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During the past decade, research efforts by a number of different groups have 
demonstrated that feedforward neural networks (NN) can play an important role  
in facilitating the development of potential-energy surfaces (PES) of sufficient  
accuracy to execute accurate molecular dynamics (MD), Monte Carlo (MC), quan-
tum scattering calculations, determination of rovibrational energy levels within an 
accuracy of a few cm–1, and perhaps photodissociation, if the excited-state electronic 
surfaces can be computed. Specifically, it has been found that NNs can greatly facil-
itate the use of potential energies and gradients obtained from first-principles elec-
tronic structure calculations to develop what are generally termed ab initio PESs for 
use in MD, MC, and quantum dynamics investigations. Likewise, NNs have been 
shown to be highly useful in making older methods, such as many-body expansions 
and genetic algorithms (GA), far more robust and powerful. 

Neural network (NN) methods have been developed to greatly assist in the 
adjustment of parameters of empirical PESs to fit a database of some type. They have 
also been found highly useful in reducing the statistical error that is always pres-
ent in MD studies. This has been accomplished by employing NNs to predict the 
results of trajectories without actually executing numerical integrations. When this 
is done, the results of a huge number of molecular trajectories can be obtained with 
far less computational effort. The result is a significant reduction in the statistical 
errors of the calculations and a corresponding increase of predictive accuracy. Most 
recently, it has been shown that NNs can be used to predict the results of high-level 
electronic structure calculations from lower-level Hartree-Fock calculations. This 
allows the computational bottleneck of executing the extensive ab initio electronic 
structural calculations to be substantially reduced.

While all these methods have been reported by several research groups in the 
leading journals of the field, there is no succinct compilation of all these results and 
methods that describes both the methods and the techniques involved in their appli-
cation. This monograph provides clear descriptions of how NNs have been used to 
move MD investigations into the realm of ab initio calculations, which as recently 
as a few years ago were considered beyond the reach of the computational facili-
ties available. The monograph also describes in detail how NNs can be effectively 
employed to execute all of the studies previously mentioned. In addition to the for-
mal descriptions of the methods, example applications are provided to illustrate the 
power and limitations of NN methods along with a clear road map describing how 
to execute each of the studies.

P r e fac e
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1

1
F i t t i ng  P o t e n t i a l  E n e r g y  H y p e r s u r fac e s

1.1. Introduction

Molecular dynamics (MD) and Monte Carlo (MC) simulations are the two most 
powerful methods for the investigation of dynamic behavior of atomic and molecu-
lar motions of complex systems. To date, such studies have been used to investi-
gate chemical reaction mechanisms, energy transfer pathways, reaction rates, and 
product yields in a wide array of polyatomic systems. In addition, MD/MC meth-
ods have been successfully applied for the investigation of gas-surface reactions, 
diffusion on surfaces and in the bulk, membrane transport, and synthesis of dia-
mond using chemical vapor deposition (CVD) techniques. The structure of vapor  
deposited rare gas matrices has been studied using trajectories procedures.

If the chemical reaction of interest contains three atoms or fewer, various types 
of quantum and semiclassical calculations can be brought to bear on the problem. 
These methods include wave packet studies, close-coupling calculations at various 
levels of accuracy, and S-matrix theory. Several excellent review articles have been 
published describing the principal techniques and problems involved in conducting 
MD studies; the reader may wish to consult these as background material for this 
discussion.1–7

With the advent of relatively inexpensive, powerful personal computers,  
MD/MC simulations have become routine. Once the potential-energy hypersur-
face for the system has been obtained, the computations are straightforward, though 
time-consuming. In the majority of cases, the computational time required is on the 
order of hours to a few days. However, the accuracy of these simulations depends 
critically on the accuracy of the potential hypersurface used.

The major problem associated with MD/MC investigations is the development 
of a potential-energy hypersurface whose topographical features are sufficiently 
close to those of the true, but unknown, surface that the results of the calculations 
are experimentally meaningful. Once the potential surface is chosen or computed, 
all the results from any quantum mechanical, semiclassical, or classical scattering or 
equilibrium calculation are determined. The only purpose of the MD calculations is 
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to ascertain what these results are. Therefore, the most critical part of any MD/MC 
study is the development of the potential-energy hypersurface and the associated 
force field. Surprisingly, this is often the portion of the investigation to which least 
effort is devoted. This situation arises because of the inherent difficulty associated 
with this part of the overall problem.

