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Preface

Computers are becoming more and more powerful tools for assisting in the design 
process. Finite element analysis and other software packages constituting com­
puter-aided design (CAD) allow quick and realistic visualization and optimization 
of stresses and deformations inside the component of a structure. This computer 
technology frees designers from tedious drafting and computational chores: it not 
only allows them to concentrate on general, conceptual issues of design, but also 
forces them to do so. Some of these issues are so-called conceptual design, 
reliability, energy efficiency, accuracy, and use of advanced materials. Very im­
portant conceptual issues are stiffness of mechanical structures and their compo­
nents and damping in mechanical systems sensitive to and/or generating vibra­
tions.

Stiffness and strength are the most important criteria for many mechanical 
designs. However, although there are hundreds of books on various aspects of 
strength, and strength issues are heavily represented in all textbooks on machine 
elements, stiffness-related issues are practically neglected, with a few exceptions. 
Although dynamics and vibrations, both forced and self-excited, of mechanical 
systems are becoming increasingly important, damping and stiffness are usually 
considered separately. However, frequently damping and stiffness are closely 
interrelated, and efforts to improve one parameter while neglecting the other are 
generally ineffective or even counterproductive.

This book intends to correct this situation by addressing various aspects of 
structural stiffness and structural damping and their roles in design. Several typi­
cal cases in which stiffness is closely associated with damping are addressed. 
The basic conceptual issues related to stiffness and damping are accentuated. A 
more detailed analytical treatment is given in cases where the results were not
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previously published or were only published in hard-to-obtain sources (e.g., pub­
lications in languages other than English). Many of these concepts are illustrated 
by practical results and/or applications (practical case studies) either in the text 
or as appendices and articles. The articles, mostly authored or coauthored by the 
author of this book, are intended both to extend coverage of some important 
issues and to provide practical application examples.

This book originated from course notes prepared for the “ Stiffness in De­
sign” tutorial successfully presented at four Annual Meetings of the American 
Society for Precision Engineering (ASPE). The contents of the book are based 
to a substantial degree on the author’s personal professional experiences and 
research results.

The two parameters covered in this book are treated differently. No mono­
graphs and few if any extended chapters on stiffness have recently been published 
in English. However, there are several books and handbook chapters available 
on damping. Accordingly, although an attempt was made here to provide a com­
prehensive picture of the role of stiffness in mechanical design, the treatment of 
damping is less exhaustive. Two main groups of the many damping-related issues 
are addressed: (1) damping properties of contacts (joints) and power transmission 
systems, which are addressed only scantily in other publications, and (2) the 
interrelationship between stiffness and damping parameters in mechanical sys­
tems and structural materials. Thus, the damping-related sections can be consid­
ered complementary to the currently available monographs and handbooks.

Many important stiffness- and damping-related issues were studied in depth 
in the former Soviet Union. The results were published in Russian and are practi­
cally unavailable to the engineering community in non-Russian-speaking coun­
tries. Several of these results are covered in the book.

A general introduction to the subject matter is given in Chapter 1. General 
performance characteristics are described for which the stiffness and damping 
criteria are critical. This chapter also lists a selection of structural materials 
for stiffness- and damping-critical applications. Information on the influence 
of the mode of loading and the component design on stiffness is provided in 
Chapter 2.

Chapter 3 is dedicated to an important subject of nonlinear and variable 
stiffness (and damping) systems. Specially addressed is the issue of preloading, 
which is very important for understanding and controlling stiffness and damping 
characteristics.

Design and performance information on various aspects of normal and tan­
gential contact stiffness, as well as of damping associated with mechanical con­
tacts, is given in Chapter 4. Information on these subjects is very scarce in the 
technical literature available in English. Stiffness of mechanical components is 
determined not only by their own structural properties, but also by their support­
ing conditions and devices. Influence of the latter on both static stiffness and
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dynamic characteristics is frequently not well understood. These issues, as well 
as some issues related to machine foundations, are addressed in Chapter 5.

Chapter 6 concentrates on very specific issues of stiffness (and damping) in 
power transmission and drive systems, which play a significant role in various 
mechanical systems. Several useful techniques, both passive and active, aimed 
at enhancing structural stiffness and damping characteristics (i.e., reduction of 
structural deformations and enhancement of dynamic stability) are described in 
Chapter 7. Special cases in which performance of stiffness-critical systems can 
be improved by reduction or a proper tuning of components’ stiffness are de­
scribed in Chapter 8.

The issues related to stiffness and damping in mechanical design are numer­
ous and very diverse. This book does not pretend to be a handbook covering all 
of them, but it is the first attempt to provide illuminating coverage of some of 
these issues.

In addition to the body of the book, I have included Appendices 1-3 to 
provide more detailed treatments and derivations for some small but important 
subjects. I have also provided, in their entirety, several articles from previous 
publications, each of which gives an in-depth treatment of an important stiffness 
and/or damping critical area of mechanical design.

I am very grateful to the book reviewers, who made valuable suggestions. 
Especially helpful have been discussions with Professor Dan DeBra (Stanford 
University). These discussions resulted in important changes in the book’s em­
phasis. Suggestions by Professor Vladimir Portman (Ben Gurion University of 
the Negev, Israel) were also very useful. I take full responsibility for all of the 
shortcomings of the book and will greatly appreciate readers’ feedback.

Eugene /. Rivin
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1

Introduction and Definitions

1.1 BASIC NOTIONS

1.1.1 Stiffness

Stiffness is the capacity of a mechanical system to sustain loads without excessive 
changes of its geometry (deformations). It is one of the most important design 
criteria for mechanical components and systems. Although strength is considered 
the most important design criterion, there are many cases in which stresses in 
components and their connections are significantly below the allowable levels, 
and dimensions as well as performance characteristics of mechanical systems 
and their components are determined by stiffness requirements. Typical examples 
of such mechanical systems are aircraft wings, and frames/beds of production 
machinery (machine tools, presses, etc.), in which stresses frequently do not ex­
ceed 3 -7  MPa (500-1,000 psi). Another stiffness-critical group of mechanical 
components is power transmission components, especially shafts, whose defor­
mations may lead to failures of gears and belts while stresses in the shafts caused 
by the payload are relatively low.

Recently, great advances in improving strength of mechanical systems and 
components were achieved. The main reasons for such advances are development 
of high strength structural metals and other materials, better understanding of 
fracture/failure phenomena, and development of better techniques for stress anal­
ysis and computation, which resulted in the reduction of safety factors. These 
advances often result in reduction of cross sections of the structural components. 
Since the loads in the structures (unless they are weight-induced) do not change, 
structural deformations in the systems using high strength materials and/or de­
signed with reduced safety factors are becoming more pronounced. It is important

1



2 Chapter 1

to note that while the strength of structural metals can be greatly improved by 
selection of alloying materials and of heat treatment procedures (as much as 5 -  
7 times for steel and aluminum), modulus of elasticity (Young’s modulus) is not 
very sensitive to alloying and to heat treatment. For example, the Young’s modu­
lus of stainless steels is even 5-15%  lower than that of carbon steels (see Table 
1.1). As a result, stiffness can be modified (enhanced) only by proper selection 
of the component geometry (shape and size) and its interaction with other compo­
nents.

Stiffness effects on performance of mechanical systems are due to influence 
of deformations on static and fatigue strength, wear resistance, efficiency (friction 
losses), accuracy, dynamic/vibration stability, and manufacturability. The impor­
tance of the stiffness criterion is increasing due to:

1. Increasing accuracy requirements (especially due to increasing speeds 
and efficiency of machines and other mechanical systems)

2. Increasing use of high strength materials resulting in the reduced cross 
sections and, accordingly, in increasing structural deformations

3. Better analytical techniques resulting in smaller safety factors, which 
also result in the reduced cross sections and increasing deformations

4. Increasing importance of dynamic characteristics of machines since their 
increased speed and power, combined with lighter structures, may result 
in intense resonances and in the development of self-excited vibrations 
(chatter, stick-slip, etc.)

Factors 2 -4  are especially pronounced for surface and flying vehicles (cars, 
airplanes, rockets, etc.) in which the strength resources of the materials are uti­
lized to the maximum in order to reduce weight.

