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About the book series

Numerical modeling is the process of obtaining approximate solutions to problems of scientific
and/or engineering interest. The book series addresses novel mathematical and numerical tech-
niques with an interdisciplinary emphasis that cuts across all fields of science, engineering and
technology. It focuses on breakthrough research in a richly varied range of applications in phys-
ical, chemical, biological, geoscientific, medical and other fields in response to the explosively
growing interest in numerical modeling in general and its expansion to ever more sophisticated
physics. The goal of this series is to bridge the knowledge gap among engineers, scientists, and
software developers trained in a variety of disciplines and to improve knowledge transfer among
these groups involved in research, development and/or education.

This book series offers a unique collection of worked problems in different fields of engineering
and applied mathematics and science, with a welcome emphasis on coupling techniques. The book
series fills a need for up-to-date information on numerical modeling.

Faster computers and newly developed or improved numerical methods such as boundary ele-
ment and meshless methods or genetic codes have made numerical modeling the most efficient
state-of-art tool for integrating scientific and technological knowledge in the description of phe-
nomena and processes in engineered and natural systems. In general, these challenging problems
are fundamentally coupled processes that involve dynamically evolving fluid flow, mass transport,
heat transfer, deformation of solids, and chemical and biological reactions.

This series provides an understanding of complicated coupled phenomena and processes, its
forecasting, and approaches in problem solving for a diverse group of applications, including
natural resources exploration and exploitation (e.g. water resources and geothermal and petroleum
reservoirs), natural disaster risk reduction (earthquakes, volcanic eruptions, tsunamis), evaluation
and mitigation of human-induced phenomena as climate change), and optimization of engineering
systems (e.g. construction design, manufacturing processes).

Jochen Bundschuh
Mario-César Suárez Arriaga

(Series Editors)
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Preface

The behavior of solids and fluids in response to external forcings is of fundamental importance
in many engineering fields as well as in the geosciences. Examples include recovery of oil and
gas from subsurface reservoirs, hydrology of groundwater and surface water systems, stability
of mechanical structures such as bridges, dams and mines, propagation of seismic waves and
electrical current through geologic media, and assessment and mitigation of seismic and vol-
canic hazards. Much of the fundamental physics of the mechanics of continua—solids as well as
fluids—was developed in the nineteenth and early twentieth century, and has been expressed as
mathematical models that usually take the form of partial differential equations. Analytical solu-
tions to these equations are possible only for idealized circumstances; hence the need for numerical
approaches.

Numerical modeling is the process of obtaining approximate solutions to problems of scientific
and/or engineering interest. It is as much an art as it is a science. Indeed, although the funda-
mental physics involved as well as the mathematical algorithms certainly are ‘‘science’’, posing
and solving numerical problems in a manner that will provide useful insights is an ‘‘art’’, in the
sense that it requires much creativity and intuition on behalf of the numerical analyst. Contin-
uum mechanics problems when posed "rigorously" often defy solution, while approximations or
simplifications may change the problem in such a way that it is no longer a good model of the
real world process of interest. In addition, parameters and data defining a numerical problem are
often incomplete, of limited accuracy, or unavailable. It is the art of the numerical analyst to find
a middle ground between rigor and simplification, and to identify and implement conceptualiza-
tions and approximations that will be practically feasible while being responsive to the desired
objectives.

Numerical methods have a long history and were broadly practiced in fields such as civil engi-
neering long before the advent of the digital computer. The interest in and practice of these methods
has grown explosively with the wide availability of ever faster computers at ever lower cost. At
the same time the demands placed on numerical models have also greatly increased. Extraction
of subsurface resources, such as oil, gas, minerals, and geothermal energy, demands ever more
detailed models with more accurate representation of coupled processes that involve fluid flow,
mass transport, deformation of solids, heat transfer, chemical reactions, and even microbial activ-
ity. Such processes may operate on a broad range of spatial scales. Similar trends are present in
environmental protection, such as groundwater resources, subsurface disposal of chemical and
radioactive wastes, and understanding human impacts on global climate, where insight is required
for unprecedented time scales of hundreds to thousands of years or more. Problems involving mul-
tiple spatial and temporal scales are very difficult to solve, and are among the most active areas of
current research.

The chapters in this monograph grew out of presentations made at the 4th International Congress
and 2nd National Congress of Numerical Methods in Engineering and Applied Sciences, held in the
beautiful city of Morelia, Michoacan, Mexico, in January 2007. The Congress brought together an
international group of applied mathematicians, engineers, and geoscientists active in applications
and further developments of numerical methods. Emphasizing the great diversity in numerical
modeling problems and approaches in different fields of science and engineering, the articles

XVII



XVIII Preface

assembled in this monograph also testify to the fact that there is much commonality and cross-
fertilization. It is my hope that the studies presented in this volume will benefit researchers and
practitioners alike by encouraging awareness and promoting new developments beyond narrow
fields of specialization.

Karsten Pruess
Senior Scientist

Lawrence Berkeley National Laboratory
Earth Science Division

Berkeley, California, August 2007
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CHAPTER 1

Mathematical and computational modeling in Mexico

Ismael Herrera-Revilla

1.1 INTRODUCTION

I want to thank the editors, for having invited me to write this introductory chapter, whose initial
intention was to give a historical background of mathematical and computational modeling (MMC:
Modelación Matemática y Computacional in Spanish) in Mexico. However, I must confess that in
order to give a fair and balanced account of the past and present state of MMC a very thorough
study and research would be required. This, however, is beyond the available time and resources.
Thus, the scope of this chapter was severely limited. It only contains a rather schematic and general
historical perspective, together with a few examples, drawn from my own personal experience,
of the MMC activities that have been carried out in Mexico up to now. We hope these examples
will be useful as illustrations of what has been done so far, but the resulting picture is far from
representing an integrated and fair image of the MMC activity in Mexico. In particular, there
are many people working in MMC whose work deserves attention and are not here included; my
apologies to them all.