1.2. Em pir ica l a n d Sem i-Em pir ica l 
Potenti a l Su r faces

When four or more many-electron atoms are present, global potentials have usually 
been obtained using empirical methods that rely heavily upon ad hoc parametrized 
functional forms suggested by physical and chemical considerations. The parameters 
contained in these forms are generally fitted to equilibrium thermochemical, spec-
troscopic, and structural data. If experimental activation energies are known, the 
barrier heights predicted by the empirical potential are adjusted to these values. Such 
methods have been employed by numerous investigators since the mid-1970s.

Many engineering applications of MD/MC studies, including machining, inden-
tation, uniaxial tension, and tribological simulations to date have relied on empirical 
potentials, such as pairwise sums of Morse8,9 or Lennard-Jones potentials10 for met-
als. Baskes and his colleagues have developed an embedded-atom method (EAM)11 
and a modified embedded-atom method (MEAM)12 for application to fcc and bcc 
metals, and even to hcp metals. For covalently bonded, semiconductor materials, 
such as Si, Ge, and diamond many-body potentials, such as Tersoff’s potential,13 the 
Bolding–Anderson potential,14 and the Brenner potential15 have been developed. 
These potentials provide approximate descriptions of most materials at or near their 
equilibrium configuration. However, when the lattice atoms are in configurations far 
removed from equilibrium, the accuracy of any empirical potential can be expected to 
decrease significantly. Such loss of accuracy also occurs in many chemical reactions 
that sample regions of configuration space that are far removed from equilibrium.

The limitations and liabilities associated with the use of empirical potential 
surfaces in MD calculations may be summarized as follows:

1.	 Since the ad hoc empirical functional form is simply concocted with little or no 
theoretical foundation, it is highly unlikely that it will accurately predict the cor-
rect experimental force field.

2.	 The parameters contained in an empirical potential are generally adjusted to fit 
equilibrium and stationary-point data, such as bond lengths, bond angles, vibra-
tional frequencies, reactant and product equilibrium energies, elastic moduli, 
sublimation energies, and potential barrier heights. As a result, the potential usu-
ally fits the stationary points on the surface acceptably well. However, MD and 
MC simulations are primarily concerned with the energies and forces at nonsta-
tionary points. It is very unlikely that these quantities are accurately represented 
in configurations far removed from equilibrium.
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3.	 If the database contains data from ab initio quantum mechanical calculations 
at nonstationary points as well as experimental data, the problem of fitting the 
empirical parameters becomes very difficult. Such fitting must be accomplished 
using iterative adjustment methods that often require months of effort. For 
example, nine months of laborious iterative fitting was required to obtain an 
acceptable fit of the 100 parameters contained in the empirical function used to 
fit the global potential surface for vinyl bromide16 a,b.

4.	 Once an empirical potential is developed for a particular complex system, there 
is no straightforward means by which it can be improved. Any alteration of the 
potential requires that the entire fitting process be repeated.

5.	 Empirical potentials are specific for the system under consideration. The proce-
dures used to obtain such potentials cannot be easily automated and the meth-
ods applied to all systems. Every system must be treated individually. Therefore, 
the research is tedious and labor intensive.

Each of the problems outlined here is essentially intractable. Because of this, 
the accuracy of MD simulations on complex systems has, for practical purposes, 
reached its limit. If we wish to advance beyond this natural limit for empirical and 
hybrid potentials, we must develop ways to effectively utilize quantum mechan-
ical methods that have the power to produce more accurate surfaces and force 
fields.

1.3. A b Initio Potenti a l-En ergy Su r faces (PESs)

In principle, ab initio methods can produce much more accurate potential-energy 
surfaces for molecular dynamics. The fundamental problem is that electronic struc-
ture calculations become computationally intractable when the number of atoms 
and electrons present in the system becomes large. Nevertheless, excellent results 
have been obtained for numerous three- and four-body systems. In this section, we 
present a brief review of some of the systems studied and the methods employed to 
obtain the required ab initio potentials.

In many investigations, an empirical or semi-empirical potential-energy surface 
(PES) is employed to represent the force field of the system under investigation. 
Such potentials generally yield only qualitative or semiquantitative descriptions of 
the system dynamics. Empirical potential surfaces can be significantly improved by 
fitting the chosen functional form for the potential to the force fields obtained from 
trajectories using ab initio Car-Parrinello17 molecular dynamics simulations. This 
method has been employed by several research groups.18–21

When the system of interest contains four atoms, usually it is no longer possible 
to conduct electronic structure calculations in all regions of configuration space. 
Consequently, importance sampling procedures must be employed to identify the 
critical regions of configuration space. In addition, interpolation between the com-
puted points on the surface becomes increasingly difficult.
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If the system under investigation is not too large and complex, ab initio electronic 
structure calculations offer a route to obtaining extremely large databases, which 
can be employed to obtain the PES for the system. Malshe et al.22 have recently 
developed a method that reduces or eliminates many of the problems associated 
with fitting empirical potentials particularly when some of the parameters are made 
functions of the system configuration. The method completely obviates the prob-
lem of selecting the form of the functional dependence of the parameters upon the 
system’s coordinates. This form is, in effect, determined automatically by a neural 
network (NN). This use of NNs will be discussed in more detail in Chapter 8.

