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Foreword

The 2007 Com2MaC International Workshop on Applications of Group Theory to Combinatorics
was held at Pohang University of Science and Technology on July 9–12, 2007 under the sponsorship
of the Combinatorial and Computational Mathematics Center. The aim of the meeting was to bring
together some foremost experts in the areas of combinatorics, group theory and combinatorial
topology in order to stimulate mutual understandings, communications and researches among all
the participants. Presented and discussed topics encompass quite a diverse spectrum, such as coding
theory, design theory, Belyi functions, distance-regular graphs, transitive graphs, regular maps, and
Hurwitz problems.

Among the about 70 participants from Australia, China, France, Japan, Korea, Netherlands, New
Zealand, Russia, Singapore, Slovakia, Slovenia, United Kingdom and United States of America,
27 invited speakers presented their results. This volume contains 11 papers of invited talks at the
workshop which mark the vitality and enthusiasm during the workshop.

Marston Conder gives a brief summary of various aspects of combinatorial group theory and
associated computational methods, with special reference to finitely-presented groups and their
applications, found useful in the study of graphs, maps and polytopes having maximal symmetry.
He discusses recent computational results and how this led to new general results in the theory
of maps.

Yan-Quan Feng, Zai-Ping Lu and Ming-Yao Xu give a brief survey of recent results on
automorphism groups of Cayley digraphs concentrating on the normality of Cayley digraphs.

Michael Giudici, Cai Heng Li and Cheryl E. Praeger introduce three new types of combinatorial
structures associated with group actions, namely symmetrical covers, symmetrical decompositions,
and symmetrical factorisations of graphs. These structures are related to and generalise various
combinatorial objects, such as 2-designs, regular maps, near-polygonal graphs, and linear spaces.
General theory is developed for each of these structures, pertinent examples and constructions are
given, and a number of open research problems are posed.

Gareth Jones surveys recent progress on the combinatorial problem of classifying the orientably
regular embeddings of complete bipartite graphs. The motivation for this problem comes from
two main areas, topological graph theory and arithmetic algebraic geometry, while the techniques
required to solve it come from a third area, finite group theory—specifically the theories of factor-
isable groups and of finite solvable groups.

Goansu Kim and C.Y. Tang discuss separability properties of groups. They discuss S-
separable groups, in particular, residually finite groups, subgroup separable groups and con-
jugacy separable groups.

Jin Ho Kwak, Jaeun Lee and Alexander Mednykh discuss the enumeration problem for
(branched) coverings of Riemann surfaces and, more generally, graphs, manifolds and orbifolds
with finitely generated fundamental group. They present some well-known results in this field,
recent developments of the problem and indicate a general approach to solve the problem in the
high-dimensional case. They cover group-theoretical, combinatorial and topological view points
on the problem.

Sergei Lando surveys recent progress in understanding Hurwitz numbers, with stress made on
their combinatorial rather than geometric nature. Hurwitz numbers enumerate ramified coverings
of two-dimensional surfaces. They have many other manifestations in other fields such as in group
theory, combinatorics, algebraic topology and mathematical physics.

VII



Huiling Li discusses the applications of finite permutation groups to combinatorial designs.
He discusses block transitive 2 − (v, k , 1) designs with k small and how classical groups act on
designs.

Martin Mačaj, Jozef Širáň and Mária Ipolyiová survey the algebraic background for constructing
representations of triangle groups in linear groups over algebras arising from quotients of multi-
variate polynomial rings, leading to improvements of upper bounds on the order of epimorphic
images of triangle groups with a given injectivity radius and to bounds on the size of the associated
hypermaps with a given planar width.

Tom Tucker views the various genus parameters for finite groups in the broader context of
‘sizings’ of groups, that is, order-preserving functions from the collection of all finite groups to
the natural numbers. He discusses topics like the range of a sizing and whether a sizing provides a
certificate of isomorphism. Also he discusses asymptotic behavior of several sizings.

Alexander Zvonkin studies Belyi functions, also known as dessins d’enfants. These functions
provide a link between many important theories, namely Riemann surfaces, Galois theory, and the
theory of combinatorial maps. More generally, many properties of functions, surfaces, fields, and
groups in question may be ‘‘read from’’ the corresponding pictures, or sometimes constructed in a
‘‘picture form’’. Group theory is related to all the above subjects and therefore plays a central role
in the theory of Belyi functions.

