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         PART  I 

DNA   





genes have been identifi ed in one third to half 
of these (Bamshad, Ng, et  al. 2011). Although 
many disorders, particularly monogenic reces-
sive disorders, are clearly caused by mutations 
in a single gene, there are likely other genes that 
can modify the phenotypic features. Th is could 
prove particularly true for dominant disorders, 
because they oft en display reduced penetrance 
and the phenotype can be highly variable, even 
within a family where the primary genetic 
lesion is shared by all aff ected individuals.        

 Genetic mapping of monogenic disorders 
has been successful. Linkage analysis and sub-
sequent sequence analysis in a small number 
of families has oft en resulted in identifi cation 
of the causative gene. An excellent example of 
the power of these approaches, and the power 
of genetic homogeneity in isolated populations, 
is successful mapping of genes for monogenic, 
oft en recessive disorders in population isolates 
such as the Finns or the Hutterites (Boycott, 
Parboosingh, et al. 2008; Norio 2003). Although 
linkage studies have identifi ed genes for many 
monogenic disorders, there are still numer-
ous disorders for which the causative gene or 
genes are not known. Th ese include disorders 
where families are too small to provide a link-
age signal or cases where genetic heterogeneity 
between families is very high and traditional 
methods have not been able to identify the 
disease genes. 

 Complex disorders are caused by a com-
bined load of a large number of genetic 
 variants, each of which confers a very small 
increase in risk (  Figure  1.1  ). Th ese variants  are 
relatively common in the population. Th e 
genetic background of complex disorders has 
been extensively characterized during the last 
decade using genome-wide association studies 
(GWAS). In these studies, very large cohorts 
of samples are genotyped at loci known to be 
polymorphic in the population. Statistical tests 

      I N T R O D U C T I O N   
 Th e aim of medical genetic studies is to iden-
tify genetic variants associated with a disorder 
or trait of interest. A  hypothesis-free way to 
conduct gene mapping studies has been avail-
able ever since genetic variants, usually referred 
to as genetic markers, were identifi ed. Th e fi rst 
genetic markers used in gene mapping studies 
were a small number of blood antigens; later, 
microsatellites were used. Th e human reference 
genome and the Hap Map project identifi ed 
millions of single nucleotide polymorphisms 
(SNPs) spread all across the genome, which 
provided a much denser map of genetic mark-
ers. Today high-throughput sequencing tech-
nology has made it possible to decode every 
base pair in the human genome, enabling 
the identifi cation not only of sites, which are 
polymorphic in a population, but also of pri-
vate mutations, which are present in only one 
individual. Despite the feasibility of producing 
enormous datasets for medical genetic studies, 
the path from generating the data to identifying 
the variants involved in the disease and further 
converting this to an understanding of biologi-
cal mechanisms is still in its early stages.  

    T H E  H I S T O RY  O F  G E N E 
M A P P I N G  S T U D I E S   

 Traditionally, human genetic disorders have 
been divided into monogenic and complex 
types. Th is somewhat simplifi ed division 
refl ects the underlying genetic architecture. 
Monogenic (or Mendelian) disorders are caused 
by mutations in one gene. Th ese mutations are 
highly penetrant and rare in the population 
(  Figure 1.1  ). Depending on the mode of inheri-
tance, loss of one or two copies is required for 
the disease to manifest. More than 3,000 such 
disorders are listed in the Online Mendelian 
Inheritance in Man (OMIM, www.ncbi.nlm.
nih.gov/omim) database, and the causative 

      1 
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4 The OMICs

are then performed to determine if a genetic 
marker is more common in cases than controls. 
Th e combination of large-scale SNP identifi -
cation projects allowing for dense coverage of 
the whole genome combined with technologi-
cal advances in high-throughput genotyping 
technology enabling the genotyping of tens of 
thousands of samples has resulted in identify-
ing the association of thousands of SNP mark-
ers with hundreds of diseases and traits ( http://
www.genome.gov/gwastudies/ ). However, in 
most cases the GWAS loci explain only a small 
to moderate part of the heritability of the traits. 
For complex disorders, the environment is also 
likely to play a much larger role than for mono-
genic disorders and will probably prove to be 
the main susceptibility factor for some of them. 
In addition to common variation, rare variants 
with large eff ect sizes have also been found to 
play a role in several complex disorders. GWAS 

technologies have been poorly equipped to 
identify such risk variants, whereas large-scale 
sequencing studies are better equipped to 
identify them. 

 Many disorders cannot be distinguished as 
being either monogenic or complex, since there 
are numerous complex disorders that also have 
monogenic, very severe, and oft en early-onset 
forms. For example, meta-analyses of tens of 
thousands of individuals have revealed dozens 
of common susceptibility variants for both type 
1 and type 2 diabetes (Bradfi eld, Qu, et al. 2011; 
Saxena, Elbers, et  al. 2012). At the same time, 
rare mutations in  GCK  (Froguel, Vaxillaire, 
et  al. 1992)  and  HNF1A  (Yamagata, Furuta, 
et  al. 1996)  cause maturity-onset diabetes of 
the young (MODY), and mutations in  KCNJ11  
(Gloyn, Pearson, et  al. 2004)  and  ABCC8  
(Babenko, Polak, et  al. 2006)  cause neonatal 
diabetes, two monogenic forms of diabetes. 

 

High-penetrance rare mutations
cause monogenic (Mendelian)
disorders, detectable by linkage
or next-generation sequencing in
families or affected individuals
with shared phenotypic features.

Common, highly penetrant, and
deleterious variants are unlikely

to exist because of selection.

Low-frequency variants increase
risk for oligogenic disorders,

detectable by GWAS, linkage, or
next-generation sequencing in

families or case control cohorts.

Hard to detect, although next-
generation sequencing studies in

large cohorts could provide
limited power to detect some

rare variants with low effect size.

Common variants increase risk
for complex disorders, detectable
by association studies (GWAS or
next-generation sequencing data)

in large cohorts.
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    FIGURE  1.1:     Th e genetic architecture of diseases and traits ranges from disorders caused by only one highly 
 disruptive and fully penetrant variant to those caused by the additive eff ects of numerous genetic variants of very 
small eff ect, oft en in combination with environmental factors. Highly disruptive variants (i.e., variants with a 
large eff ect size) are rare in the population as they are subject to strong negative selection, whereas variants with 
lower eff ect sizes can become more common in the population as one variant alone is insuffi  cient to cause the 
disorder. Currently available technologies and analysis methods for the identifi cation of these variants have their 
limitations; choice of the most effi  cient approach for gene mapping studies depends on the genetic architecture 
of the trait.   

http://www.genome.gov/gwastudies
http://www.genome.gov/gwastudies/


5Medical DNA Sequencing in Neuroscience

Similarly, GWAS analyses of blood lipid levels 
have revealed signifi cant overlap between genes 
with common susceptibility variants and previ-
ously identifi ed genes in familiar forms of dys-
lipidemias (Teslovich, Musunuru, et  al. 2010). 
For many disorders where the molecular etiol-
ogy is not known, it is not possible to diff er-
entiate between monogenic and complex forms 
of the disorder based on the phenotype alone; 
therefore several complementary gene mapping 
eff orts are needed to further our understanding 
of the genetic architecture of genetic disorders 
and traits.  

    C U R R E N T   S TAT U S   
 Th e development of genotyping and sequenc-
ing technologies along with a good partnership 
between academia and industry has been essen-
tial in changing the landscape on how human 
disease genomics research is done. During the 
past 10  years genotyping studies have moved 
from linkage panels based on 400 microsatel-
lites to genotyping up to a million markers for 
GWAS and lately to sequencing the complete 
genome in each study sample. As summa-
rized above, gene mapping technologies have 
successfully identifi ed genes for monogenic 
as well as more complex disorders. However, 
there are many cases where neither approach 
has been successful. Traditional automated 
Sanger sequencing is very costly and laborious 
if large linkage intervals must be sequenced, 
and GWAS are limited in their power to iden-
tify susceptibility factors with a very low allele 
frequency. 

    Next-Generation Sequencing 
Technology   

 Th e initial draft  of the human genome was 
produced using automated Sanger sequencing, 
a technology where modifi ed fl uorescent bases 
are incorporated into a strand of DNA using 
polymerase chain reaction (PCR) and then sep-
arated by gel electrophoresis (Lander, Linton, 
et  al. 2001). However, the completion of the 
draft  sequence took a large consortium of 20 
collaborating research groups a decade and cost 
$3 billion. Clearly technological advances were 
required to enable large-scale DNA sequencing 
projects. Th e term  next-generation sequencing  
(NGS) is used for the high throughput tech-
nologies that have been developed to comple-
ment and ultimately replace Sanger sequencing. 
Th ese methods have been available from 2004 

(Margulies, Egholm, et  al. 2005)  and have 
brought with them an immense drop in sequenc-
ing cost. Until 2007 the reduction in sequencing 
cost was well modeled by Moore’s law (which 
describes a long-term trend in the computer 
hardware industry that involves the doubling of 
“compute power” every two years and is oft en 
used as a standard to assess whether technolog-
ical development is being successful). Since the 
beginning of 2008 the drop in sequencing cost 
has been much faster than predicted by Moore’s 
law, allowing for the generation of ever-growing 
datasets. (Wetterstrand KA. DNA Sequencing 
Costs:  Data from the NHGRI Large-Scale 
Genome Sequencing Program Available at: 
 www.genome.gov/sequencingcosts ). NGS has 
been successfully applied to several areas of 
genetics and epigenetic research, including but 
not limited to medical genetic studies, popula-
tion genetics, evolutionary studies, transcrip-
tomics, and epigenomics. 

 Currently two main approaches are used to 
generate large-scale resequencing data for med-
ical genetic studies:  selective capture of specifi c 
genomic regions and whole-genome sequencing 
(WGS). Capture of selected genomic regions is 
suitable for projects where targeted genomic 
regions, such as loci identifi ed in GWAS, or 
predefi ned sets of genes (such as synaptically 
expressed genes) are being targeted. Th e benefi t 
of targeted sequencing is that because limited 
amounts of is being generated, data from several 
samples can be pooled together in one run on 
the sequencing instrument; thus a large number 
of samples can be included in the study. WGS 
generates a huge amount of data and requires 
much more sequencing capacity and storage 
space per sample. Furthermore, the additional 
data volume results in analytical and interpreta-
tional challenges. On the other hand, WGS data 
is totally hypothesis-free as it allows the assess-
ment of all variation present in an individual’s 
genome. An oft en used compromise between 
the two extremes is whole-exome sequenc-
ing (WES), a form of selective capture where 
all known protein coding regions (exons) are 
sequenced. Th e genetic variants causing mono-
genic disorders usually aff ect protein structure 
and function and are thereby located in exons 
(Kryukov, Pennacchio, et  al. 2007; Stenson, 
Ball, et al. 2009). Th erefore focusing sequencing 
eff orts on the exome will likely reveal variants 
with large eff ect sizes that are acting by disrupt-
ing or altering protein function. However, the 

http://www.genome.gov/sequencingcosts
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basic assumption that all disorders are probably 
caused by coding variants is likely untrue. It is 
possible that the majority of identifi ed variants 
are exonic because gene identifi cation eff orts 
have been concentrated on exons. In addition, 
prediction of the consequence of a coding vari-
ant on protein function is somewhat easier 
than prediction of the consequence of noncod-
ing variants. WGS is likely to provide unbiased 
information about the true genetic architecture 
of traits. 

