

the oxford handbook of

COMPUTER MUSIC

This page intentionally left blank

the oxford handbook of

...

COMPUTER MUSIC
...

Edited by

ROGER T. DEAN

1
2009

3
Oxford University Press, Inc., publishes works that further

Oxford University’s objective of excellence

in research, scholarship, and education.

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi

Kuala Lumpur Madrid Melbourne Mexico City Nairobi

New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece

Guatemala Hungary Italy Japan Poland Portugal Singapore

South Korea Switzerland Thailand Turkey Ukraine Vietnam

Copyright © 2009 by Oxford University Press, Inc.

Published by Oxford University Press, Inc.

198 Madison Avenue, New York, New York 10016

www.oup.com

Oxford is a registered trademark of Oxford University Press.

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means,

electronic, mechanical, photocopying, recording, or otherwise,

without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data

The Oxford handbook of computer music / edited by Roger T. Dean.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-19-533161-5

1. Computer music—History and criticism. I. Dean, R. T.

ML1380.O9 2009

786.7’6—dc22 2008046594

1 3 5 7 9 8 6 4 2

Printed in the United States of America

on acid-free paper

www.oup.com

CONTENTS
.................................

Contributors ix

1. Introduction: The Many Futures of Computer Music 3

Roger T. Dean

PART I. SOME HISTORIES OF COMPUTER MUSIC AND ITS TECHNOLOGIES

2. A Historical View of Computer Music Technology 11

Douglas Keislar

3. Early Hardware and Early Ideas in Computer Music: Their

Development and Their Current Forms 44

Paul Doornbusch

4. Sound Synthesis Using Computers 85

Peter Manning

PART II. THE MUSIC

5. Computational Approaches to Composition of Notated

Instrumental Music: Xenakis and the Other Pioneers 109

James Harley

6. Envisaging Improvisation in Future Computer Music 133

Roger T. Dean

SOUNDING OUT

7. Computer Music: Some Reflections 151

Trevor Wishart

8. Some Notes on My Electronic Improvisation Practice 161

Tim Perkis

9. Combining the Acoustic and the Digital: Music for Instruments

and Computers or Prerecorded Sound 167

Simon Emmerson

PART III. CREATIVE AND PERFORMANCE MODES

10. Dancing the Music: Interactive Dance and Music 191

Wayne Siegel

11. Gesture and Morphology in Laptop Music Performance 214

Garth Paine

12. Sensor-Based Musical Instruments and Interactive Music 233

Atau Tanaka

13. Spatialization and Computer Music 258

Peter Lennox

14. The Voice in Computer Music and Its Relationship to Place,

Identity, and Community 274

Hazel Smith

15. Algorithmic Synesthesia 294

Noam Sagiv, Roger T. Dean, and Freya Bailes

16. An Introduction to Data Sonification 312

David Worrall

17. Electronica 334

Nick Collins

18. Generative Algorithms for Making Music: Emergence,

Evolution, and Ecosystems 354

Jon McCormack, Alice Eldridge, Alan Dorin, and Peter McIlwain

PART IV. COGNITION AND COMPUTATION OF COMPUTER MUSIC

19. Computational Modeling of Music Cognition and

Musical Creativity 383

Geraint A. Wiggins, Marcus T. Pearce, and Daniel Müllensiefen

vi contents

20. Soundspotting: A New Kind of Process? 421

Michael Casey

SOUNDING OUT

21. Interactivity and Improvisation 457

George E. Lewis

22. FromOutside the Window: Electronic Sound Performance 467

Pauline Oliveros

23. Empirical Studies of Computer Sound 473

Freya Bailes and Roger T. Dean

PART V. CULTURAL AND EDUCATIONAL ISSUES

24. Toward the Gender Ideal 493

Mary Simoni

25. Sound-Based Music 4 All 518

Leigh Landy

26. Framing Learning Perspectives in Computer Music Education 536

Jøran Rudi and Palmyre Pierroux

Appendix: A Chronology of Computer Music and Related

Events 557

Paul Doornbusch

Index 585

contents vii

This page intentionally left blank

CONTRIBUTORS
...

Freya Bailes, University of Western Sydney

Michael Casey, Dartmouth College

Nick Collins, University of Sussex

Roger T. Dean, University of Western Sydney

Paul Doornbusch, Victoria University, Wellington

Alan Dorin, Monash University

Alice Eldridge, Monash University

Simon Emmerson, De Montfort University

James Harley, University of Guelph

Douglas Keislar, Berkeley

Leigh Landy, De Montfort University

Peter Lennox, University of Derby

George E. Lewis, Columbia University

Peter Manning, University of Durham

Jon McCormack, Monash University

Peter McIlwain, Monash University

Daniel Müllensiefen, Goldsmiths, University of London

Pauline Oliveros, Rensselaer Polytechnic Institute

Garth Paine, University of Western Sydney

Marcus T. Pearce, Goldsmiths, University of London

Tim Perkis, Berkeley

Palmyre Pierroux, University of Oslo

Jøran Rudi, University of Oslo

Noam Sagiv, Brunel University

Wayne Siegel, Royal Academy of Music, Aårhus

Mary Simoni, University of Michigan

Hazel Smith, University of Western Sydney

Atau Tanaka, University of Newcastle

Geraint A. Wiggins, Goldsmiths, University of London

Trevor Wishart, Durham University

David Worrall, University of Canberra

This page intentionally left blank

the oxford handbook of

COMPUTER MUSIC

This page intentionally left blank

c h a p t e r 1

..

INTRODUCTION:

THE MANY FUTURES

OF COMPUTER

MUSIC
..

roger t. dean

COMPUTER music offers possibilities for music-making that can hardly (if at all) be

achieved through other means. These possibilities commune between real-time

creation in improvisation or other forms of interactive performance, production of

scores for others to perform, and acousmatic composition. Broadly, we use acous-

matic to refer to pre-fixed digital sound structures ready for acoustic diffusion

through loudspeakers without performers energizing conventional musical instru-

ments to make sounds.

In this brief introduction, I give some perspectives on the scope and futures of

computer music, indicating how the topics are addressed within the book. Com-

puter music has passed its 50th anniversary and is part of a slightly longer tradition

of electroacoustic music. This book provides a broad introduction to the whole

electroacoustic field and its history (see part I and the appendix in particular), but

its explicit emphasis is on computer music in the period since the 1980s during

which the Yamaha DX7 synthesizer and the availability of desktop (and later

laptop) computers at prices individuals could afford meant that the practice of

computer music was no longer restricted to those who could access a mainframe

computer. Many composers and improvisers, like myself, first gained access to

computer music opportunities in this period of the 1980s. Hence, the breadth of

activity expanded until the present in part because the field of participants widened

and in part because of the rapid acceleration in central processing unit (CPU)

speed and therefore of the power of computers for real-time sound generation.

Chapter 2, by Douglas Keislar, and the appendix, by Paul Doornbusch, provide

interesting timelines of these issues of CPU speed.

1 . THE APPEAL OF COMPUTER MUSIC
...

A. For Musicians

For many years, it seemed as if computer music could only usefully be the domain of

the composer willing to await the generation of the sounds programmed (as described

in chapters of part I). Such a composer can be said to operate “out-of-time,” in contrast

to those who use computers in “real-time” performance. But, these out-of-time

composers also used the computer to assist the generation of scores for live instru-

mental performers (see chapter 5) as well as for the making of acousmatic sound. One

of the appeals was the apparent potential of computers to generate any conceivable

sound and to realize performances of precision or complexity not feasible as a human

performance. Many parts of the book address computer music composition, notably

chapters 5, 7, and 9, by James Harley, Trevor Wishart, and Simon Emmerson, respec-

tively. Possibly the most influential composer within computer music was Iannis

Xenakis, and Harley discusses his works, juxtaposing them with contributions from

Karlheinz Stockhausen and other pioneers. The long-standing prejudice that electronic

music did not sound sufficiently “human” was progressively overcome; furthermore,

computational and perceptual analyses of what those prejudices identified (e.g., slow-

ing of tempi at phrase boundaries, relationships between pitch and performed intensi-

ty) could then be applied in software for composition and its realization, such as

Director Musices. So when desired, aspects of this particular range of human features

could appear in computermusic. The realization of computermusic scores is discussed

here particularly by Emmerson and by Douglas Keislar (chapter 2).

However, some remarkably powerful real-time performing vehicles, such as the

Music Mouse, appeared along with the Macintosh computer in the ’80s; by the ’90s,

real-time midi-manipulation (e.g., using the software MAX on such computers)

and later digital sound manipulation (using MSPor many other platforms) became

widespread, fluent, and stable. One of the appeals of computers in real-time music-

making is the possibility that the computer can itself enter a dialogue with other

musicians, as discussed in chapters 6, 18, 19, and 20, and in chapters 8, 21, and 22 by

Tim Perkis, George Lewis, and Pauline Oliveros, respectively. Another is that the

computer can generate or manipulate events long after some initiation point, and

that this can be done either in a way that the performers control or without their

foreknowledge of the nature of the impending events.

4 the oxford handbook of computer music

Some contemporary opportunities in computer music include “soundspotting”

(see chapter 20 by Michael Casey), in which rapid identification of features of

incoming streams of sound is used to find related features in stored databases

of other sounds so that the stored materials can be used in performance in a variety

of controlled and performable ways. Such principles of relating differentmaterials can

operate in real-time intermedia performance also and are among the topics discussed

by Nick Collins, in chapter 17 on laptop music-making; by Jon McCormack and

colleagues, in chapter 18’s context of A-life (artificial life) and generative approaches

to computer music; and by Noam Sagiv and colleagues in chapter 15. In chapter 10,

Wayne Siegel considers dance and computer music, on the basis of long experience,

and other aspects of the conversion of bodily or other gestures into computer music

are considered by Garth Paine (chapter 11) and by Atau Tanaka (chapter 12).

Although all the chapters in this book operate at a sophisticated technical level

that should not offend the sensibility of a professional computer music composer,

the book is not focused on computer music techniques, software, and so on. It is

about computer music itself; thus, it is throughout intended to stimulate the

listener at large, especially those with modest prior experience of the work.

B. For Listeners and Users

Is computer music just another form of music, like Balinese music or Western

classical music, or does it have some particular appeals or difficulties? As men-

tioned, it is unlike all previous musics in at least one respect: its capacity

to generate and utilize, in principle, any sound. For most people even now,

computer music thus presents unfamiliar components, articulated into meaning

structures that need to be penetrated or, according to your perspective, that the

listener is free to envisage. Broadly, there is similarity between the process of an

Indian classical musician becoming engaged with the music of John Coltrane and

of someone approaching computer music from a position of unfamiliarity. What is

required is the capacity to recognize sonic features and their recurrence, since

music is one of the most repetitive of the temporal arts, and then to construct

meaning therefrom.

As Freya Bailes and I have shown recently (chapter 23), most listeners have a

remarkable ability both to recognize and to co-relate computer-manipulated

sounds. For example, we found that they identified close connections between

speech sounds, manipulated speech sounds, and what we call NoiseSpeech, which

is manipulated so extensively there are no remaining detectable phonemes: all these

sounds are readily perceived as speechlike. Speech is characterized by vast rates of

change in spectral quality compared with classical music or even with computer

music at large. Yet, we even found that noise on which an invariant set of speech

formants is superimposed is still heard as speechlike and qualifies as NoiseSpeech.

Identifying sonic continuities and categories is an important facility for the listener

seeking to gain meaning from their sonic exposure.

the many futures of computer music 5

Such listener ability for construction of semiotic fields is useful in our ap-

proach to the long tradition of computer music using the voice, as discussed by

Hazel Smith in chapter 14. It will also be useful in the more practical aspects of

sonification, the representation of data for informational purposes of more objec-

tive kinds, as discussed by David Worrall in chapter 16. As he notes, an extension of

these informational intents provides ideas by which the traditions of sonification

and of computer music can interact.

Even given these widespread capacities to hear structure and extract meaning

from sound, our involvement and enjoyment of computer music is necessarily

influenced by our cultural and educational experience. Thus, Mary Simoni dis-

cusses gender discrimination within and about the music (chapter 24), and J�ran

Rudi and Palmyre Pierroux analyze current processes in computer music educa-

tion, with particular reference to their decade-long experience with interactive

school study in Norway (chapter 26). Leigh Landy provides an optimistic outlook

on the future for creation and appreciation of computer music and does so in the

broadest possible artistic and sociopolitical contexts of digital culture (chapter 25).

2 . SOME EDITORIAL PRINCIPLES AND

PRACTICES IN THIS BOOK
...

I have invited (and cajoled) authors always from the ranks of those highly qualified to

write on their topics, but also, in a few cases, in such a way as to create interaction

among them. Thus, we have an expert on the psychology of synesthesia contributing

to an article on algorithmic intermedia processes; one on the processes of imaging and

imagining music joining a discussion of empirical approaches to the perception of

computer-generated sound; and several contributions involving exchanges between

computer science, modeling, generative algorithms, A-life, and music. Chapters also

address sociocultural and educational issues. The authors originate from most parts

of the world in which computer music has been important (notably North America,

Europe, Australasia, and Asia), with the exception of South America.

As some of the authors may have lived to regret, I have interacted closely with

them: first in providing some specific suggestions on which to base the range of

ideas they cover and then in proposing editorial changes and additions once a draft

was received. The authors have also had to put up in some cases with incessant

pressure from me such that all articles could be completed reasonably efficiently.

Timely book production has also been a consistent objective of our enthusiastic

and supportive commissioning editor at Oxford University Press, Norm Hirschy.

