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robert batterman

When I was in graduate school in the 1980s, philosophy of physics was focused
primarily on two dominant reasonably self-contained theories: Orthodox nonrel-
ativisitic quantum mechanics and relativistic spacetime theories. Of course, there
were a few papers published on certain questions in other fields of physics such
as statistical mechanics and its relation to thermodynamics. These latter, however,
primarily targeted the extent to which the reductive relations between the two theo-
ries could be considered a straightforward implementation of the orthodox strategy
outlined by Ernest Nagel.

Philosophical questions about the measurement problem, the question of the
possibility of hidden variables, and the nature of quantum locality dominated the
philosophy of physics literature on the quantum side. Questions about relationalism
vs. substantivalism, the causal and temporal structure of the world, as well as issues
about underdetermination of theories dominated the literature on the spacetime
side. Some worries about determinism vs. indeterminism crossed the divide between
these theories and played a significant role in shaping the development of the field.
(Here I am thinking of Earman’s A Primer on Determinism (1986) as a particular
driving force.)

These issues still receive considerable attention from philosophers of physics.
But many philosophers have shifted their attention to other questions related to
quantum mechanics and to spacetime theories. In particular, there has been con-
siderable work on understanding quantum field theory, particularly from the point
of view of algebraic or axiomatic formulations. New attention has also been given
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to philosophical issues surrounding quantum information theory and quantum
computing. And there has, naturally, been considerable interest in understanding
the relations between quantum theory and relativity theory. Questions about the
possibility of unifying these two fundamental theories arise. Relatedly, there has
been a focus on understanding gauge invariance and symmetries.

However, I believe philosophy of physics has evolved even further, and this
belief prompts the publication of this volume. Recently, many philosophers have
focused their attentions on theories that, for the most part, were largely ignored
in the past. As noted above, the relationship between thermodynamics and sta-
tistical mechanics—once thought to be a paradigm instance of unproblematic
theory reduction—is now a hotly debated topic. Philosophers and physicists
have long implicitly or explicitly adopted a reductionist methodological bent.
Yet, over the years this methodological slant has been questioned dramatically.
Attention has been focused on the explanatory and descriptive roles of “non-
fundamental,” phenomenological theories. In large part because of this shift of
focus, “old” theories such as classical mechanics, once deemed to be of little
philosophical interest, have increasingly become the focus of deep methodological
investigations.

Furthermore, some philosophers have become more interested in less “funda-
mental” contemporary physics. For instance, there are deep questions that arise in
condensed matter theory. These questions have interesting and important impli-
cations for the nature of models, idealizations, and explanation in physics. For
example, model systems, such as the Ising model, play important computational
and conceptual roles in understanding how there can be phase transitions with
specific characteristics. And, the use of the thermodynamic limit is an idealization
that (some have argued) plays an essential, ineliminable role in understanding and
explaining the observed universality of critical phenomena. These specific issues are
discussed in several of the chapters in this volume.

In the United States during the 1970s and 1980s, there was a great debate
between particle physicists who pushed for funding of high-energy particle accel-
erators and solid-state or condensed-matter theorists for whom the siphoning off
of so much government funding to “fundamental” physics was unacceptable. A
famous paper championing the latter position is Philip Anderson’s “More Is Dif-
ferent” (1972). Not only was this a debate over funding, but it raised issues about
exactly what should count as “fundamental” physics. While historians of physics
have focused considerable attention on this public debate, philosophers of physics
have really only recently begun to engage with the conceptual implications of the
possibility that condensed matter theory is in some sense just as fundamental as
high-energy particle physics.

This collection aims to do two things. First, it tries to provide an overview of
many of the topics that currently engage philosophers of physics. And second, it
focuses attention on some theories that by orthodox 1980s standards would not
have been considered fundamental. It strives to survey some of these new issues and
the problems that have become a focus of attention in recent years. Additionally,
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it aims to provide up-to-date discussions of the deep problems that dominated the
field in the past.

In the first chapter, “For a Philosophy of Hydrodynamics,” Olivier Darrigol
focuses attention on lessons that can be learned from the historical development
of fluid mechanics. He notes that hydrodynamics has probably received the least
attention of any physical theory from philosophers of physics. Hydrodynamics is
not a “fundamental” theory along the lines of quantum mechanics and relativity
theory, and its basic formulation has not evolved much for two centuries. These
facts, together with a lack of detailed historical studies of hydrodynamics, have
kept the theory off the radar.1 Darrigol provides an account of the development
of hydrodynamics as a complex theory—one that is not fully captured by the basic
Navier-Stokes equations. For the theory to be applicable, particularly for it to play
an explanatory role, a host of techniques—idealizations, modeling strategies, and
empirically determined data must come into play. This discussion shows clearly
how intricate, sophisticated, and modern the theory of hydrodynamics actually
is. Darrigol draws a number of lessons about the structures of phenomenological
theories from his detailed discussion, focusing particularly on what he calls the
“modular structure” of hydrodynamics.

Continuing the discussion of “old”—but by no means dead or eliminated—
theories, Mark Wilson takes on the formidable task of trying to say exactly what is
the nature of classical mechanics. A common initial reaction to this topic is to dis-
miss it: “Surely we all know what classical mechanics is! Just look at any textbook.”
But as Wilson shows in “What Is ‘Classical Mechanics’ Anyway?”, this dismissive
attitude is misleading on a number of important levels. Classical mechanics is like
a five-legged stool on a very uneven floor. It shifts dramatically from one founda-
tional perspective to another depending upon the problem at hand, which in turn
is often a function of the scale length at which the phenomenon is investigated.
In the context of planetary motions, billiards, and simplified ideal gases in boxes,
the point-particle interpretation of classical mechanics will most likely provide an
appropriate theoretical setting. However, as soon as one tries to provide a more
realistic description of what goes on inside actual billiard ball collisions, one must
consider the fact that the balls will deform and build up internal stresses upon colli-
sion. In such situations, the point-particle foundation will fail and one will need to
shift to an alternative foundation, provided by classical continuum mechanics. Yet
a third potential foundation for classical mechanics can be found within so-called
analytic mechanics, in which the notion of a rigid body becomes central. Here con-
straint forces (such as the connections that allow a ball to roll, rather than skid, down
an inclined plane) play a crucial role. Forces of this type are not wholly consistent
with the suppositions central to either the point-particle or continuum points of
view. A major lesson from Wilson’s discussion is that classical mechanics should best
be thought of as constituted by various foundational methodologies that do not fit

1 Darrigol’s recent Worlds of Flow fills this lacuna providing an exceptional discussion of the history (Darrigol
2005).
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particularly well with one another. This goes against current orthodoxy that a theory
must be seen as a formally axiomatizable consistent structure. On the contrary, to
properly employ classical mechanics for descriptive and explanatory purposes, one
pushes a foundational methodology appropriate at one scale of investigation to its
limiting utility, after which one shifts to a different set of classical modeling tools in
order to capture the physics active at a lower size scale. Wilson argues that a good
deal of philosophical confusion has arisen from failing to recognize the complicated
scale-dependent structures of classical physics.

Sheldon Smith’s contribution adds to our understanding of a particular aspect
of classical physics. In “Causation in Classical Mechanics,” he addresses skeptical
arguments initiated by Bertrand Russell to the effect that causation is not a funda-
mental feature of the world. In the context of classical physics, one way of making
this claim more precise is to argue that there is no reason to privilege retarded over
advanced Green’s functions for a system. Green’s functions, crudely, describe the
effect of an instantaneous, localized disturbance that acts upon the system. It seems
that the laws of motion for electromagnetism or for the behavior of a harmonic
oscillator do not distinguish between retarded (presumably “causal”) and advanced
(presumably “acausal”) solutions. If there is to be room for a principle of causality
in classical physics, then it looks like we need to find extra-nomological reasons to
privilege the retarded solutions. Smith surveys a wide range of attempts to answer
the causal skeptic in the contexts of the use of Green’s functions and the imposition
of (Sommerfeld) radiation conditions, among other attempts. The upshot is that
it is remarkably difficult to find justification within physical theory for the maxim
that causes precede their effects.

The next chapter, by Leo Kadanoff, focuses on condensed matter physics. In
particular, Kadanoff discusses progress in physically understanding the fact that
matter can abruptly change its qualitative state as it undergoes a phase transition.
An everyday example occurs with the boiling water in a teakettle. As the temper-
ature increases, the water changes from its liquid phase to its vapor phase in the
form of steam. Mathematically, such transitions are described by an important con-
cept called an order parameter. In a first-order phase transition, such as the liquid
vapor transition, the order parameter changes discontinuously. Certain phase tran-
sitions, however, are continuous in the sense that the discontinuity in the behavior
of the order parameter approaches zero at some specific critical value of the relevant
parameters such as temperature and pressure. For a long time there were theoret-
ical attempts to understand the physics involved in such continuous transitions
that failed to adequately represent the actual behavior of the order parameter as
it approached its critical value. The development of the renormalization group in
the 1970s remedied this situation. Kadanoff played a pivotal role in the conceptual
development of renormalization group theory. In this chapter, he focuses on these
developments (particularly, the improvement upon early mean field theories) and
on a deeply interesting feature he calls the “extended singularity theorem.” This is
the idea that sharp, qualitatively distinct, changes in phase involve the presence of
a mathematical singularity. This singularity typically emerges in the limit in which
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the system size becomes infinite. The understanding of the behavior of systems
at and near phase transitions requires radically different conceptual apparatuses. It
involves a synthesis between standard statistical mechanical uses of probabilities and
concepts from dynamical systems theory—particularly, the topological conceptions
of basins of attraction and fixed points of a dynamical transformation.

The discussion of the renormalization group and phase transitions continues as
Tarun Menon and Craig Callender examine several philosophical questions raised
by phase transitions. Their chapter, “Turn and Face the Strange …Ch-ch-changes,”
focuses on the question of whether phase transitions are to be understood as gen-
uinely emergent phenomena. The term “emergent” is much abused and confused in
both the philosophical and physics literatures and so Menon and Callender provide
a kind of road map to several concepts that have been invoked in the increasing
number of papers on emergence and phase transitions. In particular, they discuss
conceptions of reduction and corresponding notions of emergence: conceptual
novelty, explanatory irreducibility, and ontological irreducibility. Their goal is to
establish that for any reasonable senses of reducibility and emergence, phase transi-
tions are not emergent phenomena, and they do not present problems for those of a
reductionist explanatory bent. In a sense, their discussion can be seen as challenging
the importance of the extended singularity theorem mentioned above. Menon and
Callender also consider some recent work in physics that attempts to provide well-
defined notions of phase transition for finite systems. Their contribution serves to
highlight the controversial and evolving nature of our philosophical understanding
of phase transitions, emergence, and reductionism.

Jonathan Bain’s contribution on“Effective Field Theories” looks at several phys-
ical and methodological consequences of the fact that some theories at low-energy
scales are effectively independent of, or decoupled from, theories describing systems
at higher energies. Sometimes we know what the high-energy theory looks like and
can follow a recipe for constructing low-energy effective theories by systematically
eliminating high-energy interactions that are essentially “unobservable” at the lower
energies. But, at other times, we simply do not know the correct high-energy theory,
yet nonetheless, we still can have effective low-energy theories. Broadly construed,
hydrodynamics is an example of the latter type of effective theory, if we consider
it as a nineteenth century theory constructed before we knew about the atomic
constitution of matter. Bain’s focus is on effective theories in quantum field theory
and condensed matter physics. His discussion concentrates on the intertheoretic
relations between low-energy effective theories and their high-energy counterparts.
Given the effective independence of the former from the latter, should one think of
this relation as autonomous or emergent? Bain contends that an answer to this ques-
tion is quite subtle and depends upon the type of renormalization scheme employed
in constructing the effective theory.

My own contribution to the volume concerns a general problem in physical
theorizing. This is the problem of relating theories or models of systems that appear
at widely separated scales. Of course, the renormalization group theory (discussed
by Kadanoff, Menon and Callender, and Bain in this volume) is one instance of
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bridging across scales. But more generally, we may try to address the relations
between finite statistical theories at atomic and nanoscales and continuum theories
that apply at scales 10+ orders of magnitude higher. One can ask, for example, why
the Navier-Cauchy equations for isotropic elastic solids work so well to describe
the bending behavior of steel beams at the macroscale. At the microscale the lattice
structure of iron and carbon atoms looks nothing like the homogeneous macroscale
theory. Nevertheless, the latter theory is remarkably robust and safe. The chapter
discusses strategies for upscaling from theories or models at small scales to those at
higher scales. It examines the philosophical consequences of having to consider, in
one’s modeling practice, structures that appear at scales intermediate between the
micro and the macro.

There has been considerable debate about the nature of symmetries in phys-
ical theories. Recent focus on gauge symmetries has led philosophers to a deeper
understanding of the role of local invariances in electromagnetism, particle physics,
and the hunt for the Higgs’ particle. Sorin Bangu provides a broad and compre-
hensive survey of concepts of symmetry and invariance in his contribution to this
volume. One of the most seductive features of symmetry considerations comes out
of Wigner’s suggestion that one might be able to understand, explain, or ground
laws of nature by appeal to a kind of superprinciple expressing symmetries and
invariances that constrain laws to have the forms that they do. On this conception
symmetries are, perhaps, ontologically and epistemically prior to laws of nature.
This raises deep questions for further research on the relationship between formal
mathematical structures and our physical understanding of the world.

Gordon Belot also considers issues of symmetry and invariance. His contribu-
tion explores the connections between being a symmetry of a theory—a map that
leaves invariant certain structures that encode the laws of the theory—and what
it is for solutions to a theory to be physically equivalent. It is fairly commonplace
for philosophers to adopt the idea that, in effect, these two notions coincide. And
if they do, then we have tight connection between a purely formal conception of
the symmetries of a theory and a methodological/interpretive conception of what
it is for two solutions to represent the same physical state of affairs. Belot notes that
in the context of spacetime theories there seem to be well-established arguments
supporting this tight connection between symmetries and physical equivalence.
However, he explores the difficulties in attempting to generalize this connection
in contexts that include classical dynamical theories. Belot examines different ways
one might make precise the notion of the symmetries of a classical theory and
shows that they do not comport well with reasonable conceptions of physical equiv-
alence. The challenge to the reader is then to find appropriate, nontrivial notions
of symmetries for classical theories that will respect reasonable notions of physical
equivalence.

Yet another type of symmetry, permutation symmetry, is the subject of the
chapter by Simon Saunders, entitled “Indistinguishability.” He focuses on the
proper understanding of particle indistinguishability in classical statistical mechan-
ics and in quantum theory. In the classical case, Gibbs had already (prior to
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quantum mechanics) recognized a need to treat particles, at least sometimes, as
indistinguishable. This is related to the infamous Gibbs paradox that Saunders
discusses in detail. The concept of “indistinguishability” had meanwhile entered
physics in a completely new way, involving a new kind of statistics. This came with
the derivation of Planck’s spectral distribution, in which Planck’s quantum of action
h first entered physics. Common wisdom has long held that particle indistinguisha-
bility is strictly a quantum concept, inapplicable to the classical realm; and that
classical statistical mechanics is anyway only the classical limit of a quantum theory.
This fits with the standard view of the explanation of quantum statistics (Bose-
Einstein or Fermi-Dirac statistics): departures from classical (Maxwell-Boltzmann)
statistics are explained by particle indistinguishability. With this Saunders takes
issue. He shows how it is possible to treat the statistical mechanical statistics for
classical particles as invariant under permutation symmetry in exactly the same way
that it is treated in the quantum case. He argues that the conception of permutation
symmetry deserves a place alongside all the other symmetries and invariances of
physical theories. Specifically, he argues that the concept of indistinguishable, per-
mutation invariant, classical particles is coherent and reasonable contrary to many
claims found in the literature.

