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Preface

This book intends to provide a complete and uniform treatment of the most fundamental 
and traditional topics in structural mechanics. It represents the second edition of a sub-
stantial part (12 chapters over 20) of my previous book Structural Mechanics: A Unified 
Approach, published in 1997 by E & FN SPON, an imprint of Chapman & Hall.

After introducing the basic topics of the geometry of areas and of kinematics and statics 
of rigid body systems, the mechanics of linear elastic solids (beams, plates and 3-D solids) is 
presented, adopting a matrix formulation which is particularly useful for numerical appli-
cations. The analysis of strain and stress around a material point is carried out considering 
the tensorial character of these physical quantities. The linear elastic constitutive law is then 
introduced, with the related Clapeyron’s and Betti’s theorems. The kinematic, static and con-
stitutive equations, once composed within the elastic problem, provide an operator equation 
which has as its unknown the generalized displacement vector. Moreover, constant reference 
is made to duality, that is to the strict correspondence between statics and kinematics that 
emerges as soon as the corresponding operators are rendered explicit, and it is at once seen 
how each of these is the adjoint of the other. The implication of the principle of virtual work 
by the static–kinematic duality is emphasized, as well as the inverse implication. Once intro-
duced the Saint Venant problem with all the six elementary loading characteristics, the theory 
of beam systems (statically determinate or indeterminate) is presented, with the solution of 
numerous examples and the plotting of the corresponding diagrams of axial force, shearing 
force and bending moment obtained both analytically and graphically. For the examination 
of indeterminate beam systems, both the methods of forces and energy are applied.

This book is the fruit of many years of teaching in Italian universities, formerly at the 
University of Bologna and currently at the Politecnico di Torino, where I have been professor 
of structural mechanics since 1986. It has been written to be used as a text for graduate or 
undergraduate students of either architecture or engineering, as well as to serve as a useful 
reference for research workers and practising engineers. It has been my endeavour to update 
and modernize a basic, and in some respects dated, discipline by merging classical topics 
with ones that have taken shape in more recent times.

Finally, I wish to express my most sincere gratitude to all those colleagues, collaborators 
and students, who, having attended my lectures or having read the original manuscript, 
have, with their suggestions and comments, contributed to the text as it appears in its defini-
tive form. I further wish to thank my master’s student, Francesco Armenti, for helping me 
with the proof corrections and Dr. Amedeo Manuello for his precious advice in realizing 
the front cover.

Alberto Carpinteri
Torino, Italy
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Chapter 1

Introduction

1.1 � PRELIMINARY REMARKS

Structural mechanics is the science that studies the structural response of solid bodies 
subjected to external loading. The structural response takes the form of strains and 
internal stresses.

The variation of shape generally involves relative and absolute displacements of the points 
of the body. The simplest case that can be envisaged is that of a string, one end of which 
is held firm while a tensile load is applied to the other end. The percentage lengthening or 
stretching of the string naturally implies a displacement, albeit small, of the end where 
the force is exerted. Likewise, a membrane, stretched by a system of balanced forces, will 
dilate in two dimensions, and its points will undergo relative and absolute displacements. 
Also three-dimensional bodies, when subjected to stress by a system of balanced forces, 
undergo, point by point and direction by direction, a dilation or a contraction, as well as 
an angular distortion. Similarly, beams and horizontal plates bend, imposing a certain cur-
vature, respectively, to their axes and to their middle planes, and differentiated deflections 
to their points.

As regards internal stresses, these can be considered as exchanged between the single 
(even infinitesimal) parts which make up the body. In the case of the string, the tension is 
transmitted continuously from the end on which the force is applied right up to the point of 
constraint. Each elementary segment is thus subject to two equal and opposite forces exerted 
by the contiguous segments. Likewise, each elementary part of a membrane will be subject 
to four mutually perpendicular forces, two equal and opposite pairs. In three-dimensional 
bodies, each elementary part is subject to normal and tangential forces. The former gener-
ate dilations and contractions, whilst the latter produce angular distortions. Finally, each 
element of beam or plate that is bent is subject to self-balanced pairs of moments.

In addition to the shape and properties of the body, it is the external loading applied and 
the constraints imposed that determine the structural response. The constraints react to the 
external loads, exerting on the body additional loads called constraint reactions. These reac-
tions are a priori unknown. In the case where the constraints are not redundant from the 
kinematic point of view, the calculation of the constraint reactions can be made considering 
the body as being perfectly rigid and applying only the cardinal equations of statics. In the 
alternative case where the constraints are redundant, the calculation of the constraint reac-
tions requires, in addition to equations of equilibrium, the so-called equations of congruence. 
These equations are obtained by eliminating the redundant constraints, replacing them with 
the constraint reactions exerted by them and imposing the abeyance of the constraints that 
have been eliminated. The procedure presupposes that the strains and displacements, pro-
duced both by the external loading and by the reactions of the constraints that have been 
eliminated, are known. A simple example may suffice to illustrate these concepts.
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Let us consider a bar hinged at point A and supported at point B, subjected to the end 
force F (Figure 1.1). The reaction X produced by the support B is obtained by imposing 
equilibrium with regard to rotation about hinge A:

	 F l X l X F( )2 2= ⇒ = 	 (1.1)

The equation of equilibrium with regard to vertical translation provides, on the other hand, 
the reaction of hinge A. The problem is thus statically determinate or isostatic.