I was quite clear in my approach to several authors, such as those writing in the

opening part, that there would and should be overlap in the topics they addressed with

those of other chapters. By seeking distinct approaches from these authors, I am happy

6 the oxford handbook of computer music

that we achieved complementarity in the descriptions of individual events or devel-

opments. Thus, Keislar provides a perceptively conceptualized analysis of the develop-

ment of computer music in the broad context of music at large; this is complemented

by the “machine” emphasis I requested of Doornbusch and the “software” emphasis

I asked of Peter Manning. I take responsibility for the points of overlap, of which I

edited a few (with the authors’ approval), cross-referenced some (as editor, I added

several of the cross-references in the book), and purposely retained several more.

Another set of tangential and occasionally overlapping views are provided by

the four personal statements (in the two sections titled “Sounding Out”), which

complement the more conventional thematic review chapters. In inviting these

informal statements, I indicated that I was seeking some expression of the most

pressing thoughts about computer music these eminent musicians were digesting

and developing at the time. They were given complete freedom regarding mini-

mum length or breadth of topics to be addressed. I think you will agree the results

are a distinctive and stimulating component of the book.

I would also like to thank Paul Doornbusch for his unstinting work on the

chronology in the appendix, which I believed should be a component of such a

book but which I anticipated researching and compiling myself, with some trepi-

dation. I was very glad that he agreed to develop this into what I consider a useful

and informative document. No chronology can be complete, and every chronology

in an area of interest should be seen as challengeable. Paul’s is already the most

substantial and probably the most balanced currently available, and it is hoped he

can develop it as a continuing resource.

3 . OUTLOOK
...

My purpose in editing this book has been to facilitate access to computer music for

the listener and for the future and to bring together the range of compositional,

theoretical, and practical issues that a practitioner can always benefit from consid-

ering. We are at a point in the history of this endeavor at which the opportunities

are endless, and in most cases, one can actually readily envisage a means to fulfill

them (the fulfillment of course may take immense effort). This has not always been

the case in music composition and improvisation, and I hope some of the excite-

ment of this moment will come across to our readers. If so, my contributors

deserve the highest credit. You will not have great difficulty in finding substantial

works by all the composers and improvisers discussed in the book, legitimately

available without charge on the Internet, or finding examples of all the creative

techniques and technologies described. Again, such an opportunity has not always

existed in relation to music. I hope you enjoy the exploration the book encourages,

and that it leads you to experience future performances and the many high-quality

commercial recordings now available.

the many futures of computer music 7

This page intentionally left blank

p a r t i

..

SOME HISTORIES

OF COMPUTER

MUSIC AND ITS

TECHNOLOGIES
..

This page intentionally left blank

c h a p t e r 2

..

A HISTORICAL VIEW

OF COMPUTER

MUSIC

TECHNOLOGY
..

douglas keislar

A single chapter on the history of computer music technology can hardly do justice

to its topic. The most comprehensive volume on computer music techniques

(Roads 1996a) was billed as a tutorial yet occupied 1,200 pages, a significant

number of which examined the history and antecedents of these techniques. Recent

book-length historical treatments of electronic music, encompassing computer

music, include those by Chadabe (1997) and Manning (2004). Accordingly, the

present chapter necessarily gives but a glimpse at some of the major mileposts. In

lieu of extensive detail, it proffers a conceptual framework, a way of thinking about

this multifarious field.

We start by discussing terminology. The term computer music arose in the

context of 20th-century developments in Western art music. In the 20th century,

the very termmusic, formerly understood to be straightforward and unambiguous,

was subjected to stretching and questioning on a number of fronts owing to new

musical directions such as serialism, aleatoric composition, percussion-only works,

noise, and electronic sound. The compound noun computer music has its ambi-

guities, and it substantially overlaps with other terms such as electronic music and

electroacoustic music. Difficulties with all these terms have been discussed by

Manning (2004, pp. 403–404) and Landy (2007, pp. 9–17), among others. We can

distinguish two main usages of the term computer music: (1) a musical genre or

category, analogous to the symphony, jazz combo, and the like, in which the

computer plays a part in composition, performance, or sonic realization; and (2)

a technical discipline, analogous to computer graphics, that encompasses many

aspects of the computer’s use in applications related to music. Landy’s discourse is

not unusual in confining the scope of the term computer music to the first

meaning. The present book also is oriented primarily toward this first definition,

but it is informative to consider the second. Technical capabilities often stimulate

aesthetic directions and vice versa. We focus here on technologies that directly

enhance musical creation (as opposed to music scholarship, education, commerce,

etc., as well as scientific endeavors), but as we shall see, even this limited scope is

ultimately broader than might be expected.

The specific technical fields falling under the rubric of computer music can be

gleaned by reading publications such as the Proceedings of the International Com-

puter Music Conference, Computer Music Journal, and the aforementioned textbook

by Roads (1996a). Areas relevant to computer music include not only music

composition and computer science but also music theory, music representation,

digital signal processing, acoustics, psychoacoustics, and cognitive science, to name

but a few. Writers such as Pope (1994) have proposed taxonomies of the field. The

keyword index at the ElectroAcoustic Resource site (http://www.ears.dmu.ac.uk/),

also published in Landy (2007), hierarchically lists various relevant disciplines of

study.

Kassler and Howe (1980) briefly characterized computer music technologies as

replacements for conventional human musical activities, an approach akin to the

more general writings of the media theorist Marshall McLuhan (1964). The next

section of this chapter charts a course influenced by both these sources. Although it

treats musical technologies prior to the computer, it forms an essential backdrop to

the ensuing discussion, because its analytical perspectives and terminology reap-

pear throughout the chapter. After that section, we examine the development of

the computer as a musical instrument, broadly speaking, and then the means by

which human musicians have operated this “instrument.” Next, we consider the

computer as a musician itself, whether composer or performer. The chapter

concludes with a synopsis of some trends in the 20th and 21st centuries.

1 . ANTECEDENTS: ABSTRACTION,
DISJUNCTION, AND PROLIFERATION

IN MUSIC TECHNOLOGY
...

Music-making involves a chain or network of relationships among musicians,

musical technologies, and listeners. The historical development of music technol-

ogy can be broadly viewed as a chronological series of abstractions and disjunctions

12 some histories of computer music and its technologies

http://www.ears.dmu.ac.uk/

that affect these linkages, as shown in table 2.1. Some of the abstractions represent

instances of McLuhan’s “extensions of man,” in which a technology extends the

reach or power of a human faculty, and some of the disjunctions represent

instances of his “self-amputations,” in which the technology replaces the use of

a human faculty. A disjunction (i.e., decoupling) may permit the interjection of a

new intermediary between the separated entities. Likewise, a pair of disjunctions

around an entity in a chain may permit its disintermediation (i.e., bypass) or

elimination, typically by the conjunction of the two entities it formerly separated.

Either case—intermediation or disintermediation—may effect a proliferation of

some capability or some musical feature. The proliferation sometimes results from

a one-to-many mapping. Changes in music technology can clearly alter musicians’

interactions with their instruments, but such changes may also profoundly affect

musicians’ interactions with each other and may transform music itself.

The prototypical music technology was the ancient musical instrument, which

in the case of pitched instruments served as an abstraction of the singing voice.

Advancement of technology led to instruments that were increasingly removed

from human physiology, such as keyboard instruments, whose progenitor, the

hydraulis, was invented in the 3rd century B.C.E. With keyboards, the controller’s

separation from the sound generators allows the latter to consist of pipes, strings,

bars, or whatnot: there is a one-to-many mapping from performance technique to

timbre. Also, the keyboard’s pitch representation replaces the linear frequency

distribution occurring along a pipe or string with logarithmic frequency, which

corresponds better to human perception. These mappings were precursors to the

arbitrary mappings enabled by computer technology. For that matter, one can

consider the lever, central to the keyboard mechanism, as a prototype of mapping.

Self-playing mechanized musical instruments represent important predeces-

sors of computer music. They effect a disintermediation of the performer; the

“score” becomes directly conjoined to the instrument. The ancient Greeks had the

technological means to construct such automata and may have done so. The first

description of an automated instrument, an organ, is found in The Book of

Ingenious Devices by the Banú Músà brothers (Hill 1979). These scholars worked

in Baghdad’s House of Wisdom in the 9th century C.E.—as did the mathematician

al-Khwārizmı̄, from whose name the term algorithm derives. Automatic musical

instruments of all sorts appeared with increasing frequency in Europe during the

18th and 19th centuries. The quintessential composer for an automated instrument

was Conlon Nancarrow (1912–1997), whose studies for player piano exhibit a

fascination with transcending the physiological and cognitive limitations of

human pianists. This liberation of the composer from the constraints of perfor-

mers’ abilities figures prominently as a recurrent theme in music technology,

particularly in computer music.

Analog electronic instruments were direct ancestors of computer music tech-

nology. The electronic musical instrument can be viewed as an abstraction of the

acoustic instrument, one that can further decouple the control interface from the

sound generator, permitting a proliferation of timbres as well as of possible

a historical view of computer music technology 13

Table 2.1 An interpretive summary of some major developments in music technology prior to the computer

Technology

Introduced

in Added role Abstraction Disjunction Proliferation

One-to-many

mapping

Musical

instrument

Prehistory Instrumentalist,

instrument

builder

of voice of sound production

from body

of sounds: increased range of

timbre, pitch, duration,

loudness

of performer to

sound generators

(in some

instruments)

Keyboard Antiquity,

Middle

Ages

of control mechanism

from sound generators

(pipes, strings, etc.)

of timbres; of simultaneous

pitches; increased range of

duration and loudness

(organ)

of performance

skill to

instruments and

timbres

Music

notation

Antiquity

(symbolic);

Middle

Ages

(graphic,

with pitch

axis)

Composer of performance of musical conception

from sonic realization

(temporally); of

composer from

instrument

(performer is

intermediary)

of the composition across

space and time; of the

composition’s complexity,

texture (polyphony), and

duration

of one musician

(composer) to

many

(performers); of

one composition

to many

performances

of it

— — Conductor (an

outcome of

notation-

enabled

complexity)

(conductor is an

abstraction of the

performer, a

meta-performer)

of composer from

performer (conductor

is new intermediary);

of performers’ parts

from the conductor’s

score

of parts (texture) of one

performer’s (the

conductor’s)

gestures to

multiple voices

or instruments

Mechanically

automated

musical

instruments

Middle

Ages,

becoming

more

of performer of performer from

score and instrument,

which are now directly

conjoined and the

of identical performances

across time and (later, with

mass production) across

space; increased ranges of

14

common

in 18th

and 19th

centuries

performer eliminated musical parameters,

sometimes exceeding

human limitations

Sound

recording

Late 19th to

early 20th

century

Sound engineer (a “concretion” of

the score; captures

the concrete

performance

rather than the

abstract

composition)

of performer from

audience; of

performance in time

(editing); in musique

concrète, elimination

of performer and

instrument

of identical performances

across time and space

of performer to

multiple

audiences

Electrical

transmission

of sound (e.g.,

broadcast

radio)

Early 20th

century

of acoustical

transmission

of performer from

audience

of performance across

space

of performer to

multiple

audiences

Electronic

musical

instruments

20th

century

With synthesizer,

composer or

performer can

become a builder

of virtual

instruments

(patches)

of acoustic

musical

instruments

of control mechanism

from sound generator;

in theremin, a

complete physical

decoupling of

performer from

instrument

of timbres; of possible

controllers; increased

ranges of all musical

parameters

Electronic

sound

processing

(reverb and

spatialization)

20th

century

of room of sound source from

original position and

space; of listener from

physical space

The fourth row does not present a new technology, only another human role that resulted from the technology in the previous row.

15

controllers. Analog electronic instruments have a rich history in the 20th century

(Rhea 1972, Roads 1996b, Chadabe 1997, Davies 2001). Two particularly noteworthy

electrical devices were Thaddeus Cahill’s colossal telharmonium and Lev Termen’s

theremin, first demonstrated publicly in 1906 and 1920, respectively. The telhar-

monium’s sound was created by tonewheels (as in the later Hammond organ) and

transmitted over telephone wires to listeners. This distribution mechanism fore-

shadowed Internet “radio” by virtue of having pre-dated broadcast radio. The

theremin was notable for achieving the first tactile disjunction of the performer

from the instrument. The theremin player moved his or her hands in the air

without touching the instrument. However, this physical decoupling was not

accompanied by an arbitrary mapping of gesture to sonic result; the distance of

each hand from one of two antennae tightly controlled the frequency or amplitude,

respectively, of a monotimbral signal.

What we now think of as analog sound synthesis was originally accomplished

in the electronic music studios of the 1950s using custom collections of signal-

processing modules such as oscillators, filters, and modulators. In the mid-1960s,

Robert Moog and Donald Buchla each introduced modular analog synthesizers. In

such instruments, the previously separate modules are housed together and

interconnected using voltage control, in which one module’s output modifies an

input parameter of another module. (As discussed in the section “Digital Sound

Synthesis,” this notion of interconnected units had already been introduced in

computer music software, albeit in a more abstract form and with sound genera-

tion that was much too slow for live performance.) The analog sequencer that

appeared in the 1960s as a synthesizer module allowed one to store a repeatable

sequence of control voltages. These could, for example, specify the pitches of a

series of notes; therefore, the sequencer functioned analogously to the player piano

roll, conjoining the “score” to the instrument and disintermediating the performer.

The modular synthesizer’s configurability lets the composer or performer construct

new virtual instruments (synthesis “patches”), conceptually disintermediating the

instrument builder by assuming that role. Similarly, one can consider the designer

of the synthesizer itself to be a builder of meta-instruments.

One of the most dramatic of all technologies affecting music is sound record-

ing. Recording made its debut with Édouard-Léon Scott de Martinville’s phonau-

tograph, patented in 1857; however, this device lacked a corresponding playback

mechanism. In 1877, Thomas Edison invented the first practical technology for

both recording and playback: the phonograph. Magnetic wire recorders were

invented in 1898, and the Magnetophon tape recorder appeared in 1935. Phono-

graph disks, wire recorders, and tape recorders were all used in composition before

1950. Sound recording formed the sine qua non of musique concrète, the school of

composition based on assemblage of recorded sounds, which Pierre Schaeffer

(1910–1995) pioneered in his 1948 composition Étude aux Chemins de Fer.

