


Neuroergonomics



OXFORD SERIES IN HUMAN-TECHNOLOGY INTERACTION

S E R I E S E D I T O R

ALEX KIRLIK

Adaptive Perspectives on Human-Technology Interaction:
Methods and Models for Cognitive Engineering and Human-Computer Interaction
Edited by Alex Kirlik

Computers, Phones, and the Internet:
Domesticating Information Technology
Edited by Robert Kraut, Malcolm Brynin, and Sara Kiesler

Neuroergonomics:
The Brain at Work
Edited by Raja Parasuraman and Matthew Rizzo



Neuroergonomics
The Brain at Work

E D I T E D  B Y

Raja Parasuraman and Matthew Rizzo

1
2007



1
Oxford University Press, Inc., publishes works that further
Oxford University’s objective of excellence
in research, scholarship, and education.

Oxford New York
Auckland Cape Town Dar es Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto

With offices in
Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Copyright © 2007 by Oxford University Press, Inc.

Published by Oxford University Press, Inc.
198 Madison Avenue, New York, New York 10016

www.oup.com

Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,
without the prior permission of Oxford University Press.

Library of Congress Cataloging-in-Publication Data
Neuroergonomics : the brain at work / edited by Raja Parasuraman and Matthew Rizzo.

p. cm.
Includes index.
ISBN 0-19-517761-4
ISBN-13 978-0-19-517761-9
1. Neuroergonomics. I. Parasuraman, R. II. Rizzo, Matthew.
QP360.7.N48 2006
620.8'2—dc22 2005034758

9 8 7 6 5 4 3 2 1

Printed in the United States of America
on acid-free paper

www.oup.com


There is a growing body of research and develop-
ment work in the emerging field of neuroergonom-
ics. For the first time, this book brings together this
body of knowledge in a single volume. In compos-
ing this book, we sought to show how an under-
standing of brain function can inform the design of
work that is safe, efficient, and pleasant. Neuroer-
gonomics: The Brain at Work shows how neuroer-
gonomics builds upon modern neuroscience and
human factors psychology and engineering to en-
hance our understanding of brain function and
behavior in the complex tasks of everyday life, as-
sessed outside the confines of the standard research
laboratory, in natural and naturalistic settings.

The book begins with an overview of key is-
sues in neuroergonomics and ends with a view
toward the future of this new interdisciplinary
field. Specific topics are covered in 22 intervening
chapters. The subject matter is wide ranging and
addresses scientific and clinical approaches to diffi-
cult questions about brain and behavior that con-
tinue to drive our investigations and the search for
solutions. This composition required the input of
specialists with a variety of insights on medicine,
human factors engineering, physiology, psychol-
ogy, neuroimaging, public health policy, and the
law. Effective response to these issues requires

coordinated efforts of many relevant specialists,
utilizing shared knowledge and cross-fertilization
of ideas. We hope this book contributes to these
ends.

The breadth and depth of this volume would
not have been possible without the steady influ-
ence and vision of Series Editor Alex Kirlik and the
Oxford University Press. We are also extremely
indebted to the authors for their creative contribu-
tions and timely responses to our extensive edito-
rial advice. Raja Parasuraman was supported by
grants from the National Institutes of Health and
DARPA and Matthew Rizzo by the National Insti-
tutes of Health and the Centers for Disease Control
and Prevention. Raja Parasuraman is grateful to
former members of the Cognitive Science Labora-
tory, especially Francesco DiNocera, Yang Jiang,
Bernd Lorenz, Ulla Metzger, and Sangy Panicker,
for stimulating debates in the early days of neu-
roergonomics, many carried out online and to con-
tinuing discussions with current members including
Daniel Caggiano, Shimin Fu, Pamela Greenwood,
Reshma Kumar, Ericka Rovira, Peter Squire, and
Marla Zinni, and to the other members of the Arch
Lab at George Mason University. Matt Rizzo thanks
his colleagues in neurology, engineering, public
health, and the Public Policy Center for their
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open-minded collaboration and is especially obliged
to the past and present members of the Divi-
sion of Neuroergonomics (http://www.uiowa.edu/~
neuroerg/) for their good humor, great ideas, and
hard work. He is deeply grateful to Michael and

Evelyn for nurturing his curiosity, to Annie, Ellie,
and Frannie for their enduring support, and to Big
Bill and Margie, now at peace. Both of us are also
grateful to Constance Kadala and to Cheryl Moores
for their editorial assistance.
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Neuroergonomics is the study of brain and behav-
ior at work (Parasuraman, 2003). This interdisci-
plinary area of research and practice merges the
disciplines of neuroscience and ergonomics (or
human factors) in order to maximize the benefits
of each. The goal is not just to study brain struc-
ture and function, which is the province of neuro-
science, but also to do so in the context of human
cognition and behavior at work, at home, in trans-
portation, and in other everyday environments.
Neuroergonomics focuses on investigations of the
neural bases of such perceptual and cognitive
functions as seeing, hearing, attending, remember-
ing, deciding, and planning in relation to tech-
nologies and settings in the real world. Because
the human brain interacts with the world via a
physical body, neuroergonomics is also concerned
with the neural basis of physical performance—
grasping, moving, or lifting objects and one’s
limbs.