1.2 WHAT IS MMC?

Predicting nature’s behavior is an ancestral human aspiration. For this purpose, our forefathers
used supra-natural means, including magical and religious thinking. However, throughout history,
this ambition of mankind has been a basic motivation for scientific development. This actually
covered a considerable time-span, but eventually it was recognized that scientific means were the
most effective for performing nature-behavior prediction, and that in turn ‘‘scientific prediction’’
required deep knowledge of nature and its phenomena. Furthermore, it must be pointed out that
scientific and technological knowledge by itself is not enough for predicting the behavior of nature
and of other systems that are important to humans, since behavior prediction requires integrating
such knowledge into models to mimic those systems. In addition, it was also eventually recognized
that the most effective models are mathematical models. Newton, in the seventeenth century, was
the pioneer and founder of this school of thought when he developed the required mathematical
methods and illustrated their power by successfully modeling the planetary system’s motion. This
awoke the consciousness of his contemporaries to the potential of mathematical modeling and
stimulated further expansion of his basic concepts.

Newton was followed by many generations of physicists and mathematicians who developed
his ideas and applied them to an amazing diversity of systems in science and engineering. As far
as continuous macroscopic systems are concerned, among which most systems from engineering
and science are included, the theoretical framework was crowned by the axiomatic formulation
developed during the twentieth century under the leadership of Truesdell, Noll and others [1, 2].
Such a theoretical framework was very impressive, albeit insufficient because although its range
of applicability included practically all systems of interest, the analytical tools available were very
limited and only capable of dealing with simple systems. Linearity of the models was an ever-
present assumption, but even so, simple geometry and simple properties were always required.
This was not suitable for supplying the detailed information that is needed in many scientific
and engineering applications. When that was the state of the art, the usefulness of mathematical

3
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modeling as an engineering tool was severely hampered. However, that situation changed sharply
during the second half of the twentieth century with the advent of electronic computing. Nowadays
mathematical and computational modeling is the most efficient method for integrating scientific
and technological knowledge, with the purpose of performing effectively scientific prediction.

1.3 THE ANTECEDENTS

1.3.1 Science and engineering in ancient Mexico

Indigenous scientific development in Mexico was quite significant. Autochthonous advances in
astronomy and mathematics are proverbial, as were the outstanding advances in hydraulics and
engineering, although these are not as well known [3, 4]. In the eighth century, in the time when
the Teotihuacán culture flourished, irrigation was based on the use of springs. Later, the water of
the lake in which Tenochtilán, the ancient Aztec capital on the site of present-day Mexico City, was
located was salty and unsuited for human consumption. However, in the Valley of Mexico springs
were abundant and the fresh water they produced was a valuable source of water for the people
who lived there. Thus, large aqueducts were constructed; among them, one carried the water from
Chapultepec springs, and another from Coyoacán springs. It is also known that the works used for
supplying water to Texcoco were built by Nezahualcóyotl, the legendary king, poet and engineer.

On the other hand, through history the cities located in the Valley of Mexico have been susceptible
to flooding during the annual rainy season. To diminish such risks and reduce the damages, the
Aztecs built boulevards, ditches and other hydraulic works, dividing with them the water into sectors
and controlling the water flow in this manner. The Nezahualcóyotl ditch is especially famous, and
it was used to traverse the Valley of Mexico from north to south.

1.3.2 Mexico’s scientific renaissance

That not withstanding, contemporary scientific and engineering activity of Mexico actually started
after the 1910 Mexican Revolution. Political stability was reestablished in the 1930s, and at the end
of that decade and beginning of the next one the foundations of contemporary scientific development
were laid down. Nationalism, one of the revolutionary ideology’s components, included the idea
that a new nation had to be built and that in this endeavor every Mexican citizen should participate.
Social demands, as well as a thorough revision of material needs, required modernization of the
country, which also had an important bearing in the post-revolutionary governmental programs.

The Comisión Nacional de Caminos (National Roads Commission) was created in the 1920s
as a governmental agency in charge of an ambitious road construction program that had just
begun. Similarly, the Comisión Nacional de Irrigación (National Irrigation Commission) was
also created. This commission eventually became the Secretaría de Recursos Hidráulicos, with
visible responsibility in dam construction and dam operation, while the Comisión Nacional de
Caminos became the Secretaría de Obras Públicas, with responsibility for roads and also dam
construction. Furthermore, the oil industry was nationalized in 1938, and the enterprise Petróleos
Mexicanos that has been in charge of its administration ever since, was established. Safe water
supply for the population and emerging activities, together the need to generate electricity required
for the modernization of the country soon led to a boom in road building and construction of
other public works such as dams. A nationalistic private sector also played an important role in
these developments. In the 1940s, a group of young, distinguished Mexican engineers created what
eventually became a very important construction enterprise; namely, Ingenieros Civiles Asociados
(ICA), that was instrumental in carrying out many of the governmental projects.

