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To My Grandson Siddharth 





Preface 

Homological algebra arose from many sources in Algebra and Topology. 
However, the subject appeared as a full-fledged subject in its own right in 
1956 when the first book on the subject and still a masterpiece by H. Cartan 
and S. Eilenberg appeared. More books have appeared on the subject 
since then, notably by D.G. Northcott, S. MacLane, P.J. Hilton and U. 
Stammbach, J.J. Rotman, C. A. Wiebel. However, none of these could be 
adopted as a textbook for a student coming across the subject for the first 
time. The author felt this difficulty while teaching a one semester course 
on the subject at Kurukshetra University during the last few years. The 
students found it hard in the absence of a suitable textbook. The present 
text is a result of the lectures given a t  Kurukshetra during which time 
books by Northcott, Rotman and Hilton and Stammbach were freely used 
while lecturing. The material covered in the book may be adopted for a 
two semester course, while a one semester course could be based on the first 
seven chapters. The book shall also be useful for researchers who like to  
use the subject in their study. Complete detailed proofs are given to make 
the book easy for self study. 

The book aims a t  giving just a basic course on the subject and is by 
no means exhaustive. Several important areas in the subject have not even 
been touched upon. 

We now briefly describe the contents of the book. The book starts 
with a brief account of modules, homomorphisms of modules and elemen- 
tary properties of tensor products of modules. Direct and inverse limits of 
families of modules and pull back and push out diagrams are also intro- 
duced. The concept of categories and functors is introduced in Chapter 2. 
Although homomorphisms and tensor products of modules are studied in 
Chapter 1, functorial properties of Horn and Tensor Product are discussed 
here. 

Homological algebra may be aptly described as a study of derived func- 
tors of (additive) functors, in particular, the functors Horn and Tensor 
product. Derived functors of additive functors are defined in Chapter 5. 
For defining these the existence of projective and injective resolutions for 
every module is needed and the same is also established in this chapter. 
Chapters 3 and 4 are preparatory for defining and studying derived func- 
tors. Derived functors of tensor product are called torsion functors  or:) 
while those of Horn are called extension functors (Extk).  Some special 
properties of the functors  or:) and (Extk)  are studied in Chapters 6 
and 7. Torsion and extension functors can also be defined for categories 
not having enough projectives or enough injectives (contrary to the cate- 
gory of modules) and also derived functors of non-additive functors can be 
defined but we do not discuss these here. 

Chapter 8 gives a connection between the ring of scalars and the mod- 
ules over that ring. Among other things, it is proved that (i) over hereditary 
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rings the distinction between projective and injective modules disappears 
while (ii) over Dedekind domains the same happens for divisible and in- 
jective modules. For studying the (co) homology of the direct sum of two 
groups, it is necessary to  know the connection between the homologies of 
two complexes X,  Y and that of the complex X Y. This relationship 
is given by the Kunneth formula a special case of which as needed later is 
considered in Chapter 9. Chapter 10 studies projective and injective di- 
mensions of modules and left and right global dimensions of rings. Only 
simple characterizations of these are given. However, the equality of left 
and right global dimensions of a ring which is both right and left Noethe- 
rian is proved. A characterization of left global dimension of a left Artin 
ring is also given. 

A study of a special case of torsion and extension functors, i.e., the case 
when the ring of scalars is the integral group ring ZG of a group G is taken 
up in Chapter 11. These special cases are H,(G, A) and Hn(G, A) the nth 
homology group of G and the nth cohomology group of G with coefficients 
in a G-module A. Homology and cohomology groups can also be defined 
through (co)cycles and (co)boundaries. That the two approaches lead to  
the same objects, up to isomorphism, is established by introducing the Bar 
resolution. The last three sections of the chapter are developed to  mainly 
obtain information about the second cohomology group. The connection 
between the study of H2(G, A) and the study of group extensions of A by G 
is discussed. The 5-term exact sequence of Hochschild and Serre connecting 
the cohomology of a group G to those of a normal subgroup H of G and the 
quotient group G / H  and some extensions of this sequence are obtained. 

The last chapter, as applications of homological methods, gives two 
purely group theoretical problems. One of these is a result of Gaschiitz 
that every non-Abelian finite p-group has an outer automorphism of p- 
power order and the other result as shown by Magnus is that a group 
having a free presentation with n + r generators and r relations which can 
also be generated by n elements is a free group of rank n. 

I would like to express my sincere thanks to my teachers (i) I.B.S. Passi 
who introduced me to  the subject and (ii) D. Rees. I am thankful to  my 
research student Manoj Kumar for his help in transferring the manuscript 
from M.S.Word to LaTex. Without his help, it would, perhaps, not have 
been possible to give the manuscript the present shape. I like to  place on 
record my appreciation for (i) my colleagues Vivek Sharma and Pradeep 
Kumar for their help, (ii) my student Suman Choudhary and (iii) the au- 
thorities of JMIT, Radaur for providing facilities during the last stage of 
the project . 



Contents 

1 Modules 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 Modules 1 

1.2 Free Modules . . . . . . . . . . . . . . . . . . . . . . . . . .  4 
. . . . . . . . . . . . . . . . . . . . . . . .  1.3 Exactsequences 10 
. . . . . . . . . . . . . . . . . . . . . . . .  1.4 Homomorphisms 18 

. . . . . . . . . . . . . . . . . .  1.5 Tensor Product of Modules 21 
. . . . . . . . . . . . . . . . . . .  1.6 Direct and Inverse Limits 28 

. . . . . . . . . . . . . . . . . . . .  1.7 Pull Back and Push Out 35 

2 Categories and Functors 4 1 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.1 Categories 41 

2.2 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 
. . . . . . . . . . . . . . . .  2.3 The Functors Horn and Tensor 63 

3 Projective and Injective Modules 73 
. . . . . . . . . . . . . . . . . . . . . . .  3.1 Projective Modules 73 

. . . . . . . . . . . . . . . . . . . . . . . .  3.2 Injective Modules 80 
. . . . . . . . . . . . . . . . . . . . . . . . .  3.3 Baer's Criterion 83 

. . . . . . . . . . . . . . . . . . . .  3.4 An Embedding Theorem 88 

4 Homology of Complexes 97 
. . . . . . . . . . . . . . . . . . . . .  4.1 Ker P Coker Sequence 97 

. . . . . . .  4.2 Connecting Homomorphism P the General Case 105 
. . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.3 Homotopy 112 

5 Derived Functors 117 
. . . . . . . . . . . . . . . . . . . . .  5.1 Projective Resolutions 117 

. . . . . . . . . . . . . . . . . . . . . .  5.2 Injective Resolutions 122 
. . . . . . . . . . . . . . . . . . . . . . . .  5.3 Derived Functors 125 

6 Torsion and Extension Functors 145 
. . . . . . . . . . . . . . . . .  . 6.1 Derived Functors Revisited 145 

. . . . . . . . . . . . . . . .  6.2 Torsion and Extension Functors 147 
. . . . . . . . . . . . . . .  6.3 Some Further Properties of TOT: 155 



CONTENTS 

6.4 Tor and Direct Limits . . . . . . . . . . . . . . . . . . . . .  161 

7 The Functor E x t l  167 
7.1 Extl and Extensions . . . . . . . . . . . . . . . . . . . . . .  167 
7.2 Baer Sum of Extensions . . . . . . . . . . . . . . . . . . . .  178 
7.3 Some Further Properties of E x t l  . . . . . . . . . . . . . . .  184 