“Tape music” disintermediates both the performer and the musical instru-

ment. Working directly with sound, alone in a studio and unconcerned with

performers’ interpretation or skills, the composer becomes more like the visual

16 some histories of computer music and its technologies

artist. The impact of recording on music composition was similar to that of

photography on visual art. However, the visual arts had already been primarily

representational of the physical world; the camera as the ultimate representational

tool stimulated painters to explore increasingly nonliteral representation and

ultimately abstraction. By contrast, music had always been largely abstract;

sound-recording technology introduced literal representation of the physical

world. Music gained the ability to play with levels of allusion to this world, to

juxtapose fragments of it, and to transform them. With tape recording, time itself

could be disjoined and rejoined in an arbitrary fashion. In conjunction with

electronic processing, recording technology endowed the already-rich timbres of

the physical world with the new trait of plasticity.

Moreover, in conjunction with sound synthesis, recording technology gave the

composer a new degree of control over the parameters of music. Whereas the

musique concrète of midcentury Paris focused on sculpting sound from real-world

sources, the contemporaneous elektronische Musik championed by Karlheinz

Stockhausen (1928–2007) in Köln (Cologne) focused on constructing sound from

the raw building blocks of acoustics, such as sine waves and noise. The frequencies,

durations, and amplitudes of sounds could all be arbitrarily controlled and com-

bined in ways not possible with traditional instruments. An interest in this degree

of control stemmed naturally from the concerns of the serialist school of composi-

tion that Arnold Schoenberg (1874–1951) had founded earlier in the century.

Space also became a parameter for manipulation, through the use of multi-

channel playback to position a sound in the perceived space according to its level in

each channel. A number of composers used this spatialization technique in the

1950s. It was put to dramatic effect by Stockhausen, who during the composition of

Kontakte (1960) projected sounds from a rotating speaker that he recorded quad-

raphonically. The result is a dynamic swirling of sound around the audience, who

listens to the recording while seated amid four loudspeakers. The midcentury

composers also used artificial reverberators. Reverberation and spatialization tech-

niques tend to disjoin sounds perceptually from both the space in which they were

originally recorded and the space where the recording is heard. Room acoustics

may represent the primary form of natural (acoustic) signal transformation, of

which these specific electronic techniques are an abstraction (as suggested in table

2.1), but more generally, electronic signal processing leads to a proliferation of

possible sonic transformations, most of which involve effects other than spatial

imagery.

The technology of computer music incorporates and extends the capabilities of

previous tools and previous human roles. As discussed in the rest of this chapter,

the general-purpose nature of computer technology enables abstractions, disjunc-

tions, and remappings at all points in the music-making process, including all the

ones from earlier stages of music technology and more. With the exception, in

most cases, of transducers (microphones, speakers, and, more generally, sensors,

controllers, and actuators), all the elements can become virtual, that is, nonphysical

(decoupled from hardware). The computer culminates the process of disjunction

a historical view of computer music technology 17

from the body that was begun with the instrument. While this separation might

seem dismal from a certain humanistic perspective (especially in light of McLuhan’s

harsh term “amputation”), its important converse is a perspective that sees human

energy spreading out beyond the body into the world, infusing it with potentially

positive new manifestations of creativity. (The amputations are optional and

temporary, being reversible, and the disjunctions enable new forms of connected-

ness, such as online musical collaboration.) The challenge for technological devel-

opment is to stay cognizant of what may have been lost (e.g., a somatically intimate

connection to sound) and to investigate how to regain it. Indeed, such considera-

tions underlie much recent research, especially on controllers; some losses can be

attributed to the relatively primitive state of tools in a young field, tools that will

continue to improve.

Computer technology represents the generalization of “tool” or “instrument,”

by which the tool’s domain can extend into all areas of human endeavor and the

tool can be continually adapted (if not adapt itself) to solve new problems.

A host of implications ensue, among them not only new horizons in musical

practice but also challenges to preconceptions about art, creativity, and human

identity. In computer music, the computer can function as an abstraction of the

instrument, the musician, or both. We now examine these abstractions more

closely.

2 . THE COMPUTER AS MUSICAL INSTRUMENT
...

In 1963, Max Mathews (b. 1926), the electrical engineer who has been dubbed “the

father of computer music,” published an influential paper in Science, “The Digital

Computer as a Musical Instrument.” This article summarized some of the ground-

breaking research and development in computer-generated sound at the Bell

Telephone Laboratories in New Jersey. Mathews (see fig. 2.1) had invented digital

sound synthesis: the numerical construction of sounds “from scratch.” To this day,

the use of the computer as an instrument—that is, a sound generator—remains at

the heart of the multifaceted field we call computer music.

Still, many musicians rely less on synthesis than on the playback and proces-

sing of digitally recorded sound. Playback of prerecorded sounds and real-time

processing of live sounds allow external sound input to become part of a musical

instrument. The instrument now may encompass both kinds of transducer (i.e., the

microphone and the loudspeaker, which are themselves abstractions of the ear and

the voice) as well as abstractions of these transducers (e.g., input or output of

symbolic music data rather than audio). Thus, after examining digital sound

synthesis, we discuss digital recording and processing and then the implications

of all these audio technologies for the craft of composition.

18 some histories of computer music and its technologies

A. Digital Sound Synthesis

The earliest productions ofmusical sound by computer—in 1950 or 1951 in Australia

(see the appendix) and England (Computer Music Journal 2004)—represented

noteworthy technical achievements, but they were severely constrained in timbre

as they relied on the machines’ “system beep” facilities. This work did not result in

any significant participation by composers, and until recently it remained unknown

to the computer music community that subsequently developed worldwide.

True digital sound synthesis, availing itself of the computer’s general-purpose

nature to construct arbitrary sounds, awaited the introduction of digital-to-analog

converters (DACs) in the 1950s. Max Mathews began research into digital sound

synthesis in 1957 with his colleagues at Bell Laboratories, producing that year

MUSIC I, the first of his computer programs for digital sound synthesis. MUSIC

III, a system for interconnecting virtual modules like digital oscillators and filters,

appeared in 1960. This approach was similar to the modular analog synthesizer

(which appeared later in the decade) but was implemented purely in software.

Owing to processor speeds, the synthesis could not be real time. In other words, it

Figure 2.1 Max Mathews, standing amid the units of the IBM 7094mainframe

computer at Bell Labs around 1965. (Courtesy of Max Mathews.)

a historical view of computer music technology 19

took much longer to create a sound than to play it back—a limitation not

overcome for years.

Special-purpose, real-time digital synthesizers (separate musical instruments)

became available in the mid-1970s. Digital synthesis on dedicated musical instru-

ments attained wide distribution following the introduction of Yamaha’s DX7 in

1983. By the late 1990s, the microprocessors in general-purpose desktop computers

were fast enough for real-time sound synthesis. Of course, the computational speed

of a synthesis algorithm depends on the algorithm’s complexity and how efficiently

it is implemented, as well as how many voices (i.e., instances of the algorithm) are

running simultaneously. However, even the most demanding families of synthesis

techniques are now feasible for real-time implementation. As in the past, much of

the craft in designing sound synthesis algorithms involves finding computational

shortcuts that have minimally adverse perceptual effects.

Many early digital synthesis algorithms were, like the typical analog synthe-

sizer, subtractive: a timbrally rich waveform is filtered to remove its frequency

components in a possibly time-varying manner. Additive synthesis, in which a

spectrum is instead constructed by adding a sine wave oscillator for each of its

component frequencies, was available, but its greater realism came at a much

greater computational expense. John Chowning (b. 1934) at Stanford University

discovered an entirely different method, frequency modulation (FM) synthesis

(Chowning 1973), an efficient technique that remained popular for the next

quarter century, until increased processor speeds rendered its efficiency moot.

Most sound synthesis techniques can be used to emulate a desired musical

sound with some degree of success, and in doing so they must approximate

the acoustical waveform that reaches the ear, but the most fully virtual family of

techniques, known as physical modeling (e.g., Smith 1992), goes back to the

origin and explicitly emulates the acoustics within the instrument. This ap-

proach allows a virtual instrument to be played with the same kind of controls

as the real instrument, with potentially striking realism. Current computers are

also able to achieve comparable realism through real-time additive synthesis,

given a database that stores all the timbral variants needed for a performance

and given rules for joining these together in natural-sounding phrasing. Eric

Lindemann’s Synful Orchestra (http://www.synful.com) illustrates this approach

applied to the emulation of orchestral instruments. Although realism might

seem to be a moot criterion for composers who avoid imitative sounds, the

significance of emulation is discussed under “Implications” in this section of

the chapter.

B. Digital Sound Recording and Processing

The use of digital sound recording in composition postdated that of digital sound

synthesis. Although analog-to-digital converters (ADCs) existed in the 1950s, other

technical barriers to digital audio recording existed, such as limited computer

20 some histories of computer music and its technologies

http://www.synful.com

memory and the need for error correction. The first commercial digital audio

recorders were introduced in the mid-1970s. In the mid-1980s, after the introduction

of the CD format in 1982, Sony introduced the digital audiotape (DAT) format, which

became popular in the computer music community, as did direct-to-disk technolo-

gies enabled by affordable ADCs for personal computers in the late 1980s.

Once digital recording became practical, digital editing, mixing, and proces-

sing fell into place, and the methods of musique concrète could be transferred to

the computer music studio. Digital signal processing in computer software enabled

the development of many new techniques for transforming sound that in the

analog realm had been impractical or of inferior quality. For instance, the phase

vocoder, a frequency domain tool for audio analysis and resynthesis, permitted

high-quality time stretching without pitch shifting and vice versa (Moorer 1978,

Dolson 1982). Digital sound processing blurred the lines between synthesized and

natural sound. In wavetable synthesis, for example, one period of a recorded

waveform (a split second of audio) is stored in a numerical table for playback by

an oscillator. With increases in computer memory, this early technique gave way to

what was sometimes called sampling synthesis, in which a recorded note’s entire

duration could be stored for greater realism. As another example of the aforemen-

tioned blurring, granular techniques, which manipulate tiny snippets of sound in

massive quantities (Roads 1978), can be applied equally to recorded or synthesized

sound—often with perceptually similar results.

Chowning (1971) conducted the first research on the placement of sounds in a

computer-generated virtual space, incorporating the simulation of reverberation

and moving sound sources. He then employed these techniques in his own

quadraphonic compositions. Other techniques such as ambisonics (Gerzon 1973)

were invented for mathematically specifying spatial position, with the goals of

greater flexibility in loudspeaker placement and listener position.

C. Implications

The synthesis, recording, and processing of sound by computer engendered a

proliferation of new musical possibilities, further freeing composers from the

constraints of human performers. The computer’s increased precision, power,

fidelity, flexibility, extensibility, and reproducibility augmented analog technolo-

gies’ impact on music. The computer offered not only unlimited textural complex-

ity and arbitrarily complicated yet precise rhythms but also unprecedented control

and resolution in parameters such as pitch, timbre, and spatial location. The

increased resolution implied the availability not only of discrete increments that

were finer than previously possible but also of continuous trajectories along these

musical dimensions.

Consider the proliferation of possibilities for pitch. The use of microtonal

scales and arbitrary tuning systems, so long a challenge for acoustical instruments,

became trivial with computer software, in which any frequency can be specified as

a historical view of computer music technology 21

easily as any other, and tuning is both precise and stable. (Some early analog

instruments, notably the telharmonium, explicitly accommodated new tuning

systems, but the oscillators in analog synthesizers typically suffer from frequency

drift.)

Regarding computers’ proliferation of timbres, Mathews realized early on that

computers could, in principle, create any sound. He also recognized that the main

limitation was humans’ understanding of how to produce a desired sound: the field

of psychoacoustics (the connection between the physics and the perception of

sound) had, and still has, much to learn. As a result, psychoacoustical topics arose

frequently in early computer music research. Using computer-synthesized sound,

the recently introduced concept of timbre as a multidimensional space could be

explored in research and in musical practice (Grey 1975, Wessel 1979). Additive

synthesis made it possible to morph between timbres—an example of the trajec-

tories mentioned. Also, it became clear that temporal variations in the amplitude

or frequency of spectral components within a single tone could be critical for

timbre. Understanding and manipulating sound at this microscopic level enriches

the composer’s vocabulary. As Chowning (2005) said, digital synthesis lets the

musician not only compose with sound but also compose the sound itself.

Similarly, the parameter of space is uniquely tractable through computer

technology. Although sonic liveliness can be achieved in the analog domain

through multichannel recording and through dynamic routing to multiple loud-

speakers during playback, computers grant the composer complete control of

spatial imagery. Just as digital sound synthesis creates virtual instruments, so

does digital positioning in multiple channels, along with carefully simulated

reverberation, create a virtual space.

Digital sound synthesis also promotes a conjunctive blurring of the boundaries

between musical dimensions that are normally thought of as distinct. For example,

in the 1969 composition Mutations by Jean-Claude Risset (b. 1938), selected fre-

quency components are first heard as distinct pitches but then fused in a unitary

timbre (see fig. 2.2). Similarly, composers can harness the acoustical connections

between timbre and tuning, as in some early experiments at Bell Labs and in

Chowning’s 1977 composition Stria. Also, Stria exhibits formal unity through

self-similarity at multiple timescales. Computer sound generation allowed Chown-

ing to apply the golden ratio (which itself expresses the self-similar relation aþb:
a¼a:b� 1.618:1) to FM synthesis parameters, spectral structure, and musical inter-

vals in addition to overall form. This unification across temporal levels recalls

Stockhausen’s theoretical writing and early analog electronic music, for example,

Studie II from 1954. Stockhausen was intrigued by a continuum of time that would

span timbre, pitch, rhythm, and form.