The ‘‘Golden Age’’ of Mexican engineering (especially civil engineering) that thrived during the
1940s and extended over many decades thereafter must of course be attributed to the needs created
by the above-mentioned boom in public works, but ICA was the main catalyst. In the chemical
industrial sector, Bufete Industrial played a similar role. In summary, the Mexican Revolution of
1910 created a new consciousness of social needs and aspirations, which in turn gestated many new
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activities that in turn generated a boom of engineering activities. But the chain-reaction did not end
there, because the demand for engineering professionals soon stimulated engineering education,
which pushed science education, and science education pushed science research. It was then when
the precursors of present-day research institutions were established.

The ancestral Real y Pontificia Universidad de la Nueva España, which was founded in 1551
and was reopened in the twentieth century as the Universidad Nacional de México, became today’s
Universidad Nacional Autónoma de México (UNAM) in 1929 when it achieved autonomy. UNAM
played a central role in the initiation of research activities in contemporary Mexico. Most of
the civil engineers needed in post-revolutionary Mexico, including ICA’s engineers, were trained
at the Escuela Nacional de Ingenieros, UNAM’s Facultad de Ingeniería today, while petroleum
engineers and geologists were educated at the recently created Instituto Politécnico Nacional (IPN).
Furthermore, the Escuela Nacional de Ingenieros was the womb in which the present day research
institutions in engineering and hard sciences (physics and mathematics) were gestated.

As for chemistry, a corresponding role was played by the Escuela Nacional de Ciencias Químicas.
Teaching of pure sciences began at the Facultad de Ciencias, created in 1939 within the Escuela
Nacional de Ingenieros, and during the period of 1939–1950 the institutes of basic research in
mathematics, physics, geophysics, chemistry and astronomy were established. The ‘‘Mexican
School of Thought’’ in physics and mathematics owes much to Ivy League universities, particularly
Princeton, and the influence of Solomon Lefchetz should be mentioned.

On the other hand, some of the most distinguished applied mathematicians in Mexico were
trained at Brown University.

Those developments not withstanding, most of the activities in mathematical and computational
modeling (MMC) were associated with specific endeavors related to engineering work, and a
certain number of applied research institutions were created. With ICA as its main promoter, the
Instituto de Ingeniería was created in 1956 within the Facultad de Ingeniería. The first computer
devoted to research, a 650 IBM, was installed at the Facultad de Ciencias in 1958. Other institutes
of applied research and development were the Instituto de Investigaciones Eléctricas, the Instituto
Mexicano del Petróleo and the Instituto Mexicano de Tecnología del Agua (IMTA), established in
1962, 1966 and 1981, respectively.

1.4 SAMPLING MMC IN MEXICO

The Pacific volcanic rim frames a large part of the Mexican territory on the west coast; further-
more, the Transmexican Volcanic Belt runs across the country, from the Pacific Ocean to the Gulf
of Mexico. Seismicity is high in Mexico, so that the observation and study of earthquakes and their
effects have had high priority since the beginning of the twentieth century. The National Seismo-
logical Service was established in 1910 and has been in charge of the Institute of Geophysics since
it was established in 1949.

Mexico, together with USA, Japan and a few other countries, was pioneer in the study, research
and application of ‘seismic engineering’ also called ‘earthquake engineering’. In Mexico, a very
strong and still highly respected seismic engineering research group was created under Emilio
Rosenblueth’s leadership. Rosenblueth, whose friendship I enjoyed until his death in 1994, was
a worldwide leader, pioneer and founder, together with Newmark, of earthquake engineering as
an engineering discipline [5]. One of the main objectives of seismic engineering is to predict,
combining both deterministic and statistical models, the occurrence and the effects of earthquakes,
especially on civil engineering structures. Thus, MMC is a fundamental tool in this area of engineer-
ing. Models built in Mexico include: statistical models for predicting the probability of earthquake
occurrence, along with time and location, magnitude and other features such as the predominant
period [6, 7]; models of the focal behavior of earthquakes; the effect of the structure of the crust
and upper mantle in the transmission of the elastic waves from the seism focus to the structure
location; the effect of the local geology on the characteristics of the motion that excite the engi-
neering structure under study; soil-structure interaction models that take into account the effect of
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the structure in the motion of the soil; deterministic models for predicting the response of different
engineering structures, such as buildings and dams, when the motion that excites them is known;
and models of the stochastic processes in structures that are governed by differential equations of
the Fokker-Plank type [8].

The results of all this research has been very useful not only in Mexico but in many other parts
of the world. Mexican experts in earthquake engineering, such as Luis Esteva, have traveled to
many other seismic active countries to advise local experts due the high prestige of the Mexican
earthquake-engineering institutions. The research results obtained in this area have been incorpo-
rated in building regulations not only in Mexico City, but in many other cities of the world. This
has been a great contribution to the safety of the people and their material possessions.

For a time, long ago, the author of this chapter was an active participant of the earthquake
engineering research group and at that time he also did some research on seismology, which deals
less directly with practical problems, but the new knowledge generated by it is rapidly incorporated
by disciplines with a more practical orientation, such as seismic engineering. Many such studies
are carried out with the purpose of establishing the physics and structure of the Earth’s interior.
One of the main tools used for this purpose are models of the elastic motion in the crust, mantle and
deep interior. Therefore, such research frequently investigates basic properties of elastic motion.
For a time there was worldwide interest in establishing the distribution of the upper mantle of the
Earth, and including features such as its thickness. Besides some deep drilling projects, which
were very costly, MMC models of elastic surface-waves, mainly Love and Rayleigh waves, were
used for this purpose. Mexico participated in the Gulf of California Project that was carried out in
collaboration with the University of California at Los Angeles (UCLA). Among the results of that
project that were obtained in Mexico and should be cited is the derivation of orthogonality relations
for Rayleigh waves. Orthogonality relations for Love waves had been known for a long time, but
for Rayleigh waves they were not known until 1964 [9].