Stiffness is a complex parameter of a system. At each point, there are gener­
ally different values of stiffness kyy, kzz in three orthogonal directions of a 
selected coordinate frame, three values of interaxial stiffness kxz, kyz related 
to deformations along one axis (first subscript) caused by forces acting along an 
orthogonal axis (second subscript), and also three values of angular stiffness 
about the x, y, and z axes. If the interaxial stiffnesses vanish, k^ = kxz = kyz =  
0, then x, y, z are the principal stiffness axes. These definitions are important 
since in some cases several components of the stiffness tensor are important; in 
special cases, ratios of the stiffness values in the orthogonal directions determine 
dynamic stability of the system. Such is the case of chatter instability of some 
machining operations [1]. Chatter stability in these operations increases if the 
cutting and/or the friction force vector is oriented in a certain way relative to 
principal stiffness axes x  and y. Another case is vibration isolation. Improper 
stiffness ratios in vibration isolators and machinery mounts may cause undesir­
able intermodal coupling in vibration isolation systems (see Article 1).

Main effects of an inadequate stiffness are absolute deformations of some



Table 1.1 Young’s Modulus and Density of Structural Materials
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Material
E

(105 MPa)
y

(103 kg/m3)
El y 

(107 m2/s2)

(a) Homogeneous Materials

Graphite 7.5 2.25 33.4
Diamond 18.0 5.6 32
Boron carbide, BC 4.50 2.4 19
Silicon carbide, SiC 5.6 3.2 17.5
Carbon, C 3.6 2.25 16.0
Beryllium, Be 2.9 1.9 15.3
Boron, B 3.8 2.5 15.2
Sapphire 4.75 4.5 10.1
Alumina, A120 3 3.9 4.0 9.8
Lockalloy (62% Be + 38% Al) 1.90 2.1 9.1
Kevlar 49 1.3 1.44 9.0
Titanium carbide, TiC 4.0-4.5 5.7-6.0 7.0-9.1
Silicone, Si 1.1 2.3 4.8
Tungsten carbide, WC 5.50 16.0 3.4
Aluminum/Lithium (97% Al + 3% Li) 0.82 2.75 3.0
Molybdenum, Mo 3.20 10.2 3.0
Glass 0.7 2.5 2.8
Steel, Fe 2.10 7.8 2.7
Titanium, Ti 1.16 4.4 2.6
Aluminum, Al (wrought) 0.72 2.8 2.6
Aluminum, Al (cast) 0.65 2.6 2.5
Steel, stainless (.08-0.2% C, 17% Cr, 7% Ni) 1.83 7.7 2.4
Magnesium, Mg 0.45 1.9 2.4
Wood (along fiber) 0.11-0.15 0.41-0.82 2.6-1.8
Marble 0.55 2.8 2.0
Tungsten (W + 2 to 4% Ni, Cu) 3.50 18.0 1.9
Granite 0.48 2.7 1.8
Beryllium copper 1.3 8.2 1.6
Polypropylene 0.08 0.9 0.9
Nylon 0.04 1.1 0.36
Paper 0.01-0.02 0.5 0.2-0.4

(b) Composite Materials

HTS graphite/5208 epoxy 1.72 1.55 11.1
Boron/5505 epoxy 2.07 1.99 10.4
Boron/6601 Al 2.14 2.6 8.2
Lanxide NX -  6201 (Al + SiC) 2.0 2.95 6.8
T50 graphite/2011 Al 1.6 2.58 6.2
Kevlar 49/resin 0.76 1.38 5.5
80% Al + 20% A120 3 powder 0.97 2.93 3.3
Melram (80% Mg, 6.5% Zn, 12% SiC) 0.64 2.02 3.2
E glass/1002 epoxy 0.39 1.8 2.2
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components of the system and/or relative displacements between two or several 
components. Such deformations/displacements can cause:

Geometric distortions (inaccuracies)
Change of actual loads and friction conditions, which may lead to reduced 

efficiency, accelerated wear, and/or fretting corrosion
Dynamic instability (self-excited vibrations)
Increased amplitudes of forced vibrations

Inadequate stiffness of transmission shafts may cause some specific effects. 
The resulting linear and angular deformations determine behavior of bearings 
(angular deformations cause stress concentrations and increased vibrations in 
antifriction bearings and may distort lubrication and friction conditions in sliding 
bearings); gears and worm transmissions (angular and linear deformations lead 
to distortions of the meshing process resulting in stress concentrations and varia­
tions in the instantaneous transmission ratios causing increasing dynamic loads); 
and traction drives (angular deformations cause stress concentrations and chang­
ing friction conditions).

It is worthwhile to introduce some more definitions related to stiffness:

Structural stiffness due to deformations of a part or a component considered 
as beam, plate, shell, etc.

Contact stiffness due to deformations in a connection between two compo­
nents (contact deformations may exceed structural deformations in pre­
cision systems)

Compliance e = 1/k , defined as a reciprocal parameter to stiffness k (ratio 
of deformation to force causing this deformation)

Linear stiffness vs. nonlinear stiffness (see Ch. 3)
Hardening vs. softening nonlinear stiffness (see Ch. 3)
Static stiffness kst (stiffness measured during a very slow loading process, 

such as a periodic loading with a frequency less than 0.5 Hz) vs. dynamic 
stiffness kdyn, which is measured under faster changing loads. Dynamic 
stiffness is characterized by a dynamic stiffness coefficient K dyn = kdyn/k st. 
Usually K dyn >  1 and depends on frequency and/or amplitude of load 
and/or amplitude of vibration displacement (see Ch. 3). In many cases, 
especially for fibrous and elastomeric materials K dyn is inversely corre­
lated with damping, e.g., see Fig. 3.2 and Table 1 in Article 1.

1.1.2 Damping

Damping is the capacity of a mechanical system to reduce intensity of a vibratory 
process. The damping capacity can be due to interactions with outside systems,
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or due to internal performance-related interactions. The damping effect for a vi­
bratory process is achieved by transforming (dissipating) mechanical energy of 
the vibratory motion into other types of energy, most frequently heat, which can 
be evacuated from the system. If the vibratory process represents self-excited 
vibrations (e.g., chatter), the advent of the vibratory process can be prevented by 
an adequate damping capacity of the system.

In the equations of motion to vibratory systems (e.g., see Appendix 1), both 
intensity and character of energy dissipation are characterized by coefficients at 
the first derivative (by time) of vibratory displacements. These coefficients can 
be constant (linear or viscous damping) or dependent on amplitude and/or fre­
quency of the vibratory motion (nonlinear damping). There are various mecha­
nisms of vibratory energy dissipation which can be present in mechanical sys­
tems, some of which are briefly explored in Appendix 1.

Since the constant coefficient at the time-derivative of the vibratory displace­
ment term results in a linear differential equation, which is easy to solve and to 
analyze, such systems are very popular in textbooks on vibration. However, the 
constant damping coefficient describes a so-called viscous mechanism of energy 
dissipation that can be realized, for example, by a piston moving with a relatively 
slow velocity inside a conforming cylinder with a relatively large clearance be­
tween the piston and the cylinder walls, so that the resistance force due to viscous 
friction has a direction opposite to the velocity vector and is proportional to the 
relative velocity between the cylinder and the piston. In real-life applications 
such schematic and conditions are not often materialized. The most frequently 
observed energy dissipation mechanisms are hysteretic behavior or structural ma­
terials; friction conditions similar to coulomb (dry) friction whereas the friction 
(resistance) force is directionally opposed to the velocity vector but does not 
depend (or depends weakly) on the vibratory velocity magnitude; damping in 
joints where the vibratory force is directed perpendicularly to the joint surface 
and causes squeezing of the lubricating oil through the very thin clearance be­
tween the contacting surfaces (thus, with a very high velocity) during one-half 
of the vibratory cycle and sucking it back during the other half of the cycle; and 
damping due to impact interactions between the contacting surfaces. Some of 
these mechanisms are analytically described in Appendix 1.

Effects of damping on performance of mechanical systems are due to reduc­
tion of intensity of undesirable resonances; acceleration of decay (settling) of 
transient vibration excited by abrupt changes in motion parameters of mechanical 
components (start/stop conditions of moving tables in machine tools and of robot 
links, engagement/disengagement between a cutting tool and the machined part, 
etc.); prevention or alleviation of self-excited vibrations; prevention of impacts 
between vibrating parts when their amplitudes are reduced by damping; potential 
for reduction of heat generation, and thus for increase in efficiency due to reduced
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peak vibratory velocities of components having frictional or microimpacting in­
teractions; reduction of noise generation and of harmful vibrations transmitted 
to human operators; and more.

