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Preface......................

Since the birth of Econometrics almost eight decades ago, theoretical and applied
Econometrics and Statistics has, for the most part, proceeded along ‘Classical lines
which typically invokes the use of rigid user-specified parametric models, often linear.
However, during the past three decades a growing awareness has emerged that results
based on poorly specified parametric models could lead to misleading policy and fore-
casting results. In light of this, around three decades ago the subject of nonparametric
Econometrics and nonparametric Statistics emerged as a field with the defining fea-
ture that models can be ‘data-driven’—hence tailored to the data set at hand. Many
of these approaches are described in the books by Prakasa Rao (1983), Härdle (1990),
Fan and Gijbels (1996), Pagan and Ullah (1999), Yatchew (2003), Li and Racine (2007),
and Horowitz (2009), and they appear in a wide range of journal outlets. The recogni-
tion of the importance of this subject along with advances in computer technology has
fueled research in this area, and the literature continues to increase at an exponential
rate. This pace of innovation makes it difficult for specialists and nonspecialists alike
to keep abreast of recent developments. There is no single source available for those
seeking an informed overview of these developments.

This handbook contains chapters that cover recent advances and major themes in
the nonparametric and semiparametric domain. The chapters contained herein pro-
vide an up-to-date reference source for students and researchers who require definitive
discussions of the cutting-edge developments in applied Econometrics and Statistics.
Contributors have been chosen on the basis of their expertise, their international rep-
utation, and their experience in exposing new and technical material. This handbook
highlights the interface between econometric and statistical methods for nonparamet-
ric and semiparametric procedures; it is comprised of new, previously unpublished
research papers/chapters by leading international econometricians and statisticians.
This handbook provides a balanced viewpoint of recent developments in applied sci-
ences with chapters covering advances in methodology, inverse problems, additive
models, model selection and averaging, time series, and cross-section analysis.

Methodology

Semi-nonparametric (SNP) models are models where only a part of the model is
parameterized, and the nonspecified part is an unknown function that is represented
by an infinite series expansion. SNP models are, in essence, models with infinitely many
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parameters. In Chapter 1, Herman J. Bierens shows how orthonormal functions can be
constructed along with how to construct general series representations of density and
distribution functions in a SNP framework. Bierens reviews the necessary Hilbert space
theory involved as well.

The term ‘special regressor’ originates in Lewbel (1998) and has been employed
in a wide variety of limited dependent variable models including binary, ordered,
and multinomial choice as well as censored regression, selection, and treatment
models and truncated regression models, among others (a special regressor is an
observed covariate with properties that facilitate identification and estimation of a
latent variable model). In Chapter 2, Arthur Lewbel provides necessary background
for understanding how and why special regressor methods work, and he details
their application to identification and estimation of latent variable moments and
parameters.

Inverse Problems

Ill-posed problems surface in a range of econometric models (a problem is ‘well-posed’
if its solution exists, is unique, and is stable, while it is ‘ill-posed’ if any of these con-
ditions are violated). In Chapter 3, Marine Carrasco, Jean-Pierre Florens and Eric
Renault study the estimation of a function ϕ in linear inverse problems of the form
Tϕ = r, where r is only observed with error and T may be given or estimated. Four
examples are relevant for Econometrics, namely, (i) density estimation, (ii) deconvolu-
tion problems, (iii) linear regression with an infinite number of possibly endogenous
explanatory variables, and (iv) nonparametric instrumental variables estimation. In
the first two cases T is given, whereas it is estimated in the two other cases, respectively
at a parametric or nonparametric rate. This chapter reviews some main results for these
models such as concepts of degree of ill-posedness, regularity of ϕ, regularized estima-
tion, and the rates of convergence typically obtained. Asymptotic normality results of
the regularized solution ϕ̂α are obtained and can be used to construct (asymptotic)
tests on ϕ.

In Chapter 4, Victoria Zinde-Walsh provides a nonparametric analysis for several
classes of models, with cases such as classical measurement error, regression with
errors in variables, and other models that may be represented in a form involving
convolution equations. The focus here is on conditions for existence of solutions, non-
parametric identification, and well-posedness in the space of generalized functions
(tempered distributions). This space provides advantages over working in function
spaces by relaxing assumptions and extending the results to include a wider variety of
models, for example by not requiring existence of and underlying density. Classes of
(generalized) functions for which solutions exist are defined; identification conditions,
partial identification, and its implications are discussed. Conditions for well-posedness
are given, and the related issues of plug-in estimation and regularization are
examined.
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Additive Models

Additive semiparametric models are frequently adopted in applied settings to mitigate
the curse of dimensionality. They have proven to be extremely popular and tend to be
simpler to interpret than fully nonparametric models. In Chapter 5, Joel L. Horowitz
considers estimation of nonparametric additive models. The author describes meth-
ods for estimating standard additive models along with additive models with a known
or unknown link function. Tests of additivity are reviewed along with an empirical
example that illustrates the use of additive models in practice.

In Chapter 6, Shujie Ma and Lijian Yang present an overview of additive regres-
sion where the models are fit by spline-backfitted kernel smoothing (SBK), and they
focus on improvements relative to existing methods (i.e., Linton (1997)). The SBK
estimation method has several advantages compared to most existing methods. First,
as pointed out in Sperlich et al. (2002), the estimator of Linton (1997) mixed up differ-
ent projections, making it uninterpretable if the real data generating process deviates
from additivity, while the projections in both steps of the SBK estimator are with
respect to the same measure. Second, the SBK method is computationally expedient,
since the pilot spline estimator is much faster computationally than the pilot kernel
estimator proposed in Linton (1997). Third, the SBK estimator is shown to be as effi-
cient as the “oracle smoother” uniformly over any compact range, whereas Linton
(1997) proved such ‘oracle efficiency’ only at a single point. Moreover, the regular-
ity conditions needed by the SBK estimation procedure are natural and appealing and
close to being minimal. In contrast, higher-order smoothness is needed with grow-
ing dimensionality of the regressors in Linton and Nielsen (1995). Stronger and more
obscure conditions are assumed for the two-stage estimation proposed by Horowitz
and Mammen (2004).

In Chapter 7, Enno Mammen, Byeong U. Park and Melanie Schienle give an
overview of smooth backfitting estimators in additive models. They illustrate their
wide applicability in models closely related to additive models such as (i) nonpara-
metric regression with dependent errors where the errors can be transformed to
white noise by a linear transformation, (ii) nonparametric regression with repeat-
edly measured data, (iii) nonparametric panels with fixed effects, (iv) simultaneous
nonparametric equation models, and (v) non- and semiparametric autoregression
and GARCH-models. They review extensions to varying coefficient models, additive
models with missing observations, and the case of nonstationary covariates.

Model Selection and Averaging

“Sieve estimators” are a class of nonparametric estimator where model complexity
increases with the sample size. In Chapter 8, Bruce Hansen considers “model selection”
and “model averaging” of nonparametric sieve regression estimators. The concepts of
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series and sieve approximations are reviewed along with least squares estimates of sieve
approximations and measurement of estimator accuracy by integrated mean-squared
error (IMSE). The author demonstrates that the critical issue in applications is selec-
tion of the order of the sieve, because the IMSE greatly varies across the choice.
The author adopts the cross-validation criterion as an estimator of mean-squared
forecast error and IMSE. The author extends existing optimality theory by showing
that cross-validation selection is asymptotically IMSE equivalent to the infeasible best
sieve approximation, introduces weighted averages of sieve regression estimators, and
demonstrates how averaging estimators have lower IMSE than selection estimators.

In Chapter 9, Liangjun Su and Yonghui Zhang review the literature on variable
selection in nonparametric and semiparametric regression models via shrinkage. The
survey includes simultaneous variable selection and estimation through the meth-
ods of least absolute shrinkage and selection operator (Lasso), smoothly clipped
absolute deviation (SCAD), or their variants, with attention restricted to nonpara-
metric and semiparametric regression models. In particular, the author considers
variable selection in additive models, partially linear models, functional/varying coef-
ficient models, single index models, general nonparametric regression models, and
semiparametric/nonparametric quantile regression models.

In Chapter 10, Jeffrey S. Racine and Christopher F. Parmeter propose a data-driven
approach for testing whether or not two competing approximate models are equivalent
in terms of their expected true error (i.e., their expected performance on unseen data
drawn from the same DGP). The test they consider is applicable in cross-sectional and
time-series settings, furthermore, in time-series settings their method overcomes two
of the drawbacks associated with dominant approaches, namely, their reliance on only
one split of the data and the need to have a sufficiently large ‘hold-out’ sample for
these tests to possess adequate power. They assess the finite-sample performance of the
test via Monte Carlo simulation and consider a number of empirical applications that
highlight the utility of the approach.

Default probability (the probability that a borrower will fail to serve its obligation)
is central to the study of risk management. Bonds and other tradable debt instru-
ments are the main source of default for most individual and institutional investors.
In contrast, loans are the largest and most obvious source of default for banks. Default
prediction is becoming more and more important for banks, especially in risk man-
agement, in order to measure their clients degree of risk. In Chapter 11, Wolfgang
Härdle, Dedy Dwi Prastyo and Christian Hafner consider the use of Support Vector
Machines (SVM) for modeling default probability. SVM is a state-of-the-art nonlin-
ear classification technique that is well-suited to the study of default risk. This chapter
emphasizes SVM-based default prediction applied to the CreditReform database. The
SVM parameters are optimized by using an evolutionary algorithm (the so-called
“Genetic Algorithm”) and show how the “imbalanced problem” may be overcome by
the use of “down-sampling” and “oversampling.”
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Time Series

In Chapter 12, Peter C. B. Phillips and Zhipeng Liao consider an overview of recent
developments in series estimation of stochastic processes and some of their applica-
tions in Econometrics. They emphasize the idea that a stochastic process may, under
certain conditions, be represented in terms of a set of orthonormal basis functions, giv-
ing a series representation that involves deterministic functions. Several applications
of this series approximation method are discussed. The first shows how a continuous
function can be approximated by a linear combination of Brownian motions (BMs),
which is useful in the study of spurious regression. The second application utilizes
the series representation of BM to investigate the effect of the presence of determinis-
tic trends in a regression on traditional unit-root tests. The third uses basis functions
in the series approximation as instrumental variables to perform efficient estimation
of the parameters in cointegrated systems. The fourth application proposes alterna-
tive estimators of long-run variances in some econometric models with dependent
data, thereby providing autocorrelation robust inference methods in these models. The
authors review work related to these applications and ongoing research involving series
approximation methods.

In Chapter 13, Jiti Gao considers some identification, estimation, and specification
problems in a class of semilinear time series models. Existing studies for the stationary
time series case are reviewed and discussed, and Gao also establishes some new results
for the integrated time series case. The author also proposes a new estimation method
and establishes a new theory for a class of semilinear nonstationary autoregressive
models.

Nonparametric and semiparametric estimation and hypothesis testing methods
have been intensively studied for cross-sectional independent data and weakly depen-
dent time series data. However, many important macroeconomics and financial data
are found to exhibit stochastic and/or deterministic trends, and the trends can be
nonlinear in nature. While a linear model may provide a decent approximation to a
nonlinear model for weakly dependent data, the linearization can result in severely
biased approximation to a nonlinear model with nonstationary data. In Chapter 14,
Yiguo Sun and Qi Li review some recent theoretical developments in nonparametric
and semiparametric techniques applied to nonstationary or near nonstationary vari-
ables. First, this chapter reviews some of the existing works on extending the I(0),
I(1), and cointegrating relation concepts defined in a linear model to a nonlinear
framework, and it points out some difficulties in providing satisfactory answers to
extend the concepts of I(0), I(1), and cointegration to nonlinear models with persistent
time series data. Second, the chapter reviews kernel estimation and hypothesis test-
ing for nonparametric and semiparametric autoregressive and cointegrating models to
explore unknown nonlinear relations among I(1) or near I(1) process(es). The asymp-
totic mixed normal results of kernel estimation generally replace asymptotic normality
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results usually obtained for weakly dependent data. The authors also discuss kernel
estimation of semiparametric varying coefficient regression models with correlated
but not cointegrated data. Finally, the authors discuss the concept of co-summability
introduced by Berengner-Rico and Gonzalo (2012), which provides an extension of
cointegration concepts to nonlinear time series data.