Margaret Morrison’s topic is “Unification in Physics.” She argues that there
are a number of distinct senses of unification in physics, each of which has dif-
ferent implications for how we view unified theories and phenomena. On the one
hand, there is a type of unification that is achieved via reductionist programs.
Here a paradigm example is the unification provided by Maxwellian electrody-
namics. Maxwell’s emphasis on mechanical models in his early work involved the
introduction of the displacement current, which was necessary for a field theo-
retic representation of the phenomena. These models also enabled him to identify
the luminiferous aether with the medium of transmission of electromagnetic phe-
nomena. Two aethers were essentially reduced to one. When these models were
abandoned in his later derivation of the field equations, the displacement current
provided the unifying parameter or theoretical quantity that allowed for the iden-
tification of electromagnetic and optical phenomena within the framework of a
single field theoretic account. This type of unification was analogous to Newton’s
unification of the motions of the planets and terrestrial trajectories under the same
(gravitational) theoretical framework. However, not all cases of unification are of
this type. Morrison discusses the example of the electroweak theory in some detail,
arguing that this unificatory success represents a kind of synthetic, rather than
reductive, unity. The electroweak theory also involves a unifying parameter, namely,
the “Weinberg angle.” However, the unity achieved through gauge symmetry is a
synthesis of structure, rather than of substance, as exemplified by the reductive
cases. Finally, in calling attention to the difficulties with the Standard Model more
generally, Morrison notes that yet a different kind of unification is achieved in the
framework of effective field theory. This provides another vantage point from which
to understand the importance of the renormalization group. Morrison argues for
a third type of unification in terms of the universality classes, one that focuses on
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unification of phenomena but should be understood independently of the type of
micro-reduction characteristic of unified field theory approaches.

As noted earlier, there continues to be significant research on foundational
problems in quantum mechanics. Guido Bacciagaluppi’s chapter provides an up-
to-date discussion of work on two distinct problems in the foundations of quantum
mechanics that are typically conflated in the literature. These are the problem of
the classical regime and the measurement problem. Both problems arise from deep
issues involving entanglement and the failure of an ignorance interpretation of
reduced quantum states. Bacciagaluppi provides a contemporary and thorough
introduction to these issues. The problem of the classical regime is that of providing
a quantum mechanical explanation or account of the success of classical physics at
the macroscale. It is, in essence, a problem of intertheoretic relations. Contemporary
work has concentrated on the role of environmental decoherence in the emergence
of classical kinetics and dynamics. Bacciagaluppi argues that the success of appeals to
decoherence to solve this problem will depend upon one’s interpretation of quantum
mechanics. He surveys an ontologically minimalist instrumental interpretation and
a standard, ontologically more robust or realistic interpretation.

The measurement problem is the distinct problem of deriving the collapse
postulate and the Born rule from the first principles (Schrödinger evolution) of the
quantum theory. In examining the measurement problem, Bacciagaluppi provides a
detailed presentation of a modern, realistic theory of measurement that goes beyond
the usual idealized discussions of spin measurements using Stern-Gerlach magnets.
This discussion generalizes the usual collapse postulate and the Born rule to take into
account the fact that real measurements are unsharp. It does so by employing the
apparatus of positive operator value (POV) measures and observables. The upshot
is that the measurement problem remains a real worry for someone who wants
to maintain a standard, reasonably orthodox interpretation of quantum theory.
Perhaps Everett theories, GRW-like spontaneous collapse theories, and so on are
required for a solution.

The Everett, or Many Worlds, interpretation of quantum mechanics is the sub-
ject of David Wallace’s chapter. It is well known that the linearity of quantum
mechanics leads, via the principle of superposition, to the possibility that macro-
scopic objects such as cats can be found in bizarre states—superpositions of being
alive and being dead. Wallace argues that a proper understanding of what quantum
mechanics actually says will enable us to understand such bizarre situations in a
way that does not involve changing the physics (e.g., as in Bohmian hidden vari-
able mechanics or GRW spontaneous collapse theories). Neither, he claims, does
it involve changing one’s philosophy by, for example, providing an operationalist
interpretation that imposes some special status to the observer or to what counts
as measurement, along the lines of Bohr. Such interpretations are at odds with our
understanding of, say, the role of the observer in the rest of science. Wallace argues
for a straightforward, fully realist interpretation of the bare mathematical formalism
of quantum mechanics and claims that this interpretation will make sense of super-
posed cats, and so on, without changing the theory and without changing our overall
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view of science. The straightforward realist interpretation that is to do all of this
work is the Everett interpretation. Prima facie, this claim is itself bizarre: after all, the
Everett interpretation has us multiplying worlds or universes upon measurements.
Nevertheless, Wallace makes a strong case that an understanding of superposition
as a description of multiplicity, rather than of the indefiniteness of states, is exactly
what is needed. Furthermore, that is exactly what the Everett interpretation (and
no other) provides. The bulk of Wallace’s contribution examines various problems
that have been raised for the Everett interpretation. In particular, he focuses on
(1) the problem of providing a preferred basis—what actually justifies our under-
standing of superposition in terms of multiplicity of worlds, and (2) the probability
problem—how to understand the probabilistic nature of quantum mechanics if one
has only the fully deterministic dynamics provided by the Schrödinger equation. He
argues that the contemporary understanding of the Everett interpretation has the
resources to address these issues.

Laura Ruetsche’s chapter“Unitary Equivalence and Physical Equivalence” inves-
tigates a question of deep physical and philosophical importance: The demand
for criteria establishing the physical equivalence of two formulations of a physical
theory. In “ordinary” quantum mechanics the received view is that two quantum
theories are physically equivalent just in case they are unitarily equivalent. Any pair
of theories purporting, say, to describe two entangled spin 1/2 systems are really
just one and the same because of the Jordan and Wigner theorem showing that a
theory that represents the canonical anticommutation relations for a system of n
spins is unique up to unitary equivalence. A similar theorem due to Stone and von
Neumann guarantees an analogous result for any Hilbert space representation of
the canonical commutation relations for a Hamiltonian system. What are the con-
sequences of the breakdown of unitary equivalence for those quantum systems for
which these theorems fail to hold? Such systems include the infinite systems studied
in quantum field theory, quantum statistical mechanics, and even simpler infinite
systems like an infinite one-dimensional chain of quantum spins. She calls these
theories collectively QM∞. The plethora of unitarily inequivalent representations
in these infinite cases demands that we revisit our assumptions about physical equiv-
alence and the nature of quantum theories. Ruetsche examines various competing
suggestions, or competing principles that may guide the investigation into this
problem.

The next chapter, by Oliver Pooley, provides an up-to-date, comprehensive
discussion of substantivalist and relationalist approaches to spacetime. Crudely,
this is a debate about the ontology of our theories of space and spacetime. The
substantivalists hold that among the fundamental objects of the world is space-
time itself. Relationists, to the contrary, deny that propositions about spacetime
are ultimately to be understood in terms of claims about material objects and pos-
sible spatiotemporal relations that may obtain between them. Pooley presents a
historical introduction, as well as a detailed discussion of the current landscape in
the literature. Specifically, he considers recent relationist, neo-Machian proposals by
Barbour, as well as dynamical approaches favored by Brown, and Pooley and Brown,
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that aim to provide a reductive account of the spacetime symmetries in terms of
the dynamical symmetries of laws governing the behavior of matter. In addition,
Pooley provides a current assessment of the impact of the so-called Hole Argument
against substantivalism.

In “Global Spacetime Structure” John Manchak examines the qualitative, pri-
marily topological and causal, aspects of general relativity. He provides an abstract
classification of various local and global spacetime properties. In the global causal
context he explicitly defines a set of causal conditions that form a strict hierarchy
of possible casual properties of spacetime. The strongest is the condition of global
hyperbolicity, which implies others including causality and chronology. Another set
of global properties of spacetime concerns in what sense a spacetime can be said
to possess singularities. Here he focuses on the notion of geodesic incompleteness.
Manchak then takes up philosophical questions concerning the physical reasonable-
ness of these various spacetime properties. In a local context, being a solution to
Einstein’s Field Equation is typically taken to be physically reasonable. But, global
properties concerning the existence and nature of singularities and the possibility of
time travel lead to open questions of philosophical interest that are currently being
investigated.

Last, but not least, Chris Smeenk’s contribution concerns philosophical issues
raised in contemporary work on cosmology. A common view is that cosmology
requires a distinctive methodology because the universe-as-a-whole is a unique
object. Restrictions on observational access to the universe due to the finite speed of
light pose severe challenges to establishing global properties of the universe. How can
we know that the local generalizations we take to be lawful in our limited region can
be extended in a global fashion? Here, of course, there is overlap with the discussions
of the previous chapter. Successes of the so-called Standard Model for cosmology
include big-bang nucleosynthesis and the understanding of the cosmic background
radiation, among others. Challenges to the Standard Model result from growing
evidence that if it is correct, then most of the matter and energy present in the
universe is not what we would consider ordinary. Instead, there apparently needs to
be dark matter and dark energy. Smeenk provides an overview of recent hypothe-
ses about dark matter and energy, and relates these discussions to philosophical
debates about underdetermination. A different kind of problem arises in assessing
theories regarding the very early universe. These theories are often motivated by
the idea that the initial state required by the Standard Model is highly improbable.
This deficiency can be addressed by introducing a dynamical phase of evolution,
such as inflationary cosmology, that alleviates this need for a special initial state.
Smeenk notes that assessing this response to fine-tuning is connected with debates
about explanation and foundational discussions regarding time’s arrow. One very
important aspect of recent work in cosmology is the appeal to anthropic reasoning
to help explain features of the early universe. A second recent development, often
related to anthropic considerations, is the multiverse hypothesis—the existence of
causally isolated pocket universes. This chapter brings these fascinating issues to the
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fore and raises a number of philosophical questions about the nature of explanation
and confirmation appropriate for cosmology.

It is my hope that readers of this volume will gain a sense of the wide variety of
issues that constitute the general field of philosophy of physics. The focus of the field
has expanded tremendously over the last thirty years. New problems have come up,
and old problems have been refocused and refined. It is indeed my pleasure to thank
all of the authors for their contributions. In addition, I would like to thank Peter
Ohlin from Oxford University Press. A number of others contributed to this project
in various ways. I am particularly indebted to Gordon Belot, Julia Bursten, Nicolas
Fillion, Laura Ruetsche, Chris Smeenk, and Mark Wilson for invaluable advice and
support.
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olivier darrigol

Among the major theories of physics, hydrodynamics is probably the one that
has received the least attention from philosophers of science. Until recently, three
circumstances easily explained this neglect. First, there was very little historical
literature on which philosophers could rely. Second, philosophers tended to focus
on fundamental theories such as relativity theory and quantum theory and to neglect
more phenomenological theories. Third, they harbored a neo-Hempelian concept
of explanation following which the foundations of a theory implicitly contain all its
explanatory apparatus.1 Even Thomas Kuhn, who brought the “normal” phases of
science to the fore, restricted conceptual innovation to the revolutionary phases.2

Since the fundamental equations of hydrodynamics have remained essentially the
same for about two centuries, this view reduces the development of this theory to a
matter of technical prowess in solving the equations.

In recent years these three circumstances have lost much of their weight. We
now have fairly detailed histories of hydrodynamics.3 The superiority of funda-
mental theories over lower scale or phenomenological theories has been multiply
challenged, both within science and in the philosophy of science.4 And there has
been a growing awareness that explanation mostly resides in devices that are not
contained in the bare foundations of a theory. For example, Mary Morgan and

I thank Robert Batterman for his useful comments on a draft of this essay.

1 For a criticism of the Hempelian view, cf. Heidelberger 2006, 49–50.
2 Kuhn 1961.
3 Darrigol 2005, hereinafter abbreviated as WF ; Eckert 2005.
4 Cf., e.g., Cartwright 1983, 1999; Cat 1998.
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Margaret Morrison have emphasized the role of models as mediators between
theory and experiment; Jeffry Ramsey has argued the conceptual significance of
approximations and “transformation reductions”; Robert Batterman has made
explanation depend on strategies for the elimination of irrelevant details in the
foundations; Paul Humphreys has placed computability at the center of his assess-
ment of the nature and value of scientific knowledge. Eric Winsberg has shown the
importance of extratheoretical considerations in judging the validity of numerical
simulations based on the fundamental equations. Already in 1983, Ian Hacking
and C. W. F. Everitt, who were more in touch with the actual practice of physicists
than average philosophers, introduced “theory articulation” or “calculation” as an
essential “semantic bridge between theory and observation.”5

Granting that theory articulation is as philosophically important as the build-
ing of foundations, hydrodynamics becomes a topic of exceptional philosophical
interest largely because of the huge time span between the establishment of its
foundations and its successful application to some of the most pressing engineering
problems. This delay is an indirect proof of the creativity needed to expand the
explanatory power of theories. It enables us to observe a rich sample of the devices
through which explanatory expansion may occur. Margaret Morrison, Michael
Heidelberg, and Moritz Epple have recently given philosophical studies of two of
these devices: Ludwig Prandtl’s boundary-layer theory and his wing theory. The
present essay is conducted in the same spirit.6

The first section gives a few historical examples of the means by which hydrody-
namics became applicable to a growing number of concrete situations. The second
provides a tentative classification of these means. The third contains a definition of
physical theories that includes their evolving explanatory apparatus. Special empha-
sis is given to a “modular structure” of theories that makes them more amenable to
tests, comparisons, communication, and construction.7

1. Some History
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In the mid-eighteenth century, Jean le Rond d’Alembert and Leonhard Euler for-
mulated the general laws of motion of a nonviscous fluid. In Euler’s form, calling
v the velocity of the fluid, P its pressure, ρ its density, and f an impressed force

5 Morrison and Morgan 1999; Ramsey 1993, 1995; Batterman 2002; Humphreys 2004; Winsberg 1999; Hacking
1983, 215. Kuhn earlier applied the word “articulation” to the paradigms of normal science. In 1974, Hilary
Putnam noted “in passing” a pervasive but neglected schema for scientific problems, “schema III,” in which
the fundamental laws of the theory and some auxiliary statements are known but the factual consequences are
unknown (Putnam 1974, 261–62).

6 Morrison 1999; Heidelberger 2006; Epple 2002.
7 The foundations of hydrodynamics, though historically stable, are not devoid of philosophical interest. As

Clifford Truesdell pointed out long ago, some of its basic concepts, such as the concept of internal stress, are
indeed problematic (Truesdell 1968; Darrigol 2007). The relation of these foundations to general mechanics
and to statistical mechanics (for instance, the kinetic theory of gases) is another philosophically interesting
topic (Yamalidou 1998). For the sake of homogeneity, I confine this essay to post-foundational developments.