It is important to note that while damping is associated with transforming 
mechanical energy of the vibratory component into heat, increase of damping 
capacity of mechanical system does not necessarily result in a greater heat genera­
tion. Damping enhancement is, first of all, changing the dynamic status of the 
system and, unless the displacement amplitude is specified (for example, like 
inside a compensating coupling connecting misaligned shafts; see Section 8.5.2), 
most probably would cause a reduction in the heat generation. This somewhat 
paradoxical statement is definitely true in application to mechanical systems 
prone to development of self-excited vibrations, since enhancement of damping 
in the system would prevent starting of the vibratory process, and thus the heat 
generation, which is usually caused by vibratory displacements. This statement 
is also true for a system subjected to transient vibration. Since the initial displace­
ment of mass m in Fig. A. 1.1 and the natural frequency of the system do not 
significantly depend on damping in the system, a higher damping would result 
in smaller second, third, etc. amplitudes of the decaying vibrations, and thus in 
a lower energy dissipation.

Less obvious is the case of forced vibration when force F  =  F0sin cot is 
applied to mass m in Fig. A. 1.1. Let’s consider the system in which mass m is 
attached to the frame by a rubber flexible element combining both stiffness and 
damping properties (hysteresis damping, r — 1; see Appendix 1). If amplitude 
of mass m is A, then the maximum potential energy of deformation of the flexible 
element is

The amount of energy dissipated (transformed into heat) in the damper c or in 
the rubber flexible element is

(LI)

A V = '¥ V = '¥ k  — 
2

(1.2)

At the resonance, amplitude Ares of mass m is, from formula (A. 1.19b) at co = 
CG0 and from (A 1.18)
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where A0 =  F0/k  = static (co =  0) deflection of the flexible element, 8 =  logarith­
mic decrement, and for not very high damping

T  «  28 (1.3b)

Thus, the energy dissipation at resonance (or the maximum energy dissipation 
in the system) is decreasing with increasing damping capacity (increasing 7).

This result, although at the first sight paradoxical, does not depend on the 
character (mechanism) of damping in the system and can be easily explained. 
The resonance amplitude is inversely proportional to the damping parameter OF, 
8, etc.) because the increasing damping shifts an equilibrium inside the dynamic 
system between the excitation (given, constant amplitude), elastic (displacement- 
proportional), inertia (acceleration-proportional), and damping (velocity-propor­
tional) forces. The amount of energy dissipation is a secondary effect of this 
equilibrium; the energy dissipation is directly proportional to the square of the 
vibration amplitude. Although this effect of decreasing energy dissipation with 
increasing damping is especially important at the resonance where vibratory am­
plitudes are the greatest and energy dissipation is most pronounced, it is not as 
significant in the areas outside of the resonance where the amplitudes are not 
strongly dependent on the damping magnitude (see Fig. A. 1.3).

Effects of damping on performance of mechanical system are somewhat sim­
ilar to the effects of stiffness, as presented in Section 1.1.1. Damping influences, 
directly or indirectly, the following parameters of mechanical systems, among 
others:

1. Fatigue strength. Increasing damping leads to reduction of strain and 
stress amplitudes if the loading regime is close to a resonance. It is even more 
important for high-frequency components of strain/stress processes, which are 
frequently intensified due to resonances of inevitable high frequency components 
of the excitation force(s) and/or nonlinear responses of the system with higher 
natural frequencies of the system.

2. Wear resistance. High (resonance) vibratory velocities, especially asso­
ciated with high-frequency parasitic micro vibrations, may significantly accelerate 
the wear process. High damping in the system alleviates these effects.

3. Efficiency (friction losses). Depending on vibration parameters (ampli­
tudes, frequencies, and, especially, directivity), vibrations can increase or reduce 
friction. In the former case, increasing damping can improve efficiency.

4. Accuracy and surface finish  of parts machined on machined tools. Al­
though surface finish of the machined surface is directly affected by vibrations, 
accuracy (both dimensions and macrogeometry) may be directly influenced by 
low-frequency vibrations, e.g., transmitted from the environment (see Article 1) 
or may be indirectly affected by changing geometry of the cutting tool whose 
sharp edge(s) are fast wearing out under chatter- or micro vibrations. The latter
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are especially dangerous for brittle cutting materials such as ceramic and diamond 
tools.

5. Dynamic/vibration stability of mechanical systems can be radically en­
hanced by introducing damping into the system.

6. Manufacturability, especially of low-stiffness parts, can be limited by 
their dynamic instability, chatter, and resonance vibrations during processing. 
Damping enhancement of the part and/or of the fixtures used in its processing 
can significantly improve manufacturability.

Importance of the damping criterion is increasing with the increasing impor­
tance of the stiffness criterion as discussed in Section 1.1.1 due to: 

a. Increasing accuracy requirements
b, c. Increasing use of high strength materials and decreasing safety fac­

tors, which result in lower stiffness and thus higher probability of 
vibration excitation

d. Increasing importance of dynamic characteristics
e. Increasing awareness of noise and vibration pollution 

Main sources of damping in mechanical systems are:
a. Energy dissipation in structural materials
b. Energy dissipation in joints/contacts between components (both in mov­

ing joints, such as guideways, and in stationary joints)
c. Energy dissipation in special damping devices (couplings, vibration iso­

lators, dampers, dynamic vibration absorbers, etc.). These devices may 
employ viscous (or electromagnetic) dampers in which relative vibratory 
motion between component generates a viscous (velocity dependent) 
resistance force; special high-damping materials, such as elastomers or 
“ shape memory metals” (see Table 1.2); specially designed (“ vibroim- 
pact” ) mechanisms in which coimpacting between two surfaces results 
in dissipation of vibratory energy (see Appendix 1); etc.

1.2 INFLUENCE OF STIFFNESS ON STRENGTH AND 
LENGTH OF SERVICE

This influence can materialize in several ways:

Inadequate or excessive stiffness of parts may lead to overloading of associ­
ated parts or to a nonuniform stress distribution 

Inadequate stiffness may significantly influence strength if loss of stability 
(buckling) of some component occurs 

Impact/vibratory loads are significantly dependent on stiffness 
Excessive stiffness of some elements in statically indeterminate systems may 

lead to overloading of the associated elements
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It is known that fatigue life of a component depends on a high power (5 - 
9) of maximum (peak) stresses. Thus, uniformity of the stress distribution is very 
important.

Fig. 1.1 [2] shows the influence of the stiffness of rims of meshing gears on 
load distribution in their teeth. In Fig. 1.1a, left sides of both gear rims have 
higher stiffness than their right sides due to positioning of the stiffening disc/ 
spokes on their hubs. This leads to concentration of the loading in the stiff area 
so that the peak contact stresses in this area are about two times higher than 
the average stress between the meshing profiles. In Fig. 1.1b, the gear hubs are 
symmetrical, but again the stiff areas of both rims work against each other. Al­
though the stress distribution diagram is different, the peak stress is still about 
twice as high as the average stress. The design shown in Fig. 1.1c results in a 
more uniform stiffness along the tooth width and, accordingly, in much smaller 
peak stresses— about equal to the average stress magnitude. The diagrams in 
Fig. 1.1 are constructed with an assumption of absolutely stiff shafts. If shaft 
deformations are significant, they can sustantially modify the stress distributions 
and even reverse the characteristic effects shown in Fig. 1.1.

Another example of influence of stiffness on load distribution is shown in 
Fig. 1.2. It is a schematic model of threaded connection between bolt 1 and nut
2. Since compliances of the thread coils are commensurate with compliances of 
bolt and nut bodies, bending deformations of the most loaded lower coils are 
larger than deformations of the upper coils by the amount of bolt elongation 
between these coils. This leads to a very nonuniform load distribution between 
the coils. Theoretically, for a 10-coil thread, the first coil takes 30-35%  of the 
total axial load on the bolt, while the eighth coil takes only 4% of the load [3]. 
In real threaded connections, the load distribution may be more uniform due to

Figure 1.1 Contact pressure distribution in meshing gears as influenced by design of 
gears.



