein, and F. Neubrander, Evolution Equations
169. S. Huggett, Twistor Theory
170. H. Cook et al., Continua
171. D. F. Anderson and D. E. Dobbs, Zero-Dimensional Commutative Rings
172. K. Jarosz, Function Spaces
173. V. Ancona et al., Complex Analysis and Geometry
174. E. Casas, Control of Partial Differential Equations and Applications
175. N. Kalton et al., Interaction Between Functional Analysis, Harmonic Analysis, and Probability
176. Z. Deng et al., Differential Equations and Control Theory
177. P. Marcellini et al. Partial Differential Equations and Applications
178. A. Kartsatos, Theory and Applications of Nonlinear Operators of Accretive and Monotone Type
179. M. Maruyama, Moduli of Vector Bundles
180. A. Ursini and P. Aglianò, Logic and Algebra
181. X. H. Cao et al., Rings, Groups, and Algebras
182. D. Amold and R. M. Rangaswamy, Abelian Groups and Modules
183. S. R. Chakravarthy and A. S. Alfa, Matrix-Analytic Methods in Stochastic Models
184. J. E. Andersen et al., Geometry and Physics
185. P.-J. Cahen et al., Commutative Ring Theory
186. J. A. Goldstein et al., Stochastic Processes and Functional Analysis
187. A. Sorbi, Complexity, Logic, and Recursion Theory
188. G. Da Prato and J.-P. Zolésio, Partial Differential Equation Methods in Control and Shape Analysis
189. D. D. Anderson, Factorization in Integral Domains
190. N. L. Johnson, Mostly Finite Geometries
191. D. Hinton and P. W. Schaefer, Spectral Theory and Computational Methods of Sturm-Liouville Problems
192. W. H. Schikhof et al., p-adic Functional Analysis
193. S. Sertöz, Algebraic Geometry
194. G. Caristi and E. Mitidieri, Reaction Diffusion Systems
195. A. V. Fiacco, Mathematical Programming with Data Perturbations
196. M. KY̌ižek et al., Finite Element Methods: Superconvergence, Post-Processing, and A Posteriori Estimates
197. S. Caenepeel and A. Verschoren, Rings, Hopf Algebras, and Brauer Groups
198. V. Drensky et al., Methods in Ring Theory
199. W. B. Jones and A. Sri Ranga, Orthogonal Functions, Moment Theory, and Continued Fractions
200. P. E. Newstead, Algebraic Geometry
201. D. Dikranjan and L. Salce, Abelian Groups, Module Theory, and Topology
202. Z. Chen et al., Advances in Computational Mathematics
203. X. Caicedo and C. H. Montenegro, Models, Algebras, and Proofs
204. C. Y. Yildirm and S. A. Stepanov, Number Theory and Its Applications
205. D. E. Dobbs et al., Advances in Commutative Ring Theory
206. F. Van Oystaeyen, Commutative Algebra and Algebraic Geometry
207. J. Kakol et al., p-adic Functional Analysis
208. M. Boulagouaz and J.-P. Tignol, Algebra and Number Theory
209. S. Caenepeel and F. Van Oystaeyen, Hopf Algebras and Quantum Groups
210. F. Van Oystaeyen and M. Saorin, Interactions Between Ring Theory and Representations of Algebras
211. R. Costa et al., Nonassociative Algebra and Its Applications
212. T.-X. He, Wavelet Analysis and Multiresolution Methods
213. H. Hudzik and L. Skrzypczak, Function Spaces: The Fifth Conference
214. J. Kajiwara et al., Finite or Infinite Dimensional Complex Analysis
215. G. Lumer and L. Weis, Evolution Equations and Their Applications in Physical and Life Sciences
216. J. Cagnol et al., Shape Optimization and Optimal Design
217. J. Herzog and G. Restuccia, Geometric and Combinatorial Aspects of Commutative Algebra
218. G. Chen et al., Control of Nonlinear Distributed Parameter Systems
219. F. Ali Mehmeti et al., Partial Differential Equations on Multistructures
220. D. D. Anderson and I. J. Papick, Ideal Theoretic Methods in Commutative Algebra
221. Á. Granja et al., Ring Theory and Algebraic Geometry
222. A. K. Katsaras et al., p-adic Functional Analysis
223. R. Salvi, The Navier-Stokes Equations
224. F. U. Coelho and H. A. Merklen, Representations of Algebras
225. S. Aizicovici and N. H. Pavel, Differential Equations and Control Theory
226. G. Lyubeznik, Local Cohomology and Its Applications
227. G. Da Prato and L. Tubaro, Stochastic Partial Differential Equations and Applications
228. W. A. Camielli et al., Paraconsistency
229. A. Benkirane and A. Touzani, Partial Differential Equations
230. A. Illanes et al., Continuum Theory
231. M. Fontana et al., Commutative Ring Theory and Applications

commutative ring theory and applications

proceedings of the fourth international conference

edited by
Manco Fontana
Università degli Studi Roma Tre
Rome, Italy
Salah-Eddine Kabbaj
King Fahd University of Petroleum
and Minerals
Dharan, Saudi Arabia
Sylvia Wiegand
University of Nebraska-Lincoln
Lincoln, Nebraska, U.S.A.

CRC Press
Taylor \& Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742
First issued in hardback 2017
Copyright © 2003 by Taylor \& Francis.
CRC Press is an imprint of Taylor \& Francis Group, an Informa business
No claim to original U.S. Government works
ISBN 13: 978-1-138-40191-4 (hbk)
ISBN 13: 978-0-8247-0855-9 (pbk)
This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Visit the Taylor \& Francis Web site at
http://www.taylorandfrancis.com
and the CRC Press Web site at
http://www.crcpress.com

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress.

Preface

This volume draws on the contributors' talks at the Fourth International Conference on Commutative Algebra held in Fez, Morocco. The goal of this conference was to present recent progress and new trends in the growing area of commutative algebra, with primary emphasis on commutative ring theory and its applications. The conference also facilitated a fruitful interaction among the participants, whose various mathematical interests shared the same (commutative) algebraic roots.

The book consists of 34 chapters which, while written as separate articles, provide nonetheless a comprehensive report on questions and problems of contemporary interest. Some articles are surveys of their subject, while others present a narrower, indepth view. All the manuscripts were subject to a strict refereeing process.

This volume encompasses wide-ranging topics in commutative ring theory (along with connections to algebraic number theory, algebraic geometry, homological algebra, and model-theoretic algebra). The topics covered include: algebroid curves, arithmetic rings, chain conditions, class groups, constructions of examples, divisibility and factorization, linear Diophantine equations, the going-down and going-up properties, graded modules and analytic spread, Gröbner bases and computational methods, homological aspects of commutative rings, ideal and module systems, integer-valued polynomials, integral dependence, Krull domains and generalizations, local cohomology, prime spectra and dimension theory, polynomial rings, power series rings, pullbacks, tight closure, ultraproducts, and zero-divisors.

Graduate students and established commutative algebraists will find the book a valuable and reliable source, as will researchers in many other branches of mathematics.

The conference was organized by the University of Fez with the scientific collaboration of the Università degli Studi "Roma Tre," Italy, and the University of Nebraska, U.S.A. Financial support was provided by the Commutative Algebra and Homological Aspects Laboratory, the Faculty of Sciences "Dhar Al-Mehraz," the International Mathematical Union (CDE), the "Espace Sciences \& Vie" Association, and the Università degli Studi "Roma Tre."

We wish to express our gratitude to the local organizing committee, especially Professors A. Benkirane, Chairman of the Department of Mathematics, R. Ameziane Hassani, and A. Touzani, as well as to Professor M. H. Kadri and Mr. M. A. Chad, Dean and Secretary-General, respectively, of the Faculty of Sciences "Dhar AlMehraz" at Fez. Special thanks are due to Mr. A. Bennani and Mrs. T. Ibn Abdelmoula for their constant help with conference arrangements. The efforts of the contributors and the referees are greatly appreciated; without their work this volume would never have been produced. Last, we thank the editorial staff at Marcel Dekker, Inc., in particular, Maria Allegra and Ana Pacheco, for their patience, hard work, and assistance with this volume.

Marco Fontana
Salah-Eddine Kabbaj Sylvia Wiegand

Contents

Preface iii
Contributors $i x$

1. $\quad D\left[X^{2}, X^{3}\right]$ Over an Integral Domain D 1
David F. Anderson, Gyu Whan Chang, and Jeanam Park
2. On the Complete Integral Closure of Rings that Admit a ϕ-Strongly Prime Ideal 15
Ayman Badawi
3. Frobenius Number of a Linear Diophantine Equation 23
Abdallah Badra
4. On Plane Algebroid Curves 37
V. Barucci, M. D'Anna, and R. Fröberg
5. On Radical Operations 51
Ali Benhissi
6. A Splitting Property Characterizing Artinian Principal Ideal Rings 61
Abdelmalek Bouanane and Raja Eddahabi
7. Rings of Integer-Valued Polynomials and the bcs-Property 65
James Brewer and Lee Klingler
8. Factorial Groups and Pólya Groups in Galoisian Extension of \mathbf{Q} 77
Jean-Luc Chabert
9. Monomial Ideals and the Computation of Multiplicities 87
D. Delfino, A. Taylor, W. V. Vasconcelos, N. Weininger, and R. H. Villarreal
10. Analytic Spread of a Pregraduation 107
Youssouf M. Diagana
11. Extension of the Hilbert-Samuel Theorem 117
Henri Dichi
12. On the Integral Closure of Going-Down Rings 131
David E. Dobbs
13. Generalized Going-Down Homomorphisms of Commutative Rings 143
David E. Dobbs, Mario Fontana, and Gabriel Picavet
14. The Class Group of the Composite Ring of a Pair of Krull Domains and Applications 165
Said El Baghdadi
15. Complete Integral Closure and Noetherian Property for Integer-Valued Polynomial Rings 173
S. Gabelli and F. Tartarone
16. Controlling the Zero Divisors of a Commutative Ring 191
Sarah Glaz
17. Weak Module Systems and Applications: A Multiplicative Theory of Integral Elements and the Marot Property 213
Franz Halter-Koch
18. Examples of Integral Domains Inside Power Series Rings 233
William Heinzer, Christel Rotthaus, and Sylvia Wiegand
19. Generalized Going-Up Homomorphisms of Commutative Rings 255 Andrew J. Hetzel
20. Parameter-Like Sequences and Extensions of Tight Closure 267
Melvin Hochster
21. The Tor Game 289
Craig Huneke and Roger Wiegand
22. Trivial Extensions of Local Rings and a Conjecture of Costa 301
S. Kabbaj and N. Mahdou
23. On the t-Dimension of Integral Domains 313
Mohammed Khalis
24. On Some Annihilator Conditions Over Commutative Rings 323
Farid Kourki
25. On Projective Modules Over Polynomial Rings 335
Yves Lequain and Najib Mahdou
26. Rings, Conditional Expectations, and Localization 349
Thomas G. Lucas27. Errata: "Pullbacks and Coherent-Like Properties"[In: Lect. Notes Pure Appl. Math., Dekker, 205 (1999) 437-459]367
Abdeslam Mimouni
Contents vii
27. Ultraproducts of Commutative Rings 369
Bruce Olberding and Serpil Saydam
28. Geometric Subsets of a Spectrum 387
Gabriel Picavet
29. Trigonometric Polynomial Rings 419
Gabriel Picavet and Martine Picavet-l'Hermitte
30. The First Mayr-Meyer Ideal 435
Irena Swanson
31. Facets on Rings Between $D[X]$ and $K[X]$ 445
Muhammad Zafrullah
32. Constructions Cachées en Algèbre Abstraites 461Henri Lombardi et Claude Quitté34. Hidden Constructions in Abstract Algebra: Krull Dimensionof Distributive Lattices and Commutative Rings477Thierry Coquand and Henri Lombardi

Contributors

D. F. Anderson, Department of Mathematics, The University of Tennessee, Knoxville, Tennessee 37996-1300 USA Email: anderson@math.utk.edu
A. Badawi, Department of Mathematics, Birzeit University, P.O. Box 14, Birzeit, West Bank, Palestinc. Email: abring@birzeit.edu
A. Badra, Département de Mathématiques, Université Blaise Pascal, 63177 Aubière, France. Email: badra@ucfma.univ-bpclermont.fr
V. Barucci, Dipartimento di Matematica, Università di Roma "La Sapienza", 00185 Roma, Italy. Email: barucci@mat.uniroma1.it
A. Benhissi, Département de Mathématiques, Faculté des Sciences, B.P. 5000, Monastir, Tunisia. Email: ali.benhissi@fsm.rnu.tn
A. Bouanane, Department of Mathematics, University of Tetouan, P.O. Box 2121, Tetouan, Morocco. Email: abouanane@hotmail.com
J. Brewer, Department of Mathematics, Florida Atlantic University, Boca Raton, FL 33431-6498, USA. Email: brewer@fau.edu
G. W. Chang, Department of Mathematics, Inha University, Incheon, 402-751 Korea
J.-L. Chabert, Département de Mathématiques, Université de Picardie, 80039 Amiens, France. Email: jlchaber@worldnet.fr
T. Coquand, Dept. of Computer Science, Chalmers University, Eklandagatan 86, 41296 Goteborg, Sweden Email: coquand@cs.chalmers.se
M. D'Anna, Dipartimento di Matematica, Università di Catania, 95125 Catania, Italy. Email: mdanna@dmi.unict.it
D. Delfino, Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd, Piscataway, New Jersey 08854-8019, USA. Email: ddelfino1@ yahoo.com
Y. Diagana, Département de Mathématiques, Université d'Abobo-Adjamé, 03 B.P. 1644, Abidjan, Côte d'Ivoire. Email: y_diagana@yahoo.com
H. Dichi, Département de Mathématiques, Université Blaise Pascal, 63177 Aubière, France. E-mail: henri.dichi@math.univ-bpclermont.fr
D. Dobbs, Department of Mathematics, University of Tennessee, Knoxville, TN 379961300, USA. Email: dobbs@math.utk.edu
R. Eddahabi, Department of Mathematics, University of Tetouan, P.O. Box 2121, Tetouan, Morocco.
S. El Baghdadi, Department of Mathematics, Faculté des Sciences et Techniques, P.O. Box 523, Beni Mellal, Morocco. Email: said_ell@yahoo.com
M. Fontana, Dipartimento di Matematica, Università degli Studi "Roma Tre", Largo S.L. Murialdo, 1, 00146 Roma, Italy. Email: fontana@mat.uniroma3.it
R. Fröberg, Department of Mathematics, Stockholm University 10691 Stockholm, Sweden.

Email: ralff ف్matematik.su.se
S. Gabelli, Dipartimento di Matematica, Università degli Studi "Roma Tre", Largo S.L. Murialdo, 1, 00146 Roma, Italy. Email: gabelli@mat.uniroma3.it
S. Glaz, Department of Mathematics, University of Connecticut, Storrs, CT 06269-0001, USA. Email: glaz@uconnvm.uconn.edu
F. Halter-Koch, Institute of Mathematics, Graz University, A-8010 Graz, Austria. Email: franz.halterkochokfunigraz.ac.at
W. Hassler, Institut fü r Mathematik Karl-Franzens-Universitä t Graz Heinrichstr. 36, A-8010 Graz, Austria. Email: wolfgang.hassler@kfunigraz.ac.at
W. Heinzer, Department of Mathematics, Purdue University, West Lafayette, IN 479071968, USA. Email: heinzer@math.purduc.edu
A. Hetzel, Department of Mathematics, University of Tennessee, Knoxville, TN 379961300, USA. Email: ahetzel@math.utk.edu
M. Hochster, Department of Mathematics, University of Michigan, Ann Arbor, MI 481091109, USA. Email: hochster@math.lsa.umich.edu
C. Huneke, Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA.

Email: huneke@math.ukans.edu
S. Kabbaj, Department of Mathematics, KFUPM, P.O. Box 5046, Dhahran 31261, Saudi Arabia and University of $\mathrm{Fez}, \mathrm{Fez}$, Morocco. Email: kabbaj@kfupm.edu.sa
M. Khalis, Department of Mathematics, Faculté des Sciences et Techniques, P.O. Box 577, Settat, Morocco. Email: mohammed_khalis@hotmail.com
L. Klingler, Department of Mathematics, Florida Atlantic University, Boca Raton, FL 33431-6498, USA. Email: klingler@fau.edu
F. Kourki, Department of Mathematics, University of Tetouan, P.O. Box 2121, Tetouan, Morocco. Email: kourki@yahoo.com
Y. Lequain, IMPA, 22.460-320, Rio de Janeiro, Brazil. Email: ylequain@impa.br
H. Lombardi, Equipe de Mathématiques, UMR CNRS 6623, UFR des Sciences et Techniques, Université de Franche-Comté, 25030 Besancon cedex, France.
Email: lombardi@math.univfcomte.fr
T. G. Lucas, Department of Mathematics, University of North Carolina, Charlotte, NC 28223, USA. Email: tglucas@email.uncc.edu
N. Mahdou, Department of Mathematics, FST Fez-Saïss, University of Fez, P.O. Box 2202, Fez, Morocco. Email: mahdou@hotmail.com
A. Mimouni, Department of Mathematics, University of Fez, P.O. Box 1796, Fez, Morocco. Email: a_mimouni@hotmail.com
B. Olberding, Department of Mathematics, University of Louisiana, Monroc LA 71209, USA. E-mail: maolberding@ulm.edu
J. Park, Department of Mathematics, Inha University, Incheon 402-751, Korea Email: jnpark@math.inha.ac.kr
G. Picavet, Département de Mathématiques, Université Blaise Pascal, 63177 Aubière, France E-mail: gabriel.picavet@math.univ-bpclermont.fr
M. Picavet L'Hermitte, Département de Mathématiques, Université Blaise Pascal, 63177 Aubière, France. E-mail: martine.picavet@math.univ-bpclermont.fr
C. Quitté, Laboratoire de Mathématiques, SP2MI, Boulevard 3, Teleport 2, BP 179, 86960 Futuroscope Cedex, France. Email: quitte@mathlabo.univ-poitiers.fr
C. Rotthaus, Department of Mathematics, Michigan State University, East Lansing, MI 48824-0001, USA. Email: rotthaus@math.msu.edu
A. S. Saydam, Department of Mathematics, University of Louisiana, Monroe, LA 71209, USA. Email: masaydam@ulm.edu
I. Swanson, Department of Mathematical Sciences, New Mexico State University - Las Cruces, New Mexico 88003-8001, USA. Email: iswanson@nmsu.Edu
F. Tartarone, Dipartimento di Matematica, Università degli Studi "Roma Tre", Largo S. L. Murialdo, 1, 00146 Roma, Italy. Email: tfrance@mat.uniroma3.it
A. Taylor, Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd, Piscataway, New Jersey 08854-8019, USA. Email: ataylor@math.rutgers.edu
W. V. Vasconcelos, Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd, Piscataway, New Jersey 08854-8019, USA. Email: vasconce@math.rutgers.edu
R. H. Villarreal, Departamento de Matemáticas, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 14-740, 07000, México City, D.F. MEXICO. Email: vila@math.cinvestav.mx
N. Weininger, Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd, Piscataway, New Jersey 08854-8019, USA. Email: nweining@math.rutgers.edu
R. Wiegand, Department of Mathematics, University of Nebraska, Lincoln, NE 685880323, USA. Email: rwiegand@math.unl.edu
S. Wiegand, Department of Mathematics, University of Nebraska, Lincoln, NE 685880323, USA. Email: swiegand@math.unl.edu
M. Zafrullah, Department of Mathematics, University of Arkansas, Fayetteville AR 72701, USA. Email: mzafrullah@usa.net

$D\left[X^{2}, X^{3}\right]$ Over an Integral Domain D

DAVID F. ANDERSON Department of Mathematics, The University of Tennessee, Knoxville, Tennessee 37996-1300.