The organizers truly thank Ministry of Science and Technology of Korea and the Korean Science
and Engineering Foundation for their financial support for this successful workshop.

Jack Koolen
Jin Ho Kwak
Ming-Yao Xu
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Combinatorial and computational group-theoretic methods in the study
of graphs, maps and polytopes with maximal symmetry

Marston Conder1

Department of Mathematics, University of Auckland, Auckland, New Zealand

ABSTRACT: This paper gives a brief summary of various aspects of combinatorial group theory
and associated computational methods, with special reference to finitely-presented groups and
their applications, found useful in the study of graphs, maps and polytopes having maximal
symmetry. Recent results include the determination of all arc-transitive cubic graphs on up to
2048 vertices, and of all regular maps of genus 2 to 100, and construction of the first known
examples of finite chiral 5-polytopes. Moreover, patterns in the maps data have led to new
theorems about the genus spectrum of chiral maps and regular maps with simple underlying
graph.

2000 Mathematics Subject Classification: 20B25 (primary), 05C25, 20F05, 52B15, 57M60
(secondary).

1 INTRODUCTION

This paper is intended to give a brief summary of various aspects of combinatorial group theory
and associated computational methods that have proved useful (to the author, at least) in the study
of graphs, maps and polytopes having maximum possible symmetry under certain conditions.
It extends (and updates) an earlier summary given in [9], but is not intended to be a comprehensive
survey, by any means. Our aim is to provide examples of potential interest to students and others
wishing to learn about the use of such theory and methods, together with some references to places
where further details are available.

Special focus is given to finitely-presented groups and means of investigating them (and their
subgroups of finite index and quotients of finite order), with numerous applications.

We begin by giving some background on symmetries of discrete structures and their connection
with certain finitely-presented groups, in Section 2. Then in Section 3 we briefly describe some
ways in which Schreier coset diagrams can be used to depict and construct homomorphic images
of these groups, and give some applications to exhibit the remarkable power of such an approach.
We summarise a number of computational procedures for handling finitely-presented groups in
Section 4, and then look at the particular case of methods for finding subgroups of small index and
quotient of small order, in Section 5. Finally, we describe a theorem of Schur about centre-by-finite
groups and its use in these contexts in Section 6, and complete the paper by announcing some
recent results about the genus spectra of various classes of arc-transitive maps in Section 7.

1 Research supported in part by the N.Z. Marsden Fund, Grant UOA 412.
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2 BACKGROUND: SYMMETRIES OF DISCRETE STRUCTURES,
AND CONNECTIONS WITH FINITELY-PRESENTED GROUPS

2.1 Symmetric graphs

An automorphism of a (combinatorial) graph X = (V , E) is any permutation of its vertices that
preserves adjacency. Under composition, the set of all automorphisms of X forms a group known as
the automorphism group of X and denoted by Aut X . A graph X is called vertex-transitive, edge-
transitive or arc-transitive automorphism group Aut X has a single orbit on the set of vertices,
edges or arcs (ordered edges) of X , respectively. Graphs which are arc-transitive are also called
symmetric, and any graph that is edge-transitive but not vertex-transitive is called semisymmetric.

More generally, for any positive integer s, an s-arc in a graph X is a directed walk of length s
which never includes the reverse of an arc just crossed—that is, an ordered (s + 1)-tuple of
vertices (v0, v1, v2, . . . , vs−1, vs) such that any two consecutive vi are adjacent in X and any three
consecutive vi are distinct. A graph X is then called s-arc-transitive if Aut X has a single orbit on
the set of arcs of X . For example, circuit graphs are s-arc-transitive for all s, while the cube graph
Q3 and all complete graphs on more than three vertices are 2-arc-transitive but not 3-arc-transitive.

The situation for arc-transitive 3-valent graphs (also called symmetric cubic graphs) is particu-
larly interesting. In [32, 33] Tutte proved that if G is the automorphism group of a finite symmetric
cubic graph, then G is sharply-transitive on the set of s-arcs of X for some s ≤ 5 (in which case
X is called s-arc-regular). The smallest example of a finite 5-arc-regular cubic graph is Tutte’s
8-cage, on 30 vertices, depicted in Figure 1.