8 Hereditary and Semihereditary Rings 189 
8.1 Hereditary Rings and Dedekind Domains . . . . . . . . . .  189 
8.2 Invertible Ideals and Dedekind Rings . . . . . . . . . . . . .  196 
8.3 Semihereditary and Priifer Rings . . . . . . . . . . . . . . .  200 

9 Universal Coefficient Theorem 203 
9.1 Universal Coefficient Theorem for Homology . . . . . . . . .  203 
9.2 Universal Coefficient Theorem for Cohomology . . . . . . .  206 
9.3 The Kiinneth Formula - A Special Case . . . . . . . . . . .  209 

10 Dimensions of Modules and Rings 215 
10.1 Projectively and Injectively Equivalent Modules . . . . . . .  215 
10.2 Dimensions of Modules and Rings . . . . . . . . . . . . . .  220 
10.3 Global Dimension of Rings . . . . . . . . . . . . . . . . . .  224 
10.4 Global Dimension of Noetherian Rings . . . . . . . . . . . .  227 
10.5 Global Dimension of Artin Rings . . . . . . . . . . . . . . .  234 

11 Cohomology of Groups 
11.1 Homology and Cohomology Groups . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . .  11.2 Some Examples 
11.3 The Groups H0 (G. A) and Ho(G. A) . . . . . . . . . . . . .  
11.4 The Groups H1(G.  A) and H1(G. A) . . . . . . . . . . . . .  
11.5 Homology and Cohomology of Direct Sums . . . . . . . . .  
11.6 The Bar Resolution . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . .  11.7 Second Cohomology Group and Extensions 
. . . . . . . . . . . . . . . . . . . . .  11.8 Some Homomorphisms 

11.9 Some Exact Sequences . . . . . . . . . . . . . . . . . . . . .  

12 Some Applications 293 
12.1 An Exact Sequence . . . . . . . . . . . . . . . . . . . . . . .  293 
12.2 Outer Automorphisms of p-Groups . . . . . . . . . . . . . .  298 
12.3 A Theorem of Magnus . . . . . . . . . . . . . . . . . . . . .  303 

Bibliography 309 

Index 313 



Chapter 1 

Modules 

This chapter is preparatory in nature and we give some results on modules. 
We define a free module and prove that every (left) R-module is homomor- 
phic image of a free R-module. When A, B are left R-modules and C is a 
right R-module, the Abelian groups H o r n ~ ( A ,  B) and C @ R  B are defined 
and some properties of these are obtained. The concepts of direct limit, 
inverse limit, pull back and push out are introduced and some properties 
of these are obtained. 

1.1 Modules 

Definition 1.1.1 Let R be a ring with identity. An additive Abelian group 
M  is called a left R-module if there exists for every element r E R ,  and 
every element a E M :  a uniquely determined element r a  of M  such that 
the following hold : 

(i) ( r  + s)a = r a  + sa  for every r, s E R,  a E M ;  
(ii) (rs)a = r(sa)  for every r, s E R ,  a E M ;  
(iii) r ( a  + b) = r a  + rb for every r E R , a ,  b E M ;  
(iv) l a  = a for every a E M :  where 1 denotes the identity of the ring R. 

1.1.2 Similarly: an additive Abelian group M is called a r ight  R-module 
if for every r E R and a E M  there exists a unique element a r  of M such 
that the following hold : 

(i)' a ( r  + S) = a r  + as  for every r, s E R ,  a E M ;  
(ii)' (ar)s = a(rs) for every r, s E R,  a E M ;  
(iii)' ( a + b ) r = a r + b r f o r e v e r y r ~ R , a , b ~ M ;  

(iv)' a1 = a for every a E M :  where 1 denotes the identity of the ring 
R.  
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1.1.3 If R is a commutative ring with identity and M is a left R-module, 
let us define a.r for a  E M , r  E R by a.r = ra. Then, for a  E M, r , s  E R, 

Properties (i)', (iii)' and (iv)' of a right R-module can be checked even more 
easily. Thus M has been converted into a right R-module. On the other 
hand, a right R-module can similarly be made into a left R-module. In 
view of this when the ring R is commutative, we talk of only an R-module 
rather than a right R-module or a left R-module. 

(i) Let S be a ring and R be a subring of S.  If r  E R,  s  E S, then 
r ,  s  E S and, therefore, r s  E S .  Using the associative law for multiplication 
in S and the distributive laws we find that S becomes a left R-module. We 
can also similarly regard S as a right R-module. In particular, we find that 
every ring R can be regarded as a right as well as a left R-module. 

(ii) Let A be an Abelian group written additively. For an integer n  and 
a  E A define nu to  be 0 if n  = 0, a + a + . . . + a(n times) if n  is positive 
and nu = (-n)(-a) if n  is negative. A then becomes a 2-module. 

(iii) Let R be a ring and G be a group written multiplicatively. Let RG 
denote the set of all finite formal sums CgEG rgg,  rg E R and rg = 0 except 
for finite number of elements g  E G. For CgEG rgg,  CgEG sgg E RG, say 
that CgEG rgg = CgEG sgg if and only if rg = S ,  for every g  E G. For 

CgEG ~9.9 ,  CgEG sgg E RG, define 

and 

With these compositions RG becomes a ring. Identifying r  E R with 
the element r l  of RG, where 1 denotes the identity of the group G, the ring 
R becomes a subring of RG. The ring RG is called the group ring of the 
group G over the ring R. By (i) RG becomes a left R-module as well as a 
right R-module. 

(iv) Let R be a ring, G be a group and H be a subgroup of G. The 
group ring R H  is a subring of the group ring RG and, so, RG is left (as 
well as a right) RH-module. 

Definition 1.1.4 If M is a left R-module, a subgroup N of the additive 
group M is called a submodule of M if for every a E N ,  r  E R ,  the 
element ra E N .  

Observe that a nonempty subset N of a left R-module M is a submodule 
of M if and only if (i) for every a ,  b E N ,  the element a  - b E N ;  and (ii) 
ra E N for every r  E R ,  a E N .  
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1.1.5 Let M  be a left R-module and N be a submodule of M .  Then N 
being a subgroup of the additive Abelian group M :  we have the Abelian 
group M / N  = {a + Nla E M } ,  the quotient group of M  modulo the 
subgroup N .  For a E M ,  r E R, define 

I f a + N = b + N , t h e n b = a + c f o r s o m e c ~ N a n d r ( b + N ) = r b + N =  
r (a+c)+N = ra+rc+N = ra+N = r ( a + N ) ,  as rc E N .  Thus the scalar 
product as in (1.1) is well defined and M / N  becomes a left R-module and 
is called the quotient module of M modulo the submodule N .  

1.1.6 Let M :  N be two left R-modules. A map f : M  + N is called an 
R-homomorphism or module homomorphism if f ( a  + b) = f ( a )  + f (b) 
for all a ,  b E M ;  and f ( ra)  = r f  ( a )  for all r E R, a E M .  

An R-homomorphism f : M  + N is called a monomorphism if the 
map f is one-one; it is called an epimorphism if the map f is onto; and 
it is called an isomorphism if the map f is both one-one and onto. Two 
left R-modules M  and N are said to  be isomorphic if there exists an 
R-isomorphism from M  to  N or N to  M .  