1.4. Other Fitting Me thods for 
Potenti a l-En ergy Su r faces

Several research groups have employed methods that obviate the need to select arbi-
trary functional forms for the potential surface. These methods attempt to accurately 
sample the configuration space of the system and then fit the resulting database of 
ab initio energies using some generalized numerical procedure. Five such methods 
that have been frequently employed are (i) moving interpolation techniques,23–25 
(ii) reproducing kernel Hilbert space (RKHS),26,27 (iii) interpolating moving least 
squares (IMLS),28–33 (iv) expansions in terms of invariant polynomials (IP),34–39 and 
(v) neural network (NN) methods.40–50 The following discussion briefly describes 
these methods. The first four are discussed in more detail in Chapter 2 while the 
remainder of this monograph is devoted to an extensive discussion of various appli-
cations of NN methods.

Ischtwan and Collins23 have developed a moving interpolation technique in 
which the potential energy in the neighborhood of any point is approximated by 
a Taylor series expansion using inverse bond length coordinates as the expansion 
variables. The overall method is usually denoted as a moving Shepard interpolation 
(MSI). Initially, a set of system configurations along the reaction path is selected 
by using chemical intuition. Ab initio electronic structure calculations of the  
system energy and gradients in these configurations are then executed. The data 
thus produced are employed to obtain the set of Taylor series expansions. A Shepard 
method24 is used to effect the required interpolations. This procedure expresses  
the potential at any configuration as a weighted average of the Taylor series about all 
N points in the data set, or alternatively, those points within a specified cutoff radius. 
Subsequently, the results are iteratively improved by computing trajectories on the 
Taylor series fitted surface and recording the internal coordinates at a series of suc-
cessive configurations encountered in the trajectories. In part, these new points are 
added to the data set according to a weight factor that is determined by the relative 
density of points in the data set in the region of the new points. For systems that are 
undergoing two-center, bond dissociation or formation reactions, the fitting error 
with a test set of ab initio energies is usually found to be in the range of from 0.0010 
eV to 0.031 eV depending upon the complexity of the system. For an overview of 
this method and results, the review by Collins may be consulted.25
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The second method for obtaining ab initio potential surfaces for three- and four-
body systems employs the criterion of reproducing kernel Hilbert space (RKHS) 
as the means to effect the required fitting of the ab initio energies. Ho et al.26 have 
employed this procedure to investigate the O(1D) + H2 → OH + H reaction. When 
1280 ab initio data points were employed to define the surface, the fitting yielded a 
surface whose absolute root mean square error compared to ab initio energies was 
0.0131 eV. Pederson et al.27 have used the same method to study the dynamics of the 
N(2D) + H2 reaction.

Maisuradze et al.28 have introduced the third method, namely, an interpolat-
ing moving least-square (IMLS) method to effect the fitting between the computed 
ab initio points. When the method is unrestricted, the least-square coefficients are 
obtained from the solution of a large matrix equation that must be solved repeatedly 
during a trajectory study. In this form, the required computational time increases 
with NM 2, where N is the number of data points to be fitted and M is the number of 
basis functions used in the linear combination that provides the fit. Guo et al.29 have 
evaluated the IMLS method using the analytic surface of Kuhn et al.51 for simple 
O-O bond rupture of HOOH. With N = 300, the results showed the statistical fit-
ting errors to lie in the range of 0.085 eV to 0.171 eV. Kawano et al.30 have compared 
the accuracy of the IMLS method with that of the MSI procedure for the HOOH 
bond scission reaction. With N = 6489, the root mean square errors for IMLS and 
MSI were 0.0468 eV and 0.0202 eV, respectively. Guo et al.31 have recently reported 
IMLS results for the unimolecular dissociation reaction of H2CN → H + HCN. 
Their results show root mean square fitting errors that vary between 0.0055 eV  
and 0.0290 eV.

The major problem with the IMLS method is the extremely large computational 
time required for its execution. When more than four atoms are involved, the com-
putation time increases rapidly due to the M 2 factor. The time also increases lin-
early with the number of ab initio data points employed. Guo et al.31 have reported a  
computational time of about 100 minutes for one H2CN dissociation trajectory 
lasting 2.5 ps when 830 data points are employed.