By further theory of symmetric cubic graphs (developed by Tutte, Goldschmidt, et al), it is
now known that if X is a 5-arc-regular cubic graph, then Aut X is a homomorphic image of the
finitely-presented group

G5 = 〈 h, a, p, q, r, s | h3 = a2 = p2 = q2 = r2 = s2 = 1,
pq = qp, pr = rp, ps = sp, qr = rq, qs = sq, sr = pqrs,
ap = qa, ar = sa, h−1ph = p, h−1qh = r, h−1rh = pqr, shs = h−1 〉,

with the subgroups H = 〈h, p, q, r, s〉, A = 〈a, p, q, r, s〉 and H ∩ A = 〈p, q, r, s〉 mapping to the
stabilizers of a vertex, edge and arc, respectively.

Conversely, given any epimorphism θ : G5 → G to a finite group G, with torsion-free kernel
K , a cubic graph X may be constructed on which G acts 5-arc-regularly: Take as vertices the

Figure 1. Tutte’s 8-cage.
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right cosets of V = HK in G5, and join Vx to Vy by an edge whenever xy−1 ∈ VaV . Under right
multiplication by G5, the stabilizer of the vertex V is V , which induces S3 on the neighbourhood
{Ha, Hah, Hah−1} of H , and the group induced on X is G5/K ∼= G. Thus 5-arc-regular cubic graphs
correspond to non-degenerate homomorphic images of the group G5. See [18] for further details.

Tutte’s work for symmetric 3-valent graphs was extended by Richard Weiss to the study of finite
symmetric graphs of arbitrary valency, using the classification of doubly-transitive permutation
groups. In particular, Weiss proved the following generalisation of Tutte’s theorem in [34, 35]:

Theorem 1. (Weiss, 1981 & 1987) There are no finite k-arc-transitive graphs of degree > 2
for k ≥ 8. Moreover, if X is a finite 7-arc-transitive graph of degree d > 2, then d = 3t + 1
for some positive integer t, and G = Aut X is obtainable as a homomorphic image of a certain
finitely-presented group Rd,7.

For example, R4,7 has a presentation in terms of generators p, q, r, s, t, u, v, h, b subject to defin-
ing relations that include h4 = p3 = q3 = r3 = s3 = t3 = u3 = v2 = b2 = 1, (hu)3 =
(uv)2 = (huv)2 = [h2, u] = [h2, v] = 1, [s, t] = p, [q, r] = 1, and so on, and the automorphism
group of every finite 7-arc-transitive 4-valent graph is a non-degenerate homomorphic image of
this group R4,7.

2.2 Regular maps

A map is a 2-cell embedding of a connected (multi)graph in a surface, and an automorphism of a
map M is any permutation of its edges that preserves incidence. A map M is called regular if its
automorphism group Aut M is sharply-transitive (regular) on flags, that is, on incident vertex-edge-
face triples. Similarly, a map M on an orientable surface is called rotary (or orientably-regular) if
the group of all its orientation-preserving automorphisms is transitive on the ordered edges of M .

If M is rotary or regular then every face has the same number of edges (say p) and every vertex
has the same valency (say q), and M has type {p, q}. Regular maps of type {p, q} correspond to
non-degenerate homomorphic images of the full (2, p, q) triangle group � = 〈 a, b, c | a2 = b2 =
c2 = (ab)p = (bc)q = (ac)2 = 1〉; the image of 〈a, b〉 gives the stabilizer of a vertex v, the image of
〈a, c〉 gives the stabilizer of an edge e, and the image of 〈b, c〉 gives the stabilizer of a face f , where
(v, e, f ) is a flag, and incidence corresponds to non-empty intersection of cosets. Similarly, rotary

a
K Ka

o

Figure 2. Chirality in terms of normal subgroups of �o.
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maps of type {p, q} correspond to non-degenerate homomorphic images of the ordinary (2, p, q)
triangle group �o = 〈 x, y, z | xp = yq = z2 = xyz = 1 〉, which has index 2 in � (when x, y, z are
taken as ab, bc, ca respectively). See [12] for further details.

If the rotary map M of type {p, q} admits no orientation-reversing automorphisms, then M is said
to be irreflexible, or chiral, and Aut M is a quotient of the ordinary (2, p, q) triangle group �o but
not the full (2, p, q) triangle group�. In that case, the kernel K of the corresponding epimorphism
θ : �o → Aut M is not normal in�. Indeed if M is rotary and θ : �o → Aut M is the corresponding
non-degenerate homomorphism, then M is reflexible if and only if K is normalized by any element
a ∈ � \�o:

If the subgroup K is not so normalized, then the rotary map M is chiral and Ka is the kernel of
the corresponding epimorphism for the mirror image of M .