Cross Section

Sets of regression equations (SREs) play a central role in Econometrics. In Chapter 15,
Aman Ullah and Yun Wang review some of the recent developments for the estima-
tion of SRE within semi- and nonparametric frameworks. Estimation procedures for
various nonparametric and semiparametric SRE models are presented including those
for partially linear semiparametric models, models with nonparametric autocorrelated
errors, additive nonparametric models, varying coefficient models, and models with
endogeneity.

In Chapter 16, Daniel J. Henderson and Esfandiar Maasoumi suggest some new
directions in the analysis of nonparametric models with exogenous treatment assign-
ment. The nonparametric approach opens the door to the examination of potentially
different distributed outcomes. When combined with cross-validation, it also iden-
tifies potentially irrelevant variables and linear versus nonlinear effects. Examination
of the distribution of effects requires distribution metrics, such as stochastic domi-
nance tests for ranking based on a wide range of criterion functions, including dollar
valuations. They can identify subgroups with different treatment outcomes, and they
offer an empirical demonstration based on the GAIN data. In the case of one covari-
ate (English as the primary language), there is support for a statistical inference of
uniform first-order dominant treatment effects. The authors also find several others
that indicate second- and higher-order dominance rankings to a statistical degree of
confidence.

Jeffrey S. Racine

Liangjun Su

Aman Ullah
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chapter 1

........................................................................................................

THE HILBERT SPACE THEORETICAL
FOUNDATION OF

SEMI-NONPARAMETRIC
MODELING

........................................................................................................

herman j. bierens

1.1. Introduction
.............................................................................................................................................................................

Semi-nonparametric (SNP) models are models where only a part of the model is
parameterized, and the nonspecified part is an unknown function that is represented
by an infinite series expansion. Therefore, SNP models are, in essence, models with
infinitely many parameters. The parametric part of the model is often specified as a
linear index, that is, a linear combination of conditioning and/or endogenous vari-
ables, with the coefficients involved the parameters of interests, which we will call the
structural parameters. Although the unknown function involved is of interest as well,
the parameters in its series expansion are only of interest insofar as they determine the
shape of this function.

The theoretical foundation of series expansions of functions is Hilbert space the-
ory, in particular the properties of Hilbert spaces of square integrable real functions.
Loosely speaking, Hilbert spaces are vector spaces with properties similar to those of
Euclidean spaces. As is well known, any vector in the Euclidean space Rk can be repre-
sented by a linear combination of k orthonormal vectors. Similarly, in Hilbert spaces
of functions, there exist sequences of orthonormal functions such that any function in
this space can be represented by a linear combination of these orthonormal functions.
Such orthonormal sequences are called complete.

The main purpose of this chapter is to show how these orthonormal functions can
be constructed and how to construct general series representations of density and
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distribution functions. Moreover, in order to explain why this can be done, I will review
the necessary Hilbert space theory involved as well.

The standard approach to estimate SNP models is sieve estimation, proposed by
Grenander (1981). Loosely speaking, sieve estimation is like standard parameter esti-
mation, except that the dimension of the parameter space involved increases to infinity
with the sample size. See Chen (2007) for a review of sieve estimation. However, the
main focus of this chapter is on SNP modeling rather than on estimation.

Gallant (1981) was the first econometrician to propose Fourier series expansions as
a way to model unknown functions. See also Eastwood and Gallant (1991) and the
references therein. However, the use of Fourier series expansions to model unknown
functions has been proposed earlier in the statistics literature. See, for example,
Kronmal and Tarter (1968).

Gallant and Nychka (1987) consider SNP modeling and sieve estimation of Heck-
man’s (1979) sample selection model, where the bivariate error distribution of the
latent variable equations is modeled semi-nonparametrically using a bivariate Hermite
polynomial expansion of the error density.

Another example of an SNP model is the mixed proportional hazard (MPH) model
proposed by Lancaster (1979), which is a proportional hazard model with unobserved
heterogeneity. Elbers and Ridder (1982) and Heckman and Singer (1984) have shown
that under mild conditions the MPH model is nonparametrically identified. The latter
authors propose to model the distribution function of the unobserved heterogeneity
variable by a discrete distribution. Bierens (2008) and Bierens and Carvalho (2007) use
orthonormal Legendre polynomials to model semi-nonparametrically the unobserved
heterogeneity distribution of interval-censored mixed proportional hazard models and
bivariate mixed proportional hazard models, respectively.

However, an issue with the single-spell MPH model is that for particular specifica-
tions of the baseline hazard, its efficiency bound is singular, which implies that any
consistent estimator of the Euclidean parameters in the MPH model involved con-
verges at a slower rate than the square root of the sample size. See Newey (1990) for a
general review of efficiency bounds, and see Hahn (1994) and Ridder and Woutersen
(2003) for the efficiency bound of the MPH model. On the other hand, Hahn (1994)
also shows that in general the multiple-spell MPH model does not suffer from this
problem, which is confirmed by the estimation results of Bierens and Carvalho (2007).

This chapter is organized as follows. In Section 1.2 I will discuss three examples of
SNP models,1 with focus on semiparametric identification. The SNP index regression
model is chosen as an example because it is one of the few SNP models where the
unknown function involved is not a density or distribution function. The two other
examples are the bivariate MPH model in Bierens and Carvalho (2007) and the first-
price auction model in Bierens and Song (2012, 2013), which have been chosen because
these papers demonstrate how to do SNP modeling and estimation in practice, and in
both models the unknown function involved is a distribution function. Section 1.3
reviews Hilbert space theory. In Section 1.4 it will be shown how to generate various
sequences of orthonormal polynomials, along with what kind of Hilbert spaces they
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span. Moreover, it will also be shown how these results can be applied to the SNP
index regression model. In Section 1.5 various nonpolynomial complete orthonormal
sequences of functions will be derived. In Section 1.6 it will be shown how arbitrary
density and distribution functions can be represented by series expansions in terms
of complete orthonormal sequences of functions, along with how these results can be
applied to the bivariate MPH model in Bierens and Carvalho (2007) and to the first-
price auction model in Bierens and Song (2012, 2013). In Section 1.7 I will briefly
discuss the sieve estimation approach, and in Section 1.8 I will make a few concluding
remarks.

Throughout this chapter I will use the following notations. The well-known indi-
cator function will be denoted by 1(·), the set of positive integers will be denoted by
N, and the set of non-negative integers, N∪ {0}, by N0. The abbreviation “a.s.” stands
for “almost surely”—that is, the property involved holds with probability 1—and “a.e.”
stands for “almost everywhere,” which means that the property involved holds except
perhaps on a set with Lebesgue measure zero.

1.2. Examples of SNP Models
.............................................................................................................................................................................

1.2.1. The SNP Index Regression Model

Let Y be a dependent variable satisfying E[Y 2] < ∞, and let X ∈ Rk be a vector of
explanatory variables. As is well known, the conditional expectation E[Y |X] can be
written as E[Y |X] = g0(X), where g0(x) is a Borel measurable real function on Rk . 2

Newey (1997) proposed to estimate g0(x) by sieve estimation via a multivariate series
expansion. However, because there are no parameters involved, the resulting estimate
of g0(x) can only be displayed and interpreted graphically, which in practice is only
possible for k ≤ 2. Moreover, to approximate a bivariate function g0(x) by a series
expansion of order n requires n2 parameters.3 Therefore, a more practical approach is
the following.

Suppose that there exists a β0 ∈ Rk such that E[Y |X] = E[Y |β ′
0X] a.s. Then there

exists a Borel measurable real function f (x) on R such that E[Y |X] = f (β ′
0X) a.s.

Because for any nonzero constant c, E[Y |β ′
0X] = E[Y |cβ ′

0X] a.s., identification of f
requires to normalize β0 in some way, for example by setting one component of β0 to
1. Thus, in the case k ≥ 2, let X = (X1, X ′

2)′ with X2 ∈ Rk−1, and β0 = (1,θ ′
0)′ with

θ0 ∈Rk−1, so that
E[Y |X] = f (X1 + θ ′

0X2) a.s. (1.1)

To derive further conditions for the identification of f and θ0, suppose that for some
θ∗ 
= θ0 there exists a function f∗ such that f (X1 + θ ′

0X2) = f∗(X1 + θ ′∗X2) a.s. Moreover,
suppose that the conditional distribution of X1 given X2 is absolutely continuous with
support R. Then conditional on X2, f (x1 + θ ′

0X2) = f∗(x1 + θ ′
0X2 + (θ∗ − θ0)′X2) a.s.
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for all x1 ∈R. Consequently, for arbitrary z ∈R we may choose x1 = z − θ ′
0X2, so that

f (z) = f∗(z + (θ∗ − θ0)′X2) a.s. for all z ∈R. (1.2)

If f (z) is constant, then E[Y |X] = E[Y ] a.s., so let us exclude this case. Then (1.2)
is only possible if (θ∗ − θ0)′X2 is a.s. constant, which in turn implies that (θ∗ −
θ0)′(X2 −E[X2]) = 0 a.s. and thus (θ∗−θ0)′E[(X2 −E[X2])(X2 −E[X2])′](θ∗ −θ0) = 0.
Therefore, if Var[X2] is nonsingular, then θ∗ = θ0.

Summarizing, it has been shown that the following results hold.

Theorem 1.1. The function f (z) and the parameter vector θ0 in the index regression
model (1.1) are identified if

(a) Pr[E(Y |X) = E(Y )] < 1;
(b) The conditional distribution of X1 given X2 is absolutely continuous with support R;
(c) The variance matrix of X2 is finite and nonsingular.

Moreover, in the case X ∈ R the regression function f (z) is identified for all z ∈R if
the distribution of X is absolutely continuous with support R.

The problem how to model f (z) semi-nonparametrically and how to estimate f and
θ0 will be addressed in Section 1.4.4.