Let M :  N be left R-modules and f : M  + N be an R-homomorphism. 
Then kernel and image of f are, respectively, defined by 

Ker f  = {a E M ]  f ( a )  = 0); 

Im f = { X  E NIX = f ( a )  for some a E M }  

It is fairly easy to see that Ker f is a submodule of M and Im f is a sub- 
module of N .  Then cokernel and coimage of f are, respectively, defined 
by 

Coker f = N / I m  f and Coim f = M I K e r f .  

1.1.7 Exercises 

l. If f : M  + N is an R-homomorphism of left R-modules, prove that 
Ker f is a submodule of M and Im f is a submodule of N. 

2. Prove that an R-homomorphism f : M  + N is a monomorphism if 
and only if Ker f = 0. 

3. If M  is a left R-module and N is a submodule of M ,  prove that any 
submodule of M / N  is of the form KIN where K is a submodule of M with 
N C K. 

4. If f : M  + N is an R-homomorphism of left R-modules, then 
MIKer f Im f .  
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5. If A, B are submodules of a left R-module M ,  prove that A n  B is a 
submodule of M .  

6. For submodules A, B of a left R-module M ,  define A + B  = {a+ bla E 
A, b E B}. Prove that A + B is a submodule of M containing both A and 
B. 

7. For submodules A, B of a left R-module M ,  prove that (A + B ) / B  E 

A/A n B.  
8. If I is a left ideal of R ,  show that R / I  = {r + I l r  E R) is a left 

R-module. 
9. If S is another ring with identity, an Abelian group M is called an 

(R, S)-bimodule if M is a left R-module, a right S-module and for every 
r E R , s  E S,a  E M, (ra)s  = r(as).  

The ring R is an (R, R)-bimodule. 
All R-modules considered shall be left R-modules unless mentioned explicitly 
to the contrary. 

1.2 Free Modules 

1.2.1 Let {Mi}i€~ be a family of left R-modules. Let IIiEIMi denote the 
set of all sequences (xi)iE1: xi E Mi. If (xi)iE1, (yi)iE1 E IIiEIMi, say that 
(xi) = (yi) if and only if xi = yi for every i E I. For (xi)iEI, (yi)iEI E 
IIiEIMi, and r E R ,  define 

With these compositions IIiEIMi becomes a left R-module. Observe that 
the additive identity of IIiEIMi is the sequence (xi)iEI where xi = 0 for 
every i E I. We denote this element by (0) or simply 0. Also, for any 
(xi) E IIiEIMi, its additive inverse is the element (yi), where yi = -xi for 
every i E I . We write the additive inverse of (xi) as 

The left R-module IIiEIMi is called the direct product of the family 
{Mi}i€~ of left R-modules. 

Let @CiEI Mi denote the subset of IIiEIMi consisting of those se- 
quences (xi)iE1 in which xi = 0 except for a finite number of i E I . 
It is easy to see that @ Xi,, Mi is a submodule of the R-module IIiEIMi. 
The left R-module @ CiEI Mi is called the external direct sum of the 
family {Mi)iEI of left R-modules. 

On the other hand, given a left R-module M and a family of submodules 
{Mi}iEI of M ,  M is called the (internal) direct sum of the family of 
submodules if every a E M can be uniquely written as aij, where 
ai j  E Mij, 1 5 i 5 n. Also each Mi is then called a direct summand of 
M .  

1.2.2 Exercises 
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l. Let {Mi} iEI  be a family of left R-modules and let M = @ CitI Mi. 
Prove that,  for every i E I :  there exists a submodule 111; of M such that 
(a) M; E Mi for every i E I ;  
(b) M is the (internal) direct sum of the family { M ; )  of submodules of M .  

2. Prove that a left R-module M is the direct sum of its submodules 
Mi: 1 5 i 5 n: if and only if M = C:=, Mt and Mi n C;,, j+i M j  = {0}  
for every i , l  5 i 5 n. 

1.2.3 Let M be a left R-module and X be a subset of M .  If every element 
of M can be written as a finite sum C rixi,  ri E R ,  xi E X :  then M is said 
t o  be generated by X or that X generates the left R-module M .  The 
module M is said to  be finitely generated if X is a finite subset of M .  If 
the subset X consists of a single element x (say), then M is called a cyclic 
module generated by X .  

Again consider a family {Mi} iEI  of R-modules. For any j E I :  define 
a j  : Mj + IIiEIMi and 7r j  : IIitlMi + Mj by a j ( x j )  = (yk), 
where y k  = 0 for k # j and yj = xj E Mj ;  7rj((xi))  = x j :  
where xi E Mi for i E I .  
The maps a j ,  .irj are R-homomorphisms and 

identity if k = j 
.irk a j  = 

if k # j. 
Also every a j  is a monomorphism while every 7r j  is an epimorphism. I t  is 
clear that every a j  takes values in @ xi,, Mi so that we have monomor- 
phisms cuj : M j  + B xi,, Mi. Restriction of rj  to  the submodule @ CiEI Mi 
of IIiEIMi again yields epimorphisms 7 r j  : xiEl Mi + Mj. 

Let x E C Mi. Suppose that in X = ( x i )  the non-zero components 
are x i l ,  x i l ,  . . ., xir,. Then 7ri(x) = 0 for i # { i l ,  . . ., i k )  and T ~ ( x )  = xi for 
i E {il,. . ., i k } .  Therefore xi cuiri(x) = X .  Hence xi cuiri = identity map 
of $ C M i .  

We next consider the universal property of direct sum and direct prod- 
uct. We consider the family {Mi} iEI  of left R-modules, @ xi,, Mi the di- 
rect sum and I I i E I  Mi the direct product of this family with monomorphism 
a j  : M j  + IIiEIMi for every j E I and epimorphism rj : IIiEIMi + Mj for 
every j .  

Theorem 1.2.4 Given any left R-module M and monorphisms f j  : M j  + 
M for every j E I ,  then there exists a unique R-homomorphism f : 
B CiEI Mi + M such that f a j  = f j  for every j E I .  

Proof. Let X = ( x i )  E @ CiEI Mi. Since xi # 0 for only finitely many 
values of i :  we can define f : xi,, Mi + M by 
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The map f is a.n R-homomorphism. Consider zj E M j  for a (i E I .  Then 
Q j  ( x j )  = (y i ) :  where yi = 0 for i # j and yj = z j .  Therefore ( f  a j )  ( x j )  = 
f ( a j ( x j ) )  = f ( y i )  = xitI f i (y i )  = f j ( x j ) .  Hence f a,? = f i  for every 
j E l. 

Let g : B C Mi + M be another R-homomorphism such that y a j  = f j  
for every j E I .  An X E C Mi m n  be writien a.s X = C a j ( x j ) :  where j 
runs over a finite subset of I. Therefore 

showing that g = f .  

Let A be a.not,her left R-module witjh monomorphisms / 3 j  : Mj + 
A for every j E l. Suppose that given any left R-module M and R- 
monomorphism g,? : M,? + M for every j E I: there exists a unique ho- 
momorphism g : A + M such that g f l i  = g , ~  for every j E l. Taking 
M = C Mi a.nd gj = c r j ,  we find t,ha.t t,here exist,s a unique homomor- 
phism a : A + $C Mi si~ch t,ha.t 

(1.2) a/3j = a j  for every j. 