 Currently it is widely accepted that WES 
is well powered to detect variants involved in 
human disease. WES has so far identifi ed genes 
for over 100 monogenic disorders (Rabbani, 
Mahdieh, et  al. 2012). Th e same approach 
has also been applied to complex disorders, 
although with more modest success. In addition 
to the successes, the challenges of this approach 
have also become evident. Interpretation of the 
sequence data and identifi cation of functional 
disease-causing mutations from the multitude 
of variants in each exome sample is not a trivial 
task. Developing the statistical framework guid-
ing the interpretation of WES data is still in 
progress. Firm guidelines will help in the inter-
pretation of the sequence data. 

     Sample Preparation and Targeted 
Sequence Capture    

 Th e NGS sequencing instruments will sequence 
every molecule of DNA in the template library 
loaded onto the instrument. If sequencing is 
to be limited to specifi c regions of interest, 
enrichment of these regions from the entire 
genome must be performed before the sample 
is sequenced. In traditional automated Sanger 
sequencing this was primarily achieved by 
PCR amplifi cation of regions of interest, and 
PCR-based methods have also been used for 
NGS (Meuzelaar, Lancaster, et  al. 2007; Varley 
and Mitra, 2008). Today, however, enrichment 
of regions of interest is primarily achieved by 
targeted hybrid capture methods. 

 Hybrid capture can be used to enrich for 
any regions of interest, such as a subset of genes 
(  Figure 1.2  ). One of the most common applica-
tions, however, is to capture all protein coding 
regions of the genome. Th e protein coding exome 
comprises only 1.2% of the human genome 
(Dunham, Kundaje, et al. 2012). However, what 
today is called exome capture is actually an 
enrichment not only for protein coding regions 
but also other possible functional regions of the 

genome, such as micro RNAs (miRNAs) and 
noncoding exons. In practice, diff erent manu-
facturers have slightly diff erent content on their 
exome capture reagents. Comparisons of the 
most popular products available suggest that 
certain kits cover a slightly larger amount of 
protein coding and miRNA genes, but none of 
the kits cover all Consensus Coding Sequence 
(CCDS) exons (Asan, Xu, et  al. 2011; Coff ey, 
Kokocinski, et  al. 2011; Sulonen, Ellonen, et  al. 
2011). Analogous to GWAS chips, the exome 
capture assays get updated as new annotation 
information becomes available to include as 
much of the coding sequence and other func-
tional regions as possible. Usually the baits 
included in the exome capture assays are based 
on information from several diff erent databases 
and annotation resources, such as genes from 
the CCDS project (Pruitt, Harrow, et  al. 2009), 
RefSeq (Pruitt, Tatusova, et  al. 2012), Gencode/
Encode (Harrow, Frankish, et  al. 2012)  and 
 miRbase (Kozomara and Griffi  ths-Jones 2011) 
or other miRNA databases.        

 It is highly likely that WES is a temporary 
compromise that is currently employed for con-
venience to limit data generation and ease the 
interpretation of results. It will be routinely 
replaced by WGS as prices drop, sequencing 
capacity increases, and better annotation work-
fl ows are available. Th erefore, in the future, many 
of the problems and pitfalls associated with WES 
will be surpassed. Although the limited amount 
of data produced by WES can simplify interpre-
tation of results, it will limit variant detection to 
a small part of the genome. Sample preparation 
using pull-down reagents also increases cost per 
base pair sequenced compared with WES. On 
the other hand, the small size of the target DNA 
allows for cost-effi  cient sequencing of samples at 
relatively high coverage (usually 30- to 60-fold 
coverage), increasing the power to detect rare 
variants compared with lower-coverage WGS. 
Despite the improvement of exome capture 
assays, the coverage of individual exomes is 
still highly variable even in high-coverage data. 
A fraction (up to 0.5%) of the target regions are 
not captured at all or at very low coverage, mak-
ing the individual exon coverage highly variable 
(Asan, Xu, et  al. 2011). WGS oft en produces a 
more even coverage of the genome, as no bias is 
introduced by hybrid capture. Th e uneven dis-
tribution of sequence depth in WES data makes 
the detection of copy number variants (CNVs) 
more challenging than for WGS data. 
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 Th e workfl ow for WES consists of three basic 
steps—template preparation, sequencing, and 
imaging—followed by bioinformatic analysis 
(  Figures  1.2 and 1.3  ). To construct a template, 
a relatively large amount (several micrograms) 
of genomic DNA is randomly sheared to form 
fragments, and adaptors (short oligonucle-
otides) are added to the sequences. Enrichment 
of the exonic sequence is done by hybridiz-
ing the sheared DNA with biotinylated DNA 
or RNA baits, and the hybridized fragments 
are then captured by biotin-streptavidin ‒ based 
pull-down. Th e exome library is then massively 
amplifi ed by using the adapters as primers, and 
the amplifi ed DNA molecules are sequenced. 
As current technologies allow for the sequenc-
ing of several samples in the same lanes of the 
sequencing instrument, barcoded indexing tags 
are introduced at the library preparation stage 
for identifi cation, aft er sequencing, of sequences 
belonging to individual samples. 

 Sample preparation for WGS is simpler as 
it does not require any template selection. Th e 
sequencing library is created from sheared seg-
ments of DNA, which are attached to adapters to 
allow amplifi cation of the DNA. Although most 

current technologies rely on amplifi cation before 
sequencing, some technologies can sequence 
unamplifi ed DNA (Treff er and Deckert 2010).   

    Amplifi cation and Sequencing 
Technology   

 Before the actual sequencing takes place, most 
currently available sequencing technologies 
require that the DNA library be massively 
amplifi ed to provide multiple copies of each 
DNA fragment. Various approaches are used by 
the diff erent NGS technologies for the amplifi -
cation and sequencing steps (Metzker 2010). 

 Amplifi cation can occur by emulsion PCR 
(Dressman, Yan, et  al. 2003)  where single-
stranded DNA is attached to beads and then 
amplifi ed by PCR (used by Roche/454 and 
Applied Biosystems/SOLiD). Th e conditions are 
optimized so that only one template molecule 
attaches to each bead and is therefore a clonal 
copy of the original fragment aft er amplifi cation. 
Beads can then be cross-linked to glass surfaces 
or deposited in microscopic wells for sequencing. 

 Amplifi cation can also be performed in 
solid phase (Adessi, Matton, et  al. 2000; Fedurco, 
Romieu, et  al. 2006)  (Illumina/HiSeq). Th e DNA 
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    FIGURE  1.2:     Th e main steps of next-generation sequencing:  First DNA is extracted and fragmented and adapters 
that serve as PCR primers are added to the ends of the DNA fragments. If DNA from several samples is sequenced 
in the same lane of the sequencing instrument, oligonucleotides that serve as barcodes for each individual sample 
are also added to the fragments (not shown). If only a subset of the genome is to be sequenced, DNA or RNA 
baits are used to enrich for the desired genomic regions and a biotin-streptavidin ‒ based pull-down reaction is 
used to obtain the desired DNA fragments. Th ese are then amplifi ed and sequenced and the images produced by 
the sequencing instrument are processed to extract the DNA sequence for each amplifi ed DNA fragment.   
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with the attached adapters is immobilized onto 
a two-dimensional surface with oligonucle-
otides that are complementary to the adapters. 
PCR is then performed, using primers designed 
to target the adapters of the DNA fragments 
until clusters of about a million copies of the 
original DNA molecule are formed. 

 Aft er amplifi cation, the actual sequencing reac-
tion is performed, which involves the steps of base 
determination, imaging, and initial image process-
ing to decode the order of bases in the DNA frag-
ment (Anderson and Schrijver 2010; Mardis 2008; 
Metzker 2010). Sequencing can be performed 
either by synthesis or by ligation. Sequencing by 
synthesis can be further divided into cyclic revers-
ible termination, single-nucleotide addition, and 
real-time sequencing. 

 Cyclic reversible termination involves the 
addition of either one or all four nucleotides, 
which will bind in a template-defi ned manner 
and are added by a mutant DNA polymerase 
that can incorporate the modifi ed nucleotides. 
Th e nucleotides are capped to prevent addi-
tional extension reactions and have a fl uorescent 
label. Following incorporation, the unincorpo-
rated nucleotides are washed away and imaging 
by lasers is performed to determine the identity 
of the nucleotide. Subsequently, the terminating 
group and fl uorescent label are cleaved to allow 
for another round of template-directed extension. 
In this method, with the addition of all four bases, 
each cycle is used by the Illumina/HiSeq, whereas 
the Helicos BioSciences single molecule sequenc-
ing technology uses a cyclic reversible termina-
tion with only one base added to each cycle of 
the sequencing (Braslavsky, Hebert, et al. 2003). 

 Pyrosequencing (Ronaghi, Uhlen, et  al. 
1998), used by the Roche/454 (Margulies, 
Egholm, et al. 2005), is also a DNA polymerase ‒
 driven method that detects the bioluminescence 
generated by the release of inorganic pyro-
phosphate when the DNA sequence is being 
extended by a complementary nucleotide. Th e 
order and intensity of the bioluminescence is 
recorded by the charge-coupled device (CCD) 
camera in the instrument. Th e signal strength 
is proportional to the number of nucleotides; 
for example, homopolymer stretches generate a 
greater signal than single nucleotides. 

 Sequencing by ligation is also a cyclic 
method but uses a DNA ligase instead of a DNA 
polymerase (Tomkinson, Vijayakumar, et  al. 2006). 
Th e process uses either one-base-encoded probes 
or two-base-encoded probes. A  fl uorescently 

labeled probe hybridizes to the target in a 
template-guided manner and a DNA ligase is 
added to join the probe with the primer. Aft er 
nonincorporated probes are washed away, 
fl uorescence detection will determine which 
nucleotide has been incorporated. Again, the 
fl uorescent dye will then be removed and 
another set of probes will be added. Th e Life/
SOLiD technology uses two-base-encoded 
probes, which yield a sequence every fi ve base 
pairs because of three degenerate bases on each 
dinucleotide probe (Shendure, Porreca, et  al. 
2005; Valouev, Ichikawa, et  al. 2008). Aft er fi n-
ishing the fi rst round of ligation, the template is 
stripped and another primer is used, this time 
starting at (n-1) position relative to the fi rst round. 
Th is way, aft er doing fi ve rounds of elongation, the 
whole sequence will have been twice covered by 
template-specifi c interrogation bases. 