1.2.2. The MPH Competing Risks Model

Consider two durations, T1 and T2. Suppose that conditional on a vector X of covari-
ates and a common unobserved (heterogeneity) variable V , which is assumed to be
independent of X , the durations T1 and T2 are independent, that is, Pr[T1 ≤ t1, T2 ≤
t2|X , V ] = Pr[T1 ≤ t1|X , V ]. Pr[T2 ≤ t2|X , V ]. This is a common assumption in bivari-
ate survival analysis. See van den Berg (2000). If the conditional distributions of the
durations T1 and T2 are of the mixed proportional hazard type, then their survival
functions conditional on X and V take the form Si(t |X , V ) = Pr[Ti > t |X , V ] =
exp(−V exp(β ′

i X)�i(t |αi)), i = 1, 2, where �i(t |αi) = ∫ t
0 λi(τ |αi)dτ , i = 1, 2, are the

integrated baseline hazards depending on parameter vectors αi.
This model is also known as the competing risks model. It is used in Bierens and

Carvalho (2007) to model two types of recidivism durations of ex-convicts, namely (a)
the time T1 between release from prison and the first arrest for a misdemeanor and (b)
the time T2 between release from prison and the first arrest for a felony, with Weibull
baseline hazards, that is,

λ(t |αi)= αi,1αi,2tαi,2−1, �(t |αi)= αi,1tαi,2 , αi,1 > 0, αi,2 > 0,

with αi = (αi,1,α1,2)′, i = 1, 2, (1.3)

where αi,1 is a scale factor.
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In this recidivism case we only observe T = min(T1, T2) together with a discrete
variable D that is 1 if T2 > T1 and 2 if T2 ≤ T1. Thus, D = 1 corresponds to rearrest
for a misdemeanor and D = 2 corresponds to rearrests for a felony. Then condi-
tional on X and V , Pr[T > t , D = i|X , V ] = ∫∞

t V exp(−V (exp(β ′
1X)�(τ |α1) +

exp(β ′
2X)�(τ |α2))) · exp(β ′

i X)λ(τ |αi) dτ , i = 1, 2, which is not hard to verify.
Integrating V out now yields

Pr[T > t , D = i|X]

=
∫ ∞

t

∫ ∞

0
v exp

(−v
(
exp

(
β ′

1X
)
�(τ |α1)+ exp

(
β ′

2X
)
�(τ |α2)

))
dG(v)

×exp
(
β ′

i X
)
λ(τ |αi)dτ , i = 1, 2, (1.4)

where G(v) is the (unknown) distribution function of V .
It has been shown in Bierens and Carvalho (2006), by specializing the more general

identification results of Heckman and Honore (1989) and Abbring and van den Berg
(2003), that under two mild conditions the parameters α1,α2,β1,β2 and the distribu-
tion function G are identified. One of these conditions is that the variance matrix of X
is finite and nonsingular. The other condition is that E[V ] = 1, 4 so that (1.4) can be
written as

Pr[T > t , D = d|X]

=
∫ ∞

t
H
(
exp

(−(
exp

(
β ′

1X
)
�(τ |α1)+ exp

(
β ′

2X
)
�(τ |α2)

)))
× exp

(
β ′

dX
)
λ(τ |αd)dτ , d = 1, 2, (1.5)

where

H (u)=
∫ ∞

0
vuv dG(v) (1.6)

is a distribution function on the unit interval [0, 1]. Thus,

Theorem 1.2. If the variance matrix of X is finite and nonsingular, then the parameters
α1,α2,β1,β2 and the distribution function H(u) in the MPH competing risks Weibull
model (1.5) are identified.

Proof. (Bierens and Carvalho, 2006, 2007). �

It follows now straightforwardly from (1.5) that, given a random sample
{Tj , Dj , Xj}N

j=1 from (T , D, X), the log-likelihood function involved takes the form

ln(LN (α1,α2,β1,β2, H)) =∑N
j=1 	(Tj , Dj , Xj|α1,α2,β1,β2, H), where

	(T , D, X|α1,α2,β1,β2, H)

= ln
(
H
(
exp

(−(
exp

(
β ′

1X
)
�(T |α1)+ exp

(
β ′

2X
)
�(T |α2)

))))
+(2 − D)

(
β ′

1X + ln(λ(T |α1))
)+ (D − 1)

(
β ′

2X + ln(λ(T |α2))
)

. (1.7)
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At this point the distribution function H(u) representing the distribution of the
unobserved heterogeneity is treated as a parameter. The problem of how to model
H(u) semi-nonparametrically will be addressed in Section 1.6.

Note that the duration T = min(T1, T2) in Bierens and Carvalho (2007) is only
observed over a period [0, T], where T varies only slightly per ex-inmate, so that T is
right-censored. Therefore, the actual log-likelihood in Bierens and Carvalho (2007) is
more complicated than displayed in (1.7).

1.2.3. First-Price Auctions

A first price-sealed bids auction (henceforth called first-price auction) is an auction with
I ≥ 2 potential bidders, where the potential bidder’s values for the item to be auctioned
off are independent and private, and the bidders are symmetric and risk neutral. The
reservation price p0, if any, is announced in advance and the number I of potential
bidders is known to each potential bidder.

As is well known, the equilibrium bid function of a first-price auction takes the form

β (v|F, I)= v − 1

F(v)I−1

∫ v

p0

F(x)I−1 dx for v > p0 > v, (1.8)

if the reservation price p0 is binding, and

β (v|F, I)= v − 1

F(v)I−1

∫ v

0
F(x)I−1 dx for v > v, (1.9)

if the reservation price p0 is nonbinding, where F(v) is the value distribution, I ≥ 2
is the number of potential bidders, and v ≥ 0 is the lower bound of the support of
F(v). See, for example, Riley and Samuelson (1981) or Krishna (2002). Thus, if the
reservation price p0 is binding, then, with Vj the value for bidder j for the item to
be auctioned off, this potential bidder issues a bid Bj = β(Vj|F, I) according to bid
function (1.8) if Vj > p0 and does not issue a bid if Vj ≤ p0, whereas if the reservation
price p0 is not binding, each potential bidder j issues a bid Bj = β(Vj|F, I) according to
bid function (1.9). In the first-price auction model the individual values Vj , j = 1, . . . , I ,
are assumed to be independent random drawing from the value distribution F. The
latter is known to each potential bidder j, and so is the number of potential bidders, I .

Guerre et al. (2000) have shown that if the value distribution F(v) is absolutely
continuous with density f (v) and bounded support [v, v], v <∞, then f (v) is nonpara-
metrically identified from the distribution of the bids. In particular, if the reservation
price is nonbinding, then the inverse bid function is v = b+(I −1)−1�(b)/λ(b), where
v is a private value, b is the corresponding bid, and �(b) is the distribution function
of the bids with density λ(b). Guerre et al. (2000) propose to estimate the latter two
functions via nonparametric kernel methods, as �̂(b) and λ̂(b), respectively. Using
the pseudo-private values Ṽ = B + (I − 1)−1�̂(B)/λ̂(B), where each B is an observed
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bid, the density f (v) of the private value distribution can now be estimated by kernel
density estimation.

Bierens and Song (2012) have shown that the first-price auction model is also
nonparametrically identified if instead of the bounded support condition, the value
distribution F in (1.8) and (1.9) is absolutely continuous on (0,∞) with connected
support5 and finite expectation. As an alternative to the two-step nonparametric
approach of Guerre et al. (2000), Bierens and Song (2012) propose a simulated method
of moments sieve estimation approach to estimate the true value distribution F0(v), as
follows. For each SNP candidate value distribution F, generate simulated bids accord-
ing to the bid functions (1.8) or (1.9) and then minimize the integrated squared
difference of the empirical characteristic functions of the actual bids and the simulated
bids to the SNP candidate value distributions involved.

This approach has been extended in Bierens and Song (2013) to first-price auctions
with auction-specific observed heterogeneity. In particular, given a vector X of auction-
specific covariates, Bierens and Song (2013) assume that ln(V ) = θ ′X +ε, where X and
ε are independent. Denoting the distribution function of exp(ε) by F, the conditional
distribution of V given X then takes the form F(v exp(−θ ′X)).

1.3. Hilbert Spaces
.............................................................................................................................................................................

1.3.1. Inner Products

As is well known, in a Euclidean space Rk the inner product of a pair of vectors x =
(x1, . . . , xk)′ and y = (y1, . . . , yk)′ is defined as x′y = ∑k

m=1 xmym, which is a mapping
Rk × Rk→ R satisfying x′y = y ′x, (cx)′y = c(x′y) for arbitrary c ∈ R, (x + y)′z =
x′z + y ′z, and x′x > 0 if and only if x 
= 0. Moreover, the norm of a vector x ∈ Rk

is defined as ||x|| = √
x′x, with associated metric ||x − y||. Of course, in R the inner

product is the ordinary product x · y.
Mimicking these properties of inner product, we can define more general inner

products with associated norms and metrics as follows.

Definition 1.1. An inner product on a real vector space V is a real function 〈x, y〉: V ×
V →R such that for all x, y, z in V and all c in R, we obtain the following:

1. 〈x, y〉 = 〈y, x〉.
2. 〈cx, y〉 = c〈x, y〉.
3. 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉.
4. 〈x, x〉 > 0 if and only if x 
= 0.

Given an inner product, the associated norm and metric are defined as ||x|| =√〈x, x〉 and ||x − y||, respectively.
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As is well known from linear algebra, for vectors x, y ∈ Rk, |x′y| ≤ ||x||.||y||, which
is known as the Cauchy–Schwarz inequality. This inequality carries straightforwardly
over to general inner products:

Theorem 1.3. (Cauchy–Schwarz inequality) |〈x, y〉| ≤ ||x||.||y||.

1.3.2. Convergence of Cauchy Sequences

Another well-known property of a Euclidean space is that every Cauchy sequence has a
limit in the Euclidean space involved.6 Recall that a sequence of elements xn of a metric
space with metric ||x −y|| is called a Cauchy sequence if limmin(k,m)→∞||xk −xm|| = 0.

Definition 1.2. A Hilbert space H is a vector space endowed with an inner product and
associated norm and metric such that every Cauchy sequence has a limit in H.

Thus, a Euclidean space is a Hilbert space, but Hilbert spaces are much more general
than Euclidean spaces.

To demonstrate the role of the Cauchy convergence property, consider the vec-
tor space C[0, 1] of continuous real functions on [0, 1]. Endow this space with the
inner product 〈f , g〉 = ∫ 1

0 f (u)g(u) du and associated norm ||f || =√〈f , f 〉 and metric
||f − g ||. Now consider the following sequence of functions in C[0, 1]:

fn (u)=
⎧⎨⎩

0 for 0 ≤ u < 0.5,
2n(u − 0.5) for 0.5 ≤ u < 0.5 + 2−n,
1 for 0.5 + 2−n ≤ u ≤ 1,

for n ∈N. It is an easy calculus exercise to verify that fn is a Cauchy sequence in C[0, 1].
Moreover, it follows from the bounded convergence theorem that limn→∞ ||fn − f || =
0, where f (u) = 1(u > 0.5). However, this limit f (u) is discontinuous in u = 0.5, and
thus f /∈ C[0, 1]. Therefore, the space C[0, 1] is not a Hilbert space.

1.3.3. Hilbert Spaces Spanned by a Sequence

Let H be a Hilbert space and let {xk}∞k=1 be a sequence of elements of H. Denote by

Mm = span({xj}m
j=1)

the subspace spanned by x1, . . . , xm; that is, Mm consists of all linear combinations
of x1, . . . , xm. Because every Cauchy sequence in Mm takes the form zn = ∑m

i=1 ci,nxi,
where the ci,n’s are Cauchy sequences in R with limits ci = limn→∞ ci,n, it follows triv-
ially that limn→∞ ||zn − z|| = 0, where z = ∑m

i=1 cixi ∈ Mm. Thus, Mm is a Hilbert
space.



semi-nonparametric modeling 11

Definition 1.3. The space M∞ = ∪∞
m=1Mm

7is called the space spanned by {xj}∞j=1,
which is also denoted by span({xj}∞j=1).

Let xn be a Cauchy sequence in M∞. Then xn has a limit x ∈ H, that is,
limn→∞ ||xn − x|| = 0. Suppose that x /∈ M∞. Because M∞ is closed, there exists
an ε > 0 such that the set N (x,ε) = {x ∈H : ||x − x||< ε} is completely outside M∞,
that is, N (x,ε) ∩ M∞ = ∅. But limn→∞ ||xn − x|| = 0 implies that there exists an
n(ε) such that xn ∈ N (x,ε) for all n > n(ε), hence xn /∈ M∞ for all n > n(ε), which
contradicts xn ∈M∞ for all n. Thus,

Theorem 1.4. M∞ is a Hilbert space.

In general, M∞ is smaller than H, but as we will see there exist Hilbert spaces H
containing a sequence {xj}∞j=1 for which M∞ =H. Such a sequence is called complete:

Definition 1.4. A sequence {xk}∞k=1 in a Hilbert space H is called complete if H=
span({xj}∞j=1).

Of particular importance for SNP modeling are Hilbert spaces spanned by a com-
plete orthonormal sequence, because in that case the following approximation result
holds.