The computational difficulties associated with IMLS methods have recently 
been addressed by Dawes et al.32a and by Guo et al.32b By converting the IMLS 
method to what is essentially a modified Shepard method,25 the large computational 
bottleneck present in IMLS calculations is avoided. The authors32 term this hybrid 
method a “local IMLS” or L-IMLS method. To date, this hybrid procedure has 
been applied only to molecules containing four or fewer atoms undergoing a single, 
two-center, bond dissociation reaction. Ishida and Schatz33a have also proposed a  
procedure that combines the IMLS and Shepard methods. This combined method 
has been applied to the investigation of the three-body reaction dynamics of the 
O(1D) + H2 reaction.33b

Bowman, Braams, and co-workers34–39 have developed a different type of least-
squares fitting procedure that utilizes least-squares fitting of expansions in terms 
of polynomials of functions of the interatomic distances to fit ab initio databases 
obtained from electronic structure calculations. The expansion polynomials are 
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totally symmetrized so that they are invariant to the exchange of any two identical 
atoms. For this reason, the procedure is generally called an “invariant polynomial” 
(IP) method. The IP method has been applied to an impressive set of relatively 
complex reactions of molecules that contain between five and seven atoms. In most 
cases, the database to which the IP expression is fitted contains more than 20,000 
points.

The fifth method for obtaining accurate analytic fits to databases obtained from 
ab initio electronic structure calculations involves the use of NNs. Neural networks 
provide a powerful and robust method for surface fitting and other related tasks 
associated with reaction dynamics investigations. The remainder of this monograph 
is devoted to an exposition of these NN methods.

In order to avoid the extremely difficult task of interpolating ab initio electronic 
structure data, some investigators have employed a method known as “direct 
dynamics” (DD). In this approach, trajectories are computed by direct calculation 
of the force field at each integration point using some ab initio quantum mechanical 
method. Because of the huge number of computations required for each trajectory, 
the ab initio method chosen must usually be some form of density functional theory 
(DFT). For example, it may be necessary to follow the dynamics for several pico-
seconds (ps). With an integration step size on the order of a femtosecond (fs), 1,000 
or more integration steps will be required. If the forces are computed at four points 
in each step, something on the order of 4,000 gradients will have to be computed 
for each trajectory. As a result, only a very limited number of trajectories can be 
obtained.

As the system under investigation increases in size, the computational require-
ments of DD will quickly overwhelm the available computational resources. The 
basic problem is that all the information obtained about the potential-energy sur-
face and the corresponding force field during the integration of the trajectory is dis-
carded after the completion of the calculation. Therefore, each subsequent trajectory 
fails to profit from all the computational effort expended in obtaining the previous 
trajectories. The conventional wisdom has been that ab initio MD calculations for 
complex systems containing five or more atoms with several open reaction channels 
are presently beyond our computational capabilities. The rationales for this view are 
(a) the inherent difficulty of high-level ab initio quantum calculations on complex 
systems that may make numerous, large-scale computations impossible, (b) the 
large dimensionality of the configuration space for such systems that makes it neces-
sary to examine prohibitively large numbers of nuclear conformations, and (c) the 
extreme difficulty associated with accurate interpolation of numerical data obtained 
from electronic structure calculations when the dimensionality of the system is nine 
or greater. In subsequent chapters, we present general NN methods to handle each 
of these difficulties for many complex systems. Furthermore, as our computational 
resources increase, the range of systems that can be so treated will expand without 
the need to significantly modify the methods. Therefore, the theoretical approach is 
robust and powerful.
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1.5. Ne u r a l Ne t wor k (NN ) A pproach

In this monograph, we present an integrated approach for obtaining ab initio quan-
tum mechanical potential-energy surfaces (PES) and force fields for use in MD 
simulations for systems of five or more atoms in which several reaction channels 
may be energetically open. The method involves (a) electronic structure calcula-
tions of energies and force fields for an ensemble of atoms whose interatomic dis-
tances are such that all atoms fall within a previously specified distance from some 
central point, generally called the cutoff radius; (b) the implementation of sampling 
methods that utilize MD calculations and novelty sampling to permit the regions of 
configuration space that are important in the dynamics to be accurately identified; 
and (c) the use of NNs, early stopping, and regularization methods to provide rapid 
and accurate fitting of the ab initio database and convenient tests for convergence 
that do not require MD calculation of dynamical results.

1.6. Essenti a l Steps in Molecu l a r 
Dy na m ics Si mu l ations

For pedagogical purposes, we may divide an MD investigation into several distinct 
parts. The division used here is not unique, but it serves the purpose of guiding the 
discussion that follows. The essential steps of any MD study may be considered to 
be the following:

Step 1: A convenient coordinate system must be chosen that leads to a set of 
coupled, ordinary differential equations whose solution determines the nature of 
a molecular trajectory for a given set of initial conditions. This step concludes with 
the preparation of computer codes that perform numerical integrations to solve the 
coupled set of differential equations.