 Data from the sequencing run is stored in 
image fi les, which are processed to determine the 
base-pair composition of each fragment that has 
been sequenced. Th e manufacturers supply algo-
rithms for base calling, but other base-calling 
algorithms have been developed that provide 
improvement over the manufacturer-developed 
methods at the cost of higher computational 
intensity (Kao, Stevens, et  al. 2009; Kircher, 
Stenzel, et  al. 2009; Quinlan, Stewart, et  al. 
2008; Wu, Irizarry, et al. 2010). 

 Th e diff erent NGS platforms introduce dif-
ferent biases depending on the strengths and 
weaknesses of the technology used. For exam-
ple, the 454 has increased error rates in homo-
polymer reads due to the wide variety in the 
observed fl uorescence intensity for a homo-
polymer of a specifi c length. For Illumina data, 
the rate of error increases toward the end of the 
reads as the synthesis process becomes desyn-
chronized between diff erent copies of the DNA 
template in the clusters. Th e SOLiD technology 
suff ers from errors due to biases in fl uores-
cence intensities that appear in later cycles. All 
of these biases must be accounted for in image 
processing and subsequent analysis steps to 
produce a reliable dataset.  

    Bioinformatic Analyses   
 Multiple steps of bioinformatic analyses are 
required to transform the base call data obtained 
from the next-generation sequencers into vari-
ant lists that can be used in medical genetic 
studies (  Figure 1.3  ). Th e fi rst step is to align the 
sequence data to a known reference sequence 
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to determine the most likely location in the 
sequenced genome for each of the individual 
reads (Flicek and Birney 2009; Li and Homer 
2010). If a reference genome is not available, in 
some cases alignment can be performed using 
the assembled genome of a closely related spe-
cies. In some instances sequence data can also 
be assembled de novo (i.e., without using a ref-
erence). De novo assembly is more challenging 
and requires more computational resources. 
However, the increase in sequence read length 

as well as advances in algorithm development 
have made de novo assembly possible even for 
large genomes, and over 20 diff erent de novo 
assemblers are available (Lin, Li, et  al.; Zhang, 
Chen, et al. 2011).        

 Each NGS platform produces a per-base 
quality score by using noise estimates from 
image analysis. Aft er assembly or alignment, 
quality scores are usually recalibrated to bet-
ter refl ect the true base-calling error rates. 
Aft er initial alignment, realignment is oft en 
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    FIGURE  1.3:     Basic workfl ow of bioinformatic analyses applied to the DNA sequence data obtained from the 
sequencing instrument. Raw DNA sequence reads must be assembled or aligned to a reference to determine their 
location in the genome before sites that diff er from the reference (or between samples) can be identifi ed. Th ese 
variant sites are then annotated with information that will be useful in subsequent analysis, such as allele fre-
quencies of the variants in control databases, predicted consequence on protein function, conservation of the site 
between species, or other information that could help to identify disease-associated variants. Th e analytical steps 
needed to identify the disease-associated variant depend on the study design and the genetic architecture of the 
trait. In some cases, variants that are not inherited from the parents (i.e., de novo in the aff ected patient) could be 
causative. In other cases, sharing of variants between multiple related or unrelated cases can help to identify the 
causative variants. Usually replication in large datasets as well as functional proof of the eff ect of the variant are 
needed to lend further support to the role of the identifi ed variant in the trait of interest.   



10 The OMICs

performed around known insertion/deletion 
polymorphisms (indels)—such as those identi-
fi ed in the 1,000 Genomes project (Abecasis, 
Auton, et al. 2012)—to decrease mapping errors 
and improve variant call accuracy. 

 Following alignment, a genotyping step is per-
formed. Th is can be done either for one sample 
at a time or, as is more common, across multiple 
samples. Genotyping is split into two steps, SNP 
or variant calling followed by genotype calling. In 
the fi rst phase, the aim is to determine in which 
positions there is at least one nonreference allele. 
Genotype calling is then performed only for sites 
where nonreference alleles are observed to deter-
mine the genotype for each sample at the site 
(Nielsen, Paul, et al. 2011). 

 Early SNP calling methods were simply 
based on comparing the number of reads with 
an alternative allele to those with the reference 
in a set of high-confi dence bases and call SNPs 
based on fi xed cutoff s. However, simple count-
ing methods are not suitable for low-coverage 
data, as fi xed cutoff s result in undercalling of 
heterozygous genotypes and simple fi ltering 
on quality score leads to loss of information 
regarding individual read qualities. Th erefore 
current SNP callers use probabilistic methods 
(DePristo, Banks, et  al. 2011; Le and Durbin 
2010; Li, Handsaker, et  al. 2009; Li, Yu, et  al. 
2009), which lead to genotype calls of higher 
accuracy. In addition, they provide a measure 
of the statistical uncertainty (in the form of a 
posterior probability) for each genotype and 
can incorporate information regarding allele 
frequencies and linkage disequilibrium (LD) 
patterns. For single-sample calls, priors may be 
chosen to assign equal probability to all geno-
types, or information from dbSNP or other 
collections of known variant sites can be used 
to determine priors. For multiple-sample calls, 
the priors can be derived from jointly analyzing 
multiple individuals by using allele frequencies 
or genotype frequencies. Once allele frequencies 
are estimated, genotype probabilities can be cal-
culated using the Hardy-Weinberg equilibrium 
assumption, and uncertainty in estimates of the 
allele frequency themselves can be incorporated 
by assigning a prior to the allele frequency itself. 
Imputation-based methods can also include 
information of the pattern of LD at nearby 
sites to improve genotype calls, which leads to 
a signifi cant improvement in genotype-calling 
accuracy for common and moderate frequency 
SNPs (Nielsen, Paul, et al. 2011). 

 Alignments are most commonly stored  in 
BAM fi les, which are binary versions of 
Sequence Alignment/Map (SAM) fi les (Li, 
Handsaker, et  al. 2009). Th ese fi les can effi  -
ciently store information from the large num-
ber of reads produced in NGS runs, and only 
the parts of the alignment which are of interest 
can be accessed without the need for reading in 
the whole alignment fi le for analysis. Th e called 
variants, such as the single nucleotide variants 
(SNVs) and indels are commonly stored in vari-
ant call format (VCF) fi les (Danecek, Auton, 
et  al. 2011). In addition to the genotypes, VCF 
fi les contain information on call quality, read 
depth, and other necessary quality parameters 
of the variants. Th e VCF fi le also includes a 
large header containing metainformation about 
the analytical steps that were taken during the 
genotype calling as well as information about 
the fi elds that were added during annotation of 
the variants. VCF fi les can be compressed and 
are indexable, allowing for quick analysis of 
the variants, such as retrieval of variants from 
regions of interest. 

 Th e fi nal step of data generation  usually 
involves annotation of variants. Th e type of 
annotation depends on the needs of downstream 
analyses. Commonly added annotation includes 
the frequency of the variant in control data-
bases. Another useful annotation is the predicted 
consequence of the variant on protein structure. 
Predicting such consequences is oft en problem-
atic, although several methods such as PolyPhen 
(Adzhubei, Schmidt, et  al. 2010)  and SIFT (Ng 
and Henikoff  2003)  are available. Th e annota-
tion information can then be used in down-
stream analysis to aid in the identifi cation of 
disease-causing variants. Obviously any errors in 
the annotations can have severe consequences in 
downstream analyses if variants are erroneously 
attributed to be conferring loss-of-function (LoF) 
eff ects or vice versa if a true LoF variant is not 
annotated as such. Annotation of WGS data is 
even more problematic than that of WES data, 
as very little is known about the functionality of 
noncoding variants.  

    Identifi cation of Disease-Associated 
Variants   

 NGS and subsequent data processing steps pro-
duce a list of loci where the sequenced sample 
diff ers from a reference genome. Th e 1,000 
Genomes Project reported 36.7  million auto-
somal SNPs and 1.38  million autosomal indels 
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in 1,092 low-coverage WGS samples from 14 
populations. Th e average autosomal number 
of variant SNP sites per individual was around 
3.6  million. WES data consisting of the auto-
somal GENCODE regions contained almost 
500,000 SNPs and 1,800 indels in the same 
amount of samples. Individual exomes con-
tained on average 24,000 variant SNP sites and 
440 indels (Abecasis, Auton, et  al. 2012). Th e 
large number of variants identifi ed in every 
sample included in an NGS study presents a 
challenge for gene identifi cation, and various 
analytical approaches must be employed to 
identify which individual variants are associated 
with a phenotype. 

 For most published studies to date, the 
assumption has been that disease-associated 
variants are highly penetrant and not found in 
dbSNP or other control datasets. Th is reduces 
the number of possible disease-causing variants 
to 1% to 2% of the original list. Ideally, if there 
are several cases sharing the same disease muta-
tion, only a handful or even one variant will 
remain aft er fi ltering on control frequency and 
sharing between all samples. However, oft en the 
reality is that aft er fi ltering, no variants remain 
at all. Alternatively, fi ltering will not reduce the 
candidate variant list suffi  ciently, or the remain-
ing variants will not overlap between cases. 
Many published studies have used the 1,000 
Genomes Project, dbSNP, and NHLBI GO 
Exome Sequencing Project as controls. Th ese 
datasets are useful because they are large; the 
1,000 Genomes Project, particularly, includes 
individuals from a large number of popula-
tions. On the other hand, no phenotypic data 
are supplied for the 1,000 Genomes samples, 
and variant annotation in dbSNP is poor on 
phenotypic information. Th erefore it is possible 
that individuals aff ected with the disorder being 
studied are included in these reference data-
sets. Also, particularly for recessive disorders, it 
is possible that carriers of disease variants are 
present in the general population. A  specifi c 
problem with dbSNP is that it contains poorly 
validated variants. However, using a fi lter for 
variants with low frequency—such as 1% in the 
general population for recessive disorders and 
0.1% for dominant disorders—could decrease 
the risk of missing true variants owing to dis-
ease allele carriers in the control data but still 
remain powerful (Bamshad, Ng, et al. 2011). As 
in GWAS studies, the controls should be from 
the same population as the cases to minimize 

the risk of false-positive variants due to popula-
tion stratifi cation. 

