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“… this is an excellent publication that presents fundamental concepts of 
concrete curing with a practical application of real-world expertise drawn 
from well-respected practitioners. Why we cure, how to specify it, and what 
the benefits will be are well presented.” 
—Jim Grove, P.E., Global Consulting Inc., Ames, Iowa, USA

“… a great book for site personnel and mid-level managers, as well as students 
and other practitioners of concrete, to use in order to inform themselves 
about curing and to help in doing it properly. The book is clear and concise 
without getting bogged down in unnecessary detail.” 
—Prof. M.G. Alexander, University of Cape Town, South Africa

“… the flow is from theory to practice, including case studies. ... Moreover, 
for every parameter, including cracking, durability, strength, etc., the same 
flow exists and the fundamentals are first explained. I liked this approach.” 
—Dr. Ismail Özgür Yaman, Middle East Technical University and Turkish 
Cement Manufacturers’ Association, Turkey

Curing is one of those activities that every civil engineer and construction 
worker has heard of, but does not worry about much. In practice, 
curing is often low on the list of priorities on the construction site, 

particularly when budgets and timelines are under pressure. Yet the increasing 
demands being placed on concrete mixtures also mean that they are less 
forgiving than in the past. Therefore, any activity that will help improve hydration 
and so performance, while reducing the risk of cracking, is becoming more 
important. Curing Concrete explains exactly why curing is crucial and shows 
you how to best do it. The book also looks at examples of how curing—or 
a lack of it—has affected concrete performance in real-world situations.
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To my family 
This is why we took as many photos of concrete 
as mountains on our road trips.
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Preface

Students are taught that curing concrete is important, but in practice curing 
is often a low priority on the construction site. This is most likely because 
the benefits of the cost of curing are not immediately apparent, and the con-
sequences of poor curing may only appear later in the life of the structure.

The fundamental principle behind the curing of concrete is simple: The 
mixture should be kept warm and wet for several days after placement in 
order to achieve the properties needed. This is because cement hydration is 
a relatively slow process that requires sufficient water available to continue. 
Drying normally occurs at the surface, meaning that poor curing affects 
the surface by reducing resistance to the environment and abrasion; yet this 
is precisely the zone that is exposed to bad weather and tires.

Demands on modern concrete are increasing, while raw materials are 
changing and budgets are shrinking, together requiring that closer atten-
tion is needed to ensure that the best value is obtained from the cementi-
tious materials in a mixture.

The aim of this book is to help those involved with working in concrete 
construction understand why curing is important, that it is indeed possible 
and worth the effort, and to show how it can best be carried out.

The discussion includes the fundamentals behind hydration and why 
curing is needed; how properties are affected; and how curing can be 
effectively specified, provided, and measured. The final chapter includes a 
review of published work evaluating curing in real-world structures.