Let us now consider the same bar hinged, not only at A but also at two points B1 and B2, 
distant 23l and 43l, respectively, from point A (Figure 1.2a). The condition of equilibrium 
with regard to rotation gives us an equation with two unknowns:

	
F l X l X l2 2

3
4
31 2( ) + = 	 (1.2)

Thus, the pairs of reactions X1 and X2 which ensure rotational equilibrium are infinite, but 
only one of these also ensures congruence, i.e. abeyance of the conditions of constraint. The 
vertical displacement in both B1 and B2 must in fact be zero.

To determine the constraint reactions, we thus proceed to eliminate one of the two 
hinges B1 or B2, for example, B1, and we find out how much point B1 rises owing to the 
external force F (Figure 1.2b) and how much it drops owing to the unknown reaction X1 
(Figure 1.2c). The condition of congruence consists of putting the total displacement of B1 
equal to zero:

	 υ υ( ) ( )F X= 1 	 (1.3)

The equation of equilibrium (1.2) and the equation of congruence (1.3) together solve the 
problem, which is said to be statically indeterminate or hyperstatic.

l l

X = 2F

B

F

A

Figure 1.1
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1.2 � CLASSIFICATION OF STRUCTURAL ELEMENTS

As has already been mentioned in the preliminary remarks, the structural elements which 
combine to make up the load-bearing structures of civil and industrial constructions, as well 
as any naturally occurring structure such as rock masses, plants or skeletons, can fit into one 
of three distinct categories:

	 1.	One-dimensional elements (e.g. ropes, struts, beams, arches)
	 2.	Two-dimensional elements (e.g. membranes, plates, slabs, vaults, shells)
	 3.	Three-dimensional elements (stubby solids)

In the case of one-dimensional elements, for example, beams (Figure 1.3), one of the three 
dimensions, the length, is much larger than the other two which compose the cross section. 
Hence, it is possible to neglect the latter two dimensions and consider the entire element as 
concentrated along the line forming its centroidal axis. In our calculations, features which 

2l/3

(a)

(b)

(c)

υ(F)

F

2l/32l/3

X1

B1 B2

X2

F

X1

A

υ(X1)

Figure 1.2
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represent the geometry of the cross section and, consequently, the three dimensionality of 
the element will thus be used. Ropes are elements devoid of flexural and compressive stiff-
ness and are able only to bear states of tensile stress. Bars, however, present a high axial 
stiffness, both in compression (struts) and in tension (tie rods), whilst their flexural stiffness 
is poor. Beams and, more generally, arches (or curvilinear beams) also present a high degree 
of flexural stiffness, provided that materials having particularly high tensile strength are 
used. In the case of stone materials and concrete, which present very low tensile strength, 
straight beams are reinforced to stand up to bending stresses, whilst arches are traditionally 
shaped so that only internal compressive stresses are produced.

When, in the cross section of a beam, one dimension is clearly smaller than the others 
(Figure 1.4), the beam is said to be thin walled. Beams of this sort can be easily produced by 
rolling or welding metal plate and prove to be extremely efficient from the point of view of 
the ratio of flexural strength to the amount of material employed.

In the case of two-dimensional elements, for example, flat plates (Figure 1.5a) or plates 
with double curvature (Figure 1.5b), one of the three dimensions, the thickness, is much 
smaller than the other two, which compose the middle surface. It is thus possible to neglect 
the thickness and to consider the entire element as being concentrated in its middle surface. 
Membranes are elements devoid of flexural and compressive stiffness and are able to with-
stand only states of biaxial traction. Also plates that are of a small thickness present a low 
flexural stiffness and are able to bear loads only in their middle plane. Thick plates (also 
referred to as slabs), instead, also withstand bending stresses, provided that materials having 
particularly high tensile strength are used. In the case of stone materials and concrete, flat 
plates are, on the other hand, ribbed and reinforced, while vaults and domes are traditionally 
shaped so that only internal compressive stresses are produced (for instance, in arched dams).

Finally, in the case of so-called stubby solids, the three dimensions are all comparable to 
one another and hence the analysis of the state of strain and internal stress must be three 
dimensional, without any particular simplifications or approximations.

l

bX G

Y
a

l >> a
l >> b

Figure 1.3
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1.3 � STRUCTURAL TYPES

The single structural elements, introduced in the previous section, are combined to form 
load-bearing structures. Usually, for buildings of a civil type, one-dimensional and two-
dimensional elements are connected together. The characteristics of the individual elements 
and the way in which they are connected one to another and to the ground together define 
the structural type, which can be extremely varied, according to the purposes for which the 
building is designed.

In many cases, the two-dimensional elements do not have a load-bearing function (e.g. 
the walls of buildings in reinforced concrete), and hence it is necessary to highlight graphi-
cally and calculate only the so-called framework, made up exclusively of one-dimensional 
elements. This framework, according to the type of constraint which links together the vari-
ous beams, will then be said to be trussed or framed. In the former case, the calculation is 
made by inserting hinges which connect the beams together, whereas in the latter case the 
beams are considered as built into one another. In real situations, however, beams are never 
connected by frictionless hinges or with perfectly rigid joints. Figures 1.6 through 1.11 show 
some examples of load-bearing frameworks: a timber-beam bridge, a truss in reinforced 
concrete, an arch centre, a plane steel frame, a grid and a three-dimensional frame.

a a

bb

l l

δ

δ

δ << a
δ << b

δ << a
δ << b

l >> a
l >> b

l >> a
l >> b

(a) (b)