14 the oxford handbook of philosophy of physics

density, these laws are given by the equation of motion

ρ

(
∂v

∂t
+ (v · ∇)v

)
= f −∇P ,

the equation of continuity,

∇ ·ρv+ ∂ρ
∂t
= 0,

and the boundary condition that the fluid velocity next to the walls of a rigid
container should be parallel to these walls. If the fluid has a free surface at which
it touches another fluid, the boundary conditions (later provided by Lagrange) are
the equality of the pressures of the two fluids, and the condition that a particle of
the surface of one fluid should remain on its surface.8

Euler’s derivation of the equation of fluid motion assumes the pressure between
two contiguous fluid parts to be perpendicular to the separating surface, as is the case
in hydrostatics. In 1822 Claude Louis Navier implicitly dropped this assumption by
comparing the internal fluid forces with the molecular forces of his general theory
of elasticity. The resulting equation of motion is the Navier-Stokes equation

ρ

[
∂v

∂t
+ (v · ∇)v

]
= f −∇P +μ�v,

which involves the viscosity μ. This equation was reinvented several times. There
was much hesitation on the proper boundary conditions, although in 1845 George
Gabriel Stokes correctly argued for a vanishing relative velocity of the fluid next to
rigid bodies.9

From a mathematical point of view, the most evident goal of the theory is to
integrate the equations of motion for any given initial conditions and boundary
conditions. There are at least three reasons not to confine fluid mechanics to this
goal:

1. In the case of a compressible fluid, the system of equations is not complete
because one needs the relation between pressure and density. This relation
implies thermodynamic considerations, and therefore forces us to leave the
narrow context of fluid mechanics.

2. It is generally impossible to solve the equations by analytical means because
of their nonlinear character. Moreover, the few restricted cases in which this
is possible may have little or no resemblance with actual flow because of
instabilities. Nowadays, numerical integration is often possible and is,
indeed, sufficient for some engineering problems. This leads us to the third
caveat.

3. The answer to most physical questions regarding fluid behavior is not to be
found in the solution of specific boundary-value problems. Rather, the

8 Euler 1755. Cf. Truesdell 1954; WF, chap. 1.
9 Navier 1822; Stokes [1845] 1849. Cf. WF, chap. 3.
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physicist is often interested in generic properties of classes of solutions. In
mathematical terms, we need to have a handle on the structure of the space
of solutions.

What do physicists do when the solution of boundary problems no longer
serves their interests? In order to answer this question, we will consult some of the
historical evolution of hydrodynamics.

1.1 Bernoulli’s Law

From a practical point of view, the main result that Euler could derive from his new
hydrodynamics was the law

P = ρg · r− 1
2ρυ

2+ constant

relating the pressure P , the position r, and the velocity v for the steady motions of an
incompressible fluid that admit a velocity potential (g is the acceleration of gravity).
This achievement may seem meager for the following reasons:10 the law had already
been derived by Daniel Bernoulli in the 1730s as an application of the conservation
of live force (energy) to steady, parallel-slice, incompressible fluid motion; the law
requires a narrow specialization of the theory; one aspect of this specialization, the
existence of a velocity potential, is (or was) physically obscure (its original purpose
was to simplify the equations of motion and to permit their integration); under
this specialization, the law is a straightforward mathematical consequence of Euler’s
equations.

From these remarks, one might be tempted to judge that Bernoulli’s law adds
nothing significant to the fundamental equations of hydrodynamics. Yet the practice
of physicists and engineers suggests the contrary: This law is used in many circum-
stances, surely more often than Euler’s equations themselves. There are several good
reasons for this:

(1) Bernoulli’s law relates easily accessible parameters of fluid motion in a
simple manner, without any reference to the subtleties of the underlying
dynamics;

(2) it is related to the general principle of energy conservation, which bridges
hydrodynamics with mechanics;

(3) it provides the basis for the hydraulicians’ language of pressure head,
velocity head, and gravity head; and

(4) this language is still used when the law is violated.

Although this last point may seem paradoxical, it illustrates a highly important
mode of concept formation in the post-foundational life of a theory: the solutions of
the general theory are characterized with reference to the solutions of a more work-
able specialization of this theory. The concepts engendered by the specialization

10 Euler 1755; Bernoulli 1738.
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thus enrich the language of the general theory. They are useful as long as the law
is valid in parts of the investigated system and as long as the loci of its violations
are sufficiently understood. In typical hydraulic systems, there are regular pipes and
reservoirs in which the law applies with a known correction (viscous or boundary-
layer retardation in pipes) and there are phenomenologically or theoretically known
“losses of head” when some accidents, such as pipe-to-pipe connections or sudden
enlargements of the section of a pipe, occur.

1.2 Surface Waves

Historically, the second successful application of Euler’s equations was to the prob-
lem of water waves. In this case, specialization is also necessary: the fluid is taken
to be incompressible and a velocity potential is assumed. Moreover, some approxi-
mations must be introduced to circumvent the nonlinearity of the equations. In a
memoir of 1781, Joseph Louis Lagrange originally assumed waves of small ampli-
tude and of length much larger than the depth of the water. In the mid-1810s,
Siméon Denis Poisson and Augustin Cauchy did without the latter approximation.
The resulting differential equation for the deformation of the water surface is linear,
and it admits sine-wave solutions whose propagation velocity depends on the wave-
length. At this (first-order) approximation, one may use an autonomous language
of sine waves that is no longer reminiscent of the underlying fluid dynamics and
that is equally applicable to other kinds of linear waves. All one needs to know is
how to combine (superpose) various sine waves in order to accommodate given ini-
tial shapes or perturbations of the water surface. We here encounter a second case
of bridging of hydrodynamics with other theories: the introduction of concepts
that apply to similar modes of motion in different theories (optics, hydrodynamics,
acoustics . . .).11

This is not to say that all linear wave problems are understood once we know
the dispersion law (how the velocity of a sine wave depends on its wavelength).
Historically, much effort was needed to understand the structure of a superposition
of sine waves. Employing strictly mathematical methods, Poisson and Cauchy only
succeeded in describing the wave created by a stone thrown into a pond. John
Scott Russell (in 1844) and William Froude (in 1873) later observed that the front
of a group of waves traveled at a smaller velocity than individual waves in the
group. In 1876, Stokes gave the modern theoretical explanation in terms of phase
and group velocity. Ten years later, William Thomson (Lord Kelvin) determined
the form of ship waves by a clever application of these concepts. On the physical
side of his deduction, he relied on the optical “principle of interference.” On the
mathematical side, he invented the method of the stationary phase, which is now
commonly used in various domains of physics. Again, we have a case of concepts
and tools generated in a region of a given theory but ultimately applied to regions

11 Lagrange 1781; Poisson 1816; Cauchy [1815] 1827. Cf. WF, 35–47.
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of many other theories (by region, I mean a restriction of the theory to a limited
class of systems and boundary conditions). These concepts were partly derived by
a mathematical process of specialization and approximation, partly by observation,
partly by analogy with other domains of physics.12

Similar remarks apply to the case of nonlinear waves. George Biddell Airy and
Stokes tamed nonlinear periodic waves by successive approximations to the fun-
damental equations, with applications to ocean waves and river tides. This was
a mostly mathematical process of a cumbersome but fairly automatic nature. In
contrast, Scott Russell observed solitary waves (isolated swells) of invariable shape
long before theorists admitted their possibility. When Joseph Boussinesq and Lord
Rayleigh at last deduced such waves from theory, it became clear that qualitative
results (such as the deformation of traveling waves) derived by considering sepa-
rately a small-depth (nondispersive) approximation and a small-amplitude (linear)
approximation, no longer obtained when the depth and amplitude were both large.
The compensation of the dispersive and nonlinear causes of deformation for waves
of a properly selected shape is a mechanism which, again, applies to many other
domains of physics.13

1.3 Vortex Motion

Early fluid mechanics usually assumed the existence of a velocity potential because it
greatly simplified the fundamental equations and also because Lagrange had shown
that it resulted from the equations of motion for a large class of boundary con-
ditions (motion started from rest and caused by moving solids). Another reason,
emphasized by British fluid theorists, was the fact that the velocity potential of an
incompressible fluid obeys the same differential equation (Laplace’s equation) as the
gravitational, electric, and magnetic potentials. This formal analogy was a constant
source of inspiration for Stokes, Thomson, and James Clerk Maxwell. It permitted
an intuitive demonstration of some basic theorems of the abstract “potential the-
ory,” and it provided fluid-mechanical analogs of electrostatic, electrokinetic, and
magnetostatic phenomena.

The general case in which no velocity potential exists was judged intractable
until 1858 when Hermann Helmholtz discovered a few remarkable theorems that
pushed this case to the forefront of the theory. As Cauchy and Stokes had ear-
lier proved, the infinitesimal evolution of a fluid element can be regarded as the
superposition of three kinds of motion: a translation of the center of gravity of
the element, a dilation of the element along three mutually orthogonal axes, and a
rotation. Formally, the rotation per unit time is half the vector ω = ∇ × v, which
has the components ∂υz/∂y − ∂υy/∂z etc. This vector, now called vorticity, van-
ishes if and only if there exists a velocity potential (in a connected domain). This

12 Stokes 1876; Thomson 1887b. Cf. WF, 85–100.
13 Airy 1845; Stokes 1847; Russell 1839; Boussinesq 1871; Rayleigh 1876a. Cf. WF, 69–84. Similar comments

could be made about the compression waves studied by Euler and Lagrange.
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Figure 1.1 A portion of a vortex filament. The product of the vorticity (indicated by the
arrows) by the normal section of the filament is a constant along the filament. It is also

invariable during the motion of the fluid.

kinematic analysis of infinitesimal fluid motion is part of the conceptual furniture
of modern fluid mechanics. Maxwell used it to develop the physico-mathematical
concepts of curl and divergence that apply to any field theory. Helmholtz reinvented
it to interpret the non-existence of the velocity potential and the vector ω=∇ × v
geometrically.14

Helmholtz extended the geometrical interpretation to the “vorticity equation,”

∂ω

∂t
+ (v · ∇)ω= (ω · ∇)v,

which derives from Euler’s equations when the fluid is incompressible. For this
purpose, he defined vortex filaments as thin bundles of lines everywhere tangent to
the vorticity, and the intensity of a filament as the product of a normal section of
this filament by the value of the vorticity in the section (see figure 1.1). He then
showed that the intensity of a filament was a constant along a filament and that the
vorticity equation was equivalent to the statement that the vortex filaments moved
together with the fluid without altering their intensity. This theorem implies that the
distribution of vorticity in a perfect liquid is in a sense invariant: it travels together
with the fluid without any alteration.15

In this light, Helmholtz argued that the vorticity field (as today’s physicists say)
better represented arbitrary flows than the velocity field: its invariant properties
completely determine the rotational component of the flow, while the irrotational
component is ruled by the theorems of potential theory. With the help of an elec-
tromagnetic analogy, Helmholtz then determined the velocity fields associated with
simple distributions of vorticity: straight vortex lines, vortex sheets, and vortex
rings. He also calculated the interactions of vortices and verified his predictions
experimentally.

The vortex sheets played an important role in Helmholtz’s later writings. They
are mathematically equivalent to a finite slide of fluid over fluid, and they should
occur, according to Helmholtz, whenever a fluid is forced to pass the edge of an
immersed body. As an illustration of this process, Helmholtz gave the forma-
tion of smoke jets when he blew the smoke of a cigar through his lips. Through
ingenious reasoning, he proved the instability of the discontinuity surfaces or vor-
tex sheets: any small bump on them must roll up spirally. This mechanism, now

14 Helmholtz 1858. Cf. WF, 149.
15 Cf. WF, 148–58.
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called Helmholtz-Kelvin instability, plays an important role in many hydraulic and
meteorological phenomena, as Helmholtz himself foresaw.16

Helmholtz not only meant to improve the applicability of hydrodynamics but
also to equip this theory with a new mode of description for fluid motion in which
vortices and discontinuity were the leading structural features. The enormous suc-
cess of this project in the later history of hydrodynamics is somewhat paradoxical,
because Helmholtz’s theorems only hold in the unrealistic case of a perfect liquid.
The physicists’ use of the vorticity concept in much more general situations is com-
parable to the hydraulicians’ use of the concept of hydraulic head in situations in
which Bernoulli’s theorem does not apply. In some cases of vortex motion, the
effects of compressibility and viscosity can be shown to be negligible. In all cases,
one can take Helmholtz’s theorems as a reference and correct them through terms
derived from the Navier-Stokes equation, as Vilhelm Bjerknes did in the late nine-
teenth century. As for the vortex sheets, we will see in a moment that in the early
twentieth century Ludwig Prandtl used them to approximately describe important
aspects of fluid resistance at high Reynolds number (low viscosity).17

In the historical examples discussed so far, it became increasingly difficult to
produce the needed new conceptual apparatus. The degree of difficulty can be taken
to be proportional to the time elapsed between the invention of Euler’s equations
and the introduction of this apparatus. For example, Bernoulli’s law was easiest
to derive, as it only requires a simple integration. But pure mathematics did not
suffice to discover the laws of wave propagation on a water surface. Some intu-
ition of interference processes (borrowed from optics), and also a few experimental
observations (groups of waves, solitary waves), were instrumental. The discovery
of the laws of vortex motion was even more difficult. A century elapsed from the
time when d’Alembert and Euler gave the vorticity equation to the time when
Helmholtz interpreted it through his theorem. Experiments or observations did
not by themselves suggest this interpretation, though Helmholtz’s efforts were, in
fact, part of a project for improving the theoretical understanding of organ pipes.
Helmholtz’s success primarily depended on his ability to combine various heuristic
devices including algebraic manipulation in the style of Lagrange, geometric visu-
alization in the style of Thomson and Maxwell, and a focus on invariant quantities
as exemplified in his own work on energy conservation.