GYU WHAN CHANG Department of Mathematics, Inha University, Incheon, Korea 402-751

JEANAM PARK Department of Mathematics, Inha University, Incheon, Korea 402-751

1. INTRODUCTION

Let D be an integral domain with identity and quotient field K. In this paper, we study the ring $D\left[X^{2}, X^{3}\right]=D+X^{2} D[X] \subset D[X]$, and we compare its behavior to its polynomial overring $D[X]$. Of course, $D\left[X^{2}, X^{3}\right]$ is never integrally closed (or seminormal, root closed, etc.); so in this paper, we are mainly interested in ring-theoretic properties that do not involve "closedness" conditions. Quite often $D\left[X^{2}, X^{3}\right]$ satisfies a given ring-theoretic property if and only if $D[X]$ satisfies that property. However, in Section 3, the characteristic of D plays an important role. The ring $K\left[X^{2}, X^{3}\right]$ has proved useful in constructing examples concerning the Picard group (see Theorem 3.4) and nonunique factorization (see [10]). This paper gives several other cases where the ring $D\left[X^{2}, X^{3}\right]$ can be used to construct
interesting, elementary examples (for instance, see Section 3). Many of the results in this paper generalize to monoid domains; we leave this to a future paper.

We first recall some of the properties we will investigate in this paper. An integral domain D is said to be a weakly factorial domain (WFD) [4] if each nonzero nonunit of D is a product of primary elements. Following [9], D is called a generalized weakly factorial domain (GWFD) if each nonzero prime ideal of D contains a primary element. Clearly, WFDs are GWFDs; however, if D is a Dedekind domain with nonzero torsion divisor class group, then R is a GWFD, but not a WFD (cf. [7, p. 912], [9, Proposition 3.1]). Following [5], D is called a weakly Krull domain if $D=\cap_{P \in X^{(1)}(D)} D_{P}$ and the intersection has finite character, where $X^{(1)}(D)$ is the set of height-one prime ideals of D. A Krull domain is weakly Krull, and a Noetherian domain is weakly Krull if and only if every grade-one prime ideal has height one. In [7, Theorem], it was shown that D is a WFD if and only if D is a weakly Krull domain and $C l_{t}(D)=0$. A Krull domain D is called almost factorial if $C l(D)$ is torsion. As in [5], we say that an integral domain D is an almost weakly factorial domain (AWFD) if for each nonzero nonunit $x \in D$, there is an integer $n=n(x) \geq 1$ such that x^{n} is a product of primary elements. Thus an AWFD is a GWFD. It was shown in [5, Theorem 3.4] that D is an AWFD if and only if D is a weakly Krull domain and $C l_{t}(D)$ is torsion. We say that an integral domain D is an almost GCD-domain (AGCD-domain) if for all nonzero $x, y \in D$, there exists an integer $n=n(x, y) \geq 1$ such that $\left(x^{n}, y^{n}\right)_{v}$ is principal. In [6, Theorem 3.4], it was proved that $C l_{t}(D)$ is torsion when D is an AGCD-domain.

Throughout this paper, D denotes an integral domain with quotient field K, $\operatorname{Spec}(D)$ its set of prime ideals, and $X^{(1)}(D)$ its set of height-one prime ideals. For $f \in K[X]$, let A_{f} be the fractional ideal of D generated by the coefficients of f. Recall that for a nonzero fractional ideal A of D, we have $A^{-1}=\{x \in K \mid x A \subseteq D\}$, $A_{v}=\left(A^{-1}\right)^{-1}$, and $A_{t}=\cup\left\{\left(a_{1}, \ldots, a_{n}\right)_{v} \mid 0 \neq\left(a_{1}, \ldots, a_{n}\right) \subseteq A\right\}$. A nonzero fractional ideal A of D is called a divisorial ideal (resp., t-ideal) if $A_{v}=A$ (resp., $A_{t}=A$). We say that D has t-dimension one, written t - $\operatorname{dim} D=1$, if each prime t-ideal of D has height one (note that a height-one prime ideal is necessarily a t-ideal). A weakly Krull domain D has $t-\operatorname{dim} D=1$ [5, Lemma 2.1]. An integral ideal of D is said to be a maximal t-ideal if it is maximal with respect to being a t-ideal, and a
maximal t-ideal is necessarily a prime ideal.
A nonzero fractional ideal A of D is said to be t-invertible if there exists a fractional ideal B of D with $(A B)_{t}=D$, and in this case we can take $B=A^{-1}$. It is well known that if A is a t-invertible t-ideal, then $A=J_{v}$ for some finitely generated subideal J of A. The set of t-invertible t-ideals of D forms an abelian group under the t-product $A * B=(A B)_{t}$. The t-class group of D is $C l_{t}(D)$ - the group of t invertible fractional t-ideals of D modulo its subgroup of principal fractional ideals. For D a Krull domain, $C l_{t}(D)=C l(D)$, the divisor class group; while for D a Prüfer domain or one-dimensional integral domain, $C l_{t}(D)=C(D)=P i c(D)$, the ideal class group (or Picard group). For a recent survey article on the t-class group, see [8].

2. THE RING $D\left[X^{2}, X^{3}\right]$

In this section, we study the ring $D\left[X^{2}, X^{3}\right]=D+X^{2} D[X]$ and prove some analogs of the polynomial ring $D[X]$. Our first goal is to show that $D\left[X^{2}, X^{3}\right]$ is a UMTdomain if and only if D is a UMT-domain. The next lemma also holds for monoid domains (cf. [11, Lemma 2.3]).

LEMMA 2.1. Let I be a nonzero fractional ideal of D. Then
(1) $\left(I D\left[X^{2}, X^{3}\right]\right)^{-1}=I^{-1} D\left[X^{2}, X^{3}\right]$.
(2) $\left(I D\left[X^{2}, X^{3}\right]\right)_{v}=I_{v} D\left[X^{2}, X^{3}\right]$.
(3) $\left(I D\left[X^{2}, X^{3}\right]\right)_{t}=I_{t} D\left[X^{2}, X^{3}\right]$.

Proof. (1) It is clear that $I^{-1} D\left[X^{2}, X^{3}\right] \subseteq\left(I D\left[X^{2}, X^{3}\right]\right)^{-1}$. Note that since $I\left(I D\left[X^{2}, X^{3}\right]\right)^{-1} \subseteq D\left[X^{2}, X^{3}\right] \subseteq K\left[X^{2}, X^{3}\right]$, we have $\left(I D\left[X^{2}, X^{3}\right]\right)^{-1} \subseteq K\left[X^{2}, X^{3}\right]$. If $f \in\left(I D\left[X^{2}, X^{3}\right]\right)^{-1}$, then $A_{f} I \subseteq D$, and hence $A_{f} \subseteq I^{-1}$. So $f \in A_{f} D\left[X^{2}, X^{3}\right] \subseteq$ $I^{-1} D\left[X^{2}, X^{3}\right]$. Therefore, $\left(I D\left[X^{2}, X^{3}\right]\right)^{-1}=I^{-1} D\left[X^{2}, X^{3}\right]$.
(2) $\left(I D\left[X^{2}, X^{3}\right]\right)_{v}=\left(\left(I D\left[X^{2}, X^{3}\right]\right)^{-1}\right)^{-1}=\left(I^{-1} D\left[X^{2}, X^{3}\right]\right)^{-1}=I_{v} D\left[X^{2}, X^{3}\right]$ by (1).
(3) It is clear that if $f_{1}, f_{2}, \ldots, f_{k} \in I D\left[X^{2}, X^{3}\right]$, then

$$
\left(f_{1}, \ldots, f_{k}\right)_{v} \subseteq\left(\left(A_{f_{1}}, \ldots, A_{f_{k}}\right) D\left[X^{2}, X^{3}\right]\right)_{v}
$$

$$
=\left(A_{f_{1}}, \ldots, A_{f_{k}}\right)_{v} D\left[X^{2}, X^{3}\right] \subseteq I_{t} D\left[X^{2}, X^{3}\right] .
$$

So $\left(I D\left[X^{2}, X^{3}\right]\right)_{t} \subseteq I_{t} D\left[X^{2}, X^{3}\right]$. For the converse, let J be a nonzero finitely generated subideal of I. Then $J_{v} D\left[X^{2}, X^{3}\right]=\left(J D\left[X^{2}, X^{3}\right]\right)_{v} \subseteq\left(I D\left[X^{2}, X^{3}\right]\right)_{t}$ by (2). Thus $I_{t} D\left[X^{2}, X^{3}\right] \subseteq\left(I D\left[X^{2}, X^{3}\right]\right)_{t}$, and hence $\left(I D\left[X^{2}, X^{3}\right]\right)_{t}=I_{t} D\left[X^{2}, X^{3}\right]$.

LEMMA 2.2. (cf. [18, Proposition 1.1]) Let Q be a maximal t-ideal of $D\left[X^{2}, X^{3}\right]$ such that $Q \cap D \neq 0$. Then $Q=(Q \cap D)\left[X^{2}, X^{3}\right]$. In particular, $Q \cap D$ is a maximal t-ideal of D.

Proof. It suffices to show that $c(Q)\left[X^{2}, X^{3}\right] \subseteq Q$, where $c(Q)$ is the ideal of D generated by the coefficients of all the polynomials in Q. If $c(Q) \nsubseteq Q$, then $Q \subsetneq$ $c(Q)\left[X^{2}, X^{3}\right]$. Since Q is a maximal t-ideal, we have $c(Q)_{t}\left[X^{2}, X^{3}\right]=\left(c(Q)\left[X^{2}, X^{3}\right]\right)_{t}$ $=D\left[X^{2}, X^{3}\right]$. So $c(Q)_{t}=D$; whence there is a polynomial $f \in Q$ such that $\left(A_{f}\right)_{v}=D$. Let $0 \neq a \in Q \cap D$.

We claim that $(a, f)^{-1}=D\left[X^{2}, X^{3}\right]$. First note that $(a, f)^{-1} \subseteq K\left[X^{2}, X^{3}\right]$ because for $g \in(a, f)^{-1}, a g \in D\left[X^{2}, X^{3}\right] \subseteq K\left[X^{2}, X^{3}\right]$. Next, if $g \in(a, f)^{-1}$, then there is an integer $m \geq 1$ such that $A_{f}^{m+1} A_{g}=A_{f}^{m} A_{f g}$ [16, Theorem 28.1]. Thus $\left(A_{f}^{m+1} A_{g}\right)_{v}=\left(A_{f}^{m} A_{f g}\right)_{v}$ and $A_{g} \subseteq\left(A_{g}\right)_{t}=\left(\left(A_{f}^{m+1}\right)_{v} A_{g}\right)_{v}=\left(A_{f}^{m+1} A_{g}\right)_{v}=$ $\left(A_{f}^{m} A_{f g}\right)_{v}=\left(\left(A_{f}^{m}\right)_{v} A_{f g}\right)_{v}=\left(A_{f g}\right)_{v} \subseteq D$. Hence $g \in A_{g}\left[X^{2}, X^{3}\right] \subseteq D\left[X^{2}, X^{3}\right]$. Thus $(a, f)^{-1}=D\left[X^{2}, X^{3}\right]$, and hence $(a, f)_{v}=D\left[X^{2}, X^{3}\right]$, which is a contradiction since Q is a t-ideal. Therefore $c(Q)\left[X^{2}, X^{3}\right]=Q$, and hence $Q=$ $(Q \cap D)\left[X^{2}, X^{3}\right]$.

As in [18], D is called a $U M T$-domain if every upper to zero (a nonzero prime ideal of $D[X]$ which contracts to zero in $D)$ of $D[X]$ is a maximal t-ideal. Recall that $D[X]$ is a UMT-domain if and only if D is a UMT-domain [14, Theorem 3.4]. Thus, as a consequence of our next result, $D\left[X^{2}, X^{3}\right]$ is a UMT-domain if and only if $D[X]$ is a UMT-domain.

THEOREM 2.3. $D\left[X^{2}, X^{3}\right]$ is a UMT-domain if and only if D is a UMT-domain.
Proof. (\Rightarrow) Suppose that $D\left[X^{2}, X^{3}\right]$ is a UMT-domain. Let P be a maximal t ideal of D. Then $P D\left[X^{2}, X^{3}\right]$ is a maximal t-ideal of $D\left[X^{2}, X^{3}\right]$ by Lemma 2.2. Also, note that $D\left[X^{2}, X^{3}\right]_{P D\left[X^{2}, X^{3}\right]}=D[X]_{P[X]}$. Since $D\left[X^{2}, X^{3}\right]$ is a UMTdomain, $D[X]_{P[X]}$ is a t-linkative UMT-domain [14, Theorem 1.5], and hence D_{P}
is a t-linkative UMT-domain (see the proof of [14, Theorem 2.4]). Thus D is a UMT-domain [14, Theorem 1.5].
(\Leftarrow) Suppose that D is a UMT-domain. To show that $D\left[X^{2}, X^{3}\right]$ is a UMTdomain, it is enough to show that if Q is a maximal t-ideal of $D\left[X^{2}, X^{3}\right]$, then the integral closure of $D\left[X^{2}, X^{3}\right]_{Q}$ is a Prüfer domain [14, Theorem 1.5].

Let Q be a maximal t-ideal of $D\left[X^{2}, X^{3}\right]$ and let $Q \cap D=P$. If $P \neq 0$, then $Q=$ $P\left[X^{2}, X^{3}\right]$ by Lemma 2.2. Moreover, since $X^{2} \notin P\left[X^{2}, X^{3}\right]$ we have $D\left[X^{2}, X^{3}\right]_{Q}=$ $D[X]_{P[X]}$. Thus the integral closure of $D\left[X^{2}, X^{3}\right]_{Q}$ is a Prüfer domain by [14, Theorem 1.5] (note that $D[X]$ is a UMT-domain [14, Theorem 2.4] and $P[X]$ is a prime t-ideal of $D[X])$. If $P=0$, then $D\left[X^{2}, X^{3}\right]_{Q}=K\left[X^{2}, X^{3}\right]_{Q K\left[X^{2}, X^{3}\right]}$, and hence $D\left[X^{2}, X^{3}\right]_{Q}$ is a one-dimensional Noetherian domain. Thus the integral closure of $D\left[X^{2}, X^{3}\right]_{Q}$ is a Dedekind domain (cf. [22, Theorem 33.10]), and hence a Prüfer domain.

LEMMA 2.4. If Q is a prime ideal of $D\left[X^{2}, X^{3}\right]$, then there is a unique prime ideal of $D[X]$ lying over Q. Thus the natural map $\operatorname{Spec}(D[X]) \rightarrow \operatorname{Spec}\left(D\left[X^{2}, X^{3}\right]\right)$, given by $P \rightarrow P \cap D\left[X^{2}, X^{3}\right]$, is an order-preserving bijection.

Proof. Let Q be a prime ideal of $D\left[X^{2}, X^{3}\right], P=Q \cap D$, and $S=\left\{X^{n} \mid n=\right.$ $0,2,3, \ldots\}$.

Case 1. $P=0$. If $Q D\left[X^{2}, X^{3}\right]_{S}=D\left[X^{2}, X^{3}\right]_{S}$, then $Q=X D[X] \cap D\left[X^{2}, X^{3}\right]$ and $X D[X]$ is the unique prime ideal of $D[X]$ lying over Q. Assume that $Q D\left[X^{2}, X^{3}\right]_{S}$ $\subsetneq D[X]_{S}$. Note that $D\left[X^{2}, X^{3}\right]_{S}=D[X]_{S}=D\left[X, X^{-1}\right]$. So $Q D\left[X^{2}, X^{3}\right]_{S} \cap D[X]$ is the unique prime ideal of $D[X]$ lying over Q.

Case 2. $P \neq 0$. If $Q=P\left[X^{2}, X^{3}\right]$, then $P[X]$ is the unique prime ideal of $D[X]$ lying over Q. Assume that $P\left[X^{2}, X^{3}\right] \subsetneq Q$. Note that $D\left[X^{2}, X^{3}\right] / P\left[X^{2}, X^{3}\right] \cong$ $(D / P)\left[X^{2}, X^{3}\right], D[X] / P[X] \cong(D / P)[X]$, and $\left(Q / P\left[X^{2}, X^{3}\right]\right) \cap(D / P)\left[X^{2}, X^{3}\right]=$ 0 . Thus there is a unique prime ideal of $(D / P)[X]$ lying over $Q / P\left[X^{2}, X^{3}\right]$ by Case 1. Since every prime ideal of $D[X]$ lying over Q contains $P[X]$, there is a unique prime ideal of $D[X]$ lying over Q.