10 Chapter 1

Figure 1.2 Contact pressure distribution (b) in threaded connection (a).

possible yielding of the highest loaded coils, contact deformations in the thread, 
and higher compliances of the contacting coils because of their inaccuracies and 
less than perfect contact. Thus, the first coil may take only 25-30%  of the total 
load instead of 34%. However, it is still a very dramatic nonuniformity that can 
cause excessive plastic deformations of the most loaded coils and/or their fatigue 
failure. Such a failure may cause a chain reaction of failures in the threaded 
connection.

Such redistribution and concentration of loading influencing the overall de­
formations and the effective stiffness of the system can be observed in various 
mechanical systems. Fig. 1.3 [2] shows a pin connection of a rod with a tube. 
Since the tube is much stiffer than the rod, a large fraction of the axial load P 
is acting on the upper pin, which can be overloaded (Fig. 1.3a). The simplest 
way to equalize loading of the pins is by loosening the hole for the upper pin 
(Fig. 1.3b). This leads to the load being applied initially to the lower pin only.

P
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Figure 1.3 Influence of component deformations on load distribution.
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The upper pin takes the load only after some stretching of the rod has occurred. 
Another way to achieve the same effect is by prestressing (preloading) the system 
by creating an initial loading (during assembly) in order to counteract the loading 
by force P  (Fig. 1.3c). This effect can be achieved, for example, by simulta­
neously drilling holes in the rod and in the tube (Fig. 1.3d) and then inserting 
the pins while the rod is heated to the specified temperature. After the rod cools 
down, it shrinks (Fig. 1.3e) and the system becomes prestressed. The load equal­
ization effect can also be achieved by local reduction of the tube stiffness 
(Fig. 1.3f).

1.3 INFLUENCE OF STIFFNESS AND DAMPING 
ON VIBRATION AND DYNAMICS

This effect of stiffness can be due to several mechanisms.
At an impact, kinetic energy of the impacting mass is transformed into poten­

tial energy of elastic deformation; accordingly, dynamic overloads are stiffness-
dependent. For a simple model in Fig. 1.4, kinetic energy of mass m impacting
a structure having stiffness k is

E = lhmv2 (1.1)

After the impact, this kinetic energy transforms into potential energy of the struc­
tural impact-induced deformation x

V -  lhkx2 — E = lhmv2 (1.2)

Since the impact force F = kx, from (1.2) we find that

x = v ' \j^  and F = v^lkm (1.3)

Thus, in the first approximation the impact force is proportional to the square 
root of stiffness.

For forced vibrations, a resonance can cause significant overloads. The reso­
nance frequency can be shifted by a proper choice of stiffness and mass values 
and distribution. While shifting of the resonance frequencies may help to avoid 
the excessive resonance displacement amplitudes and overloads, this can help 
only if the forcing frequencies are determined and cannot shift. In many cases 
this is not a realistic assumption. For example, the forcing (excitation) frequencies 
acting on a machine tool during milling operation are changing with the change 
of the number of cutting inserts in the milling cutter and with the changing spindle
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M

Figure 1.4 Impact interaction between moving mass and stationary spring.

speed (rpm). A much more effective way to reduce resonance amplitudes is by 
enhancing damping in the vibrating system. The best results can be achieved if 
the stiffness and damping changes are considered simultaneously (see Article 2 
and discussion on loudspeaker cones in Section 1.6).

Variable stiffness of shafts, bearings, and mechanisms (in which stiffness 
may be orientation-dependent) may cause quasi-harmonic (parametric) vibrations 
and overloads. While variability of the stiffness can be reduced by design modi­
fications, the best results are achieved when these modifications are combined 
with damping enhancement.

Chatter resistance (stability in relation to self-excited vibrations) of machine 
tools and other processing machines is determined by the criterion Kd (.K  =  
effective stiffness and 8 =  damping, e.g., logarithmic decrement). Since in many 
cases dynamic stiffness and damping are interrelated, such as in mechanical joints 
(see Ch. 4) and materials (see Ch. 3 and Article 1), the stiffness increase can be 
counterproductive if it is accompanied by reduction of damping. In some cases, 
stiffness reduction can be beneficial if it is accompanied by a greater increase in 
damping (see the case study on influence of mount characteristics on chatter 
resistance of machine tools and Ch. 8).

Deviation of the vector of cutting (or friction) forces from a principal stiff­
ness axis may cause self-exciting vibrations (coordinate coupling) [1].

Low stiffness of the drive system may cause stick-slip vibration of the driven 
unit on its guideways.

1.4 INFLUENCE OF MACHINING SYSTEM STIFFNESS AND 
DAMPING ON ACCURACY AND PRODUCTIVITY

1.4.1 Introduction

Elastic deformations of the production (machining) system, machine tool-fix­
ture-tool-m achined part, under cutting forces are responsible for a significant
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fraction of the part inaccuracy. These deformations also influence productivity 
of the machining system, either directly by slowing the process of achieving the 
desired geometry or indirectly by causing self-excited chatter vibrations.

In a process of machining a precision part from a roughly shaped blank, 
there is the task to reduce deviation Ab of the blank surface from the desired 
geometry to a smaller allowable deviation Ap  of the part surface (Fig. 1.5). This 
process can be modeled by introduction of an accuracy enhancement factor £

£ = Ab/Ap = tx -  t2/y { -  y 2 (1.4)

where t x and t2 are the maximum and minimum depth of cut; and y x and y2 are 
the cutter displacements normal to machined surface due to structural deforma­
tions caused by the cutting forces. If the cutting force is

Pv = Cmtsq (1.5)

then

£ = (k/Cm)/sq (1.6)

where Cm =  material coefficient; k = stiffness of the machining system; t =  
depth of cut; s =  feed; and q — 0.6-0.75. For the process of turning medium­
hardness steel with s =  0.1-0.75 mm/rev on a lathe with k =  20 N/\im ,

£ = 150 -  30 (1.7)

Knowing shape deviations of the blanks and the required accuracy, the above 
formula for £ allows us to estimate the required k  and allowable s, or to decide 
on the number of passes required to achieve the desired accuracy.

Inadequate stiffness of the machining system may result in various distor­
tions of the machining process. Some examples of such distortions are shown in

blank

Figure 1.5 Evolution of geometry of machined parts when machining system has finite 
stiffness.



14 Chapter 1

Fig. 1.6. The total cross sectional area of the cut is smaller during the transient 
phases of cutting (when the tool enters into and exits from the machined part) 
than during the steady cutting. As a result, deflection of the blank part is smaller 
during the transient phases thus resulting in deeper cuts (Fig. 1.6a, b).

Turning of a part supported between two centers requires driving of the part 
by a driving yoke clamped to the part (Fig. 1.6c). Asymmetry of the driving 
system results in an eccentricity (runout) of the part with the magnitude

6 -  PzdlkcR (1.8)

where kc = stiffness of the supporting center closest to the driving yoke.
Heavy traveling tables supporting parts on milling machines, surface grind­

ers, etc., may change their angular orientation due to changing contact deforma­
tions in the guideways caused by shifting of the center of gravity during the travel 
(Fig. 1.6d). This also results in geometrical distortions of the part surface.

A surface deviation A caused by a variable stiffness of the machining system

Figure 1.6 Influence of compliances in the machining system on geometry of machined 
parts.
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can be expressed as

A = Py( l /kmin -  l / k mcix) (1.9)

where kmin and kmax =  low and high stiffness of the machining system and Py = 
cutting force.

Figure 1.6e shows a barrel shape generated in the process of turning a slender 
elongated part between the rigid supporting centers; Fig. 1.6f shows a “ corset” 
shape when a rigid part is supported by compliant centers. The part in Fig. 1.6g 
is slender and was supported by compliant centers. Fig. 1.6h shows the shape of 
a cantilever part clamped during machining in a nonrigid chuck. Fig. 1.6i shows 
shape of the hole bored by a slender boring bar guided by two stationary rigid 
supports, while Fig. 1.6k illustrates shape of the hole machined by a cantilever 
boring bar guided by one stationary support.

The role of stiffness enhancement is to reduce these distortions. When they 
are repeatable, corrections that would compensate for these errors can be com­
manded to a machine by its controller. However, the highest accuracy is still 
obtained when the error is small and it is always preferable to avoid the complica­
tions of this compensation procedure, which appropriate stiffness can accomplish.