Theorem 1.5. Let {xj}∞j=1 a complete orthonormal sequence in a Hilbert space H, that is,

〈xi, xj〉 = 1(i = j) and H= span({xj}∞j=1). For an arbitrary y ∈H, let ŷn =∑n
j=1〈y, xj〉xj .

Then limn→∞ ||y − ŷn|| = 0 and
∑∞

j=1〈y, xj〉2 = ||y||2.

This result is a corollary of the fundamental projection theorem:

Theorem 1.6. Let S be a sub-Hilbert space of a Hilbert space H. Then for any y ∈ H
there exists a ŷ ∈ S (called the projection of y on S) such that ||y − ŷ|| = infz∈S ||y − z||.
Moreover, the projection residual u = y − ŷ satisfies 〈u, z〉 = 0 for all z ∈ S . 8

Now observe that ŷn in Theorem 1.5 is the projection of y on Mn = span({xj}n
j=1),

with residual un = y − ŷn satisfying 〈un, yn〉 = 0 for all yn ∈ Mn, and that due to
y ∈ span({xj}∞j=1) = ∪∞

m=1Mm there exists a sequence yn ∈Mn such that limn→∞ ||y −
yn|| = 0. Then ||y − ŷn||2 = 〈un, y − ŷn〉 = 〈un, y〉 = 〈un, y − yn〉 ≤ ||un||.||y − yn|| ≤
||y||.||y − yn|| → 0, where the first inequality follows from the Cauchy–Schwarz
inequality while the second inequality follows from the fact that ||un||2 ≤ ||y||2.
Moreover, the result

∑∞
j=1〈y, xj〉2 = ||y||2 in Theorem 1.5 follows from the fact that

||y||2 = 〈y, y〉 = limn→∞〈̂yn, y〉 = limn→∞
∑n

j=1〈y, xj〉2.

1.3.4. Examples of Non-Euclidean Hilbert Spaces

Consider the space R of random variables defined on a common probability space
{�,F , P} with finite second moments, endowed with the inner product 〈X , Y 〉 =
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E[X .Y ] and associated norm ||X|| = √〈X , X〉 =
√

E[X2] and metric ||X − Y ||. Then
we have the following theorem.

Theorem 1.7. The space R is a Hilbert space.9

This result is the basis for the famous Wold (1938) decomposition theorem, which in
turn is the basis for time series analysis.

In the rest of this chapter the following function spaces play a key role.

Definition 1.5. Given a probability density w(x) on R, the space L2(w) is the space of
Borel measurable real functions f on R satisfying

∫∞
−∞ f (x)2w(x) dx <∞, endowed with

the inner product 〈f , g〉 = ∫∞
−∞ f (x)g(x)w(x) dx and associated norm ||f || =√〈f , f 〉 and

metric ||f − g ||. Moreover, L2(a, b), −∞ ≤ a < b ≤ ∞, is the space of Borel measurable

real functions on (a, b) satisfying
∫ b

a f (x)2 dx, with inner product 〈f , g〉 = ∫ b
a f (x)g(x) dx

and associated norm and metric.

Then for f , g ∈ L2(w), we have 〈f , g〉 = E[f (X)g(X)], where X is a random draw-
ing from the distribution with density w(x); hence from Theorem 1.7 we obtain the
following theorem.

Theorem 1.8. The space L2(w) is a Hilbert space.

Also L2(a, b) is a Hilbert space, as will be shown in Section 1.5.
In general the result limn→∞ ||y − ŷn|| = 0 in Theorem 1.5 does not imply that

limn→∞ ŷn = y, as the latter limit may not be defined, and even if so, limn→∞ ŷn may
not be equal to y. However, in the case H = L2(w) the result limn→∞ ||y − ŷn|| = 0
implies limn→∞ ŷn = y, in the following sense.

Theorem 1.9. Let {ρm(x)}∞m=0 be a complete orthonormal sequence in L2(w),10 and let X
be a random drawing from the density w. Then for every function f ∈ L2(w), Pr[f (X) =
limn→∞

∑n
m=0 γmρm(X)] = 1, where γm = ∫∞

−∞ ρm(x)f (x)w(x) dx with
∑∞

m=0 γ
2
m =∫∞

−∞ f (x)2w(x) dx.

Proof. Denote fn(x) =∑n
m=0 γmρm(x), and recall from Theorem 1.5 that

∑∞
m=0 γ

2
m =

||f ||2 <∞. It follows now that

E[(f (X) − fn(X))2] =
∫ ∞

−∞
(f (x) − fn(x))2w(x) dx =

∞∑
m=n+1

γ 2
m → 0

as n → ∞; hence by Chebyshev’s inequality, p limn→∞ fn(X) = f (X). As is well
known,11 the latter is equivalent to the statement that for every subsequence of n
there exists a further subsequence mk, for example, such that Pr[ limk→∞ fmk (X) =
f (X)] = 1, and the same applies to any further subsequence mkn of mk :

Pr
[

lim
n→∞ fmkn

(X) = f (X)
]

= 1. (1.10)
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Given n, there exists a natural number kn such that mkn−1 < n ≤ mkn , and for such a
kn we obtain

E
[(

fmkn
(X) − fn(X)

)2
]

= E

⎡⎢⎣
⎛⎝ mkn∑

j=n+1

γmρm(X)

⎞⎠2
⎤⎥⎦=

mkn∑
j=n+1

γ 2
m ≤

mkn∑
j=mkn−1+1

γ 2
m,

hence
∞∑

n=0

E[(fmkn
(X) − fn(X))2] ≤

∞∑
n=0

mkn∑
j=mkn−1+1

γ 2
m ≤

∞∑
n=0

γ 2
n <∞.

By Chebyshev’s inequality and the Borel–Cantelli lemma,12 the latter implies

Pr
[

lim
n→∞(fmkn

(X) − fn(X))
]

= 1. (1.11)

Combining (1.10) and (1.11), the theorem follows. �

1.4. Orthonormal Polynomials and the

Hilbert Spaces They Span
.............................................................................................................................................................................

1.4.1. Orthonormal Polynomials

Let w(x) be a density function on R satisfying∫ ∞

−∞
|x|k w(x) dx <∞ for all k ∈N, (1.12)

and let pk(x|w) be a sequence of polynomials in x ∈ R of order k ∈ N0 such that∫∞
−∞ pk(x|w)pm(x|w)w(x) dx = 0 if k 
= m. In words, the polynomials pk(x|w) are

orthogonal with respect to the density function w(x). These orthogonal polynomials
can be generated recursively by the three-term recurrence relation (hereafter referred
to as TTRR)

pk+1(x|w) + (bk − x)pk(x|w) + ckpk−1(x|w) = 0, k ≥ 1, (1.13)

starting from p0(x|w) = 1 and p1(x|w) = x − ∫ 1
0 z.w(z) dz, for example, where

bk =
∫∞
−∞ x · pk(x|w)2w(x) dx∫∞

−∞ pk(x|w)2w(x) dx
, ck =

∫∞
−∞ pk(x|w)2w(x) dx∫∞

−∞ pk−1(x|w)2w(x) dx
. (1.14)

See, for example, Hamming (1973).



14 methodology

Defining

pk(x|w) = pk(x|w)√∫∞
−∞ pk(y|w)2w(y) dy

(1.15)

yields a sequence of orthonormal polynomials with respect to w(x):∫ ∞

−∞
pk(x|w)pm(x|w)w(x) dx = 1(k = m). (1.16)

It follows straightforwardly from (1.13) and (1.15) that these orthonormal polyno-
mials can be generated recursively by the TTRR

ak+1.pk+1(x|w) + (bk − x)pk(x|w) + ak .pk−1(x|w) = 0, k ∈N, (1.17)

starting from p0(x|w) = 1 and

p1(x|w) = x − ∫∞
−∞ z · w(z) dz√∫∞

−∞
(
y − ∫∞

−∞ z · w(z) dz
)2

w(y) dy
,

where bk is the same as in (1.14) and

ak =
√∫∞

−∞ pk(x|w)2w(x) dx√∫∞
−∞ pk−1(x|w)2w(x) dx

.

The sequence is pk(x|w) uniquely determined by w(x), except for signs. In other
words, |pk(x|w)| is unique. To show this, suppose that there exists another sequence
p∗

k (x|w) of orthonormal polynomials w.r.t. w(x). Since p∗
k(x|w) is a polynomial of

order k, we can write p∗
k(x|w) =∑k

m=0βm,kpm(x|w). Similarly, we can write pk(x|w) =∑k
m=0αm,.kp∗

m(x|w). Then for j < k, we have

∫ ∞

−∞
p∗

k (x|w)pj(x|w)w(x) dx =
j∑

m=0

αm,j

∫ ∞

−∞
p∗

k(x|w)p∗
m(x|w)w(x) dx = 0

and ∫ ∞

−∞
p∗

k(x|w)pj(x|w)w(x) dx =
k∑

m=0

βm,k

∫ ∞

−∞
pm(x|w)pj(x|w)w(x) dx

= βj,k

∫ ∞

−∞
pj(x|w)2w(x) dx = βj,k;

hence βj,.k = 0 for j < k and thus p∗
k (x|w) = βk,kpk(x|w). Moreover, by normality,

1 =
∫ ∞

−∞
p∗

k (x|w)2w(x) dx = β2
k,k

∫ ∞

−∞
pk(x|w)2w(x) dx = β2

k,k,
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so that p∗
k (x|w) = ±pk(x|w). Consequently, |pk(x|w)| is unique. Thus, we have the

following theorem.

Theorem 1.10. Any density function w(x) on R satisfying the moment conditions (1.12)
generates a unique sequence of orthonormal polynomials, up to signs. Consequently, the
sequences ak and bk in the TTRR (1.17) are unique.

1.4.2. Examples of Orthonormal Polynomials

1.4.2.1. Hermite Polynomials

If w(x) is the density of the standard normal distribution,

wN [0,1](x) = exp
(−x2/2

)
/
√

2π ,

the orthonormal polynomials involved satisfy the TTRR

√
k + 1pk+1(x|wN [0,1]) − x.pk(x|wN [0,1]) +

√
kpk−1(x|wN [0,1]) = 0, x ∈R,

for k ∈ N, starting from p0(x|wN [0,1]) = 1, p1(x|wN [0,1]) = x. These polynomials are
known as Hermite13 polynomials.

The Hermite polynomials are plotted in Figure 1.1, for orders k = 2, 5, 8.

1.4.2.2. Laguerre Polynomials

The standard exponential density function

wExp(x) = 1(x ≥ 0)exp(−x) (1.18)

5.6569

–2.5697

Hermite polynomial (2) on [–3,3]

Hermite polynomial (8) on [–3,3]

Hermite polynomial (5) on [–3,3]

figure 1.1 Hermite polynomials.
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1.

–1.1087

Laguerre polynomial (2) on [0,3]

Laguerre polynomial (8) on [0,3]

Laguerre polynomial (5) on [0,3]

figure 1.2 Laguerre polynomials.

gives rise to the orthonormal Laguerre14 polynomials, with TTRR

(k + 1)pk+1(x|wExp) + (2k + 1 − x)pk(x|wExp) + k.pk−1(x|wExp) = 0, x ∈ [0,∞).

for k ∈N, starting from p0(x|wExp) = 1, p1(x|wExp) = x − 1.
These polynomials are plotted in Figure 1.2, for orders k = 2, 5, 8.

1.4.2.3. Legendre Polynomials

The uniform density on [−1, 1],

wU[−1,1](x) = 1
2 1(|x| ≤ 1) ,

generates the orthonormal Legendre15 polynomials on [−1, 1], with TTRR

k + 1√
2k + 3

√
2k + 1

pk+1(x|wU[−1,1]) − x · pk(x|wU[−1,1])

+ k√
2k + 1

√
2k − 1

pk−1(x|wU[−1,1]) = 0, |x| ≤ 1,

for k ∈N, starting from p0(x|wU[−1,1]) = 1, p1(x|wU[−1,1]) = √
3x.