 It is tempting to assume that any LoF vari-
ant identifi ed in an individual would be a strong 
candidate for being associated with the disor-
der. However, studies in healthy reference pop-
ulations have shown that each person carries, 
on average, 100 LoF variants. Further, each per-
son has on average 20 genes with two deleteri-
ous variants, resulting in complete inactivation 
of these genes (MacArthur, Balasubramanian, 
et al. 2012). 

 Large population-based studies have shown 
that over half of the variants identifi ed in 
WGS or WES of large population samples are 
novel (Abecasis, Auton, et  al. 2012; Tennessen, 
Bigham, et al. 2012); that is, they are not found 
in reference databases. Each individual car-
ries hundreds of private or very rare variants. 
Again, assuming a correlation between the lack 
of a variant in control databases and associa-
tion with a disease is not necessarily correct. 
Th e majority of protein coding variation is evo-
lutionarily recent, rare, and enriched for delete-
rious alleles, so that analysis of WES in itself 
enriches for this type of variation. Extra care is 
needed to link this type of variation to pheno-
types (Tennessen, Bigham, et al. 2012). Because 
control databases include more and more indi-
viduals, the probability of seeing multiple cop-
ies of very rare variants becomes higher and 
the risk of identifying very rare benign variants 
decreases.  

    Study Designs   
 Th e choice of study design is guided by the 
expected frequency and eff ect size of the 
underlying variant and the nature of the dis-
ease (prevalence, age of onset, etc.). In the case 
of monogenic traits, where individual variants 
have a very high impact on the trait, relatively 
small sample sizes can be suffi  cient to demon-
strate disease causality of a variant. However, 
because sequencing studies identify a very 
large number of potential variants, the number 
of tests will inevitably be large. Th us know-
ing which variants/mutations is/are disease 
causing is not always trivial, even in the case 
of monogenic traits. For monogenic traits the 
generally accepted criteria developed for posi-
tional cloning studies provide a good reference 
base. In positional cloning studies the chromo-
somal location was typically fi rst pinpointed by 
linkage, applying generally agreed signifi cance 
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thresholds. If a variant in the linked region was 
not seen in a control population, the same or 
diff erent variants in the same gene had to be 
replicated in several pedigrees with the same 
phenotype. Further, at least some functional 
data had to be presented to convince the fi eld 
and the reviewers that this variation/mutation 
was associated with the phenotype. Similar 
rigor should be applied in WES-based variant 
identifi cation. 

    Family-Based Studies   
 Family studies are the default in monogenic 
traits but have been expanded to more com-
plex traits as well. Th e hypothesis is that an 
excess of disease susceptibility variants are 
clustered and more frequent in families with 
a specifi c disease than in the control popula-
tion. Only a few family members need to be 
fully sequenced, whereas the remaining rela-
tives can be more sparsely genotyped and the 
full genome variation imputed. Th e segregation 
of a disease-associated haplotype can then be 
followed in the full pedigree (  Figure  1.4  ). Yet 
the optimal statistical family-based analysis in 
complex traits is not fully worked out. So far 
we are lacking publications that would provide 
a good understanding of the power and limita-
tions of this approach. Unpublished work sug-
gests that, with this strategy, one cannot hope 
to capture low-hanging fruits. It is likely too 
that family-based analyses will need large sam-
ple sizes to achieve statistically robust results.         

    De Novo Mutations   
 Spontaneous mutations that arise in parental 
germ cells are frequent causes of some diseases 
(  Figure  1.5  ). Th ese mutations are not observed 
in parents, only in the off spring. A  classic 
example is achondroplasia (Bellus, Heff eron, 
et  al. 1995; Shiang Th ompson, et  al. 1994)  and, 
in CNS disorders, the Dravet syndrome (also 
known as severe infantile epileptic encephalop-
athy or SMEI) (Claes, Del-Favero, et  al. 2001). 
Identifi cation of de novo mutations (DNMs) 
using WES is especially advantageous. When 
both parents and the proband are sequenced 
at high coverage, identifying inherited variants 
is relatively easy, leaving a short list of DNMs. 
Yet because, on average, each individual carries 
about 0.8 to 1.3 DNMs in his or her exome, the 
causality of the DNM still needs verifi cation. To 
be convincing, deleterious variant in the same 
gene must be identifi ed in several individuals.         

    Case Control Studies   
 In case control studies, the sequences of sporadic 
cases and healthy or population controls are com-
pared. Th e case control setting is the classic study 
design in complex traits. Currently, this study 
design aims to identify rare or low-frequency 
variants contributing to a complex trait. When 
WGS or WES becomes more cost-eff ective than 
chip genotyping, sequencing might be used also 
to identify common variants. As the typical eff ect 
sizes of variants associated with complex traits 
ranges between 1.1 and 1.5, typical sample sizes 
in GWASs range between a few thousand to tens 
of thousands of samples. In searching for low fre-
quency and rare variants using sequencing, we 
can foresee a need for sample sizes that are even 
bigger than in GWASs. Because sequencing is still 
quite costly if applied in large sample sets, new, 
more focused low-cost genotyping chips are being 
developed. Th ese chips (e.g., the exome chip) are 
based on low-frequency-variant catalogues devel-
oped in large sequencing studies, such as the 
1,000 Genome Project. Th is makes it realistic to 
genotype large enough samples to enable statisti-
cally robust low-frequency association studies.  

    Population Isolates   
 It is hypothesized that population isolates pro-
vide a middle ground between family and case 
control studies. Th is is seen as an extension of 
the “megapedigree” concept. Because of bot-
tleneck eff ects, genetic drift , and population 
expansion, some rare alleles are enriched in 
population isolates (  Figure  1.6  ). Th e hypoth-
esis is that some of these alleles, which are 
extremely rare (population frequency < 0.1%, 
as seen, for example, in most European popu-
lations), have been enriched to frequencies 
between 1% and 5% in a population isolate 
such as Finland. Further, selection has not 
had time to act in recently founded isolates, 
enabling a higher population frequency of 
harmful variants. Some of the enriched vari-
ants could possibly contribute to common dis-
eases. Even though they could be neutral in 
an environment where the founder population 
was established more than thousand years ago, 
they could contribute to diseases in populations 
sharing the modern lifestyle and environment. 
An enrichment of low-frequency alleles in the 
study population should boost the power signif-
icantly compared with more mixed populations. 
Th erefore the expectation is that smaller dis-
covery sets will be needed to achieve signifi cant 
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association in population isolates. Th e success 
of this strategy has best been demonstrated in 
the Icelandic population (Holm, Gudbjartsson, 
et  al. 2011; Jonsson, Atwal, et  al. 2012; Sulem, 
Gudbjartsson, et  al. 2011). Also, by sequencing 
a small subset of the study population and using 

SNP genotyping in the large majority, effi  cient 
imputation of whole-genome sequences can be 
enabled. Although imputation-based studies are 
possible in any population, a smaller number 
of individuals need to be sequenced to capture 
the majority of all genetic variation in isolated 
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    FIGURE  1.4:     When large families with multiple aff ected individuals are available, sequencing is required for 
only a small subset of aff ected individuals. Microsatellites or SNPs can be used to identify regions shared 
identical-by-descent (IBD) by all cases; thus sequencing of one index case is enough to survey the full variation 
of these regions. Candidate variants are identifi ed based on predefi ned criteria, such as eff ects on protein func-
tion, absence or low frequency of the variant in control databases, or evolutionary conservation. If a large number 
of meioses separates the individuals in the family, a small number of candidate regions and thus a small number 
of candidate variants remain aft er the analysis. Sanger sequencing may be needed to verify the cosegregation of 
the variant in the pedigree. Replication of the fi nding in other pedigrees is usually needed to separate benign but 
extremely rare variants from true disease-associated mutations.   
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populations, as the number of founder chromo-
somes is lower than in admixed populations.           

    Current Review of Results   
 So far, over 100 mutations in monogenic dis-
orders have been identifi ed by NGS, mainly by 
WES (Rabbani, Mahdieh, et  al. 2012). Th ere is 
an obvious publication bias toward successful 
studies, so the success rate of gene identifi ca-
tion by NGS still remains unclear and will also 
be strongly dependent on the genetic architec-
ture and availability of samples. One estimate 
suggests that WES identifi ed the major disease 
gene in at least 50% of projects focused on rare 
but clinically well-defi ned monogenic diseases 
(Gilissen, Hoischen, et al. 2011). Experience has 

shown that for most disorders this is an overly 
positive prediction; realistically, much smaller 
yields are oft en to be expected. 

 Large-scale resequencing can be applied to 
several diff erent study designs and can iden-
tify several diff erent types of risk variants, as 
summarized above. Several of these approaches 
have been used to identify genes for intellectual 
disability (ID), and are described in more detail 
in the following paragraphs to provide an over-
view of the diff erent analytical approaches that 
can be used depending on the expected genetic 
architecture of the trait being investigated. 

 A large number of monogenic traits with 
neurological and neurodevelopmental symp-
toms have been subjected to WGS and WES. 
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    FIGURE  1.5:     Disorders such as autism spectrum disorders, which are subject to strong negative selection in the 
population, have been shown in some cases to be caused by de novo mutations (i.e., mutations present in the 
aff ected individual but in neither of the parents). Th ese can arise in either the paternal or maternal gamete or 
during early embryogenesis. De novo mutations are relatively easy to identify if both parents and the aff ected 
child are sequenced at high coverage. Only a handful of possible candidate variants remain if the data are of high 
quality and appropriate fi ltering is used in the analysis. Proving causality of individual variants can be hard, par-
ticularly if the disorder has a large mutational target, as a large number of families are needed to identify another 
family with a de novo mutation in the same gene.   
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Th is list is constantly growing. Th us we do not 
aim to provide a comprehensive list of these 
diseases but have rather selected a few examples 
of more complex and challenging phenotypes. 