1.4 Instabilities

Exact solutions of Euler’s or Navier’s equations under given boundary conditions
may differ widely from the flow observed in a concrete realization of these condi-
tions. For instance, the flow of water in a pipe of rapidly increasing diameter never
has the smooth, laminar character of exact steady solutions of the Navier-Stokes

16 Helmholtz 1868, 1888. Cf. WF, 159–71.
17 Bjerknes 1898; Prandtl 1905.
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equation in this case. As Stokes already suspected in the 1840s, this discrepancy
has to do with the instability of the exact steady solutions: any small perturbation
of these solutions will induce wide departures from the original motion. Conse-
quently, the knowledge of exact solutions of the fundamental equations or (more
realistically) the knowledge of some features of these solutions under given bound-
ary conditions is not sufficient for the prediction of observed flows. One must also
determine whether these solutions or features are stable.18

In principle this question can be mathematically decided, by examining how a
slightly perturbed solution of the equations evolves in time. As we saw, a first suc-
cess in this direction was Helmholtz’s prediction of the spiral rolling up of a bump
on a discontinuity surface. Later in the century, Lord Rayleigh and Lord Kelvin
treated the more difficult problem of the stability of plane parallel flow. Their
results were only partial (Rayleigh’s inflection theorem in the nonviscous case), or
wrong (Kelvin’s prediction of stability for the plane Poiseuille flow). Most of these
questions exceeded the mathematical capacity of nineteenth-century theorists, and
some of them have remained unresolved to this day. The efforts of Rayleigh and
others nonetheless yielded a general method and language of perturbative stabil-
ity analysis. Rayleigh linearized the equation of evolution of the perturbation, and
sought plane-wave solutions. These solutions are “proper modes” whose oscillatory
or growing character depends on the real or imaginary character of the frequency.
This proper-mode analysis of stability goes beyond hydrodynamics: it originated
in Lagrange’s celestial mechanics and it can be found in many other parts of
physics.19

As the mathematical discussion of stability was nearly as difficult as the finding
of exact solutions of the fundamental equations, the most important results in this
domain were reached by empirical means. Plausibly, the observed instability of
jets motivated Helmholtz’s derivation of the instability of discontinuity surfaces.
Certainly, Tyndall’s observations of this kind motivated Rayleigh’s calculations for
parallel flow. Most important, Gotthilf Hagen (1839) and Osborne Reynolds (1883)
discovered that pipe flow, for a given diameter and a given viscosity, suddenly
changed its character from laminar to turbulent when the velocity passed a certain
critical value. The sharpness of this transition was a surprise to all theorists. From
Reynolds to the present, attempts to mathematically determine the critical velocity
(or Reynolds number) in cylindrical pipes have failed. This is a question of academic
interest only, because unpredictable entrance effects (the way the fluid is introduced
into the pipe), not the inherent instability in a pipe of infinite length, usually
determine the transition.20

In the twentieth century, significant progress has been made in understanding
the transition from laminar to turbulent flow. In the first half of the century, Lud-
wig Prandtl, Walter Tollmien, Werner Heisenberg, and Chia Chiao Lin proved the

18 Stokes 1843. Cf. WF, 184–87.
19 Rayleigh 1880; Thomson 1887a. Cf. WF, 208–18; Drazin and Reid 1981.
20 Tyndall 1867; Hagen 1839; Reynolds 1883. Cf. WF, 243–63.
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instability of the plane Poiseuille flow and unveiled the spatial periodicity of the
mechanism of this instability.21 In the second half of the century, developments
in the theory of dynamical systems at the intersection between pure mathematics,
meteorology, and hydrodynamics permitted a detailed qualitative understanding
of the transition to turbulence, with intermediate oscillatory regimes, bifurcations,
and strange attractors.22 It remains true that most of the practical applications
of hydrodynamics only require a rough knowledge of the conditions under which
turbulence occurs. The source of this knowledge is partly theoretical and partly
empirical. There is no easy way to gather it from the fundamental equations. In
most cases, the best that can be done is to repeat Reynolds’s rough argument that
the full vorticity equation has two terms, a viscous term that tends to damp any
eddying motion, and an inertial term which preserves the global amount of vortic-
ity. The laminar or turbulent character of the motion depends on the ratio of these
two terms, whose order of magnitude is given by the Reynolds number.

1.5 Turbulence

The state of motion that follows the turbulent transition is even more difficult to
analyze than the transition itself. Casual observation of turbulent flow reveals its
chaotic and multi-scale character. The detailed description of any motion of this
kind seems to require a huge amount of information, much more than is humanly
accessible (without computers at least). As Reynolds pondered, we are here facing
a situation similar to that of the kinetic theory of gases: the effective degrees of
freedom are too numerous to be handled by a human calculator. Unfortunately,
turbulent motion is more often encountered in nature and in manmade hydraulic
devices than laminar motion. Engineers and physicists have had to invent ways of
coping with this difficulty.23

One strategy is to design the hydraulic or aeronautic artifacts so that turbulence
does not occur. When turbulence cannot be avoided, one may adopt a purely
empirical approach and seek relations between measured quantities of interest. For
instance, nineteenth-century engineers gave empirical laws for the retardation (loss
of head) in hydraulic pipes. A second approach is to find rules allowing the transfer
of the results of measurements done at one scale to another scale. Stokes, Helmholtz,
and Froude pioneered this approach in the contexts of pendulum damping, balloon
steering, and ship resistance, respectively. They derived the needed scaling rules
from the scaling symmetries of the Navier-Stokes equation or of the underlying
dynamical principles. This is an example of a hybrid approach, founded partly on the
fundamental equations, and partly on measurements of theoretically unpredictable
properties.24

21 Cf. Eckert 2008.
22 Cf. Franceschelli 2007.
23 Reynolds 1895. Cf. WF, 259–60.
24 Stokes 1850; Helmholtz 1873; Froude [1868] 1957; 1874. Cf. WF, 256–58, 278–79.
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In a third approach, one may completely ignore the foundations of fluid
mechanics and cook up a model based on a grossly simplified picture of the flow.
An important example is the laws for open channel flow discovered in the 1830s and
1840s by a few French Polytechnique-trained engineers: Jean Baptiste Bélanger, Jean
Victor Poncelet, and Gaspard Coriolis. They assumed the flow to occur through
parallel slices that rubbed against the bottom of the channel according to a phe-
nomenological friction law, and they applied momentum or energy balance to each
slice.25

In the 1840s Adhémar Barré de Saint-Venant emphasized the “tumultuous”
character of the fluid motion in open channel flow and suggested a distinction
between the large-scale average motion of the fluid and the smaller-scale tumultuous
motion. The main effect of the latter motion on the former, Saint-Venant argued,
was to enhance momentum exchange between successive (large-scale) fluid layers.
Based on this intuition, he replaced the viscosity in the Navier-Stokes equation
with an effective viscosity that depended on various macroscopic circumstances
such as the distance from a wall. In the 1870s, Boussinesq solved the resulting
equation for open channels of simple section and thus obtained laws that resem-
bled Bélanger’s and Coriolis’s laws, with different interpretations of the relevant
parameters.26

In 1895, Reynolds relied on analogy with the kinetic theory of gases to develop
an explicitly statistical approach to turbulent flow. In the spirit of Maxwell’s
kinetic-molecular derivation of the Navier-Stokes equation, he derived a large-scale
equation of fluid motion by averaging over the small-scale motions governed by
the Navier-Stokes equation. Reynolds’s equation depends on the “Reynolds stress,”
which describes the turbulent exchange between successive macro layers of the
fluid. Like Saint-Venant’s effective viscosity, the Reynolds stress cannot be deter-
mined without further assumptions concerning the turbulent fluctuation around
the large-scale motion. There have been many attempts to fill this gap in the twen-
tieth century. The most useful ones were Kármán’s and Prandtl’s derivations of
the logarithmic velocity profile of a turbulent boundary layer. The assumptions
made in (improved) versions of these derivations are simple and natural (uniform
stress, matching between the turbulent layer and a laminar sublayer next to the
wall), and the resulting profile fits experiments extremely well (much better than
earlier phenomenological laws). The logarithmic profile is the basis of every modern
engineering calculation of retardation in pipes or open channels.27

Despite powerful studies by Geoffrey Taylor, Andrey Nikolaevich Kolmogorov,
and many others, the precise manner in which turbulence distributes energy
between different scales of fluid motion remains a mystery.28 There is no doubt,
however, that the general idea of describing turbulent flow statistically has been fruit-
ful since its first intimations by Saint-Venant, Boussinesq, and Reynolds. In the case

25 Cf. WF, 221–28.
26 Saint-Venant 1843; Boussinesq 1877. Cf. WF, 229–38.
27 Reynolds 1895; Kármán 1830; Prandtl 1831 Cf. Eckert 2005, chap. 5; WF, 259–62, 297–301.
28 Cf. Farge and Guyon 1999; Frisch 1995.
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of turbulent fluid mechanics, as in statistical mechanics, a new conceptual structure
emerges at the macroscale of description. Similar questions can be raised in both
cases concerning the nature of the reduction or emergence. Does the microscale
theory truly imply the macroscale structure? Is this structure uniquely defined? Can
this structure be used without further reference to the microscale? Are there singular
situations in which the reduction fails? The answers to these questions tend to be
more positive in the case of statistical mechanics than in the case of the statistical
theory of turbulence, because the relevant statistics are better known in the former
than in the latter case.

1.6 Boundary Layers

From a practical point of view, two outstanding problems of fluid mechanics are
fluid resistance and fluid retardation. Fluid resistance is the decelerating force expe-
rienced by a rigid body moving through a fluid. Fluid retardation is the fall of
pressure or loss of head experienced by a fluid during its travel along pipes or
channels. The two problems are related, since they both involve the mutual action
of a fluid and an immersed solid. In 1768, d’Alembert challenged “the sagacious
geometers” with the paradox that resistance vanished for a perfect liquid in his
new hydrodynamics. There were various strategies to circumvent this theoretical
failure. Some engineers determined by purely empirical means how the resistance
depended on the velocity and shape of the immersed body. Others retreated to
Isaac Newton’s naïve theory by the impact of fluid particles on the front of the
body, although some consequences of this theory (such as the irrelevance of the
shape of the end of the body) had already been refuted. In the mid-nineteenth
century, Saint-Venant, Poncelet, and Stokes traced resistance to viscosity and the
production of eddies. With the damping of pendulums in mind, Stokes successfully
determined the resistance of small spheres and cylinders by finding solutions to the
linearized Navier-Stokes equation. For most practical problems, the larger size of
the immersed body and the smallness of the viscosities of air and water imply that
the nonlinear term of this equation cannot be neglected (the Reynolds number is
too high). Stokes had nothing to say in such cases beyond the qualitative idea of
dissipation by the production of eddies.29

In the ideal case of vanishing viscosity, the proof of d’Alembert’s paradox implic-
itly assumes the continuity of the fluid motion. However, Helmholtz’s study of
vortex motion implies that finite slip of fluid over fluid is perfectly compatible with
Euler’s equations. Around 1870, Kirchhoff and Rayleigh realized that Helmholtz’s
discontinuity surfaces yielded a finite resistance for an immersed plate. According
to Helmholtz, a tubular discontinuity surface is indeed produced at the sharp edges
of the plate. The water behind the plate and within this surface is stagnant, so
that its pressure vanishes (when measured in reference to its uniform value at

29 D’Alembert 1768; Saint-Venant 1843; Poncelet 1839; Stokes 1850. Cf. WF, 135–39, 265–67, 270–73.
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Figure 1.2 Discontinuity surface (ee′) formed when a downward flow encounters the
disk A. From Thomson (1894, 220).

infinite distances from the plate) (see figure 1.2). Since the pressure at the front
of the plate is positive, there is a finite resistance, which Kirchhoff and Rayleigh
determined by analytical means. The result roughly agreed with the measured
resistance.30

In the case of ships, the resistance problem is complicated by the fact that ships
are not supposed to be completely immersed. Consequently, wave formation at the
water surface is a significant contribution to the resistance. The leading nineteenth-
century experts on this question, William John Macquorn Rankine and William
Froude, distinguished three causes of resistance: wave resistance, skin resistance,
and eddy resistance. Skin resistance corresponds to some sort of friction of the
water when it travels along the hull. Eddy resistance corresponds to the formation
of eddies at the stern of the ship; it is usually avoided by proper profiling of the hull.
Rankine and Froude traced skin resistance to the formation of an eddying fluid
layer next to the hull. They derived this notion from the observation that the flow of
water around the ship, when seen from the deck, appears to be smooth everywhere
expect for a narrow tumultuous layer next to the hull and for the wake. Rankine
assumed the validity of Euler’s equations in the smooth part of the flow and solved
it to determine the hull shapes that minimized wave formation. Froude gave a fairly
detailed description of the mechanism of retardation in the eddying layer, although
he was not able to draw quantitative conclusions. In the end, Froude measured skin
friction on plates, total resistance on small-scale ship models, and then used separate
scaling laws for skin and wave resistance in order to determine the resistance of a
prospective ship hull.31

In sum, Rankine and Froude distinguished two different regions of flow
amenable to different theoretical or semi-empirical treatments and combined the
resulting insights to determine the total resistance. Froude thus obtained the first
quantitative successes in the problem of fluid resistance at a high Reynolds number.

30 Kirchhoff 1869; Rayleigh 1876b.
31 Rankine 1858, 1865, 1870; Froude 1874, 1877. Cf. Wright 1983; WF, 273–82.
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Figure 1.3 Formation of a discontinuity surface behind a cylinder. From Prandtl
(1905, 579–80).

Although his and Rankine’s considerations appealed to higher theory in several
manners, they also required considerable empirical input.

The next and most famous progress in the high Reynolds-number resistance
problem occurred in Göttingen, under the leadership of Ludwig Prandtl. Impressed
by the qualitative success of Helmholtz’s surfaces of discontinuity, Prandtl assumed
that the solution of the Navier-Stokes equation for high-Reynolds flow around
a body somewhat resembled a solution of Euler’s equation (with strictly vanishing
viscosity). In the latter solution, the fluid slides along the surface of the body, whereas
for a viscous fluid the relative velocity of the fluid must vanish at the surface of the
body. Consequently, for the real flow Prandtl assumed a thin (invisible) layer of
intense shear that imitated the finite slide of the Eulerian solution. He also assumed
that in some cases this layer could shoot off the surface of the body to mimic a
Helmholtzian surface of discontinuity (with its characteristic instability resulting
in an eddying trail). This is the so-called separation process. Outside the boundary
layer, Prandtl naturally applied Euler’s equations. Within the boundary layer, the
intense shear allowed him to use an approximation of the Navier-Stokes equation
that could be integrated to determine the evolution of the velocity profile along the
body. For sufficiently curved bodies, Prandtl found that at some point the flow was
inverted in the part of the boundary layer closest to the body. He interpreted this
point as the separation point from which a (quasi) discontinuity surface was formed.
In the case of a flat or little curved surface (for which separation does not occur), he
determined the resistance by integration of the sheer stress along the surface of the
body. He illustrated the separation process through experiments done with a tank
and a paddle-wheel machine (figure 1.3).32

Comparison with Froude’s earlier concept of eddying layer leads to the following
remarks. Unlike Froude, Prandtl was able to determine theoretically and precisely
the flow within the boundary layer. This determination requires a previous solution
of the Eulerian flow problem around the body, because the evolution of the bound-
ary layer depends on the pressure at its confines. Conversely, this evolution may

32 Prandtl 1905. Cf. Eckert 2005, chap. 2; Heidelberger 2006; WF, 283–89.
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induce separation, which necessarily affects the Eulerian part of the flow. Prandtl
himself emphasized this interaction between the Eulerian flow and the boundary
layer. Whereas Froude had no interest in separation (which ship builders systemat-
ically avoided), Prandtl had a precise criterion for its occurrence. Whereas Froude
could only measure the sheer stress of the boundary layer, Prandtl could determine
it theoretically.

So far the comparison seems to favor Prandtl. In reality, in many cases including
ship resistance, the boundary layer has an internal turbulence that is not taken into
account in Prandtl’s original theory. In 1913, Prandtl’s former student Heinrich Bla-
sius found that beyond a certain critical Reynolds number, the edgewise resistance
of a plate obeyed Froude’s empirical law and not Prandtl’s theoretical law. Prandtl
explained that the profile of a laminar boundary layer could become unstable and
thus lead to a turbulent boundary layer à la Froude. He used this notion to explain
the bizarre reduction of the resistance of spheres that Gustave Eiffel had observed at
a certain critical velocity: turbulence in a boundary layer, Prandtl explained, delays
the separation process and thus sharply decreases the resistance. Paradoxically, it
is when the boundary layer is turbulent that the global flow mostly resembles the
smooth Eulerian flow.33

As the boundary layers around airplane wings are turbulent, Prandtl needed
to know the sheer stress along such layers in order to determine the drag of the
wings. He originally relied on plate resistance measurements, as Froude had done
in the past. As was already mentioned, it became possible to calculate this stress in
the 1830s when Kármán and Prandtl discovered the logarithmic velocity profile of
turbulent layers.