Moreover, substituting x = 2u − 1, it is easy to verify that the uniform density

wU[0,1](u) = 1(0 ≤ u ≤ 1)

on [0, 1] generates the orthonormal polynomials

pk(u|wU[0,1]) = pk(2u − 1|wU[−1,1]),
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Legendre polynomial (2) on [0,1] Legendre polynomial (5) on [0,1]

Legendre polynomial (8) on [0,1]

4.1231

–3.3166

figure 1.3 Shifted Legendre polynomials.

which are known as the shifted Legendre polynomials, also called the Legendre
polynomials on the unit interval. The TTRR involved is

(k + 1)/2√
2k + 3

√
2k + 1

pk+1(u|wU[0,1]) + (0.5 − u) · pk(u|wU[0,1])

+ k/2√
2k + 1

√
2k − 1

pk−1(u|wU[0,1]) = 0, 0 ≤ u ≤ 1,

for k ∈N, starting from p0(u|wU[0,1]) = 1, p1(u|wU[0,1]) = √
3(2u − 1).

The latter Legendre polynomials are plotted in Figure 1.3, for orders k = 2, 5, 8.

1.4.2.4. Chebyshev Polynomials

Chebyshev polynomials are generated by the density function

wC[−1,1](x) = 1

π
√

1 − x2
1(|x| < 1) , (1.19)

with corresponding distribution function

WC[−1,1](x) = 1 −π−1 arccos (x), x ∈ [ − 1, 1]. (1.20)

The orthogonal (but not orthonormal) Chebyshev polynomials pk(x|wC[−1,1])
satisfy the TTRR

pk+1(x|wC[−1,1]) − 2xpk(x|wC[−1,1]) + pk−1(x|wC[−1,1]) = 0, |x| < 1, (1.21)
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for k ∈ N, starting from p0(x|wC[−1,1]) = 1, p1(x|wC[−1,1]) = x, with orthogonality
properties

∫ 1

−1

pk(x|wC[−1,1])pm(x|wC[−1,1])

π
√

1 − x2
dx =

⎧⎨⎩
0 if k 
= m,
1/2 if k = m ∈N,
1 if k = m = 0.

An important practical difference with the other polynomials discussed so far is that
Chebyshev polynomials have the closed form:

pk(x|wC[−1,1]) = cos (k · arccos (x)) . (1.22)

To see this, observe from (1.20) and the well-known sine–cosine formulas that∫ 1

−1

cos(k · arccos (x))cos (m · arccos (x))

π
√

1 − x2
dx

= − 1

π

∫ 1

−1
cos(k · arccos (x))cos(m · arccos (x))d arccos (x)

= 1

π

∫ π

0
cos(k · θ)cos (m · θ)dθ =

⎧⎨⎩
0 if k 
= m,
1/2 if k = m ∈N,
1 if k = m = 0.

Moreover, it follows from the easy equality cos ((k + 1)θ) − 2 cos (θ)cos(k · θ) +
cos ((k − 1)θ) = 0 that the functions (1.22) satisfy the TTRR (1.21) and are therefore
genuine polynomials, and so are the orthonormal Chebyshev polynomials

pk(x|wC[−1,1]) =
{

1 for k = 0,√
2cos (k · arccos (x)) for k ∈N.

Substituting x = 2u − 1 for u ∈ [0, 1] in (1.20) yields

WC[0,1](u) = 1 −π−1 arccos (2u − 1) (1.23)

with density function

wC[0,1](u) = 1

π
√

u (1 − u)
(1.24)

and shifted orthonormal Chebyshev polynomials

pk(u|wC[0,1]) =
{

1 for k = 0,√
2 cos(k · arccos (2u − 1)) for k ∈N.

(1.25)

The polynomials (1.25) are plotted in Figure 1.4, for orders k = 2, 5, 8.
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1.4142

–1.4142

Chebyshev polynomial (2) on [0,1]

Chebyshev polynomial (8) on [0,1]

Chebyshev polynomial (5) on [0,1]

figure 1.4 Shifted Chebyshev polynomials.

1.4.3. Completeness

The reason for considering orthonormal polynomials is the following.

Theorem 1.11. Let w(x) be a density function on R satisfying the moment conditions
(1.12). Then the orthonormal polynomials pk(x|w) generated by w form a complete
orthonormal sequence in the Hilbert space L2(w). In particular, for any function f ∈ L2(w)
and with X a random drawing from w,

f (X) =
∞∑

k=0

γkpk(X|w) a.s., (1.26)

where γk = ∫∞
−∞ pm(x|w)f (x)w(x) dx with

∑∞
k=0γ

2
k = ∫∞

−∞ f (x)2w(x) dx.

Proof. Let fn(x) = ∑n
m=0 γmpm(x|w). Then ||f − fn||2 = ||f ||2 −∑n

m=0 γ
2
m, which is

not hard to verify, hence
∑∞

m=0 γ
2
m ≤ ||f ||2 < ∞ and thus limn→∞

∑∞
m=n+1 γ

2
m =

0. The latter implies that fn is a Cauchy sequence in L2(w), with limit f ∈ span
({pm( · |w)}∞m=0) ⊂ L2(w). Thus, limn→∞ ||f − fn|| = 0.

To prove the completeness of the sequence pm( · |w), we need to show that ||f −
f || = 0, because then f ∈ span({pm( · |w)}∞m=0), which by the arbitrariness of f ∈ L2(w)
implies that L2(w) = span({pm( · |w)}∞m=0). This will be done by showing that for a
random drawing X from w(x), we obtain

Pr[f (X) = f (X)] = 1, (1.27)
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because then ||f − f ||2 = E[(f (X) − f (X))2] = 0. In turn, (1.27) is true if for all t ∈R,
we obtain

E[(f (X) − f (X))exp(i · t · X)] = 0, (1.28)

because of the uniqueness of the Fourier transform.16

To prove (1.28), note first that the limit function f can be written as f (x) =∑n
m=0 γmpm(x|w) + εn(x), where limn→∞

∫∞
−∞ εn(x)2w(x) dx = 0. Therefore,∣∣∣∣∫ ∞

−∞
(f (x)− f (x))pm(x|w)w(x) dx

∣∣∣∣= ∣∣∣∣∫ ∞

−∞
εn(x)pm(x|w)w(x) dx

∣∣∣∣
≤
√∫ ∞

−∞
εn(x)2w(x) dx

√∫ ∞

−∞
pm(x|w)2w(x) dx =

√∫ ∞

−∞
εn(x)2w(x) dx

→ 0

for n → ∞, which implies that for any g ∈ span({pm( · |w)}∞m=0), we have
∫∞
−∞ (f (x) −

f (x))g(x)w(x) dx = 0. Consequently, E[(f (X) − f (X))exp(i · t · X)] = ∫∞
−∞ (f (x) −

f (x))exp (i · t · x)w(x) dx = 0 for all t ∈ R, because it follows from the well-known
series expansions of cos(t ·x) = Re[exp(i · t ·x)] and sin (t ·x) = Im [exp(i · t ·x)] that
these functions are elements of span({pm( · |w)}∞m=0). Thus, {pm( · |w)}∞m=0 is complete
in L2(w). The result (1.26) now follows from Theorem 1.9. �

1.4.4. Application to the SNP Index Regression Model

Suppose that the response function f (x) in the index regression model (1.1) satisfies

sup
x

|f (x)| · exp(−t0 · |x|) = M(t0) <∞ for some t0 > 0. (1.29)

so that −M(t0)exp(t0 · |x|) ≤ f (x) ≤ M(t0)exp(t0 · |x|). Then for the standard normal
density wN [0,1](x), we have

∫∞
−∞ f (x)2wN [0,1](x) dx < 2M(t0)exp(t2

0/2) < ∞; hence

f ∈ L2(wN [0,1]), so that f (x) has the Hermite series expansion

f (x) =
∞∑

m=0

δ0,mpm(x|wN [0,1]) = δ0,0 + δ0,1x +
∞∑

k=2

δ0,kpk(x|wN [0,1]) a.e. on R,

with δ0,m = ∫∞
−∞ f (x)pm(x|wN [0,1])wN [0,1](x) dx for m = 0, 1, 2, . . . . Thus, model (1.1)

now reads
E[Y |X] = lim

n→∞ fn(X1 + θ ′
0X2|δ0

n) a.s, (1.30)

where

fn(x|δn) = δ0 + δ1x +
n∑

k=2

δkpk(x|wN [0,1]) (1.31)

with δn = (δ0,δ1, . . . ,δn, 0, 0, 0, . . .) and δ0
n = (δ0,0,δ0,1, . . . ,δ0,n, 0, 0, 0, . . .).
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For fixed n ∈N the parameters involved can be approximated by weighted nonlinear
regression of Y on fn(X1 + θ ′X2|δn), given a random sample {(Yj , Xj)}N

j=1from (Y , X)

and given predefined compact parameter spaces �n and � for δ0
n and θ0, respectively.

Then the weighted NLLS sieve estimator of (θ0,δ0
n) is

(
θ̂n, δ̂n

)= arg min
(θ ,δn)∈�×�n

1

N

N∑
j=1

(
Yj − fn(X1,j + θ ′X2,j|δn)

)2
K(||Xj ||), (1.32)

where K(x) is a positive weight function on (0,∞) satisfying supx>0 xnK(x) < ∞ for
all n ≥ 0. The reason for this weight function is to guarantee that

E

[
sup

(θ ,δn)∈�×�n

(
Y − fn(X1 + θ ′X2|δn)

)2
K(||X||)

]
<∞

without requiring that E[||X||2n] <∞. Then by Jennrich’s (1969) uniform law of large
numbers and for fixed n, we have

sup
(θ ,δn)∈�×�n

∣∣∣∣∣∣ 1

N

N∑
j=1

(
Yj − fn(X1,j + θ ′X2,j|δn)

)2
K(||Xj||) − gn (θ ,δn)

∣∣∣∣∣∣
= op(1),

where gn(θ ,δn) = E[(Y − fn(X1 + θ ′X2|δn))2K(||X||)], so that

p lim
N→∞

(
θ̂n, δ̂n

)=
(
θn,δn

)
= arg min

(θ ,δn)∈�×�n

gn (θ ,δn) .

Under some alternative conditions the same result can be obtained by using the
Wald (1949) consistency result in van der Vaart (1998, Theorem 5.14), which does
not require that the expectation of the objective function is finite for all values of the
parameters, so that in that case there is no need for the weight function K(x).

Note that, in general, θn 
= θ0. Nevertheless, it can be shown that under some
additional regularity conditions,17 and with n = nN an arbitrary subsequence of N ,
p limN→∞ θ̂nN = θ0 and p limN→∞

∫∞
−∞ (fnN (x |̂δnN ) − f (x))2wN [0,1](x) dx = 0.

1.5. Non-Polynomial Complete

Orthonormal Sequences
.............................................................................................................................................................................

Recall that the support of a density w(x) on R is defined as the set {x ∈ R : w(x) > 0}.
For example, the support of the standard exponential density (1.18) is the interval
[0,∞). In this chapter I will only consider densities w(x) with connected support—
that is, the support is an interval—and for notational convenience this support will be
denoted by an open interval (a, b), where a = infw(x)>0 x ≥ −∞ and b = supw(x)>0 x ≤
∞, even if for finite a and/or b, w(a) > 0 or w(b) > 0.
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1.5.1. Nonpolynomial Sequences Derived from Polynomials

For every density w(x) with support (a, b),
∫ b

a f (x)2 dx <∞ implies that f (x)/
√

w(x) ∈
L2(w). Therefore, the following corollary of Theorem 1.11 holds trivially.