Figure 1.4

δ

a

(a) (b)

b

δ

a b

Figure 1.5
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Figure 1.6

Figure 1.7

Figure 1.8
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Also in the case of bridges, it is usually possible to identify a load-bearing structure 
consisting of one-dimensional elements. The road surface of an arch bridge is supported 
by a parabolic beam which is subject to compression and, if well designed, is devoid of 
dangerous internal flexural stresses. The road surface can be built to rest above the arch 
by means of struts (Figure 1.12) or can be suspended beneath the arch by means of tie rods 
(Figure 1.13). Inverting the static scheme and using a primary load-bearing element subject 
exclusively to tensile stress, we arrive at the structure of suspension bridges (Figure 1.14). 
In these, the road surface hangs from a parabolic cable by means of tie rods. The cable is, 
of course, able to withstand only tensile stresses, which are, however, transmitted onto two 
compressed piers.
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Figure 1.11

(a)

Figure 1.12
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As regards two-dimensional structural elements, it is advantageous to exploit the same 
static principles already met with in the case of bridges. To avoid, for example, dangerous 
internal stresses of a flexural nature, the usual approach is to use vaults or domes hav-
ing double curvature, which present parabolic sections in both of the principal directions 
(Figure 1.15a). A variant is provided by the so-called cross vault (Figure 1.15b), consisting of 
two mutually intersecting cylindrical vaults. Membranes, on the other hand, can assume the 
form of hyperbolic paraboloids, with saddle points and curvatures of opposite sign (Figure 
1.15c). In the so-called prestressed membranes, both those cables with the concavity facing 
upwards and those with the concavity facing downwards are subject to tensile stress.

(b)

Figure 1.12 (continued)

(a)

Figure 1.13

(continued)
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(a)

Figure 1.14

(b)

Figure 1.13 (continued)
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1.4 � EXTERNAL LOADING AND CONSTRAINT REACTIONS

The strains and internal stresses of a structure obviously depend on the external loads 
applied to it. These can be of varying nature according to the structure under consideration. 
In the civil engineering field, the loads are usually represented by the weight load, both of 
the structural elements themselves (permanent loads) and of persons, vehicles or objects 
(live loads).

Figure 1.16 represents two load diagrams, used in the early decades of the last century, of 
horse-drawn carts and carriages. The forces are considered as concentrated and, of course, 
proceeding over the road surface. Figure 1.17 illustrates the load diagram of a roller, and 
Figure 1.18 that of a hoisting device. Figure 1.19 compares the permanent load diagrams 
of two beams, one with constant cross section and the other with linearly variable cross 
section.

343.0
(b)

1281.0 343.0

Figure 1.14 (continued)

(a) (b)

(c)

Figure 1.15
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Other loads of a mechanical nature are hydraulic loads and pneumatic loads. Figure 1.20 
shows how the thrust of water against a dam can be represented with a triangular distrib-
uted load. Then there are inertial forces, which act on rotating mechanical components, 
such as the blades of a turbine, or on the floors of a storeyed building, following ground 
vibration caused by an earthquake (Figure 1.21). A similar system of horizontal forces can 
represent the action of the wind on the same building.

In addition to external loading, the structural elements undergo the action of the other 
structural elements connected to them, including the action of the foundation. These kinds 
of action are more correctly termed constraint reactions, those exchanged between elements 
being internal and those exchanged with the foundation being external. The nature of the 
constraint reaction depends on the conformation and mode of operation of the constraint 
which connects the two parts.

Figure 1.22 gives examples of some types of beam support to the foundation. In the case 
of Figure 1.22a, we have a pillar in reinforced concrete; in Figure 1.22b, we have joints that 
are used in bridges, and in Figure 1.22c, a roller support. In all cases, the constraint reaction 

Figure 1.20
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exchanged between the foundation and the structural part is constituted by a vertical force, 
no constraint being exerted horizontally, except for friction.

Figure 1.23 shows the detailed scheme of a hinge connecting a part in reinforced concrete 
to the foundation. The hinge allows only relative rotations between the two connected parts 
and hence reacts with a force that passes through its centre. In the case illustrated, there will 
thus be the possibility of a horizontal reaction, as well as a vertical one.

Figure 1.24 illustrates the joint between two timber beams, built with joining plates 
and riveting. Similar joints are made for steel girders by means of bolting or welding. This 
constraint is naturally more severe than a simple hinge, and yet in practice it proves to be 
much less rigid than a perfectly fixed joint. In the designing of trusses, it is customary to 
model the joint with a hinge, neglecting the exchange of moment between the two parts. 
The effect of making such an assumption is, in fact, that of guaranteeing a greater margin 
of safety.

1.5 � STRUCTURAL COLLAPSE

If the loading exerted on a structure exceeds a certain limit, the consequence is the com-
plete collapse or, at any rate, the failure of the structure itself. The loss of stability can 
occur in different ways depending on the shape and dimensions of the structural elements, 
as well as on the material of which these are made. In some cases, the constraints and 
joints can fail, with the result that rigid mechanisms are created, with consequent large 
displacements, toppling over, etc. In other cases, the structural elements themselves can 
give way; the mechanisms of structural collapse can be divided schematically into three 
distinct categories:

	 1.	Buckling
	 2.	Yielding
	 3.	Brittle fracturing

Figure 1.23



Introduction  17

© 2010 Taylor & Francis Group, LLC

In real situations, however, many cases of structural collapse occur in such a way as to 
involve two of these mechanisms, if not all three.