One of our most important problems is securing the daily water supply throughout our large
country, and the best way of coping with this is with scientific management of our resources
[10], which requires a great variety of mathematical and computational models of surface and
groundwater. In the case of the former, water flow, including flood prediction, and contaminant
transport in rivers and channels, deterministic and statistical modeling of basin response, and dam
design, are a few of the necessary models. Flood prediction, for example, is essential for the design
of bridges, and requires the modeling of the basin response. The administration of groundwater also
poses important challenges in the modeling of subsurface water flow and contaminant transport.
On the other hand, urbanization is a reality of our changing world that is causing the birth and
growth of many megalopolises. A central question is, ‘‘How can our cities be sustained under
these circumstances?’’. The Mexico City Metropolitan Area (MCMA) exemplifies these problems
to an extreme degree [3, 4]. There, a very important problem is land subsidence, which is induced
by the severe pumping of the aquifer, due to the leaky character of the subsurface hydrologic system.

In Mexico, modeling of surface water systems has being going on for a long time, at least since
the 1950s. The leader who organized a very prestigious group in this area was José Luis Sánchez
Bribiesca. Many of the most distinguished Mexican hydrologists of today were his students; to cite
just one: Álvaro Aldama, who was not only a former general director of IMTA but also consolidated
that national institute.

As for groundwater, it would be difficult to overstate its importance for a country in which more
than 60% of the territory is arid or semiarid. A pioneer and worldwide leader of the application
of MMC to groundwater is George F. Pinder; first at the US Geological Survey (USGS) and later
at Princeton University. In Mexico, scientific research of groundwater using mathematical and
computational models was initiated in the late 1960s at the Institute of Geophysics under Herrera’s
leadership [11, 12]. Later, he was invited to join the Advisory Council at Princeton, and since
then Herrera and Pinder have had a very fruitful collaboration. The main scientific contribution to
the mathematical modeling of groundwater made by Herrera and his collaborators at UNAM was
the invention and development of the ‘‘Integro-differential equations approach to leaky aquifers’’
[13–15], sometimes called ‘‘Herrera’s integrodifferential equations approach to leaky aquifers’’.
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Thereby, it should be mentioned that the subsurface hydrologic system of Mexico City is precisely
a multilayered leaky aquifer system. The software developed by the USGS in 1994 [16] is based on
Herrera’s approach. Because of his pioneering results, Herrera has been considered to be founder,
together with Neumann and Witherspoon, of the ‘‘multilayered aquifer systems theory’’ [17].
Mathematical and computational models were developed for the construction of the artificial lakes
at the Texcoco Basin [18], the subsurface hydrologic system of Mexico City (the MCMA system)
[19, 20] and the geothermal systems of Cerro Prieto, B.C. and Los Azufres, Michoacán. Today,
MCM models are used routinely in Mexico to deal with many groundwater problems, albeit there
is a shortage of professionals and engineers adequately trained in subsurface hydrology.

As for basic contributions to the methodology of MMC, probably the most conspicuous group
doing research in that area is the Grupo de Modelación Matemática y Computacional of the Instituto
de Geofísica, UNAM [21–43], whose leader is also editor and founder of the international journal
‘‘Numerical Methods for Partial Differential Equations’’, published by Wiley (New York) since
1985. Many of its research themes stem from an ‘‘algebraic theory of boundary value problems’’
for partial differential equations and the ‘‘theory of partial differential equations on discontinuous
piecewise-defined functions’’ that derived from it. The algebraic theory has been developed over
a long time-span [21–43]. It identifies and makes extensive use of some algebraic properties of
boundary value problems. In the first part of its development, the research that originated it was
oriented to construct a general framework for variational principles of boundary value problems
that at the time were being extensively studied all over the world. This was the period of the initial
stages of the application of computers to solving partial differential equations, and variational
principles were the means used for discretizing such equations. The theory that was so obtained
accommodates practically all variational principles for boundary value problems known at that a
time. Furthermore, it also encompasses Trefftz methods, bi-orthogonal systems of functions and
a criterion for completeness of systems of functions (originally introduced as ‘C-completeness’,
but later known as ‘T-completeness’, or ‘TH-completeness’). This theory also yields a suitable
framework for the development of complete systems of solution of partial differential equations
(see [44], Ch. II, where the exposition is based on Herrera’s ‘T-completeness’ or ‘TH-completeness’
concept). Furthermore, according to Begehr and Gilbert the algebraic theory supplies the basis for
effectively applying to boundary value problems the function theoretic method of partial differential
equations. Indeed, in [44], p. 115, these authors assert:

The function theoretic approach which was pioneered by Bergman and Vekua and then further
developed by Colton, Gilbert, Kracht-Kreyszig and Lanckau and others, may now be effectively
applied because of this result of the formulation by Herrera [21] as an effective means to solving
boundary value problems.