Step 2: The molecular motions during a trajectory are determined by the force 
field in which the atomic particles move. This force field is obtained from the gradi-
ents of the potential-energy surface at each integration point. The development of 
the PES is, therefore, a crucial step in the MD study.

Step 3: Appropriate methods must be devised to determine when to terminate 
trajectories and how to treat the final results to obtain the experimental quantities 
of interest in the investigation. Since the calculations are classical rather than quan-
tum mechanical, if the quantities of interest involve quantization of the final states, 
methods to convert the final classical results to corresponding quantum results with 
reasonable accuracy must be developed.

Step 4: Since experimental observations are usually ensemble averages of the 
results of an extremely large number of molecular collisions that is often on the 
order of the Avogadro number (1023), an MD investigation must incorporate appro-
priate statistical averages over the same variables averaged in the corresponding 
experiments. This is generally accomplished by the computation of a number of 
molecular trajectories in which the initial conditions are chosen randomly from the 



Neural Networks in Chemical Reaction Dynamics

8

appropriate distribution functions for those variables over which the investigator 
seeks to average. Obviously, it is computationally impossible to compute 1023 tra-
jectories, so these averages must of necessity be over much smaller sets that usually 
comprise from 102 to 104 trajectories. This naturally leads to the problem of estimat-
ing the statistical error present in the calculations and the development of methods 
that reduce this error as much as possible.

Although each of these steps is important in an MD investigation, the most 
important and the most difficult step in the execution of accurate MD, MC, semi-
classical, or quantum scattering calculation is Step 2, the development of a suffi-
ciently accurate PES. This is the case because once the PES is in hand, all of the 
dynamics for a given set of experimental conditions are determined. The MD, 
MC, or other scattering calculations are simply computational procedures used to  
discover the nature of the scattering or reaction dynamics that have already been 
determined by the formulation of the PES.

During the past decade, research efforts by a number of different groups have 
demonstrated that feed-forward, neural networks (NN) can play an important 
role in facilitating the development of PESs of sufficient accuracy to execute 
accurate MD, MC, or quantum calculations. Specifically, it has been found that 
NNs can greatly facilitate the use of potential energies and gradients obtained 
from first-principles electronic structure calculations to develop what are gener-
ally termed ab initio PESs for use in MD, MC, and quantum dynamics investiga-
tions. Likewise, NNs have been shown to be highly useful in making alternative 
methods to derive empirical PES, such as many-body expansions and genetic 
algorithms (GA), far more robust and powerful. Methods have been developed to 
greatly assist in the adjustment of parameters of empirical PESs to fit a database 
of some type.

In addition to facilitating the development of PESs, NNs have been found to be 
highly useful in Step 4 where one seeks to reduce the statistical error that is always 
present in MD studies. This has been accomplished by employing NNs to predict 
the results of trajectories without actually executing the numerical integrations of 
Step 1. When this is done, the results of a huge number of molecular trajectories can 
be obtained with far less computational effort. The result is a significant reduction in 
the statistical errors of the calculations and a corresponding increase of predictive 
accuracy. This procedure permits far more detailed investigation of the dependence 
of various experimentally measured properties on the independent variables of the 
process under examination.

1.7. Orga n iz ation of the Monogr a ph

The objective of this monograph is to provide the reader with a brief but clear pre-
sentation of NNs along with descriptions of how they can be used to move MD 
investigations into the realm of ab initio calculations, which as recently as a few 
years ago were considered to be beyond the reach of present computational facili-
ties. The discussion also describes in detail how NNs can be effectively employed to 
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study non-adiabatic chemical reactions on ab initio potentials, obtain PESs for large 
ensembles of atoms that are invariant to permutations of identical atoms, enhance 
GA and energy transfer calculations, render many-body expansions far more robust 
and powerful, facilitate quantum scattering calculations, predict the results of tra-
jectories without actually integrating the equations of motions, obtain parameters 
of empirical PESs from ab initio data or vibrational spectra, and finally how NNs 
can play a key role in the determination of electronic structure energies and gradi-
ents from high-level computations using primarily calculations conducted at the 
Hartree-Fock (HF) level of theory.

The monograph is organized into 11 chapters. Chapter 1 begins with a brief 
introduction to various methods of fitting potential energy surfaces. They include 
multilayer perceptron neural networks; empirical and semi-empirical potential sur-
faces; ab initio potential-energy surfaces; other fitting methods, namely, (a) mov-
ing interpolation techniques, (b) reproducing kernel Hilbert space (RKHS), and  
(c) interpolating moving least squares (IMLS); (d) invariant polynomicals (IP), 
and the neural network (NN) approach. The chapter ends with four essential steps 
in MD simulations and the organization of the monograph.