Buckling, or instability of elastic equilibrium, is the type of structural collapse which 
involves slender structural elements, subject prevalently to compression, such as struts of 
trusses, columns of frameworks, piers and arches of bridges, valve stems, crankshafts, ceil-
ing shells, submarine hulls, etc. This kind of collapse often occurs even before the material 
of which the element is made has broken or yielded.

Unlike buckling, yielding, or plastic deformation, involves also the material itself and 
occurs in a localized manner in one or more points of the structure. When, with the 
increase in load, plastic deformation has taken place in a sufficient number of points, 
the structure can give way altogether since it has become hypostatic, i.e. it has become a 
mechanism. This type of generalized structural collapse usually involves structures built 
of rather ductile material, such as metal frames and plates, which are mainly prone to 
bending.

Finally, brittle fracturing is of a localized origin, as is plastic deformation, but spreads 
throughout the structure and hence constitutes a structural collapse of a generalized nature. 
This type of collapse affects prevalently one- and two-dimensional structural elements of 
considerable thickness (bridges, dams, ships, large ceilings and vessels, etc.), large three-
dimensional elements (rock masses, the Earth’s crust, etc.), brittle materials (high-strength 
steel and concrete, rocks, ceramics, glass, etc.) and tensile conditions.

Figure 1.24
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As, with the decrease in their degree of slenderness, certain structures, subject prevalently 
to compression and bending, very gradually pass from a collapse due to buckling to one due 
to plastic deformation, likewise, as we move down the size scale, other structures, prone to 
tension and bending, gradually pass from a collapse due to brittle fracturing to one due to 
plastic deformation.

1.6 � NUMERICAL MODELS

With the development of electronics technology and the production of computers of ever-
increasing power and capacity, structural analysis has undergone, in the last four or five 
decades, a remarkable metamorphosis. Calculations which were carried out manually by 
individual engineers, with at most the help of the traditional graphical methods, can now be 
performed using computer software.

Up to a few years ago, since the calculation of strains and internal stresses of complex 
structures could not be handled in such a way as to obtain an exact result, such calcu-
lations were carried out using a procedure of approximation. These approximations, at 
times, were somewhat crude and, in certain cases, far from being altogether realistic. Today 
numerical models allow us to consider enormous numbers of points, or nodes, with their 
corresponding displacements and corresponding strains and internal stresses. The so-called 
finite-element method is both a discretization method, since it considers a finite number, 
albeit a very large one, of structural nodes, and an interpolation method, since it allows us 
to estimate the static and kinematic quantities even outside the nodes.

Figure 1.25
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The enormous amount of information to be handled is organized and ordered in a matrix 
form by the computer. In this way, the language itself of structural analysis has taken on a 
different appearance, undoubtedly more synthetic and homogeneous. This means that, for 
every type of structural element, it is possible to write static, kinematic and constitutive 
equations having the same form. Once discretized, these provide a matrix of global stiffness 
which presents a dimension equal to the number of degrees of freedom considered. This 
matrix, multiplied by the vector of the nodal displacements, which constitutes the primary 
unknown of the problem, provides the vector of the external forces applied to the nodes; 
this represents the known term of the problem. Once this matrix equation has been resolved, 
taking into account any boundary conditions, it is then possible to arrive at the nodal strains 
and nodal internal stresses.

As an illustration of these mathematical techniques, a number of finite-element meshes 
are presented. They correspond to a buttress dam (Figure 1.25), a rock mass with a tunnel 
system (Figure 1.26), an eye hook (Figure 1.27), two mechanical components having sup-
porting functions (Figure 1.28), a concrete vessel for a nuclear reactor (Figure 1.29) and an 
arch dam (Figure 1.30).

Figure 1.26

Y

X

Figure 1.27
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(a)

(b)

Figure 1.28

Figure 1.29
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120 m

Figure 1.30
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Chapter 2

Geometry of areas

2.1 � INTRODUCTION

When analysing beam resistance, it is necessary to consider the geometrical features of the 
corresponding right sections. These features, as will emerge more clearly hereafter, amount 
to a scalar quantity, the area; a vector quantity, the position of the centroid; and a tensor 
quantity, consisting of the central directions and the central moments of inertia.

The laws of transformation, by translation and rotation of the reference system, both of 
the vector of static moments and of the tensor of moments of inertia, will be considered. It 
will thus become possible also to calculate composite sections, consisting of the combina-
tion of a number of elementary parts, and the graphical interpretation (due to Mohr) of this 
calculation will be given.

Particular attention will be paid to the cases of sections presenting symmetry, whether 
axial or polar, and of thin-walled beam sections, which have already been mentioned in 
the introductory chapter and for which a simplified calculation is possible. A number of 
examples will close the chapter.