Theorem 1.12. Every function f ∈ L2(a, b) can be written as

f (x) =
√

w(x)

( ∞∑
k=0

γkpk(x|w)

)
a.e. on (a, b),

where w is a density with support (a, b) satisfying the moment conditions (1.12) and

γk = ∫ b
a f (x)pk(x|w)

√
w(x) dx. Consequently, L2(a, b) is a Hilbert space with complete

orthonormal sequence ψk(x|w) = pk(x|w)
√

w(x), k ∈N0.

If (a, b) is bounded, then there is another way to construct a complete orthonormal
sequence in L2(a, b), as follows. Let W (x) be the distribution function of a density
w with bounded support (a, b). Then G(x) = a+(b−a)W (x) is a one-to-one mapping
of (a, b) onto (a, b), with inverse G−1(y) = W −1((y − a)/(b − a)), where W −1 is the
inverse of W (x). For every f ∈ L2(a, b), we have

(b − a)

∫ b

a
f (G (x))2 w(x) dx =

∫ b

a
f (G (x))2 dG (x) =

∫ b

a
f (x)2 dx <∞.

Hence f (G(x)) ∈ L2(w) and thus by Theorem 1.11 we have f (G(x)) =∑∞
k=0 γkpk(x|w)

a.e. on (a, b), where γk = ∫ b
a f (G(x))pk(x|w)w(x) dx. Consequently,

f (x)= f
(
G
(
G−1 (x)

))=
∞∑

k=0

γkpk

(
G−1 (x) |w) a.e. on (a, b) .

Note that dG−1(x)/dx = dG−1(x)/dG(G−1(x)) = 1/G′(G−1(x)), so that∫ b

a
pk

(
G−1 (x) |w)pm

(
G−1 (x) |w)dx

=
∫ b

a
pk

(
G−1 (x) |w)pm

(
G−1 (x) |w)G′ (G−1 (x)

)
dG−1 (x)

=
∫ b

a
pk (x|w)pm (x|w)G′ (x)dx

= (b − a)

∫ b

a
pk (x|w)pm (x|w)w (x)dx = (b − a)1(k = m) .

Thus, we have the following theorem.
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Theorem 1.13. Let w be a density with bounded support (a, b) and let W be the c.d.f. of
w, with inverse W −1. Then the functions

ψk (x|w)= pk

(
W −1 ((x − a)/(b − a)) |w)/√(b − a), k ∈N0

form a complete orthonormal sequence in L2(a, b). Hence, every function f ∈ L2(a, b)
has the series representation f (x) = ∑∞

k=0γkψk(x|w) a.e. on (a, b), with γk =∫ b
a ψk(x|w)f (x) dx.

1.5.2. Trigonometric Sequences

Let us specialize the result in Theorem 1.13 to the case of the Chebyshev polynomials
on [0, 1], with a = 0, b = 1 and W , w and pk(u|w) given by (1.23), (1.24), and (1.25),
respectively. Observe that in this case W −1

C[0,1](u) = (1 − cos (πu))/2. It follows now
straightforwardly from (1.25) and the easy equality arccos(−x) = π − arccos (x) that
for k ∈N, pk(W −1

C[0,1](u)|wC[0,1]) =√
2cos (kπ)cos (kπu) =√

2(−1)k cos (kπu), which
by Theorem 1.13 implies the following.

Theorem 1.14. The cosine sequence

ψk(u) =
{

1 for k = 0,√
2 cos (kπu) for k ∈N,

is a complete orthonormal sequence in L2(0, 1). Hence, every function f ∈ L2(0, 1) has
the series representation f (u) = γ0 + ∑∞

k=1 γk

√
2 cos(kπu) a.e. on (0, 1), with γ0 =∫ 1

0 f (u) du, γk = √
2
∫ 1

0 cos (kπu)f (u) du for k ∈N.

This result is related to classical Fourier analysis. Consider the following sequence of
functions on [−1, 1]:

ϕ0 (x) = 1,

ϕ2k−1 (x) =
√

2sin (kπx) , ϕ2k (x) =
√

2cos (kπx) , k ∈N. (1.33)

These functions are know as the Fourier series on [−1, 1]. It is easy to verify that these
functions are orthonormal with respect to the uniform density wU[−1,1](x) = 1

2 1(|x| ≤
1) on [ − 1, 1], that is, 1

2

∫ 1
−1ϕm(x)ϕk(x) dx = 1(m = k). The following theorem is a

classical Fourier analysis result.

Theorem 1.15. The Fourier sequence {ϕn}∞n=0 is complete in L2(wU[−1,1]). 18

Now Theorem 1.14 is a corollary of Theorem 1.15. To see this, let f ∈ L2(0, 1) be
arbitrary. Then g(x) = f (|x|) ∈ L2(wU[−1,1]); hence

g(x) = α+
∞∑

k=1

βk

√
2 cos (kπx)+

∞∑
m=1

γm

√
2 sin(kπx)
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a.e. on [−1, 1], where

α = 1

2

∫ 1

−1
g(x) dx =

∫ 1

0
f (u) du

βk = 1

2

∫ 1

−1
g(x)

√
2 cos(kπx) dx =

∫ 1

0
f (u)

√
2cos(kπu) du

γm = 1

2

∫ 1

−1
g(x)

√
2 sin(kπx) dx = 0

so that f (u) = α+∑∞
k=1βk

√
2 cos(kπu) a.e. on [0, 1].

Similarly, given an arbitrary f ∈ L2(0, 1), let g(x) = (1(x ≥ 0)−1(x < 0))f (|x|). Then
g(x) = ∑∞

m=1 γm
√

2sin (kπx) a.e. on [−1, 1]; hence f (u) = ∑∞
m=1 γm

√
2 sin(kπu)

a.e. on (0, 1), where γm = ∫ 1
0 f (u)

√
2 sin(mπu) du. Therefore, we have the following

corollary.

Corollary 1.1. The sine sequence
√

2sin (mπu), m ∈N, is complete in L2(0, 1).

Although this result implies that for every f ∈ L2(0, 1), limn→∞ fn(u) = f (u) a.e.
on (0, 1), where fn(u) = ∑n

m=1 γm
√

2 sin(kπu) with γm = √
2
∫ 1

0 f (u) sin(mπu) du,
the approximation fn(u) may be very poor in the tails of f (u) if f (0) 
= 0 and f (1) 
=
0, because, in general, limu↓0 limn→∞ fn(u) 
= limn→∞ limu↓0 fn(u), and similarly for
u ↑ 1. Therefore, the result of Corollary 1.1 is of limited practical significance.

1.6. Density and Distribution Functions
.............................................................................................................................................................................

1.6.1. General Univariate SNP Density Functions

Let w(x) be a density function with support (a, b). Then for any density f (x) on (a, b),
we obtain

g(x) =
√

f (x)/
√

w(x) ∈ L2(w), (1.34)

with
∫ b

a g(x)2w(x) dx = ∫ b
a f (x) dx = 1. Therefore, given a complete orthonormal

sequence {ρm}∞m=0 in L2(w) with ρ0(x) ≡ 1 and denoting γm = ∫ b
a ρm(x)g(x)w(x) dx,

any density f (x) on (a, b) can be written as

f (x) = w(x)

( ∞∑
m=0

γmρm(x)

)2

a.e. on (a, b), with
∞∑

m=0

γ 2
m =

∫ b

a
f (x) dx = 1.

(1.35)
The reason for the square in (1.35) is to guarantee that f (x) is non-negative.

A problem with the series representation (1.35) is that in general the parameters
involved are not unique. To see this, note that if we replace the function g(x) in (1.34)
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by gB(x) = (1(x ∈ B)−1(x ∈ (a, b)\B))
√

f (x)/
√

w(x), where B is an arbitrary Borel set,

then gB(x) ∈ L2(w) and
∫ b

a gB(x)2w(x) dx = ∫ b
a f (x) dx = 1, so that (1.35) also holds

for the sequence

γm =
∫ b

a
ρm(x)gB(x)w(x) dx

=
∫

(a,b)∩B
ρm(x)

√
f (x)

√
w(x) dx −

∫
(a,b)\B

ρm(x)
√

f (x)
√

w(x) dx.

In particular, using the fact that ρ0(x) ≡ 1, we obtain

γ0 =
∫

(a,b)∩B

√
f (x)

√
w(x) dx −

∫
(a,b)\B

√
f (x)

√
w(x) dx,

so that the sequence γm in (1.35) is unique if γ0 is maximal. In any case we may without
loss of generality assume that γ0 ∈ (0, 1), so that without loss of generality the γm’s can
be reparameterized as

γ0 = 1√
1 +∑∞

k=1 δ
2
k

, γm = δm√
1 +∑∞

k=1 δ
2
k

,

where
∑∞

k=1 δ
2
k < ∞. This reparameterization does not solve the lack of uniqueness

problem, of course, but is convenient in enforcing the restriction
∑∞

m=0 γ
2
m = 1.

On the other hand, under certain conditions on f (x) the δm’s are unique, as will be
shown in Section 1.6.4.

Summarizing, the following result has been shown.

Theorem 1.16. Let w(x) be a univariate density function with support (a, b), and let
{ρm}∞m=0 be a complete orthonormal sequence in L2(w), with ρ0(x) ≡ 1. Then for any
density f (x) on (a, b) there exist possibly uncountably many sequences {δm}∞m=1 satisfying∑∞

m=1 δ
2
m <∞ such that

f (x) = w(x)
(
1 +∑∞

m=1 δmρm(x)
)2

1 +∑∞
m=1 δ

2
m

a.e. on (a, b). (1.36)

Moreover, for the sequence {δm}∞m=1 for which
∑∞

m=1 δ
2
m is minimal,

√
f (x) =

√
w(x)

(
1 +∑∞

m=1 δmρm(x)
)√

1 +∑∞
m=1 δ

2
m

a.e. on (a, b);

hence

δm =
∫ b

a ρm(x)
√

f (x)
√

w(x) dx∫ b
a

√
f (x)

√
w(x) dx

, m ∈N. (1.37)
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In practice, the result of Theorem 1.16 cannot be used directly in SNP modeling,
because it is impossible to estimate infinitely many parameters. Therefore, the density
(1.36) is usually approximated by

fn(x) = w(x)
(
1 +∑n

m=1 δmρm(x)
)2

1 +∑n
m=1 δ

2
m

(1.38)

for some natural number n, possibly converging to infinity with the sample size. Fol-
lowing Gallant and Nychka (1987), I will refer to truncated densities of the type (1.38)
as SNP densities.

Obviously,

Corollary 1.2. Under the conditions of Theorem 1.16, limn→∞ fn(x) = f (x) a.e. on (a, b).
Moreover, it is not hard to verify that

∫ b

a
|f (x) − fn(x)| dx ≤ 4

√√√√ ∞∑
m=n+1

δ2
m + 2

∞∑
m=n+1

δ2
m = o(1), (1.39)

where the δm’s are given by (1.37), so that with F(x) the c.d.f. of f (x) and Fn(x) the c.d.f.
of fn(x), we obtain

lim
n→∞ sup

x
|F(x) − Fn(x)| = 0.

Remarks

1. The rate of convergence to zero of the tail sum
∑∞

m=n+1 δ
2
m depends on the

smoothness, or the lack thereof, of the density f (x). Therefore, the question of
how to choose the truncation order n given an a priori chosen approximation
error cannot be answered in general.