    Intellectual Disability   
 ID oft en has a genetic basis, and positional 
cloning has shown that at least a subset of 
ID is caused by monogenic, fully penetrant 
mutations. ID can present together with other 
clinical symptoms such as metabolic or struc-
tural abnormalities. Th ese syndromic forms of 
ID make it possible to identify patients with 

similar phenotypes, oft en revealing an under-
lying shared genetic etiology. However, ID can 
also present as the only observable phenotype, 
referred to as nonsyndromic ID (NSID). In 
these cases, it is impossible a priori to identify 
cases with a shared genetic etiology. Substantial 
genetic heterogeneity underlies NSID, since 
numerous genes have been identifi ed. In fact, 
most identifi ed genes account for only a very 
small fraction of cases, and over 100 genes 
have already been implicated in ID (Ropers 
2010). Over 90 of these are located on the X 
chromosome. It is probable that this bias in 
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    FIGURE  1.6:     Population isolates can be powerful in the identifi cation of disease-associated variants. Th e founding 
bottleneck has reduced the genetic diversity in the population and drift  can enrich disease-associated variants. Th is 
is particularly true for recessive disorders, as negative selection is not acting on the asymptomatic disease carri-
ers. Because of an enrichment of the disease allele in the population due to the bottleneck, it is more likely that 
two individuals are distantly related and carry the same recessive disease mutation, resulting in the risk of having 
aff ected off spring. Th e reduced genetic diversity also makes imputation studies particularly feasible. Th e founding 
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highly accurate. Large numbers of individuals can be genotyped using cheap SNP chips and then imputed using 
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identifi cation is largely due to ease of gene iden-
tifi cation in large X-linked pedigrees, although 
unbiased exome and WGS studies will give 
a more unbiased estimate of the proportion 
of X-linked versus autosomal ID genes. It has 
been estimated that genes on the X chromo-
some account for 10% to 20% of male X-linked 
ID (Ropers and Hamel 2005). In addition to the 
high level of genetic heterogeneity, ID is known 
to be caused by many types of genetic abnor-
malities ranging from duplication or deletion 
of large chromosomal segments to small indels 
and SNVs. Further, many diff erent inheritance 
patterns have been observed, ranging from 
autosomal dominant, autosomal recessive, and 
X-linked to DNMs. 

    Family Studies and Population Isolates   
 One of the most successful approaches to the 
identifi cation of ID genes has been to use large 
families with a X-linked pattern of inheritance. 
Today there is a large collection of these fami-
lies, which have been thoroughly studied ( http://
goldstudy.cimr.cam.ac.uk ,  http://www.euromrx.
com ). Traditionally, microsatellite markers have 
been used to identify regions of maximum linkage 
in these families, and Sanger sequencing of all 
genes in the linkage regions has resulted in the 
identifi cation of numerous ID genes (Ropers 
and Hamel 2005). However, in many families, 
the linkage intervals have been too large to 
allow for the sequencing of all genes using tra-
ditional Sanger sequencing. 

 Th e fi rst large-scale resequencing study 
of ID genes was published in 2009, where all 
known exons of genes on the X chromosome of 
208 families with X-linked ID were sequenced 
(Tarpey, Smith, et  al. 2009). Nine genes were 
deemed to be associated with ID. However, 
the authors also discuss extensively the dif-
fi culty of identifying true disease-associated 
variants. More than half of the gene truncat-
ing variants did not segregate with the disorder 
in the families or were found in controls; the 
authors therefore caution against concluding 
that truncating mutations in genes are suffi  -
cient on their own to be considered causative. 
Particularly, 8 of the 19 genes with truncating 
variants that did not segregate with the phe-
notype or were found in controls have only a 
single exon. Th is suggests that some of these 
genes might be retrotransposed copies without 
important function that therefore tolerate LoF 
mutations. Th e authors also note that although 

they screened most of the protein coding exons 
on the X chromosome, the likely genetic basis 
for ID was established in only 25% of families. 
Variants could be missed owing to low cover-
age, unannotated genes, the presence of copy 
number changes large enough to go undetected 
by the sequence data, nonexonic variants, and 
the presence of autosomal variants despite the 
appearance of X-linked inheritance in the fami-
lies. Also, only LoF variants were considered, 
although it is highly likely that in some families 
the causative mutation is a missense or even 
noncoding variant. 

 To identify autosomal ID genes, studies 
have been performed in consanguineous fami-
lies or founder populations. Traditionally, mic-
rosatellite markers or SNPs have been used to 
identify regions of homozygosity in aff ected 
relatives, and genes in these regions have been 
resequenced to identify disease-causing muta-
tions. Today, WES allows for a shortcut directly 
to the causative variants. Still, the identifi cation 
of homozygous regions either from SNP data 
or from the exome data themselves is useful 
to limit the amount of variation that could be 
considered to be pathogenic. A  novel autoso-
mal ID gene,  TECR , was identifi ed by linkage 
mapping followed by WES in a large consan-
guineous family with 5 of 13 children aff ected 
with ID (Caliskan, Chong, et al. 2011). Linkage 
analysis fi rst identifi ed a gene-rich region on 
19p13 that cosegregated with the phenotype 
in the family; an SNP array was used to nar-
row the region to a 2-Mb homozygous segment 
with over 30 genes. WES was performed for 
both parents and fi ltering performed for novel 
disruptive variants heterozygous in the parents. 
Only a single variant fulfi lling these criteria 
was identifi ed, and follow-up genotyping in the 
rest of the family showed cosegregation with 
ID in the family. Further, homozygosity for the 
variant was not observed in over 1,000 indi-
viduals from the same population. In another 
study, sequencing was performed in 136 con-
sanguineous families from Iran with autosomal 
recessive ID. Mutations were identifi ed in 23 
previously known ID genes as well as 50 novel 
candidate genes (Najmabadi, Hu, et  al. 2011). 
In this study, the targeted genes were not the 
whole exome but genes from previously identi-
fi ed regions of homozygosity, thus signifi cantly 
reducing the number of genes sequenced. 

 Another example of how WES has been 
used to identify autosomal recessive genes is in 

http://goldstudy.cimr.cam.ac.uk
http://goldstudy.cimr.cam.ac.uk
http://www.euromrx.com
http://www.euromrx.com
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the population isolate from the Ashkenazi Jews. 
Two individuals (the aff ected off spring and the 
mother) from a family with Joubert syndrome, 
an autosomal recessive ID syndrome, were 
exome sequenced (Edvardson, Shaag, et  al. 
2010). Th e search was concentrated on a linkage 
region that had previously been identifi ed by 
homozygosity analysis of a larger pedigree from 
the same population. Seven variants homozy-
gous in the child and heterozygous in the par-
ent were identifi ed, of which two remained aft er 
fi ltering on dbSNP; only one of the remaining 
variants (in  TMEM216 ) was nonsynonymous. 
Th e added benefi t of the WES data was to show 
that no other disruptive mutations existed in 
the previously identifi ed region of homozygos-
ity. Th e mutations segregated with the pheno-
type in the larger pedigree. 

 Analysis of non-consanguineous families 
must take into account that the mutation is 
likely to be compound heterozygous (i.e., a dif-
ferent mutation is inherited from each parent). 
Th is can in some cases prove to be more chal-
lenging, but as long as the inheritance model 
is known to be recessive, gene identifi cation 
can oft en be successful. In a family with three 
aff ected off spring with hyperphosphatasia men-
tal retardation syndrome (Marby syndrome), 
WES was performed for all three aff ected off -
spring (Krawitz, Schweiger, et  al. 2010). First, 
all common variants and variants not found 
in all aff ected persons were excluded, leav-
ing 14 candidate genes. A  Hidden Markov 
Model was used to infer all loci where the off -
spring shared both alleles identical by descent 
(IBD  =  2), reducing the number of candidate 
genes to two,  PIGV  and  SLC9A1 , located in a 
13-Mb homozygous block. Mutation screening 
of  PIGV  revealed homozygous and compound 
heterozygous rare variants in other families 
with the same phenotype, identifying  PIGV  as 
the causative gene.  

    Exome Sequencing in Unrelated 
Cases Sharing Syndromic Forms of  ID   

 WES has successfully been applied to several 
syndromic forms of ID. Here, patients with 
similar phenotypes are sequenced; aft er fi lter-
ing for variants shared by all or the majority 
of aff ected individuals but which are not found 
in control datasets such as the 1,000 Genomes 
Project or dbSNP, only a small handful of 
variants remain. Schizel-Giedion syndrome is 
characterized by ID, distinctive facial features, 

multiple congenital abnormalities, and a high 
prevalence of tumors. Hoischen and colleagues 
(Hoischen, van Bon, et  al. 2010)  performed 
WES for four of these patients. Aft er fi ltering 
known variants (dbSNP and variants observed 
in other WES projects from the same labora-
tory), only two genes were identifi ed where all 
four aff ected individuals carried a mutation. 
One of these variants was of low quality, lead-
ing to the identifi cation of  SETPB1  as the caus-
ative gene. Targeted resequencing of this gene 
in nine additional cases identifi ed a variant in 
 SETPB1  in eight of these patients. 

 Although in general the identifi cation of 
genes for syndromic forms of ID is easier as 
larger patient groups can be collected for study, 
this can sometimes prove challenging, since 
genetic heterogeneity can lead to false fi nd-
ings particularly for disorders with a dominant 
inheritance pattern. A  WES study of Kabuki 
syndrome, characterized by ID and distinc-
tive facial features (Ng, Bigham, et  al. 2010), 
identifi ed only one gene,  MUC16 , with novel 
variants in all 10 unrelated patients included 
in the study. However, this was deemed as an 
unlikely candidate because of its function and 
expression pattern. In addition,  MUC16  is one 
of the largest genes of the genome and would 
be expected to show numerous variants based 
on random chance. Because the only gene car-
rying mutations in all aff ected individuals was 
an unlikely candidate, the authors then focused 
on nonsynonymous variants present in most 
but not all of the cases. A  truncating mutation 
in  MLL2  was identifi ed in 7 of 10 patients. In 
two of the three remaining patients, a small 
indel, missed by the WES but identifi ed from 
CGH arrays, was detected in  MLL2 , strongly 
implicating this gene in the etiology of Kabuki 
syndrome. Sanger sequencing of  MLL2  identi-
fi ed mutations in 26 of 43 additional patients 
and among the subset of samples (n = 12) with 
both parental DNAs available. All mutations 
were de novo.  

    De Novo Variants  in  ID   
 Th e identifi cation of mutations underlying non-
syndromic ID without any family history has 
so far been challenging. However, with access 
to DNA from both parents and the aff ected 
child, WES enables relatively straightforward 
identifi cation of DNMs present in children 
but not parents. Th ese variants are in general 
more deleterious than variants segregating in 
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the population because they have not been sub-
jected to evolutionary selection, making them 
excellent candidates for causing sporadic severe 
disorders (Eyre-Walker and Keightley 2007). 