2.2 � LAWS OF TRANSFORMATION OF THE POSITION VECTOR

The coordinates x, y of a point of the plane in the XY reference system are linked to the 
coordinates x

_
, y

_
 of the same point in the translated reference system X Y  (Figure 2.1) by the 

following relations:

	 x x x= − 0 	 (2.1a)

	 y y y= − 0 	 (2.1b)

where x0, y0 are the coordinates of the origin O
–
 of the translated system, with respect to the 

original XY axes.
The laws of transformation (2.1) can be reproposed in a vector form as follows:

	 { } {} { }r r r= − 0 	 (2.2)

where {r} indicates the position vector [x, y]T of the generic point in the original reference 
system, with {r

_
} being the position vector [x

_
, y

_
]T in the translated system and with {r0} being 

the position vector [x0, y0]T of the origin O
–
 of the translated system in the original reference 

system.
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The coordinates x
_
, y

_
 of a point of the plane X Y  are linked to the coordinates x

_
*, y

_
* of 

the same point in the rotated reference system X
_
*Y

_
* (Figure 2.2) via the following relations:

	 x x y* cos= +ϑ ϑsin 	 (2.3a)

	 y x y* sin cos= − +ϑ ϑ 	 (2.3b)

where ϑ indicates the angle of rotation of the second reference system with respect to the 
first (positive if the rotation is counterclockwise).

These transformation laws can be reproposed in a matrix form as follows:

	 { *} [ ]{ }r N r= 	 (2.4)

where

	
[ ]

cos sin
sin cos

N =
−











ϑ ϑ
ϑ ϑ

	 (2.5)

is the orthogonal matrix of rotation.

0

0

y0

x0

YY

X

X

A

Figure 2.1

X*

Y* Y

X
0

0

A

Figure 2.2
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2.3 � LAWS OF TRANSFORMATION OF THE STATIC 
MOMENT VECTOR

Consider the area A in the XY reference system (Figure 2.1). The definition of static moment 
vector, relative to the area A and calculated in the XY reference system, is given by the 
following two-component vector:

	

{ } {}S
S
S

x A

y A
r Ay

x

A

A

A

=








 =





















=
∫
∫ ∫

d

d
d 	 (2.6)

The static moment vector, again referred to the area A, calculated in the translated X Y  
system, can be expressed in the following way:

	

{ } { }S
S
S

x A

y A
r Ay

x

A

A

A

=








 =





















=
∫
∫ ∫

d

d
d 	 (2.7)

Applying the transformation law (2.2), Equation 2.7 becomes

	

{ } {} { }S r A r A
A A

= −∫ ∫d d0 	 (2.8)

since {r0} is a constant vector. Recalling definition (2.6), we obtain finally the static moment 
vector transformation law for translations of the reference system:

	 { } { } { }S S A r= − 0 	 (2.9)

Vector relation (2.9) is equivalent to the following two scalar relations:

	
S S Axy y= − 0 	 (2.10a)

	 S S Ayx x= − 0 	 (2.10b)

The reference system, translated with respect to the original one, for which both static 
moments vanish, is determined by the following position vector:

	
x S

AG
y= 	 (2.11a)

	
y S

AG
x= 	 (2.11b)
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The origin G of this particular reference system is termed the centroid of area A and is a 
characteristic point of the area itself, in the sense that it is altogether independent of the 
choice of the original XY system.

Now consider the reference system X
_
*Y

_
*, rotated with respect to the X Y  system 

(Figure  2.2). The static moment vector, relative to area A and calculated in the rotated 
system X

_
*Y

_
*, may be expressed using the law (2.4):

	

{ *} { *} [ ] { }S r A N r A
A A

= =∫ ∫d d 	 (2.12)

where [N] is the constant matrix (2.5). Finally, recalling definition (2.7), the static moment 
vector transformation law for rotations of the reference system is obtained as follows:

	 { *} [ ]{ }S N S= 	 (2.13)

The matrix relation (2.13) is equivalent to the following two scalar relations:

	
S S Sy y x* cos sin= +ϑ ϑ 	 (2.14a)

	
S S Sx y x* sin cos= − +ϑ ϑ 	 (2.14b)

From Equations 2.14, two important conclusions may be drawn.

	 1.	The static moments are zero with respect to any pair of centroidal orthogonal axes.
	 2.	If the origin O

–
 of the reference system does not coincide with the centroid G of area A, 

there exists no angle of rotation ϑ of the reference system for which the static moments 
both vanish. In fact, from Equations 2.14, we obtain

	
S S

Sy
y

x
* arctan= = −





0 forϑ 	 (2.15a)

	
S S

Sx
x

y
* arctan= = +







0 forϑ 	 (2.15b)

		  The conditions (2.15) are not, however, compatible.

If we consider a reference system X
_
*Y

_
* obtained by translating and then rotating the orig-

inal XY system (Figures 2.1 and 2.2), it is possible to formulate the general static moment 
vector transformation law for rototranslations of the reference system, combining the fore-
going partial laws (2.9) and (2.13):

	
{ *} [ ]{ } { }S N S A r= −( )0 	 (2.16)

The inverse rototranslation formula may be obtained from the previous one by premultiplying 
both members by [N]T = [N]−1

	 { } [ ] { *} { }S N S A r= +T
0 	 (2.17)
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2.4 � LAWS OF TRANSFORMATION OF THE MOMENT 
OF INERTIA TENSOR

Consider the following matrix product (referred to as the dyadic product):

	
{}{} [ ]r r

x
y

x y x xy
yx y

T =








 =











2

2
	 (2.18)

The definition of the moment of inertia tensor, relative to area A and calculated in the XY 
reference system, is given by the following symmetric (2 × 2) tensor:

	

[]I
I I
I I

x A xy A

yx A y A

yy xy

yx xx

A A

A A

=








 =


















∫ ∫
∫ ∫

2

2

d d

d d




	 (2.19)

Taking into account relation (2.18), definition (2.19) can be expressed in the following 
compact form:

	

[ ] {}{}I r r A
A

= ∫ Td 	 (2.20)