We next show that the bijection in Lemma 2.4 preserves t-ideals.

THEOREM 2.5. Let Q be a prime ideal of $D[X]$ and let $Q^{\prime}=Q \cap D\left[X^{2}, X^{3}\right]$.
Then Q^{\prime} is a prime t-ideal of $D\left[X^{2}, X^{3}\right]$ if and only if Q is a prime t-ideal of $D[X]$.

Proof. Let $P=Q \cap D=Q^{\prime} \cap D$ and $S=\left\{X^{n} \mid n=0,2,3, \ldots\right\}$.
Case 1. $P=0$. Then ht $Q^{\prime}=\mathrm{ht} Q=1$ by Lemma 2.4. Thus Q and Q^{\prime} are prime t-ideals of $D[X]$ and $D\left[X^{2}, X^{3}\right]$, respectively.

Case 2. $P \neq 0$. Then $Q=P[X]$ if and only if $Q^{\prime}=P\left[X^{2}, X^{3}\right]$ (Lemma 2.4). Thus, by Lemma 2.1, Q is a prime t-ideal of $D[X]$ if and only if P is a prime t-ideal of D, if and only if Q^{\prime} is a prime t-ideal of $D\left[X^{2}, X^{3}\right]$.

Case 3. $P \neq 0$. Then $P[X] \subsetneq Q$ if and only if $P\left[X^{2}, X^{3}\right] \subsetneq Q^{\prime}$. Note that if either Q or Q^{\prime} is a t-ideal, then $X \notin Q$. For if $0 \neq a \in P$, then $((a, X) D[X])_{v}=$ $D[X]$ and $\left(\left(a, X^{2}\right) D\left[X^{2}, X^{3}\right]\right)_{v}=D\left[X^{2}, X^{3}\right]$. Note that $D\left[X^{2}, X^{3}\right]_{S}=D[X]_{S}$, $Q^{\prime} D\left[X^{2}, X^{3}\right]_{S}=Q D[X]_{S}, Q=Q D[X]_{S} \cap D[X]$, and $Q^{\prime}=Q^{\prime} D\left[X^{2}, X^{3}\right]_{S} \cap$ $D\left[X^{2}, X^{3}\right]$. Thus it suffices to show that if either Q or Q^{\prime} is a t-ideal, then $Q^{\prime} D\left[X^{2}, X^{3}\right]_{S}=Q D[X]_{S}$ is a t-ideal of $D[X]_{S}$ by [19, Lemma 3.17].

Let A be a fractional ideal of $D[X]$ such that $A \cap D \neq 0$. We claim that $\left(A D[X]_{S}\right)^{-1}=A^{-1} D[X]_{S}$. It is clear that $A^{-1} D[X]_{S} \subseteq\left(A D[X]_{S}\right)^{-1}$. For the converse, let $u \in\left(A D[X]_{S}\right)^{-1}$. Then $u A \subseteq u\left(A D[X]_{S}\right) \subseteq D[X]_{S}$. Since $A \cap D \neq 0$, $u \in K[X]_{S}$. Thus $u=\frac{g}{X^{m}}$ for some $g \in K[X]$ and integer $m \geq 0$. For any $f \in A$, since $u f=\left(\frac{g}{X^{m}}\right) f \in D[X]_{S}, f g X^{n} \in D[X]$ for some integer $n \geq 0$, and hence $f g \in D[X]$. Thus $g \in A^{-1}$ and $u=\frac{g}{X^{m}} \in A^{-1} D[X]_{S}$. Hence $\left(A D[X]_{S}\right)^{-1} \subseteq A^{-1} D[X]_{S}$, and thus $\left(A D[X]_{S}\right)^{-1}=A^{-1} D[X]_{S}$. A similar argument shows that if A is a fractional ideal of $D\left[X^{2}, X^{3}\right]$ with $A \cap D \neq 0$, then $\left(A D[X]_{S}\right)^{-1}=A^{-1} D[X]_{S}$.

Suppose that Q is a t-ideal of $D[X]$ and let B be a finitely generated subideal of Q. Note that $P \neq 0$, and for any $a \in Q,(B, a)$ is also a finitely generated subideal of Q and $\left(B D[X]_{S}\right)_{v} \subseteq\left((B, a) D[X]_{S}\right)_{v}$. So we may assume that $B \cap D \neq 0$. By the previous paragraph, we have that $\left(B D[X]_{S}\right)_{v}=B_{v} D[X]_{S}$. Thus $Q D[X]_{S}$ is a t-ideal. Similarly, we have that if Q^{\prime} is a t-ideal of $D\left[X^{2}, X^{3}\right]$, then $Q^{\prime} D\left[X^{2}, X^{3}\right]_{S}$ is a t-ideal. Therefore, the proof is completed.

Recall that D is a Mori domain if it satisfies the ascending chain condition on integral divisorial ideals. The class of Mori domains includes Noetherian domains and Krull domains, and is closed under finite intersections. Recall that $D[X]$ is a Mori domain if D is an integrally closed Mori domain [24]. However, an example is given in [25] of a Mori domain D for which $D[X]$ is not a Mori domain. We
say that an integral domain D satisfies the Principal Ideal Theorem (PIT) if each prime ideal of D which is minimal over a nonzero principal ideal has height one. It follows from [12, Proposition 3.1(b)] that an integral domain D satisfies PIT if and only if each nonzero prime ideal of D is a union of height-one prime ideals. An integral domain D is called an S-domain if $h t P[X]=1$ for each prime ideal P of D with $h t P=1[20]$. Note that $D[X]$ is an S-domain for any integral domain D [2, Theorem 3.2]. Also, note that if $D[X]$ satisfies PIT, then D satisfies PIT and D is an S-domain [12, Proposition 6.1]; but, D satisfies PIT does not imply that $D[X]$ satisfies PIT [12, Remark 6.2]. However, if D is integrally closed, then $D[X]$ satisfies PIT if and only if D satisfies PIT and D is an S-domain [13, Theorem 4].

We next show that $D\left[X^{2}, X^{3}\right]$ satisfies any of the above three properties if and only if $D[X]$ does.

THEOREM 2.6. Let D be an integral domain. Then
(1) $D\left[X^{2}, X^{3}\right]$ is an S-domain.
(2) $D\left[X^{2}, X^{3}\right]$ satisfies PIT if and only if $D[X]$ satisfies PIT.
(3) $D\left[X^{2}, X^{3}\right]$ is a Mori domain if and only if $D[X]$ is a Mori domain.

Proof. (1) Since $D[X]$ is integral over $D\left[X^{2}, X^{3}\right]$ (or by Lemma 2.4) and $D[X]$ is an S-domain, $D\left[X^{2}, X^{3}\right]$ is also an S-domain.
$(2)(\Rightarrow)$ Suppose that $D\left[X^{2}, X^{3}\right]$ satisfies PIT. Let Q be a prime ideal of $D[X]$ and $P=Q \cap D\left[X^{2}, X^{3}\right]$. We need to show that $Q=\cup Q_{\alpha}$, where $\left\{Q_{\alpha}\right\}$ is the set of height-one prime ideals of $D[X]$ contained in Q. Since $D\left[X^{2}, X^{3}\right]$ satisfies PIT, $P=\cup\left(Q_{\alpha} \cap D\left[X^{2}, X^{3}\right]\right)$ by Lemma 2.4. If $X \in Q$, then $Q=(Q \cap D, X)$. Thus $P=\left(Q \cap D, X^{2}, X^{3}\right)$. Hence $Q=(Q \cap D, X) \subseteq \cup Q_{\alpha}$; so $Q=\cup Q_{\alpha}$. If $X \notin Q$, then $f X^{2} \in P$ for any $f \in Q$. Then $f X^{2} \in Q_{\alpha}$ for some Q_{α}, and hence $f \in Q_{\alpha}$; so $Q=\cup Q_{\alpha}$. Thus $D[X]$ satisfies PIT. (\Leftrightarrow) Suppose that $D[X]$ satisfies PIT. Let P be a prime ideal of $D\left[X^{2}, X^{3}\right]$. By Lemma 2.4, $P=Q \cap D\left[X^{2}, X^{3}\right]$ for some prime ideal Q of $D[X]$. Since $D[X]$ satisfies PIT, Q is a union of height-one prime ideals of $D[X]$. Since each height-one prime ideals of $D[X]$ contracts to a height-one prime ideal of $D\left[X^{2}, X^{3}\right]$ by Lemma 2.4, P is thus a union of height-one prime ideals. Hence $D\left[X^{2}, X^{3}\right]$ satisfies PIT.
$(3)(\Rightarrow)$ Suppose that $D\left[X^{2}, X^{3}\right]$ is a Mori domain. Let $S=\left\{X^{n} \mid n=0,2,3, \ldots\right\}$.

Then $D[X]=K[X] \cap D\left[X^{2}, X^{3}\right]_{S}$ and $D\left[X^{2}, X^{3}\right]_{S}$ is a Mori domain [23, Corollary 3]. Thus $D[X]$ is also a Mori domain. (\Leftrightarrow) This follows since $D\left[X^{2}, X^{3}\right]=D[X] \cap$ $K\left[X^{2}, X^{3}\right]$ and $K\left[X^{2}, X^{3}\right]$ is a one-dimensional Noetherian domain (and hence a Mori domain).

Our next result is the $D\left[X^{2}, X^{3}\right]$ analog of $[3$, Proposition 4.11] that $D[X]$ is a weakly Krull domain if and only if D is a weakly Krull UMT-domain.

PROPOSITION 2.7. (cf. [3, Proposition 4.11]) $D\left[X^{2}, X^{3}\right]$ is a weakly Krull domain if and only if D is a weakly Krull UMT-domain.

Proof. (\Rightarrow) Suppose that $D\left[X^{2}, X^{3}\right]$ is a weakly Krull domain, and hence $D\left[X^{2}, X^{3}\right]$ has t-dimension one. Let P be a prime t-ideal of D. Then $P D\left[X^{2}, X^{3}\right]$ is a prime t-ideal of $D\left[X^{2}, X^{3}\right]$, and hence $\operatorname{ht} P=\operatorname{ht} P\left[D X^{2}, X^{3}\right]=1$; whence $t-\operatorname{dim} D=1$. Moreover, if $0 \neq a \in D$, then the number of height-one prime ideals of $D\left[X^{2}, X^{3}\right]$ that contain a is finite. Hence $\left\{P \in X^{1}(D) \mid a \in P\right\}$ is finite, and thus D is weakly Krull.

Let $P \in X^{1}(D)$. Then ht $P\left[X^{2}, X^{3}\right]=1$, and hence ht $P[X]=1$, which implies that D is a UMT-domain because $t-\operatorname{dim} D=1$.
(\Leftarrow) Suppose that D is a weakly Krull UMT-domain, and let $P \in X^{1}(D)$. Then $\operatorname{ht}\left(P\left[X^{2}, X^{3}\right]\right)=1$ by Lemma 2.4. Thus $t-\operatorname{dim}\left(D\left[X^{2}, X^{3}\right]\right)=1$ by Lemma 2.2 (note that $t-\operatorname{dim} D=1$ since D is weakly Krull). Hence by [17, Proposition 4] or [19, Proposition 2.8],

$$
D\left[X^{2}, X^{3}\right]=\cap_{Q \in X^{1}\left(D\left[X^{2}, X^{3}\right]\right)} D\left[X^{2}, X^{3}\right]_{Q}
$$

Let $0 \neq f \in D\left[X^{2}, X^{3}\right], A=\left\{P D\left[X^{2}, X^{3}\right] \mid P \in X^{1}(D)\right.$ and $\left.f \in P D\left[X^{2}, X^{3}\right]\right\}$, and $B=\left\{Q \in X^{1}\left(D\left[X^{2}, X^{3}\right]\right) \mid Q \cap D=0\right.$ and $\left.f \in Q\right\}$. Since D is weakly Krull, A is finite. Moreover, since $K\left[X^{2}, X^{3}\right]$ is a one-dimensional Noetherian domain, B is also finite. Therefore, $D\left[X^{2}, X^{3}\right]$ is weakly Krull.

The final result of this section is the $D\left[X^{2}, X^{3}\right]$ analog of [24, Lemme 1].

PROPOSITION 2.8. Let D be integrally closed and $0 \neq f \in K\left[X^{2}, X^{3}\right]$. Then
(1) $f K\left[X^{2}, X^{3}\right] \cap D\left[X^{2}, X^{3}\right]=f A_{f}^{-1}\left[X^{2}, X^{3}\right]$.
(2) $f K[X] \cap D\left[X^{2}, X^{3}\right]= \begin{cases}f A_{f}^{-1}\left[X^{2}, X^{3}\right], & \text { if } f(0) \neq 0 \\ f A_{f}^{-1}[X], & \text { if } f(0)=0 .\end{cases}$

Proof. (1) Let $f g \in f K\left[X^{2}, X^{3}\right] \cap D\left[X^{2}, X^{3}\right]$. Then $A_{f} A_{g} \subseteq\left(A_{f} A_{g}\right)_{v}=\left(A_{f g}\right)_{v} \subseteq$ D because D is integrally closed (cf. [16, Proposition 34.8]). Thus $g \in A_{f}^{-1}\left[X^{2}, X^{3}\right]$ and $f K\left[X^{2}, X^{3}\right] \cap D\left[X^{2}, X^{3}\right] \subseteq f A_{f}^{-1}\left[X^{2}, X^{3}\right]$. The converse is clear.
(2) Case 1. $f(0)=0$. Let $f g \in f K[X] \cap D\left[X^{2}, X^{3}\right]$, where $g \in K[X]$. Since D is integrally closed, $A_{f} A_{g} \subseteq\left(A_{f} A_{g}\right)_{v}=\left(A_{f g}\right)_{v} \subseteq D$ (cf. [16, Proposition 34.8]). Thus $g \in\left(A_{f}\right)^{-1}[X]$, and hence $f K[X] \cap D\left[X^{2}, X^{3}\right] \subseteq f A_{f}^{-1}[X]$. Moreover, since $f(0)=0$, we have $f h \in D\left[X^{2}, X^{3}\right]$ for any $h \in\left(A_{f}\right)^{-1}[X]$. Therefore, $f K[X] \cap D\left[X^{2}, X^{3}\right]=f A_{f}^{-1}[X]$ for any $h \in\left(A_{f}\right)^{-1}[X]$.

Case 2. $f(0) \neq 0$. Since $f(0) \neq 0, f g \notin K\left[X^{2}, X^{3}\right]$ for any $g \in K[X]-K\left[X^{2}, X^{3}\right]$, which implies that the proof is identical to the proof of Case 1.

3. GENERALIZED WEAKLY FACTORIAL DOMAINS

One of the purposes of this section is to find equivalent conditions for $D\left[X^{2}, X^{3}\right]$, over an almost factorial domain D, to be a GWFD. The other is to study the t-class group $C l_{t}\left(D\left[X^{2}, X^{3}\right]\right)$. Recall that a GWFD is weakly Krull and has t-dimension one [9 , Corollary 2.3], and that an almost factorial domain is a Krull domain with torsion divisor class group.

THEOREM 3.1. The following statements are equivalent for an almost factorial domain D.
(1) $D\left[X^{2}, X^{3}\right]$ is an AGCD-domain.
(2) $D\left[X^{2}, X^{3}\right]$ is an AWFD.
(3) $D\left[X^{2}, X^{3}\right]$ is a GWFD.
(4) char $D=p \neq 0$.

Proof. (1) \Rightarrow (2): Recall that a Krull domain is a weakly Krull UMT-domain. Thus $D\left[X^{2}, X^{3}\right]$ is a weakly Krull domain by Proposition 2.7. Also, note that an AGCD-domain has torsion t-class group. Hence $D\left[X^{2}, X^{3}\right]$ is an AWFD.
(2) \Rightarrow (3): Let Q be a nonzero prime ideal of $D\left[X^{2}, X^{3}\right]$ and let $0 \neq f \in Q$. By the definition of an AWFD, there is an integer $n \geq 1$ such that f^{n} is a product of primary elements. Thus Q contains a nonzero primary element of $D\left[X^{2}, X^{3}\right]$. Therefore, $D\left[X^{2}, X^{3}\right]$ is a GWFD.
(3) \Rightarrow (4): Since $D\left[X^{2}, X^{3}\right]$ is a GWFD, $D\left[X^{2}, X^{3}\right]_{D-\{0\}}=K\left[X^{2}, X^{3}\right]$ is also a GWFD by [9 , Remark 2.5(4)]. Moreover, since $\operatorname{char} D=\operatorname{char} K$, it suffices to show that char $K \neq 0$.

Suppose that char $K=0$, and let $Q=(1+X) K[X] \cap K\left[X^{2}, X^{3}\right]$. Since $K\left[X^{2}, X^{3}\right]$ is a GWFD, there is a primary element $f \in Q$ such that $Q=\sqrt{f K\left[X^{2}, X^{3}\right]}$. Let $S=\left\{X^{n} \mid n=0,2,3, \ldots\right\}$. Then $K\left[X^{2}, X^{3}\right]_{s}=K[X]_{S}=K\left[X, X^{-1}\right]$. Note that $K[X]_{S}$ is a PID and $Q K[X]_{S}=(1+X) K[X]_{S}$. Thus $f K[X]_{S}=(1+X)^{n} K[X]_{S}$ for some integer $n \geq 1$, and hence $f=\frac{u(1+X)^{n}}{X^{m}}$ for some integer m and $0 \neq u \in K$.