It is now time to reflect on the relation that boundary-layer theory has to the
foundational theory of Navier-Stokes. Prandtl’s idea (if we believe his own plausible
account) has its theoretical origin in the idea of using solutions to Euler’s equations
as a guide for solving the Navier-Stokes equation at a high Reynolds number. This is
only a heuristic, because Prandtl had no mathematical proof that the low-viscosity
limit of a solution of the Navier-Stokes equation is a solution of Euler’s equation. Yet
the motion imagined by Prandtl, with its Eulerian, high-sheer, and stagnant regions,
clearly is an approximate solution of the Navier-Stokes equation. What is missing
is a proof of the uniqueness of this solution (under given boundary conditions),
as well as a general proof of its existence for any shape of the immersed body.
With this concession, the boundary-layer theory can legitimately be regarded as an
approximation of the Navier-Stokes theory.

An interesting feature of the boundary-layer theory is its use of different approx-
imate equations in different regions of the flow. Our discussion of Bernoulli’s law
showed that this law is often used regionally (i.e., in laminar regions of the flow) with
head losses localized in turbulent regions. Boundary-layer theory similarly intro-
duces different regions of flow, although it does so in a more interactive manner.
Each region is described through computable solutions of appropriate equations

33 Prandtl 1914. Cf. Eckert 2005; WF, 293–94.
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of motion, and the precise conditions for the matching of the regional solutions
are known (continuity of pressure, stress, and velocity). These matching conditions
imply causal relations between features of the two regions: for instance, the pressure
distribution in the Eulerian region determines the evolution of the velocity profile in
the boundary layer, and in the case of separated flow, the position of the separating
surface affects the Eulerian region.34

In qualitative applications, Prandtl’s theory may be restricted to the general ideas
of a boundary layer, a free fluid, and their interaction sometimes leading to sepa-
ration. In quantitative engineering applications, this picture must be supplemented
with a law for the evolution of the sheer stress along a boundary layer (laminar
or turbulent), and with quantitative criteria for separation and for the transition
between laminar and turbulent layer. Granted that this supplementary information
is available, the theory can be used without reference to the Navier-Stokes theory.
The gain in predictive efficiency is enormous, as verified by the immense success of
Prandtl’s theory in engineering applications. Yet one should not forget that much of
the supplementary information comes from the intimate connection between the
boundary-layer theory and the Navier-Stokes theory. In fact the legitimacy of the
whole picture depends upon this intimate connection. The boundary-layer theory,
unlike the early French models of open channel flow, is not an ad hoc model that
owes its simplicity to counterfactual assumptions. It is a legitimate articulation of
the Navier-Stokes theory.

2. Explanatory Progress
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The above examples make clear that in the course of its history, hydrodynamics
has acquired a sophisticated explanatory apparatus without which it would remain
merely a “paper” theory. The explanatory apparatus is presented in various chapters
in modern textbooks. We will now reflect on the ways this apparatus was obtained,
on its components, and on its functions.

2.1 The Sources of Explanatory Progress

In some cases, explanation was improved through blind mathematical methods. For
instance, a simple integration yielded Bernoulli’s law (after proper specialization),
the symmetries of the Navier-Stokes equation yielded scaling laws, and standard
approximation procedures yielded the theory of waves of small amplitude. Despite
the relatively easy and automatic way in which these results were obtained, they
considerably improved the explanatory power of the theory by directly relating
quantities of physical interest.

34 Heidelberger 2006 rightly insists on this causal structure of the boundary-layer theory.
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In other cases, more intra- or intertheoretical heuristics was needed. Kinematic
analysis of the vorticity equation led to Helmholtz’s vortex theorems; asymptotic
reasoning led to Prandtl’s notions of laminar boundary layer and separation; scaling
and matching arguments led to the logarithmic velocity profile of turbulent bound-
ary layers. These heuristics required an unusual amount of creativity; they involved
intuitions bound to personal styles of thinking. Such intuitions are tentative and
may lead to erroneous guesses. For instance, the great Kelvin erred in his stability
analysis of parallel flow. A rigorous check of the compatibility of the conclusions
with the fundamental equations is always needed.35

In still other cases, observations or experiments suggested new concepts such as
group velocity, solitary waves, the stability or instability of laminar flow, and turbu-
lent boundary layers. The very fact that pure theory was historically unable to lead
to these concepts (and sometimes even resisted their introduction) shows the van-
ity of regarding them as implicit consequences of the fundamental equations. They
nevertheless belong to fundamental hydrodynamics inasmuch as their compatibility
with the fundamental equations can be verified a posteriori.

Lastly, the impossibility of solving the fundamental equation and the evident
complexity of observed flows sometimes forced engineers and even physicists to
arbitrarily and drastically simplify aspects of the flow. This happened for instance
in early models of open channel flow. These models cannot be strictly regarded as
parts of fundamental hydrodynamics, since some of their assumptions contradict
both observed and theoretical properties of the flow. Yet their success suggests a
looser sort of relation with the Navier-Stokes theory. In the case of open-channel
flow, the models can be reinterpreted as re-parametrizations of the true equations
for the approximate, large-scale motion derived from turbulent solutions of the
Navier-Stokes equations.

In every case, the theoretical developments occurred with specific applications
in mind: some kind of flow frequently observed in nature needed to be explained
or the functioning of some instruments or devices needed to be understood. Purely
mathematical methods broadly applied to general flow were of little avail. Insight
was gained as a result of investigation directed at concrete and restricted goals. This is
why the heroes of nineteenth-century and early twentieth-century fluid mechanics
were either mathematically fluent engineers or physicists who had a foot in the
engineering world.

2.2 The Components of Explanation

A first alley toward better explanation involves the restriction of the scope of a theory.
The Navier-Stokes equations, regarded as the general foundation of hydrodynam-
ics, can be specialized in various ways. There are homogeneous specializations or
idealizations in which the restricted choice of parameters and kinds of systems

35 On misleading intuitions in fluid mechanics, cf. Birkhoff 1950.
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(boundary conditions) leads to more tractable integration problems or successful
statistical approaches. Typical examples are irrotational Eulerian flow, low Reynolds-
number flow, and fully turbulent flow. There are also heterogeneous specializations
in which the restrictions on parameters and systems lead to flows that have different
regions, each of which depends upon a specific simplification of the Navier-Stokes
equations. This is the case for the high-Reynolds resistance problem and the air-
plane wing problem according to Prandtl. As was already mentioned, success here
requires proper matching between the different regions.

Another explanatory resource is the identification of invariant structures of
a flow belonging to a given class. The most impressive example of this sort is
Helmholtz’s demonstration of the conservation of vortex filaments. As the mind
tends to focus on invariant aspects of our environment, the identification of new
invariants often shape our descriptive language. As Helmholtz predicted, this has,
in fact, happened in fluid mechanics: the vorticity field is now often preferred to the
velocity field as a description of flow.

Third, instead of seeking structure in a given solution, we may attend to the
structure of the space of solutions of the fundamental equation when the boundary
conditions vary. For instance, we may ask whether laminar solutions are typical,
whether small perturbations lead to different sorts of solutions: this is the issue of
stability. We may also ask whether some classes of solution share common large-
scale features, as we do in the statistical theories of turbulence. And, we may ask
whether some properties or laws are generic in some regime of flow: this is the issue
of universality, which we briefly touched with the logarithmic profile of turbulent
boundary layers.

Lastly, explanation and understanding may come from linking hydrodynamics
to other theories. We have encountered a few examples of this kind: potential theory,
wave interference, group velocity, solitary waves, field kinematics, and proper-mode
analysis of stability. In half of these cases, concepts of hydrodynamic origin were
brought to bear on other theories and not vice versa. The cross-theoretical sharing
of concepts nonetheless remains a token of their explanatory value.

2.3 A Pragmatic Definition of Explanation

As was stated above, the goal of fluid mechanics cannot be reduced to finding
integrals of the fundamental equations that satisfy given boundary conditions. This
is usually impossible by analytical means, and modern numerical means require a
different simulation for each choice in the infinite variety of boundary conditions.
As Batterman, Ramsey, and Heidelberger have argued, bare foundations do not
answer the questions that truly interest physicists and engineers. Practitioners want
to be able to characterize a physical situation by a humanly accessible number of
physical parameters and to possess a picture of the situation that enables them
to derive relations between these parameters in a reasonable amount of time. In
other words, they need a concept of explanation that integrates our human capacity



30 the oxford handbook of philosophy of physics

at representing and intervening. As Batterman emphasizes, this requires means
for eliminating irrelevant details in our description of systems. This also implies
the elaboration of a descriptive language, the concepts of which directly refer to
controllable features of the system.36

With this pragmatic definition of explanation, it becomes clear that the earlier
described developments of hydrodynamics served the purpose of increasing the
explanatory power of the theory. Homogeneous specializations do so by offering
adequate concepts and methods for certain kinds of flow. Heterogeneous special-
izations do so by combining the former specializations to describe flows that occur
in problems of great practical import. The identification of invariant structures for
certain classes of motion improves the economy of the representation. Attention
to structure in the space of solutions enables us to decide to what extent smaller
details of the motion affect the features of practical interest, and to what extent
their effect can be smoothed out by some averaging process. Intertheoretical links
produce familiar concepts that can indifferently be used in various domains of
physics.

In this light, the practice of physics has more similarity with engineering than
is usually assumed. The remark is not uncommon in recent writings in the philoso-
phy of science. For instance, Ramsey revives J. J. Thomson’s old characterization of
theories as tools for solving physics or engineering problems; Epple compares the
formation of Prandtl’s wing theory to an engineering process combining multiple
theoretical and experimental resources. In these scholars’ view, the engineer only
differs from the physicist by (usually) not participating in the invention of the the-
ories and by his more systematic appeal to extra-theoretical components. Physicists
and engineers not only share the goal of efficient intervention, they also share some
of the means.37

Ramsey and Heidelberger insist that the articulation of theories implies the
formation of new, adequate concepts. One could even argue that the bare Navier-
Stokes theory has no physical concepts. It harbors only mathematical concepts such
as the velocity field that correspond to an ideal description of the flow, ignoring
molecular structure and presuming indefinite resolution. A concept, in the etymo-
logical sense of the word (concipio in Latin, or begreifen in German), is a mental
means to grasp some concrete object or situation. Hydraulic head, vortices, wave
groups, solitary waves, the laminar-turbulent transition, boundary layers, sepa-
ration, etc. are concepts in this practical sense. The detailed velocity field or the
various terms of the Navier-Stokes equation are not. What Thomas Kuhn once
belittled as the “mopping up” of theories in the normal phases of science truly is
concept formation.38

36 Batterman 2002; Ramsey 1992, 1993, 1995; Heidelberger 2006.
37 Ramsey 1995, 16; Epple 2002.
38 Kuhn 1962, 24. Hilary Putnam similarly criticized another of Kuhn’s characterizations of normal science:

“The term ‘puzzle solving’ is unfortunately trivializing; searching for explanations of phenomena and for
ways to harness nature is too important a part of human life to be demeaned” (Putnam 1974, 261).
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3. Theories and Modules
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1 Defining Physical Theories

Once we recognize the cognitive impotence of the bare foundations of a theory,
we need a general definition of “theory” that is not limited to the fundamental
equations and a few naïve rules of application. The definition must allow for evolving
components, since the cognitive efficiency of any good theory always increases in
time. It must include explanatory devices and it must allow the intertheoretical
connectivity found in mature theories. The following is a sketch of such an enriched
definition.39

A physical theory is a mathematical construct including:

(a) a symbolic universe in which systems, states, transformations, and
evolutions are defined by means of various magnitudes based on Cartesian
powers of R (or C) and on derived functional spaces.

(b) theoretical laws that restrict the behavior of systems in the symbolic
universe.

(c) interpretive schemes that relate the symbolic universe to idealized
experiments.

(d) methods of approximation and considerations of stability that enable us to
derive and judge the consequences that the theoretical laws have on the
interpretive schemes.

The symbolic universe and the theoretical laws are permanently given. They
correspond to the “family of models” of the semantic view of physical theories. In
the case of hydrodynamics, the symbolic universe consists in the velocity, pressure,
and density fields for each fluid of the system, in the boundaries of rigid bodies
that may or may not move, and in force densities such as gravity. The theoretical
laws are the Navier-Stokes equations, boundary conditions, and (for compressible
fluids) a relation between density and pressure that may involve modular coupling
with thermodynamics (we will return to this point).

In the semantic view of theories, the empirical content of a theory is defined
by an isomorphism between parts of the symbolic universe and empirical data;
although the means by which this isomorphism is determined are usually left in
the dark. The notion of an interpretive scheme is intended to fill part of this gap.
By definition an interpretive scheme consists in a given system of the symbolic uni-
verse together with a list of characteristic quantities that satisfy the three following
properties.(1) They are selected among or derived from the (symbolic) quantities that
define the state of this system. (2) At least for some of them, ideal measuring procedures

39 For a discussion of this definition and a comparison with the definition of Sneedian structuralists, cf. Darrigol
2008, 198–203.
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are known. (3) The laws of the symbolic universe imply relations of a functional or a
statistical nature among them. More specifically, interpretive schemes are blueprints
of conceivable experiments whose outcomes depend only on relations between a
finite set of mutually related quantities, a sufficient number of which are measur-
able. In some cases, the intended experiments may be designed to determine some
theoretical parameters from the measured quantities. In other cases, the theoretical
parameters are given, and theoretical relations between the measured quantities
are verified. In all cases, the interpretive schemes do not contain rigid linguis-
tic connections between theoretical terms and physical quantities; their concrete
implementation is analogical, historical, and subject to revisions.40

The introduction of interpretive schemes implies a selection of systems and
quantities from the infinite variety of elements in the symbolic universe of the
theory. This selection can evolve dramatically with the number and nature of the
imagined applications of the theory. The two main classes of interpretive schemes
of early hydrodynamics were the pierced vessel, in which the efflux of water is
related to the height of the water surface; and the resistance scheme in which a solid
body immersed in a stream of water experiences a force related to the velocity of
the stream. Another interesting scheme, Bernoulli’s pipe of variable section, implied
pressure measurement through vertical columns of water. A sample of later schemes
includes the determination of the velocity of surface waves as a function of depth
and wavelength, the visualized motion of vortices as a function of their relative
configuration, the visualized lines of flow around an immersed body as a function
of the asymptotic velocity, the drag and lift of a wing as a function of asymptotic
velocity and angle of attack. Some schemes were reactions to well-identified practical
problems and others to some new theoretical development. In the latter category,
we may cite the determination of the separation point for the flow around an
immersed sphere, the measurement of instability thresholds, Prandtl’s aspiration of
the boundary layer to prevent separation, and the post-theoretical visualization of
laminar boundary layers.