The moment of inertia tensor, relative again to area A and calculated in the translated 
reference system X Y  (Figure 2.1), can be expressed as follows:

	

[ ] { }{ }I r r A
A

= ∫ Td 	 (2.21)

And, thus, applying the position vector transformation law for the translations of the refer-
ence system (Equation 2.2), we obtain

	

[ ] ({} { })({} { })I r r r r A
A

= − −∫ 0 0
Td 	 (2.22)

Since the transpose of the sum of two matrices is equal to the sum of the transposes, we have

	

[ ] ({} { })({} { } )

{}{} {} { } { }

I r r r r A

r r A r A r r

A

A

= − −

= − −

∫

∫

0 0

0 0

T T

T T

d

d d {{} { }{ }r A r r A
AA A

T Td d∫∫ ∫+ 0 0 	 (2.23)

Finally, recalling definitions (2.6) and (2.20), we obtain the law of transformation of the 
moment of inertia tensor for translations of the reference system

	 [ ] [ ] { }{ } { }{ } { }{ }I I A r r r S S r= + − −0 0 0 0
T T T 	 (2.24)
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The matrix relation (2.24) can be rendered explicit as follows:

	 I I Ay y Sxx xx x= + −0
2

02 	 (2.25a)

	
I I Ax x Syy yy y= + −0

2
02 	 (2.25b)

	
I I I Ax y x S y Sxy yx xy x y= = + − −0 0 0 0 	 (2.25c)

The earlier relations simplify in the case where the origin of the primitive XY reference 
system coincides with the centroid G of area A. In this case, we have

	
S Sx y†† ††= =0 	 (2.26)

and Equations 2.25 assume the form of well-known Huygens’ laws:

	
I I Ayxx x xG G

= + 0
2 	 (2.27a)

	
I I Axyy y yG G

= + 0
2 	 (2.27b)

	
I I Ax yxy x yG G

= + 0 0 	 (2.27c)

As regards relations (2.27a) and (2.27b), it may be noted how the centroidal moment 
of inertia is the minimum of all those corresponding to an infinite number of parallel 
straight lines.

Now consider the moment of inertia tensor, relative to area A and calculated in the rotated 
reference system X

_
*Y

_
* (Figure 2.2):

	

[ *] {*}{ *}I r r A
A

= ∫ Td 	 (2.28)

Using the law (2.4) of transformation of the position vector for rotations of the reference 
system, we have

	

[ *] ([ ]{ })([ ]{ })I N r N r A
A

= ∫ Td 	 (2.29)

Now applying the law by which the transpose of the product of two matrices is equal to the 
inverse product of the transposes, we have

	

[ *] ([ ]{ })({ } [ ])I N r r N A
A

= ∫ T T d 	 (2.30)
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Exploiting the associative law and carrying the constant matrices [N] and [N]T outside the 
integral sign, Equation 2.30 becomes

	

[ *] [ ] { }{ } [ ]I N r r A N
A

= ∫ T Td 	 (2.31)

Finally, recalling definition (2.21), we obtain the law of transformation of the moment of 
inertia tensor for rotations of the reference system

	 [ *] [ ][ ][ ]I N I N= T 	 (2.32)

Matrix relation (2.32) can be rendered explicit as follows:

	
I I I Ix x xx yy xy* * cos sin sin cos= + −2 2 2ϑ ϑ ϑ ϑ 	 (2.33a)

	
I I I Iy y xx yy xy* * sin cos sin cos= + +2 2 2ϑ ϑ ϑ ϑ 	 (2.33b)

	
I I I I Ix y y x xy xx yy* * * * cos ( )sin= = + −2 1

2
2ϑ ϑ 	 (2.33c)

Two important conclusions can be derived from Equations 2.33:

	 1.	The sum of the two moments of inertia Ixx and Iyy remains constant as the angle of 
rotation ϑ varies. We have in fact

	
I I I Ix x y y xx yy* * * *+ = + 	 (2.34)

		  This sum is the first scalar invariant of the moment of inertia tensor and can be inter-
preted as the polar moment of inertia of area A with respect to the origin of the refer-
ence system:

	

I r Ap

A

= ∫ 2 d 	 (2.35)

	 2.	Equating to zero the expression of the product of inertia Ix y* *, it is possible to obtain 
the angle of rotation ϑ0 which renders the moment of inertia tensor diagonal:

	

I I

I
I I

x y y x

xy

yy xx

* * * *

arctan ,

= =

=
−









 − < <

0

1
2

2
4 40 0

for

ϑ π ϑ π
	 (2.36)

Substituting Equation 2.36 in (2.33a and 2.33b), the so-called principal moments of inertia 
are determined. The two orthogonal directions defined by the angle ϑ0 are referred to as 
the principal directions of inertia. It can be demonstrated how the principal moments of 
inertia are, in one case, the minimum and, in the other, the maximum of all the moments 
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of inertia Ix x* * and Iy y* *, which we have as the angle of rotation ϑ varies. When the axes, in 
addition to being principal, are also centroidal, they are referred to as central, as are the 
corresponding moments of inertia.