If $m \geq 0$, then $X^{m} f=u(1+X)^{n}$, and hence $m=0$. Thus $f=u(1+X)^{n}$, and $u(1+X)^{n} \in K\left[X^{2}, X^{3}\right] \Leftrightarrow n u X \in K\left[X^{2}, X^{3}\right] \Leftrightarrow X \in K\left[X^{2}, X^{3}\right]$ (note that $\operatorname{char} K=0)$, a contradiction. Hence $m<0$ and $f=u(1+X)^{n} X^{-m} \in Q \cap(X K[X] \cap$ $\left.K\left[X^{2}, X^{3}\right]\right)$, which contradicts that f is primary. Thus char $K \neq 0$.
(4) \Rightarrow (1): Let $0 \neq f, g \in D\left[X^{2}, X^{3}\right]$. Then there is an integer $k \geq 1$ and $h \in K[X]$ such that $\left(((f, g) D[X])^{k}\right)_{v}=\left(\left(f^{k}, g^{k}\right) D[X]\right)_{v}=h D[X]$ (note that $D[X]$ is a Krull domain with torsion divisor class group)[6, Lemma 3.3]. Thus $f^{k}=h f_{1}$ and $g^{k}=h g_{1}$ for some $f_{1}, g_{1} \in D[X]$, and $\left(\left(f_{1}, g_{1}\right) D[X]\right)_{v}=D[X]$. Since char $D=$ $p \neq 0, f_{1}^{p}, g_{1}^{p} \in D\left[X^{2}, X^{3}\right]$.

Assume that $\left(f_{1}^{p}, g_{1}^{p}\right)_{v} \subsetneq D\left[X^{2}, X^{3}\right]$. Then there is a height-one prime ideal Q of $D\left[X^{2}, X^{3}\right]$ such that $\left(f_{1}^{p}, g_{1}^{p}\right)_{v} \subseteq Q$ (note that $t-\operatorname{dim}\left(D\left[X^{2}, X^{3}\right]\right)=1$ since $D\left[X^{2}, X^{3}\right]$ is weakly Krull). Since $D[X]$ is integral over $D\left[X^{2}, X^{3}\right]$ (or by Lemma 2.4), there is a height-one prime ideal Q^{\prime} of $D[X]$ such that $Q^{\prime} \cap D\left[X^{2}, X^{3}\right]=Q$. Thus

$$
\begin{aligned}
D[X] & \supsetneq Q^{\prime}=Q_{t}^{\prime} \supseteq\left(\left(f_{1}^{p}, g_{1}^{p}\right) D[X]\right)_{v}=\left(\left(\left(f_{1}, g_{1}\right) D[X]\right)^{p}\right)_{v} \\
& =\left(\left(\left(\left(f_{1}, g_{1}\right) D[X]\right)_{v}\right)^{p}\right)_{v}=\left(D[X]^{p}\right)_{v}=D[X]
\end{aligned}
$$

a contradiction. Hence $\left(f_{1}^{p}, g_{1}^{p}\right)_{v}=D\left[X^{2}, X^{3}\right]$. Therefore,

$$
\left(f^{k p}, g^{k p}\right)_{v}=\left(\left(h f_{1}\right)^{p},\left(h g_{1}\right)^{p}\right)_{v}=h^{p}\left(f_{1}^{p}, g_{1}^{p}\right)_{v}=h^{p} D\left[X^{2}, X^{3}\right] .
$$

Thus $D\left[X^{2}, X^{3}\right]$ is an AGCD-domain.
COROLLARY 3.2. The following statements are equivalent for a field K.
(1) $K\left[X^{2}, X^{3}\right]$ is an AGCD-domain.
(2) $K\left[X^{2}, X^{3}\right]$ is an AWFD.
(3) $K\left[X^{2}, X^{3}\right]$ is a $G W F D$.
(4) $\operatorname{char} K=p \neq 0$.

Our next result generalizes Theorem 3.1.

THEOREM 3.3. (cf. [9, Theorem 3.3]) Let D be an integrally closed domain with char $D=p \neq 0$. Then the following statements are equivalent.
(1) $D\left[X^{2}, X^{3}\right]$ is an $A W F D$.
(2) $D\left[X^{2}, X^{3}\right]$ is a $G W F D$.
(3) $D[X]$ is an AWFD.
(4) $D[X]$ is a GWFD.
(5) D is a generalized weakly factorial AGCD-domain.
(6) D is an almost weakly factorial AGCD-domain.
(7) D is a weakly Krull AGCD-domain.

Proof. (1) $\Rightarrow(2)$: This follows from the definitions.
$(2) \Rightarrow(4):$ By $[9$, Theorem 2.2], it suffices to show that if Q is a maximal t-ideal of $D[X]$, then $Q=\sqrt{f D[X]}$ for some $f \in D[X]$ because t - $\operatorname{dim} D[X]=t$ $\operatorname{dim} D\left[X^{2}, X^{3}\right]=1$. Let $P=Q \cap D$. If $P \neq 0$, then $Q=P[X]$ and $P\left[X^{2}, X^{3}\right]=$ $\sqrt{a D\left[X^{2}, X^{3}\right]}$ for some $a \in P$ (note that $P\left[X^{2}, X^{3}\right]$ is a height-one prime ideal). Thus $P[X]=\sqrt{a D[X]}$.

Assume that $P=0$, and let $Q \cap D\left[X^{2}, X^{3}\right]=\sqrt{f D\left[X^{2}, X^{3}\right]}$. Note that if $g \in D[X]$, then $g^{p} \in D\left[X^{2}, X^{3}\right]$ because char $D=p \neq 0$. Thus $Q=\sqrt{f D[X]}$.
$(3) \Rightarrow(1)$: Recall that $D[X]$ is a weakly Krull domain $\Leftrightarrow D$ is a weakly Krull UMT-domain $\Leftrightarrow D\left[X^{2}, X^{3}\right]$ is a weakly Krull domain. Hence it suffices to show that $C l_{t}\left(D\left[X^{2}, X^{3}\right]\right)$ is torsion.

Let Q be a t-invertible t-ideal of $D\left[X^{2}, X^{3}\right]$. Then $\left((Q D[X])\left(Q^{-1} D[X]\right)\right)_{t}=$ $\left(Q Q^{-1} D[X]\right)_{t} \subseteq D[X]$. Since Q is t-invertible, $Q Q^{-1}$ is not contained in any height-one prime ideal of $D\left[X^{2}, X^{3}\right]$ (note that $t-\operatorname{dim} D[X]=t-\operatorname{dim} D\left[X^{2}, X^{3}\right]=1$). Thus $(Q D[X])\left(Q^{-1} D[X]\right)$ is not contained in any height-one prime ideal of $D[X]$, and hence $\left((Q D[X])\left(Q^{-1} D[X]\right)\right)_{t}=D[X]$. Since $D[X]$ is an AWFD and thus has torsion t-class group, there is an integer $n \geq 1$ and an $f \in D[X]$ such that $\left((Q D[X])^{n}\right)_{v}=\left(Q^{n} D[X]\right)_{v}=f D[X]$. Since Q is a finite type t-ideal, by the same
argument as in the proof of $(4) \Rightarrow(1)$ in Theorem 3.1, we have that $\left(Q^{p n}\right)_{v}=$ $f^{p} D\left[X^{2}, X^{3}\right]$. Therefore, $D\left[X^{2}, X^{3}\right]$ is an AWFD.
(3) $\Leftrightarrow(4) \Leftrightarrow(5) \Leftrightarrow(6) \Leftrightarrow(7)$: These implications are in [9, Theorem 3.3].

We close this paper with a discussion of $C l_{t}\left(D\left[X^{2}, X^{3}\right]\right)$. Recall that an integral domain D with quotient field K is seminormal if whenever $x^{2}, x^{3} \in D$ for some $x \in K$, then $x \in D$; and that $\operatorname{Pic}(D[X])=\operatorname{Pic}(D)$ if and only if D is seminormal. Using the Mayer-Vietoris exact sequence for ($U, P i c$) (cf. [21, pp. 39-40]), one may show that $\operatorname{Pic}\left(D\left[X^{2}, X^{3}\right]\right)=\operatorname{Pic}(D) \oplus D$ (as additive abelian groups) when D is seminormal. Also, $C l_{t}(D[X])=C l_{t}(D)$ if and only if D is integrally closed [15, Theorem 3.6]. In analogy with the Picard group case, we ask if $C l_{t}\left(D\left[X^{2}, X^{3}\right]\right)=$ $C l_{t}(D) \oplus K$ (as additive abelian groups) when D is integrally closed. Our final theorem shows that this does hold in the special case when D is a GCD-domain since then $C l_{t}(D)=0$. For example, letting $D=\mathbb{Z}$, we have $\operatorname{Pic}\left(\mathbb{Z}\left[X^{2}, X^{3}\right]\right)=\mathbb{Z}$ and $C l_{t}\left(\mathbb{Z}\left[X^{2}, X^{3}\right]\right)=\mathbb{Q}$.

THEOREM 3.4. Let D be a GCD-domain with quotient field K. Then, as additive abelian groups,
(1) $\operatorname{Pic}\left(D\left[X^{2}, X^{3}\right]\right)=D$.
(2) $C l_{t}\left(D\left[X^{2}, X^{3}\right]\right)=K$.

Proof. (1) This follows using the Mayer-Vietoris exact sequence for ($U, P i c$).
(2) Let $S=D-\{0\}$. Then S is an lcm splitting set in $D\left[X^{2}, X^{3}\right]$. Thus

$$
C l_{t}\left(D\left[X^{2}, X^{3}\right]\right) \cong C l_{t}\left(D\left[X^{2}, X^{3}\right]_{S}\right)=C l_{t}\left(K\left[X^{2}, X^{3}\right]\right)=\operatorname{Pic}\left(K\left[X^{2}, X^{3}\right]\right)=K
$$

by [1, Theorem 4.1].
QUESTION 3.5. Compute $C l_{t}\left(D\left[X^{2}, X^{3}\right]\right)$ for an arbitrary integral domain D with quotient field K. In particular, does $C l_{t}\left(D\left[X^{2}, X^{3}\right]\right)=C l_{t}(D) \oplus K$ (as additive abelian groups) when D is integrally closed?

ACKNOWLEDGMENTS

The third author's work was supported grant No R02-2000-00016 from the Basic Science Research Program of the Korea Science \& Engineering Foundation.

REFERENCES

1. D.D. Anderson, D.F. Anderson, and M. Zafrullah, Splitting the t-class group, J. Pure and Appl. Algebra 74 (1991), 17-37.
2. D.D. Anderson, D.F. Anderson, and M. Zafrullah, Rings between $D[X]$ and $K[X]$, Houston J. Math. 17 (1991), 109-129.
3. D.D. Anderson, E. Houston, and M. Zafrullah, t-linked extensions, the t class group, and Nagata's theorem, J. Pure and Appl. Algebra 86 (1993), 109-124.
4. D.D. Anderson and L. Mahaney, On primary factorizations, J. Pure and Appl. Algebra 54 (1988), 141-154.
5. D.D. Anderson, J. L. Mott, and M. Zafrullah, Finite character representations for integral domains, Boll. Un. Mat. Ital. B(7) 6 (1992), 613-630.
6. D.D. Anderson and M. Zafrullah, Almost Bézout domains, J. Algebra 142 (1991), 285-309.
7. D.D. Anderson and M. Zafrullah, Weakly factorial domains and groups of divisibility, Proc. Amer. Math. Soc. 109 (1990), 907-913.
8. D.F. Anderson, The class group and local class group of an integral domain, in Non-Noetherian Ring Theory, Math. Appl., Kluwer Acad. Publ., Dordrecht 520 (2000), 33-55
9. D.F. Anderson, G.W. Chang, and J. Park, Generalized weakly factorial domains, Houston J. Math., to appear.
10. D.F. Anderson, S. Chapman, F. Inman, and W.W. Smith, Factorization in $K\left[X^{2}, X^{3}\right]$, Arch. Math., 61(1993), 521-528.
11. S. El Baghdadi, L. Izelgue, and S. Kabbaj, On the class group of a graded domain, preprint.
12. V. Barucci, D.F. Anderson, and D. Dobbs, Coherent Mori domains and the Principal Ideal Theorem, Comm. Algebra 15 (1987), 1119-1156.
13. G.W. Chang, On the Principal Ideal Theorem, Bull. Korean Math. Soc. 36 (1999), 655-660.
14. M. Fontana, S. Gabelli, and E. Houston, UMT-domains and domains with Prüfer integral closure, Comm. Algebra 26(4) (1998), 1017-1039.
15. S. Gabelli, On divisorial ideals in polynomial rings over Mori domains, Comm. Algebra 15 (1987), 2349-2370
16. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
17. M. Griffin, Some results on v-multiplication rings, Canad. J. Math., 19 (1967), 710-722.
18. E. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra 17(8) (1989), 1955-1969
19. B.G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_{v}}$, J. Algebra 123 (1989), 151-170.
20. I. Kaplansky, Commutative Rings, revised edition, Univ. of Chicago Press, 1974.
21. T.Y. Lam, Lectures on Modules and Rings, Springer, New York, 1999.
22. M. Nagata, Local Rings, Interscience, New York, 1962.
23. J. Querre, Sur une propriété des anneaux de Krull, Bull. Sci. Math. 99(2) (1971), 341-354.
24. J. Querre, Idéaux divisoriels d'un anneaux de polynômes, J. Algebra 64 (1980), 270-284
25. M. Roitman, On polynomial extensions of Mori domains over countable fields, J. Pure and Appl. Algebra 64 (1990), 315-328.

On the Complete Integral Closure of Rings that Admit a ϕ-Strongly Prime Ideal

AYMAN BADAWI, Department of Mathematics, Birzeit University, Box 14, Birzeit, West Bank, Palestine, via Israel. E-Mail: abring@birzeit.edu

Abstract

: Let R be a commutative ring with 1 and $T(R)$ be its total quotient ring such that $\operatorname{Nil}(R)$ (the set of all nilpotent elements of R) is a divided prime ideal of R. Then R is called a ϕ-chained ring ($\phi-C R$) if for every $x, y \in R \backslash N i l(R)$, either $x \mid y$ or $y \mid x$. A prime ideal P of R is said to be a ϕ-strongly prime ideal if for every $a, b \in R \backslash \operatorname{Nil(R),~either~} a \mid b$ or $a P \subset b P$. In this paper, we show that if R admits a regular ϕ-strongly prime ideal, then either R does not admit a minimal regular prime ideal and $c(R)$ (the complete integral closure of R inside $T(R)$) $=$ $T(R)$ is a ϕ-CR or R admits a minimal regular prime ideal Q and $c(R)=(Q: Q)$ is a ϕ-CR with maximal ideal Q. We also prove that the complete integral closure of a conducive domain is a valuation domain.

1 INTRODUCTION

We assume throughout that all rings are commutative with $1 \neq 0$. We begin by recalling some background material. As in [17], an integral domain R, with quotient field K, is called a pseudo-valuation domain ($P V D$) in case each prime ideal P of R is strongly prime, in the sense that $x y \in P, x \in K, y \in K$ implies that either $x \in P$ or $y \in P$. In [4], Anderson, Dobbs and the author generalized the study of pseudo-valuation domains to the context of arbitrary rings (possibly with nonzero zerodivisors). Recall from [4] that a prime ideal P of R is said to be strongly prime (in R) if $a P$ and $b R$ are comparable (under inclusion) for all $a, b \in R$. A ring R is called a pseudo-valuation ring ($P V R$) if each prime ideal of R is strongly prime. A PVR is necessarily quasilocal [4 , Lemma 1(b)]; a chained ring is a PVR [4, Corollary 4]; and an integral domain is a PVR if and only if it is a PVD (cf. [1, Proposition 3.1], [2, Proposition 4.2], and [6, Proposition 3]). Recall from [7] and [14] that a prime ideal P of R is called divided if it is comparable (under inclusion) to every ideal of R. A ring R is called a divided ring if every prime ideal of R is divided.

In [8], the author gave another generalization of PVDs to the context of arbitrary rings (possibly with nonzero zerodivisors). As in [8], for a ring R with total quotient ring $T(R)$ such that $N i l(R)$ (the set of all nilpotent elements of R) is a divided
prime ideal of R, let $\phi: T(R) \longrightarrow K:=R_{N i l(R)}$ such that $\phi(a / b)=a / b$ for every $a \in R$ and every $b \in R \backslash Z(R)$. Then ϕ is a ring homomorphism from $T(R)$ into K, and ϕ restricted to R is also a ring homomorphism from R into K given by $\phi(x)=x / 1$ for every $x \in R$. A prime ideal Q of $\phi(R)$ is called a K-strongly prime ideal if $x y \in Q, x \in K, y \in K$ implies that either $x \in Q$ or $y \in Q$. If each prime ideal of $\phi(R)$ is K-strongly prime, then $\phi(R)$ is called a K-pseudo-valuation ring (K $P V R$). A prime ideal P of R is called a ϕ-strongly prime ideal if $\phi(P)$ is a K-strongly prime ideal of $\phi(R)$. If a ϕ-strongly prime ideal P of R contains a nonzerodivisor, then we say that P is a regular ϕ-strongly prime ideal. If each prime ideal of R is ϕ-strongly prime, then R is called a ϕ-pseudo-valuation ring ($\phi-P V R$). For an equivalent characterization of a ϕ-PVR, see Proposition 1.1(7). It was shown in [9, Theorem 2.6] that for each $n \geq 0$ there is a ϕ-PVR of Krull dimension n that is not a PVR. Also, recall from [10], that a ring R is called a ϕ-chained ring ($\phi-C R$) if $\operatorname{Nil}(R)$ is a divided prime ideal of R and for every $x \in R_{N i l(R)} \backslash \phi(R)$, we have $x^{-1} \in \phi(R)$. For an equivalent characterization of a $\phi-\mathrm{CR}$, see Proposition 1.1(9). A $\phi-\mathrm{CR}$ is a divided ring [10, Corollary 3.3(2)], and hence is quasilocal. It was shown in [10, Theorem 2.7] that for each $n \geq 0$ there is a ϕ-CR of Krull dimension n that is not a chained ring.

Suppose that $N i l(R)$ is a divided prime ideal of a commutative ring R such that R.admits a regular ϕ-strongly prime. In this paper, we show that $c(R)$ (the complete integral closure of R inside $T(R)$) is a ϕ-chained ring. In fact, we will show that either $c(R)=T(R)$ or $c(R)=(Q: Q)=\{x \in T(R): x Q \subset Q\}$ for some minimal regular ϕ-strongly prime ideal Q of R.