2.3 Abstract polytopes

An abstract polytope of rank n is a partially ordered set P endowed with a strictly monotone rank
function having range {−1, . . . , n}. The elements of rank 0, 1 and n − 1 are called the vertices,
edges and facets of the polytope, respectively. For −1 ≤ j ≤ n, elements of P of rank j are called
the j-faces, and a typical j-face is denoted by Fj . We require that P have a smallest (−1)-face F−1,
and a greatest n-face Fn, and that each maximal chain (or flag) of P has length n+ 2, and is of the
form F−1 − F0 − F1 − F2 − · · · − Fn−1 − Fn.

This poset P must satisfy certain combinatorial conditions which generalise the properties of
geometric polytopes. One requirement is a kind of homogeneity property, called the diamond
condition: whenever F ≤ G, with rank(F) = j−1 and rank(G) = j+1, there are exactly two
j-faces Hi such that F ≤ Hi ≤ G. It is further required that P be strongly flag-connected, which
means that any two flags� and� of P can be joined by a sequence of flags� = �0,�1, . . . ,�k =
� such that each two successive faces �i−1 and �i are adjacent (that is, differ in only one face),
and � ∩� ⊆ �i for all i.

An automorphism of an abstract polytope P is an order-preserving bijection P → P . A polytope
P is regular if the automorphism group �(P) is transitive on the flags of P .

When P is regular, �(P) can be generated by n involutions ρ0, ρ1, . . . , ρn−1, where each ρi maps
a given base flag � to the adjacent flag �i (differing from � only in its i-face). These generators
satisfy (among others) the defining relations for the Coxeter group of Schläfli type [p1, . . . , pn−1],
where pi = o(ρi−1ρi) for 1 ≤ i < n.

The generators ρi for �(P) also satisfy an extra condition known as the intersection condition,
namely 〈 ρi : i ∈ I 〉 ∩ 〈 ρi : i ∈ J 〉 = 〈 ρi : i ∈ I ∩ J 〉 for every I , J ⊆ {0, 1, . . . , n− 1}.

3

2

1

0

Figure 3. Partial illustration of a 3-polytope.
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p1 p2 p

n

Figure 4. Dynkin diagram for the Coxeter group [p1, . . . , pn−1].

Conversely, if � is a permutation group generated by n elements ρ0, ρ1, . . . , ρn−1 which satisfy
the defining relations for a Coxeter group of rank n and satisfy the intersection condition, then
there exists a polytope P with �(P) ∼= �.

Similarly, chiral polytopes of rank n are obtainable from certain non-degenerate homomorphic
images of the ‘even-word’ subgroups 〈 ρi−1ρi : 1 ≤ i < n 〉 of these n-generator Coxeter groups.
The automorphism group of a chiral polytope has two orbits on flags, with adjacent flags always
lying in different orbits.

See [15, 29] (and references therein) for further details.

3 SCHREIER COSET DIAGRAMS

Given a transitive permutation representation of a finitely-generated group G on a set�, the effect
of the generators of G on� can be depicted by a graph with� as vertex-set, and edges joining α to
αx for each point α ∈ � and every element x in some generating set for G. Such a graph is known
as a Schreier coset graph (or coset diagram) because, equivalently, given a subgroup H of G, the
effect of the generators of G by right multiplication on right cosets of H can be depicted by the same
graph, with� taken as the coset space (G :H ), and edges joining Hg to Hgx for every generator x.
(The correspondence is obtained by letting H be the stabilizer of any point of �.) See [25, 8] for
further details.

For example, Figure 5 gives a coset diagram for an action of the ordinary (2, 3, 7) triangle group
〈 x, y | x2 = y3 = (xy)7 = 1〉 on 7 points, in which the triangles and heavy dot depict 3-cycles and
the fixed point of the permutation induced by the generator y:

Often two Schreier coset diagrams for the same group G on (say) m and n points can be
composed to produce a transitive permutation representation of larger degree m+n. This technique
(attributable to Graham Higman) can be used in some instances to construct families of epimorphic
images of the given group G (and interesting objects on which they act), and to prove that G is
infinite. For example, one method of composition of coset graphs for the ordinary (2, 3, 7) triangle
group is illustrated in Figure 6.