For an interpretive scheme to serve its purpose as an experimental blueprint, a
few conditions must be met: one must know how to realize concretely the system
picked in the symbolic universe; one must know how to implement the ideal mea-
suring procedures; one must be able to compute the relations between measured
quantities and theoretical parameters; and one must know something about the
stability of these relations. Point (d) of my general definition of theories is meant to
meet these two last requirements. In this regard, the reader may consult the growing
literature regarding the philosophy of approximation, numerical analysis, and sta-
bility. The following discussion is restricted to aspects of the working of interpretive
schemes that have to do with the modular structure of theories.41

40 This is a considerable weakening of the logical-empiricist strictures on the meanings of theoretical terms.
41 A more detailed discussion is given in Darrigol 2008. Interpretive schemes supplemented with the requirement

of computability are similar to Humphreys’s “computational templates.” According to Humphreys 2004, it
is at the level of computational templates that questions about theoretical representation, empirical fitness,
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3.2 Modules

By definition, a module is a component of a theory which is itself a theory, with
a different domain of application. Our ability to apply a theory crucially depends
on integrated modules. First, there are defining modules that serve to define some
of the quantities in the symbolic universe. In the case of hydrodynamics, the list
of these modules includes a Euclidian geometrical module that defines the spatial
relations of the systems; a mechanical module that defines external force densities,
external pressures, and the motion of immersed bodies; a thermodynamic module
that defines relations between fluid density, pressure, and temperature (sometimes
also heat transfer). These modular definitions enable us to transfer already known
measuring procedures into the interpretive schemes of hydrodynamics. In the case
of compressible fluids, they are essential to the completeness of the theory: no
prediction can be made without knowing how the density varies according to the
thermal properties of the system.

Second, there are idealizing modules obtained by simplifying the symbolic uni-
verse and retaining similar interpretive schemes (of course, the functional relations
between schematic quantities are different). In the case of hydrodynamics, the most
important modules of this kind are the theory of incompressible fluids, the theory
of inviscid fluids, and the theory of incompressible inviscid fluids. Incompressibility
enables us to ignore the coupling of hydrodynamics with thermodynamics. Invis-
cidity eliminates one term in the Navier-Stokes equations and yields Euler’s simpler
equations. The usefulness of these idealizations comes from the relative smallness
of the compressibility of water and from the smallness of the viscosities of air and
water.

Third, there are specializing modules that are exact substitutes of the theory
for subclasses of schemes that meet certain conditions. For instance, Lagrange’s
theory of irrotational incompressible fluid motion can replace Euler’s theory
for schemes in which the fluid motion is started from rest by the motion of
walls or immersed bodies; Helmholtz’s theory of vortex motion can replace the
incompressible specialization of Euler’s theory for schemes based on the vortex
structure.

Idealizing and specializing modules are not by themselves sufficient to design
effective interpretive schemes. We also need approximating modules that can be seen
as limits of the theory for a given subclass of systems when a parameter of this class or
a parameter of the symbolic universe (or a combination of both kinds of parameters)
takes extreme but still finite values (the limit may involve statistical considerations).
Hydrodynamic examples of modules of this kind concern the small-depth and
small-amplitude limits of surface wave schemes, the high Reynolds-number limit of
fluid resistance or fluid retardation schemes (boundary-layer theory), and the low
Reynolds-number limit of these schemes (creeping flow). In most cases, it is only at

realism, and so on must be discussed; knowledge “in principle” must be subordinated to knowledge “in
practice,” which involves the available technologies of measurement and calculation.
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the level of approximating modules that the functional relations between schematic
quantities can be effectively computed.42

There is a last kind of modules, the reducing modules, that has more to do with
the foundations of the theory than with its applications. These are theories diverted
from their original domain of application in order to build the whole symbolic
universe of another theory.43 This is what happens, for instance, when the mechanics
of a system of interacting mass points is used in Clerk Maxwell’s manner as a
molecular-kinetic-theoretical foundation for the Navier-Stokes equation.44 There
is a difference between saying that T is a reducing module of T′ and saying that T′ is
an approximating module of T: in the latter case, the schemes of T′ are a subclass of
those of T, whereas in the former case the schemes of T have nothing to do with the
schemes of T′ (they lose their empirical realizability in the reducing process). In the
case of reducing modules, the theory T is necessarily known before the reduction
is done and the theory T′ may even be invented through the reduction, as was
the case with Maxwell’s theory of electrodynamics. With approximating modules,
the theory T may or may not precede the theory T′. Whereas the Navier-Stokes
theory preceded its boundary-layer module, Euler’s hydrodynamics postdated its
narrow-vase module à la Bernoulli. Maxwell’s electrodynamics postdated its quasi-
stationary module and wave optics postdated its rays-optics module.

Modules, qua theories, can have submodules. For instance, the incompressible
idealizing module of the Navier-Stokes theory has an inviscid specializing module.
More interestingly, the boundary-layer theory, as an approximating module, relies
on defining modules that are idealizing, specializing, or approximating modules
of the Navier-Stokes theory. These defining modules respectively correspond to
inviscid fluid motion (in the “free fluid”), discontinuity surfaces (in the case of
separation), and the boundary-layer equation. This means that a module of a theory
can also be a submodule of another module of the same theory (see figure 1.4). It
also means that the same theory can be a module of different theories. More evident
examples of multiply inserted modules are Euclidian geometry and Newtonian
mechanics, which are defining modules of all the main theories of classical physics.

The modular structure varies as the theory develops. The defining modules are
there, by necessity, from beginning to end. Reducing modules may occur at any
stage of the life of the theory: at its birth, in its middle age, or even at its death.
An instance of the last case occurred when the electromagnetic theory of light
replaced elastic-solid theories of light. Specializing and approximating modules
are gradually introduced, for the sake of mathematical simplification and efficient
application. The status of a module may vary. For instance, a defining module

42 Approximating modules correspond to what Jeffry Ramsey calls transformation reduction (Ramsey 1993,
1995).

43 In this case, being a module of another theory does not imply a sort of inclusion; but it remains true that a
module of a theory serves this theory.

44 More exactly, the low-density gas specialization of the Navier-Stokes theory is an approximating module of
the kinetic theory of gases, of which the mechanics of a set of interacting molecules is a reducing module.
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Figure 1.4 Some of the modular structure of modern hydrodynamics. The solid arrows
correspond to specializing or approximating modules, the dotted arrows to defining or

idealizing modules.

may become a reducing module or vice versa. In the course of the history of elec-
trodynamics, mechanics was successively a defining module (Coulomb, Ampère,
Neumann, Weber), a reducing module (Thomson, Maxwell), and again a defining
module (Hertz). This variability of the status of modules is the reason why I have
introduced a fairly wide spectrum of modular interrelations.

As I have argued elsewhere, modules play an essential role in the application,
construction, comparison, and communication of theories.45 In the case of hydro-
dynamics, the role of modules in permitting efficient applications of the theory is
most evident. They yield conceptual structures that are better adapted to concrete
problem situations than the bare Navier-Stokes equation. They instruct us about
the choice of accessible, causally interrelated aspects of fluid motion and they tell us
how to measure them. Through a nesting hierarchy of modules, we can capitalize
on our concrete knowledge of the schemes of the most basic modules to imagine
and control the complex experimental environment through which the predictions
of higher-level theories are tested.

The constructive role of modules is evident in the case of defining and reducing
modules. Idealizing, specializing, and approximating modules also help theory
construction when they are known before the projective theory. They may play
an instrumental role in theoretical unification or in the rejection of a tentative
unification. And they may provide a “correspondence principle” for guiding the
design of the symbolic universe of a new theory, as was the case when Bohr and

45 Darrigol 2008.
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Heisenberg appealed to classical electrodynamics in the construction of quantum
theory.

The comparison of two theories requires shared interpretive schemes whose
concrete realization is not tied to either of these theories. This is possible if all the
schematic quantities can be defined by means of shared modules. For example,
the predictions of various nineteenth-century theories of electrodynamics could be
compared thanks to the sharing of electrostatic, electrokinetic, and magnetostatic
modules. Shared modules are also essential for the communication between differ-
ent subcultures of physics and other communities of scientists and engineers who
use physics in their work. These shared modules enable someone to use results of
a theory whose foundation he ignores or even rejects. They permit the sharing of
apparatus whose functioning depends only on lower-level modules. Lastly, modular
structure is essential to the teaching of theories. A typical textbook is organized by
chapters that correspond to modules of the theory. Thus, the student can connect
the new theory to other theories with which he is already familiar, he can get a grasp
on how to apply the theory in concrete situations, and he can learn techniques that
transcend the domain of this theory.

3.3 Models and Modules

In recent philosophy of science, there has been a strong emphasis on models as
mental constructs that differ both from full-fledged theory and from narrow empir-
ical induction. Mary Morgan and Margaret Morrison regard models as mediating
instruments between theory and phenomena. In their view, models are partially
autonomous from theory: some of their components have extratheoretical origins.
The models help to shape theories as much as they rely on theory. They are more
directly relevant to the empirical world than theories, at the price of a more lim-
ited scope. For all these reasons, Morgan and Morrison insist that models are not
theories.

Yet (physics) models fit my definition of theories, since they necessarily have a
symbolic universe, internal laws, and interpretive schemes. In my view, they differ
from other theories only by having a smaller scope or less structural unity. This
difference is largely a matter of degree and convention. The partial autonomy of
models from more fundamental theories results from the modular character of their
interconnection with these theories. Typically, fundamental theories are defining or
reducing modules of models; or else models are approximating modules of a more
fundamental theory.46 The relation between models and theories is just a particular
case of the modular relation between two theories. It therefore implies the same sort
of mutual fitness without fusion. There is no need to sharply discriminate models

46 In conformity with the physicists’ usage, Morrison and Morgan also call “models” what I call a “reducing
module.” For instance, Maxwell’ s mechanical model of 1862 for the electromagnetic field is a model in this
sense. This kind of model widely differs from ad hoc models for limited classes of phenomena.
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from theories once the modular structure of theories is taken into account. It is
sufficient to recognize that some theories are more fundamental than others.

We may now revisit Prandtl’s boundary-layer theory, which has received more
attention from philosophers of science than any other aspect of hydrodynam-
ics. The reason for this interest, no doubt, is the glaring cognitive superiority of
Prandtl’s theory compared to any earlier approach to the high Reynolds-number
resistance problem. Margaret Morrison calls Prandtl’s theory a model and insists
on its extratheoretical origins in conformity with her general views on models. In
her opinion, Prandtl’s concept of boundary layer originated in an inductive infer-
ence from the flow patterns that Prandtl observed with his water mill and tank.
Michael Heidelberger denies this reconstruction and favors an account in terms of
theoretical heuristics. As he correctly remarks, laminar boundary layers could not
be seen in Prandtl’s tank, and Prandtl himself cited asymptotic reasoning as the true
source of this concept. However, the scenario imagined by Morrison is frequently
encountered in the history of hydrodynamics. For instance, Rankine and Froude’s
concept of eddying boundary layer did result from casual observation of the flow
around a ship hull.47

Despite his disagreement with Morrison over the origins of Prandtl’s theory,
Heidelberger continues to call it a model. Presumably, he means to indicate that
Prandtl’s theoretical heuristics implied more creative guessing than would be needed
in a mere deduction from the Navier-Stokes theory would engender, and that it
created a new efficient, and fairly autonomous, conceptual structure. Prandtl himself
did not call his theory a model. The reasons are not difficult to guess. The word was
then used in Göttingen as a way to characterize semi-concrete theories that saved
the phenomena without pretending to reach the true causes. In contrast, Prandtl’s
boundary-layer theory was meant to represent the true flow around bodies at a
high Reynolds number; it did not imply any counterfactual hypothesis; and it
was demonstrably compatible with the Navier-Stokes equation. In my terminology,
Prandtl’s theory was an approximating module of the Navier-Stokes theory. In
conformity with the physicists’ parlance, I would rather reserve the word “model”
for theories that imply conscious simplifications of the system under consideration,
for instance, the early nineteenth-century “models” of open channel flow.48

These terminological subtleties matter inasmuch as an overly generous use of
the word “model” implies a neglect of the modular structure of theories, which I
regard as pervasive and essential. Morrison’s and Heidelberger’s insights into the
function of what they prefer to call models are nevertheless important. They both
emphasize the impotence of bare fundamental theories and the need to supplement
them with conceptual structures that somehow mediate between theory and exper-
iment. And they both understand that unification, in the context of a fundamental
theory, remains a desideratum. In a witty allusion to Nancy Cartwright’s criticism

47 Morrison 1999, 53–60; Heidelberger 2006, 60–62.
48 For instance, Walther Ritz (1903, 3) called his vibrating-square theory of series spectra a “model” (his

quotation marks).
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of fundamental theories, Heidelberger claims that the Navier-Stokes theory “does
not even lie about the world.” At the same time, he understands that the boundary-
layer theory, which so much improves the explanatory power of hydrodynamics,
is an approximation of the Navier-Stokes theory. In my view, the moral is that the
Navier-Stokes theory, or any other of the great theories of physics, should not be
considered independently of its ever-increasing modular structure. Although the
result of this evolution can never fulfill the dream of a transparent and automatic
application of the fundamental equations to every conceivable situation, it has the
organic unity and efficiency that we need in order to understand and control some
of the physical world.49
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1. Preliminary Considerations
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One of the prominent sources of unhelpful folklore within philosophy is the
historical controversy whose proper intricacies have been underappreciated. Mis-
understood problems beget mistaken “morals” that can lead philosophical thinking
astray for long epochs thereafter. This has occurred, to an extent that few philoso-
phers recognize, with respect to the so-called “foundations of classical mechanics.”
As matters are commonly represented within modern college primers, “classical
physics” appears to be a transparent subject matter firmly founded upon Newton’s
venerable laws of motion. But this placid appearance is deceptive. Any purchaser of
an old home is familiar with parlor walls that seem sound except for a few imper-
fections that “only require a little spackle and paint.” When those innocent dimples
are opened up, the ancient gerry-rigged structure comes tumbling down and our
hapless fix-it man finds himself confronted with months of dusty reconstruction.
So it is with our subject, whose basic concepts can seem so “clear and distinct” on
first acquaintance that unwary thinkers have mistaken them for a priori verities.
But the true lesson of “classical mechanics” for philosophy should be exactly the
opposite: the conceptual matters that initially strike us as simple and pellucid often
unwind into hidden complexities when probed more adequately.1

1 This is an extract (skillfully edited by Julia Bursten) of a longer survey to appear in a collection of essays
entitled Physics Avoidance. I would like to thank Julia Bursten and Bob Batterman for their helpful advice.
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Matters have been rendered more confusing by the fact that a conceptually
simple surrogate for classical doctrine is readily available, even though its formally
articulated doctrines skirt most of the tricky conceptual problems encountered
within classical tradition. The tenets of this simple theory comprise the themes
that we shall investigate under the heading of “point-mass mechanics.” Within
this approach the term point mass designates an isolated, zero-dimensional point
that carries concentrated mass, charge, and so on. In contrast, there are two other
sorts of “fundamental objects” with which a “classical mechanics” can be potentially
concerned: rigid bodies, understood as extended solids whose points never alter their
relative distances to one another and flexible bodies such as fluids or solids that are
completely malleable at every size scale (figure 2.1).

Commonly, the latter are also called continua, a practice we shall adopt here. Of
course, any of these entities can be joined together in larger combinations, as when
individual rods are assembled into a mechanism or one flexible body is embedded
within another as a composite (e.g., a jelly doughnut).2

Mathematicians commonly label our continua as fields due to their distributed
character. We will generally avoid this terminology and will not discuss classical
electrodynamics at all. In the sequel, I shall employ the phrase material point to
designate a zero-dimension region within a continuously distributed body (either
in its interior or along some bounding surface). In contrast to our point masses,
material points are connected with one another quite densely and (usually) do not
carry finite values of mass or impressed force (they, instead, only display mass
and charge densities that sum to genuine masses and densities over regions of an
adequate measure). The phrase analytic mechanics will serve as a generic title for
the sundry formalisms that deal with connected systems of rigid bodies.