On the other hand: taking M = A and f i  = Pi in Theorem 1.2.4, there 
exist,s a unique R-homomorphism P : $ C Mi + A si~ch t,ha.t 

(1.3) pa j  = / 3 j  for every j. 

together (1.2) and (1.3) imply (/?a)/?j = Pi and (a/?)aj = a,? 
for every j E l. 

Since l A / 3 j  = / 3 j  a.nd 1 H ~ M t ~ j  = a j  for every j E I :  it follows by 

uniqueness of the homomorphism which exists as in Theorem 1.2.4 and of 
t,he homomorphism which exist,s a.s in t,he mse of property of A: we get 

Ba = 1~ a n d a b  = l,=,;. 

Therefore a : A + $ C Mi is an isomorphism with ,8 : C Mi + A as its 
inverse. This proves that direct silm of modules is determined uniquely up 
t o  isomorphism by tjhe universal property a.s in Theorem 1.2.4. 

Theorem 1.2.5 Giwen, any left R-module M and R-epimorphisms g,? : 
M + M j ,  for every j E I ,  th,en. th,ere exists a unique homomorphism 
g : M + IIiEIMi such that r jg  = yj for every j E I .  
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Proof. Define a map g : M M IIiEIMi by g(x )  = (g i ( x ) ) ,  X E M .  Then 
g is an R-homomorphism and .ir,jg = gj. 

Let f : M + IIiEIMi be another R-homomorphism such that n j  f = g,? 
for every j E T. For X E M :  let f ( x )  = ( x i ) .  Then gj (x)  = x j  f ( x )  = 
x j ( x i )  = xj for every j E J. Therefore f ( X )  = ( x i )  = (g i (x ) )  = g(x )  and 
we ha.ve g = f .  

We next prove that direct product of left R-modules is determined 
uniquely up to  isomorphism by the universal property as mentioned in 
Theorem 1.2.5. 

Let A be a left R-module witjh epimorphisms X j  : A + Mj.  Suppose 
t,ha.t for every left R-module M a.nd epimorphisms f j  : M M Mj t,here 
exist,s a unique R-homomorphism f : M M A si~ch t,ha.t X j  f = f j  for every 
j .  By taking M = IIiEIMi and f i  = xj for every j in the above property 
of A, let f : IIiEIMi + A be the unique R-homomorphism such that 

(1.4) X j  f = xj for every j E T 

On the other hand, taking M = A and g,? = X j  in Theorem 1.2.5, let 
g : A + IIiEIMi be t,he unique R-homomorphism si~ch t,ha.t 

(1.5) .irjg = X j  for every j E 1 

Now (1.4) a.nd (1.5) imply t,ha.t g f : IIiEIMi + IIiEIMi a.nd f g : A + A 
a.re homomorphisms s i~ch t,ha.t 

(1.6) xj(g f )  = xj and X j ( f  g )  = X j  for every j E T .  

Also l A  : A + A and InM,  : IIMi + IIMi are homomorphisms such that 
X j l ~  = X j  and x j l n ~ ~  = xj for every j E T .  

By the uniqueness of the homomorphism in the universal property of 
I I i E ~ M i  a.nd of the homomorphism a.s in t,he property of A, we get g f = 
InM, ,  f g = l A  which show t,ha.t f : IIiEIMi M A is a.n isomorphism wit,h 
g : A M IIiEIMi as its inverse. 

Definition 1.2.6 A left R-module F is called a free left R-module on a 
basis X # 4, if there is a map a: : X + F such that given any map f : X M 

A, where A is any left R-module, there exists a unique R-homomorphism 
g : F + A si~ch t,ha.t f = ga.  

The unique homomorphism g : F + A is mid to  ext,end t,he map f : 
X + A. 

We observe that the map a : X + F is necessarily one-one. Tf not, 
suppose that xl,x2 E X such that a(x1)  = a(x2) .  Take A = R X R = 
{ ( r ,  s)lr, s E R}  converted into a left R-module by defining 
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Take f : X + A the map such that f ( X I )  = (1,  0 ) ,  f ( x z )  = ( 0 , l )  
a n d f ( x ) = O f o r e v e r y x ~ X , x # x ~ , x # x ~ . L e t g : F + A b e t h e u n i q u e  
R-homomorphism si~ch t,ha.t ga = f .  Now 

which is a contradiction. 

Theorem 1.2.7 For every nonempty set X ,  th,ere exists a free left R- 
m.od~rle F viith X as a hasis. 

Proof. Consider tjhe family of left R-modules where R, = R 
for every x E X. Let F = CxEx R,. Tn view of Exercise 1.2.2 (l): 
we can regard F as the internal direct sum of the family of submodules 

For x E X, R, being equal to  R: we denote an element r E R 
when considered a.s a.n element of R, by rx. Under t,his assumption, every 
element of F m n  be uniquely writ,t,en a.s a finite silm C:=, rixi, where 
ri E R,  xi E X. Let a : X + F be the map a ( x )  = 1.x. Let A be any left 
R-module and f : X + A be any map . Define g : F + A by 

Clearly g is a well-defined R-homomorphism and f = g a. That g is unique 
with f = g a is clear. Hence F is a free left R-module with X as a basis. 

Observe t,ha.t t,he argument in t,he proof of the a.bove t,heorem 1ea.d~ t o  
a.n alt,erna.t,ive definition of a free modiile. In view of the map a : X + F 
in the definition of a free module being one-one, we may regard X as a 
subset of F. Let A = @CxEx R,, where R, = R for every x E X. 
Let g : F + A be the unique extension of the inclusion map X + A to  
a.n R-homomorphism. Since X may also be regarded a.s a siibset of A, 
g maps C r i x i  onto C rixi. Also A having been proved t o  be free, let 
h : A + F be t,he unique R-homomorphism which ext,ends t,he incllision 
map X + F. Now h g  : F + F is a homomorphism which extends the 
inclusion map X + F and identity map F + F also extends this map. 
Therefore h g  = 1 which implies t,ha.t g is a monomorphism and, hence, 
a.n isomorphism. Thus F is a free left R-module wit,h ba.sis X if and only 
if F C,,, R,, R, = R for every x E X. Moreover, F is free witjh 
basis X if and only if every element of F can be uniquely expressed as 
C rixi, ri E R. 

Theorem 1.2.8 Every left R-module is  homomorphic image of a free left 
R-module. 
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Proof. Let M be a left R-module. Let X be a set t,he  element,^ of which 
are in one t o  one correspondence with the elements of M. Let the element 
of X corresponding to the element a E M be denoted by X,. Let F be the 
free left R-module with X as a basis. Let f : X + M be the map given by 
f (X,) = a. Let g : F + M be t,he unique homomorphism which satisfies 
a = f (X,) = g(x,). The homomorphism g is clearly a.n epimorphism. 

Theorem 1.2.9 Let F be a free left R-module with basis X, a : A + R 
an epimorphism of left R-modules and f : F + R an R-homomorphism. 
Then there exists an R-homomorphism g : F + A such that a g  = f .  