In the same vein, digital processing of recorded sound allows the composer to

play with a continuum between natural- and synthetic-sounding timbres (eroding

the old ideological divide between elektronische Musik and musique concrète) and

between recognizable and unrecognizable sound sources. Schaeffer was interested

in disjoining sounds from their sources, focusing perception on their timbral

22 some histories of computer music and its technologies

characteristics instead of their identities in the physical world. The term musique

concrète has today been largely superseded by acousmatic music, a term with an

explicitly disjunctive connotation that derives from the akousmatikoi, disciples of

Pythagoras who listened to him from behind a veil. One way to veil the identity of a

sound is to granulate it, to apply disjunction at a microscopic level. Granular

synthesis and other microsound techniques (Roads 2001) became increasingly

popular in the last decade or two, notably among composers of acousmatic

music. As pointed out by Roads (2001, p. 340), these techniques foster a new

conception of music. The traditional intervallic mode of musical thinking,

concerned with numerical scales and proportions in precise parameters such as

pitch and duration, gives way to a morphological mode of thinking in which sharp

definition is replaced by fuzzy, supple, and ambiguous materials. It is not difficult

to view these ideas through the lens of postmodernism or to compare them to an

Einsteinian versus a Newtonian universe.

Computers are in fact excellent tools for both morphological and intervallic

approaches, the latter including note-based musical conceptions. Notes are a

disjunctive type of musical material at an intermediate timescale: the music con-

sists of a sequence of discrete, measurable units, typically with abrupt changes in

pitch from note to note. Composers in the acousmatic tradition, in particular,

sometimes dismiss note-based music as lying outside the arena of interest for

electroacoustic music, especially when the sounds are modeled after traditional

instruments. However, it is important to understand the rationale for studying

conventional features of music when undertaking technological research, regard-

less of their presence in particular styles of contemporary composition. As a case in

point, consider the emulation of traditional instruments, which has figured heavily

in sound synthesis research (Risset 1969, Chowning 1973, Smith 1992, and many

others), as already implied by the discussion of realism in synthesis techniques (see

“Digital Sound Synthesis”). A complaint is sometimes heard that such work should

Figure 2.2 An excerpt fromMutations (1969) by Jean-Claude Risset, illustrating the use of

computer sound synthesis to bridge pitch and timbre. Pitches first heard melodically are

sustained as a harmony. Then a gong-like sound enters, containing the same frequencies,

which however are now perceptually blended into a single note. (Courtesy of JohnChowning.)

a historical view of computer music technology 23

instead focus on novel timbres. The response to this argument is twofold. First, one

can much better assess the success of a technique when gauging its results against a

familiar reference point. Emulating the well known is often more complicated than

emulating the little known, placing higher demands on the system. (Consider a

“Turing test” in which the human subject has to judge whether text comes from

a human or a computer, with two cases: one with the words in the subject’s native

language and the other with them in a completely unfamiliar language.) Second,

and more germanely for the composer, the knowledge gained by refining the

emulative technique will often inform a more sophisticated construction of

brand-new sounds. Similarly, as we discuss under the heading “The Computer as

Composer,” the emulation of traditional musical styles has held an important

position in algorithmic composition. The complaint about that research direction

and the response to the complaint are directly analogous to those about the

emulation of traditional instruments.

3 . HUMAN CONTROL OF THE

DIGITAL “INSTRUMENT”
...

Having discussed the development of the computer as an instrument and its

implications for composition, we now turn to the musician’s connection to

this instrument. The era of computer music extends from the 1950s to the

present, a period that is roughly bisected by the appearance, within a matter

of months of each other, of three paradigm-shifting technologies. The musical

instrument digital interface (MIDI) protocol was introduced in 1983, as was the

first affordable digital synthesizer, the Yamaha DX7. In January 1984, the first

commercially successful computer with a graphical user interface—the Apple

Macintosh—was launched, and it soon became especially popular among musi-

cians as it was easy to use and could be connected to synthesizers via MIDI. For the

first half of the history of computer music, therefore, users interacted with

the computer via punch cards or, later, typed commands, and most had no access

to real-time digital sound synthesis, having to wait, often for many hours, to

hear the fruits of their labor. Music creation with the computer was almost

exclusively a cerebral activity, a welcoming realm for composers perhaps, but not

for performers.

In the second half of the computer music era, the two new aspects of musician-

computer interaction—the graphical and the real time—made musical production

less disjunct from the body. The visual representation and manual manipulation of

virtual objects, combined with real-time sound synthesis or processing, come close

to a natural experience for the musician. Logical next steps might involve para-

digms that have been introduced in computer music but not yet widely deployed,

24 some histories of computer music and its technologies

such as haptic controllers with a realistic “feel” (Cadoz et al. 1984, Nichols 2002)

and virtual reality technologies (Bargar 1993).

We divide the following discussion into tools for the composer and tools for

the performer, recognizing that the boundary is not rigid: some tools may be used

by both, and the two roles may overlap. In improvisation, the performer assumes

some or all of the role of a composer. This discussion emphasizes software rather

than hardware.

A. The Composer’s Interface

As mentioned, for decades the primary interface for composers of computer music

was textual input. Typically, a composer used a special-purpose computer language

for music. Sometimes, a general-purpose programming language for which music

routines had been written was used.

The software engineer who develops sound synthesis tools can be considered

an abstraction of the traditional instrument builder. A composer who assumes this

role disintermediates that engineer. Many computer music composers have reveled

in the freedom to build their own virtual instruments and even to build languages

for building instruments. However, there is a continuum of involvement available

to the composer, ranging from writing languages, to writing programs, to creating

algorithms, to simply tweaking parameters of existing algorithms (analogous to

twiddling knobs on an analog synthesizer). At the very end of this continuum is the

composer served by a technical assistant, a model available at large institutions like

the Institut de Recherche et Coordination Acoustique/Musique (IRCAM), founded

by Pierre Boulez (b. 1925). The last scenario is enviable for the composer who has

no technical inclination, and its presence is unsurprising in a society like that of

France, where support for the arts is widely considered a necessity rather than a

luxury. The opposite end of the scale, the musician-cum-hacker, may be emblem-

atic of societies with a do-it-yourself ethos and a cultural history that celebrates the

pioneer.

Tool development and creative ideas are mutually influential. When the com-

poser is also a programmer (or hardware developer), or if the engineer works

closely with the user, it is more likely that creative musical goals will inform the

tool’s design. Otherwise, musicians are likely to be frustrated by the assumptions of

the tools they are provided. (MIDI is a common example [Moore 1988].) However,

it is also true that composers find inspiration in the implications of preexisting

tools: much music has been written that was inconceivable without the specific

technology the composer employed. We now turn our attention to some specific

types of tool, with an emphasis on those having programmatic interfaces.

The MUSIC-N Languages

Mathews conceived of sound synthesis software as a twofold abstraction: of the

orchestra and of the score. The “orchestra” was a collection of “instruments,” and

a historical view of computer music technology 25

the instrument in turn was an interconnected set of “unit generators,” that is,

signal-processing modules (see fig. 2.3). The “score” was computer code that

contained specifications of the notes that the instruments would play. In early

sound synthesis languages, the instruments were also defined (as connections

between unit generators) within the score. Later, the orchestra-score dichotomy

became more explicit, with the code defining the instruments typically stored in

one file (the orchestra file) and the note list in another (the score file). Mathews’s

MUSIC III, created in 1960, was the first in a long lineage of synthesis languages

based on the paradigm of the unit generator. (See Roads 1996a, pp. 789–790 and

Figure 2.3 A simple example of a MUSIC V software “instrument.” Top left: a block

diagram showing the interconnected unit generators that create the sound. Top right: Two

functions, for diminuendo and crescendo. Middle right: The music to be synthesized.

Bottom: The MUSIC V “score” for synthesizing the music; it contains both the instrument

definition (lines 1–7) and the list of notes (11–12). (Reproduced from Mathews [1969],

p. 59. Used with the permission of the MIT Press.)

26 some histories of computer music and its technologies

807–808 for a list of these MUSIC-N languages.) Perhaps the most influential was

MUSIC V, described by Mathews in his 1969 book, and the most widespread was

Csound (Vercoe 1985a, Boulanger 2000), still in active use today.

The part of the MUSIC-N languages that abstracted the traditional score

allowed the composer to list the notes in the composition along with the per

note parameters for the instrument that would play that note. Depending on

the language, different degrees of algorithmic control were available for generating

the notes and their parameters. However, a score-generating language can lie

outside the arena of MUSIC-N, and it can be conjoined to something other than

sound synthesis software. For example, a note list can be translated into MIDI data

for controlling hardware synthesizers, or it can be translated into music notation

for human performers to read. The very first composition language to be devel-

oped, Robert Baker and Lejaren Hiller’s MUSICOMP from 1963, is in the latter

category. We return to the subject of algorithmic composition in a subsequent

section (“The Computer as Composer”).

Later Textual Languages

More recent languages for music programming offered increased flexibility. Ny-

quist (Dannenberg 1997) dissolved the separation between the score and the

orchestra and between control signals and audio signals. Like some previous

languages, it also gave the user access to all the features of a general-purpose

programming language (in this case, LISP). SuperCollider (McCartney 2002)

consists of an object-oriented language for composition and a real-time sound

synthesis server that client applications can access over a network. There are a

number of other noteworthy sound synthesis packages accessed from a general-

purpose programming language such as Cþþ or LISP.

ChucK (Wang and Cook 2003) is a recent text-based language for real-time

sound synthesis. Having a special syntax for manipulating the flow of time, its

temporal model diverges from that of MUSIC-N. ChucK is designed to be useful

for “on-the-fly” programming, which in a performance context is often referred to

as “live coding.” Live coding takes advantage of the virtualization of the instrument

to eliminate the old temporal disjunction between the roles of instrument builder

and performer. In live coding, their roles merge, as though Stradivarius were

building violins on stage as he played them. Furthermore, both these roles are

merged with that of the composer: the live coder is an improvising programmer of

sound.

Graphical Patching Languages

Graphical patching languages take MUSIC-N’s idea of interconnected units and

render it less abstract through visual, manually manipulable representations of

modules and their connections. For many composers, these environments repre-

sented a crucial advance in musician-computer interfaces as the user interface was

reminiscent of a modular analog synthesizer. Graphical patching languages can

also support some of the algorithmic logic characteristic of a general-purpose

a historical view of computer music technology 27

textual programming language, but in a form accessible to the less technically

inclined musician. Roads (1996a, p. 753) and Puckette (2002) traced a bit of the

history of these environments, starting with the MITSYN (Multiple Interactive

Tone Synthesis System) graphical patching program that was developed at the

Massachusetts Institute of Technology (MIT) by 1970. The best-known graphical

patching language for music is Miller Puckette’s Max program, which dates from

the mid-1980s. Early versions of Max provided only control data, in the form of

MIDI, but real-time audio signal processing and synthesis were added to a special-

purpose version around 1990 and to the commercial version in 1997, as well as to an

open source variant, Pure Data (Puckette 1997).

Puckette (2002) stressed that the most important influence on Max was in fact

not graphical patching but the real-time scheduling of parallel control tasks found

in Mathews’s RTSKED program. (The Max software is named after Mathews.)

Much of the appeal of Max is indeed its real-time nature; it is a tool for performers

as well as composers. Similarly, Scaletti (2002) stressed that her environment Kyma,

which among other features includes graphical patching of signal-processing

modules, is not a graphical language, but rather a language offering multiple

means for viewing and manipulating data.

Nonprogrammatic Software

For lack of space, we gloss over the numerous software packages with nonprogram-

matic user interfaces. (See Roads [1996a] for historical summaries and publications

such as Electronic Musician for in-depth descriptions of newer software.) After the

introduction of MIDI and the graphical user interface, a number of commercial

MIDI sequencers, synthesis patch editor/librarians, sound editors, and simple

algorithmic composition programs appeared. As microprocessors got faster and

hard disks more capacious, audio playback, audio editing, and signal processing

were added to sequencers and other software, leading to a new generation of digital

audio workstations (DAWs), which originally required special-purpose hardware

but eventually were implemented in software. (The DAW can be thought of as a

functionally extended virtual mixing console.) Similarly, faster microprocessors

allowed synthesizer functionality to be implemented in software as virtual instru-

ments, which typically provide graphical and MIDI control of simulations of older

acoustic, analog, and digital musical instruments. The notion of interconnected

signal-processingmodules has been extended to plug-ins, modules that are accessed

transparently across the boundaries of different software packages.

Of course, the user interface to which composers are most accustomed is

traditional Western music notation. The input and output of music notation

dates back to experiments by Hiller and Baker in 1961. Most notation software is

used for creating printed output, often with supplementary auditioning via MIDI.

However, some compositional software, such as OpenMusic and PWGL (Patch-

Work Graphical Language), integrates music notation with a graphical patching

environment.

28 some histories of computer music and its technologies

Multimedia

Algorithmic approaches to the control of sound (audio, MIDI, etc.) can cross over

into the control of visuals (images, video, lighting, etc.). The same software and

even the same algorithmmay control both sound and image, in but one example of

a one-to-many mapping of functionality using computers. The term visual music is

often used to describe such techniques and, more generally, visual arts that emulate

music’s dynamism and abstractness. The Jitter software package for the Max

environment has been used in this manner (Jones and Nevile 2005). Visual data

can be derived from audio data and vice versa. The term sonification refers to the

mapping of nonaudio data into sound. This term originated outside music,

referring to practical techniques for data display with the goal to help the listener

understand the information in the nonaudio data. However, the idea has inspired

many composers, whose goal is instead an aesthetically rewarding sonic result.

Some pieces based on this kind of mapping have employed natural phenomena

such as magnetic fields, coastlines, or molecular vibrations, while others have used

technological sources such as network delays or the code for Web pages.