In the following proposition, we summarize some basic properties of PVRs, ϕ PVRs, and ϕ-CRs.

PROPOSITION 1.1. 1. An integral domain is a PVR if and only if it is a ϕ PVR if and only if it is a PVD([1, Proposition 3.1], [2, Proposition 4.2], [6, Proposition 3], and [8]).
2. A PVR is a divided ring [4, Lemma 1], and hence is quasilocal.
3. A ring R is a PVR if and only if for every $a, b \in R$, either $a \mid b$ in R or $b \mid a c$ in R for each nonunit c in R [4, Theorem 5].
4. If R is a $P V R$, then $N i l(R)$ and $Z(R)$ are divided prime ideals of R ([4], [8]).
5. A PVR is a $\phi-P V R$ [8, Corollary 7(3)].
6. If P is a ϕ-strongly prime ideal of R, then P is a divided prime. In particular, if R is a $\phi-P V R$, then R is a divided ring [8, Proposition 4], and hence is quasilocal.
7. Suppose that $\operatorname{Nil}(R)$ is a divided prime ideal of R. Then a prime ideal P of R is ϕ-strongly prime if and only if for every $a, b \in R \backslash N i l(R)$, either $a \mid b$ in R or $a P \subset b P$. In particular, a ring R is a $\phi-P V R$ if and only if for every $a, b \in R \backslash \operatorname{Nil}(R)$, either $a \mid b$ in R or $b \mid a c$ in R for every nonunit $c \in R[8$, Corollary 7].
8. Suppose that $\operatorname{Nil}(R)$ is a divided prime ideal of R. If P is a ϕ-strongly prime ideal of R and Q is a prime ideal of R contained in P, then Q is a ϕ-strongly prime ideal of R [8, Proposition 5].
9. Suppose that $\operatorname{Nil}(R)$ is a divided prime ideal of R. Then a ring R is a $\phi-C R$ if and only if for every $a, b \in R \backslash \operatorname{Nil}(R)$, either $a \mid b$ in R or $b \mid a$ in R [10, Proposition 2.3].
10. $A \phi-C R$ is a $\phi-P V R$ [10, Corollary 2.3].

2 The COMPLETE INTEGRAL CLOSURE OF RINGS THAT ADMIT A REGULAR ϕ-STRONGLY PRIME IDEAL

Throughout this section, $\operatorname{Nil}(R)$ denotes the set of all nilpotent elements of R, $Z(R)$ denotes the set of all zerodivisor elements of R, and $c(R)$ denotes the complete integral closure of R inside $T(R)$. The following two lemmas are needed in the proof of Proposition 2.3.

LEMMA 2.1. Suppose $\operatorname{Nil}(R)$ is a divided prime ideal of R and P is a regular ϕ strongly prime ideal of R. If s is a regular element of R and $z \in Z(R)$, then $s \mid z$ in R. In particular, $Z(R) \subset P$.

Proof: Let s be a regular element of P and $z \in Z(R)$. Suppose that $s \not \backslash z$ in R. Then $s P \subset z P$ by Proposition 1.1(7). Since $s \in P$, we have $z \mid s^{2}$ in R, which is impossible. Hence, $s \mid z$ in R. Thus, $Z(R) \subset P$. Now, suppose that s is a regular element of $R \backslash P$. Since P is divided by Proposition 1.1(6), we conclude that $P \subset(s)$. Hence, since $Z(R) \subset P$, we conclude that $s \mid z$ in R.

LEMMA 2.2. Suppose that $N i l(R)$ is a divided prime ideal of R and P is a regular ϕ-strongly prime ideal of R. Then $x^{-1} P \subset P$ for each $x \in T(R) \backslash R$. In particular, if $x \in T(R) \backslash R$, then x is a unit of $T(R)$.

Proof: First, observe that $Z(R) \subset P$ by Lemma 2.1. Now, let $x=a / b \in T(R) \backslash R$ for some $a \in R$ and for some $b \in R \backslash Z(R)$. Since $b \nmid a$ in $R, Z(R) \subset P$, and P is divided, we conclude that $a \in R \backslash Z(R)$. Hence, $x^{-1} \in T(R)$. Thus, since $b \not \backslash a$ in R, we have $b P \subset a P$ by Proposition1.1(7). Thus $x^{-1} P=\frac{b}{a} P \subset P$.

In light of the Lemmas 2.1 and 2.2, we have the following proposition.
PR.OPOSITION 2.3. Suppose that $N i l(R)$ is a divided prime ideal of R and P is a regular prime ideal of R. Then the following statements are equivalent:

1. P is a ϕ-strongly prime ideal of R.
2. $(P: P)$ is a $\phi-C R$ with maximal ideal P.

Proof: (1) \Longrightarrow (2). First, we show that P is the maximal ideal of $(P: P)$. Let $s \in R \backslash P$. Then s is a regular element of R (because P is a divided regular prime ideal of R, and therefore $Z(R) \subset P)$. Hence $1 / s \in(P: P)$. Thus, s is a unit of $(P: P)$. Hence, P is the maximal ideal of $(P: P)$. Now, we show that $(P: P)$ is a ϕ-CR. Since $\operatorname{Nil}(R)$ is a divided prime ideal of $R, \operatorname{Nil}((P: P))=\operatorname{Nil}(R)$. Let $x, y \in(P: P) \backslash N i l(R)$ and suppose that $x \nmid y$ in $(P: P)$. Then $x=a / s, y=b / s$
for some $a, b \in R \backslash N i l(R)$, and some $s \in R \backslash Z(R)$. Since $x \nmid y$ in $(P: P)$, it is impossible that a be a regular element of R and $b \in Z(R)$. Thus, we consider three cases. Case 1: suppose that $a \in Z(R)$ and $b \in R \backslash Z(R)$. Then $b \mid a$ in R by Lemma 2.1. Hence, $y \mid x$ in $(P: P)$. Case 2: suppose that $a, b \in R \backslash Z(R)$. Since $x \nmid y$ in ($P: P$), we conclude that $w=y / x \in T(R) \backslash R$. Hence, $w^{-1} P=\frac{x}{y} P \subset P$ by Lemma 2.2. Hence, $y \mid x$ in $(P: P)$. Case 3: suppose that $a, b \in Z(R)$. Since $x \nmid y$ in ($P: P$), we conclude that $a \nmid b$ in R. Thus, $a P \subset b P$ by Proposition 1.1(7). Let h be a regular element of P. Then $a h=b c$ for some $c \in P$. Suppose that $h \mid c$ in R. Then $b \mid a$ in R. Hence, $y \mid x$ in $(P: P)$. Thus, suppose that $h \nmid c$ in R. Then, c is a regular element of P. Hence, $f=c / h \in T(R) \backslash R$. Thus, $f^{-1} P=\frac{h}{c} P \subset P$ by Lemma 2.2. Hence, $f^{-1} \in(P: P)$. Thus, $a h=b c$ implies that $x f^{-1}=y$. Hence, $x \mid y$ in $(P: P)$, a contradiction. Thus, $h \mid c$ in R, and therefore $y \mid x$ in $(P: P)$. Hence, $(P: P)$ is a ϕ-CR by Proposition 1.1(9). (2) $\Longrightarrow(1)$. This is clear by Proposition 1.1(10).

PROPOSITION 2.4. Suppose that $\operatorname{Nil}(R)$ is a divided prime ideal of R and P is a regular ϕ-strongly prime ideal of R. Then $Q=\cap_{i=1}^{\infty}\left(s^{i}\right)$ is a prime ideal of R for every regular element s of P.

Proof: Suppose that $x y \in Q$ for some $x, y \in R$. Since $Z(R) \subset\left(s^{i}\right)$ for each $i \geq 1$ by Lemma 2.1, we conclude that $Z(R) \subset Q$. Hence, we may assume that neither $x \in Z(R)$ nor $y \in Z(R)$. Thus, assume that $x \notin Q$. Then $s^{n} \nmid x$ for some $n \geq 1$. Hence, $s^{n} P \subset x P$ by Proposition 1.1(7). In particular, since $s^{n} \in P$, we have $s^{2 n} \subset x P$. Hence, we have $x y \in\left(s^{2 n+i}\right) \subset x s^{i} P \subset\left(x s^{i}\right)$ for every $i \geq 1$. Thus, $y \in\left(s^{i}\right)$ for every $i \geq 1$. Hence, $y \in Q$.

PROPOSITION 2.5. Let P be a regular prime ideal of R. Then $(P: P) \subset c(R)$.
Proof: Let $x \in(P: P)$, and let s be a regular element of P. Then $s x^{n} \in P$ for every $n \geq 1$. Hence, x is an almost integral element of R. Thus, $x \in c(R)$.

PROPOSITION 2.6. Suppose that $N i l(R)$ is a divided prime ideal of R and P is a regular ϕ-strongly prime ideal of R. Then $T(R)$ is a ϕ-CR.

Proof: First, observe that $\operatorname{Nil}(T(R))=\operatorname{Nil}(R)$. Hence, it suffices to show that if $a, b \in R \backslash \operatorname{Nil(R),~then~either~} a \mid b$ in $T(R)$ or $b \mid a$ in $T(R)$. Hence, let $a, b \in R \backslash \operatorname{Nil}(R)$. Suppose that $a \nmid b$ in $T(R)$. Then $a \nmid b$ in R. Hence, $a P \subset b P$ by Proposition 1.1(7). Thus, let s be a regular element of P. Then $a s=b c$ for some $c \in P$. Thus, $a=b \frac{c}{s}$. Hence, $b \mid a$ in $T(R)$.

Now, we state our main result in this section
THEOREM 2.7. Suppose that $N i l(R)$ is a divided prime ideal of R and P is a regular ϕ-strongly prime ideal of R. Then exactly one of the following statements must hold:

1. R does not admit a minimal regular prime ideal and $c(R)=T(R)$ is a $\phi-C R$.
2. R admits a minimal regular prime ideal Q and $c(R)=(Q: Q)$ is a ϕ-CR with maximal ideal Q.

Proof: (1). Suppose that R does not admit a minimal regular prime ideal. We will show that $1 / s \in c(R)$ for every regular element $s \in R$. Hence, let s be a regular element of R. Suppose that $s \in R \backslash P$. Then $1 / s \in(P: P)$ because P is a divided prime ideal of R by Proposition 1.1(6). Hence $1 / s \in(P: P) \subset c(R)$ by Proposition 2.5. Thus, suppose that $s \in P$. We will show that there is regular prime ideal $H \subset P$ such that $s \notin H$. Deny. Let $F=\{D: D$ is a regular prime ideal of R and $D \subset P\}$ and $N=\cap_{D \in F} D$. Then, $s \in N$. Now, by Proposition 1.1(8) and (6), we conclude that the prime ideals in the set F are linearly ordered. Hence, N is a minimal regular prime ideal of R, which is a contradiction. Thus, there is a regular prime ideal $H \subset P$ such that $s \notin H$. Hence, once again $1 / s \in(H: H) \subset c(R)$ by Proposition 2.5. Thus, $c(R)=T(R)$. Now, $T(R)$ is a ϕ-CR by Proposition 2.6.
(2). Suppose that Q is a minimal regular prime ideal of R. First, observe that $Q \subset P$ by Proposition 1.1(6). Thus, Q is a minimal ϕ-strongly prime ideal of R by Proposition 1.1(8). Now, $(Q: Q) \subset c(R)$ by Proposition 2.5. We will show that $c(R) \subset(Q: Q)$. Suppose there is an $x \in c(R) \backslash R$. Then x is a unit of $T(R)$ by Lemma 2.2. We consider three cases. Case 1: suppose that $x^{-1} \in T(R) \backslash R$. Then $x Q \subset Q$ by Lemma 2.2. Hence, $x \in(Q: Q)$. Case 2: suppose that $x^{-1} \in R \backslash Q$. Then $Q \subset\left(x^{-1}\right)$ by Proposition 1.1(6). Thus, $x \in(Q: Q)$. Case 3: suppose that $x^{-1} \in Q$. This case can not happen, for if $x^{-1} \in Q$, then $D=\cap_{i=1}^{\infty}\left(x^{-1}\right)^{i}$ contains a regular element of R because $x \in c(R)$. But D is a prime ideal of R by Proposition 2.4. Hence, D is a regular prime ideal of R that is properly contained in Q. A contradiction, since Q is a minimal regular prime ideal of R. Hence, $c(R)=(Q: Q)$. Now, $c(R)=(Q: Q)$ is a ϕ-CR by Proposition 2.3.

Suppose that $\operatorname{Nil}(R)$ is a divided prime ideal of R and $P \neq \operatorname{Nil(R)}$ is a $\phi-$ strongly prime ideal of R. Then observe that $\operatorname{Nil}(\phi(R))$ is a divided prime ideal of $\phi(R)$ and $\phi(P)$ is a regular K-strongly prime ideal of $\phi(R)$ (recall that $\left.K=R_{N i l(R)}\right)$. Now, since $\phi(R)_{N i l(\phi(R))}=K_{N i l(R)}$, we may think of $\phi(P)$ as a ϕ-strongly prime ideal of $\phi(R)$. In light of this argument and Theorem 2.7, we have the following corollary.

COROLLARY 2.8. Suppose that $N i l(R)$ is a divided prime ideal of R and $P \neq$ $N i l(R)$ is a ϕ-strongly prime ideal of R. Then exactly one of the following statements must hold:

1. $\phi(R)$ does not admit a minimal regular prime ideal and $c(\phi(R))=T(\phi(R))=$ $K_{N i l(R)}$ is a $K-C R$.
2. $\phi(R)$ admits a minimal regular prime ideal Q and $c(\phi(R))=(Q: Q)$ is a $K-C R$.

COROLLARY 2.9. Suppose that R admits a regular strongly prime ideal. Then exactly one of the statements in Theorem 2.7 must hold.

COROLLARY 2.10. Suppose that an integral domain R admits a nonzero strongly prime ideal of R. Then exactly one of the statements in Theorem 2.7 must hold (observe that in this case $c(R)$ is a valuation domain).

COROLLARY 2.11. Suppose that $N i l(R)$ is a divided prime ideal of R and P is a regular ϕ-strongly prime ideal of R. If P contains a finite number, say n, of regular
prime ideals of $R, P_{1} \subset P_{2} \subset \cdots \subset P_{n-1} \subset P_{n}=P$, then $c(R)=\left(P_{1}: P_{1}\right)$.
Let $J(R)$ denotes the Jacobson radical ideal of R. We have the following result.
COROLLARY 2.12. Suppose that R is a Prüfer domain such that $J(R)$ contains a nonzero prime ideal of R. Then exactly one of the statements in Theorem 2.7 must hold (once again, observe that in this case $c(R)$ is a valuation domain).

Proof: Let P be a nonzero prime ideal of R such that $P \subset J(R)$. Then P is a strongly prime ideal by [11, Proposition 1.3, and the proof of Theorem 4.3]. Hence, the claim is now clear.

It is well-known [17, Proposition 3.2] that if R is a Noetherian pseudo-valuation domain (which is not a field), then R has Krull dimension one. The following is an alternative proof of this fact.

PROPOSITION 2.13. ([17, Proposition 3.2]). If R is a Noetherian pseudo-valuation domain (which is not a field), then R has Krull dimension one.

Proof: Deny. Let M be the maximal ideal of R. Then there is a nonzero prime ideal P of R such that $P \subset M$ and $M \neq P$. Hence, there is an element $m \in M \backslash P$. Since P is divided, we have $P \subset(m)$. Thus, $1 / m \in c(R)$. Since R is Noetherian, $1 / m$ is also integral over R, which is impossible. Hence, R has Krull dimension one.

3 THE COMPLETE INTEGRAL CLOSURE OF CONDUCIVE DOMAINS

Throughout this section, R denotes an integral domain with quotient field K, and $c(R)$ denotes the integral closure of R inside K. If I is a proper ideal of R, then $\operatorname{Rad}(I)$ denotes the radical ideal of R. Recall from [11], that Houston and the author defined an ideal I of R to be powerful if, whenever $x y \in I$ for elements $x, y \in K$, we have $x \in R$ or $y \in R$. Also, recall that in [13, Theorem 4.5] Bastida and Gilmer proved that a domain R shares an ideal with a valuation domain iff each overring of R which is different from the quotient field K of R has a nonzero conductor to R. Domains with this property, called conducive domains, were explicity defined and studied by Dobbs and Fedder [15], and further studied by Barucci, Dobbs, and Fontana [12] and [16]. In [11, Theorem 4.1], Houston and the author proved the following result.

PROPOSITION 3.1. ([11, Theorem 4.1]) An integral domain R is a conducive domain if and only if R admits a powerful ideal.

The following proposition is needed in the proof of Theorem 3.2.
PROPOSITION 3.2. ([11, Theorem 1.5 and Lemma 1.1]). Suppose that I is a proper powerful ideal of R. Then $I^{2} \subset(s)$ for every $s \in R \backslash \operatorname{Rad}(I)$, and $x^{-1} I^{2} \subset R$ for every $x \in K \backslash R$.

Now, we state the main result of this section.
THEOREM 3.3. Suppose that R admits a nonzero proper powerful ideal I, that is, R is a conducive domain. Then exactly one of the following two statements must hold:

1. $\cap_{n=1}^{\infty} I^{n} \neq 0$ and exactly one of the following two statements must hold:
(a) R does not admit a minimal regular prime ideal and $c(R)=K$ is a valuation domain.
(b) R admits a minimal regular prime ideal Q and $c(R)=(Q: Q)$ is a valuation domain.
2. $\cap_{n=1}^{\infty} I^{n}=0$ and $c(R)=\left\{x \in K: x^{-n} \notin \operatorname{Rad}(I)\right.$ for every $\left.n \geq 1\right\}$ is a valuation domain.