Proof. For every X E X :  choose a.n element a, E A  si~ch t,ha.t f (X) = 
a(a,). Definea m a p p :  X + A  by P(x) = U , , X E  X. Let g :  F + A  be 
the unique R-homomorphism which extends the map P. Let X E F. Then 
X=Ci rixi, where ri E R, xi E X. Therefore 

which proves t,ha.t a g  = f .  

1.2.10 Examples 

l. Observe that R is always a free left R-module with a basis consisting 
of a single element. It is also a free right R-module with a basis consisting 
of a single element. 

2. Every si~bmodlile of a free left R-module need not be free. Consider 
R = 2162-the ring of integers modulo 6. 2 2 / 6 2  = (0 + 62 ,2  + 62 ,4  + 6 2 )  
is a submodule of the free R-module R. The ring R is of order 6 while 
the order of the module 2 2 / 6 2  is 3. Therefore the module 2 2 / 6 2  cannot 
be direct silm of any copies of R. Hence 2 2 / 6 2  is not a free R = 2162- 
modiile. However, every si~bmodlile of an R-module when R is a principal 
ideal doma.in is free (we shall come ba.ck t,o it later). 

3. Let R be a commutative ring and R[X] be the polynomial ring in 
the variable X over R. Then R[X] is a free R-module with basis {Xi}i>o. 

Proposition 1.2.11 Let G he a group, H a sub~roup of G and X he a 
right transversal, i.e., set of right coset representatives, of H in G. Th.en. 
RG is a free left RH-module. 

Proof. Every element g of G can be uniquely written as hx, h E H, X E 
X. Therefore any element C rigi E RG can be written as C rigi = 
Xi rihixi a.nd rib+ E RH.  This shows t,ha.t R G  is generated a.s a.n RH-  
modlile by X. 



10 CHAPTER l. MOD [JLES 

Suppose that aixi = 0, where ai E RH.  Let ai = CLl rijhij. 
Then we have 0 = Ci(Cj rijhij)zi .  

Consider the elements {hijxi)i , j  of G  occurring in the above linear com- 
bination. Since hij # hik for j # k ,  therefore hijxi # hikxi for j # k. Also 
zi, xl for 7: # I: being in dist,inct right cosets of H in G, hijxi # hrkxr for 
1: # 1. Therefore all t,he  element,^ in t,he set {h i j z i )  a.re di~t~inct,. There- 
fore rijhijxi = 0 shows that rij = 0 for all i ,  j which implies that 
C j  rijhij = 0 for all i or ai = 0 for all i. This proves that every element of 
R G  can be uniquely written as C aizi, ai E R H .  Hence RG is a free left 
RH-module. 

1.2.12 Exercise 

Prove that the additive group Q of rational numbers is not a free Z- 
module. 

1.3 Exact Sequences 

Consider a sequence 

(1.7) A ~ B ~ C  

where A, B ,C are R-modules and f : A i B: g : R + C are R- 
homomorphisms. We say t,ha.t sequence (1.7) is a 0-sequence if I m  f C 
Kerg while it is mid to  be exact if Irn f = Kerg. 
A sequence 

which may ext,end t o  infinity, where A, a.re R-modules a.nd every f ,  is a.n 
R-homomorphism is called a 0-sequence or a complex if every sequence 

f n  
An+1 4' A, 3 AnP1 of three consecutive terms is a 0-sequence while it is 
said to  be an exact  sequence or an acylic complex if every such triplet 
is an exact sequence. 

We writ,e t,he zero mod~ile simply a.s 0 a.nd 0 i A, A + 0 for any 
R-module A a.re t,he obvioiis maps or morphisms. 

L e m m a  1.3.1 For R-modules A, B and R-homomorphism f : A + B 
f 

(i) 0 + A i R is exact if and only if f is a monomorphism; 
f (iz) A + R + 0 is exact if and only if f is an epimorphism; 

f (iii) 0 i A i B + 0 is exact if and only if f is an isomorphism. 

Proof. Exercise. 

Let A be an R-module, B be a submodule of A, a : B + A tjhe incllision 
map and ,/3 : A + A/B be t,he na tu ra l  project ion,  i.e., /?(a) = a + B, a E 
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A. Then a is a monomorphism, P an epimorphism and I m  a = B = K e r  P. 
Thus the sequence 0 + B 3 A 3 A/B + 0 is exact. 

P An exact sequence of the form 0 + A 3 B + C + 0 is called a short 
exact sequence. 

Let p be any prime and Zp2 denote the cyclic group of order p2. Let 
p : Zp2 + Zp2 be the multiplication by p. This is a homomorphism and the 
long sequence 

. . . t Zp2 4 Zp2 4 Zp2 4 Zp2 t . . . 

is exact. However, the sequence 

is not exact but the sequence 

is exact. Decide the unmarked maps in this sequence. 

Proposition 1.3.2 For a short exact sequence 

of R-modules and homomorphisms, the following are equivalent : 
(a) There exists a homomorphism a : B + A such that a f = lA; 
( b )  There exists a homomorphism P : C + B such that g p  = lc; 
(c) I m  f is a direct summand of B. 

Proof. We give a circular proof of this result. 
(a) + (c). Suppose that there exists a homomorphism a : B + A such 
that a f = lA - the identity map from A to  A. 

Let b E B. Then a f a(b) = a(b) so that a (b  - fa(b))  = 0. Then 
b - fa(b)  E Ker a = K (say) and we have b = k + f a(b) for some k E K .  
Thus B = K + I m ( f ) .  

Suppose that there is also an element k' E K and an element a E A such 
that b = k + fa(b)  = k' + f (a ) .  Applying a to  both sides of this relation 
we get 

a (k)  + a f a ( b )  = a (k t )  + a f (a) 

But then k' = k. Hence every element of B can be uniquely written as 
k + f (a) for some k E K ,  a E A. Therefore B = K @ I m  f and (c) holds. 
(c) + (b). Suppose that there exists a submodule K of B such that B = 
K e I m f .  
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Let c E C. Then t,here exist,s h E B si~ch t,ha.t c = g(b). Let h = k + f (a) 
for some k E K, a E A. Then c  = g(k). If k' E  K is another element such 
that c = g(kl), then g(kt - k) = 0 which shows that k' - k = f (a') for some 
a' E  A. The direct sum property of R shows that k' - k = f (a') = 0 or 
t,ha.t k' = k. Hence t,here  exist,^ a unique k E K si~ch t,ha.t c = g(/?). Define 
p : C + B by /?(c) = k, where k E K is t,he unique element s i~ch t,ha.t 
g(k) = c.  The map ,8 is an R-homomorphism and we have 

g/?(c) = g(k) = c  for every c  E  C. 

Hence g/3 = lc - the identity map of C .  
(b) j (a) Suppose t,ha.t t,here exist,s a.n R-homomorphism : C + B s i ~ h  
that g/? = lc. 

Let b E R and suppose that g(b) = c.  Then g(b) = c  = g/?(c) so that 
g(b - P(c)) = 0. Then there exists a E  A such that b = /?(c) + f (a).  If we 
also have /?(c) + f (a) = /?(c1) + f (a'), t,hen /?(c1 - c) = f (a - a'). 