2. In the case that the ρm(x)’s are polynomials, the SNP density fn(x) has to be com-
puted recursively via the corresponding TTRR (1.17), except in the case of Cheby-
shev polynomials, but that is not much of a computational burden. However,
the computation of the corresponding SNP distribution function Fn(x) is more
complicated. See, for example, Stewart (2004) for SNP distribution functions on
R based on Hermite polynomials, and see Bierens (2008) for SNP distribution
functions on [0, 1] based on Legendre polynomials. Both cases require to recover
the coefficients 	m,k of the polynomials pk(x|w) = ∑k

m=0 	m,kxm, which can be
done using the TTRR involved. Then with Pn(x|w) = (1, p1(x|w), . . . , pn(x|w))′,
Qn(x) = (1, x, . . . , xn)′, δ = (1,δ1, . . . ,δn), and Ln the lower-triangular matrix con-
sisting of the coefficients 	m,k, we can write fn(x) = (δ′δ)−1w(x)(δ′Pn(x|w))2 =
(δ′δ)−1δ′LnQn(x)Qn(x)′w(x)L′

nδ; hence

Fn(x) = 1

δ′δ
δ′Ln

(∫ x

−∞
Qn(z)Qn(z)′w(z) dz

)
L′

nδ = δ′LnMn(x)L′
nδ

δ′δ
,
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where Mn(x) is the (n+1)×(n+1) matrix with typical elements
∫ x
−∞ zi+jw(z) dz

for i, j = 0, 1, . . . , n. This is the approach proposed by Bierens (2008). The
approach in Stewart (2004) is in essence the same and is therefore equally
cumbersome.

1.6.2. Bivariate SNP Density Functions

Now let w1(x) and w2(y) be a pair of density functions on R with supports (a1, b1)
and (a2, b2), respectively, and let {ρ1,m}∞m=0 and {ρ2,m}∞m=0 be complete orthonor-
mal sequences in L2(w1) and L2(w2), respectively. Moreover, let g(x, y) be a Borel
measurable real function on (a1, b1) × (a2, b2) satisfying∫ b1

a1

∫ b2

a2

g(x, y)2w1(x)w2(y) dx dy <∞. (1.40)

The latter implies that g2(y) = ∫ b1
a1

g(x, y)2w1(x) dx < ∞ a.e. on (a2, b2), so that

for each y ∈ (a2, b2) for which g2(y) < ∞ we have g(x, y) ∈ L2(w1). Then g(x, y) =∑∞
m=0 γm(y)ρ1,m(x) a.e. on (a1, b1), where γm(y) = ∫ b1

a1
g(x, y)ρ1,m(x)w1(x)dx

with
∑∞

m=0 γm(y)2 = ∫ b1
a1

g(x, y)2 · w1(x) dx = g2(y). Because by (1.40) we have∫ b2
a2

g2(y)w2(y) dy < ∞, it follows now that for each y ∈ (a2, b2) for which g2(y) < ∞
and all integers m ≥ 0 we have γm(y) ∈ L2(w2), so that γm(y) = ∑∞

k=0 γm,kρ2,k(y)

a.e. on (a2, b2), where γm,k = ∫ b1
a1

∫ b2
a2

g(x, y)ρ1,m(x)ρ2,k(y)w1(x)w2(y)dxdy with∑∞
m=0

∑∞
k=0γ

2
m,k <∞. Hence,

g(x, y) =
∞∑

m=0

∞∑
k=0

γm,kρ1,m(x)ρ2,k(y) a.e. on (a1, b1) × (a2, b2). (1.41)

Therefore, it follows similar to Theorem 1.16 that the next theorem holds.

Theorem 1.17. Given a pair of density functions w1(x) and w2(y) with supports (a1, b1)
and (a2, b2), respectively, and given complete orthonormal sequences {ρ1,m}∞m=0 and
{ρ2,m}∞m=0 in L2(w1) and L2(w2), respectively, with ρ1,0(x) = ρ2,0(y) ≡ 1, for every
bivariate density f (x, y) on (a1, b1)× (a2, b2) there exist possibly uncountably many dou-
ble arrays δm,k satisfying

∑∞
m=0

∑∞
k=0 δ

2
m,k < ∞, with δ0,0 = 1 by normalization, such

that a.e. on (a1, b1) × (a2, b2), we obtain

f (x, y) = w1(x)w2(y)
(∑∞

m=0

∑∞
k=0 δm,kρ1,m(x)ρ2,k(y)

)2∑∞
k=0

∑∞
m=0 δ

2
k,m

.

For example, let w1(x) and w2(y) be standard normal densities and ρ1,m(x) and
ρ2,k(y) Hermite polynomials, that is, ρ1,k(x) = ρ2,k(x) = pk(x|wN [0,1]). Then for any
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density function f (x, y) on R2 there exists a double array δm,k and associated sequence
of SNP densities

fn(x, y) = exp( − (x2 + y2)/2)

2π
∑n

k=0

∑n
m=0 δ

2
k,m

(
n∑

m=0

n∑
k=0

δm,kpm(x|wN [0,1])pk(y|wN [0,1])

)2

such that limn→∞ fn(x, y) = f (x, y) a.e. on R2.
This result is used by Gallant and Nychka (1987) to approximate the bivariate error

density of the latent variable equations in Heckman’s (1979) sample selection model.

1.6.3. SNP Densities and Distribution Functions on [0, 1]

Since the seminal paper by Gallant and Nychka (1987), SNP modeling of density
and distribution functions on R via the Hermite expansion has become the standard
approach in econometrics, despite the computational burden of computing the SNP
distribution function involved.

However, there is an easy trick to avoid this computational burden, by mapping one-
to-one any absolutely continuous distribution function F(x) on (a, b) with density f (x)
to an absolutely continuous distribution function H(u) with density h(u) on the unit
interval, as follows. Let G(x) be an a priori chosen absolutely continuous distribution
function with density g(x) and support (a, b). Then we can write

F(x) = H(G(x)) and f (x) = h(G(x)) · g(x), (1.42)

where
H(u) = F(G−1(u)) and h(u) = f (G−1(u))/g(G−1(u)) (1.43)

with G−1(u) the inverse of G(x).
For example, let (a, b) = R and choose for G(x) the logistic distribution function

G(x) = 1/(1 + exp(−x)). Then g(x) = G(x)(1 − G(x)) and G−1(u) = ln(u/(1 − u)),
hence h(u) = f ( ln (u/(1−u)))/(u(1−u)). Similarly, if (a, b) = (0,∞) and G(x) = 1−
exp(−x), then any density f (x) on (0,∞) corresponds uniquely to h(u) = f ( ln(1/(1−
u)))/(1 − u).

The reason for this transformation is that there exist closed-form expressions for
SNP densities on the unit interval and their distribution functions. In particular,
Theorem 1.18 follows from (1.23)–(1.25) and Corollary 1.2.

Theorem 1.18. For every density h(u) on [0, 1] with corresponding c.d.f. H(u) there exist
possibly uncountably many sequences {δm}∞m=1 satisfying

∑∞
m=1 δ

2
m <∞ such that h(u) =

limn→∞ hn(u) a.e. on [0, 1], where

hn(u) = 1

π
√

u (1 − u)

(
1 +∑n

m=1 ( − 1)mδm
√

2cos (m · arccos(2u − 1))
)2

1 +∑n
m=1 δ

2
m

, (1.44)
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and limn→∞ sup0≤u≤1 |Hn(1 −π−1 arccos (2u − 1)) − H(u)| = 0, where

Hn(u) = u + 1

1 +∑n
m=1 δ

2
m

[
2
√

2
n∑

k=1

δk
sin(kπu)

kπ
+

n∑
m=1

δ2
m

sin(2mπu)

2mπ

+2
n∑

k=2

k−1∑
m=1

δkδm
sin((k + m)πu)

(k + m)π

+2
n∑

k=2

k−1∑
m=1

δkδm
sin((k − m)πu)

(k − m)π

]
. (1.45)

Moreover, with w(x) being the uniform density on [0, 1] and ρm(x) being the cosine
sequence, it follows from Corollary 1.2 that the next theorem holds.

Theorem 1.19. For every density h(u) on [0, 1] with corresponding c.d.f. H(u) there exist
possibly uncountably many sequences {δm}∞m=1 satisfying

∑∞
m=1 δ

2
m < ∞ such that a.e.

on [0, 1], h(u) = limn→∞ hn(u), where

hn(u) =
(

1 +∑n
m=1 δm

√
2 cos (mπu)

)2

1 +∑n
m=1 δ

2
m

, (1.46)

and limn→∞ sup0≤u≤1 |Hn(u) − H(u)| = 0, where Hn(u) is defined by (1.45).

The latter follows straightforwardly from (1.46) and the well-known equality
cos(a)cos (b) = (cos(a + b) + cos (a − b))/2, and the same applies to the result for
H(u) in Theorem 1.18.

1.6.4. Uniqueness of the Series Representation

The density h(u) in Theorem 1.19 can be written as h(u) = η(u)2/
∫ 1

0 η(v)2 dv, where

η(u) = 1 +
∞∑

m=1

δm

√
2 cos (mπu) a.e. on (0, 1). (1.47)

Moreover, recall that in general we have

δm =
∫ 1

0 (1(u ∈ B) − 1(u ∈ [0, 1]\B))
√

2 cos (mπu)
√

h(u) du∫ 1
0 (1(u ∈ B) − 1(u ∈ [0, 1]\B))

√
h(u) du

,

1√
1 +∑∞

m=1 δ
2
m

=
∫ 1

0
(1(u ∈ B) − 1(u ∈ [0, 1]\B))

√
h(u) du.
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for some Borel set B satisfying
∫ 1

0 (1(u ∈ B) − 1(u ∈ [0, 1]\B))
√

h(u) du > 0; hence

η(u) = (1(u ∈ B) − 1(u ∈ [0, 1]\B))
√

h(u)

√√√√1 +
∞∑

m=1

δ2
m (1.48)

Similarly, given this Borel set B and the corresponding δm’s, the SNP density (1.46)
can be written as hn(u) = ηn(u)2/

∫ 1
0 ηn(v)2dv, where

ηn(u) = 1 +
n∑

m=1

δm

√
2 cos (mπu)

= (1(u ∈ B) − 1(u ∈ [0, 1]\B))
√

hn(u)

√√√√1 +
n∑

m=1

δ2
m. (1.49)

Now suppose that h(u) is continuous and positive on (0, 1). Moreover, let S ⊂ [0, 1]
be the set with Lebesgue measure zero on which h(u) = limn→∞ hn(u) fails to hold.
Then for any u0 ∈ (0, 1)\S we have limn→∞ hn(u0) = h(u0) > 0; hence for sufficient
large n we have hn(u0) > 0. Because obviously hn(u) and ηn(u) are continuous on
(0, 1), for such an n there exists a small εn(u0) > 0 such that hn(u) > 0 for all u ∈
(u0 − εn(u0), u0 + εn(u0)) ∩ (0, 1), and therefore

1(u ∈ B) − 1(u ∈ [0, 1]\B) = ηn(u)
√

hn(u)
√

1 +∑n
m=1 δ

2
m

(1.50)

is continuous on (u0 − εn(u0), u0 + εn(u0)) ∩ (0, 1). Substituting (1.50) in (1.48), it
follows now that η(u) is continuous on (u0 −εn(u0), u0 +εn(u0))∩ (0, 1); hence by the
arbitrariness of u0 ∈ (0, 1)/S, η(u) is continuous on (0, 1).

Next, suppose that η(u) takes positive and negative values on (0, 1). Then by the
continuity of η(u) on (0, 1) there exists a u0 ∈ (0, 1) for which η(u0) = 0 and thus
h(u0) = 0, which, however, is excluded by the condition that h(u) > 0 on (0, 1). There-
fore, either η(u) > 0 for all u ∈ (0, 1) or η(u) < 0 for all u ∈ (0, 1). However, the latter
is excluded because by (1.47) we have

∫ 1
0 η(u) du = 1. Thus, η(u) > 0 on (0, 1), so that

by (1.48), 1(u ∈ B) − 1(u ∈ [0, 1]\B) = 1 on (0, 1).
Consequently, we have the following theorem.