Proof: (1). Suppose that $P=\cap_{n=1}^{\infty} I^{n} \neq 0$. Then P is a nonzero strongly prime ideal of R by [11, Proposition 1.8]. Hence, the claim is now clear by Theorem 2.7.
(2) Suppose that $P=\cap_{n=1}^{\infty} I^{n}=0$. Let $S=\left\{x \in K: x^{-n} \notin \operatorname{Rad}(I)\right.$ for every $n \geq 1\}$, and let $x \in c(R)$. We will show that $x \in S$. Since $P=0$ and $x \in c(R)$, $x^{-n} \notin I$ for every $n \geq 1$. Hence, $x \in S$. Thus, $c(R) \subset S$. Now, let $s \in S$. We will show that $s \in c(R)$. Let d be a nonzero element of I^{2}. Hence, for every $n \geq 1$ we have either $s^{-n} \in K \backslash R$ or $s^{-n} \in R \backslash \operatorname{Rad}(I)$. Thus, $d s^{n} \in R$ for every $n \geq 1$ by Proposition 3.2. Hence, $s \in c(R)$. Thus, $S \subset c(R)$. Therefore, $S=c(R)$. Now, we show that $c(R)=S$ is a valuation domain. Let $x \in K \backslash S$. Then $x^{-n} \in \operatorname{Rad}(I)$ for some $n \geq 1$. Hence, $x^{n} \notin \operatorname{Rad}(I)$ for every $n \geq 1$. Thus, $x^{-1} \in S$. Therefore, $c(R)=S$ is a valuation domain.

References

[1] D. F. Anderson, Comparability of ideals and valuation overrings, Houston J. Math. 5(1979), 451-463.
[2] D. F. Anderson, When the dual of an ideal is a ring, Houston J. Math. 9(1983), 325-332.
[3] D. F. Anderson, A. Badawi, and D. E. Dobbs, Pseudo-valuation rings, II, Boll. Un. Mat. Ital. B(8)3(2000), 535-545.
[4] A. Badawi, D. F. Anderson, and D. E. Dobbs, Pseudo-valuation rings, Lecture Notes Pure Appl. Math., Vol. 185(1997), 57-67, Marcel Dekker, New York/Basel.
[5] A. Badawi, Pseudo-valuation domains: a survey, to appear in World Scientific, New York/London.
[6] A. Badawi, On domains which have prime ideals that are linearly ordered, Comm. Algebra 23(1995), 4365-4373.
[7] A. Badawi, On divided commutative rings, Comm. Algebra 27(1999), 14651474.
[8] A. Badawi, On ϕ-pseudo-valuation rings, Lecture Notes Pure Appl. Math., Vol. 205(1999), 101-110, Marcel Dekker, New York/Basel.
[9] A. Badawi, On ϕ-pseudo-valuation rings, II, Houston J. Math. 26(2000), 473480
[10] A. Badawi, On ϕ-chained rings and ϕ-pseudo-valuation rings, Houston J. Math. 27(2001), 725-736
[11] A. Badawi and E. Houston, Powerful ideals, strongly primary ideals, almost pseudo-valuation domains, and conducive domains, to appear in Comm. Algebra.
[12] V. Barucci, D. E. Dobbs, and M. Fontana, Conducive integral domains as pullbacks, Manuscripta Math. 54(1986), 261-277.
[13] E. Bastida and R. Gilmer, Overrings and divisorial ideals in rings of the form $D+M$, Michigan Math. J. 20(1973), 79-95.
[14] D. E. Dobbs, Divided rings and going-down, Pacific J. Math. 67(1976), 353363.
[15] D. E. Dobbs and R. Fedder, Conducive integral domains, J. Algebra 86(1984), 494-510.
[16] D. E. Dobbs, V. Barucci, and M. Fontana, Gorenstein conducive domains, Comm. Algebra 18(1990), 3889-3903.
[17] J. R. Hedstrom and E. G. Houston, Pseudo-valuation domains, Pacific J. Math. 4(1978), 551-567.
[18] J. Huckaba, Commutative Rings with Zero Divisors, Marcel Dekker, New York/Basel, 1988.

Frobenius Number of a Linear Diophantine Equation

ABDALLAH BADRA, Université Blaise Pascal, Laboratoire de mathématiques pures, Les Cézeaux, F 63177 Aubière.
e-mail: abdallah.badra@math.univ-bpclermont.fr

ABSTRACT. We denote by \mathbb{N}_{0} the set of nonnegative integers. Let $d \geq 1$ and $A=$ $\left\{a_{1}, \ldots, a_{d}\right\}$ a set of positive integers. For every $n \in \mathbb{N}_{0}$, we write $s(n)$ for the number of solutions $\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}_{0}^{d}$ of the equation $a_{1} x_{1}+\cdots+a_{d} x_{d}=n$. We set $g(A)=$ $\sup \{n \mid s(n)=0\} \cup\{-1\}$ the Frobenius number of A. Let $S(A)$ be the subsemigroup of $\left(\mathbb{N}_{0},+\right)$ generated by A. We set $S^{\prime}(A)=\mathbb{N}_{0} \backslash S(A), N^{\prime}(A)=\operatorname{Card} S^{\prime}(A)$ and $N(A)=\operatorname{Card}$ $S(A) \cap\{0,1, . ., g(A)\}$. Let p be a multiple of $1 \mathrm{~cm}(A)$ and $F_{p}(t)=\prod_{i=1}^{d} \sum_{\substack{\frac{p}{a_{i}-1}}}^{\substack{j^{j a}}}$. We give an upper bound for $g(A)$ and reduction formulas for $g(A), N^{\prime}(A)$ and $N(A)$. Characterizations of these invariants as well as numerical symmetric and pseudo-symmetric semigroups in terms of $F_{p}(t)$, are also obtained.

1 INTRODUCTION

We denote by \mathbb{N}_{0} (resp. \mathbb{N}) the set of nonnegative (resp. positive) integers. Let $d \in \mathbb{N}$ and $A=\left\{a_{1}, \ldots, a_{d}\right\} \subset \mathbb{N}$. We set $\rho=\operatorname{gcd}(A)$ and $l=\operatorname{lcm}(A)$. For every $n \in \mathbb{N}_{0}$, we write $s(n)$ for the number of solutions $\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{N}_{0}^{d}$ of the equation $a_{1} x_{1}+\cdots+a_{d} x_{d}=n$. We set $g(A)=\sup \{n \mid s(n)=0\} \cup\{-1\}$ the Frobenius number of A. Let $S(A)$ be the subsemigroup of ($\mathbb{N}_{0},+$) generated by $A, S^{\prime}(A)=\mathbb{N}_{0} \backslash S(A)$, $N^{\prime}(A)=\operatorname{Card} \mathrm{S}^{\prime}(\mathrm{A})$ and $N(A)=\operatorname{Card} \mathrm{S}(\mathrm{A}) \cap\{0,1, \ldots, \mathrm{~g}(\mathrm{~A})\}$. We say that $S(A)$ is symmetric (resp. pseudo-symmetric) if $\operatorname{gcd}(A)=1$ and $N^{\prime}(A)=N(A)$ (resp. $\left.N^{\prime}(A)=N(A)+1\right)$. The generating function of the $s(n)$ is

$$
\Phi(t)=\frac{1}{\prod_{i=1}^{d}\left(1-t^{a_{i}}\right)} .
$$

Indeed, we have

$$
\frac{1}{\prod_{i=1}^{d}\left(1-t^{a_{i}}\right)}=\prod_{i=1}^{d} \sum_{j \geq 0} t^{j a_{i}}=\sum_{n \in S(A)} s(n) t^{n} .
$$

For $p \in \mathbb{N}$, we define the Frobenius polynomial

$$
F_{p}(t)=\prod_{i=1}^{d} \sum_{j=0}^{\frac{p}{a_{i}}-1} t^{j a_{i}}=\frac{\left(1-t^{p}\right)^{d}}{\prod_{i=1}^{d}\left(1-t^{a_{i}}\right)}
$$

and we write

$$
\begin{equation*}
\Phi(t)=\frac{F_{p}(t)}{\left(1-t^{p}\right)^{d}} \tag{1}
\end{equation*}
$$

In theorem 3.1 we give formulas for $g(A), N^{\prime}(A)$ and $N(A)$ in terms of $F_{p}(t)$. As a consequence we obtain an upper bound for the Frobenius number (corollary 3.2) which improves the upper bound given by Chrzastowski-Wachtel and mentioned in [9]. A characterization of numerical symmetric and pseudo-symmetric semigroups (corollary 3.4) is also obtained. In theorem 3.7 we prove reduction formulas for $g(A), N^{\prime}(A)$ and $N(A)$. The first one generalizes a Raczunas and ChrzastowskiWachtel theorem [9]. As a consequence (corollary 3.10) we obtain a generalization of a Rödseth formula [10]. It is known that the Hilbert function of a graded module over a polynomial graded ring as well as $s(n)$ are numerical quasi-polynomial functions. In examples 4.9 and 4.10 we give a description of these functions in terms of the Frobenius polynomial.

2 PRELIMINARIES

Given $Q(t)=\sum_{j} q_{j} t^{j} \in \mathbb{Q}\left[t, t^{-1}\right]$ and an integer $p \geq 1$, there exists a unique sequence $Q_{0}, \ldots, Q_{p-1} \in \mathbb{Q}\left[t, t^{-1}\right]$ such that $Q(t)=\sum_{r=0}^{p-1} t^{r} Q_{r}\left(t^{p}\right)$. Namely, $Q_{r}(t)=\sum_{k} q_{r+p k} t^{k}$. The Q_{r} are called the p-components of Q. We denote by $\omega(Q)=\inf \left\{j \mid q_{j} \neq 0\right\}$ the valuation of Q and $\operatorname{deg}(Q)=\sup \left\{j \mid q_{j} \neq 0\right\}$ the degree of Q, with $\omega(0)=+\infty$ and $\operatorname{deg}(0)=-\infty$. The following invariants will be associated with Q

$$
\begin{aligned}
\omega_{p}(Q) & =\sup \left\{\omega\left(t^{r} Q_{r}\left(t^{p}\right)\right) \mid 0 \leq r \leq p-1\right\} \text { the } p \text {-valuation of } Q \\
\delta_{p}(Q) & =\inf \left\{\operatorname{deg}\left(t^{r} Q_{r}\left(t^{p}\right)\right) \mid 0 \leq r \leq p-1\right\} \text { the } p \text {-degree of } Q \\
\Omega_{p}(Q) & =\sum_{r=0}^{p-1} \omega\left(Q_{r}\right) \\
\Delta_{p}(Q) & =\sum_{r=0}^{p-1} \operatorname{deg}\left(Q_{r}\right)
\end{aligned}
$$

Thus we have
$\omega_{p}(Q)=+\infty=\Omega_{p}(Q)$ and $\delta_{p}(Q)=-\infty=\Delta_{p}(Q)$ if $Q_{r}=0$ for some r.
We fix an integer $n \in \mathbb{Z}$ and we set

$$
\widehat{Q}(t)=t^{n} Q\left(t^{-1}\right) .
$$

So we have $\hat{\hat{Q}}=Q$ and

$$
\begin{equation*}
\operatorname{deg}(Q)+\omega(\widehat{Q})=n=\operatorname{deg}(\widehat{Q})+\omega(Q) \text { if } Q \neq 0 \tag{2}
\end{equation*}
$$

The p-components \hat{Q}_{r} of \hat{Q} can be deduced from the p-components of Q. Namely, we write $n=p \lambda+\gamma$ with $0 \leq \gamma<p$, so we get

$$
\widehat{Q}(t)=\sum_{r=0}^{p-1} t^{p \lambda+\gamma-r} Q_{r}\left(t^{-F}\right)=\sum_{r=0}^{\gamma} t^{\gamma-r}\left(t^{p}\right)^{\lambda} Q_{r}\left(t^{-p}\right)+\sum_{r=\gamma+1}^{p-1} t^{p+\gamma-r}\left(t^{p}\right)^{\lambda-1} Q_{r}\left(t^{-p}\right)
$$

It follows from the uniqueness of the p-components that

$$
\begin{equation*}
\widehat{Q}_{r}(t)=t^{\lambda} Q_{\gamma-r}\left(t^{-1}\right) \text { for } 0 \leq r \leq \gamma \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{Q}_{r}(t)=t^{\lambda-1} Q_{p+\gamma-r}\left(t^{-1}\right) \text { for } r>\gamma \tag{4}
\end{equation*}
$$

So we obtain

$$
\begin{equation*}
\widehat{Q}_{r}=0 \Leftrightarrow Q_{\gamma-r}=0 \text { for } 0 \leq r \leq \gamma \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{Q}_{r}=0 \Leftrightarrow Q_{p+\gamma-r}=0 \text { for } r>\gamma \tag{6}
\end{equation*}
$$

If $\widehat{Q}_{r} \neq 0$, we also deduce from (2)-(4) that

$$
\begin{equation*}
\lambda=\operatorname{deg}\left(\widehat{Q}_{r}\right)+\omega\left(Q_{\gamma-r}\right) \text { when } 0 \leq r \leq \gamma \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda-1=\operatorname{deg}\left(\hat{Q}_{r}\right)+\omega\left(Q_{p+\gamma-r}\right) \text { when } r>\gamma \tag{8}
\end{equation*}
$$

Moreover, writing $n=p \lambda+r+(\gamma-r)=p(\lambda-1)+r+(p+\gamma-r)$ we get

$$
n=\operatorname{deg}\left(t^{r} \hat{Q}_{r}\left(t^{p}\right)\right)+\omega\left(t^{\gamma-r} Q_{\gamma-r}\left(t^{p}\right)\right) \text { for } 0 \leq r \leq \gamma
$$

and

$$
n=\operatorname{deg}\left(t^{r} \widehat{Q}_{r}\left(t^{p}\right)\right)+\omega\left(t^{p+\gamma-r} Q_{p+\gamma-r}\left(t^{p}\right)\right) \text { for } r>\gamma
$$

Hence

$$
\begin{equation*}
n=\delta_{p}(\widehat{Q})+\omega_{p}(Q)=\delta_{p}(Q)+\omega_{p}(\widehat{Q}) \tag{9}
\end{equation*}
$$

Furthermore, using (7) and (8) we get

$$
\begin{gathered}
\sum_{r=0}^{\gamma}\left(\operatorname{deg}\left(\widehat{Q}_{r}\right)+\omega\left(Q_{\gamma-r}\right)\right)+\sum_{r=\gamma+1}^{p-1}\left(\operatorname{deg}\left(\widehat{Q}_{r}\right)+\omega\left(Q_{p+\gamma-r}\right)\right) \\
=(\gamma+1) \lambda+(p-\gamma-1)(\lambda-1)=n-p+1
\end{gathered}
$$

It follows that

$$
\begin{equation*}
\Delta_{p}(\widehat{Q})+\Omega_{p}(Q)=n-p+1=\Delta_{p}(Q)+\Omega_{p}(\widehat{Q}) \tag{10}
\end{equation*}
$$

Given $m, j \in \mathbb{Z}$, we consider the following polynomials
$N_{m, j}(t)=\frac{1}{(m-1)!} \prod_{i=1}^{m-1}(t-j+i)$ if $m>1, N_{m, j}(t)=0$ if $m \leq 0$ and $N_{1, j}(t)=1$.

For $Q(t)=\sum_{j} q_{j} t^{j} \in \mathbb{Q}\left[t, t^{-1}\right]$ such that $Q(1) \neq 0$, we define

$$
V_{m}(Q, t)=\sum_{j} q_{j} N_{m, j}(t)
$$

Furthermore, let $Q_{0}, \ldots, Q_{p-1} \in \mathbb{Q}\left[t, t^{-1}\right]$ be the p-components of Q. We consider the polynomials $U_{0}, \ldots, U_{p-1} \in \mathbb{Q}\left[t, t^{-1}\right]$ defined as follows $U_{r}=0$ if $Q_{r}=0$ and $Q_{r}(t)=(1-t)^{i_{r}} U_{r}(t)$ with $U_{r}(1) \neq 0$ otherwise. For all $0 \leq r \leq p-1$, we put $m_{r}=m-i_{r}$ and we define the function

$$
H_{m}(Q, .): \mathbb{Z} \rightarrow \mathbb{Q} \text { by } H_{m}(Q, r+p k)=V_{m_{r}}\left(U_{r}, k\right)
$$

In order to illustrate these definitions we give the following examples.
EXAMPLE 2.1 Let $Q(t)=F_{12}=\frac{\left(1-t^{12}\right)^{2}}{\left(1-t^{2}\right)\left(1-t^{3}\right)}=1+t^{2}+t^{3}+t^{4}+t^{5}+2 t^{6}+$ $t^{7}+2 t^{8}+2 t^{9}+2 t^{10}+2 t^{11}+t^{12}+2 t^{13}+t^{14}+t^{15}+t^{16}+t^{17}+t^{19}$.
We take $p=12, n=19$ and $m=2$.
We write $Q(t)=\left(1+t^{12}\right)+t\left(2 t^{12}\right)+t^{2}\left(1+t^{12}\right)+t^{3}\left(1+t^{12}\right)+t^{4}\left(1+t^{12}\right)+t^{5}(1+$ $\left.t^{12}\right)+2 t^{6}+t^{7}\left(1+t^{12}\right)+2 t^{8}+2 t^{9}+2 t^{10}+2 t^{11}$.
We see that the 12-components of $Q(t)$ are $Q_{0}(t)=Q_{2}(t)=Q_{3}(t)=Q_{4}(t)=$ $Q_{5}(t)=Q_{7}(t)=(1+t), Q_{1}(t)=2 t$ and $Q_{6}(t)=Q_{8}(t)=Q_{9}(t)=Q_{10}(t)=$ $Q_{11}(t)=2$.
We also have
$\widehat{Q}(t)=t^{19} Q\left(t^{-1}\right)=Q(t)$.
$\omega_{12}(Q)=13, \delta_{12}(Q)=6, \Omega_{12}(Q)=1, \Delta_{12}(Q)=7$.
$N_{2,0}(t)=t+1, N_{2,1}(t)=t$.
$U_{r}=Q_{r}$ for all r.
$V_{2}\left(U_{r}, t\right)=2 t+1$ for $r \in\{0,2,3,4,5,7\}, V_{2}\left(U_{1}, t\right)=2 t$ and $V_{2}\left(U_{r}, t\right)=2(t+1)$ for $r \in\{6,8,9,10,11\}$.
We obtain $H_{2}(Q, 12 k+r)=2 k+1$ for $r \in\{0,2,3,4,5,7\}, H_{2}(Q, 12 k+1)=2 k$ and $H_{2}(Q, 12 k+r)=2(k+1)$ for $r \in\{6,8,9,10,11\}$.