Therefore 0 = g f (a - a') = g/3(c1 - c) = c' - c, i.e., c' = c.  But 
t,hen a' = a also. Hence every element of B m n  be uniquely writ,t,en a.s 
/?(c) + f ( a ) ,  C E  C: a E  A. Define a m a p  a :  R + A by 

a(/?(.) + f (a)) = a ,  c E C, a E A. 

a is a well-defined homomorphism a.nd a f = l A .  This proves (a). 

Definition 1.3.3 If any one of the three equivalent condit,ions of Proposi- 
t,ion 1.3.2 is sastisfied, t,hen (1.9) is called a split exact sequence or t,ha.t 
the sequence (1.9) is said to split. 

Corollary 1.3.4 If the exact sequence (1.9) splits and a ,  P are as in Propo- 
sition 1.3.2, then ( 2 )  R = f (A) /?(C) = f (A) @ K e r  g E A $ C and (iz) 
a B  = 0.  

1.3.5 Exercises 

f l .  Prove t,ha.t tjhe sequence 0 + A + B 4 C + 0 of R-modules a.nd 
homomorphisms is split exact if and only if there exist homomorphisms a: : 
B + A ,  p : C + B s a t i s f y i n g a f  = l A , g f  = 0 , g / 3 = l c ,  f a + p g = l B  
and a/3 = 0. 

f 2. Let 0 + A + B 4 C + 0 be a.n exact sequence of R-modules a.nd 
homomorphisms. 
(a) If A, C are finitely generated, then prove that so is R. 
(b) Tf R is finitely generated, prove that C is finitely generated. Is A also 
finitely generated *! Justify. 

f 3. Tf 0 + A + R 4 F + 0 is an exact sequence and F is a free 
R-module, prove t,ha.t t,he sequence splits. Is t,he condit,ion of F being free 
necessary? 
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f 4. If 0 + A + B 3 C + 0 is an exact sequence of finite Abelian groups 
a.nd orders of A a.nd C a.re coprime, prove t,ha.t t,he sequence splits. 
(Hint: Let O(A) = rn, O(C) = rl: where O(K) (as also I KI) denotes for a 
group K the order of K. Let r,  s E Z such that mr + ns = l. Define a map 
y : C + R by ~ ( c )  = mr b, where g ( b )  = C.) 

One of t,he cent,ral idea.s prevalent in homological algebra is t,ha.t of 
diagram chasing. We next consider a couple of simple results of this nature 
one of which is embodied in the Five Lemma. 

A diagram 

of R-modules and homomorphisms is mid t,o be commutative if ga  = P f 
while the diagram 

is said to  be commutative if a f = g. 

The idea of commutativity of larger diagrams is understood in an obovi- 
oils way. 

For example: (i) if f : A + R is a homomorphism of R-modules and 
T, = Ker  f ,  f : AIL + R is the induced homomorphism, i.e., f (a + L) = 
f (a): a E A, t,hen f = f z ,  where 7r : A + AIL is t,he na.tiiral projection. 
Thus t,he following diagram is commiit,a.t,ive 



7r 

A- AIL 
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(ii) If M is a.n R-module a.nd A, B a.re si~bmodliles of M wit,h A C B: let 
T : B + B/A, T' : M + M/A be t,he na.tiira1 projections a.nd 1: : B/A + 
M/A, j : R + M be the inclusion maps. Then i r  = T' j and the following 
diagram is commutative 

Lemma 1.3.6 (Five Lemma) Con,.sider a commutative diagram 

of R-modules and homomorphisms with exact rows. (i) If t2 and t4 are 
epimorphisms and t5 is a monomorphism, then t3 is an epimorphism. 
(iz) If t2 and t4 are monomorphisms and tl  is an epimorphism, t h , m  t3 is 
a monomorphism. 

Proof. (i) Suppose t,ha.t t a ,  t4 a.re epimorphisms a.nd t5 is a monomor- 
phism. Let b3 E B3. Then g3(b3)  E B4 a.nd since t4 is a.n epimor- 
phism, there exists an element a4 E Aq such that g3(b3)  = t4(a4).  Now 
t 5 f4 (a4 )  = g&(a4) = 9 4 9 3  (b3 )  = 0 and t5 is a monomorphism. There- 
fore f4(a4) = 0. The upper row being exact: there exists an element 
a3 E A3 si~ch t,ha.t f3(a3)  = Q. Then g3(b3)  = t4(a4) = t 4 f 3 ( a 3 )  = 
g3t3(a3)  and, SO: g3(b3 - t 3 ( a 3 ) )  = 0. Therefore t,here exist,s a.n element 
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b2 E B2 sl~ch tjha.t b3 - t3 (a3)  = g z ( b 2 ) .  The homomorphism t2 be- 
ing an epimorphism, there exists an a2 E A2 such that b2 = t 2 ( a 2 ) .  
But then bs - t s (a3)  = 92(b2) = g2( t2 (a2) )  = (92t2)(a2) = t 3 f 2 ( a 2 )  or 
b3 = t 3  f 2  (a2) + t 3  (a3) = t 3  (a3 + f z ( a 2 ) ) .  Hence t3 is an epimorphism. 
(ii) Now suppose that t a ,  t4 are monomorphisms and t l  is an epimorphism. 
Let a3 E A3 si~ch tjha.t t 3 ( a 3 )  = 0. Then 

0 = .93t3(a3) = t 4 f 3 ( a 3 ) .  

t4 being a monomorphism, we have f3(a3) = 0 and, therefore, there exists 
an element a2 E A2 such that a3 = f z (a2) .  But then g z t z ( a 2 )  = t3 f2(a2) = 
t3 (a3)  = 0 and, therefore, there exists an element bl E B1 such that tz(a2) = 
g1 (b l ) .  Since tl is an epimorphism, there exists a1 E A l :  such that tl ( a l )  = 

bl. Then ta(a2) = gl(b1) = gl t l (a1)  = t z f l ( a 1 ) .  

Now t2 being a monomorphism, we have a2 = f l (a1)  and, hence, a3 = 
f ~ ( f l ( a 1 ) )  = 0. This completes the proof that t3 is a monomorphism. 

Combining (i) and (ii) of the lemma, we have the following. 

Corollary 1.3.7 I f t2 and t 4  are isomorphisms, tl  an epimorphism and t5 
a monomorphism, th,en. t3 is an isomorphism. 

R.emark 1.3.8 Observe that in the proof of (i) of the five lemma, the maps 
t l ,  f l ,  g1 do not play any part while in the proof of (ii) of the lemma t5 ,  f 4 ,  g4 

do not play any part. 

Making use of the above observation, we can have as an immediate 
consequence of the lemma.. 

Corollary 1.3.9 Consider a commutative diagram 

0 - B 1 - B 2 - B 3 - 0  
91 Q2 

uiith exact rows. If any ti~lo of t l ,  t2,  t3 are isomorphisms, th,en. so is th,e 
th,ird. 

For the proof of this we can think of maps to : 0 + 0 and t4 : 0 + 0 
given making the diagram 
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commi~t,a.t,ive. Both t o ,  t4 are isomorphisms. When t l ,  t3 are isomorphisms, 
then so is t2 is the result of Corollary 1.3.7. If t2 ,  t3 are isomorphisms, it fol- 
lows from Lemma 1.3.6 (i) that tl is an epimorphism. If a,  E AI such that 
tl ( a l )  = 0, then 0 = gltl ( a l )  = t2 f i  ( a )  and both f l ,  t2 being monomor- 
phisms a1 = 0. Hence tl is a monomorphism a.nd so a.n isomorphism. 