 Th e fi rst study of DNM rates in humans 
that was based on WGS suggested that on 
average 74 germline SNVs occur de novo in 
one individual’s genome but also that there is 
huge variability in the DNM rate between trios. 
However, these conclusions were drawn from 
only two trios and should be interpreted with 
caution (Conrad, Keebler, et  al. 2011). Later 
studies have tackled this issue only using WES, 
and consensus estimates in larger datasets sug-
gest that, on average, 0.82 to 1.3 DNMs are 
observed per exome (Neale, Kou, et  al. 2012; 
O’Roak, Vives, et al. 2012). However, these esti-
mates have been derived from trios where the 
off spring are aff ected with autism spectrum 
disorders (ASDs), and although the consensus 
seems to be that the rate of DNMs is no higher 
in aff ected cases than in controls, this caveat 
should be kept in mind in interpreting these 
results. Because of the slightly diff erent GC 
content of the exome compared with the whole 
genome, the DNM rate for exomes is expected 
to be higher than for whole genomes. One 
estimate placed the genome-wide DNM rate 
at 1.2 x 10 -8  per base per generation, whereas 
the exome mutation rate has been estimated at 
1.5  x 10 -8  (Neale, Kou, et  al. 2012). Although 
diff erent studies estimate the exomic DNM rate 
to be diff erent, the consensus ranges broadly in 
the same magnitude, around 1.2 to 2.2 x  10 -8  
per base per generation. Larger studies of pop-
ulation trios will undoubtedly narrow the con-
fi dence interval of these estimates. One very 
consistent fi nding from multiple studies is that 
paternal de novo SNVs are much more com-
mon than maternal ones, and there is a strik-
ing correlation between de novo SNV rate and 
paternal age (Neale, Kou, et  al. 2012; O’Roak, 
Vives, et  al. 2012), but there seems to be a 
large variation between trios (Conrad, Keebler, 
et  al. 2011). Despite the overall consensus of 
the DNM rate of SNVs, the calling of small 
indels and CNVs still needs to be signifi cantly 
improved to shed light on the rates of DNM in 
these classes of genetic variation. 

 Previous studies have implied that de novo 
CNVs are causal in about 15% of cases of ID 
(Cook and Scherer 2008; de Vries, Pfundt, et al. 
2005). DNMs should be particularly common in 
disorders that have a relatively high prevalence 

in the population despite a strong reproduc-
tive bias due the fact that the early onset of the 
disorder will preclude transmission of the dis-
ease to subsequent generations. It is likely that 
DNMs will account for both very rare as well 
as more common phenotypes depending on the 
size of the mutational target. Diseases caused 
by DNMs in just one gene will be rare, but if 
the mutational target is large enough, DNMs 
can cause even common disorders, such as ID, 
ASD, and schizophrenia. 

 So far, only a small proof-of-concept WES 
study has been published assessing the role of 
DNMs in NSID, although bigger studies are 
ongoing (Vissers, de Ligt, et  al. 2010). WES 
was performed in 10 trios with no family his-
tory of ID, no clear syndromic features, no 
evidence of Fragile X syndrome, and no de 
novo CNVs detected using CGH to enrich for 
families with de novo SNVs. Th e study identi-
fi ed six likely causative variants in six diff er-
ent genes, of which two had previously been 
implicated in ID. Further work is still required 
to validate the causative roles of these vari-
ants, but the study showed a proof of principle 
that WES is an appropriate tool to screen for 
DNMs. Th e same problem of establishing cau-
sality that aff ects inherited variants also applies 
to DNMs. Variants in the same gene in multiple 
cases need to be identifi ed before any claims 
can be made about causality; particularly for 
disorders with large mutational targets, very 
large samples sizes are likely required to obtain 
suffi  cient power for replication. Oft en biologi-
cal function is used to assess the signifi cance 
of fi ndings for DNM analyses, but for disorders 
with large mutational targets this can enrich for 
false-positive fi ndings, such as assuming that all 
DNMs in brain-expressed genes are likely to be 
causative of ID. So far, mutational type seems 
to be the best predictor, with LoF variants the 
most likely to be causative, particularly if sev-
eral LoF DNMs are observed in the same gene 
(Sanders, Murtha, et al. 2012).   

    Autism Spectrum Disorders 
and Schizophrenia   

 ASD and schizophrenia are among the most 
heritable neuropsychiatric disorders, but 
specifi c susceptibility genes remain elusive. 
Several monogenic forms of ASDs are known 
(Abrahams and Geschwind 2008), whereas no 
monogenic forms of schizophrenia have been 
reported. Th e role of CNVs as susceptibility 
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factors for ASDs and schizophrenia is well 
established. A  substantial number of CNVs are 
de novo (Gilman, Iossifov, et al. 2011; Xu, Roos, 
et  al. 2008). Th is has prompted several WES 
studies evaluating the role of DNMs, of which 
the fi rst generation of studies has recently been 
published. 

 Based on four studies (Iossifov, Ronemus, 
et  al. 2012; Neale, Kou, et  al. 2012; O’Roak, 
Vives, et  al. 2012; Sanders, Murtha, et  al. 
2012)  encompassing over 900 trios or quads 
(trios with one unaff ected sibling sequenced), 
the overall rate of DNMs in individuals with 
ASDs is no higher than that in controls. As the 
number of sequenced trios keeps increasing, 
the probability of hitting the same genes in sev-
eral studies also increases. Simulation experi-
ments taking into account the distribution of 
gene sizes and GC content across the genome 
suggest that focus should be on the severe LoF 
variants, since two or more nonsense and/or 
splice-site DNMs are highly unlikely to occur in 
the same gene. Th is conclusion remains robust 
to sample size and estimates of locus heteroge-
neity (Sanders, Murtha, et  al. 2012), whereas 
if nonsynonymous sites are also included for 
sample sizes of 1,000 trios or more, at least four 
hits in one gene are needed to establish causal-
ity. Th ese estimates vary strongly depending on 
the genetic model used and are not nearly as 
stable as the estimates for LoF variants. So far a 
total of fi ve genes,  CHD8 ,  DYRK1A ,  KATNAL2 , 
 SCN2A  and  POGZ , have two LoF de novo hits 
in the 900 published ASD trios. Further, these 
studies have reported that the proteins encoded 
by genes with DNMs are more closely linked 
by protein-protein interaction networks than 
similarly sized sets of random genes. Especially 
intriguing is the result that genes with DNMs in 
a study of over 300 ASD trios found that many 
of the genes are linked with  FMRP , a gene very 
robustly linked to ASDs and involved in synap-
tic plasticity. 

 To date, the studies of DNMs in schizophre-
nia are not as extensive as the data for ASDs, 
although several large-scale studies are under 
way. One study of 14 trios identifi ed 15 DNMs 
(Girard, Gauthier, et  al. 2011). Th ese included 
four nonsense variants and eleven missense 
variants. Unsurprisingly for such a limited 
dataset, no gene was hit twice, and none of the 
genes had previously been implicated in schizo-
phrenia etiology. Th e DNM rate was reported 
to be signifi cantly higher than any of the DNM 

rates reported in population studies, which led 
the authors to conclude that there is a DNM 
burden in schizophrenia. However, the conclu-
sions were drawn on a very limited number 
of trios; larger replication studies are needed 
to validate this observation. Th e second study 
involved 53 schizophrenia trios (Xu, Roos, et al. 
2011)  and identifi ed a total of 40 DNMs in as 
many genes in 27 individuals. Th e authors also 
concluded that DNMs play an important role 
in schizophrenia and estimated that the muta-
tional target is large, which would explain the 
high incidence of the disorder worldwide. Th e 
third study was larger and included WESs from 
231 trios with schizophrenia (Xu, Ionita-Laza, 
et  al. 2012). Th e authors reported an excess 
of both nonsynonymous and LoF variants in 
cases, but the control group consisted of only 
34 trios. One nonsynonymous and one LoF 
DNMs was identifi ed in four genes ( LAMA2 , 
 DPYD ,  TRRAP , and  VPS39 ). No gene with 
two LoF variants was identifi ed. Interestingly 
fi ve genes ( DGCR2 ,  TOP3B ,  CIT ,  STAG1 , and 
 SMAP2 ) were identifi ed where a missense 
DNM and a de novo CNV were present in the 
same individual. 

 It seems possible that DNMs—in the form 
of CNVs, small indels, and SNVs—play a role 
in ASDs and schizophrenia. It seems likely that 
the risk is not conferred by an overall increase 
in mutation rate but by the severe interrup-
tion of genes involved in brain development 
and function. Th e next question that needs to 
be addressed is what proportion of these dis-
orders can be explained by these highly pene-
trant variants. Current studies have found likely 
DNMs in only a small fraction of the studied 
individuals, but they are likely to suff er severely 
from lack of power and false negatives, since 
most studies have assumed missense variants 
to be benign. However, several ID genes with 
missense variants in conserved positions have 
been identifi ed, so it seems likely that this will 
also be the case for ASDs and schizophrenia 
as well as other complex disorders. Further, it 
seems probable that many variants will be non-
coding regulatory variants, which are beyond 
the scope of WES studies. More data are also 
needed to determine whether these variants are 
truly monogenic risk variants (i.e., fully pen-
etrant and suffi  cient to develop the disease). 
Interestingly, simulations have been reported 
where models assuming a large number (such 
as 100)  of rare, fully penetrant monogenic 
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genes are inconsistent with the observed data, 
whereas models where functional mutations in 
hundreds of genes that would increase the risk 
of the disease by 10- or 20-fold fi t the observed 
data much better (Neale, Kou, et al. 2012). Th is 
could suggest that although DNMs play a role 
in ASDs (and possibly other complex diseases 
also), they are not necessarily suffi  cient for 
disease. Th ere is also evidence suggesting that 
common variants confer susceptibility to ASDs 
(Klei, Sanders, et al. 2012), although all GWASs 
so far have failed to identify genome-wide hits, 
most likely owing to small sample sizes (Ma, 
Salyakina, et al. 2009; Wang, Zhang, et al. 2009; 
Weiss, Arking, et al. 2009). In schizophrenia, an 
unpublished large case-control GWAS consor-
tium has identifi ed dozens of robustly associated 
loci. Th is suggests that several diff erent study 
designs are needed to identify all possible risk 
factors for these diseases. A  recent WES study 
assessed the role of rare variation in 166 indi-
viduals with schizophrenia and subsequently 
genotyped 2,617 individuals with schizophrenia 
and 1,800 controls. Th e results suggested that 
schizophrenia susceptibility is unlikely to be 
signifi cantly aff ected by low-frequency variants 
that are just outside the range of detectability 
using GWAS (Need, McEvoy, et  al. 2012). Th e 
study did, however, detect several variants that 
were identifi ed in a small number of cases and 
no controls. Th ese variants could possibly play 
a role in disease etiology. 

 It will also be interesting to see if DNMs in 
the same genes cause disease all across the neu-
ropsychiatric spectrum. It is generally accepted, 
that CNVs in the same genes can cause sus-
ceptibility for ASDs, schizophrenia, and ID 
(Meff ord, Batshaw, et  al. 2012). However, large 
sets of tens of thousands of cases have been 
genotyped on comparative genomic hybridiza-
tion arrays, making these comparisons statisti-
cally powerful. It will take time to accumulate 
exome data from such large datasets to make 
comparison possible across disorders. Despite 
a signifi cant overlap between rare variants, a 
recent study could not detect signifi cant over-
lap of common variation between ASDs and 
schizophrenia (Vorstman, Anney, et al. 2012). 