This method was used to prove, for example, that for every integer m ≥ 7, all but finitely
alternating and symmetric groups are epimorphic images of the (2, 3, m) triangle group—and
hence for all but finitely many n, there exists a rotary map M of type {3, m} with An or Sn as its
orientation-preserving group of automorphisms (see [5]). In fact all those maps are regular, but the
same method can be adapted to prove that for all m ≥ 7 and for all but finitely many n (for each
m), there exists a chiral map M of type {3, m} with Aut(M ) ∼= An (see [3]). More generally, Brent

2

3

4

5 6 7

1

Figure 5. Example of a coset diagram.

5



Figure 6. Composition of coset graphs for the ordinary (2, 3, 7) triangle group.

Everitt has proved that every Fuchsian group has all but finitely many An among its epimorphic
images; see [27].

A variant of this method of composition can be used to prove that there are infinitely many
5-arc-transitive connected finite cubic graphs [6], and infinitely many 7-arc-transitive connected
finite 4-valent graphs [24]. A more careful analysis shows even that there are infinitely many
5-arc-transitive 3-valent finite Cayley graphs, and that every such Cayley graph is a cover of one
of just six examples, and that for every positive integer t, there are infinitely many 7-arc-transitive
finite Cayley graphs of valency 1+3t (see [10]).

4 COMPUTATIONAL PROCEDURES

The last 40 years have seen the development of a wide range of efficient computational procedures
for investigating groups with a small number of generators and defining relations. Here we give a
brief description of some of those which are very useful in the kinds of contexts mentioned earlier
in this paper. All of these procedures are available in the MAGMA package [1]. For further details
and references, see the very helpful books on computational group theory by Sims [31] and Eick,
Holt & O’Brien [28].

• Todd-Coxeter coset enumeration: This attempts to determine the index of a given finitely-
generated subgroup H in a given finitely-presented group G = 〈X |R〉, by systematically
enumerating the right cosets of H in G; when it succeeds, the output can given in the form
of a coset table (in which the (i, j)th entry indicates the number of the coset obtained by multi-
plying the ith coset of H by the jth generator of G), or as permutations induced by the generators
of G on right cosets of H .
• Reidemeister-Schreier algorithm: This gives a defining presentation for a subgroup H of finite

index in a finitely-presented group G = 〈X |R〉, when the coset table is known; the generators
for H are Schreier generators (obtainable from a Schreier transversal for H in G, which can be
identified with a rooted spanning tree for the corresponding coset graph for (G : H )), and the
relations are easily derived from the coset table and the relations for G (or by ‘chasing’ each
relation for G around the coset diagram).
• Abelian quotient algorithm: This produces the direct factors of the abelianisation G/G′ =

G/[G, G] of a finitely-presented group G = 〈X |R〉, in Smith normal form. When taken together
with a variant of the Reidemeister-Schreier algorithm, it can also determine the abelianisation
H/H ′ of a subgroup H of finite index in G, when the coset table for H in G is known.
• Low index subgroups algorithm: This finds a representative of each conjugacy class of subgroups

of up to a given index n in a finitely-presented group G = 〈X |R〉, and will be explained further
in the next Section.
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• p-quotient algorithm: This finds, for a given prime p and a given positive integer c, the largest
possible quotient P of the finitely-presented group G = 〈X |R〉 with the property that P is a
p-group of class at most c; for example, when c = 1 or 2 this is the largest abelian or metabelian
p-quotient, respectively.
• Nilpotent quotient algorithm: This finds, for a given positive integer c, the largest possible

nilpotent quotient of the finitely-presented group G = 〈X |R〉 of class at most c; for example,
when c = 1 or 2 this is the largest abelian or metabelian quotient, respectively.

5 LOW INDEX SUBGROUPS METHODS

Given a finitely-presented group G = 〈X |R〉 and a (small) positive integer n, all subgroups of
index up to n in G can be found (up to conjugacy) by a systematic enumeration of coset tables
with up to n rows. In practice, this is achieved by using an extended coset table, which includes
the effect of multiplying cosets of the (pseudo-) subgroup by the inverses of the elements of the
generating set X for G, as depicted below:

Such tables are assumed to be in normal form, which means that lexicographically, no coset
number j appears for the first time before a coset number k less than j. The enumeration procedure
usually defines more than n cosets, and then coincidences are forced between cosets. As cosets Hv
and Hw of a subgroup H are equal if and only if vw−1 ∈ H , forcing any coincidence gives rise to a
new element of the subgroup, which is then taken as an additional generator of the subgroup. The
fact that every subgroup of finite index in G is finitely-generated (by Schreier’s theorem) ensures
that this procedure will terminate, given sufficient time and memory. See [31, 28, 14] for further
details and references.