If t l , t2  a,re isomosphisms, t,hen Lemma 1.3.6 (ii) shows t,ha.t t3 is a 
monomorphism. Also, for any b3 E B3: there exists b2 E B2 such that 
ga(b2) = b3. Then there exists an a2 E A2 such that b2 = t2(a2). Therefore 

showing that t3 is an epimorphism. Hence t3 is an isomorphism. 

Proposition 1.3.10 Consider a diagram of R-modules and homomorphisms 

with exact row such that /? f = 0.  Then there exists a unique homomorphism 
g : M + A such that ag = f .  

Proof. Exercise. 

Corollary 1.3.11 Giuen, a commutative diagram 

f 9 A - R - C  

of R-modules and homomorphisms with g f = 0 and lower row exact, there 
exists a unique homomorphism a : A + A' such that f 'a  = P f .  

Proof. Here P f : A + B' is a homomorphism such that g'@ f )  = 
(g1/?)  f = ( 7 s )  f = ~ ( g  f )  = 0. Then, by t,he proposition t,here exist,s a 
unique homomorphism a : A + A' si~ch t,ha.t f 'a  = P f .  

Proposition 1.3.12 Given a diagram 
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of R-modules  and h o m o m o r p h i s m s  uiith exact  row s ~ r c h  th,at f a  = 0 ,  th,en. 
there  exists a un ique  h o m o m o r p h i s m  g : C + M such  t h a t  f = g p .  

Proof. Let c E C. The map /3 being an epimorphism, there exists a 
h E B si~ch t,ha.t P(b)  = c. If h' E B is a.not,her element si~ch t,ha.t P ( b l )  = c, 
then P(bl -h )  = 0 and there exists an element a E A such tjha.t h' - h  = a ( a ) .  
But t,hen f (b ' )  - f ( b )  = f (b' - b)  = f  a ( a )  = 0 showing t,ha.t t,he element 
f ( b )  E M is independent of the choice of the element b E R such that 
P(b)  = c. Define g : C + M by g ( c )  = f ( b ) :  where b E R is such that 
P(b)  = c. 

Let c l ,  c2 E C, r E R. Choose b l ,  b2 E B such that P(b1)  = c l ,  P(b2)  = CL? 

so that g(c1)  = f  ( b l ) ,  g (c2)  = f ( b a )  Then 

which imply that 

Therefore g is an R-homomorphism. That g p = f is clear from the defini- 
tion of g. 

Let h : C + M be another homomorphism such that h/3 = f .  
Let c E C and choose b E R such that P ( b )  = c. Then g ( c )  = f ( b )  = 

( h p ) ( b )  = h ( P ( b ) )  = h ( c )  which shows that g = h. 

Corollary 1.3.13 Giuen, a commuta t i ve  diagram 

of R-modules  and  h o m o m o r p h i s m s  uiith g ' f '  = 0 and th,e upper  row exact ,  
t h e n  there exists a un ique  R - h o m o m o r p h i s m  y : C + C' such  tha t  y g = 
g'P.  

Proof. g'P : R + C' is a homomorphism such that ( g 1 P )  f = g '@ f )  = 
g 1 ( f ' a )  = (g' f l ) a  = 0. Therefore by t,he proposition t,here exist,s a unique 
homomorphism y : C + C' si~ch t,ha.t g'P = y y .  

1.3.14 Exercises 

Let 
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be a commutative diagram of R-modiiles and homomorphisms with exact 
rows. 
l. If t l ,  t3, gl a.re monomorphisms, prove t,ha.t t2 is a monomorphism. 
2. If t l ,  t 3 ,  f 2  a.re epimorphisms, prove t,ha.t t2 is also a.n epimorphism. 
3.  If t l ,  t y  are isomorphisms, g1 is a monomorphism and f2 is an epimor- 
phism, prove that t2 is an isomorphism. 

1.4 Homomorphisms 

1.4.1 Let A ,  B  be R-modules. Let HomR(A ,  B )  denote the set of all R- 
homomorphisms from A to  B .  For f ,  g E HornR ( A ,  B )  define f + g : A + B 
by 

For a ,  a l ,  a2 E A ,  r  E R,  ( f  + g)(al + m)  = f (a1 + m)  + g(a1 + m)  
= f ( a l )  + f (a2) + d u l l  + d a 2 )  = ( f  ( a l )  + d a d )  + ( f  (a2) + d a 2 ) )  
= ( f  + 9) (a l )  + ( f  + .9)(a2) 
and ( f  + g)(ra)  = f (ra)  + d r a )  = r f  ( a )  + r d a )  = r ( f  ( a )  + d a ) )  
= r ( f  + 9)(a) .  
Hence f  + g E HornR ( A ,  B ) .  

The map 0 : A + B given by O(a) = O for every a E A is a.n R- 
homomorphism a.nd for every f E HomR(A,  B ) ,  f  + 0 = f = O + f .  
For f  E HomR(A ,  B )  define g : A + B by 

g(a )  = - f ( a ) ,  a E A. 

and 
g(ra) = - f ( ra)  = - r f  ( a )  = r ( -  f ( a ) )  = rg(a).  
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a.nd we ha.ve ( f  + g )  + h = f + ( g  + h), i.e., t,he a.ddit,ive composition in 
HomR(A, B )  satisfies the associative law. 

Again , for f ,  g E HornR(A, B ) ,  a E A, 

Therefore f + g = g + f .  Hence HomR(A,  B )  is an Abelian group. 
Tn general HomR(A,  B )  is not an R-module . However, we have the 

following. 

Proposition 1.4.2 If R is a commutative ring and A, B are R-modules, 
t h , m  HomR(A,  B )  is an R-module. 

Proof. For r E R, f E HomR(A,  B )  define r f : A + B by 

Therefore r f E HornR(A, B).  
I t  is fairly easy to  check t,ha.t t,hen tjhe Abe1ia.n group HomR(A,  B )  

becomes a.n R-module. 

In the case when the ring R is not necessarily commutative, we c m  ha,ve 
t,he following. 

Proposition 1.4.3 For any left R-module A, HomR(R,  A )  is again a left 
R-module. 

Proof. For r E R, f E H O ~ R  ( R ,  A )  define r f : R + A by ( r  f )  ( S )  = 
f ( S  r ) ,  s E R .  It  is almost trivial that ( r f ) ( s l  + s2) = ( r f ) ( s l )  + ( r f ) ( s 2 )  
for s l ,  s2 E R .  Let S ,  sl E R .  Then 

Thus r f is an R-homomorphism. 
That r ( f l f f 2 )  = r f l + r  f 2 ,  rl(r2 f )  = (7-17-2) f and 1 f = f for r,rl,r2 E 

R, f l ,  f 2 ,  f E H o r n ~ ( R ,  A )  are easy to  check. This completes the proof that 
H o r n ~ ( R ,  A )  is a left R-module. 

Theorem 1.4.4 For any R-module A ,  H o r n ~ ( R ,  A )  A as R-modules. 