Manufacturing requirements for stiffness of parts often determine the possi­
bility of their fabrication with high productivity (especially for mass production). 
Sometimes, shaft diameters for mass-produced machines are determined not by 
the required strength but by a possibility of productive multicutter machining of 
the shafts and/or of the associated components (e.g., gears). Machining of a low­
stiffness shaft leads to chatter, to a need to reduce regimes, and to copying of 
inaccuracies of the original blank.

Stiffness of the production equipment influences not only its accuracy and 
productivity. For example, stiffness characteristics of a stamping press also in­
fluence its energy efficiency (since deformation of a low-stiffness frame absorbs 
a significant fraction of energy contained in one stroke of the moving ram); dy­
namic loads and noise generation (due to the same reasons); product quality (since 
large deformations of the frame cause misalignments between the punch and the 
die and thus, distortions of the stamping); and die life (due to the same reasons). 
In crank presses developing the maximum force at the end of the stroke, the 
amount of energy spent on the elastic structural deformations can be greater than 
the amount of useful energy (e.g., spent on the punching operation). Abrupt un­
loading of the frame after the breakthrough event causes dangerous dynamic 
loads/noise, which increase with increasing structural deformations.

In mechanical measuring instruments/fixtures, a higher stiffness is some­
times needed to reduce deformations from the measuring (contact) force.

Deformations at the tool end caused by the cutting forces result in geometric 
inaccuracies and in a reduced dynamic stability of the machining process. It is
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important to understand that there are many factors causing deflections at the 
tool end. For example, in a typical boring mill, deformation of the tool itself 
represents only 11% of the total deflection while deformation of the spindle and 
its bearings is responsible for 37%, and the tapered interface between the tool- 
holder and the spindle hole is responsible for 52% of the total deflection [4], [5].

1.4.2 Stiffness and Damping of the Cutting Process

B ackground

Deformations in the machining system are not only due to the finite stiffness of 
the structural components, but also due to finite stiffness of the cutting process 
itself. The cutting process can be modeled as a spring representing effective cut­
ting stiffness and a damper representing effective cutting damping. The stiffness 
and damping parameters can be derived from the expression describing the dy­
namic cutting force. Various expressions for dynamic cutting forces were sug­
gested. The most convenient expression for deriving the stiffness and damping 
parameters of the cutting process is one given in Tobias [1]. The dynamic incre­
ment of the cutting force dPz in the z-direction for turning operation can be written 
as

Here z = vibratory displacement between the tool and the workpiece, whose 
direction is perpendicular to the axis of the workpiece and also to the cutting 
speed direction in the horizontal plane; ja = overlap factor between the two subse­
quent tool passes in the z-direction; K ] =  cutting stiffness coefficient in the z- 
direction; K 2 =  penetration rate coefficient due to the tool penetrating the work­
piece in the z-direction; and T  =  2n/Cl, where Q, rev/sec is the rotating speed 
of the workpiece.

By assuming displacement z as

where A — an indefinite amplitude constant and co — chatter frequency, Eq. (1.10) 
can be rearranged as

dPz = KAz{i) -  \iz(t -  T)] + K2z{t) (1.10)

z(t) = A c o s  m (1.11)

dP7 = Kczz + Ccz — (t) 
dt

(1.12)

where

Kcz = K i [1 -  ji c o s  2 tc(co/Q ) ]  

Ccz = K x{\i/()))s in  27c( co/Q )  + K2

(1.13)

(1.14)
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Figure 1.7 Cantilever workpiece for measuring cutting process stiffness and measure­
ment setup.

K cz and Ccz can be defined as effective cutting stiffness and effective cutting 
damping, respectively (since only the z-dircection is considered, the subscript z 
is further omitted). The effective cutting stiffness and cutting damping are func­
tions not only of the cutting conditions but also of the structural parameters of 
the machining system (stiffness and mass), which enter Eq. (1.13) and (1.14) via 
frequency co. The dynamic cutting force Pz depends not only on displacement 
z(t) but also on velocity z(t) =  dz/dt. The velocity-dependent term may bring 
the system instability when effective cutting damping Ccz <  0, and the magnitude 
of Ccz is so large that it cannot be compensated by positive structural damping.

E xperim enta l D eterm ina tion  o f  E ffective C u tting  S tiffn ess

Experimental determination of the cutting process stiffness can be illustrated on 
the example of a cantilever workpiece [6]. A cantilever workpiece with a larger 
diameter segment at the end (Fig. 1.7) can be modeled as a single degree of 
freedom system with stiffness K w without cutting and with stiffness K w +  K t 
during cutting, where K w is the stiffness of the workpiece at the end and K t is 
the effective cutting stiffness. Since stiffness of the cantilever workpiece is rela­
tively small as compared with structural stiffness of the machine tool (lathe) and 
of the clamping chuck, chatter conditions are determined by the workpiece and 
the cutting process only. Thus, if the natural frequency f w of the workpiece (with­
out cutting) and the frequency f c of the tool or workpiece vibration at the chatter 
threshold were measured, then the effective cutting stiffness can be determined 
using the following equation:
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The frequency f w can be measured using an accelerometer, while the chatter fre­
quency f c can be measured on the workpiece or on the tool using a linear variable 
differential transformer (LVDT) during cutting as shown in Fig. 1.7.

A cantilever bar with overhang L — 111 mm (5 in.) having stiffness (as 
measured) K w — 10,416 lb/in. was used for the tests. The natural frequency/, 
~  200 Hz and the equivalent mass is about 0.0065 lb-sec2/in. The values of the 
effective cutting stiffness and vibration amplitude under different cutting condi­
tions are given in Fig. 1.8a-c. It can be seen that smaller vibration amplitudes 
are correlated with higher effective cutting stiffness values. This validates repre­
sentation of the effective cutting stiffness as a spring.

1.5 GENERAL COMMENTS ON STIFFNESS IN DESIGN

In most of the structures, their structural stiffness depends on the following fac­
tors:

Elastic moduli of structural material (s)
Geometry of the deforming segments (cross-sectional area A  for tension/ 

compression/shear, cross-sectional moment of inertia IXty for bending, 
and polar moment of inertia Jp for torsion)

Linear dimensions (e.g., length L, width B , height H )
Character and magnitude of variation of the above parameters across the 

structure
Character of loading and supporting conditions of the structural components
In structures having slender, thin-walled segments, stiffness can depend on 

elastic stability of these segments
Joints between substructures and/or components frequently contribute the 

dominant structural deformations (e.g., see data on the breakdown of 
tool-end deflections above in Section 1.4).

While for most machine components a stiffness increase is desirable, there 
are many cases where stiffness values should be limited or even reduced. The 
following are some examples:

Perfectly rigid bodies are usually more brittle and cannot accommodate 
shock loads

Many structures are designed as statically indeterminate systems, but if the 
connections in such a system are very rigid, it would not function prop-
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(a)

(b)

Cutting depth (in.)

Figure 1.8 Effective cutting stiffness (line 1) and workpiece vibration amplitude (line 
2) vs. (a) cutting speed, (b) feed, and (c) depth of cut.
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erly since some connections might be overloaded. If the most highly 
loaded connection fails, others would fail one after another 

Huge peak loads (stress concentrations) may develop in contacts between 
very rigid bodies due to presence of surface asperities 

Stiffness adjustment/tuning by preloading would not be possible for very 
rigid components

High stiffness may result in undesirable values for the structural natural fre­
quencies

1.6 STRUCTURAL CHARACTERISTICS OF SOME WIDELY 
USED MATERIALS

Stiffness of a structural material is characterized by its elastic (Young’s) modulus 
E  for tension/compression. However, there are many cases when knowledge of 
just Young’s modulus is not enough for a judicious selection of the structural 
material. Another important material parameter is shear modulus G. For most 
metals, G =  ~ 0 .4£ .

Frequently, stiffer materials (materials with higher E) are heavier. Thus, use 
of such materials would result in structures having smaller cross sections but 
heavier weight, which is undesirable. In cases when the structural deflections are 
caused by inertia forces, like in a revolute robot arm, use of a stiffer but heavier 
material can be of no benefit or even counterproductive if its weight increases 
more than its stiffness and specific stiffness E ly is the more important parameter 
(see Section 7.5 for ways to overcome this problem).