On the other hand, the algebraic theory has also been useful for establishing the theoretical
foundations of ‘Trefftz methods’. This time the citation comes from J. Jirousek, one of the most
conspicuous representatives of Trefftz methods [45, p. 324]: ‘‘. . .the mathematical foundations
of which (referring to Trefftz methods) have been laid mainly by Herrera and co-workers.’’ In
1984, the Pitman’s Advanced Publishing Program collected many of the results of the theory in a
book [21]. An important element of the theory of differential equations in discontinuous functions
that was introduced by Herrera immediately afterwards, in 1985, is a kind of Green’s formula
applicable to them and referred to as Green-Herrera formulas. They have played a central role in
later developments. Their relevance is two-fold: firstly, they supply more explicit expressions for
the distributional derivatives and, secondly, they extend the notion of distributional derivative in a
way that permits applying ‘fully discontinuous trial and test functions’ simultaneously, something
that is not possible when the standard theory of distributions is used. Apparently, it had been this
latter fact which had prevented, until recently, the development of more direct approaches to partial
differential equations formulated in discontinuous piecewise-defined functions.

This more recent work-phase of the theory includes a number of applications. Among them: the
introduction of the ‘localized adjoint method’ (LAM) that in turn supplied the theoretical basis of the
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‘Eulerian-Lagrangean LAM’ (ELLAM), a numerical method that has had considerable success in
treating advection-dominated transport; more advanced applications to Trefftz method and studies
of several aspects of domain decomposition methods; and a general class of methods that are
collectively denominated ‘finite elements methods with optimal functions (FEM-OF)’. This latter
kind of methods is more general than LAM and has yielded some very effective procedures for
applying orthogonal collocation; and also for developing some classes of enhanced finite elements
(see [43], chapter 8 in this volume).

A truly general and systematic theory of finite element methods (FEM) should be formulated
using, as ‘trial and test functions, piecewise-defined functions’ that can be fully discontinuous
across the internal boundary which separates the elements from each other. Some of the most rel-
evant work addressing such formulations is contained in the literature on ‘discontinuous Galerkin
(dG) methods’ and on ‘Trefftz methods’. However, the formulations of partial differential equa-
tions in discontinuous functions used in both of those fields are indirect approaches which are
based on the use of ‘Lagrange multipliers’ and mixed methods in the case of dG methods, and the
frame in the case of Trefftz method. The ‘‘theory of partial differential equations on discontinuous
piecewise-defined functions’’ [41] addresses this problem from a different point of view and for-
mulates the partial differential equations in discontinuous piecewise-defined functions. Such an
approach is more direct and systematic, and furthermore it avoids the use of Lagrange multipli-
ers or a frame, while mixed methods are incorporated as particular cases of more general results
implied by the theory. When boundary value problems are formulated in discontinuous functions,
well-posed problems are boundary value problems with prescribed jumps (BVPJ) in which the
boundary conditions are complemented by suitable jump conditions to be satisfied across the inter-
nal boundary of the domain-partition. One result of the theory shows that for elliptic equations
of order 2m, with m ≥ 1, the problem of establishing conditions for existence of solution for the
BVPJ reduces to that of the ‘standard boundary value problem’, without jumps, which has been
extensively studied. Background material of the ‘‘theory of partial differential equations on discon-
tinuous piecewise-defined functions’’ appeared in scattered publications; however, the question of
developing a ‘theory of partial differential equations in discontinuous piecewise-defined functions’
in a systematic manner was only recently addressed and published [41].

It should also be mentioned that a very important achievement of the theory just described has
been recently obtained and published in two papers [42, 46]. Its relevance is in connection with
the application of parallel computing to partial differential equations. The paper introduces a new
approach to iterative substructuring methods that, without recourse to Lagrange multipliers, yields
positive definite preconditioned formulations of the Neumann-Neumann and FETI types. Standard
formulations are done using Lagrange multipliers to deal with discontinuous functions, and this is
the first time that such formulations have been made without resource to Lagrange multipliers.

A numerical advantage that is concomitant to such multipliers-free formulations is the reduction
of the degrees of freedom associated with the Lagrange multipliers. The general framework of
the new approach is rather simple and stems directly from the discretization procedures that are
applied; in it, the differential operators act on discontinuous piecewise-defined functions. Thus, the
Lagrange multipliers are not required, because in such an environment the function-discontinuities
are not anomalies that need to be corrected.

To finish, I hope that soon a new document, covering in a more complete manner MMC activities
in Mexico, will be written. Then, I am sure, many other scholars whose work deserves attention
will be included.
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CHAPTER 2

Numerical solution of boundary inverse problems
for orthotropic solids

Igor Brilla

2.1 INTRODUCTION

Inverse problems are very important from a practical point of view and interesting from a theoretical
point of view as they are improperly posed problems. An important class of inverse problems is a
class of identification problems. These problems are important, for example, in the non-destructive
testing of materials, the identification of material parameters, the study of aquifer problems as well
as for electrical impedance tomography, etc.

Numerical analysis of these problems encounters difficulties connected with the improperness
of inverse problems.

However, the majority of papers on inverse problems deal with isotropic problems modeled
by second order differential equations. Additional difficulties arise in the case of orthotropic and
anisotropic inverse problems and problems modeled by differential equations of higher order or by
systems of differential equations.

We deal with analysis of inverse problems for orthotropic solids when measured data is given
only on the boundary of the domain. The inverse problems for orthotropic solids have special
features in comparison with those for isotropic solids. In order to solve orthotropic problems, more
unknown material parameters of governing differential equations than the total number of equations
must be determined and therefore, in order to determine them, we need input data measured from
more than one field state. These input states as we show cannot be chosen arbitrarily. This fact
leads to new theoretical problems in the analysis of inverse problems for orthotropic solids and also
complicates numerical analysis.