The general law of transformation of the moment of inertia tensor for rototranslations of 
the reference system (Figures 2.1 and 2.2) is obtained by combining the partial laws (2.24) 
and (2.32):

	 [ *] [ ]([ ] { }{ } { }{ } { }{ } )[ ]I N I A r r r S S r N= + − −0 0 0 0
T T T T 	 (2.37)

The inverse rototranslation formula may be obtained from (2.37) by premultiplying both 
sides of the equation by [N]T and postmultiplying them by [N] and inserting Equation 2.17:

	 [ ] [ ][ *][ ] [ ] { *}{ } { }{ *} [ ] { }{ }I N I N N S r r S N A r r= + + +T T T T T
0 0 0 0 	 (2.38)

2.5 � PRINCIPAL AXES AND MOMENTS OF INERTIA

Using well-known trigonometric formulas, relation (2.33a) becomes

	
I I I Ix x xx yy xy* *

cos cos sin= + + − −1 2
2

1 2
2

2ϑ ϑ ϑ 	 (2.39)

Via Equation 2.36, we obtain

	
I I I I I I I
x x

xx yy xx yy xx yy
* *( ) cos tan sinϑ ϑ ϑ ϑ0 0 0 02 2

2
2

2 2=
+

+
−

+
−

	 (2.40)

and hence

	
I I I I I
x x

xx yy xx yy
* *( )

cos
ϑ

ϑ0
02 2

1
2

=
+

+
−

	 (2.41)

Since we know from trigonometry that

	

1
2

1 2
0

2
0

1
2

cos
( tan )

ϑ
ϑ= + 	 (2.42)

it is possible to apply Equation 2.36 once more:

	

1
2

1 4

1 4

0

2

2

1
2

2 2

cos ( )

( )

ϑ
= +

−






=
−

− +

I
I I

I I
I I I

xy

yy xx

xx yy
xx yy xy(( ) >

−
− +( ) <






1
2

1
21 42 2

w hen

w hen

I I

I I
I I I I I

xx yy

yy xx
xx yy xy xx yy( )







	 (2.43)
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Then, indicating Ix x* *( )ϑ0  with the simpler notation Iξ, we have

	

I

I I I I I I I

I I I

xx yy
xx yy xy xx yy

xx yy
ξ =

+
+ − +( ) >

+
−

2
1
2

4

2
1
2

2 2
1
2( )

(

w hen

xxx yy xy xx yyI I I I− +( ) <








 )2 24

1
2 w hen

	 (2.44)

Likewise, indicating Iy y* *( )ϑ0  with Iη, we have

	

I

I I I I I I I

I I I

xx yy
xx yy xy xx yy

xx yy
η =

+
− − +( ) >

+
+

2
1
2

4

2
1
2

2 2
1
2( )

(

w hen

xxx yy xy xx yyI I I I− +( ) <








 )2 24

1
2 w hen

	 (2.45)

We can thus conclude that, when the X Y  axes, by rotation, become the principal axes, the 
order relation is conserved:

	
I I I Ixx yy> ⇒ >ξ η 	 (2.46a)

	
I I I Ixx yy< ⇒ <ξ η 	 (2.46b)

When

	
I I Ixx yy xy= ≠, 0 	 (2.47)

relation (2.36) is not defined and thus it makes no difference whether the X Y  reference 
system is rotated by π/4 clockwise or counterclockwise (ϑ0 = ±π/4) in order to obtain the 
principal directions.

Moreover, when

	
I I Ixx yy xy= =, 0 	 (2.48)

all the rotated reference systems X
_
*Y

_
* are principal systems, for any angle of rotation ϑ0. 

The areas that satisfy conditions (2.48) are said to be gyroscopic. As will be seen in the next 
section, it is possible to give a synthetic graphical interpretation of cases (2.47) and (2.48).

2.6 � MOHR’S CIRCLE

With the aim of introducing the graphical method of Mohr’s circle, let us consider the 
inverse problem of the one previously solved: Given an area A, and its principal axes of 
inertia ξη and the corresponding principal moments known, with respect to a point O of 
the plane (Figure 2.3), we intend to express the moments of inertia with respect to a refer-
ence system rotated by an angle ϑ, counterclockwise with respect to the principal reference 
system.
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Applying Equations 2.33, and since Iξη = 0, we have

	 I I Ixx = +ξ ηϑ ϑcos sin2 2 	 (2.49a)

	
I I Iyy = +ξ ηϑ ϑsin cos2 2 	 (2.49b)

	
I I I
xy =

−ξ η ϑ
2

2sin 	 (2.49c)

The trigonometry formulas used previously give

	
I I I I I
xx =

+
+

−ξ η ξ η ϑ
2 2

2cos 	 (2.50a)

	
I I I I I
yy =

+
−

−ξ η ξ η ϑ
2 2

2cos 	 (2.50b)

	
I I I
xy =

−ξ η ϑ
2

2sin 	 (2.50c)

Relations (2.50a and 2.50c) constitute the parametric equations of a circumference having 
as its centre

	
C I Iξ η+



2
0, 	 (2.51a)

and as its radius

	
R I I

=
−ξ η

2
	 (2.51b)

Y

X

0

A

Figure 2.3
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in Mohr’s plane (Figure 2.4). The earlier circumference represents all the pairs (I Ixx xy, ) 
which succeed one another as the angle ϑ (Figure 2.3) varies. Note that, since Ixx is in any 
case positive, we have in fact a Mohr’s half-plane.