Whenever a new interdisciplinary venture
is proposed, it is legitimate to ask whether it is
necessary. To answer this query, we show how
the chapters in this book, as well as other work,
demonstrate that neuroergonomics provides added
value, beyond that available from “traditional”
neuroscience and “conventional” ergonomics, to

our understanding of brain function and behavior
as it occurs in the real world. The guiding princi-
ple of neuroergonomics is that examining how the
brain carries out the complex tasks of everyday
life—and not just the simple, artificial tasks of
the research laboratory—can provide important
benefits for both ergonomics research and prac-
tice. An understanding of brain function can lead
to the development and refinement of theory in
ergonomics, which in turn will promote new, far-
reaching types of research. For example, knowl-
edge of how the brain processes visual, auditory,
and tactile information can provide important
guidelines and constraints for theories of infor-
mation presentation and task design. The basic
premise is that the neuroergonomic approach al-
lows the researcher to ask different questions and
develop new explanatory frameworks about hu-
mans and work than an approach based solely
on the measurement of the overt performance or
subjective perceptions of the human operator. The
added value that neuroergonomics provides is
likely to be even greater for work settings such as
modern semiautomated systems (Parasuraman &
Riley, 1997), where measures of overt user behav-
ior can be difficult to obtain (Kramer & Weber,
2000).

1 Raja Parasuraman and Matthew Rizzo
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Some Examples of 
Neuroergonomics Research

Aviation

The following examples illustrate the value of the
neuroergonomic approach. Historically, the great-
est influence of human factors on technological
design has been in the domain of aviation, specif-
ically in the design of displays and controls in the
aircraft cockpit (Fitts, Jones, & Milton, 1950;
Wiener & Nagel, 1988). With the worldwide
growth in airline travel, new proposals for air traf-
fic management have been put forward. Imple-
menting these proposals requires new cockpit
technologies. Consider a new traffic-monitoring
system that is to be installed in the cockpit to por-
tray to the pilot other aircraft that are in the im-
mediate vicinity, showing their speed, altitude,
flight path, and so on, using color-coded symbols
on a computer display. Various types of neuroer-
gonomic research, both basic and applied, can in-
form the design of this system. For example,
designers may wish to know what features of the
symbols (e.g., shape, intensity, motion, etc.) serve
to best attract the pilot’s attention to a potential
intruder in the immediate airspace. At the same
time, there may be a concern that the presenta-
tion of traffic information, while helping the pilot
monitor the immediate airspace, may increase
the pilot’s overall mental workload, thereby de-
grading the performance of the primary flight
task. Although subjective or performance mea-
sures could be used to evaluate this possibility, a
neuroergonomic approach can provide more sen-
sitive evaluation of any impact on flight perfor-
mance. It may also lead the researcher to ask new
and potentially more profitable questions about
attention allocation than before. Measures of
brain function that reflect visual attention and
oculomotor control can help determine the im-
pact of the new display on the pilot’s visual scan-
ning and attentional performance (see chapter 7,
this volume). Finally, neuroergonomic evaluation
of the manual and physical demands involved in
interacting with the information panels and con-
trols of the new traffic-monitoring system would
also be required for this system to be used effec-
tively and safely by pilots (see chapter 15, this
volume).

Driving

Neuroergonomics is also relevant to assessing
interactions between the eye, the brain, and the
automobile (Rizzo & Kellison, 2004). Functional
magnetic resonance imaging (fMRI) permits nonin-
vasive dynamic imaging of the human brain (see
chapter 4, this volume). Analytic approaches to
fMRI data, such as independent component analy-
sis, can reveal meaningful patterns in data sets col-
lected in subjects performing complex tasks that
capture elements of automobile driving. Prelimi-
nary application of these approaches suggests that
multiple neural regions, including the frontopari-
etal, cerebellar, and occipital areas, are differen-
tially activated by various aspects of the driving
task, such as speed control. It is also possible to
relate physiological correlates of impending sleep
(microsleeps) derived from electroencephalo-
graphic (EEG) activity recordings of brain activity
to imminent declines in driver performance (Paul,
Boyle, Rizzo, & Tippin, 2005). Finally, naturalistic
studies of driver behavior provide unique evidence
of long-range human interactions, strategies, and
tactics of “the brain in the wild” (see chapter 8, this
volume).