As just noted, the “conceptually simple surrogate” for classical doctrine that
most commonly dominates philosophical discussions of “Newtonian mechanics”
comprises a set of prescriptions that make coherent sense only with respect to
isolated point masses that never come into contact with one another.We shall discuss

2 In textbooks, ontologically mixed circumstances (a point mass sliding upon a rigid plane) often appear. Usually
these need to be viewed as degenerations of dimensionally consistent schemes (i.e., a ball sliding on a plane or
a free mass floating above a lattice of strongly attracting masses).
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the specific features of these doctrines in section 3. From a point-mass perch,
any appeal to rigid bodies or continua merely represents a convenient means of
discussing large swarms of point masses held together through cohesive bonding at
short scale lengths.

The deceptive simplicity available to the point-mass approach traces largely to
the fact that, within its frame, matter can exist only in the form of isolated singu-
larities, thereby sidestepping the substantial mathematical concerns that arise when
extended objects come in contact with one another (on rare occasions, point masses
can collide with one another, but these contacts only occur at fleeting moments
that can usually be handled through appeal to conservation principles). As a result,
point masses act upon one another only through action-at-a-distance forces,3 but
higher dimensional objects require direct contact forces as well. As we will learn,
getting action-at-a-distance forces and contact forces to work in tandem is a non-
trivial affair, but it becomes a conceptual obligation that vanishes from view if we
are allowed to restrict our fundamental ontology to point masses alone.

However, there is a wide range of subtle reasons why it can easily look as if a
specific classical author embraces the point-mass viewpoint. As we will observe in
section 3, Newton’s celebrated laws of motion are difficult to parse coherently unless
terms like “body” are interpreted in a punctiform manner. A host of significant
mathematical complexities attach to the notion of “material point” as it appears
within continuum physics (i.e., as a point-sized region within a continuous body),
and these are sometimes bypassed by confusing embedded continuum points with
the simple isolated singularities of the point-mass treatment. We shall survey several
of these shifts in the pages to follow. From a formal point of view, it is important to
distinguish between the ordinary differential equations (ODEs) pertinent to point
masses and analytic mechanics and the trickier partial differential equations (PDEs)
required in continuum modeling.4

The fact that the real world proves quantum mechanical within its small-scale
behaviors occasions confusion as well. Although particles like electrons appear to
be “point-like” in their scattering behaviors, they also “fill” larger effective vol-
umes courtesy of the uncertainty relations. In many cases, one obtains the requisite
Schrödinger equation for a system of particles (which is a PDE describing a field
spread out within a high dimensional space) by “quantizing” a parallel set of ODEs
for a classical point-mass system.5 But this mathematical linkage does not entail

3 If a mathematical treatment happens to make two point masses coincide, that occurrence is generally viewed
as a blowup (= breakdown of the formalism) rather than a true contact. It is often possible to push one’s
treatment through such blowups through appeal to sundry conservation laws and the rationale for these
popular procedures will be scrutinized in section 3.

4 Modern investigations have shown that true ODEs and PDEs are usually the resultants of foundational
principles that require more sophisticated mathematical constructions for their proper expression (integro-
differential equations; variational principles, weak solutions, etc.). We shall briefly survey some of the reasons
for these complications when we discuss continua in section 4 (although such concerns can even affect point-
mass mechanics as well). For the most part, the simple rule “ODEs = point masses or rigid bodies; PDEs =
continua” remains a valuable guide to basic mathematical character.

5 Often internal variables such as spin are tolerated in these ODEs, even though they lack clear counterparts
within true classical tradition.
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that nature behaves much like any classical point-mass system at a small size scale
(figure 2.2).

Quite the contrary, constructing a classical system that can approximate the
“effective volumes” of quantum clouds accurately at the size scale of so-called
“molecular modeling” often requires classical blobs of extended size and flexibility.
Most scientists working in the final epoch when classical mechanics could plausibly
claim to govern the world in its entirety, namely the late nineteenth century, rejected
the point-mass viewpoint as empirically inadequate for the bloblike characteristics
of real-life atoms and molecules.

Nonetheless, there are convenient mathematical associations between the ODEs
for classical point-mass models and the Schrödinger equation, so many contem-
porary physicists and philosophers of physics are familiar with the point-mass
formalism alone. However, scholars hoping to extract methodological morals from
the struggles over “matter,”“atoms,” and “force” that occurred toward the end of the
nineteenth century will be misled if they study point-masses only, for it misses the
conceptual complexities at the heart of the historical disputes. Viewed retrospec-
tively, the degree to which the technical arcana of classical mechanics have impacted
the development of scientifically attuned philosophy over the past several centuries
is quite striking, even if this influence is not always recognized by modern readers.
In this review, we shall sketch some of the chief ways in which the subtleties of
classical mechanics have impacted philosophy.

There are two major arenas in which these effects have arisen. First, many
of our greatest historical thinkers (Newton, Leibniz, Kant, Duhem, and oth-
ers) directly struggled with the problems of classical matter, and their developed
philosophies often prove intimately entangled with the specific foundational path-
ways they chose to follow.6 Such portions of our philosophical heritage are often

6 The abstract ruminations of The Critique of Pure Reason, for example, appear to have derived in part from the
nitty-gritty worries about flexible matter that we shall review later. We look forward to Michael Friedman’s
big book on these issues.
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misunderstood nowadays simply because the true contours of the physical prob-
lems our forebears faced have been forgotten. Second, as a result of these struggles,
the great philosopher-scientists formulated a wide range of philosophical atti-
tudes including anti-realism and instrumentalism as a response to the technical
oddities they confronted. The twentieth-century logical empiricists who came
later—after the chief focus of academic physics had shifted to quantum theory
and relativity—were influenced by those older philosophical conclusions without
adequate appreciation of the concrete issues that prompted them. Unfortunately,
many philosophers have continued to hew to these old presumptions as if they
represented firm verities, illustrating Darwin’s celebrated aperccu: “False facts are
highly injurious to the progress of science, for they often endure long; but false
views, if supported by some evidence, do little harm, for everyone takes a salutary
pleasure in proving their falseness.”7 A large folklore of “false facts” concerning
classical mechanics continues to bend contemporary philosophy along unprofitable
contours even today.

It is not the chief intent of this essay to pursue these satellite philosophical
concerns with any vigilance, but to instead concentrate upon the key tensions that
render classical doctrine hard to capture in the first place. Nonetheless, I hope
that our prolegomena on larger themes suggests that significant points of general
philosophical edification still lodge within the cracks of mechanics’ hoary edifice.

2. Axiomatic Presentation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It will serve as a convenient benchmark for our investigations to recall that David
Hilbert placed the rigorization of mechanics on his celebrated 1899 list of problems
that mathematicians should address in the century to come (it is his sixth problem).
He wrote, “The investigations on the foundations of geometry suggest the prob-
lem: To treat in the same manner, by means of axioms, those physical sciences in
which mathematics plays an important part; in the first rank are the theory of prob-
abilities and mechanics.”8 Indeed, Hilbert’s own work in geometry and elsewhere
comprised a chief inspiration for the logical empiricist program. Following this lead,
we will serially examine the prospects for meeting Hilbert’s challenge based upon
the three foundational choices identified in section 1: point masses, rigid bodies,
and continua.

Since this essay will conclude that Hilbert’s objectives cannot be completely
satisfied with respect to classical mechanics in the manner anticipated, let me first
distance this evaluation from a popular viewpoint with which it might be otherwise

7 Charles Darwin, The Descent of Man and Selection in Relation to Sex, Part II (New York: American Dome,
1902), 780.

8 David Hilbert, “Mathematical Problems,” in Mathematical Developments Arising from Hilbert Problems, ed.
Felix Browder (Providence, RI: American Mathematical Society, 1976), 14.
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confused. Many recent philosophers have responded to the axiomatic expectations
of the logical empiricist school by concluding that science cannot be usefully stud-
ied in a formal manner at all. “Real life physics represents an ongoing practice,”
they claim, “and any attempt to capture its free-spirited antics within the rigid
net of mathematical formalization represents an intrinsic distortion.” But this is
not what I shall claim, for I reject such a point of view entirely. Writing idly of
“practices” in the loose manner of such authors offers little prospect for either
appreciating or correctly identifying the concrete conceptual difficulties to be doc-
umented in this essay. Indeed, it was precisely through careful formal studies in
Hilbert’s manner that twentieth-century practitioners eventually reached a much
sharper understanding of the fundamental requirements of continuum mechanics
than was available in 1899. Indeed, Hilbert’s own lectures in 1905 and the pioneer-
ing efforts of his student, Georg Hamel, comprised early landmarks along this long
and tortuous development.9 The only anti-Hilbertian moral we will extract from
our examination is that a descriptive regime can often address large-scale objects
more successfully if its underpinnings are structured in an overall “theory facade”
manner somewhat at odds with standard axiomatic expectations. In every other
way, I completely endorse the motivating intent of Hilbert’s sixth problem.

We cannot appreciate the old puzzles of classical matter in their historical
dimensions unless we keep the mathematical difficulties of continua firmly in mind.
Scientists planning bridges or studying the musical qualities of violins in early eras
did not have the luxury of waiting until the twentieth century to gather the tools
they properly require. They simply had to cobble by with the mathematics they
had on hand, even at the price of rather dodgy justifications. For example, due
to the lack of clearly articulated PDE equations, Leibniz and his school could not
deal directly with the three-dimensional complexities of a shaking beam straight
on; they were forced to dissect the problem as illustrated into a connected sequence
of one-dimensional tasks locally governed by ODEs (figure 2.3).

Newton followed a similar procedure in investigating how rotation affects the
earth’s shape: he began his treatment with a one-dimensional “canal” through the
planet’s interior.10 Even today, most textbook problems adopt similar reductive
stratagems: witness the standard treatment of the vibrating string.

Studying physics within these reduced, lower-dimensional settings can be very
misleading from a “foundational” point of view (encouraging one to, e.g., think of
stress as simply a kind of force). However, it is unlikely that classical physics could
have staggered its way to an adequate treatment of continua without relying upon
a broad array of results for systems that, from a foundational point of view, cannot
represent their proper conceptual ingredients.

Finally, to appreciate the historical debates over classical physics in a proper con-
text, we must disentangle the term “foundations” from certain absolutist demands

9 Georg Hamel, Theoretische Mechanik: Eine einheitliche Einführung in die gesamte Mechanik (Berlin: Springer
Verlag, 1949).

10 Isaac Newton, Principia, vol. 1 (Berkeley: University of California Press, 1966), 349.
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that contemporary philosophers are inclined to make. If we mark out clear axiomatic
“foundations” for point masses, say, have we thereby selected an absolute bot-
tom layer of entities from which any other object or system considered within a
classical frame should be constructed? Many contemporary philosophers almost
instinctively answer “yes,” but the more prevalent historical assumption would have
rejected “ultimate foundations” for classical mechanics in that vein. Indeed, calls
for axiomatization per se need not inherently favor any unique choice of “ide-
ology and ontology” in an absolutist manner, for one may instead believe that
different selections of base entities and primitive terms may prove better suited
for different agendas. Indeed, nineteenth-century mathematicians influenced by
Julius Plücker maintained that traditional Euclidean geometry lacks any privileged
basic ontology—there is no special reason to regard points as the subject’s prim-
itive objects rather than lines or circles. Indeed, a chief objective of traditional
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“foundational” work within geometry was interested in learning how the subject
appears when it is dissected into alternative choices of elementary forms (points,
lines, circles, etc.), under the assumption that each dissection into“primitives”offers
fresh insights into the structural relationships that interlace the subject. Hilbert may
have approached his sixth-problem axiomatization project with similarly tolerant
expectations.

Most of the great scientists of Hilbert’s time tacitly recognized that descriptive
success in reliable modeling invariably relies upon some tacit choice of scale length.
Matter generally reveals a hierarchy of qualities depending on how closely one
inspects its structural details (it is traditional to designate this depth of focus by a
“characteristic scale length”�L). For example, on an observational scale�LO, well-
made steel obeys simple isotropic rules for stretch and compression under normal
loads (figure 2.4).

But closer inspection reveals that this macroscopic uniformity and toughness
represents the resultant of a carefully engineered randomness at the level of the crys-
talline grain�LG making up the material (such a scale length is sometimes dubbed
the “mesoscopic level”). Considered at this lowered �LG length, each component
granule will stretch and compress in a more complicated manner than the bulk steel,
but their randomized orientations supply the larger body with its simple behavior
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at the macroscopic level (so-called “homogenization theory” concerns itself with
the details of how this �LG scale to �LO scale process operates). Lowering our
focus to the molecular lattice�LL composing the grain, we find that its capacity to
transmit dislocations supplies the true underpinnings of the admirable toughness
witnessed in the bulk steel at the much longer characteristic length �LO. If we
attempt to capture these various scale-dependent behaviors individually utilizing
classical modeling techniques alone (as we can, to a remarkable degree of success),
we will generally find ourselves selecting different ontological base units according
to the implicit scale length we have selected. In such a mode, civil engineers usu-
ally model a steel beam upon a �LO scale as a single flexible body of considerable
homogeneity, whereas technicians interested in steel manufacture typically concern
themselves with the thermodynamics of structural formation at the �LG level. As
such, the latter often adopt an ontology of rigid crystalline forms bound together
into a complex material matrix. Initial efforts in modeling materials at the �LL

scale often employ point-mass atoms bound together in an irregular grid. But a
more refined approach to these same lattice “atoms” will instead assign them flex-
ible shapes—at the cost of considerable computational complexity. And so the
modeling shifts proceed, each alteration in characteristic scale length commonly
favoring a different “ontology” in its modeling material.

Here is a useful way to think about the relationships between scale sizes. In pre-
suming that the point masses within a rigid part retain their comparative distances,
we are actually pursuing a rough-hewn stratagem for profitable variable reduction,
in the sense that we are attempting to evade consideration of the huge class of
descriptive parameters needed to fully fix the position and velocity of every point
mass within its surrounding rigid-body cloud. By treating the cloud as a united
whole, we can track its dominant behaviors with a simple choice of six descriptive
parameters (three to locate its center of mass; three to mark its angles of rotation
around that center). But in tracking these values, we are only attending to the domi-
nant behavior of the cloud because any normal collection of point masses will need
to jiggle in very complex ways as they move forward. So our six rigid-body coordi-
nates count as an effective set of reduced variables for our complicated point-mass
swarm. Modern mathematicians like to picture such reductions as consisting of the
trajectories etched upon a smallish “reduced manifold” sitting inside some much
larger dynamic space. Our point-mass swarm (which is symbolized within a stan-
dard high dimensional “phase space” as the movements of a single dot) will wander
throughout the larger space in an exceedingly complicated way, but it may fly fairly
close (for certain portions of its journey at least) to a smaller “reduced variable”
manifold, as illustrated (figure 2.5).

If so, we can gauge its complex movements with reasonable accuracy by simply
tracking its shadow upon the surface of the reduced manifold. Such reduced-variable
techniques have been long employed within celestial mechanics and it remains the
hope of modern modelers in, for example, hydrodynamics that some allied set of
reduced quantities might be found to simplify the refractive complexities within
those topics.
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Figure 2.5

Speculative philosophers such as Leibniz opined that this alteration of ontolog-
ical units would continue forever as one descends to smaller scales. More cautious
observers have merely observed that experiment had not established any clear choice
of lowest scale unit for classical mechanics. In this regard, it should be recalled that
the evidence for fundamental particles only became overwhelming at the very end of
the classical period, in the guise of Rutherford’s experiments on radioactive scatter-
ing and the like. Once quantum mechanics enters our descriptive arena, its percepts
increasingly dominate at smaller scale lengths and we eventually fall beyond the
resources of classical modeling tools altogether.