Very frequently, stiffer materials are used to increase natural frequencies of 
the system. This case can be illustrated on the example of two single-degree-of- 
freedom dynamic systems in Fig. 1.9. In these sketches, y, A u h , are density, 
cross-sectional area, and length, respectively, of the inertia element (mass m); 
A 2, h , K  and b are cross-sectional area, length, thickness, width, respectively, of 
the elastic elements (stiffness k). For the system in Fig. 1.9a (tension/compression 
elastic element) the natural frequency is

(1.16)

For the system in Fig. 1.9b (elastic element loaded in bending)

m -  yAj/j, k = 3EHl\ =  (3/12) (.Ebh3H\) (1.17)

thus the natural frequency is
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In both cases, the natural frequency depends on the criterion E ly. A similar crite­
rion can be used for selecting structural materials for many nonvibratory applica­
tions.

To provide a comprehensive information, Table 1.1 lists data on E , y, Ely  
for various structural materials (see page 3). It is interesting to note that for the 
most widely used structural materials (steel, titanium, aluminum, and magne­
sium), values of E ly are very close.

While graphite has the second highest Young’s modulus and the highest 
ratio Ely in Table 1.1, it does not necessarily mean that the graphite fiber-based 
composites can realize such high performance characteristics. First of all, the 
fibers in a composite material are held together by a relatively low modulus ma­
trix (epoxy resin or a low E metal such as magnesium or aluminum). Second of 
all, the fibers realize their superior elastic properties only in one direction (in 
tension). Since mechanical structures are frequently rated in a three-dimensional 
stress-strain environment, the fibers have to be placed in several directions, and 
this weakens the overall performance characteristics of the composite structures.

Fig. 1.10 illustrates this statement on an example of a propeller shaft for a 
surface vehicle [7]. Although in a steel shaft (Fig. 1.10a) steel resists loads in

Figure 1.9 (a) Tension-compression and (b) bending single degree of freedom vibratory
systems.
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Steel tube

M

CFRP tube Carbon fiber Winding angle

\_____________/ X a

W inding angle (° )

30 60 90
W inding  angle (° )

Figure 1.10 (a) Steel and (b) composite propeller shafts for automotive transmissions
and comparison of their (c) bending and (d) torsional rigidity.

all directions, in a shaft made of carbon fiber reinforced plastic (CFRP) 
(Fig. 1.10b) there is a need to place several layers of fiber at different winding 
angles. Fig. 1.10c,d show how bending and torsional rigidity of the composite 
shaft depend on the winding angles. While it is easy to design bending or torsional 
stiffness of the composite shaft to be much higher than these characteristics of



Introduction and Definitions 23

the steel shaft, a combination of both stiffnesses can be made superior to the 
steel shaft only marginally (at the winding angle, —25 degrees).

Another example of a stiffness-critical and natural-frequency-critical compo­
nents are cones and diaphragms for loudspeakers [8]. Three important material 
properties for loudspeaker diaphragms are:

Large specific modulus E ly (resulting in high natural frequencies) in order 
to get a wider frequency range of the speaker

High flexural rigidity E l in order to reduce harmonic distortions
Large internal energy dissipation (damping) characterized by the ‘ ‘loss fac­

tor”  r| — tan P (p — “ loss angle”  of the material; log decrement 8 = 
n  tan (3) to suppress breakups of the diaphragms at resonances

Although paper (a natural fiber-reinforced composite material) and synthetic 
fiber-reinforced diaphragms were originally used, their stiffness values were not 
adequate due to the softening influence of the matrix. Yamamoto and Tsukagoshi 
[8] demonstrated that use of beryllium and boronized titanium (25 jam thick tita­
nium substrate coated on both sides with 5 jam thick boron layers) resulted in 
significant improvement of the frequency range for high frequency and midrange 
speakers.

As with loudspeaker cones and diaphragms described earlier, damping of a 
material is an important consideration in many applications. Frequently, perfor­
mance of a component or a structure is determined by combination of its stiffness 
and damping. Such a combination is convenient to express in the format of a 
criterion. For the important problems of dynamic stability of structures or pro­
cesses (e.g., chatter resistance of a cutting process, settling time of a decelerating 
revolute link such as a robot arm, wind-induced self-excited vibrations of smoke 
stack, and some vibration isolation problems as in Article 1) the criterion is Kd, 
where K  is effective stiffness of the component/structure and 8 is its log decre­
ment. For such applications, Table 1.2 can be of some use. Table 1.2 lists Young’s

Table 1.2 Damping (Loss Factor) and Young’s Modulus of Some Materials

Material E (MPa) Ex\

Tinel 6.5 X 1(L2 4 X 104 2600
Poly sulfide rubber (Thiokol H-5) 5.0 30 150
Tin 2 X 10~3 6.7 X 104 134
Steel 1 -  6 X 10"4 21 X 104 20-120
Neoprene (type CG-1) 0.6 86.7 52
Zinc 3 X 10~4 8 X 104 24
Aluminum io~4 6.7 X 104 6.7
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modulus E , determining the effective stiffness of a component, loss factor r\ = 
tan (J, and product Er |, the so-called loss modulus for some structural and energy 
absorbing materials. It can be seen that the best (highest) value of Er\ is for a 
nickel titanium “ shape memory” alloy Tinel (—50% Ni + —50% Ti), and the 
lowest value is for aluminum.

REFERENCES

1. Tobias, S.A., Machine Tool Vibration, Blackie, London, 1965.
2. Orlov, P.I., Fundamentals of Machine Design, Vol. 1, Mashinostroenie Publishing

House, Moscow, 1972 [in Russian].
3. Wang, W., Marshek, K.M., “ Determination of the Load Distribution in a Threaded 

Connector Having Dissimilar Materials and Varying Thread Stiffness,” ASME J. of 
Engineering for Industry, 1995, Vol. 117, pp. 1-8.

4. Levina, Z.M., Zwerew, I.A., “ FEA of Static and Dynamic Characteristics of Spindle
Units,” Stanki I instrument, 1986, No. 8, pp. 6 -9  [in Russian].

5. Rivin, E.I., “ Trends in Tooling for CNC Machine Tools: Tool-Spindle Interfaces,” 
ASME Manufacturing Review, 1991, Vol. 4, No. 4, pp. 264-274.

6. Rivin, E.I., Kang, H., “ Improvement of Machining Conditions for Slender Parts by
Tuned Dynamics Stiffness of Tool,” Intern. J. of Machine Tools and Manufacture,
1989, Vol. 29, No. 3, pp. 361-376.

7. Kawarada, K., et al. “ Development of New Composite Propeller Shaft,” Toyota
Technical Review, 1994, Vol. 43, No. 2, pp. 85-90.

8. Yamamoto, T., Tsukagoshi, T., “ New Materials for Loudspeaker Diaphragms and 
Cones. An Overview.” Presentation at the Annual Summer Meeting of Acoustical 
Society of America, Ottawa, Canada, 1981, pp. 1-10.



2
Stiffness of Structural Components: 
Modes of Loading

2.1 INFLUENCE OF MODE OF LOADING ON STIFFNESS [1]

There are four principal types of structural loading: tension, compression, bend­
ing, and torsion. Parts experiencing tension-compression demonstrate much 
smaller deflections for similar loading intensities and therefore usually are not 
stiffness-critical. Figure 2.1a shows a rod of length L  having a uniform cross- 
sectional area A  along its length and loaded in tension by its own weight W  and 
by force P. Fig. 2.1b shows the same rod loaded in bending by the same force 
P or by distributed weight w =  W/L as a cantilever built-in beam, and Fig. 2.1c 
shows the same rod as a double-supported beam.

Deflections of the rod in tension are

f% = PL/EA-, f% = WL/2EA (2.1)

Bending deflections for cases b and c, respectively, are

f bPb = Pl?/3EI\ f bb = WLVZEI (2.2)

f bPc = PL3/4SEI = 5WL2/3S4EI (2.3)

where I  = cross-sectional moment of inertia. For a round cross section (diameter 
d ,A  = n d 2/4 ,1  -  t t^ 4/64, and I/A = d 2/ 16)

f b/ f te = kL2/d2 (2.4)

25
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Figure 2.1 Various modes of loading of a rod-like structure: (a) tension; (b) bending 
in a cantilever mode; (c) bending in a double-supported mode; and (d) bending with an 
out-of-center load.

where coefficient k depends on loading and supporting conditions. For example, 
for a cantilever beam with Lid  = 20, (f bb/ f te)F = 2,130 and (f bb/ f te)w = 1,600; 
for a double-supported beam with Lid  =  20, (f bcl f te)F = 1 3 3  and (f bbl f te)w = 
167. Thus, bending deflections are exceeding tension-compression deflections by 
several decimal orders of magnitude.