For numerical analysis of such problems we apply discrete methods. These are very convenient
because in the case of practical problems we have to measure input states in discrete points. In this
chapter, we have elaborated an iterative procedure to the numerical solution of plane orthotropic
boundary inverse problem when the input data measured from suitable states is sufficient to deter-
mine the unknown material parameters. We derive the number of measured input states and
conditions for these measured input states which secure determinability of the numerical solu-
tion. We also deal with numerical experiments. Since input data is measured in the case of practical
problems, we also study its influence on the stability of the numerical solutions. This approach is
based on the methods derived by Brilla [1, 2]. Another approach is derived in Grebennikov [3, 4].

2.2 FORMULATION OF THE PROBLEM

Governing equations of plane anisotropic solids have the following form:

(cijkluk ,l), j + fi = 0 in Ω, i, j, k , l = 1, 2 (2.1)

where cijkl are elastic coefficients, ui are displacements and fi are volume forces. We assume that
Ω is a two dimensional Lipschitz domain. We apply the summation and differentiation rule with
respect to indices. Elastic coefficients are symmetric. It holds cijkl = cklij = cjikl = cijlk .

11
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In the 2D orthotropic case c has 4 components and the equation (2.1) can be written in the
following forms:

(Aux, x), x + (Cuy, y), x + (Duy, x), y + (Dux, y), y + fx = 0 in Ω

(Buy, y), y + (Cux, x), y + (Duy, x), x + (Dux, y), x + fy = 0 in Ω
(2.2)

where we use following notations c1111 = A, c2222 = B, c1122 = C, c1212 = D.
In the case of the inverse problems, ux and uy are given and A, B, C and D are unknown, in

the case of non-constant elastic coefficients we obtain two differential equations of first order for
determination of the unknown functions A, B, C and D.

In the case of the inverse problems we have to determine the elastic coefficients we need for
their determination boundary conditions:

A(s) = a(s), B(s) = b(s), C(s) = c(s), D(s) = d(s), s ∈ ∂Ω (2.3)

In the case of boundary inverse problems we also have to determine the displacements ux and
uy using measured values of the displacements ux and uy on the boundary ∂Ω. We consider the
Dirichlet boundary conditions for the ux and uy displacements:

ux(s) = g1(s), uy(s) = g2(s), s ∈ ∂Ω (2.4)

and over specified Neumann boundary conditions:

ux,n(s) = g3(s), uy,n(s) = g4(s), s ∈ ∂Ω (2.5)

where (.),n denotes the differentiation in the direction of the outer normal.
In our approach, we consider Neumann’s boundary problem (2.2), (2.3), (2.5) in the following

way. Considering Hooke’s law:

τij = cijkl εkl

where τ is the stress tensor and ε is the strain tensor. Hooke’s law can be written for our 2D
orthotropic problem in the following forms:

uτxx = Aux, x + Cuy, y, uτyy = Cux, x + Buy, y, uτxy = D(ux, y + uy, x) (2.6)

Using equations (2.6) equations (2.2) and (2.5) can be written in the forms:

uτxx, x + uτxy, y + fx = 0, uτxy, x + uτyy, y + fy = 0 in Ω

uτxx(s)= uj1(s), uτyy(s)= uj2(s), uτxy(s)= uj3(s), s ∈ ∂Ω
(2.7)

However, in the case of a 2D orthotropic problem, the system of equations (2.2)–(2.4), (2.7) does
not form a complete system of equations and is not sufficient for the determination of the unknown
elastic coefficients. We show that for the determination of the unknown elastic coefficients, it is
necessary to add input data measured from the next state of the displacements vx and vy. For this
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next state of input data, we consider the equations analogical to equations (2.2):

(Aνx,x), x + (Cνy, y), x + (Dνy, x), y + (Dνx, y), y + qx = 0 in Ω

(Bνy, y), y + (Cνx, x), y + (Dνy, x), x + (Dνx, y), x + qy = 0 in Ω
(2.8)

and boundary conditions analogical to Dirichlet boundary conditions (2.4):

vx(s) = g5(s), vy(s) = g6(s), s ∈ ∂Ω (2.9)

corresponding equations of Hooke’s law:

ντxx = Aνx, x + Cνy, y, ντyy = Cνx, x + Bνy, y
ντxy = D(vx, y + vy, x) (2.10)

and corresponding equations and boundary conditions for stresses:

ντxx, x + ντxy, y + qx = 0, ντxy, x + ντyy, y + qy = 0 in Ω

ντxx(s)= ν j1(s), ντyy(s)= ν j2(s), ντxy(s)= ν j3(s), s ∈ ∂Ω (2.11)

Now the question of whether the states ux, uy and νx, νy can be chosen arbitrarily arises. We show
that these states cannot be chosen arbitrarily.

2.3 NUMERICAL ANALYSIS OF THE PROBLEM

For numerical analysis we can apply discrete methods. They are very convenient because in practical
problems we have to measure input states in discrete points. We assume that the domain Ω is
rectangular (m+1)h×(n+1)h, h > 0. Using central differences, equations (2.2) assume following
discrete forms:

(Ai+1; k − Ai−1; k + 4Ai; k )(ux)i+1; k + (Ai−1; k − Ai+1; k + 4Ai; k )(ux)i−1; k

+ (Di; k+1 − Di; k−1 + 4Di; k )(ux)i; k+1 + (Di; k−1 − Di; k+1 + 4Di; k )(ux)i; k−1