Chapter 2 provides a reasonably complete description of MSI, IMLS, and IP 
methods along with the presentation of typical results of applications of these meth-
ods. In addition, some hybrid methods that combine these techniques are also pre-
sented and typical results given. Results from the application of the RKHS method 
are presented.

Chapter 3 provides an introduction to the standard NN methods. It concen-
trates on the most common neural network architecture, namely, the multilayer 
perceptron (MLP). It describes the basics of this architecture, discusses its capabili-
ties, and shows how it has been used on several different chemical reaction dynam-
ics problems. This is followed by a more specific discussion of how NN methods 
can be employed in chemical reaction dynamics. For readers already familiar with 
NNs, parts of this chapter will provide a quick and easy-to-read starting material 
for their application to important problems in chemical reaction dynamics. Readers 
unfamiliar with NNs will find Chapter 3 highly useful as a means to bring them-
selves quickly to the operational level of the use of NNs. Finally, Chapter 3 takes 
the reader to the edge of the research frontiers in this area by presentation of a pow-
erful new type of NN training algorithm that fits not only a function but also its 
gradient. This type of NN training is called the “Combined Function Derivative 
Approximation” (CFDA). Since it is the gradient of the potential energy that is of 
importance in molecular dynamics (MD) simulations, the CFDA promises to be 
a major player in future applications of NNs to chemical reaction dynamics. The 
use of the CFDA leads to a new type of overfitting that is not seen when NNs are 
employed in their usual form. Chapter 3 concludes with a discussion of this type of 
overfitting and “pruning” methods to permit its elimination.

In any fitting method, the procedures used to sample the configuration space of 
the system are of critical importance. In Chapter 4, we describe the theory and opera-
tional details of the three most powerful methods associated with configuration space 
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sampling, namely, (i) trajectory and novelty sampling (NS) methods, (ii) initiation 
using direct dynamics (DD), and (iii) configuration sampling using a gradient fitting 
method. These descriptions are made clear and instructive by numerous illustrations 
from the literature of actual applications to real chemical systems.

Chapter 5 is devoted to an extensive discussion of actual examples of NN appli-
cations to chemical reaction dynamics. The chapter begins with an overview of the 
applications reported to date. This overview is then followed by a series of illus-
trative examples of increasing complexity beginning with an NN method for the 
ab initio computation of the molecular vibrational levels of the H3

+ molecular ion. 
The dual NN methods for obtaining highly accurate ab initio molecular vibrational 
levels, recently developed by Manzhos et al.47 are then described and illustrated by 
application to H2O, H2O2, and H2CO.

Chapter 5 then moves on to more complex systems involving chemical 
reactions. An application of the CFDA method to the gas-phase abstraction of 
exchange reactions of hydrogen reacting with HBr is described. It is shown that 
the CFDA method can achieve fitting accuracies on the order of 1 cm-1 error 
over the entire configuration space that is important in the reaction dynamics. 
Applications to the cis-trans isomerization and N–O bond dissociation reactions 
of HONO are then described. An application of configuration space sampling 
using gradient fitting is provided by a discussion of the dissociation dynamics of 
hydrogen peroxide.

Chapter 5 culminates with detailed descriptions of some of the most complex 
systems yet investigated using purely ab initio methods, namely, the unimolecular 
dissociation of vinyl bromide, H2C = CHBr, into six, simultaneously open reaction 
channels, and the non-adiabatic dissociation of SiO2 to either Si + O2 or to SiO + O, 
both of which are non-adiabatic processes involving three different potential surfaces, 
and the treatment of a large ensemble (64) of silicon atoms using an NN method that 
automatically incorporates complete permutational symmetry of identical atoms.

Expansion methods to obtain PESs were proposed in the 1980s (see, for example, 
Murrell et al.).52,53 However, owing to the bottleneck of the arbitrary and unknown 
nature of the expansion functions, only very limited use of these methods has been 
made to date. With the advent of NNs, these expansion methods have now been 
empowered and promise to be powerful techniques for the future.