Theorem 1.20. For every continuous density h(u) on (0, 1) with support (0, 1) the
sequence {δm}∞m=1 in Theorem 1.19 is unique, with

δm =
∫ 1

0

√
2cos (mπu)

√
h(u) du∫ 1

0

√
h(u) du

.

As is easy to verify, the same argument applies to the more general densities
considered in Theorem 1.16:



semi-nonparametric modeling 31

Theorem 1.21. Let the conditions of Theorem 1.16 be satisfied. In addition, let the den-
sity w(x) and the orthonormal functions ρm(x) be continuous on (a, b).19 Then every
continuous and positive density f (x) on (a, b) has a unique series representation (1.36),
with

δm =
∫ b

a ρm(x)
√

w(x)
√

f (x) dx∫ 1
0

√
w(x)

√
f (x) dx

.

Moreover, note that Theorem 1.18 is a special case of Theorem 1.16. Therefore, the
following corollary holds.

Corollary 1.3. For every continuous and positive density h(u) on (0, 1) the δm’s in
Theorem 1.18 are unique and given by

δm = (−1)m

∫ 1
0

√
2 cos (m · arccos (2u − 1))(u (1 − u))−1/4 √

h(u) du∫ 1
0 (u (1 − u))−1/4 √

h(u) du
.

1.6.5. Application to the MPH Competing Risks Model

Note that the distribution (1.6) in the MPH competing risks Weibull model (1.5) has
density

h (u) =
∫ ∞

0
v2uv−1 dG(v),

which is obviously positive and continuous on (0, 1). However, if G(1)> 0, then h(0) =
∞; and if E[V 2] = ∫∞

0 v2 dG(v) = ∞, then h(1) = ∞. To allow for these possibilities,
the series representation in Theorem 1.18 on the basis of Chebyshev polynomials seems
an appropriate way of modeling H(u) semi-nonparametrically, because then hn(0) =
hn(1) = ∞ if 1 + √

2
∑∞

m=1 ( − 1)mδm 
= 0 and 1 + √
2
∑∞

m=1 δm 
= 0. However, the
approach in Theorem 1.19 is asymptotically applicable as well, because the condition∑∞

m=1 δ
2
m <∞ does not preclude the possibilities that

∑∞
m=1 δm =∞ and/or

∑∞
m=1 (−

1)mδm = ∞, which imply that limn→∞ hn(0) = limn→∞ hn(1) = ∞.
As said before, the actual log-likelihood in Bierens and Carvalho (2007) is more

complicated than displayed in (1.7), due to right-censoring. In their case the log-
likelihood involves the distribution function H(u) = ∫∞

0 uv dG(v) next to its density
h(u) = ∫∞

0 vuv−1 dG(v), where h(1) = ∫∞
0 v dG(v) = 1 due to the condition E[V ] = 1.

Note also that G(1) > 0 implies h(0) = ∞. Bierens and Carvalho (2007) use a series
representation of h(u) in terms of Legendre polynomials with SNP density hn(u) sat-
isfying the restriction hn(1) = 1. However, as argued in Section 1.6.1, the computation
of the corresponding SNP distribution function Hn(u) is complicated.

Due to the restriction hn(1) = 1, the approach in Theorem 1.18 is not applicable as
an alternative to the Legendre polynomial representation of h(u) = ∫∞

0 vuv−1 dG(v),
whereas the approach in Theorem 1.19 does not allow for hn(0) = ∞. On the other
hand, Bierens and Carvalho (2007) could have used Hn(u) = Hn(

√
u), for example,
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where Hn is defined by (1.45), with density

hn(u) =
(

1 +∑n
m=1 δm

√
2cos

(
mπ

√
u
))2

2
(
1 +∑n

m=1 δ
2
m

)√
u

and δ1 chosen such that

1 =
(

1 +√
2
∑n

m=1 ( − 1)mδm

)2

2
(
1 +∑n

m=1 δ
2
m

) (1.51)

to enforce the restriction hn(1) = 1.

1.6.6. Application to the First-Price Auction Model

In the first-price auction model, the value distribution F(v) is defined on (0,∞), so
at first sight a series expansion of the value density f (v) in terms of Laguerre polyno-
mials seems appropriate. However, any distribution function F(v) on (0,∞) can be
written as F(v) = H(G(v)), where G(v) is an a priori chosen absolutely continuous
distribution function with support (0,∞), so that H(u) = F(G−1(u)) with density
h(u) = f ((G−1(u))/g(G−1(u)), where G−1 and g are the inverse and density of G,
respectively. For example, choose G(v) = 1 − exp(−v), so that g(v) = exp(−v) and
G−1(u) = ln (1/(1 − u)).

The equilibrium bid function (1.8) can now be written as

β (v|H) = v −
∫ v

p0
H(G(x))I−1 dx

H(G(v))I−1
, v ≥ p0. (1.52)

Bierens and Song (2012) use the SNP approximation of H(u) on the basis of Legen-
dre polynomials, but using the results in Theorem 1.19 would have been much more
convenient. In any case the integral in (1.52) has to be computed numerically.

Similarly, the conditional value distribution F(v exp(−θ ′X)) in Bierens and Song
(2013) can be written as H(G(v exp (−θ ′X))), where now H is modeled semi-
nonparametrically according the results in Theorem 1.19. In this case the number
of potential bidders I = I(X) and the reservation price p0 = p0(X) also depend on
the auction-specific covariates X ; but as shown in Bierens and Song (2013), I(X)
can be estimated nonparametrically and therefore may be treated as being observable,
whereas p0(X) is directly observable. Then in the binding reservation price case the
auction-specific equilibrium bid function becomes

β (v|H ,θ , X)= v −
∫ v

p0(X) H(G(x · exp(−θ ′X)))I(X)−1 dx

H(G(v exp (−θ ′X)))I(X)−1
, v ≥ p0(X). (1.53)
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1.7. A Brief Review of Sieve Estimation
.............................................................................................................................................................................

Recall from (1.30)–(1.32) that in the SNP index regression case the objective function
takes the form

Q̂N (θ ,δ∞) = 1

N

N∑
j=1

(
Yj −

∞∑
m=0

δmpm(X1,j + θ ′X2,j|wN [0,1])

)2

K(||Xj ||),

where δ∞ = (δ1,δ2,δ3, . . .) ∈R∞ satisfies
∑∞

m=0 δ
2
m <∞, with true parameters θ0 and

δ0
∞ = (δ0,1,δ0,2,δ0,3, . . .) satisfying

(θ0,δ0
∞) = argmin

θ ,δ∞
Q(θ ,δ∞) (1.54)

subject to
∑∞

m=0 δ
2
m <∞, where Q(θ ,δ∞) = E[Q̂N (θ ,δ∞)].

Similarly, in the MPH competing risk model with H(u) modeled semi-nonpara-
metrically as, for example, H(

√
u|δ∞) = limn→∞ Hn(

√
u) with Hn defined by (1.45),

and subject to the restriction (1.51), the objective function is

Q̂N (θ ,δ∞) = − 1

N
ln(LN (α1,α2,β1,β2, H(

√
u|δ∞))),

θ = (
α′

1,α′
2,β ′

1,β ′
2

)′
.

with true parameters given by (1.54) with Q(θ ,δ∞) = E[Q̂N (θ ,δ∞)].
In the first-price auction model with auction-specific covariates the function

Q(θ ,δ∞) is the probability limit of the objective function Q̂N (θ ,δ∞) involved rather
than the expectation. See Bierens and Song (2013).

Now let � be a compact parameter space for θ0, and for each n ≥ 1, let �n be a
compact space of nuisance parameters δn = (δ1,δ2,δ3, . . . ,δn, 0, 0, 0, . . .), endowed with
metric d(., .), such that δ0

n = (δ0,1,δ0,2,δ0,3, . . . ,δ0,n, 0, 0, 0, . . .) ∈ �n. Note that δ0∞ ∈
∪∞

n=1�n, where the bar denotes the closure.
The sieve estimator of (θ0,δ0

∞) is defined as(
θ̂n, δ̂n

)= arg min
(θ ,δn)∈�×�n

Q̂N (θ ,δn).

Under some regularity conditions it can be shown that for an arbitrary subsequence
nN of the sample size N we obtain

p lim
N→∞

||̂θnN − θ0|| = 0 and p lim
N→∞

d
(̂
δnN ,δ0

∞
)= 0.

Moreover, under further regularity conditions the subsequence nN can be chosen such
that √

N(θ̂nN − θ0)
d→ N[0,�].
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See Shen (1997), Chen (2007), and Bierens (2013). As shown in Bierens (2013), the
asymptotic variance matrix � can be estimated consistently by treating nN as con-
stant and then estimating the asymptotic variance matrix involved in the standard
parametric way.

Note that Bierens and Carvalho (2007) assume that δ0
∞ ∈ ∪∞

n=1�n, so that for some
n we have δ0

∞ = δ0
n ∈ �n. This is quite common in empirical applications because

then the model is fully parametric, albeit with unknown dimension of the parameter
space. See, for example, Gabler et al. (1993). The minimal order n in this case can be
estimated consistently via an information criterion, such as the Hannan–Quinn (1979)
and Schwarz (1978) information criteria. Asymptotically, the estimated order n̂N may
then be treated as the true order, so that the consistency and asymptotic normality of
the parameter estimates can be established in the standard parametric way.

In the case δ0
∞ ∈ ∪∞

n=1�n\ ∪∞
n=1 �n the estimated sieve order n̂N via these infor-

mation criteria will converge to ∞. Nevertheless, using n̂N in this case may preserve
consistency of the sieve estimators, as in Bierens and Song (2012, Theorem 4), but
whether asymptotic normality is also preserved is an open question.

1.8. Concluding Remarks
.............................................................................................................................................................................

Admittedly, this discussion of the sieve estimation approach is very brief and incom-
plete. However, the main focus of this chapter is on SNP modeling. A full review of
the sieve estimation approach is beyond the scope and size limitation of this chapter.
Besides, a recent complete review has already been done by Chen (2007).

This chapter is part of the much wider area of approximation theory. The reader may
wish to consult some textbooks on the latter—for example, Cheney (1982), Lorentz
(1986), Powell (1981), and Rivlin (1981).

Notes

1. Of course, there are many more examples of SNP models.
2. See, for example, Bierens (2004, Theorem 3.10, p. 77).
3. See (1.41) below.
4. Note that due to the presence of scale parameters in the Weibull baseline hazards (1.3),

the condition E[V ] = 1 is merely a normalization of the condition that E[V ] <∞.
5. That is, {v : f (v) > 0} is an interval.
6. See, for example, Bierens (2004, Theorem 7.A.1, p. 200).
7. Here the bar denotes the closure.
8. See, for example, Bierens (2004, Theorem 7.A.5, p. 202) for a proof of the projection

theorem.
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9. See, for example, Bierens (2004, Theorem 7.A.2., p. 200). The latter result is confined
to the Hilbert space of zero-mean random variables with finite second moments, but its
proof can easily be adapted to R.

10. The existence of such a complete orthonormal sequence will be shown in the next section.
11. See, for example, Bierens (2004, Theorem 6.B.3, p. 168).
12. See, for example, Bierens (2004, Theorem 2.B.2, p. 168).
13. Charles Hermite (1822–1901).
14. Edmund Nicolas Laguerre (1834–1886).
15. Adrien-Marie Legendre (1752–1833).
16. See, for example, Bierens (1994, Theorem 3.1.1, p. 50).
17. See Section 1.7.
18. See, for example, Young (1988, Chapter 5).
19. The latter is the case if we choose ρm(x) = p(x|w).
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