Proof. Define a map 6' : HornR(R,A) + A by 8 ( f )  = f ( l ) ,  1 tjhe 
identity of R ,  f E HomR(R, A ) .  
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The map 6' is a homomorphism of R-modules. If B ( f )  = 0: for a.n 
f E H o m R ( R , A ) ,  then f ( 1 )  = 0 and for any r E R: f ( r )  = f(r.1) = 
r f ( 1 )  = r.0 = 0: i.e.: f = 0. Hence 0 is one-one. 

Let a E A. Define f : R + A by f ( r )  = r a :  r E R. The map f is 
a.n R-homomorphism a.nd $ ( f )  = f ( l )  = a. Thus 6' is a.n epimorphism a.nd 
hence a.n isomorphism. 

Let {Mi j iE I  be a family of R-modules; B xi,, Mi: the direct sum and 
IIiEIMi, the direct product of the family with a,? : M,? + B xitI Mi; j E 1: 
the natural injection and 7r j  : IIiMi + M y :  j E 1: the natural projection. 

Theorem 1.4.5 For any R-module A ,  
(2) niHornR(Mi, A )  g HornR($ E Mi,  A )  
(iz) IIiHomR(A, Mi)  g HomR(A ,  &Mi) 
When R is commutative, th,e isomorphisms in (i) and (iz) above are R- 
isomorphisms. 

and 
$ ( ( ~ i ) )  = 9: gi E HomR(Mi ,A):  2 E 1: 

where g( (x i ) )  = xi gi ( x i ) :  ( x i )  E B xitI Mi. 
The maps 0 and q5 are homomorphisms of Abelian groups. Let 

f E HornR(@ E Mi,  A) .  Then 

where f i  = fa i :  i E 1. For any ( x i )  E $ E  Mi: 

showing that f = f .  Therefore $B( f )  = f for every f E HornR($ E Mi, A) .  
Hence $6' = identity and, so: 6' is a monomorphism. 

Let f i  E HornR(Mi, A ) :  1: E I .  Define g : E Mi + A by 

For xi E Mi: i E 1: let a i ( x i )  = ( y j ) :  so that yi = xi and y,? = 0 for j # i 
and we have 
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Therefore, gai  = fi for every i E I so that Q(g) = (gai) = (fi) showing that 
Q is an epimorphism and, hence, an isomorphism . If the ring R is commu- 
tative, both HornR(@ Mi, A) and nHomR(Mi,  A) are R-modules and it 
is clear that Q is an R-homomorphism and, hence, an R-isomorphism. 
(ii) Define maps 8 : HornR (A, ni Mi) + IIiHomR(A, Mi),  4 : IIiHomR 
(A,Mi) + HomR(A,niMi) by B ( f )  = ( r i  f ) :  f E HomR(A,niMi),  4((fi)) 
= f ,  fi E HomR(A,Mi) ,  where f ( a )  = (fi(a)), a E A. 

8 and 4 are homomorphisms of Abelian groups. If f E HomR(A, &Mi), 

o(f) = (rif) and ($Q)(f) = $(Q(f)) = $(rif) = f: wheref(a) = ( ( r i f ) (a ) )  
= ((ri f (U)) )  = f (U) for every a E A. Therefore $B = identity. 

Consider (fi) E niHomR(A, Mi) witjh fi E HomR(A, Mi), 7: E I. By 
definition $((fi)) = f ,  where 

Then B($((fi))) = 8(f )  = (rif) and for any a E A, i E 1: ( r i f ) (a )  = 
r i ( f (u) )  = fi(u) so that xi f = fi and B4((fi)) = ( r i  f )  = (fi). Hence $4  = 
i d en t i t y .  Therefore B is an isomorphism with 4 as its inverse isomorphism. 

When tjhe ring R is commutative, botjh niHomR(A, Mi) a.nd 
HomR(A, &Mi) a.re R-modules a.nd 6' is trivally a.n R-homomorphism. 

We need a lot more properties of HornR(-, -) and we shall come back 
t o  these after we have introduced what we call functors. 

W h e n  A, B are Abelian groups (and so 2-modules), we write Hom(A, B) 
for Homz(A, B) .  

1.4.6 Exercises 

l. If Q is t,he a.ddit,ive group of ra.t,ional ni~mhers a.nd Z t,he a.ddit,ive 
group of integers, describe 

( 4  Horn(&, Q/Z); 
(b) Hom(QlZ1 Q/Z); 
(c) Hom(QlZ1 Q). 
2. If A is a torsion-free, divisible Abe1ia.n group a.nd B any Abe1ia.n 

group, prove that Hom(A, B) is a torsion-free, divisible Abe1ia.n group. 
3. If A is a torsion Abelian group and R a torsion-free Abelian group, 

prove that Hom(A, B) = 0. 
4. If A is a left R-module, define r f : R + A, for r E R ,  f E 

Homz(R,  A), by ( r  f )  ( S )  = f ( S  r ) ,  s E R.  Prove t,ha.t iinder t,his a.ct,ion 
Hornz (R, A) is a left R-module. 

1.5 Tensor Product of Modules 

In t,his section we consider t,he const,riict,ion of a.n Abe1ia.n group from a 
given pair of modules, one of which is a right R-module a.nd t,he other, a 
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left R-module. 

Definition 1.5.1 Let M be a right R-module, N a left R-module and G 
an Abelian group. A map f : M X N + G is called R-biadditive if 
(i) f(m1 + m , n )  = f(m1,n) + f ( m , n ) ,  
(ii) f (m, n l  + nz) = f (m, n l )  + f (m, m),  
(iii) f (mr, n) = f (m, rn)  
f o r a l l m , m l , m ; ? E M , n , n l , n 2 E N , r E R .  

Definition 1.5.2 Let M be a right R-module, N a left R-module. By 
tensor product of M by N over R we mea.n a.n Abe1ia.n group M @ R  N 
a.nd R-biadditive map h : M X N + M @ R  N si~ch t,ha.t for any Abe1ia.n 
group A and any R-biadditive map f : M X N + A, there exists a unique 
homomorphism g : M @ R  N + A of Abelian groups which makes the 
diagram 

commutative, i.e., gh = f 

Proposition 1.5.3 Any t m  tensor  products of M by N over R are iso- 
morphic. 

Proof. Let A and B be two tensor products of a right R-module M by a 
left R-module N. Then there also exist R-biadditive maps h1 : M X N + A 
and h2 : M X N + B. Since (A, hl) is a tensor product of M by N and h2 : 
M X N + B is an R-biadditive map, there exists a (unique) homomorphism 
f : A + R such that f hl = h:!. Again (B, h2) being a tensor product of 
M by N :  there exists a (unique) homomorphism g : R + A such that 
gh:! = hl. But thenwehave hl = g ( f h l )  = (g f ) h l  and h:! = ( fg)h l .  
Also t,he identity homomorphism lA : A + A a.nd lB : B + B ha.ve t,he 
property that h1 = l ~ h l  a.nd h2 = l ~ h a .  

The uniqueness of the homomorphism in the definition of tensor product 
then shows that g f = lA and f g = lB showing that f is an isomorphism 
with g as its inverse. 

1.5.4 We next consider t,he question of exist,ence of tensor product of a 
right R-module by a left R-module. 

Let M be a right R-module and N be a left R-module. Let Z(M, N)  
be the free 2-module freely generated by the set M X N = {(m,n)lm E 
M, n E N}. Let B(M, N)  be t,he si~bmodlile of Z(M,  N)  generated by all 
 element,^ of the form 