EXAMPLE 2.2 Let $Q(t)=F_{6}(t)=1+t^{2}+t^{3}+t^{4}+t^{5}+t^{7}=\frac{\left(1-t^{6}\right)^{2}}{\left(1-t^{2}\right)\left(1-t^{3}\right)}$.
We take $p=6, n=7$ and $m=2$.
We obtain
$\omega_{6}(Q)=7, \delta_{6}(Q)=0, \Omega_{6}(Q)=1, \Delta_{6}(Q)=1$.
$U_{r}=Q_{r}$ for all r.
$N_{2,0}(t)=t+1, N_{2,1}(t)=t$.
$V_{2}\left(U_{r}, t\right)=t+1$ for $r \in\{0,2,3,4,5\}$ and $V_{2}\left(U_{1}, t\right)=t$.
$H_{2}(Q, 6 k+r)=k+1$ for $r \in\{0,2,3,4,5\}$ and $H_{2}(Q, 6 k+1)=k$.
We observe that $H_{2}\left(F_{6},.\right)=H_{2}\left(F_{12},.\right)$.

Given $\Phi(t) \in \mathbb{Q}\left[\left[t, t^{-1}\right]\right]$, we write $\Phi(t)=\sum_{n} \varphi(n) t^{n}$ and we introduce

$$
\begin{aligned}
g(\Phi) & =\sup \{n \mid \phi(n)=0\} . \\
S^{\prime}(\Phi) & =\{n \geq 0 \mid \varphi(n)=0\} . \\
S(\Phi) & =\{0 \leq n \leq g(\Phi) \mid \varphi(n) \neq 0\} . \\
N^{\prime}(\Phi) & =\operatorname{Card} S^{\prime}(\Phi) . \\
N(\Phi) & =\operatorname{Card} S(\Phi) .
\end{aligned}
$$

LEMMA 2.3 Given $m \in \mathbb{Z}$ and $Q(t)=\sum_{j} q_{j} t^{j} \in \mathbb{Q}\left[t, t^{-1}\right]$ such that $Q(1) \neq 0$, we consider $\Phi(t)=\sum_{n} \varphi(n) t^{n}$ the expansion of $(1-t)^{-m} Q(t)$ as a formal power series. Then, the following conditions hold

1. $\varphi(n)=V_{m}(Q, n)$ for all $n>\operatorname{deg}(Q)-m$.
2. We suppose that $m>0$ and $Q(t)$ has nonnegative coefficients. Then,
(a) $\varphi(n)=0 \Leftrightarrow n<\omega(Q)$.
(b) $g(\Phi)=\omega(Q)-1$.
(c) $N^{\prime}(\Phi)=\max \{\omega(Q), 0\}$. In particular, $N^{\prime}(\Phi)=\omega(Q)$ if $Q(t) \in \mathbb{Q}[t]$.

PROOF. 1. Suppose $m>0$. We have $\Phi(t)=(1-t)^{-m} Q(t)=\left(\sum_{j} q_{j} t^{j}\right) \sum_{j \geq 0}\binom{j+m-1}{m-1} t^{j}$. So $\varphi(n)=\sum_{j=\omega(Q)}^{n} q_{j}\binom{n-j+m-1}{m-1}$. Moreover, we have

$$
\binom{n-j+m-1}{m-1}=\frac{1}{(m-1)!} \prod_{i=1}^{m-1}(n-j+i) \text { if } n \geq j
$$

Hence $\varphi(n)=V_{m}(Q, n)$ if $n \geq \operatorname{deg}(Q)$, in particular, the statement is true for $m=1$. Now, suppose $m>1$ and $\operatorname{deg}(Q)-m<n<\operatorname{deg}(Q)$ then $-m<n-\operatorname{deg}(Q) \leq$ $n-j<0$ for all j such that $n<j \leq \operatorname{deg}(Q)$. It follows that there exists $1 \leq i \leq m-1$ such that $n-j+i=0$ thus $N_{m, j}(n)=0$. So we can write

$$
V_{m}(Q, n)=\sum_{j=\omega(Q)}^{n} q_{j} N_{m, j}(n)=\sum_{j=\omega(Q)}^{n} q_{j}\binom{n-j+m-1}{m-1}=\varphi(n) .
$$

Furthermore, if $m \leq 0$ then $\varphi(n)=0$ for $n>\operatorname{deg}(Q)-m$ because $\Phi(t) \in \mathbb{Q}\left[t, t^{-1}\right]$ and $\operatorname{deg}(Q)-m=\operatorname{deg} \Phi(t)$.
2. Follows from the fact that $\varphi(n)=\sum_{j=\omega(Q)}^{n} q_{j}\binom{n-j+m-1}{m-1}>0$ if $n \geq \omega(Q)$ and $\varphi(n)=0$ if $n<\omega(Q)$

THEOREM 2.4 Let $m \in \mathbb{Z}$ and $p \in \mathbb{N}$. Given $Q(t)=\sum_{j} q_{j} t^{j} \in \mathbb{Q}\left[t, t^{-1}\right]$ such that $Q(1) \neq 0$, we consider $\Phi(t)=\sum_{n} \varphi(n) t^{n}$ the expansion of $\left(1-t^{p}\right)^{-m} Q(t)$ as a formal power series. Then the following conditions hold

1. $\varphi(n)=H_{m}(Q, n)$ for all $n>\operatorname{deg}(Q)-m p$.
2. We suppose that $m>0$ and $Q(t)$ has nonnegative coefficients. Then,
(a) $\varphi(p k+r)=0 \Leftrightarrow k<\omega\left(Q_{r}\right)$.
(b) $g(\Phi)=\omega_{p}(Q)-p=\operatorname{deg}(Q)-p-\delta_{p}(\hat{Q}) \quad$ where $\hat{Q}(t)=t^{\operatorname{deg}(Q)} Q\left(t^{-1}\right)$.
(c) $N^{\prime}(\Phi)=\sum_{r=0}^{p-1} \max \left\{\omega\left(Q_{r}\right), 0\right\}$.

In particular, $N^{\prime}(\Phi)=\Omega_{p}(Q)$ if $Q(t) \in \mathbb{Q}[t]$.
PROOF. We write $\Phi(t)=\sum_{r=0}^{p-1} t^{r}\left(1-t^{p}\right)^{-m} Q_{r}\left(t^{p}\right)=\sum_{r=0}^{p-1} t^{r}\left(1-t^{p}\right)^{-m_{r}} U_{r}\left(t^{p}\right)=$ $\sum_{r=0}^{p-1} t^{r} \Phi_{r}\left(t^{p}\right)$ where $\Phi_{r}(t)=\left(1-t^{p}\right)^{-m_{r}} U_{r}\left(t^{p}\right)=\sum_{k} \varphi_{r}(k) t^{k}$. It follows from lemma 2.3.1, that $\varphi(p k+r)=\varphi_{r}(k)=V_{m_{r}}\left(U_{r}, k\right)$ for all $k>\operatorname{deg}\left(U_{r}\right)-m_{r}$. Therefore, $\varphi(n)=H_{m}(Q, n)$ for $n>\operatorname{deg}(Q)-p m$ because $n=p k+r>\operatorname{deg}(Q)-p m \geq$ $p\left(\operatorname{deg}\left(Q_{r}\right)-m\right)+r \Rightarrow k>\operatorname{deg}\left(Q_{r}\right)-m=\operatorname{deg}\left(U_{r}\right)-m_{r}$.
2 (a) follows from lemma 2.3.2 (a).
b) We have $g(\Phi)=\max \left\{p g\left(\Phi_{r}\right)+r \mid 0 \leq r \leq p-1\right\}=\max \left\{p\left(\omega\left(Q_{r}\right)-1\right)+r \mid\right.$ $0 \leq r \leq p-1\}=\omega_{p}(Q)-p$. Moreover, if $Q_{r} \neq 0$ for all r we have $\omega_{p}(Q)-p=$ $\operatorname{deg}(Q)-p-\delta_{p}(\hat{Q})$ by (9). Since $\omega_{p}(Q)=+\infty=-\delta_{p}(\hat{Q})$ if $Q_{r}=0$ for some r, the equality is still true in this case.
c) Follows from lemma 2.3 .2 (c)

LEMMA 2.5 Let $\xi=e^{\frac{3_{2} \pi}{p}}$ be a primitive p-th root of unity and $Q(t)=\sum_{r=0}^{p-1} t^{r} Q_{r}\left(t^{p}\right) \in$ $\mathbb{Q}\left[t, t^{-1}\right]$. Then, the following conditions are equivalent

1. $Q\left(\xi^{j}\right)=0$ for $0<j<p$.
2. $Q(1)=p Q_{r}(1)$ for $0 \leq r \leq p-1$.

PROOF. By successive substitutions of $1, \xi, \ldots, \xi^{p-1}$ for t in $Q(t)=\sum_{r=0}^{p-1} t^{r} Q_{r}\left(t^{p}\right)$ we obtain a Vandermonde linear system $\sum_{r=0}^{p-1} \xi^{r j} Q_{r}(1)=Q\left(\xi^{j}\right)$ for $j=0, \ldots, p-1$. If $Q(\xi)=\cdots=Q\left(\xi^{p-1}\right)=0$, the unique solution is $Q_{r}(1)=\frac{1}{p} Q(1)$ for ev ery $0 \leq r \leq p-1$. Conversely, if $\frac{Q(1)}{p}$ is the common value of the $Q_{r}(1)$ then $\frac{Q(1)}{p} \sum_{r=0}^{p-1} \xi^{r j}=0=Q\left(\xi^{j}\right)$ for $j=1, \ldots, p-1$

LEMMA 2.6 Let p, q, u be positive integers and $Q(t), K(t) \in \mathbb{Q}\left[t, t^{-1}\right]$ such that $p=q u$ and $K\left(t^{u}\right)=Q(t)$. We denote by Q_{r} (resp. K_{s}) the p-components of Q (resp. the q-components of K). Then,

1. $Q_{s u}=K_{s}$ and $Q_{r}=0$ for all $r \notin u \mathbb{Z}$.
2. We set $\xi=e^{\frac{21 \pi}{p}}$, then the following conditions are equivalent
(a) $Q\left(\xi^{j}\right)=0$ for $0<j<q$.
(b) $Q\left(\xi^{q}\right)=q Q_{r}(1)=K(1)$ for all $r \in u \mathbb{Z}$.

PROOF. We can write $Q(t)=K\left(t^{u}\right)=\sum_{s=0}^{q-1} t^{u s} K_{s}\left(t^{p}\right)$. It follows from the uniqueness of the Q_{r} that $Q_{s u}=K_{s}$ for $0 \leq s<q$. Now, $Q\left(\xi^{q}\right)=K(1)$ and $Q\left(\xi^{j}\right)=K\left(\alpha^{j}\right)$ with $\alpha=e^{\frac{24 \pi}{q}}=\xi^{u}$. We apply lemma 2.5

For every $p \in \mathbb{N}$, we set $F_{p}(t)=\prod_{i=1}^{d} \sum_{j=0}^{\frac{p}{a_{i}}-1} t^{j a_{i}}$ the Frobenius polynomial of A. We write $F_{p, r}$ for the p-components of F_{p}. It is easy to see that for $n=\operatorname{deg}\left(F_{p}\right)=$ $p d-\sum_{i=1}^{d} a_{i}$, we have $\widehat{F}_{p}(t)=t^{n} F_{p}\left(t^{-1}\right)=F_{p}(t)$. Let us write $p=q \rho$ and $a_{i}=b_{i} \rho$
for all $1 \leq i \leq d$, where $\rho=\operatorname{gcd}(A)$. So we can write $F_{p}(t)=K\left(t^{\rho}\right)$ with

$$
K(t)=\frac{\left(1-t^{q}\right)^{d}}{\prod_{i=1}^{d}\left(1-t^{b_{i}}\right)}
$$

Moreover, for $0<j<q$ the number $\xi^{j}=e^{\frac{2 i j \pi}{q}}$ is a root of $\prod_{i=1}^{d}\left(1-t^{b_{i}}\right)$ of multiplicity $<d$ because $\operatorname{gcd}\left(b_{1}, \ldots, b_{d}\right)=1$ whereas ξ^{j} is a root of $\left(1-t^{q}\right)^{d}$ of multiplicity $=d$, then $K\left(\xi^{j}\right)=0$. It follows from lemma 2.6 that $F_{p, r}=K_{\frac{r}{\rho}}$ if $r \in \rho \mathbb{Z}$ and $F_{p, r}=0$ otherwise. We also deduce that $F_{p, r}(1)=\frac{1}{q} K(1)=\frac{\rho p^{d-1}}{\prod_{i=1}^{d} a_{i}}$ if $r \in \rho \mathbb{Z}$

3 FROBENIUS NUMBER AND NUMERICAL SEMIGROUPS

In the case of the Frobenius polynomial F_{p} we set $\omega_{p}\left(F_{p}\right)=\omega_{p}(A), \delta_{p}\left(F_{p}\right)=\delta_{p}(A)$, $\Omega_{p}\left(F_{p}\right)=\Omega_{p}(A), \Delta_{p}(F)=\Delta_{p}(A)$.

THEOREM 3.1 For every $p \in \mathbb{N}$, we have

1. $g(A)=\omega_{p}(A)-p=p(d-1)-\sum_{i=1}^{d} a_{i}-\delta_{p}(A)=l(d-1)-\sum_{i=1}^{d} a_{i}-\delta_{l}(A)$.
2. $N^{\prime}(A)=\Omega_{p}(A)=\Omega_{l}(A)$.
3. $N(A)=\Delta_{p}(A)-\delta_{p}(A)=\Delta_{l}(A)-\delta_{l}(A)$.

PROOF. We see that for every $p \in \mathbb{N}$, the function $\Phi(t)=\left(1-t^{p}\right)^{-d} F_{p}(t)=$ $\sum_{n} s(n) t^{n}$ is the generating function of the $s(n)$ so $g(A)=g(\Phi)$.

1. follows from theorem 2.4.2 (b).
2. follows from theorem 2.4 .2 (c).

3 . is a consequence of (10)

COROLLARY 3.2

1. For every $p \in \mathbb{N}$, we have

$$
g(A)=p(d-1)-\sum_{i=1}^{d} a_{i} \text { if and only if } \delta_{p}(A)=0 .
$$

2. $g(A)=+\infty$ if and only if $\rho>1$.
3. If $\rho=1$, we have the following upper bound for the Frobenius number

$$
g(A) \leq l(d-1)-\sum_{i=1}^{d} a_{i}
$$

4. If there exists h such that $1 \leq h \leq d$ and $\operatorname{gcd}\left(a_{1}, \ldots, a_{h}\right)=1$ then $g(A) \leq \operatorname{lcm}\left(a_{1}, \ldots, a_{h}\right)(h-1)-\sum_{i=1}^{h} a_{i}$.
REMARK 3.3 The upper bound we give in 3) improves the following inequality

$$
g(A) \leq l(d-1)
$$

proved by Chrzastowski-Wachtel and mentioned in [9].
COROLLARY 3.4 Suppose $\operatorname{gcd}(A)=1$. Then the following conditions hold

1. $S(A)$ is symmetric $\Leftrightarrow \Delta_{p}(A)=\Omega_{p}(A)+\delta_{p}(A)$ for some $p \in \mathbb{N} \Leftrightarrow \Delta_{p}(A)=$ $\Omega_{p}(A)+\delta_{p}(A)$ for all $p \in \mathbb{N}$.
2. $S(A)$ is peudo-symmetric $\Leftrightarrow \Delta_{p}(A)+1=\Omega_{p}(A)+\delta_{p}(A)$ for some $p \in \mathbb{N} \Leftrightarrow$ $\Delta_{p}(A)+1=\Omega_{p}(A)+\delta_{p}(A)$ for all $p \in \mathbb{N}$.

We suppose $\operatorname{gcd}(A)=1$. Let $q_{1}, . ., q_{d}$ be positive integers such that for all $1 \leq i \leq d, q_{i}$ is a divisor of $\operatorname{gcd}\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, . ., a_{d}\right)$. So $\operatorname{gcd}\left(q_{i}, q_{j}\right)=1$ for $i \neq j$ because $\operatorname{gcd}(A)=1$. We set $\hat{q}=\prod_{j=1}^{d} q_{j}, \hat{q}_{i}=\prod_{j \neq i} q_{j}, a_{i}=b_{i} \hat{q}_{i}$ and $B=\left\{b_{1}, . ., b_{d}\right\}$. We have $\operatorname{gcd}(B)=1$ and $l=\operatorname{lcm}(A)=\hat{q} \operatorname{lcm}(B)$. For $p \in l \mathbb{N}$, we write $p=\hat{q} u$ with $u \in \operatorname{lcm}(B) \mathbb{N}$.

THEOREM 3.5 The following formulas hold

1. $\delta_{p}(A)=\hat{q} \delta_{u}(B)$.
2. $\omega_{p}(A)=\hat{q} \omega_{u}(B)+\sum_{i=1}^{d}\left(q_{i}-1\right) a_{i}$.
3. $\Omega_{p}(A)=\hat{q} \Omega_{u}(B)+\frac{1}{2}\left(\sum_{i=1}^{d}\left(q_{i}-1\right) a_{i}-\hat{q}+1\right)$.
4. $\Delta_{p}(A)=\hat{q} \Delta_{u}(B)+\frac{1}{2}\left(\sum_{i=1}^{d}\left(q_{i}-1\right) a_{i}-\hat{q}+1\right)$.