 Th e contribution of DNMs to late-onset 
disorders, such as Alzheimer’s disease (AD), 
will be harder to evaluate, since the analysis 
requires DNA from both parents and usually, 
for late-onsets disorders, the parents are no 
longer available for study. However, late-onset 

disorders might not be under such strict selec-
tive pressure as early-onset ones, allowing for 
inherited variants to play a larger role in dis-
ease etiology.  

    Monogenic Epilepsies   
 Epileptic seizures are a part of many syndromic 
developmental diseases but can also be the 
main or only symptom, thus being nonsyn-
dromic. A  small percentage of these genetic 
epilepsy syndromes, known as the rare epilepsy 
syndromes (RESs), are monogenic. By studying 
these Mendelian disorders, mainly via paramet-
ric linkage analysis and positional candidate 
gene sequencing in large multiplex families, 
the main concepts of the genetic architecture 
of epilepsies we have today were unraveled. 
Many of the known genes implicated in the 
development of Mendelian forms of epilepsies 
encode for subunits of ion channels, although it 
becomes more and more evident that risk vari-
ants are not limited to this class of genes. 

 Next to these familial RESs, the avail-
ability of genome-wide sequencing technolo-
gies has fi nally made it possible to study the 
interesting group of epileptic encephalopa-
thies (EEs) genetically in a systematic man-
ner. EEs are severe disorders with early onset, 
oft en within the fi rst year of life. Th ey present 
as distinct epilepsy syndromes oft en in com-
bination with dysfunctions in the brain, such 
as ID and spasticity. Th ese disorders severely 
interfere with reproductive fi tness, and evolu-
tion strongly selects against the transmission of 
mutations. Most EE patients present as isolated 
cases owing to heterozygous de novo dominant 
mutations. Th e concept that de novo dominant 
mutations underlie EE was fi rmly proved by 
our observation that de novo LoF mutations 
in the  SCN1A  gene result in Dravet syndrome, 
the prototypical EE (Claes, Del-Favero, et  al. 
2001). To date, several distinct EEs are known 
to be caused by DNMs in genes, like  STXBP1 , 
 KCNQ2 , and many others (Saitsu, Kato, et  al. 
2008; Weckhuysen, Mandelstam, et  al.). Many 
studies on sequencing EE patient-parent trios 
for the identifi cation of novel genes harbor-
ing causal DNMs are in progress to gain more 
insight in the missing heritability of diff erent 
EEs. On the other hand, the more common 
genetic epilepsy syndromes are usually consid-
ered to be complex genetic traits. Recently two 
large-scale studies (Klassen, Davis, et  al. 2011; 
Heinzen, Depondt, et  al. 2012)  reported the 
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sequencing of over a hundred sporadic idio-
pathic epilepsy patients. Klassen, et  al. focused 
on ion channel genes, whereas Heinzen and 
colleagues used WES. Th e Heinzen group tried 
to replicate almost 4,000 identifi ed candidate 
epilepsy-susceptibility variants in 878 cases. 
Both studies failed to convincingly identify any 
disease associated variant. Both studies were 
small, but they suggest a similar picture as in 
many other complex traits; much larger study 
samples are needed to shed light on the poten-
tial contribution of low-frequency variants to 
epilepsy. Such studies are in progress, and we 
expect to have results from them in the next 
two years.  

    Alzheimer’s Disease   
 AD is the most common form of dementia 
in the elderly. It is known that low-frequency 
and rare variants can contribute to the risk of 
AD, especially for early-onset forms of the dis-
ease (Goate, Chartier-Harlin, et  al. 1991; Raux, 
Guyant-Marechal, et  al. 2005; Sherrington, 
Rogaev, et  al. 1995). Less is known about the 
genetics of late-onset AD, the more common 
form of the disorder. 

 A WES study of 14 individuals with early- 
onset AD revealed nonsense or missense 
mutations in 5 individuals in  SORL1  (Pottier, 
Hannequin, et  al. 2012). Th e mutations were 
identifi ed by using a simple fi ltering strategy 
where all variants were fi ltered against dbSNP 
and 1,000 genomes, HapMap, and an in-house 
database of 72 WES samples. Aft er validation 
of variants in genes where multiple individuals 
were carrying a missense or LoF variant,  SORL1  
was the gene with the largest number of vari-
ants. Th is gene binds  APP , previously known 
to confer risk for AD. Analysis of 1,500 con-
trols confi rmed that the  SORL1  variants were 
not present in the control population. One of 
the sequenced individuals also had an aff ected 
mother, who also had the mutation.  SORL1  
was sequenced in another 15 index cases, and 
two more mutations were identifi ed. Th is study 
shows that genes can be identifi ed even in sam-
ple sets with genetic heterogeneity if several 
individuals share a mutation in the same gene. 

 Th e most informative studies of late-onset 
AD have been reported in the Icelandic pop-
ulation. Iceland is a population isolate with 
a well-known genetic history (Helgason, 
Yngvadottir, et  al. 2005). Much of the popu-
lation has been genotyped using SNP chips, 

and Iceland has proved to be a treasure chest 
for GWASs. Th e extensive genetic information 
available combined with good genealogical 
records has also proven to be a useful resource 
for NGS studies. Some members of this pop-
ulation have undergone WGS, followed by 
imputation into essentially the entire Icelandic 
population. Th e genetic information combined 
with easily accessible phenotypic data has led 
to the identifi cation of numerous susceptibility 
variants, both common and rare, for complex 
disorders. Th is approach identifi ed a variant in 
 TREM2  associated with late-onset AD (Jonsson, 
Stefansson, et al. 2012). WGS of 2,261 Icelanders 
was used to identify over 34  million variants, 
190,000 of them functional. Th ese variants were 
imputed into 3,550 patients with AD and 1,236 
controls who were over 85 years of age and had 
no symptoms of AD. When a case control study 
was performed, only one marker in addition to 
the already known  APOE  locus, a substitution 
of histidine for arginine in  TREM2 , reached 
genome-wide signifi cance. Th is rare variant, 
with a population allele frequency of 0.63%, 
confers signifi cant risk for AD with an odds 
ratio (OR) of 2.92. Th e fi nding was replicated in 
2,000 cases from other populations with a com-
bined OR of 2.83. Interestingly, compared with 
noncarriers, the variant also confers risk for 
worse cognitive function in individuals between 
80 and 100 years of age but no diagnosis of AD. 

 Another study in the Icelandic popula-
tion identifi ed a low-frequency variant in the 
 APP  gene (population frequency < 0.5%) to be 
protective of AD (Jonsson, Atwal, et  al. 2012). 
Variants in APP have previously been linked to 
early-onset monogenic forms of AD (Alonso 
Vilatela, Lopez-Lopez, et  al. 2012). Th e variant 
was identifi ed from WGS of 1,795 Icelanders 
and was then chip genotyped in 71,743 indi-
viduals and subsequently imputed into 296,496 
relatives. Th ese two reports demonstrate the 
power of imputation in a well-organized cohort 
in a population isolate. Th e latter also demon-
strates that variants within the same gene can 
be either predisposing or protective. 

 Family-based studies have not been quite as 
successful in AD. A study of an individual with 
AD from a Turkish consanguineous family with 
a complex history of neurological and immu-
nological disorders identifi ed a nonsynonymous 
mutation in  NOTCH3 , which has previously 
been linked with cerebral autosomal domi-
nant arteriopathy with subcortical infarcts and 



22 The OMICs

leukoencephalopathy (CADASIL) (Guerreiro, 
Lohmann, et  al. 2012). However, the mutation 
did not cosegregate with the neurological phe-
notype in the family, leaving the results of the 
study inconclusive.    

    F U T U R E  D I R E C T I O N S   
 Currently the true success in NGS studies has 
been achieved for monogenic diseases. However, 
the rapid reduction in sequencing costs makes 
larger studies possible, promising hope also for 
the identifi cation of variants conferring risk 
for more complex disorders. It does not seem 
too implausible to predict that the course of 
sequencing studies will closely resemble that of 
GWASs a few years ago. In the beginning, the 
small GWASs identifi ed risk variants only for 
disorders with relatively high risks. When more 
data was produced and pooled, robust associa-
tions were also identifi ed for variants with very 
small eff ect sizes. 

 Increase in sample size is only one avenue of 
increasing power to detect genetic variants asso-
ciated with traits and disorders. Sequencing tech-
nology keeps improving, and current data already 
allow for relatively robust genotype determina-
tion for SNVs. However, better data and genotyp-
ing methods are needed to reliably identify other 
types of variation from NGS data, such as indels 
and copy number variants. Improvements in data 
quality include increased read lengths as well 
as improvement of the sequencing chemistries. 
Particularly, the “third generation” of sequencing 
technologies off ers great promise for single mol-
ecule sequencing. Th is would not only reduce the 
amount template but also signifi cantly reduce the 
problems in variable read depth caused by the 
capture and amplifi cation steps. 

 To be able to identify rare disease-associated 
variants, good-quality datasets with low 
false-positive and false-negative rates are 
needed. It seems very likely that data that is of 
very high quality from a technical viewpoint 
can soon be achieved. However, at present the 
bigger challenge is our limited knowledge of 
the functionality of the genome. Much work 
is still needed when it comes to the annota-
tion of identifi ed variants. Improved methods 
of predicting the consequences of variants on 
protein structure are needed. Increased under-
standing of the expression patterns (both spatial 
and temporal) of transcripts can help determine 
which variants could possibly be involved in 
the pathogenesis of genetic disorders. Improved 

predictions of the pathogenicity of missense 
and splice variants would decrease the need for 
downstream in vitro assays to determine the 
true functional consequences of variants. And 
current knowledge has only scratched the sur-
face of consequence prediction of noncoding 
variants, although large consortia such as the 
ENCODE project are starting to shed light on 
those shady parts of the genome that we cur-
rently understand very little. 

 It is easy to get stuck on the technical aspects 
and problems of NGS and not see the forest for 
the trees. Current evidence seems quite convinc-
ing that rare variation will play a role in many 
neurological and neuropsychiatric phenotypes. 
Until the advent of NGS, this type of varia-
tion could be accessed only for very small tar-
geted regions. Now large patient cohorts can be 
sequenced and it will be possible to assess the role 
of rare variation in these phenotypes. Th is also 
poses a challenge to improve phenotyping, as the 
subgrouping of patients based on endophenotypes 
could identify groups who share a genetic etiol-
ogy, thus improving the probability of identifying 
disease-associated variants, as has been demon-
strated by studies of syndromic ID. For many 
neuropsychiatric disorders, this is extremely chal-
lenging, as there are no biomarkers for diagno-
sis; that is, the defi nition of the phenotype relies 
entirely on observational data. 