B. The Performer’s Interface

Whereas the first half of the computer music era was dominated by the composer,

the second half has witnessed the ascent of the performer. There had already been a

long history of performers participating in analog electronic music. Most often,

they simply performed on conventional acoustic instruments alongside a tape

recorder that played back electronic sounds. “Tape music” was for years the main

outlet for computer music as well—often pieces were conceived for the tape

recorder alone, but music for performer plus “computer-generated tape” was not

uncommon. However, live analog electronics also played an important role in the

20th century. Here, the performer could interact with the machine (see, e.g.,

Chadabe 1997). After the introduction of MIDI synthesizers, computer music

quickly expanded into this interactive domain. The present discussion examines

performers’ interaction with computers from the standpoint of connectivity. First,

we briefly look at types of input to the performer, then ways of capturing output

from the performer to feed to the computer, and finally interconnections that are

more complex.

Input to the Performer

When playing along with a computer, the performer usually simply listens to the

generated sound and responds accordingly, just as in conventional performance

with other musicians. However, electronics can explicitly cue the performer. In the

analog domain, performers sometimes wore headphones to hear tape-recorded

cues. The composer Emmanuel Ghent (1925–2003) in the 1960s was the first to use

the computer to cue performers in this way (Roads 1996a, p. 680). Visual cues can

also be given. Of course, the canonical input to the performer is a visual score in

a historical view of computer music technology 29

traditional music notation. More recently, composers have used real-time updating

of various sorts of computer-displayed notation to effect interactivity between the

computer and the performer (Freeman 2008).

Output from the Performer

The electronic capture of performers’ gestures has become an especially rich field of

study in the 21st century. The annual international conference, New Interfaces for

Musical Expression (NIME), had its inception in 2001. In addition to the NIME

proceedings, refer to the textbook on controllers byMiranda andWanderley (2006)

and to the article by Jordà (2004). We consider here three categories of output:

performance on traditional acoustic instruments or voice, performance with new

controllers, and performance analogous to the traditional conductor’s.

Performances by singers and traditional instrumentalists can be captured as

audio and video and analyzed to create control data for sound generation. Alter-

natively, the addition of sensors allows the performer’s gestures and motions to be

measured more directly. The technological extension of traditional instruments

turns them into “hyperinstruments,” as they are called by Tod Machover of the

MIT Media Laboratory. (This idea recalls McLuhan’s “extensions of man” but

applied to the tool rather than to the human, adding an additional layer of

abstraction.)

There is a large body of work on alternative controllers, that is, new perfor-

mance interfaces (see chapter 11 this volume, and the previously mentioned

references). The great variety of such systems, and the present chapter’s emphasis

on software, preclude a satisfactory treatment here. However, a key point is that

the introduction of computer technology bestowed the instrument designer with

the option of a complete disjunction between the controller and the synthesis

engine. Within this gap can lie one or more software layers that map the physical

gestures to synthesis parameters or to higher-level musical events in a thoroughly

flexible fashion. These include going beyond the one-to-one mapping of traditional

instruments, where each note requires a separate gesture, to a one-to-many

mapping in which a gesture can trigger a complex set of events. Given the disjunc-

tion between player and sound generation, an important direction in controller

design is to mimic what Moore (1988) called the “control intimacy” of traditional

instruments. Minimizing the temporal latency between gesture and sonic result is

crucial (Moore 1988, Wessel and Wright 2002).

There is a fuzzy boundary between interfaces for instrumentalists and inter-

faces for conductors. Mathews was interested long ago in the metaphor of “con-

ducting” electronic instruments. The GROOVE (Generated Real-Time Output

Operations on Voltage-Controlled Equipment) system (Mathews and Moore

1970) was a hybrid digital/analog system that included a CONDUCT program; in

the late 1980s, Mathews developed his Radio Baton controller, which was still not

designed for traditional conducting. For a nonmetaphorical conductor, the tech-

nology exists to conduct music in real time through video- or sensor-based capture

of traditional conducting gestures. The conducting gestures can control real-time

30 some histories of computer music and its technologies

sound synthesis, or they can control an audio recording by modifying its timing

and dynamics through digital signal processing (Lee et al. 2006).

Networked Performance

Performers using networked computers can collectively control the generation of

synthesized music. Conceptually, this is not necessarily distant from four-hand

piano. However, networked performers can also control each other’s instruments,

perhaps only subtly modifying a certain parameter while allowing the performer of

each instrument to retain overall control or perhaps changing each other’s perfor-

mances more drastically. This interdependent sort of performance represents a

relatively new paradigm in music, a new kind of conjunction of musicians and of

instruments. The League of Automatic Music Composers pioneered interdepen-

dent computer performance in the late 1970s (Bischoff et al. 1978). Weinberg (2005)

proposed a taxonomy for such performance, in which control can be centralized or

decentralized and interaction can be sequential or simultaneous (see fig. 2.4). The

network can, of course, be the Internet. Viewed from another perspective, the

Internet can serve as a point of disjunction, allowing performers to be decoupled in

space from each other as well as from their audience.

The audience can become part of the composition, providing input to the

computer system and thereby becoming (to some extent) performers and even

composers themselves. Their input can affect both automatic sound synthesis and,

via real-time updates to performance instructions, human sound production

(Freeman 2008).

Figure 2.4 One example of a complex topology of networked performers, from Weinberg

(2005). The circles represent computers serving as hubs, and the oblong shapes represent

computers or digital instruments played by performers. The latter are arranged here in

staircase patterns that indicate sequential operations, with one player’s actions followed

by another’s. The numbers specify how much influence is exerted in a particular con-

nection. (Used with the permission of MIT Press.)

a historical view of computer music technology 31

C. Implications

The technology of computer music continues the older trends in music technology

discussed in this chapter. Through a new intermediary, the computer, composers

can avail themselves of new sonic possibilities and new levels of abstraction. The

computer also permits the disintermediation of human performers and their

instruments, with all their cognitive and physical constraints. In this case, the

composer regains direct contact with sonic production and, in principle, gains

unlimited control over the result. Conversely, the composer can relinquish control

by only specifying the score algorithmically at a high level, for example, or by

creating sound installations that vary depending on current conditions, including

observers’ actions. This release of control has many precedents in music, such as

figured bass in the Baroque era and aleatoric composition in the 20th century.

With the computer, human physiology can be removed from the process of

musical creation. However, given the physiological substrates of music, it is quite

certain that musical performance will never become obsolete. Instead, humans will

continue to find new expressive ways to map physical gestures into sonic results.

Although the computer can certainly disintermediate the human performer, it is

equally possible to disintermediate only the instrument, allowing the performer to

transcend the limitations of conventional instruments.

Just as the composer can, in a sense, become a performer (directly creating the

sound), the performer can, in a sense, become a conductor: controlling the sound

in real time without being bound by the need to develop virtuosic technique on

one or more conventional musical interfaces. The intrinsic idiosyncrasies of the

instrument can vanish, to be replaced by whatever idiosyncratic mappings serve the

performer’s imaginative needs. Just as the computer frees the composer from a

one-to-one mapping between compositional indication (notes on paper) and sonic

result (sounding notes), so it frees the performer from a necessarily one-to-one

mapping between gesture and sound. Like the composer (operating out of real

time), the performer (operating in real time) can control arbitrarily complex

musical processes. Composers and performers often play with the ambiguity and

potential confusion between the expected conventional mappings or roles and

newly possible ones. As a result, the clarity and theatricality of gesture become

more important. The performer tends toward the dancer. Similarly, the dancer

equipped with sensors can become a musical performer, controlling the music—or,

as Siegel and Jacobsen (1998) say, “dancing the music.”

4 . THE COMPUTER AS MUSICIAN
...

The previous section was titled “Human Control of the Digital ‘Instrument.’” What

about interactivity? To the extent that the human musician’s interaction with the

32 some histories of computer music and its technologies

computer cannot be termed “control,” the computer is in at least one sense

autonomous, and it starts to make sense to refer, at least metaphorically, to the

computer as a musician. Of course, the ultimate control of the computer lies with

the humanwho has programmed the computer. But, given the possible inclusion of

machine-learning techniques and other forms of software complexity, the compu-

ter’s behavior might not be predicted by its programmer. The threshold of autono-

my is fuzzy. When does algorithmic composition software stop being just a human

composer’s tool and start becoming a composer itself? When does an instrument—

or “hyperinstrument”—stop being just a human performer’s tool and start becom-

ing a performer itself?

A. The Computer as Composer

Even in his 1963 article on the “computer as a musical instrument,” Mathews

discussed other researchers’ and composers’ use of the computer for automated

composition rather than for sound synthesis. Those people included Lejaren Hiller

(1924–1994), James Tenney (1934–2006), and others. The book by Hiller and Isaac-

son (1959) includes the complete score for the world’s first “serious” computer-

generated composition, their Illiac Suite for String Quartet, constructed from

September 1955 to November 1956 and published in 1957. (A short computer-

generated song in a popular style, created in 1956 by two other programmers, is

shown in Ames [1987].) Each of the Illiac Suite’s four movements is the result of a

different “experiment,” with different musical results. The first two movements

involve conventional counterpoint; the last two illustrate modern experimental

styles. Thus, this early piece of computer-composed music illustrates two different

aspects of algorithmic composition that have since been extensively developed:

(1) emulation of a traditional style, as a sort of validation of the software’s ability

to solve a well-known musical problem; and (2) composition in a contemporary

style, generally in service of a particular composer’s aesthetic and creative needs. In

the former category, significant contributions were made by investigators such as

Schottstaedt (1984), Ebcioğlu (1985), Hörnel andMenzel (1998), and especially Cope

(1996, 2004). (Some of these investigators are composers to whom category 2 also

applies.) In the latter category, there are too many composers to list, but for this

historical essay, special note must be made of the pioneers Iannis Xenakis (1922–

2001), Gottfried Michael Koenig (b. 1926), and Herbert Brün (1918–2000), in

addition to Hiller (who also collaborated with John Cage, 1912–1992) (see chapter

5, this volume).

In the category of style emulation, the software by David Cope (b. 1941), called

Experiments in Musical Intelligence (1996), deserves special mention, not for the

controversy it has engendered through its mimicking of famous classical compo-

sers, but for the number of years the composer has put into refining his software

and for the sheer volume of the musical corpus it has produced. Counting

individual movements as separate works, Cope calculated that he had created

a historical view of computer music technology 33

over a thousand finished compositions with his software. It seems likely that many

of these works could pass a Turing test for all but the most musically knowledgeable

listeners (see fig. 2.5). Regardless of one’s view of these particular pieces, or of

style emulation in general, the work is thought provoking because the future

will certainly see many more such efforts of increasing sophistication, not all

using Cope’s methods, and because even Cope’s techniques are not constrained

to traditional styles. He has applied them to his own musical style, which

Figure 2.5 An excerpt from the first movement of David Cope’s Emmy-Beethoven

Symphony. (Used with the permission of David Cope and Spectrum Press.)

34 some histories of computer music and its technologies

demonstrates that style emulation can be relevant to the second category of

algorithmic composition mentioned.

The advent of computer-aided algorithmic composition of that second type

represented a logical continuation of mathematical and formalized procedures in

20th-century music, such as serialism, Xenakis’s stochastic composition, and

Cage’s chance music. Most composers of computer music who employ algorithmic

compositional techniques would assert that in the case of their compositions, the

computer is not a composer, only a compositional aid. There is indeed a spectrum

of involvement available, ranging from simple calculations that solve a small

musical problem or generate a bit of source material for further human manipula-

tion, to systems that are intended to run as stand-alone generators of entire pieces,

as was the case for each movement of the Illiac Suite. Composers of computer

music have used a wide variety of algorithmic approaches. Representative cate-

gories include formal grammars, stochastic algorithms, genetic and other evolu-

tionary algorithms, cellular automata, neural nets and other machine-learning

techniques, and expert systems. Overviews of algorithmic composition include

those by Ames (1987), Loy (1989), Roads (1996a), Chadabe (1997), and Essl (2007).

Ariza (2005) has proposed a taxonomy of algorithmic composition systems.

B. The Computer as Performer

In considering a computer to be a “performer,” there are several dimensions for

classification. One can categorize the system based on its inputs and outputs; for

example, it might accept keyboard and mouse events but not audio as input, and it

might produce audio and video as output but not MIDI. One can examine what

produces the sound: the computer itself, external synthesizers (e.g., via MIDI),

physical musical instruments (via actuators), or humans (e.g., by automated con-

ducting). One can also consider whether the machine is represented anthropomor-

phically, whether just through visual appearance or also through functional, robotic

simulations of human body parts. Most important, though, one can assess the

degree of “intelligence” the system exhibits. Does it have knowledge of musical

conventions and styles in terms of either composition or performance practice

(such as expressive deviation from metronomic timing)? Does it “listen” to other

performers and react as a human musician might? Can it learn about music by

listening to it? Can it improvise? Or, does it simply play back data that has been fixed

in advance of the performance, oblivious of what might be going on around it? If it

does more than the last, it exhibits some degree of what Rowe (2001) and others call

machinemusicianship. (Also see Jordà [2004] for an analytical discussion that treats

intelligent and interactive systems within the framework of digital instruments.)

Robotics and Animated Characters

The computer that controls the playing of physical musical instruments represents

a refinement of the old tradition of mechanical instruments, discussed in the

a historical view of computer music technology 35

section on antecedents. The player piano of a century ago has become a

MIDI piano such as the Yamaha Disklavier (introduced in the 1980s), with the

software-based MIDI sequence serving as an abstraction of the piano roll. Other

instruments, conventional or innovative, can similarly be fitted with computer-

controlled actuators (Kapur 2005). Musical robots have become increasingly so-

phisticated, with Japanese efforts taking the lead. In 1985, researchers at Japan’s

Waseda University startled the computer music community by demonstrating

WABOT-2, an anthropomorphic robot musician that had not only fingers to

play an organ keyboard but also “eyes” (a camera) that read conventionally notated

sheet music (Roads 1986). More recently, the Waseda group demonstrated an

anthropomorphic robot flutist, complete with artificial lungs and lips (Solis et al.