In order to prove this theorem we need a lemma.
LEMMA 3.6 Let q and c be two positive integers, $B=\left\{b_{1}, ., b_{d-1}, c\right\}$, and $A=$ $\left\{a_{1}, . ., a_{d-1}, c\right\}$ where $a_{1}=q b_{1}, \ldots, a_{d-1}=q b_{d-1}$. Suppose $\operatorname{gcd}(A)=1$ and choose $p \in \operatorname{lcm}(B) \mathbb{N}$ so $\operatorname{gcd}(q, c)=1$ and $q p \in \operatorname{lcm}(A) \mathbb{N}$. Then, the following formulas hold

1. $\delta_{q p}(A)=q \delta_{p}(B)$.
2. $\omega_{q p}(A)=q \omega_{p}(B)+(q-1) c$.
3. $\Omega_{q p}(A)=q \Omega_{p}(B)+\frac{1}{2}(q-1)(c-1)$.
4. $\Delta_{q p}(A)=q \Delta_{p}(B)+\frac{1}{2}(q-1)(c-1)$.

PROOF. We denote by

$$
F(t)=F_{p}(t)=\frac{\left(1-t^{p}\right)^{d}}{\left(1-t^{c}\right) \prod_{i=1}^{d-1}\left(1-t^{b_{i}}\right)}=\sum_{r=0}^{p-1} t^{r} F_{r}\left(t^{p}\right)
$$

the Frobenius polynomial associated with B and

$$
G(t)=G_{q p}(t)=\frac{\left(1-t^{q p}\right)^{d}}{\left(1-t^{c}\right) \prod_{i=1}^{d-1}\left(1-t^{a_{i}}\right)}=\sum_{s=0}^{q p-1} t^{s} G_{s}\left(t^{q p}\right)
$$

the Frobenius polynomial associated with A. We see that

$$
G(t)=\left(1+t^{c}+. .+t^{(q-1) c}\right) F\left(t^{q}\right)=\left(1+t^{c}+. .+t^{(q-1) c}\right) \sum_{r=0}^{p-1} t^{q r} F_{r}\left(t^{q p}\right) .
$$

So we obtain

$$
G(t)=\sum_{\substack{k=i c+j q \\ 0 \leq i \leq q-1}} t^{k} F_{j}\left(t^{q p}\right)=\sum_{\substack{0 \leq k=i c+j \leq q p-1 \\ 0 \leq i \leq q-1}} t^{k} F_{j}\left(t^{q p}\right)+\sum_{\substack{k>q p-1 \\ 0 \leq i \leq q-1}} t^{k-q p} t^{q p} F_{j}\left(t^{q p}\right)
$$

By identification we deduce that $G_{s}\left(t^{q p}\right)=F_{j}\left(t^{q p}\right)$ when $s=i c+j q$ and $G_{s}\left(t^{q p}\right)=$ $t^{q p} F_{j}\left(t^{q p}\right)$ when $s=i c+j q-q p=i c-(p-j) q$. In particular, we have $\operatorname{deg}\left(G_{s}\right)=$ $\operatorname{deg}\left(F_{j}\right)$ and $\omega\left(G_{s}\right)=\omega\left(F_{j}\right)$ when $s=i c+j q$ and $\operatorname{deg}\left(G_{s}\right)=1+\operatorname{deg}\left(F_{j}\right)$ and $\omega\left(G_{s}\right)=1+\omega\left(F_{j}\right)$ when $s=i c+j q-q p$. Therefore, for all s which can be written in the form $s=i c+j q$ we get $\operatorname{deg}\left(t^{s} G_{s}\left(t^{q P}\right)\right)=i c+j q+q p \operatorname{deg}\left(F_{j}\right)$ and $\omega\left(t^{s} G_{s}\left(t^{q p}\right)\right)=i c+j q+q p \omega\left(F_{j}\right)$. For all s which can be written in the form $s=i c+j q-q p$, we $\operatorname{get} \operatorname{deg}\left(t^{s} G_{s}\left(t^{q p}\right)\right)=i c+j q-q p+q p\left(1+\operatorname{deg}\left(F_{j}\right)\right)=$ $i c+j q+q p \operatorname{deg}\left(F_{j}\right)$ and $\omega\left(t^{s} G_{s}\left(t^{q p}\right)\right)=i c+j q-q p+q p\left(1+\omega\left(F_{j}\right)\right.$. It follows that $\delta_{q p}(G)=\min \left\{i c+j q+q p \operatorname{deg}\left(F_{j}\right)\right\}=q \min \left\{j+p \operatorname{deg}\left(F_{j}\right)\right\}=q \delta_{p}(F)$ and $\omega_{q p}(G)=\max \left\{i c+j q+q p \omega\left(F_{j}\right)\right\}=(q-1) c+q \max \left\{j+p \omega\left(F_{j}\right)\right\}=q \omega_{p}(F)+(q-1) c$. We also have

$$
\Omega_{q p}(G)=\sum_{s=i c+j q} \omega\left(G_{s}\right)+\sum_{s=i c+j q-q p} \omega\left(G_{s}\right)=\sum_{s=i c+j q} \omega\left(F_{j}\right)+\sum_{s=i c-j q}\left(\omega\left(F_{j}\right)+1\right)
$$

$$
\begin{aligned}
& =q \Omega_{p}(F)+N^{\prime}(c, q)=q \Omega_{p}(F)+\frac{1}{2}(q-1)(c-1) \text {. It follows that } \\
& \Delta_{q p}(G)=\Omega_{q p}(G)+\delta_{q p}(G)=q\left(\Omega_{p}(F)+\delta_{p}(F)\right)+\frac{1}{2}(q-1)(c-1)
\end{aligned}
$$

PROOF OF THEOREM 3.5. By induction on the number $h=d-k+1$ such $q_{1}=q_{2}=. .=q_{k-1}=1$. If $h=1$ the result is given by lemma 3.6. Suppose that the result is true when $q_{1}=q_{2}=. .=q_{k-1}=1$. We choose $p \in \operatorname{lcm}(A) \mathbb{N}$ and we set $v=\frac{p}{q_{k}}, t_{i}=q_{i}$ for $i \neq k$ and $t_{k}=1$. Then, we get $\hat{t}_{i}=\frac{\dot{q}_{i}}{q_{k}}$ for all $i \neq k, \hat{t}_{k}=\hat{q}_{k}$ and $\hat{t}=\frac{\dot{q}}{q_{k}}$. We also have $\frac{a_{i}}{q_{k}}=\frac{b_{i} \dot{q}_{i}}{q_{k}}=b_{i} \hat{t}_{i}$ for all $i \neq k$ and $a_{\dot{k}}=b_{k} \hat{t}_{k}$. We put $c_{i}=b_{i} \hat{t}_{i}$ for all i and $C=\left\{c_{1}, . ., c_{d}\right\}$, thus $a_{i}=q_{k} c_{i}$ for all $i \neq k$ and $a_{k}=c_{k}$. It follows from lemma 3.6 and the induction hypothesis that

1) $\delta_{p}(A)=q_{k} \delta_{v}(C)=q_{k} \hat{t} \delta_{u}(B)=\hat{q} \delta_{u}(B)$.
2) $\omega_{p}(A)=q_{k} \omega_{v}(C)+\left(q_{k}-1\right) c_{k}=q_{k}\left\{\hat{t} \omega_{u}(B)+\sum_{i=1}^{d}\left(t_{i}-1\right) c_{i}\right\}+\left(q_{k}-1\right) c_{k}=$ $\hat{q} \omega_{u}(B)+\sum_{i=1}^{d}\left(q_{i}-1\right) a_{i}$.
3) $\Omega_{p}(A)=q_{k} \Omega_{v}(C)+\frac{1}{2}\left(q_{k}-1\right)\left(a_{k}-1\right)=q_{k}\left\{\hat{t} \Omega_{u}(B)+\frac{1}{2}\left(\sum_{i=1}^{d}\left(t_{i}-1\right) c_{i}-\hat{t}+1\right)\right\}+$ $\frac{1}{2}\left(q_{k}-1\right)\left(a_{k}-1\right)=\hat{q} \Omega_{u}(B)+\frac{1}{2}\left(\sum_{i=1}^{d}\left(q_{i}-1\right) a_{i}-\hat{q}+1\right)$.
4) $\Delta_{p}(A)=\Omega_{p}(A)+\delta_{p}(A)=\hat{q} \Delta_{u}(B)+\frac{1}{2}\left(\sum_{i=1}^{d}\left(q_{i}-1\right) a_{i}-\hat{q}+1\right)$

THEOREM 3.7 The following formulas hold

1. $g(A)=\hat{q} g(B)+\sum_{i=1}^{d}\left(q_{i}-1\right) a_{i}$.
2. $N^{\prime}(A)=\hat{q} N^{\prime}(B)+\frac{1}{2}\left(\sum_{i=1}^{d}\left(q_{i}-1\right) a_{i}-\hat{q}+1\right)$.
3. $N(A)=\hat{q} N(B)+\frac{1}{2}\left(\sum_{i=1}^{d}\left(q_{i}-1\right) a_{i}-\hat{q}+1\right)$.

REMARK 3.8 In formula 1) if we take $q_{1}=. .=q_{d-1}=1$ then we obtain a Brauer and Shockley formula [5] and if we take $q_{i}=\operatorname{gcd}\left(A \backslash\left\{a_{i}\right\}\right)$ for all i, we obtain a Raczunas and Chrzastowski-Wachtel formula [9]. Moreover formula 2) is a generalization of a Rödseth formula [10] which is obtained for $q_{1}=. .=q_{d-1}=1$.

THEOREM 3.9 The following conditions hold

1. $S(A)$ is symmetric if and only if $S(B)$ is symmetric.
2. If $\hat{q}>1$ then $S(A)$ is not pseudo-symmetric.

COROLLARY 3.10 Suppose there exists i such that $b_{i}=1$ (i.e. $a_{i}=\hat{q}_{i}$). Then, $S(A)$ is symmetric and we have

1. (a) $g(A)=\sum_{i=1}^{d}\left(q_{i}-1\right) a_{i}-\dot{q}$.
(b) $N(A)=N^{\prime}(A)=\frac{1}{2}\left(\sum_{i=1}^{d}\left(q_{i}-1\right) a_{i}-\hat{q}+1\right)$.
2. Suppose, in addition, that $b_{i}=1$ (i.e. $a_{i}=\hat{q}_{i}$) for all i. Then, we have
(a) $g(A)=l(d-1)-\sum_{i=1}^{d} a_{i}$.
(b) $N(A)=N^{\prime}(A)=\frac{1}{2}\left(l(d-1)-\sum_{i=1}^{d} a_{i}+1\right)$.

PROOF. Since $1 \in B$, we have $S(B)=\mathbb{N}_{0}$ then $g(B)=-1$ and $N(B)=N^{\prime}(B)=0$. So 1. follows from theorem 3.7. To prove 2., we observe that $q_{i} a_{i}=\hat{q}=l=\operatorname{lcm}(A)$ if $a_{i}=\hat{q_{i}}$ for all $i \square$

COROLLARY 3.11 Let b, d, h, v be positive integers such that $b \geq d \geq 2$ and $\operatorname{gcd}(b, v)=1$. Let $B=\{b, h b+v, . ., h b+(i-1) v, . ., h b+(d-1) v\},\left(\left(b_{1}, . ., b_{d}\right)\right.$ is called an "almost" arithmetic sequence). Then,
$S(A)$ is symmetric $\Leftrightarrow S(B)$ is symmetric $\Leftrightarrow d=2$ or $b \equiv 2 \bmod (\mathrm{~d}-1)$.
PROOF. We write $b-1=\beta(d-1)+\alpha$ with $0 \leq \alpha<d-1$, and we use the following known formulas $g(B)=\left(h\left\lfloor\frac{b-2}{d-1}\right\rfloor+h-1\right) b+b v-v[8]$ and $N^{\prime}(B)=$ $\frac{1}{2}\{(b-1)(h \beta+v+h-1)+h \alpha(\beta+1)\}[11]$

EXAMPLE 3.12 Let $A=\{150,462,840,1365\}=\{5(2 \times 3 \times 5), 11(2 \times 3 \times 7), 12(2 \times$ $5 \times 7), 13(3 \times 5 \times 7)\}$. We set $q_{1}=7, q_{2}=5, q_{3}=3, q_{4}=2$ and $B=\{5,11,12,13\}$. This is an almost arithmetic sequence with $b=5, v=1, h=2, d=4$. We see that $b \equiv 2 \bmod (\mathrm{~d}-1)$ hence $S(B)$ is symmetric and we have $g(B)=19, N^{\prime}(B)=$ $N(B)=10$. Moreover, it follows from theorem 3.9 that $S(A)$ is symmetric. Using theorem 3.7 we obtain $g(A)=210 \times 19+6 \times 150+4 \times 462+2 \times 840+1365=9783$. $N^{\prime}(A)=N(A)=210 \times 10+\frac{1}{2}(6 \times 150+4 \times 462+2 \times 840+1365-210+1)=4892$.

4 QUASI-POLYNOMIALS

DEFINITION 4.1 A quasi-polynomial P of period p and degree d is a sequence $P=\left(P_{0}, \ldots, P_{p-1}\right)$ with $P_{r} \in \mathbb{Q}[t]$ such that $d=\sup \left\{\operatorname{deg}\left(P_{r}\right) \mid 0 \leq r \leq p-1\right\}$.
A quasi-polynomial P is said to be uniform if all the P_{r} have the same degree d
and the same leading coefficient $c(P)$. Given a function $h: \mathbb{Z} \rightarrow \mathbb{Q}$ and $r \in \mathbb{Z}$, we define $h_{r}: \mathbb{Z} \rightarrow \mathbb{Q}, k \mapsto h(p k+r)$. We say that h is a quasi-polynomial function if there exists a quasi-polynomial $P=\left(P_{0}, \ldots, P_{p-1}\right)$ such that $h_{r}(k)=P_{r}(k)$ for all $k \gg 0$ and $0 \leq r \leq p$. We also say that h is P-quasi-polynomial. It is easily seen that a quasi-polynomial function h has a minimal period and every period of h is a multiple of this minimal period. Furthermore, for a fixed period p, h is a P-quasi-polynomial for a unique sequence $P=\left(P_{0}, \ldots, P_{p-1}\right)$. A P-quasipolynomial h is said to be uniform if P is uniform. We write $\operatorname{deg}(h)=\operatorname{deg}(P)$ and $c(h)=c(P)$. We denote by $F(\mathbb{Z})$ the set of all functions $h: \mathbb{Z} \rightarrow \mathbb{Q}$. For every integer $i \geq 0$ we consider the operators E^{i} and Δ_{i}, which act as follows: $\left(E^{i} h\right)(n)=h(n+i),\left(\Delta_{i} h\right)(n)=h(n+i)-h(n)$. We set $E^{0}=I, E^{1}=E$ and $\Delta_{1}=\Delta$ so $\Delta=E-I, \Delta_{0}=0$ and $\Delta_{i}=E^{i}-I$. For $a \geq 0$ and $n \geq 1$, we have $\left(I+E^{a}+\cdots+E^{(n-1) a}\right) \circ\left(E^{a}-I\right)=E^{n a}-I=\Delta_{n a}$.

LEMMA 4.2 Given $h \in F(\mathbb{Z})$, then the following identities hold

1. $\left(E^{p i} h\right)_{r}=E^{i} h_{r}$ for $i \geq 0$.
2. $\left(\Delta_{p}^{m} h\right)_{r}=\Delta^{m} h_{r}$ for $m \geq 0$.

PROOF. 1. We write $\left(E^{p i} h\right)_{r}(k)=\left(E^{p i} h\right)(p k+r)=h(p(k+i)+r)=h_{r}(k+i)=$ $\left(E^{i} h_{r}\right)(k)$.
2. We have $\Delta_{p}^{m}=\left(E^{p}-I\right)^{m}=\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} E^{p i}$. Therefore, $\left(\Delta_{p}^{m} h\right)_{r}=$ $\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i}\left(E^{p i} h\right)_{r}=\sum_{i=0}^{m}(-1)^{m-i}\binom{m}{i} E^{i} h_{r}=(E-I)^{m} h_{r}=\Delta^{m} h_{r} \square$

PROPOSITION 4.3 A function $h \in F(\mathbb{Z})$ is quasi-polynomial of period p and degree d if and only if there exists $\left(c_{0}, \ldots, c_{p-1}\right) \neq(0, \ldots, 0)$ such that $\left(\Delta_{p}^{d} h\right)_{r}(k)=$ c_{r} for all $k \gg 0$ and $0 \leq r \leq p-1$.

PROOF. Follows from lemma 4.2 and [6, lemma 4.1.2]
COROLLARY 4.4 For $h \in F(\mathbb{Z})$, if $\prod_{i=1}^{d}\left(E^{a_{i}}-I\right)(h)(n)=0 \quad$ for $n \gg 0$, then h is quasi-polynomial of period $p \in l \mathbb{N}$ and degree $<d$.

PROOF. Follows from $\Delta_{p}^{d}=\left(E^{p}-I\right)^{d}=\left(\prod_{i=1}^{d}\left(\sum_{j=0}^{\frac{p}{a_{i}}-1} E^{j a_{i}}\right)\right) \circ\left(\prod_{i=1}^{d}\left(E^{a_{i}}-I\right) \square\right.$
EXAMPLE 4.5 Given $m \in \mathbb{Z}$ and $Q(t) \in \mathbb{Q}\left[t, t^{-1}\right]$ such that $Q(1) \neq 0$. The function $H_{m}(Q,$.$) associated with Q$ is a P-quasi-polynomial of period p, where $P=\left(P_{0}, . ., P_{p-1}\right)$ is given by $P_{r}=V_{m_{r}}\left(U_{r},.\right)$.

REMARK 4.6 Suppose $m>0$. Then, we have

1. $\operatorname{deg}\left(H_{m}(Q,).\right)=m-1$.
2. $m_{r}>0 \Rightarrow \operatorname{deg}\left(P_{r}\right)=m_{r}-1$ and $c\left(P_{r}\right)=\frac{U_{r}(1)}{\left(m_{r}-1\right)!}$.
3. If $Q(1)=p Q_{r}(1) \neq 0$ for all $0 \leq r \leq p-1$, then $H_{m}(Q,$.$) is uniform of degree$ $m-1$ and its leading coefficient is $c\left(H_{m}(Q,).\right)=\frac{Q_{r}(1)}{(d-1)!}=\frac{Q(1)}{p(d-1)!}$.