A key point about the low index subgroups algorithm is that it can be used to find ‘small’ finite
epimorphic images of a finitely-presented group G: for each subgroup H of index n in G, the
permutations induced by generators of G on right cosets of H generate the factor group G/K where
K is the core of H (the intersection of all conjugates of H ) in G, as a subgroup of Sn.

These images can often be used as the ‘building blocks’ for the construction of larger images
(as in Section 3), or produce interesting examples in their own right. For instance, the first known
examples of arc-transitive cubic graphs admitting no edge-reversing automorphisms of order 2,
and first known 5-arc–transitive cubic graph having no s-arc-regular group of automorphisms for
s < 5, were found in this way (see [18]). The same approach was used to help construct infinite
family of 4-arc-transitive connected finite cubic graphs of girth 12, and then (unexpectedly) to a
new symmetric presentation for the special linear group SL(3, Z); see [7]. Similarly, it enabled
the construction of a infinite family of vertex-transitive but non-Cayley finite connected 4-valent
graphs with arbitrarily large vertex-stabilizers in their automorphism groups [23], the first known
example of a finite half-arc-transitive (vertex- and edge-transitive but not arc-transitive) 4-valent
finite graph with non-abelian vertex-stabilizer [20], and the first known examples of finite chiral
polytopes of rank 5 [15].

Two drawbacks of the (standard) low index subgroups algorithm are the fact that the finite
quotients it produces can have large order but small minimal degree (as permutation groups), and

x1 x2 . . . x
1

1
x

1

2
. . .

1 2 3 4

2 1

3 1

4 1

:

Figure 7. An extended coset table.
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the fact that it tends to be very slow for large index n or complicated presentations. (Also for
some groups, like the modular group 〈 x, y | x2, y3〉, the number of subgroups grows exponentially,
making it impossible to search very far.)

It is not difficult, however, to adapt the algorithm so that it produces only normal subgroups
(of up to a given index), and this adaptation runs much more quickly (for given maximum) index,
and hence can produce all quotients of up to a given order, not just those which have faithful
permutation representations of small degree.

Such an adaptation was developed by the author and Peter Dobcsányi (as part of Peter’s PhD thesis
project), and applied to find all rotary and regular maps on orientable surfaces of genus 2 to 15, all
regular maps on non-orientable surfaces of genus 2 to 30, and all arc-transitive cubic graphs on up
to 768 vertices; see [12, 13]. It was also subsequently used to help find all semisymmetric cubic
graphs on up to 768 vertices [19], and to assist in obtaining a refined classification of arc-transitive
group actions on finite cubic graphs (by types of arc-transitive subgroups) [21].

Recently, a new method for finding normal subgroups of small index has been developed by
Derek Holt and his student David Firth. This systematically enumerates the possibilities for the
composition series of the factor group G/K (for any normal subgroup K of small index in G), and
works much faster, for index up to 100, 000 in many groups with straightforward presentations.
It too has been implemented in the MAGMA package [1].

This new method has enabled the determination of all rotary and regular maps (and hypermaps)
on orientable surfaces of genus 2 to 101, all regular maps on non-orientable surfaces of genus 2 to
202, and all arc-transitive cubic graphs on up to 2048 vertices (and thereby the accidental discovery
of largest known cubic graph of diameter 10); see [11]. Consequences of finding patterns in the
list of maps of small genus will be described in Section 7.

6 SCHUR’S THEOREM

A particularly useful (but not so well known) piece of combinatorial group theory is Schur’s theorem
on centre-by-finite groups.

Theorem 2 (Schur). If the centre Z(G) of the group G has finite index |G :Z(G)| = m in G, then
the order of every element of G′ = [G, G] is finite and divides m.

Closely tied to the Schur-Zassenhaus theorem, this theorem can be proved easily using the
transfer homomorphism τ : G→ Z(G) (which takes g �→ gm for all g ∈ G), once it is noted that
ker τ contains G′. See [30] for further background and details.