 Th e analysis of rare variants will also pose 
challenges for the ever-increasing collaboration 
among researchers. If mutations are identifi ed 
in one individual or family and genetic het-
erogeneity in the disorder is high, as has been 
seen for ID, large replication cohorts will be 
needed to identify other patients sharing the 
same genetic etiology. Good examples have 
already been set up, such as the DECIPHER 
online repository containing genotype and phe-
notype information of research subjects with 
developmental disorders (Firth, Richards, et  al. 
2009). Researchers all over the world can access 
the database and search for other patients with 
the same genetic variants. Th is has led to the 
identifi cation of a number of new ID syndrome 
genes (Firth, Richards, et al. 2009). 

 NGS is already used in a clinical setting 
for gene identifi cation in Mendelian diseases, 
but there are many unanswered questions 
(Anderson and Schrijver 2010). As in the use of 
NGS in a research setting, one of the main chal-
lenges remaining is the interpretation of results. 
Proponents of NGS in a clinical setting argue 
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that once NGS data have been generated, such 
data could be a useful resource for the indi-
vidual all through his or her life. Sequence data 
could be useful for other purposes besides the 
identifi cation of disease genes, such as personal 
pharmacogenomics. Th e many pros of using 
NGS in the clinical setting are weighed down 
by a large number of problems and unsolved 
questions. How can quality control of such 
large datasets be guaranteed to the same level 
as current genetic tests, which usually produce 
little data that can be visually inspected? How 
are results to be validated? How are incidental 
fi ndings handled? What will be the impact on 
relatives who might not wish to know about 
possible genetic susceptibility factors for dis-
eases? However, there is no reason to assume 
that NGS cannot be included as part of clinical 
testing in cases where this procedure provides 
added clinical utility compared with targeted 
tests, and the problems identifi ed now should 
not be thought of as reasons to forever ban the 
clinical use of NGS; however, such problems 
must be solved before the widespread use of 
NGS in medical care can become a reality.  

    S U M M A RY   
 Current technology allows for the interrogation 
of every base pair in an individual’s genome. 
Many successful reports of gene identifi cation 
using NGS have already been published, mostly 
for monogenic disorders. For several neuro-
logical and neuropsychiatric disorders, such as 
ID, autism and schizophrenia, the technology 
has been applied successfully to identify genes. 
Technological advances provide ever-improving 
data quality, but analytic approaches must keep 
up with the technological development to be 
able to make use of the data and convert the 
raw sequence to biological understanding. 
Currently NGS off ers a promise that is start-
ing to be realized in a research setting, whereas 
the routine use of NGS in a clinical setting still 
faces several challenges.    
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DNA probes are usually evenly spaced and 
attached to a solid surface commonly referred 
to as a chip. Because of the limited size of 
the chip, only a fi nite number of probes can 
be placed onto a single chip. For experimen-
tal designs that attempt to exhaustively repre-
sent the genome by having probes found every 
few kilobases across the genome (so-called til-
ing arrays), multiple chips are required. Other 
experimental designs that focus on promoters 
alone may require fewer chips to fully represent 
all mammalian promoters. Microarray had clear 
advantages compared with previous approaches, 
in particular the ability to sample large por-
tions of the genome in a cost-eff ective and less 
time-consuming manner.  

    Next-Generation Sequencing   
 In more recent years, high-throughput DNA 
sequencing has supplanted most microar-
ray technologies for many reasons, including 
improved high throughput, sensitivity, and 
accuracy (Metzker, 2010; Shendure & Ji, 2008). 
However, it is worth mentioning that many labo-
ratories are continuing to use microarray-based 
platforms primarily because of matured analyti-
cal tools (Allison et  al., 2006; Gentleman et  al., 
2004; Li, 2008), and the costs are still lower 
for studies geared more for sample sizes in the 
hundreds and thousands. 

 Sequencing off ers many advantages over the 
microarray platform, including base-pair reso-
lution and unbiased surveying of the genome. 
In general, all library construction protocols 
share fundamental commonalities (Metzker, 
2005, 2010; Shendure & Ji, 2008). Since the 
goal is to generate short reads, the majority of 
library construction protocols share common 
procedures such as DNA or RNA fragmenta-
tion to a desired size distribution, adapter liga-
tion, and PCR amplifi cation. Th e PCR step is 

      I N T R O D U C T I O N   
 Epigenetics is the study of mechanisms that 
can alter gene expression without changing the 
underlying DNA sequence. Under this broad 
term many mechanisms have been considered 
epigenetic, including DNA methylation, his-
tone modifi cations, and noncoding RNA. Oft en 
these epigenetic mechanisms work in concert 
to infl uence both gene expression and each 
other. Epigenetic landscapes are extremely com-
plex with a vast spectrum of variations that are 
used to fi ne-tune gene expression. In order to 
fully understand the regulatory domains in the 
genome, all epigenetic regulatory forces must be 
considered. Recent advances in high-throughput 
technology have aff orded the opportunity to 
survey epigenetic features across entire genomes, 
bringing forth a vibrant fi eld of “epigenomics”-
based research. Th is chapter focuses on how 
epigenetic mechanisms shape the transcrip-
tome, the tools we use to study these pathways 
on a genome scale, and the insights we have 
gained from these epigenomic-driven studies. 
Th roughout the text, we highlight the impact 
and relevance of epigenomic studies on illumi-
nating novelties in neurobiology.  

    H I G H - T H R O U G H P U T 
T E C H N O L O G I E S  PAV I N G  T H E 

WAY  F O R  E P I G E N O M I C S   

    Microarrays   

 Th e advent of microarray technology provided 
a phenomenal method of measuring multiple 
events in a single experiment. Expanding on 
classical complementary hybridization-based 
detection methods, the microarray platform 
relies on hybridization of fl uorescently labeled 
DNA to predefi ned probes that uniquely rep-
resents portions of the genome (Heller, 2002; 
Schulze & Downward, 2001; Young, 2000). 

          2 
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necessary because most library construction 
methods yield small amounts of DNA that may 
not be easily detected on the sequencer. On the 
other hand, the PCR step also remains one of 
the banes of library construction because PCR 
amplifi cation introduces a variety of biases that 
confound quantitative analyses. Indeed, several 
groups are working on methods for circum-
venting the PCR step in library construction, 
which will simplify library construction and 
data analysis in the future.   

    D N A  M E T H Y L AT I O N   

    Background   

 DNA methylation is one of the best-studied epi-
genetic mechanisms and involves the covalent 
attachment of a methyl group to the 5 carbon 
position of cytosine (Bird, 1986; Reik, 2007). In 
mammals, this action is catalyzed by a family 
of DNA methyltransferases (Dnmts), including 
Dnmt1, Dnmt3a, and Dnmt3b. Loss of any of 
these enzymes during embryogenesis is lethal, 
indicating an essential role for DNA meth-
ylation during development (Li et  al., 1992; 
Okano et  al., 1999). Th e prevailing hypothesis 
on the mechanism of action for DNA meth-
ylation involves repression via its presence 
on the proximal promoter (Miranda & Jones, 
2007). It is thought that DNA methylation sup-
presses gene activity either by acting as part 
of a signaling pathway that recruits repressor 
complexes or by sterically hindering transcrip-
tion factor binding (Huang & Fan, 2010; Moore 
et  al., 2012). Nevertheless, with some excep-
tions, global mapping of gene promoters indi-
cates a negative correlation between promoter 
methylation and gene activity (Suzuki & Bird, 
2008). Epigenomic studies using mouse embry-
onic stem cells (ESCs) revealed that promoters 
can be subclassifi ed based on their CpG con-
tent (Fouse et  al., 2008; Meissner et  al., 2008; 
Mikkelsen et  al., 2007; Mohn et  al., 2008). For 
example, proximal promoters with a high den-
sity of CpG dinucleotides tend to be hypometh-
ylated, whereas promoters with a low density 
of CpGs are hypermethylated. However, the 
absence of DNA methylation does not neces-
sarily predict gene activity; many gene pro-
moters that lack DNA methylation can also be 
transcriptionally inactive (Fouse et  al., 2008; 
Lister et  al., 2009; Meissner et  al., 2008; Mohn 
et  al., 2008; Weber et  al., 2007). Furthermore, 
DNA methylation patterns diff er in various cell 

types. We now know that diff erent cells have 
their own unique DNA methylation signature, 
and these characteristics are important for gov-
erning cell identity. For example, neural genes 
are repressed in nonneural tissues by promoter 
DNA methylation but are unmethylated in 
neural cells, indicating a direct role for DNA 
methylation (Meissner et al., 2008; Mohn et al., 
2008). Th ese types of studies have revealed an 
immense amount about the methylation status 
of gene promoters in regulating gene expression 
and cellular diff erentiation.  

    Gene Body Methylation   
 Global DNA methylation mapping has revealed 
many novel facets of DNA methylation beyond 
the classical model of gene regulation. For 
example, outside of gene promoters, DNA meth-
ylation appears to be highly enriched within 
the gene body (the transcribed portion of the 
gene). In many species, gene body methylation 
appears to have both repressive and enhancer 
roles (Zemach et  al., 2010). Recent methylome 
studies across phyla found that gene body meth-
ylation is mostly enriched for genes with mod-
erate expression. In other words, genes that are 
expressed either highly or lowly are depleted of 
gene body methylation. However, mammals do 
not seem to share this trait. Gene expression in 
both humans and mice does not correlate tightly 
with CG methylation in the gene body of protein 
coding genes (Feng et  al., 2010b; Lister et  al., 
2009). Furthermore, there is still no conclusive 
evidence to indicate that gene body methylation 
plays a role in regulating gene expression. 

 On the other hand, gene body methylation 
for repetitive elements (such as retrotranspo-
sons) seems to be widely conserved across a 
diverse array of species (Feng et  al., 2010b; 
Zemach et  al., 2010). In many cases, heavy 
methylation across the repeat gene body results 
in stable silencing. Indeed, experiments that 
artifi cially remove DNA methylation within 
an organism result in a dramatic induction 
of repeat elements and may lead to cell death 
(Chen et  al., 2007; Fan et  al., 2005; Hutnick 
et al., 2009.). It is thought that DNA methylation 
has evolved as a defense mechanism to silence 
foreign DNA such as from viruses, which are 
capable of invading a host cell for viral replica-
tion (Zemach et  al., 2010). So although foreign 
viral DNAs have successfully integrated into 
host genomes over time, the cell has used DNA 
methylation as a way of providing genomic 