− 8(Ai; k + Di; k )(ux)i; k + (Ci+1; k − Ci−1; k )[(uy)i; k+1 − (uy)i; k−1]
+ (Ci; k + Di; k )[(uy)i+1; k+1 + (uy)i−1; k−1 − (uy)i−1; k+1 − (uy)i+1; k−1]
+ (Di; k+1 − Di; k−1)[(uy)i+1; k − (uy)i−1; k ] + 4h2(fx)i; k = 0,

(Di+1; k − Di−1; k + 4Di; k )(uy)i+1; k + (Di−1; k − Di+1; k + 4Di; k )(uy)i−1; k

+ (Bi; k+1 − Bi; k−1 + 4Bi; k )(uy)i; k+1 + (Bi; k−1 − Bi; k+1 + 4Bi; k )(uy)i; k−1

− 8(Bi; k + Di; k )(uy)i; k + (Di+1; k − Di−1; k )[(ux)i; k+1 − (ux)i; k−1]
+ (Ci; k + Di; k )[(ux)i+1; k+1 + (ux)i−1; k−1 − (ux)i−1; k+1 − (ux)i+1; k−1]
+ (Ci; k+1 − Ci; k−1)[(ux)i+1; k − (ux)i−1; k ] + 4h2(fy)i; k = 0,

i = 1, 2, . . ., m, k = 1, 2, . . ., n

(2.12)
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where:

A0; k , Am+1; k , C0; k , Cm+1; k , D0; k , Dm+1; k , k = 1, 2, . . ., n

Bi; 0, Bi; n+1, Ci; 0, Ci; n+1, Di; 0, Di; n+1, i = 1, 2, . . ., m

are given from the boundary conditions (2.3) and:

(ux)0; k , (ux)m+1; k , (uy)0; k , (uy)m+1; k , k = 0, 1, . . ., n+ 1

(ux)i; 0, (ux)i; n+1, (uy)i; 0, (uy)i; n+1, i = 0, 1, . . ., m+ 1

are given from Dirichlet boundary conditions (2.4). Similar equations are obtained for other νx, νy
states.

In order to solve the boundary inverse problems (2.2)–(2.4), (2.7)–(2.9), (2.11) we can use
the following iterative procedure which is a generalization of the method for the solution of 2D
orthotropic and 2D anisotropic boundary inverse conductivity problems derived in [1, 2]:

• determination of an initial approximation of the elastic coefficients A0
i; k , B0

i; k , C0
i; k , D0

i; k , i =
1, 2, . . ., m, k = 1, 2, . . ., n as the linear interpolation of the boundary conditions (2.3);
• determination of the displacements (u0

x)i; k and (u0
y)i; k , i = 1, 2, . . ., m, k = 1, 2, . . ., n from

equations (2.12) and (ν0
x )i; k and (ν0

y )i; k from the discrete form of equations (2.8);
• determination of the stresses (uτ 0

xx)i; k , (uτ 0
yy)i; k , (uτ 0

xy)i; k , i = 1, 2, . . ., m, k = 1, 2, . . ., n from
equations (2.7) and (2.6) rewritten in the following forms:

uτ 0
xx, x = −fx − {D0(u0

x,y + u0
y,x)},y, uτ 0

yy, y = −fy − uτ 0
xy, x,

uτ 0
xy, y = −fx − (A0u0

x, x + C0u0
y, y),x

and (ντ 0
xx)i; k , (ντ 0

yy)i; k , (ντ 0
xy)i; k , i = 1, 2, . . ., m, k = 1, 2, . . ., n using similar equations which

we obtain from equations (2.11) and (2.10), which are ordinary first order differential equations.
Solutions for these equations can be found using a modified Euler method, for example;
• determination of new state of the elastic coefficients A1

i;k , B1
i;k , C1

i;k , D1
i;k , i = 1, 2, . . ., m, k =

1, 2, . . ., n from equations (2.6) and (2.10) using following formulas:

A1
i; k = 2h{[(ντ 0

yy)i; k [(ν0
y )i; k+1 − (ν0

y )i;k−1]
− (ντ 0

xx)i; k [(ν0
x )i+1; k − (ν0

x )i−1; k ]][(u0
y)i;k+1 − (u0

y)i; k−1]2

− [(uτ 0
yy)i; k [(u0

y)i; k+1 − (u0
y)i; k−1]

− (uτ 0
xx)i; k [(u0

x)i+1; k − (u0
x)i−1; k ]][(ν0

y )i; k+1 − (ν0
y )i; k−1]2}

/
�,
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B1
i; k = 2h{[(ντ 0

yy)i; k [(ν0
y )i; k+1 − (ν0

y )i;k−1]
− (ντ 0

xx)i; k [(ν0
x )i+1; k − (ν0

x )i−1; k ]][(u0
x)i+1; k − (u0

x)i−1; k ]2

− [(uτ 0
y/y)i; k [(u0

y)i; k+1 − (u0
y)i; k−1]

− (uτ 0
xx)i; k [(u0

x)i+1; k − (u0
x)i−1; k ]][(ν0

x )i+1; k − (ν0
x )i−1; k ]2}

/
�, (2.13)

C1
i; k =

2h(uτ 0
xx)i; k − A1

i; k [(u0
x)i+1; k − (u0

x)i−1; k ]
(u0

y)i; k+1 − (u0
y)i; k−1

,

D1
i; k = 2h(uτ 0

xy)i; k
/
�1,

i = 1, 2, . . ., m, k = 1, 2, . . ., n

where:

� = [(u0
x)i+1; k − (u0

x)i−1; k ]2[(ν0
y )i; k+1 − (ν0

y )i; k−1]2

− [(u0
y)i; k+1 − (u0

y)i; k−1]2[(ν0
x )i+1; k − (ν0

x )i−1; k ]2,

�1 = [(u0
x)i; k+1 − (u0

x)i; k−1] + [(u0
y)i+1; k − (u0

y)i−1; k ],

i = 1, 2, . . ., m, k = 1, 2, . . ., n

• in order to arrive at the final solution, we have to reiterate this procedure and thus minimize the
error.