The author is grateful to Peter Neumann for pointing out the usefulness of Schur’s theorem in
order to obtain the following in some work with Ravi Kulkarni on families of automorphism groups
of compact Riemann surfaces:

Theorem 3 [16]. Let p, q and d be positive integers, with gcd(p, q) = 1. Then there are only
finitely many finite groups which can be generated by two elements x and y of orders p and q
respectively such that xy generates a subgroup of index at most d.

In turn, the above helps disprove the possibility that certain cyclic-by-finite groups might be
rotation groups of orientably-regular maps. For example, suppose the map M is a ‘central cover’
of the octahedral map, of type {3, 4t} for some t, with rotation group G = AutoM ∼= 〈 x, y, z | x3 =
y4t = (xy)2 = 1, [x, y4] = 1〉. How large can t be? Here we may note that Z(G) contains
N = 〈 y4〉, with G/N ∼= S4, so |G : Z(G)| divides 24. Also G/G′ ∼= C2, and G′ = 〈x, y−1xy, y2〉.
Hence by Schur’s theorem, the order of y2 divides 24, so t divides 12. (But furthermore, we can
use Reidemeister-Schreier theory to obtain presentations (and hence the orders) of subgroups of
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G: the index 6 subgroup H = 〈 y2, (xy−1)2〉 has order dividing 24, so |G| = |G : H ||H | divides
144, so t divides 6.)

7 MORE RECENT RESULTS

Some new discoveries have been made (and proved) very recently as a result of observations made
about the data produced from the computations described at the end of Section 5.

Two major breakthroughs in the study of rotary and regular maps were made possible by noticing
that there is no orientably-regular but chiral map of genus 2, 3, 4, 5, 6, 9, 13, 23, 24, 30, 36, 47,
48, 54, 60, 66, 84 or 95, and similarly that there is no regular orientable map of genus 20, 32, 38,
44, 62, 68, 74, 80 or 98 with simple underlying graph. A lot of these exceptional genera are of the
form p+ 1 where p is prime—a phenomenon that was not so easy to observe until the rotary maps
of genus 2 to 100 were known—and this observation led to the following (proved in joint work
with Jozef Siráň and Tom Tucker):

Theorem 4 [22]. If M is an irreflexible (chiral) orientably-regular map of genus p + 1 where p
is prime, then

either p ≡ 1 mod 3 and M has type {6, 6},
or p ≡ 1 mod 5 and M has type {5, 10},
or p ≡ 1 mod 8 and M has type {8, 8}.

In particular, there are no such maps of genus p+ 1 whenever p is a prime such that p− 1 is not
divisible by 3, 5 or 8.

Theorem 5 [22]. There is no regular map M with simple underlying graph on an orientable
surface of genus p+ 1 whenever p is a prime congruent to 1 mod 6, for p > 13.

In fact, what was achieved in [22] is a complete classification of all regular and orientably-regular
maps M for which |Aut M | is coprime to the map’s Euler characteristic χ (if χ is odd) or to χ /2
(if χ is even), and that leads not only to the above two theorems, but also to a simpler proof of the
following theorem of Breda, Nedela & Siráň:

Theorem 6 [2]. There is no regular map M on a non-orientable surface of genus p+ 1 whenever
p is a prime congruent to 1 mod 12, for p > 13.

Here is a sketch proof of the classification leading to these three results. First, let M be a rotary
map on an orientable surface of genus g, let G = AutoM be its group of orientation-preserving
automorphisms, and suppose |G| is coprime to g − 1. Then by the Euler-Poincaré formula, the
type {k , m} of M is restricted (by arithmetic) to one of five different families. Moreover, the group
G = AutoM is almost Sylow-cyclic, meaning that every Sylow subgroup of odd order in G is
cyclic, and every Sylow 2-subgroup of G contains a cyclic subgroup of index 2. The Suzuki-Wong
classification of non-solvable almost Sylow-cyclic groups can be used to deduce that G = AutoM
is solvable, except in the case of one of the five families. It is then possible to classify those cases
where the vertex-stabilizer and face-stabilizer intersect trivially, and use Ito’s theorem and Schur’s
transfer theory to deal with the more general case. What is remarkable is that the map M turns out
to be reflexible whenever the coprime condition is satisfied.

Another outcome concerns reflexibility of Cayley maps. Briefly, a Cayley map for a group G is
an embedding of a Cayley graph for G in a surface as a rotary map—or equivalently, a rotary map
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