Figure 2 .Id shows the same rod whose supporting conditions are as in 
Fig. 2.1b, but which is loaded in bending with an eccentricity, thus causing bend­
ing [as described by the first expression in Eq. (2.2)] and torsion, with the transla­
tional deflection on the rod periphery (which is caused by the torsional deforma­
tion) equal to

f t0 = PLd2/4GJp (2.5)

where Jp =  polar moment of inertia and G = shear modulus of the material. 
Since Jp = n d 4/32 for a circular cross section then

fw/fte = d 2/4(EA/GJp) -  2E/G = 5 (2.6)

since for structural metals E  = 2.5 G. Thus, the torsion of bars with solid cross
sections is also associated with deflections substantially larger than those under
tension/compression.
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These simple calculations help to explain why bending and/or torsional com­
pliance is in many cases critical for the structural deformations.

Many stiffness-critical mechanical components are loaded in bending. It was 
shown earlier that bending is associated with much larger deformations than 
tension/compression of similar-size structures under the same loads. Because of 
this, engineers have been trying to replace bending with tension/compression. 
The most successful designs of this kind are trusses and arches.

Advantages of truss structures are illustrated by a simple case in Fig. 2.2 
[2], where a cantilever truss having overhang / is compared with cantilever beams 
of the same length and loaded by the same load P. If the beam has the same 
cross section as links of the truss (case a) then its weight Gp is 0.35 of the truss 
weight G?, but its deflection is 9,000 times larger while stresses are 550 times 
higher. To achieve the same deflection (case c), diameter of the beam has to be 
increased by the factor of 10, thus the beam becomes 35 times heavier than the 
truss. The stresses are equalized (case b) if the diameter of the beam is increased 
by 8.25 times; the weight of such beam is 25 times that of the truss. Ratio of 
the beam deflection f b to the truss deflection f  is expressed as

f b/ f  «  10.5(l/d)2sin2 a  cos a  (2.7)

Deflection ratio f b/ f  and maximum stress ratio o b/ c t are plotted in Fig. 2.3 
as functions of l/d  and a .

Similar effects are observed if a double-supported beam loaded in the middle
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Figure 2.2 Comparison of structural characteristics of a truss bracket and cantilever 
beams.
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Figure 2.3 Ratios of (b) stresses and (c) deflections between a cantilever beam (diame­
ter d, length /) and (a) a truss bracket.

of its span (as shown in Fig. 2.4a) is replaced by a truss (Fig. 2.4b). In this 
case

f bJf = ~ 1 .3 (l/d )3sin2 a  cos a  (2.8)

Deflection ratio f j f t and maximum stress ratio (5b/ c t are plotted in Fig. 2.5 
as functions of Ud and a . A similar effect can be achieved if the truss is trans­
formed into an arch (Fig. 2.4c).

These principles of transforming the bending mode of loading into the 
tension/compression mode of loading can be utilized in a somewhat “ disguised” 
way in designs of basic mechanical components, such as brackets (Fig. 2.6). The

Figure 2.4 Typical load-carrying structures: (a) double-supported beam; (b) truss 
bridge; (c) arch.
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Figure 2.5 Ratios of (b) stresses and (c) deflections between (a) a double-supported 
beam in Fig. 2.4a and a truss bridge in Fig. 2.4b.

bracket in Fig. 2.6a(I) is loaded in bending. An inclination of the lower wall of 
the bracket, as in Fig. 2.6a(II), reduces deflection and stresses, but the upper wall 
does not contribute much to the load accommodation. Design in Fig. 2.6a(III) 
provides a much more uniform loading of the upper and lower walls, which 
allows one to significantly reduce size and weight of the bracket.

Even further modification of the “ truss concept” is illustrated in Fig. 2.6b.

Bending Reduced/Eliminated Bending

Only walls (black) work Upper side tension, lower - compression

Figure 2.6 Use of tension/compression instead of bending for structural components.
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Load P  in case 2.6b(I) (cylindrical bracket) is largely accommodated by segments 
of the side walls, which are shown in black. Tapering the bracket, as in 
Fig. 2.6b(II), allows one to distribute stresses more evenly. Face wall f  is an 
important feature of the system since it prevents distortion of the cross section 
into an elliptical one and it is necessary for achieving optimal performance.

There are many other design techniques aimed at reduction or elimination of 
bending in favor of tension/compression. Some of them are illustrated in Fig. 2.7. 
Fig. 2.7a(I) shows a mounting foot of a machine bed. Horizontal forces on the 
bed cause bending of the wall and result in a reduced stiffness. “ Pocketing” of 
the foot as in Fig. 2.7a(II) aligns the anchoring bolt with the wall and thus reduces 
the bending moment; it also increases the effective cross section of the foot area, 
which resists bending. The disc-like hub of a helical gear in Fig. 2.7b(I) bends 
under the axial force component of the gear mesh. Inclination of the hub as in 
Fig. 2.7b(II) enhances stiffness by introducing the “ arch concept.” Vertical load 
on the block bearing in Fig. 2.7c(I) causes bending of its frame, while in 
Fig. 2.7c (II) it is accommodated by compression of the added central support. 
Bending of the structural member under tension in Fig. 2.7d(I) is caused by its 
asymmetry. After slight modifications as shown in Fig. 2.7d(II), its effective cross 
section can be reduced due to total elimination of bending.

Some structural materials, such as cast iron, are better suited to accommodate 
compressive than tensile stress. While it is more important for strength, stiffness 
can also be influenced if some microcracks which can open under tension, are 
present. Fig. 2.8 gives some directions for modifying components loaded in bend-

d

Figure 2.7 Reduction of bending deformations in structural components.
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Figure 2.8 Increasing compressive stresses at the expense of tensile stresses.

ing so that maximum stresses are compressive rather than tensile. While the maxi­
mum stresses in the beam whose cross section is shown in Fig. 2.8a(I) are tensile 
(in the bottom section), turning this beam upside down as in Fig. 2.8a(II) brings 
maximum stresses to the compressed side (top). Same is true for Fig. 2.8b. A 
similar principle is used in transition from the bracket with the stiffening wall 
shown in Fig. 2.8c(I) to the identical but opposedly mounted bracket in 
Fig. 2.8c(II).

2.1.1 Practical Case 1: Tension/Compression Machine 
Tool Structure

While use of tension/compression mode of loading in structures is achieved by 
using trusses and arches, there are also mechanisms providing up to six degrees- 
of-freedom positioning and orientation of objects by using only tension/compres­
sion actuators. The most popular of such mechanisms is the so-called Stewart 
Platform [3]. First attempts to use the Stewart Platform for machine tools (ma­
chining centers) were made in the former Soviet Union in the mid-1980s [4].

Figure 2.9 shows the design schematic of the Russian machining center based 
on application of the Stewart Platform mechanism. Positioning and orientation 
of the platform 1 holding the spindle unit 2 which carries a tool machining part 
3 is achieved by cooperative motions of six independent tension/compression 
actuators 4, which are pivotably engaged via spherical joints 5 and 6 with plat­
form 1 and base plate 7, respectively.

Cooperation between the actuators is realized by using a rather complex 
controlling software which commands each actuator to participate in the pro­
grammed motion of the platform. One shortcoming of such a machining center 
is a limited range of motion along each coordinate, which results in a rather 
complex shape of the work zone as illustrated in Fig. 2.10.

However, there are several advantages that make such designs promising for 
many applications. Astanin and Sergienko [4] claim that while stiffness along
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View by A

Figure 2.9 Design schematic and coordinate axes of Russian machining center based 
on the Stewart Platform kinematics.

the y-axis (ky) is about the same as for conventional machining centers, stiffness 
kz is about 1.7 times higher. The overall stiffness is largely determined by defor­
mations in spherical joints 5 and 6, by platform deformations, and by spindle 
stiffness, and can be enhanced 50-80%  by increasing platform stiffness in the 
x-y plane and by improving the spindle unit. The machine weighs 3 -4  times less

JlfipacL )(rtri

Figure 2.10 Work zone of machining center in Fig. 2.9.
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than a conventional machining center and is much smaller (2-3  times smaller 
footprint). It costs 3 -4  times less due to use of standard identical and not very 
complex actuating units and has 3 -5  times higher feed force.