Let us now reconsider the direct problem: Given the moments of inertia with respect to 
the two generic orthogonal axes X

_
Y
_
 (Figure 2.3), determine the principal axes and moments 

of inertia. This determination has already been made analytically in Section 2.5. We shall 
now proceed to repropose it graphically using Mohr’s circle (Figure 2.5):

	 1.	The first operation to be carried out is to identify the two notable points P and P ′ on 
Mohr’s plane:

	
P I I P I Ixx yy yy xy( , ), ( , )′ − 	 (2.52)

	 2.	The intersection C of the segment PP ′ with the axis Ixx identifies the centre of Mohr’s 
circle, while the segments CP and CP ′ represent two radii of that circle.

	 3.	Draw through the point P the line parallel to the axis Ixx and through P ′ the line paral-
lel to the axis Ixy. These two lines meet in point P*, called the pole, again belonging to 
Mohr’s circle.

0

R =
2

I  – I

2

Ix y

C
2

,  0

I x x
I  + I

Figure 2.4

0
2

P (Ixx, Ixy )

I x y

C
M

P *

N I x x

P ΄(Iy y, — Ixy)

Figure 2.5
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	 4.	The lines joining pole P* with points M and N of the Ixx axis, which are the intersec-
tions of the circumference with the axis, give the directions of the two principal axes 
of inertia. Naturally, points M and N each have the value of one of the two principal 
moments of inertia as abscissa. In particular, in Figure 2.5, the abscissa of M is Iη, 
while the abscissa of N is Iξ, since we have assumed I Ixx yy> . Pole P* can obviously 
also fall in one of the three remaining quadrants corresponding to Mohr’s circle.

The graphical construction described earlier and shown in Figure 2.5 is justified by noting 
that the circumferential angle PP N*� is half of the corresponding central angle PCN� = 2ϑ and 
that thus its amplitude is equal to the angle ϑ.

2.7 � AREAS PRESENTING SYMMETRY

An area is said to present oblique axial symmetry (Figure 2.6a) when there exists a straight line 
s which cuts the area into two parts, and a direction s′ conjugate with this straight line, such 
that, if we consider a generic point P, belonging to the area and the line PC, parallel to the direc-
tion s′ and we draw on that line the segment CP′ = PC  on the opposite side of P with respect 
to s, the point P′ still belongs to the area. When the angle α between the directions of the lines s 
and s′ is equal to 90°, then we have right axial symmetry (Figure 2.6b).

It is easy to verify that the centroid of a section having axial symmetry lies on the cor-
responding axis of symmetry. The centroid relative to the pair of symmetrical elementary 
areas located in P and P ′ coincides in fact with point C (Figure 2.6). Applying the so-called 
distributive law of the centroid, it is possible to think of concentrating the whole area on the 
axis of symmetry s, and thus the global centroid is sure to lie on the same line s.

In the case of an area presenting right symmetry (Figure 2.6b), the axis of symmetry 
is also a central axis of inertia. In fact, it is centroidal and, with respect to it and to any 
orthogonal axis, the product of inertia Iss′vanishes by symmetry.

When there are two or more axes of symmetry (oblique or right), since the centroid must 
belong to each axis, it coincides with their intersection (Figure 2.7). In the case of double 
right symmetry (Figure 2.7a), the axes of symmetry are also central axes of inertia.

An area is said to present polar symmetry (Figure 2.8) when there exists a point C such 
that, if we consider a generic point P belonging to the area and the line PC joining the two 

s s

P

α α = 90°

(b)(a)

P΄ P΄

s΄ s΄

C P C

Figure 2.6
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points, and we draw on this line the segment CP′ = PC  on the side opposite to P with respect 
to C, the point P ′ still belongs to the area.

It is immediately verifiable that the centroid of a section having polar symmetry coin-
cides with its geometrical centre C. The centroid corresponding to the pair of symmetrical 
elementary areas in P and P ′ coincides, in fact, with point C (Figure 2.8). Applying the dis-
tributive law of the centroid, it is possible to think of concentrating the whole area in point 
C, and thus the global centroid must certainly coincide with the same point C.

It is interesting to note how an n-tuple right symmetry area, with n being an even number 
(2 ≤ n < ∞), is also a polar symmetry area (Figure 2.9), whereas a polar symmetry area is 
not necessarily also an n-tuple right symmetry area.

Areas having n-tuple right symmetry, with n being an odd number (3 ≤ n < ∞), do not, 
however, present polar symmetry, even though they are gyroscopic areas, as also are those 
with n even.
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2.8 � ELEMENTARY AREAS

If, on an XY plane, we assign n disjoint areas, A1, A2,…, An, the distributive law of static 
moments and, respectively, that of the moments of inertia are defined as follows (Figure 2.10):
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where S and I indicate generically a static moment and a moment of inertia, respectively, 
calculated with respect to the coordinate axes (Sx, Sy, Ixx, Iyy, Ixy).

In determining the static and inertial characteristics of composite areas, it is necessary 
to exploit the aforementioned laws. These derive from the integral nature of the defini-
tions which have previously been given of first- and second-order moments. The first law 
expresses the fact that the static moment of a composite area (i.e. of the disjoint union of 
more than one elementary area) is equal to the sum of the static moments of the single areas. 
The second law refers to the moments of inertia and is altogether analogous.

Since it is therefore possible to reduce the calculation of composite areas to the calcula-
tion of simpler areas, the importance of calculating once and for all the static and inertial 
features of elementary areas emerges clearly. In the sequel, we shall examine the rectangle, 
the right triangle and the annulus sector.

Consider the rectangle having base b and height h (Figure 2.11). From the definition of 
centroid, we immediately obtain the static moments in the XY reference system:
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