Chapter 6 describes in detail two methods, namely, a high-dimensional model 
representation (HDMR) and a many-body expansion with a moiety-energy (ME) 
approximation that have been developed to date that combine NNs with expansion 
methods to produce powerful techniques for PES surface fitting to ab initio data-
bases. The first of these is a combination of the high-dimensional model representa-
tion (HDMR) method, recently discussed in a series of publications by Rabitz and 
co-workers,54–70 and NNs that has been proposed and implemented by Manzhos 
and Carrington.48 The second method employs NNs with a many-body expansion 
that has been developed by Malshe et al.71 Both methods provide solutions to the 
combinatorial problem that plagues expansion methods and both methods produce 
excellent results in terms of fitting accuracy.
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Genetic algorithms (GA) have been a standard method for obtaining fits to 
databases. However, when the database is large, they are plagued with a heavy com-
putational burden due to the computational time required to repeatedly compute 
the objective function. By utilizing NNs to predict the value of the objective func-
tion without actual computation, the entire GA method has been rendered far more 
powerful. The first portion of Chapter 7 describes this combined GA-NN method 
with an example of its utilization for obtaining a PES for Si5 clusters.72 The second 
portion of the chapter is devoted to a discussion how the use of NNs can greatly 
accelerate studies of intramolecular vibrational energy relaxation (IVR).73

Often it is useful to employ an analytical functional form for the PES. When this 
is done, it is always necessary to extensively parameterize the analytic function to 
allow accurate fitting to the database. The parameter fitting for arbitrary functional 
forms can be extremely laborious. This is particularly the case whenever it is desired 
to make one or more of the parameters functions of the instantaneous configura-
tion of the system. Malshe et al.22 have recently utilized NNs to greatly facilitate 
parameter fitting and to make it possible to obtain the near optimum functional 
dependence of the parameter values on the molecular configuration of the system. 
Chapter 8 describes these methods in detail. This chapter concludes with an appli-
cation of NNs that permits the determination of empirical parameters from mea-
sured vibrational spectra for macromolecular systems.74

Since the final result of an MD trajectory is uniquely determined by the starting 
conditions of the trajectory—namely, orientation variables, impact parameter, rela-
tive translational energy, etc.—if a reasonable database exists that maps these initial 
starting conditions onto the final results of the trajectory, an NN can, in principle, 
be trained to predict the final results using an input vector containing the starting 
conditions for the trajectory. In effect, the NN replaces all the laborious numerical 
integrations required to compute the trajectory. If this can be done, then it becomes 
possible to compute N trajectories for a system, fit an NN to the results of these N 
trajectories, and use the NN to predict the results for a huge number of trajectories 
without having to perform any numerical integrations. These results can then be 
utilized to greatly enhance the statistical accuracy of the MD simulations with near 
negligible computational effort. Chapter 9 describes the details of a method that 
brings this concept to fruition (see Agrawal et al.).75 An example application of the 
method to the reactions of a C2 dimer with an activated diamond (100) surface is 
described as an illustration of the method.

Chapter 10 presents several applications of NNs to problems arising in quan-
tum mechanics. The first of these describes the manner in which radial basis func-
tion neural networks (RBFNN) can be employed to solve the molecular vibrational 
Schrödinger equation to obtain wavefunctions and associated vibrational energies 
for multiple levels in a single calculation. In effect, an RBFNN is employed as an 
approximate wave function in a formalism in which the neurons of the RBFNN play 
the role of basis functions in the usual expansion methods for solution of the prob-
lem. Details of the method developed by Manzhos and Carrington76,77 are described 
in the first section of Chapter 10.
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The second section of Chapter 10 describes an application of NNs to simplify 
the electronic structure calculations required to obtain ab initio databases. As such, 
the method has the potential to become one of the most important applications of 
NNs to chemical reaction dynamics.

The biggest bottleneck to the execution of ab initio computation of reaction 
dynamics for complex systems is the extremely large computation times required 
to execute electronic structure calculations at a sufficiently high level of accuracy to 
obtain the extensive databases required to characterize complex chemical processes. 
This is, without doubt, the limiting factor in the execution of such investigations.

Malshe et al.78 have recently found that because the Hartree-Fock (HF) ener-
gies are highly correlated with the energies obtained from higher-level electronic 
structure calculations, it is possible to accurately predict the results of higher-level 
computation from HF results. This finding implies that large databases can be com-
puted at high level by computing only a small subset of the required database at high 
level, training an NN with the results, and then using the trained NN to predict the 
higher-level results from the HF energies. If this method proves to be robust, this 
will enormously expand the complexity of systems than can be investigated using 
purely ab initio methods. Also discussed in this section are analogous studies by 
Balabin and Lomakina79 that demonstrate that DFT results with large basis sets can 
be obtained from DFT calculations that employ much smaller basis set by using a 
trained NN.

Chapter 10 concludes with a discussion of results obtained by several research 
groups that demonstrate how the accuracy of electronic structure calculations of 
equilibrium properties can be significantly improved by employing NNs trained by 
fitting computational results to experimental data.