Similar machining centers were developed in the late 1980s and early 1990s 
by Ingersol Milling Machines Co. (Octahedral-Hexapod) and by Giddings and 
Lewis Co. (Variax). Popularity of this concept and its modifications for CNC 
machining centers and milling machines has recently been increasing [5], [6].

2.1.2 Practical Case 2: Tension/Compression 
Robot Manipulator

Tension/compression actuators also found application in robots. Fig. 2.11 shows 
schematics and work zone of a manipulating robot from NEOS Robotics Co. 
While conventional robots are extremely heavy in relation to their rated payload 
(weight-to-payload ratios 15-25 [1]), the NEOS robot has extremely high perfor­
mance characteristics for its weight (about 300 kg), as listed in Table 2.1.

2.2 OPTIMIZATION OF CROSS-SECTIONAL SHAPE

2.2.1 Background

Significant gains in stiffness and/or weight of structural components loaded in 
bending can be achieved by a judicious selection of their cross-sectional shape. 
Importance of the cross-section optimization can be illustrated on the example 
of robotic links, which have to comply with numerous, frequently contradictory, 
constraints. Some of the constraints are as follows:

The links should have an internal hollow area to provide conduits for electric 
power and communication cables, hoses, power-transmitting compo­
nents, control rods, etc.

At the same time, their external dimensions are limited in order to extend 
the usable workspace.

Links have to be as light as possible to reduce inertia forces and to allow 
for the largest payload per given size of motors and actuators.

For a given weight, links have to possess the highest possible bending (and 
in some cases torsional) stiffness.

One of the parameters that can be modified to comply better with these con­
straints is the shape of the cross section. The two basic cross sections are hollow 
round (Fig. 2.12a) and hollow rectangular (Fig. 2.12b). There can be various 
approaches to the comparison of these cross sections. Two cases are analyzed 
below [1]:
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Table 2.1 Specifications of NEOS Robot

Load capacity Handling payload 150 kg
Turning torque 200 Nm
Pressing, maximum 15,000 N
Lifting, maximum 500 kg

Accuracy Repeatability (ISO 9283) <  ± 0.02 mm
Positioning <  ± 0.20 mm
Path following at 0.2 m/s <  ± 0.10 mm
Incremental motion <  0.01 mm

Stiffness Static bending deflection (ISO 9283.10)
X and Y directions 0.0003 mm/N
Z direction 0.0001 mm/N

1. The wall thickness of both cross sections is the same.
2. The cross-sectional areas (i.e., weight) of both links are the same.

In both cases, the rectangular cross section is assumed to be a square whose 
external width is equal to the external diameter of the round cross section.

The bending stiffness of a beam is characterized by its cross-sectional mo­
ment of inertia /, and its weight is characterized by the cross-sectional area A. 
For the round cross section in Fig. 2.12a

l rd = 7i(D4 -  D4)/64 = k [D40 -  (Do -  2t)4]/64 = n(D30t/8)(l -  3t/D0 + 4 t2/D20) (2.9) 

A rd = k (D20 -  D?)/4 = %D0t(l -  t/D0) (2.10)

Hollow Round Hollow Rectangular

Figure 2.12 Typical cross sections of a manipulator link: (a) hollow round (ring-like); 
(b) hollow rectangular.



36 Chapter 2

For the rectangular cross section in Fig. 2.12b, the value of I  depends on the 
direction of the neutral axis in relation to which the moment of inertia is com­
puted. Thus

-  atfl  12 -  (a -  2t)(b -  2r)3/12; }. = a 3Z?/12 -  (a -  2t)\b  -  2t)/l2  (2.11a)

For the square cross section

Isq = a4/ 12 -  (a -  2t)4/12 = 2/3 a3t( 1 -  3tfa + At2/a2) (2.11b)

The cross-sectional areas for the rectangular and square cross sections, respec­
tively, are

A re = ab — (a — 2 t)(b — 21) = 2 t(a +b) — 412; A sq = 4at(l — t/a) (2.12)

For case 1, D 0 = a, and t is the same for both cross sections. Thus,

Isq/Ird = (2/3)/(tc/8) -  1.7; A sq/Ard = 4/jc -  1.27 (2.13)

or a square cross section provides a 70% increase in rigidity with only a 27%
increase in weight; or a 34% increase in rigidity for the same weight.

For case 2 (D0 =  a , A rd — A sq, and t rd ^  tsq), if trd = 0.2D0, then t Uq = 
0.141 D q = 0.147a and

l rd = 0 . 0 4 0 5 Isq = 0.0632a4; l sq/Ird = 1.56 (2.14a)

If t2l-d = 0.1 Z)0, then t2sq = 0.0765D 0 =  0.0765a, and

Ird = 0.029D04; /,, = 0.0404a4; Isq/Ird = 1.40 (2.14b)

Thus, for the same weight, a beam with the thin-walled square cross section 
would have 34-40%  higher stiffness than a beam with the hollow round cross 
section. In addition, the internal cross-sectional area of the square beam is sig­
nificantly larger than that for the round beam of the same weight (the thicker the 
wall, the more pronounced is the difference).

From the design standpoint, links of the square cross section have also an 
advantage of being naturally suited for using roller guideways. The round links 
have to be specially machined when used in prismatic joints. On the other hand, 
round links are easier to fit together (e.g., if telescopic links with sliding connec­
tions are used).

Both stiffness and strength of structural components loaded in bending 
(beams) can be significantly enhanced if a solid cross section is replaced with
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the cross-sectional shape in which the material is concentrated farther from the 
neutral line of bending. Fig. 2.13 [2] shows comparisons of both stiffness (cross- 
sectional moment of inertia 70) and strength (cross-sectional modulus W) for 
round cross sections and for solid square vs. standard I-beam profile for the same 
cross-sectional area (weight).

2.2.2 Composite/Honeycomb Beams

Bending resistance of beams is largely determined by the parts of their cross 
sections, which are farthest removed from the neutral plane. Thus, enhancement 
of bending stiffness-to-weight ratio for a beam can be achieved by designing its 
cross section to be of such shape that the load-bearing parts are relatively thin 
strips on the upper and lower sides of the cross section. However, there is a need 
for some structural members maintaining stability of the cross section so that the

Section  R atios W /W q

d/D ,h/ho / / /0

1 1

Figure 2.13 Relative stiffness (cross-sectional moment of inertia I) and strength (sec­
tion modulus W) of various cross sections having same weight (cross-sectional area A).



38 Chapter 2

positions of the load-bearing strips are not noticeably changed by loading of the 
beam. Rolling or casting of an integral beam (e.g., I-beams and channel beams in 
which an elongated wall holds the load-bearing strips) can achieve this. Another 
approach is by using composite beams in which the load-bearing strips are sepa­
rated by an intermediate filler (core) made of a light material or by a honeycomb 
structure made from the same material as the load-bearing strips or from some 
lighter metal or synthetic material. The composite beams can be lighter than 
the standard profiles such as I-beams or channels, and they are frequently more 
convenient for the applications. For example, it is not difficult to make composite 
beams of any width (composite plates), to provide the working surfaces with 
smooth or threaded holes for attaching necessary components (“ breadboard” 
optical tables), or to use high damping materials for the middle layer (or to use 
damping fillers for honeycomb structures).

It is important to realize that there are significant differences in the character 
of deformation between solid beams (plates) and composite beams (plates). Bend­
ing deformation of a beam comprises two components: moment-induced defor­
mations and shear-induced deformations [7]. For beams with solid cross sections 
made from a uniform material, the shear deformation can be neglected for L/h  
^  10. For example, for a double-supported beam loaded with a uniformly distrib­
uted force with intensity q per unit length, deflection at the mid-span is [7]

where E  =  Young’s modulus, G = shear modulus, F = cross-sectional area, and 
a sh is the so-called shear factor (a sh — 1.2 for rectangular cross sections, a sh —
1.1 for round cross sections). If the material has EIG  =  2.5 (e.g., steel), then for 
a rectangular cross section (IIF  =  h2/ 12)

For L/h  =  10, the second (shear) term in brackets in Eq. (2.15) is 0.024, less 
than 2.5%.

For a double-supported beam loaded with a concentrated force P in the mid­
dle, deformation under the force is [7]

(2.15a)

(2.15b)

(2.16a)