From equations (2.13) we can see that the iterative procedure can be used only if:

[(uj
x)i+1; k − (uj

x)i−1; k ]2[(νj
y)i; k+1 − (νj

y)i; k−1]2

− [(uj
y)i; k+1 − (uj

y)i; k−1]2[(νj
x)i+1; k − (νj

x)i−1; k ]2 �= 0,

[(uj
x)i; k+1 − (uj

x)i; k−1] + [(uj
y)i+1; k − (uj

y)i−1; k ] �= 0

(uj
y)1; k+1 − (uj

y)i; k−1 �= 0

i = 1, 2, . . ., m, k = 1, 2, . . ., n, j = 0, 1, . . .

(2.14)

The conditions (2.14) are discrete forms of the conditions:

(ux, xνy, y)
2 − (uy, yνx, x)

2 �= 0, ux, y + uy, x �= 0, uy, y �= 0 in Ω.

This means that the input states cannot be chosen arbitrarily.
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2.4 NUMERICAL EXPERIMENTS

We deal with numerical experiments from a mathematical point of view. This means that we
construct the exact solution of the problem under consideration, afterwards we compute the numer-
ical solution of this problem using the iterative procedure and in the end compare it with the
exact one.

We use the iterative procedure with the stopping condition such that the difference of two
computed consecutive states of the elastic coefficients is less than 10−10. We consider the following
domain Ω = 〈0, 2〉 × 〈0, 1〉. For example, for the following elastic coefficients:

A = (x + 1)(y + 1)2, B = (x + 1)2(y + 1),

C = (x + 1)+ (y + 1), D = (x + 1)(y + 1)
(2.15)

displacements:

ux = (x + 1)2 + (y + 1)2, uy = (x + 1)(y + 1),

vx = (x + 1), vy = (y + 1)
(2.16)

corresponding stresses:

uτxx = 2(x + 1)2(y + 1)2 + [(x + 1)+ (y + 1)](x + 1)

uτyy = (x + 1)3(y + 1)+ 2[(x + 1)+ (y + 1)](x + 1)

uτxy = 3(x + 1)(y + 1)2, ντxy = 0

vτxx = (x + 1)(y + 1)2 + (x + 1)+ (y + 1)

vτyy = (x + 1)2(y + 1)+ (x + 1)+ (y + 1)

(2.17)

and corresponding volume forces:

fx = 4(x + 1)(y + 1)2 + 2(x + 1)+ (y + 1)+ 6(x + 1)(y + 1)

fy = (x + 1)3 + 3(y + 1)2 + 2(x + 1)

qx = (y + 1)2 + 1, qy = (x + 1)2 + 1

(2.18)

using equations (2.18) the boundary conditions constructed from equations (2.15)–(2.17) and the
iterative procedure in the Table 2.1 we are able to see the percentage of errors in the computed
solutions in the second column with respect to the exact solutions of the meshes given in the
first column. In the third column we report the number of iterations after which we obtained
the numerical solution with the specific stopping condition on the given mesh. We can see from
the results that we obtain very small errors for a course mesh and when the number of grid points
increases, errors also increase slightly but are still small.

If we change the displacements:

ux = (x + 1)+ (y + 1), uy = (x + 1)+ 2(y + 1)

vx = 2(x + 1), vy = (y + 1)
(2.19)
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Table 2.1. Results for the problem (2.15)–(2.18).

Mesh Error (%) Number of iterations

8× 4 6.2 10−8 182
12× 6 2.1 10−7 470
16× 8 6.7 10−7 1006

Table 2.2. Results for the problem (2.15), (2.19)–(2.21).

Mesh Error Number of iterations

8× 4 4.0 10−8 160
16× 8 1.6 10−7 522
12× 6 4.9 10−7 1319

for corresponding stresses:

uτxx = (x + 1)(y + 1)2 + 2[(x + 1)+ (y + 1)]
uτyy = 2(x + 1)2(y + 1)+ (x + 1)+ (y + 1)

uτxy = 2(x + 1)(y + 1), ντxy = 0

vτxx = 2(x + 1)(y + 1)2 + (x + 1)+ (y + 1)

vτyy = (x + 1)2(y + 1)+ 2[(x + 1)+ (y + 1)]

(2.20)

and corresponding volume forces:

fx = (y + 1)2 + 2(x + 1)+ 2, qx = 2(y + 1)2 + 1

fy = 2(x + 1)2 + 2(y + 1)+ 1, qy = (x + 1)2 + 2
(2.21)

we obtain similar results for the same elastic coefficients as it is shown in the Table 2.2.
For other elastic coefficients:

A = (x + 1)2(y + 1), B = (x + 1)(y + 1)2,

C = (x + 1)+ (y + 1), D = (x + 1)(y + 1)
(2.22)

the displacements given by equations (2.16) and for their corresponding stresses:

uτxx = 2(x + 1)3(y + 1)+ [(x + 1)+ (y + 1)](x + 1)

uτyy = (x + 1)2(y + 1)2 + 2[(x + 1)+ (y + 1)](x + 1)