2006). Other researchers are focusing on integrating machine musicianship into

robots that can improvise (Weinberg and Driscoll 2006).

Indeed, the software challenges of machine musicianship are more broadly

pertinent to computer music than are robot mechanics. Furthermore, anthropo-

morphism is often more motivated by psychology than by functional necessity.

However, anthropomorphism can also be obtained without robotics, through on-

screen characters. As an example, Bos et al. (2006) implemented a virtual conduc-

tor that directs a human ensemble whose players watch the animated character’s

traditional conducting patterns on a computer monitor. This virtual conductor

incorporates machine-listening techniques, so it can react to the playing of the

musicians it is conducting.

Machine Recognition of Music

There are numerous applications of machine recognition of music, whether the

music takes the form of audio, sheet music, MIDI, or something else. Computer

accompaniment of human performers, in the classical vein where the music is fully

notated, required the development of score-following techniques (Dannenberg

1985, Vercoe 1985b). In these, the “score” was some computer representation of

the music rather than traditional musical notation, and the computer “listened” to

a human soloist. Actual optical music recognition (OMR), having sheet music as

input, originated with research at MIT in the 1960s and became commercially

available in the 1990s. Although designed for other musical applications, OMR can

be incorporated in live performance, as prefigured by the WABOT-2 system.

More crucial than the ability to read music is the ability to hear it and parse

what is heard into musical units. On the part of a computer, this ability is generally

called automatic transcription (Moorer 1975, Klapuri and Davy 2006), a term that

suggests but does not require traditional notation as the output. Real-time recog-

nition of previously unknown music, combined with some musical knowledge,

would permit the computer to improvise. Such a task is simplified when the input

is MIDI rather than audio. Once the musical units, such as notes, are recognized,

there are many paths the computer could take in response. For example, it could

select harmonies to accompany an input melody, or it could improvise by extend-

ing the melody further, as in the case of François Pachet’s Continuator (Pachet

36 some histories of computer music and its technologies

2002). Figure 2.6, from Rowe (2001), shows a typical architecture for a machine

musicianship system in which the inputs are either MIDI or audio.

Expression

Traditional notation specifies music with symbols that are perfectly quantized in

pitch and time. The score says to play a quarter-note A on the fourth beat, not to

play 441Hz for 0.8 s starting at 0.08 s after the beat, with a vibrato rate of 5.1Hz and

a deviation of �3 Hz. A crucial part of a musician’s knowledge consists of

understanding how to render the music with expressive deviations from the

putative regularity of the abstract symbols, based on the musical context and

style. Machine musicianship benefits from research that quantifies and makes

explicit these normally intuitive and implicit rules. Such research at Stockholm’s

Kungliga Tekniska Högskolan (KTH), or Royal Institute of Technology, has re-

sulted in over 60 publications (http://www.speech.kth.se/music/performance/).

The KTH rules for expressive performance have been embedded in MIDI sequen-

cers (Friberg et al. 2000) and can accommodate real-time updates similar to

conducting (Friberg 2006).

Figure 2.6 The overall architecture of a machine-musicianship system, from

Rowe (2001). (Used with the permission of MIT Press.)

a historical view of computer music technology 37

http://www.speech.kth.se/music/performance/

C. Implications

Research areas such as OMR, automatic transcription of musical audio, and other

types of music information retrieval (MIR) were developed primarily for nonper-

formance applications, but they can be turned to creative use in performance, as

other technical areas have been, especially if real-time implementations are possi-

ble. The goal of machine musicianship encourages “computer music,” in the sense

of a creative practice, to harness the wide-ranging resources of “computer music,”

in the sense of a technical field.

Computer performance can range from the trivial, with the machine exhibit-

ing no more intelligence than a tape recorder, to the complex, with the computer

interacting with human musicians, playing in a way that listeners consider expres-

sive, and improvising. However, simply matching human performance may be

more interesting to science than to art. As Nancarrow’s work for player piano

demonstrates, composers may find machine performance of music to be of most

interest when the machine does something that human performers cannot.

As for machine composition, Cope’s prolific experiments point to a future in

which the validity of computers’ musical output is no longer at issue. Just as the

intermediary of notation led to the development of a new musical role, the meta-

performer (i.e., the conductor), so has the intermediary of the computer led to a

new role that we could call the meta-composer. Instead of working directly on a

composition, the meta-composer (the prime example thus far being Cope) works

with an automated or semiautomated system that can produce many more com-

positions than a human could in one lifetime working unaided. This again is an

example of abstraction, disjunction, one-to-many mapping, and proliferation. The

composer removes himself or herself from the details of creating a specific compo-

sition while producing a great many compositions, just as the conductor does not

perform on a specific instrument but at a high level controls them all. To state that

this new paradigm exists is not to denigrate the creative art of composers who work

otherwise, including without a computer, or to claim that human postprocessing

cannot improve the output of automated systems. However, a reflexively negative

response would invite comparison with historical reactions to the Copernican

revolution and similar upsets. Moreover, limitations of current computer models

are hardly cause for a self-satisfied proclamation of some uniquely human ability

that must lie beyond the reach of automata; similar claims in the past have fallen

victim to advances in science and technology, and computer music is a young field.

5 . CONCLUSION
...

Contemplating what Chadabe (1997, p. 21) called the “great opening up of music to

all sound,” as well as Schoenberg’s modernist application of algorithms in the

38 some histories of computer music and its technologies

creative process, it is clear that the 20th century fundamentally redefined music.

The new definition subsumed, rather than eliminated, the old. An important

contributor to the redefinition was the introduction of electronically generated

or captured sound, culminating in computer music technology, which has likewise

expanded the definition of the musical instrument.

Similarly, the 21st century is fundamentally redefining the musician in a way

that subsumes the old definition. There are several parts to this redefinition (all of

which continue trends from the 20th century):

1. The composer : The interjection of arbitrarily complex algorithms into the

compositional process allows the composer to operate on the music at as

high or as low a level as desired. Whereas the traditional composer operates

on the same level as the performer, writing the individual notes that the

performer will play, the composer who uses algorithms may work at a

higher level. At the high end of the scale, the composer can become what we

have referred to as a meta-composer. At a lower level, in creating synthesis

models and fashioning sounds directly, the composer takes on the roles of

the instrument builder and performer.

2. The performer : The completion of the process of disjoining the control

interface from the sound generator means that human musicianship need

not be so focused on developing physical dexterity and can focus on higher-

level control with flexible mapping of gesture to sonic result—the

instrumentalist tends to become a conductor. Performers may develop and

perfect their own individual interfaces and mappings. Performers may be

networked together and control each other’s performances.

3. The public : The ubiquity of sufficiently powerful computer hardware and

the availability of sufficiently flexible software help to democratize music-

making, allowing people with less training to craft and perform music.

(Even a young schoolchild can use the GarageBand software, for example.)

This is not to say that the amateur’s musical output will be as sophisticated

as the trained musician’s, only that the amateur’s output can achieve a

previously inconceivable degree of polish. This is because the expert’s

musical knowledge and control have been virtualized, that is, abstracted and

disjoined from the person and moved into the tools. Also, the disjunction

between control and sound generation allows the network, such as the

Internet, to act as an intermediary, conjoining users across space in

collaborative music-making. Similarly, the flexible mapping of control

information afforded by computer technology means that an audience can

participate in a performance in numerous ways, directly affecting the

rendering and even the composition of the music that the computer or the

human performers play.

4. The machine: The ongoing advances in machine musicianship suggest that

the term musician will increasingly be used metaphorically to refer to

automated processes. When people habitually use a metaphorical term, the

a historical view of computer music technology 39

sense of metaphor diminishes, so it is entirely possible, if not likely, that the

word musician will come to refer, in common usage, to either a human or

an automated entity. Anthropomorphic robots and on-screen characters,

while unnecessary in principle, will probably accelerate the adoption of the

new meaning.

Paradoxically, the ability of the computer to mimic, transform, and in some

respects exceed conventional human music-making could serve to refocus humans’

concern on the corporeal and emotional aspects of music—bringing to a full circle

the process of disjunction that began with the externalization of sound production

from the body. However, the arts do not follow preordained paths, and the

subjective aspects of human experience are not off-limits for computer modeling,

so such prognostication would simply be speculative. It is more likely that such a

trend would intersect with others in different directions.

In summary, the historical development of music technology can be viewed as

human creativity’s drawing on the primal act of singing and proliferating it out

from the body through a multitude of ingenious devices. These started with

musical instruments and included tools to extend music across space and time.

There is a web of interrelationships among musicians and these devices. As the

generalization of the tool, computer technology can be inserted at any juncture in

this network, augmenting or replacing instruments or musicians through disjunc-

tions and new conjunctions. The resulting profusion of potential physical and

virtual interconnections holds the seeds of countless sonic manifestations, which

collectively constitute the musically possible. From these, it is the role of the artist

to extract the musically meaningful.

Acknowledgments: In addition to this volume’s editor (Roger Dean), the following

individuals provided helpful suggestions after reading an earlier draft of this

chapter: Thom Blum, Tim Perkis, Curtis Roads, and Robert Rowe.

BIBLIOGRAPHY
...

Ames, C. 1987. Automated composition in retrospect: 1956–1986. Leonardo 20(2): 169–185.

Ariza, C. 2005. Navigating the landscape of computer-aided algorithmic composition

systems: a definition, seven descriptors, and a lexicon of systems and research. In

Proceedings of the International Computer Music Conference. San Francisco:

International Computer Music Association, pp. 765–772.

Bargar, R. 1993. Virtual sound composition for the CAVE. In Proceedings of the 1993

International Computer Music Conference. San Francisco: International Computer

Music Association, p. 154.

Bischoff, J., R. Gold, and J. Horton. 1978. Microcomputer network music. Computer Music

Journal 2(3): 24–29.

40 some histories of computer music and its technologies

Bos, P., D. Reidsma, Z. M. Ruttkay, and A. Nijholt. 2006. Interacting with a virtual

conductor. In Proceedings of 5th International Conference on Entertainment Computing.

Lecture Notes in Computer Science 4161. Berlin: Springer Verlag, pp. 25–30.

Boulanger, R., ed. 2000. The Csound Book: Perspectives in Software Synthesis, Sound Design,

Signal Processing, and Programming. Cambridge: MIT Press.

Cadoz, C., A. Luciani, and J. Florens. 1984. Responsive input devices and sound synthesis by

simulation of instrumental mechanisms: The Cordis system. Computer Music Journal

8(3): 60–73.

Chadabe, J. 1997. Electric Sound: The Past and Promise of Electronic Music. Upper Saddle

River, NJ: Prentice-Hall.

Chowning, J. 1971. The simulation of moving sound sources. Journal of the Audio

Engineering Society 19: 2–6.

Chowning, J. 1973. The synthesis of complex audio spectra by means of frequency

modulation. Journal of the Audio Engineering Society 21(7): 526–534.

Chowning, J. 2005. Composer le son lui-même. In Portraits Polychromes no. 7: John

Chowning, ed. E. Gayou. Paris: Michel de Maule, pp. 25–30.

Computer Music Journal. 2004. Editor’s note, in DVD Program Notes. [Includes a

transcription of Frank Cooper’s 1994 audio commentary on the production of

computer music in Manchester in 1951. The music and commentary appear on the

accompanying disc.] Computer Music Journal 28(4): 126–127.

Cope, D. 1996. Experiments in Musical Intelligence. Madison, WI: A-R Editions.

Cope, D. 2004. Virtual Music: Computer Synthesis of Musical Style. Cambridge: MIT Press.

Dannenberg, R. 1985. An on-line algorithm for real-time accompaniment. In Proceedings of

the International Computer Music Conference 1984. San Francisco: International

Computer Music Association, pp. 193–198.

Dannenberg, R. 1997. Machine tongues XIX: Nyquist, a language for composition and

sound synthesis. Computer Music Journal 21(3): 50–60.

Davies, H. 2001. Electronic instruments. In The New Grove Dictionary of Music and

Musicians, vol. 8, 2nd ed., ed. S. Sadie. London: Macmillan, pp. 67–107.

Dolson, M. 1982. “A tracking phase vocoder and its use in the analysis of ensemble sounds.”

Ph.D. thesis, California Institute of Technology.

Ebcioğlu, K. 1985. An expert system for Schenkerian synthesis of chorales in the style of

J. S. Bach. In Proceedings of the 1984 International Computer Music Conference. San

Francisco: International Computer Music Association, pp. 135–142.

Essl, K. 2007. Algorithmic composition. In The Cambridge Companion to Electronic Music,

ed. N. Collins and J. d’Escrivan. Cambridge: Cambridge University Press, pp. 107–125.

Freeman, J. 2008. Extreme sight-reading, mediated expression, and audience participation:

real-time music notation in live performance. Computer Music Journal 32(3): 25–41.

Friberg, A. 2006. pDM: An expressive sequencer with real-time control of the KTH music

performance rules. Computer Music Journal 30(1): 37–48.

Friberg, A., V. Colombo, L. Frydén, and J. Sundberg. 2000. Generating musical

performances with Director Musices. Computer Music Journal 24(3): 23–29.

Gerzon, M. 1973. Periphony: With-height sound reproduction. Journal of the Audio

Engineering Society 21(1): 2–10.

Grey, J. M. 1975. “An exploration of musical timbre.” Ph.D. thesis, Stanford University.

Hill, D., trans. and comm. 1979. The Book of Ingenious Devices (Kitáb al-Hiyal) by the Banú

(sons of) Músà bin Shákir. Dordrecht, Netherlands: Reidel.

Hiller, L. A., and L. M. Isaacson. 1959. Experimental Music: Composition with an Electronic

Computer. New York: McGraw-Hill.

a historical view of computer music technology 41

Hörnel, D., and W. Menzel. 1998. Learning musical structure and style with neural

networks. Computer Music Journal 22(4): 44–62.