Finally, Neural Networks in Chemical Reaction Dynamics concludes in Chapter 11 
with a summary of the various applications of NNs related to chemical reaction 
dynamics that are covered in this monograph posing challenges, identifying some 
opportunities and limitations, and outlining future trends. The authors strongly 
believe that the approaches presented in this monograph using neural networks  
to develop potential-energy surfaces will play an increasingly important role in  
MD, MC, and quantum mechanical studies of chemical reaction dynamics in the 
years to come.
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2
Ov e r v i e w  of  S om e  Non –N e u r a l  
N e t wor k  M e t hod s  f or  F i t t i ng  

A b  I n i t i o  P o t e n t i a l -En  e r g y  Data b a s e s

2.1. Introduction

In this chapter, we describe results obtained by five methods that have been employed 
to fit ab initio potential-energy. These methods are (i) moving or modified Shepard 
interpolation (MSI),23–25 (ii) interpolative moving least squares (IMLS),28–33 (iii) 
invariant polynomials (IP),36,37 (iv) reproducing kernel Hilbert space (RKHS),26,27 
and (v) a hybrid method that combines MSI and IMLS methods.33a,33b The MSI and 
IMLS methods are described in some detail in the following. The IP and RKHS 
procedures are significantly more complex, and the reader is referred to the origi-
nal papers for a more complete discussion of the details by which these methods are 
executed.

2.2. Mov ing Sh epa r d Inter pol ation (MSI) M ethods

The moving or modified Shepard interpolation (MSI) method was developed pri-
marily by Collins and co-workers.23-25 The method employs electronic structure 
calculations to obtain the molecular potential energy at configuration points gener-
ated by an automated procedure. These data are then employed in a Shepard inter-
polation procedure24 to obtain the potential energies of the system at points other 
than those in the database. This procedure involves expressing the local potential 
about each configuration point in a Taylor series expansion. The term “moving” in 
the title derives from the fact that the set of internal coordinates employed in the 
interpolation varies from point-to-point in the database.

2.2.1. Required Input Data

Like all fitting methods, the MSI procedure requires the potential energy at a set of 
configuration points in the (3N-6) dimensional internal space of the system under 
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investigation. These energies are generally obtained using ab initio electronic struc-
ture methods at some level of accuracy.

In addition to the potential energies at each configuration point, the method 
also requires at least the first and second derivatives of the potential with respect to 
the coordinates being employed at each configuration point. These derivatives are 
needed to allow the local potential about a given configuration point in the database 
to be expressed in terms of a Taylor series expansion about that point. In principle, 
the MSI method may be extended to include third or fourth derivatives,80 but in most 
applications, the expansions are truncated after the quadratic terms. In some cases, 
depending upon the electronic structure method being employed, these derivatives 
can be computed analytically. In other cases, they must be obtained numerically 
using finite differences in the neighborhood of each configuration point.

Since the MSI procedure requires at least first and second derivatives, the num-
ber of data items needed at each configuration point is significantly greater than 
just the energy. If there are N atoms in the system, there will be 3N-6 internal 
coordinates at each data point. Consequently, there will be 3N-6 first derivatives  
of the energy and (3N-6)(3N-5)/2 second derivatives required since there are 
(3N-6)(3N-7)/2 off-diagonal, mixed second derivatives and 3N-6 diagonal second 
derivatives. The total number of derivatives needed is, therefore, (3N-6)(3N-3)/2. If 
N = 4, 27 derivatives will be needed in addition to the energy, so that 28 input data 
will be required at each configuration point. For a five-atom system, this total is 55.

At first glance, this would seem to impose a severe computational bottleneck on 
the MSI methods, but this is often not the case. If the electronic structure method 
being employed permits first and second derivatives to be evaluated analytically, 
the computation of these quantities increases the required computational effort 
only slightly. On the other hand, if the electronic structure method does not allow 
analytic computation of the second derivatives, then there will be a significant 
increase in the required computational time. However, even in this case, there is a 
compensating feature of the MSI method. The availability of so much information 
about the topology of the PES at each data point usually means that the database 
required by the method to attain convergence will be much smaller than would be 
the case if only the energy at each point were available.

2.2.2. MSI Method for Molecules with Four or Fewer Atoms

When N ≤ 4, the number of internal coordinates and the number of interparticle 
distances are the same. Consequently, the PES may be constructed using either the 
vector of interparticle distances, R = {R1, R2, . . . , R3N-6} or the vector of reciprocal 
interparticle distances, Z, where Z Rk k= −1. Since potential energies generally vary 
with some power of the reciprocal distances, a more physically reasonable asymp-
totic behavior is obtained if one employs the Zi as expansion variables rather than 
the Ri. This is the procedure used in all MSI applications.

At this point, it is assumed that the potential-energy database to which the ana-
lytic surface is to be fitted is available. The iterative procedure used to obtain this 