Unfortunately, the various crossover points at which classical treatments lose
their accuracy do not favor any uniform choice of fundamental classical entity.
Sometimes point-mass treatments supply the most convenient form of lowest-scale
classical modeling, but more often continua or rigid bodies provide better model-
ing accuracy. So while quantum mechanics may select certain entities as physically
“bottom level,” it does not follow that classical mechanics will do the same when
considered upon its own merits. Accordingly, Hilbert’s sixth-problem formalization
project should not be saddled with the burden of satisfying a contemporary philoso-
pher’s expectations with respect to bottom-level ontology. What we will want to
investigate carefully, as part of our “foundationalist” enterprise, is the degree to
which principles applicable on a higher scale level�L∗ relate to those applicable at
the lower length �L. I call such transfers of doctrine across size scales lifts, and I
employ “lift” in the elevator sense: one can go both up and down in a hoist.

Hilbert’s own articulation stresses the importance of understanding these lifts
more centrally than the simpler task of formalizing our three starting perspectives.
He wrote:

Boltzmann’s work on the principles of mechanics suggests the
problem of developing mathematically the limiting processes,
there merely indicated, that lead from the atomistic view to
the laws of motion of continua. Conversely, one might try to
derive the laws of motion of rigid bodies by a limiting from
a system of axioms depending upon the idea of continuously
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varying conditions of matter filling all space continuously,
these conditions being defined by parameters. For the ques-
tion of equivalence of different systems of axioms is always
of great theoretical interest.11

Here Hilbert calls our attention to the various relationships between scale
length that have been intensely studied in recent times under the general headings
of “homogenization” and “degeneration.”12 He observes that the vague invoca-
tion of “limits” rarely provides an adequately precise diagnosis of the relationships
involved, an observation that modern investigations heartily underscore. Observe
that Hilbert’s final sentence suggests that he did not anticipate that any of his
suggested starting points would prove fundamental in the bottom-layer sense just
canvassed. According to the applicational task at hand, different modes of ontolog-
ical dissection (e.g., flexible continua or Boltzmannian swarms of rigid bodies) may
possess their descriptive utilities in the same manner in which alternative decom-
positions of geometry into “primitive elements” prove fruitful. Even so, Hilbert
insists that we must guard against erroneously lifting physical doctrines from one
decompositional program to another without adequate precaution (figure 2.6).

In standard textbook practice, these lifts usually appear as dubious“derivations”
of, for example, rules of continua considered at a�L∗ scale level on the basis of rigid
body swarms at a �L scale. As we will later see in detail, such improper doctrinal
transfers are common in practice and sometimes serve as the source of substantial
conceptual confusion.13

11 Hilbert, “Mathematical Problems,” 15.
12 I do not have the space to survey such modern studies here, which attempt to, for example, recover the tenets

of rigid body mechanics from continuum principles by allowing certain material parameters to become
infinitely stiff (thus “degeneration”). Generally the results are quite complex, with corrective modeling
factors emerging in the manner of Prantdl’s boundary layer equations. Sometimes efforts are made to weld
our different foundational approaches into unity through employing tools like Stieltjes-Lesbeque integration.
More generally, a “homogenization” recipe smears out the detailed processes occurring across a wide region
�W in an “averaging” kind of way, whereas “degeneration” instead concentrates the processes within �W
onto a spatially singular support like a surface (the Riemann-Hugoniot approach to shock waves provides a
classic exemplar).

13 After a sufficient range of mechanical considerations has been surveyed in later sections, we shall be able
to sketch a more favorable view of the useful offices that standard textbook lifts provide. I should also add
that we shall generally consider our “�L to �L∗ lifts” in two simultaneous modes: (1) as a modeling shift
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Consider a simple example of the problems that can arise in such shifts from
�L to �L∗. The term force has a notorious tendency to alter its exact significance
as characteristic scale lengths are adjusted. At a macroscopic level, the “rolling
friction” that slows a ball upon a rigid track is a simple Newton-style force opposing
the onward motion. But at a lower scale length, the seemingly “rigid” tracks are
not so firm after all: they elongate under the weight of the sphere to a nontrivial
degree. So part of the work required to move our ball against friction consists in
the fact that it must travel further than is apparent. But when we consider the
“forces” on our ball at a macrolevel, we instinctively treat the track length as fixed
and allocate the effects of its actual elongation to a portion of the “force of rolling
friction” budget (figure 2.7). A similar phenomenon occurs with the “viscosity” of
a fluid.

When such adjustments in reference occur, one cannot legitimately lift a doc-
trine about “forces” applicable on scale level�L to scale level�L∗, for “force” does
not mean quite the same thing in the two applications. Of course, if these innocent
drifts were the only kinds of problematic lift to which mechanical practice was liable,
serious conceptual debates would not have arisen in the subject. But these humble
illustrations supply a preliminary sense of the problems we must watch for.

The properties we ascribe to a system with respect to an upper-scale length
�L∗ (“rolling on a rigid track”) usually represent averages (or some allied form of
homogenization or degeneration) over the more elaborate behaviors we will witness

from one finite scale length to another (e.g., from �LG to �LO in our steel bar example) and (2) as a
mathematical shift from a lower dimensional object (a point mass or line) to a higher dimensional gizmo such
as a three-dimensional blob. Properly speaking, these represent distinct projects, although, in historical and
applicational practice, they blur together.
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at a finer scale of resolution �L (“stretching the molecular lattice”). Obtaining a
workable scheme of physical description tailored to �L∗ usually requires that a
fair amount of fine detail gets frozen over in our modelings. In other words, we
generally hope to capture only the dominant behaviors of our real-life system within
in our �L∗ treatment and anticipate that we will sometimes need to open up the
suppressed degrees of freedom whenever the complexities of the lower scale begin
to intrude upon the patterns normally predominant at the coarser scale�L∗.

Generically, the use of a smaller set of quantities to capture system behaviors
dominant upon a higher scale length �L∗ is called a reduced variable treatment.
There are a large number of ways in which these reduced-variable models can arise.
For example, a reasonable policy of homogenization might adjust its descriptive
terms from those suited to a�LG assembly of iron grains to a smoothed-over steel
bar described as continuous at the �LO level.14 But a quite different exemplar of
reduced-variable “freezing” can be witnessed in Newton’s celebrated treatment of
the planets. At the scale lengths appropriate to celestial mechanics, one can ignore
the complexities attendant upon the earth’s shape and size by modeling it as a
simple point mass. Rather than smearing out the properties of the planets over
wider regions (as occurs in homogenization), we instead concentrate their extended
traits upon much smaller supports.

Such policies of compressing complex expanses into singularities (or other
lower-dimensional structures such as one-dimensional strings) are sometimes called
degenerations (a term I regard as preferable to the misleading phrase idealization).
Plainly, when very detailed astrophysical calculations are wanted, one must open up
those internal complexities and treat the earth as a continuum subject apt to distort
under rotational effects. However, there are many forms of reduced-variable lift that
involve a mixture of the two policies or other sorts of tactic altogether.

Some of the anti-atomism advocated by late nineteenth-century scientists such
as Duhem and Mach traces not to some obtuse dismissal of lower scale structure
per se, but to the widely shared assumption that, in any application, modelers
must invariably engage in such “freezing to a scale level” procedures. Their primary
disagreement with other mechanists of their era concerns the format that should
be regarded as the optimal embodiment of “classical principle” within such a scale-
sensitive setting. Specifically, Duhem and Mach maintained that “basic physics,”
as an organizational enterprise, should develop tools that will prove maximally
useful at any chosen scale length. This requirement almost automatically favors a
“thermomechanical” approach of the sort described in the discussion of flexible
bodies in section 5. Their opponents, such as Ludwig Boltzmann, generally favored
the simplest base ontology that could plausibly support the more complex forms of

14 Strictly speaking, a lift to continuous variables from an ODE-style treatment involving a large number of
discrete variables at the�L level should not be called a “reduced variable” treatment, as we actually increased
the number of degrees of freedom under the lift (normally, a true “reduced variable” treatment will supply
a �L∗ level manifold lying near to some submanifold contained within the �L phase space). However, the
descriptive advantages of a lift to continuous variables often resembles those supplied within a true “reduced
variable” treatment, so in the sequel I will often consider both forms of lift under a common heading.
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mechanics in a�L to�L∗ manner (they often employed point masses or connected
rigid bodies as their base level ingredients). In these respects, we might observe that
Duhem and Mach’s strictures better suit the methodological percepts of empiricists
such as David Hume, who opined that any postulation of lower-scale structure must
be based upon “laws” directly verifiable at the laboratory level.

Prima facie, we might reasonably expect that it should prove possible to formal-
ize any of our three basic ontologies independently of one another, placing them
on their own bottoms, as it were. Thus Hilbert probably anticipated that we should
be able to frame distinct axiomatic encapsulations for point masses, rigid bodies
and flexible bodies and then proceed to investigate how ably such formalisms relate
to one another under �L to �L∗ lifts. However, a somewhat surprising obstacle
impedes such projects, whose various ramifications will comprise the bulk of this
essay. They collectively trace to the simple consideration that if we attempt to frame
general principles applicable to a higher �L∗ scale length based upon behaviors
operative on a lower scale length �L, we will find that our �L∗ level principles
generally display gaps, holes, or gross inaccuracies in special circumstances.

The general explanation for such upper-scale gaps is quite straightforward: a
useful selection of “reduced variables” at the �L∗ level will focus upon behav-
iors that dominate at that size scale. But, invariably, there will be special �L-level
arrangements where the effects suppressed in our �L∗ treatment obtain equal or
greater importance than the usual dominant behaviors. I shall sometimes call such
shifts “escape hatches,” for they provide ladders that allow us to evade the inferen-
tial instructions of a formalism that no longer serves its empirical purposes. But
such practices create a formal difficulty for axiomatization projects in Hilbert’s
vein because the domain of interest frequently becomes re-ontologized under the
scale shift. But axiomatic presentations rarely include provisos for ontology shifts.
Instead, we anticipate that their formal tenets will supply behavioral principles
applicable to its ontology in all circumstances, even if, in real-life practice, we would
normally escape such descriptive straitjackets in favor of some revised treatment
operating at a lower length scale�L.

In short, conventional axiomatized theories are expected to supply princi-
ples that can govern even the bad spots within their ranges of empirical coverage.
Such formal expectations lead many philosophers to further suppose that “classical
mechanics” must completely specify the behaviors tolerated within its own parochial
range of possible worlds, in spite of the fact that we would never apply such modelings
to real-world dominions of a strongly quantum mechanical or relativistic charac-
ter. But such dogmas presume that some fairly complete axiomatization of overall
“classical mechanics” is available, a thesis we shall critically examine in this essay.

Let us now ask ourselves a commonsensical question. Considered from a prac-
tical point of view, is it really wise or meritorious to fill out a formalism in a manner
that carries with it no discernible empirical merit? Mightn’t it be better to deliber-
ately leave our stocks of physical principle somewhat incomplete, allowing its very
holes to signal when we should look for suitable�L∗ to�L escape hatches? Indeed,
explicit indications in the mathematics of when modeling problems begin should
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be greatly cultivated, for we surely want to avoid the fate of the computers who
cheerfully compute worthless data simply because no one has told them to stop.15

Training in mechanics generally inculcates considerable skill in knowing when one
should adventitiously shift from one modeling framework to another. So it is some-
times unwise to push a formalism’s axiomatized coverage beyond the limits of its
real-life modeling effectiveness.

This point of view suggests that we might look upon the inherited compendium
of descriptive lore we call “classical mechanics” as a series of descriptive patches
(corresponding to our three basic choices of fundamental objects) linked together at
their descriptive bad spots by various�L∗ to�L escape hatches. However, whenever
manifolds are constructed through sewing together local patches in this way, twisted
topologies can potentially emerge in the final result (Klein bottles and Möbius strips
provide classic illustrations of the phenomenon). In these respects, nature shows
little favoritism as to which of our three basic ontologies of classical objects should
be viewed as “fundamental” from an applicational point of view.

If we attempt to understand “classical physics” as a conceptual system closed unto
itself, we thereby obtain a structure like one of those impossible Escher etchings: local
plates connected by staircases that never stabilize upon a lowest landing (figure 2.8).

But such topographical oddities do not indicate that “classical physics” has not
served its descriptive purposes perfectly well. As long as the salient escape routes are
clearly marked, our Escherish edifice serves a base frame upon which a wide range of
interconnected forms of reduced-variable modeling techniques can be conveniently
located (I sometimes call structures of this sort theory facades). By operating with

15 In many statistical problems, the population under review is artificially increased to an infinite size, simply
so that the applicable mathematics will supply crisp answers to the questions we commonly ask. Left to its
own devices, mathematics is rather stupid in a literal-minded kind of way and finds it very difficult to answer
questions in a “well, almost all of the time” vein, which is often the best that can be achieved with respect to a
finite population. But if the same community is modeled as infinite, we can often fool the mathematics into
supplying us with the brisk replies we desire.
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a proper regard for the requisite level shifts, we can thereby assemble the most
fruitful terminology yet devised for dealing with the complex physical world about
us at nonmicroscopic scale lengths: the shared language of “classical physics.” The
twisted topology within its connection manifold merely reflects the “exit from bad
patches” considerations that allow the scheme to cover extremely wide swatches of
application with great efficiency.

The historical triumph of “classical mechanics”as a descriptive enterprise would
have never occurred had the subject not lightly skipped over the many problematic
transitions of the sort we shall survey. Historically, the price of a vigorous conceptual
enlargement is often a lingering residue of confusion that can occasionally blossom
into full paradox when suitably nurtured. And such has been the career of classical
mechanics: full of predictive glories but comingled with mystifying transitions that
have led some of our greatest philosophical minds down the garden path to strange
assessments of our descriptive position within nature. In the sequel, we consider
three basic descriptive patches handed down to us in our classical legacy and examine
the typical confusions that arise when one shifts from one framework to another
without noticing.

3. Point-Mass Mechanics
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Let us first consider the point-mass formalism of classical mechanics, suggested by
Newton’s familiar formulation of the fundamental laws of motion. To begin, it is
worth noting that substantive foundational issues immediately arise if we scrutinize
these laws with a critical eye. In their original form, these principles are hard to
interpret with any exactitude due to the ambiguous manner in which Newton
employs his terms. Here they are in Motte’s translation:

Law I: Every body persists in its state of being at rest or of
moving uniformly straight forward, except insofar as it is
compelled to change its state by force impressed.
Law II: The alteration of motion is ever proportional to the
motive force impressed; and is made in the direction of the
right line in which that force is impressed.
Law III: To every action there is always opposed an equal
reaction: or the mutual actions of two bodies upon each
other are always equal, and directed to contrary parts.16

Look carefully at Law I. If a“body”represents an isolated point mass, then the phrase
“moves uniformly straight forward” is not ambiguous. But what is the parallel intent
if a rotating rigid object can be selected as a body? Or a packet within a compressible

16 Isaac Newton, op. cit. 13–14.