Jones, R., and B. Nevile. 2005. Creating visual music in Jitter: Approaches and techniques.

Computer Music Journal 29(4): 55–70.

Jordà, S. 2004. Instruments and players: Some thoughts on digital lutherie. Journal of New

Music Research 33(3): 321–341.

Kapur, A. 2005. A history of robotic musical instruments. In Proceedings of the International

Computer Music Conference. San Francisco: International Computer Music

Association, pp. 21–28.

Kassler, M., and H. Howe. 1980. Computers and music. In The New Grove Dictionary of

Music and Musicians, vol. 4, 1st ed., ed. S. Sadie. London: Macmillan, pp. 603–615.

Klapuri, A., and M. Davy. 2006. Signal Processing Methods for Music Transcription. New

York: Springer.

Landy, L. 2007. Understanding the Art of Sound Organization. Cambridge: MIT Press.

Lee, E., T. Karrer, and J. Borchers. 2006. Toward a framework for interactive systems to

conduct digital audio and video streams. Computer Music Journal 30(1): 21–36.

Loy, D. G. 1989. Composing with computers: A survey of some compositional formalisms

and music programming languages. In Current Directions in Computer Music Research,

ed. M. V. Mathews and J. R. Pierce. Cambridge: MIT Press, pp. 291–396.

Manning, P. 2004. Electronic and Computer Music. Rev. and expanded ed. New York: Oxford

University Press.

Mathews, M. 1963. The digital computer as a musical instrument. Science 142(3592): 553–557.

Mathews, M. 1969. The Technology of Computer Music. Cambridge: MIT Press.

Mathews, M., and F. R. Moore. 1970. GROOVE—a program to compose, store, and edit

functions of time. Communications of the ACM 13(12): 715–721.

McCartney, J. 2002. Rethinking the computer music language: SuperCollider. Computer

Music Journal 26(4): 61–68.

McLuhan, M. 1964. Understanding Media: The Extensions of Man. Cambridge: MIT Press.

Miranda, E. R., and M. Wanderley. 2006. New Digital Musical Instruments: Control and

Interaction beyond the Keyboard. Middleton, WI: A-R Editions.

Moore, F. R. 1988. The dysfunctions of MIDI. Computer Music Journal 12(1): 19–28.

Moorer, J. A. 1975. “On the segmentation and analysis of continuous musical sound by

digital computer.” Ph.D. thesis, Stanford University.

Moorer, J. A. 1978. The use of the phase vocoder in computer music applications. Journal of

the Audio Engineering Society 26(1/2): 42–45.

Nichols, C. 2002. The vBow: A virtual violin bow controller for mapping gesture to

synthesis with haptic feedback. Organised Sound 7(2): 215–220.

Pachet, F. 2002. The Continuator: Musical interaction with style. In Proceedings of the 2002

International Computer Music Conference. San Francisco: International Computer

Music Association, pp. 211–218.

Pope, S. T. 1994. Editor’s notes: A taxonomy of computer music. Computer Music Journal

18(1): 5–7.

Puckette, M. 1997. Pure Data. In Proceedings of the International Computer Music

Conference. San Francisco: International Computer Music Association, pp. 224–227.

Puckette, M. 2002. Max at seventeen. Computer Music Journal 26(4): 31–43.

Rhea, T. 1972. “The evolution of electronic musical instruments in the United States.” Ph.D.

thesis, George Peabody College, Nashville, TN.

Risset, J.-C. 1969. An Introductory Catalogue of Computer Synthesized Sounds. Murray Hill,

NJ: Bell Telephone Laboratories.

42 some histories of computer music and its technologies

Roads, C. 1978. Automated granular synthesis of sound. Computer Music Journal 2(2): 61–62.

Roads, C. 1986. The Tsukuba Musical Robot. Computer Music Journal 10(2): 39–43.

Roads, C. 1996a. The Computer Music Tutorial. Second printing (pbk.). Cambridge: MIT

Press.

Roads, C. 1996b. Early electronic music instruments: Time line 1899–1950. Computer Music

Journal 20(3): 20–23.

Roads, C. 2001. Microsound. Cambridge: MIT Press.

Rowe, R. 2001. Machine Musicianship. Cambridge: MIT Press.

Scaletti, C. 2002. Computer music languages, Kyma, and the future. Computer Music

Journal 26(4): 69–82.

Schottstaedt, W. 1984. Automatic Species Counterpoint. Stanford Technical Report STAN-

M-19, Stanford University, Palo Alto, CA.

Siegel, W., and J. Jacobsen. 1998. The challenges of interactive dance: An overview and case

study. Computer Music Journal 22(4): 29–43.

Smith, J. 1992. Physical modeling using digital waveguides. Computer Music Journal 16(4):

74–91.

Solis, J., K. Chida, K. Taniguchi, S. Hashimoto, K. Suefuji, and A. Takanishi. 2006. The

Waseda flutist robot WF-4RII in comparison with a professional flutist. Computer

Music Journal 30(4): 12–27.

Vercoe, B. 1985a. Csound: A Manual for the Audio-processing System. Program

documentation. Cambridge: MIT Media Lab.

Vercoe, B. 1985b. The synthetic performer in the context of live musical performance. In

Proceedings of the International Computer Music Conference 1984. San Francisco:

International Computer Music Association, pp. 199–200.

Wang, G., and P. Cook. 2003. ChucK: A concurrent and on-the-fly audio programming

language. In Proceedings of the 2003 International Computer Music Conference. San

Francisco: International Computer Music Association, pp. 219–226.

Weinberg, G. 2005. Interconnected musical networks: Toward a theoretical framework.

Computer Music Journal 29(2): 23–39.

Weinberg, G., and S. Driscoll. 2006. Toward robotic musicianship. Computer Music Journal

30(4): 28–45.

Wessel, D. 1979. Timbre space as a musical control structure. Computer Music Journal 3(2):

45–52.

Wessel, D., and M. Wright. 2002. Problems and prospects for intimate musical control of

computers. Computer Music Journal 26(3): 11–22.

a historical view of computer music technology 43

c h a p t e r 3

..

EARLY HARDWARE

AND EARLY IDEAS

IN COMPUTER

MUSIC : THEIR

DEVELOPMENT AND

THEIR CURRENT

FORMS
..

paul doornbusch

THE great adventure of music in the 20th and 21st centuries is the use of computers.

There have been enormous challenges to overcome for the pioneers of computer

music, from original and unique technical requirements to new aesthetics. The

result of these developments is now a dominant musical activity. There are many

ideas and events in the early practice of computer music that are still evident today

in one guise or another.

There is no linear trajectory or chronology to the history of computer music; it

consists of a disparate conglomerate of discrete events. However, it is this milieu of

events that makes computer music possible. There have always been those musicians

and composers who engage with the latest technical advances, whether they are

drawn steel strings, advanced mechanical instrument construction possibilities, or

general-purpose machines such as the computer. These people have imaginative,

creative uses for the technology, and they use it to expand their creativity.

While now routine, there was a time when the use of computers to make music

was, if not exactly outrageous, then certainly highly unusual and controversial.

This seems incongruous when we realize that composers and musicians have always

embraced new technology to creative ends. While some traditionalists still find the

use of computers in music abhorrent, to others it is an inevitable development of

sublime beauty. For the enthusiastic, computer music still maintains an aura of a

particular aesthetic and technical possibilities. For most others, computers in music

are a ubiquitous fact, from CD playback to digital recording, editing, and production

techniques.

Whatever the case, it was mostly a trail of small and uncoordinated steps that

led to this use of computers in music. Often enough, a technical development in

one area would spur a creative development in another, and sometimes a creative

need would encourage a technical response. These developments were usually not

seen at the time as scientific, artistic, or commercial. Ideas relating to complex

compositional techniques, sound synthesis, musical instrument design, microto-

nality, and the enthralling power of the computation machine all contributed to a

climate in which something called “computer music” emerged.

However incomplete this narrativemust be, as a complete treatment would take a

book, some of it will be of intentional developments, but other parts will be engineer-

ing advances, which were sometimes accidentally useful in a musical context. Oscil-

lators and waveform generators, noise generators, filters, randomnumber generators,

numerical techniques, algorithmdevelopment, and so on are all examples of technical

developments that found use in musical contexts. It is easy, from this artistic and

historically distant standpoint, to devalue computer music’s initial buzzes, squawks,

and arcana as irrelevant. Nevertheless, an examination conscious of how the current

artistic, scientific, and consumer-oriented reality has been shaped by the past, and still

expresses many of the initial ideas from the past, would do well to note the achieve-

ments, effort, and dedication of these pioneers for it is their achievements that are the

basis for what we have today.

1 . EARLY MACHINES, DEVELOPMENTS,
AND THE FIRST STEPS IN COMPUTER MUSIC

...

Early computermusic developments were bound to the early machines onwhich they

occurred. These computers were much more primitive than what is commonplace

today and were what are now calledmainframe computers. Typically, they occupied a

large room, used vacuum tubes (valves) or discrete transistors as logic devices, were

early hardware and ideas in computer music 45

very slow by today’s standards, and often ran in a time-share environment in which

users submitted their program, or job, and returned later (usually the next day) to

collect the output of their program. They did not have screens to interact with the

user; they were typically controlled by a console with switches, lights, and buttons;

and the data and programs were stored on punched-paper tape, punched cards, or

magnetic tapes mounted on tape drives the size of large refrigerators. Memory was

typically cathode ray tubes, mercury delay lines, magnetic core memory, and so on

and usually only a few kilobytes. Mainframes and the slightly more friendly mini-

computers were the typical computer until the very early 1980s.

Australia’s CSIRAC (Council for Scientific and Industrial Research Automatic

Computer) was the first computer to play music,1 but through a series of conser-

vative administrative decisions and missed opportunities it contributed little to

what we now know as computer music. CSIRAC was developed by the Australian

Commonwealth organization CSIR (Council for Scientific and Industrial Re-

search), and it played music publicly in November 1951 at Australia’s first comput-

ing conference, although the musical programming of CSIRAC had been occurring

for about a year or more. CSIRAC, now regarded as the fourth or fifth all-electronic

digital computer in the world, was programmed by Geoff Hill to play popular

tunes of the day, “Colonel Bogey,” “Girl with Flaxen Hair,” and so on. In 1957,

another programmer, Tom Cherry, extended the music programming on CSIRAC

and developed a program that would take a “score” tape (punched-paper tape) as

input to be performed. CSIRAC was one of the very earliest computers and making

it play music was a feat. Some of CSIRAC’s details are as follows: it used over 2,000

“valves”; required 30 kW to run; had 768 ten-bit words of memory (one word was

equal to 2 “bytes”) and 2,048 words of disk storage; had a major-cycle frequency of

0.001MHz and a computational power of about 0.0005millions of instructions per

second (MIPS); occupied 45 m2; and weighed 7,000 kg.

CSIRAC, a primitive computer, had limited interaction possibilities, and one of

themwas a loudspeaker used by sending raw pulses from the serial bus tomake what

the programmers called a “blurt.” This was used to indicate that a program had

terminated or as a debugging aid to indicate the part of the program being executed.

A few pulses were sent to the speaker to make the sound. Hill, Australia’s first

software engineer, came from a musical family and had perfect pitch. It would have

been natural for him to ponder if the blurt could be turned into a steady tone by

sending pulses to the speaker at a regular period. This was not as simple as it sounds

because CSIRACwas a low-speed (1-kHzmajor clock), serial architecture computer,

and each of thememory locations in themercury acoustic delay linememory took a

different time to access. Thus, programming pulses to arrive at the loudspeaker with

a regular period (to make a steady tone) took considerable programming gymnas-

tics and cunning. Only the few best programmers were able to achieve this in the

fifteen years of CSIRAC’s service. Because the sound generationmechanismwas not

using a digital-to-analog converter (DAC), there were no variable sound synthesis

possibilities. One important characteristic of the musical activity was that it was all

real time, and it was possible to make limited changes in tempo and pitch from the

46 some histories of computer music and its technologies

console while the piece was playing. It would be many years before computer music

was again a real-time activity. Unlike the computers that immediately followed it,

CSIRAC was operated by a single user who sat at the console and interacted with it,

much like today’s personal computers (PCs).

CSIRAC, developed as a scientific tool, found some use as a musical instru-

ment but because of the lack of managerial enthusiasm for the activity, composers

were never involved; thus, the musical activity was not developed further. There

were early attempts by the engineers to do more with the music, but funding was

directed elsewhere, and the computing activities were slowly reduced until CSIRAC

was transferred from Sydney to Melbourne in 1955 and resumed service at The

University of Melbourne. Musical activity also occurred there, particularly with a

new program by Cherry, but there was a general ignorance of the significance of the

development, and Percy Grainger, an adventurous local composer, was never put in

touch with the machine despite regularly walking past the computation laboratory.

The real groundbreaking phase of computer music developments began at Bell

Laboratories, where Max Mathews, with the support of John Pierce, developed the

MUSIC-N family of music programming languages. Bell Labs, with vast research

resources, was interested in sound research and computers for telephony usage;

while related to this, the music activity was unofficial. It was in 1957when Mathews

finished MUSIC I, which was a basic sound-generating program for the Interna-

tional Business Machines (IBM) 704mainframe. A key hardware development that

was useful for Mathews was the DAC, which was not available on CSIRAC. Today,

DACs are built into every computer and allow for digital information to be turned

into analog voltage and sound. The IBM 704 had 4,096 words (of 36 bits) of

magnetic core memory, hardware floating-point support, magnetic tape storage

(5megabits per tape), and magnetic “drum” storage and could perform over 4,000

multiplications per second or almost 40,000 simpler operations per second. It was

considered an important and leading-edge machine.

The MUSIC-N languages developed from MUSIC I in 1957 to MUSIC V in

1968, and each new version included a number of advances, many of which are still

evident in music software. MUSIC I was a monophonic programwith only triangle

waves for sound output, but importantly it took as input a score file of instructions

of what to play. This is similar to what happened with CSIRAC in Melbourne at the

same time; the Music Programme would play a score tape (of punched paper) in

real time. MUSIC II in 1958was a little more advanced, but MUSIC III (for the IBM

7094), in 1959, was a major step forward and introduced the important concept of

modularity with the unit generator or UGen. This is the sort of nitty-gritty idea

that in hindsight seems unreasonably wise for its day, along with the score and

orchestra files for sound events and sound synthesis, respectively, and the table

lookup oscillator. A UGen is a predefined unit of functionality, such as an oscilla-

tor, envelope generator, filter, audio input or output, and so on. UGens are

combined in the orchestra file to make instruments, which create the sounds for

the events defined in the score file. Some UGens take audio input, and they all take

control input.

early hardware and ideas in computer music 47

All of the MUSIC-N programs up to and including MUSIC IV were written in

assembly language that was machine specific. This means that when the computer

changed, the software had to be rewritten. MUSIC V was written in 1968 for the

IBM System/360, but it was written in FORTRAN, a popular high-level language

that was portable. The IBM S/360 was the first machine to standardize on 8-bit

bytes and 32-bit words, and while it came in many variants, it typically had about

4 MB of disk storage, 4–8 KB of core memory, tape storage, and punched-card

readers. This FORTRAN version of MUSIC became popular with researchers and

universities as Mathews gave it away and it was relatively easy to make it work on

many other and different computers. Later, MUSIC 10 was developed from this

version to run on the Digital Equipment Corporation’s (DEC) PDP-10 mainframe

computers. However, while achievable, this was not trivial as the program was

stored on over 3,000 punched cards.

While the popularity and availability of MUSIC V was a great advance in

computer music, it was still very difficult to use. Often, computers were not

available, a composer had to take a box of punched cards of the score and orchestra

files to a computing facility where the job would be run, usually overnight because

it could take many hours to compute a minute of audio. If there was an error, it

would need to be corrected and resubmitted. Once the program ran properly, the

composer would be handed a magnetic tape, but this was a digital tape of samples.

Then, the composer would usually have to go to another facility, perhaps a long

drive away, to have the digital tape played through a DAC and recorded to an

analog tape. Only then, several days to several weeks after finishing the program,

would the end result be heard.

One of the key decisions made by Mathews and Pierce at an early stage was to

have composers and musicians involved in the program. They had met Milton

Babbitt in 1959 along with Vladimir Ussachevsky, James Tenney, Otto Leuning, and

later Edgard Varèse. James Tenney joined Bell Labs in 1961 to work on psycho-

acoustics, but in reality he worked on computer music and stayed until 1964. The

input from musicians greatly helped shape the development of the MUSIC-N

languages. For example, composers wanted polyphony, variable tunings, flexible

and variable timbres and timing, and so on. This directed the software develop-

ment effort. Tenney was the first recognized composer to work at Bell Labs, and he

produced some of the important work there, including Analog #1: Noise Study

(1961) and Four Stochastic Studies (1962). Analog #1: Noise Study used MUSIC III to

synthesize various kinds of controlled noise, and the form is also realized with a

random number method. The Four Stochastic Studies required that he write a

computer program, PLF 2, to compose them.

The MUSIC-N languages have been very influential because of their extremely

elegant concepts: the UGen concept, the orchestra file that takes (time-varying)

parameters for the sound synthesis, the score file that defines the timed events with

the sounds from the orchestra file, and the table lookup oscillator. Indeed, the

plug-ins of today are logically very similar to a MUSIC-N instrument: both output

sounds in samples, and these may be mixed and controlled with pitch and duration

48 some histories of computer music and its technologies

commands; also they both take parameters (automation) to modify the sounds.

Another influence is with the Moving Picture Experts Group 4 (MPEG-4) specifi-

cation for the Structured Audio Orchestra Language (SAOL), a language for

synthesis and signal processing that borrows greatly from MUSIC-N.

Another important development, at about the same time as MUSIC-N, took

place at the University of Illinois, where Lejaren Hiller and Leonard Isaacson

worked on computer-assisted algorithmic composition. In 1955, Hiller and Isaac-

son undertook the first experiments in computer-generated music by applying

musical rules and later randomness. Hiller and Isaacson used the ILLIAC I com-

puter, which was similar in some ways to CSIRAC, with 2,800 valves or vacuum

tubes, storage of 1,024 (40-bit) words in memory (5 KB), magnetic drum storage of

12,800 (40-bit) words (64 KB), and punched-paper tape use.

Hiller asked the important question, “Why would anyone want to make music

with a computer?” The answer he supplied is that because computers are excellent

at organizing and selecting data, and this is similar to at least some aspects of

composition, so computers should be useful for composition. After some initial

experimentation with writing parts of the ILLIAC String Quartet, he concluded

that the most successful results were obtained using controlled randomness and

applying general abstractions to compositional problems rather than applying

music theory rules. This idea was enthusiastically used (and separately arrived at)

by Iannis Xenakis at about the same time and later by Gottfried Michael Koenig. Of

course, there were no graphical displays or MIDI (Musical Instrument Digital

Interface); musical information was coded as numbers and entered into programs

via punched cards or punched-paper tape. The output would be printed (possibly

after being first output to tape) as numbers representing notes and durations and

then transferred to musical notation by hand.

2 . COMPUTING ARCHITECTURES AND

HOW THEY CHANGED MUSIC
...

Part of the history of computer music is also the history of computing because

hardware and software developments in the computing world directly affected the

computer music world. As discussed, the nature of computing in its early days—

mainframe computers in time-share facilities, punched-card inputs, and fanfold

printouts or (nine-track) digital magnetic tape output—was also part of the nature

of computer music. These limitations of the technology, and the lack of what is

now called “user friendliness,” had a direct impact on what sort of computer music

was created. This is also true as computing developed, and a brief overview of

computing architectures will help this discussion. The performance of computers,

especially older and larger machines, is difficult to quantify in modern terms.

early hardware and ideas in computer music 49

Often, there were architectural differences (e.g., overlapping instruction execution

and memory accesses) that allowed for performance greater than the “cycle time,”

memory access time, or central processing unit (CPU) speed would simplistically

indicate. To give an approximate idea of the performance, there will be ratings of

millions of instructions per second (MIPS) for some computers. While these are

sometimes controversial measurements, seen as flawed or misleading and often

meaningless, they are only an approximate indication of relative performance and

sufficiently illustrative for the current purpose.

A. Mainframe Computer

A mainframe is a very large computer, typically these days with many CPUs and

large storage capacity, along with large data input and output (I/O) capability.

Mainframes have always had large word sizes of, typically, 32–36 bits, and large

storage capacity (initially many megabytes of data, even if it was relatively slow

magnetic tape), and as much central memory as possible, from a few kilobytes at

the beginning. These are what governments and large companies use for their data

processing. They have very secure operating systems, and while the CPUmay be no

faster than what is now in a PC, the data processing capacity is vastly superior

because of the I/O speed (i.e., much faster memory, disk, and network access). This

of course makes them very expensive and large, requiring temperature-controlled

rooms and so on. Mainframes from the 1960s included very advanced concepts in

their architecture that have taken several decades to appear in PCs today. Main-

frames typically have proprietary operating systems that may be arcane for pro-

gramming, but their reliability, security, and I/O capacity makes them attractive in

certain situations, such as banking, for which some mainframes have operated for

ten years without interruption, even when undergoing maintenance or upgrades.

The first computers were basically mainframes, even if they did not initially

have a time-sharing operating system. Examples of mainframe computers are the

IBM 704 (1954), IBM 1401 (1959), IBM 7040 (1961), IBM S/360 (1967), IBM zSeries

(current), and many computers from the likes of Honeywell, Control Data Corpo-

ration, Burroughs, Amdahl, Hitachi, and so on. Today, mainframes are mostly used

to serve data to other computing systems. As an indication of the performance of

some of these machines, an IBM 704 was capable of 0.006–0.04MIPS, and the IBM

S/360 came in different configurations from about 0.025 to 1.25MIPS. By the mid-

1970s, mainframes were typically capable of a performance of about 1–5 MIPS.

B. Minicomputers

Minicomputers were developed in the 1960s and became popular in the 1970s.

Minicomputers were smaller than mainframes and took up one or two electrical

cabinets, about the size of one or two large refrigerators. They were smaller than

mainframe computers in others ways, such as being 8- or 16-bit computers and

50 some histories of computer music and its technologies

having lower memory, storage, and I/O capability. The first minicomputer, the

PDP-1, was developed by DEC. Because they were relatively low cost, minicompu-

ters were popular and found their way into university computing and research

departments as well as industry and commerce.

There were many new computing applications developed on minicomputers,

and music applications were no exception. The DEC PDP-11, PDP-15, and VAX-

11/780 computers became a staple in universities, and theMUSIC-N languagesmade

a natural progression to them.With the differing configurations available, there was

a range of performance for all of these machines, but the PDP-11s were capable of

about 0.3–1 MIPS, and the VAX-11/780s were capable of about 0.5–1 MIPS. Mini-

computers also developed sophisticated operating system environments, which

were multiuser and multitasking—UNIX was developed on, and for, minicompu-

ters. DEC, IBM, Hewlett-Packard, Honeywell-Bull, Data General, and others all

manufactured minicomputers for many years. However, with the rise in power of

the microprocessor and the PC, minicomputers were not widespread for so long.

C. Microcomputers and Personal Computers

The microprocessor—a single integrated-circuit processor—is the main processing

unit of the microcomputer and the PC. Semiconductor fabrication progress and

miniaturization allowed the development of a small microprocessor on a single

chip in the very early 1970s. These were very limited, but by the mid-1970s generally

useful microprocessors were readily available. Because they were small and inex-

pensive, computers built around these microprocessors were regarded in their early

years as little more than toys or curiosities for hobbyists. Often sold as kits and with

as little as a few hundred bytes of memory, they also usually had no I/O devices

other than switches and lights and used cassette tapes for storage. The KIM-1, for

example, had an 8-bit 6502 microprocessor that operated at 1 MHz, 1,024 bytes of

memory, a cassette interface for storage (very slow), a hexadecimal keypad for

input, no power supply or case, and a cost of U.S. $245 in 1975. Many single-

purpose business machines were developed around microprocessors (e.g., the

dedicated word processor), but these were eventually supplanted by the PC. As

semiconductor memory became less expensive, along with floppy disk storage and

the increasing power of microprocessors, these small machines became popular as

home devices; such computers were the Apple II, Commodore 64, Atari, BBC

Micro, Tandy TRS-80, and so on. These used a microprocessor from either Intel

(typically an 8080), Motorola (often the 6502 or 6800), or Zilog (Z80) and had a

simple operating system that allowed for program launching and directory/file

listing. IBM entered the microcomputer market relatively late in 1981 with the IBM

personal computer (PC), based on the Intel 8088 microprocessor. In the early to

mid-1980s, microcomputers from, for example, IBM, were capable of about 0.25

MIPS, while the Apple Macintosh was capable of about 0.5 MIPS. The term

personal computer has replaced the term microcomputer, and they have developed

early hardware and ideas in computer music 51

remarkably from their humble beginnings, to the point at which now PCs are the

dominant computing force, with PC technology affecting and now appearing in

mainframes and supercomputers. Now PCs have the power to process many

millions of complex mathematical operations a second (5,000–50,000 MIPS), far

outstripping mainframes and minicomputers of just a few years ago. This has had

remarkable consequences for computer music.

Musicians and composers usually like to hear the results of their work as they

do it. However, in the time of mainframe computers, computer music was an

arduous activity, and it sometimes took weeks to hear the results, but the allure of

computer music was so strong they persevered. A step closer to the real-time ideal

was taken with the development of minicomputers. Barry Vercoe ported MUSIC-

IV to the IBM S/360 and later, in the early 1970s, ported that version of MUSIC to

the PDP-11 minicomputer. In the process he consolidated several branches and

variations of the MUSIC-N programs and enhanced them with the addition of

“control rate” (k-rate) capability. The concept of control rate is a rate of change

lower than the sampling rate, that is utilized for parameter change in defined

instruments. This is useful for computational efficiency because signals that control

parameters (such as filter cutoff frequency) need not be calculated at the full

sampling rate. The PDP-11s used 16-bit words and had a time-sharing operating

system (UNIX), which made them attractive to university departments because

they offered enough utility and precision for many tasks even if they were not

always the fastest computers available. Thus, they were relatively plentiful in

universities, and this special and extended version of the MUSIC IV language,

called MUSIC 11, became available to a muchwider community of users through its

portability, the popularity of the platform, and the spirit of generosity engendered

by Mathews and others who freely gave away their software. Along with Vercoe’s

earlier MUSIC 360 for the IBMmainframes, this meant that MUSIC Vand variants

were the dominant computer music software throughout the 1970s, and DEC PDP

computers (along with some IBM mainframes) were the dominant general com-

puter music platform, although all MUSIC programs and derivatives typically

required significant memory resources due to their using long lists of instructions

in their processing.

The popularity of minicomputers also encouraged the adoption of the C

programming language and the UNIX operating system, which stimulated the

development of software to run on them. The C language is a highly portable

language, and UNIX was rewritten in C in its early days to encourage its adoption.

Both UNIX and C were widely adopted by universities around the world that had

minicomputers. The multiuser and multitasking capabilities of UNIX encouraged

its use, and its system of using small programs, which could be interconnected to

perform a complex task or create a larger system, was popular and highly influential.

At the University of California at San Diego (UCSD) in the late 1970s at the

Computer Audio Research Laboratory (CARL), F. Richard Moore developed

CMUSIC, a computer music system based on the UNIX approach. Rather than a

single monolithic system likeMUSIC V, Moore developed CMUSIC as a number of

52 some histories of computer music and its technologies