Neuroenginering

A third example concerns the use of brain signals
as an additional communication channel for hu-
man interaction with both the natural and the
human-made environment. This area of research
and practice, sometimes also called neuroengineer-
ing or brain-computer interface (BCI), has had signif-
icant progress in recent years. In this approach,
different types of brain signals are used to control
external devices without the need for motor out-
put, which would be advantageous for individuals
who either have only limited motor control or,
as in the case of “locked-in” patients with amy-
otrophic lateral sclerosis, virtually no motor con-
trol. The idea follows naturally from the work on
“biocybernetics” in the 1980s pioneered by Donchin
and others (Donchin, 1980; Gomer, 1981) but has
progressed beyond the earlier achievements with
technical developments in recording of brain activ-
ity in real time.

BCIs allow a user to interact with the environ-
ment without engaging in any muscular activity, for
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example, without the need for hand, eye, foot, or
mouth movement. Instead, the user is trained to en-
gage in a specific type of mental activity that is asso-
ciated with a unique brain electrical “signature.” The
resulting brain potentials are recorded, processed,
and classified in such a way as to provide a control
signal in real time for an external device. Applica-
tions have used a variety of different measures of
brain electrical activity. Invasive methods include
recording of field potentials and multiunit neuronal
activity from implanted electrodes; this technique
has been reported to be successful in controlling ro-
botic arms (Nicolelis, 2003). Such invasive record-
ing techniques have superior signal-to-noise ratio
but are obviously limited in use to animals or to
patients with no motor functions in whom elec-
trode implantation is clinically justified. Noninva-
sive BCIs have used a variety of brain signals derived
from scalp EEG recordings. These include quan-
tified EEGs from different frequency bands such
as beta and mu waves (Pfurtscheller & Neuper,
2000), event-related potentials (ERPs) such as P300
(Donchin, Spence, & Wijesinghe, 2000), and con-
tingent negative variation (Birbaumer et al., 1999).
BCIs based on these signals have been used to oper-
ate voice synthesizers, control cursor movements on
a computer display, and move robotic arms.

Virtual Reality

Virtual reality (VR) is particularly relevant to neu-
roergonomics because VR can replicate situations
with greater control than is possible in the real
world, allowing behavioral and neural measures of
the mind and brain at work in situations that are
impractical or impossible to observe in the real
world. In doing so, VR can be used to study the per-
formance of human operators engaged in hazardous
tasks without putting them and others at risk for in-
jury (see chapter 17, this volume). For example, VR
can be used to study the influence of disease, drugs,
fatigue, or in-vehicle technologies (such as cell
phones) on aircraft piloting and automobile driv-
ing, to study how to reduce the risk of falls in the
elderly, and to train students to avoid novice mis-
judgments and errors in performing critical med-
ical procedures, flying aircraft, and operating heavy
machinery. VR is particularly useful in workers
whose jobs require spatial awareness, complex mo-
tor skills, or decisions that require evaluation of

multiple possible responses amid changing contin-
gencies, and is also proving to be useful for therapy
and rehabilitation of persons with motor, cognitive,
and psychiatric impairments.

Conceptual, Theoretical, 
and Philosophical Issues

The constituent disciplines of neuroergonomics—
neuroscience and ergonomics/human factors
research—are both twentieth-century, post–World
War II fields. The spectacular rise of neuroscience
toward the latter half of that century and the
smaller but no less important growth in human fac-
tors research can both be linked to technological
developments in computer science and engineer-
ing. The brain imaging technologies that have revo-
lutionized modern neuroscience (e.g., fMRI) and
the sophisticated automated systems that have stim-
ulated much human factors work (e.g., the aircraft
flight management system) were both made possi-
ble by these engineering developments. Neverthe-
less, the two fields have developed independently.

Traditionally, ergonomics has not paid much
attention to neuroscience or to the results of
studies concerning brain mechanisms underlying
human perceptual, cognitive, affective, and motor
processes. At the same time, neuroscience and its
more recent offshoot, cognitive neuroscience, has
only been recently been concerned with whether
its findings bear any relation to human functioning
in real (as opposed to laboratory) settings. Recent
calls to move neuroscience “beyond the bench”
(“Taking Neuroscience beyond the Bench,” 2002)
include studies of group social behavior (Cacciopo,
2002) and the development of neural prosthetics
for control of robots, home automation, and other
technologies for physically disabled people (see
chapter 19, this volume).

The relative neglect by ergonomics of human
brain function is understandable given that this
discipline had its roots in a psychology of the
1940s that was firmly in the behaviorist camp.
More recently, the rise of cognitive psychology in
the 1960s influenced human factors, but for the
most part neuroscience continued to be ignored by
cognitive theorists, a state of affairs consistent with
a functionalist approach to the philosophy of mind
(Dennett, 1991). Such an approach implies that

Introduction to Neuroergonomics 5



the characteristics of neural structure and function-
ing are largely irrelevant to the development of the-
ories of mental functioning. Cognitive psychology
(and cognitive science) also went through a func-
tionalist period in the 1970s and 1980s, mainly
due to the influence of researchers from artificial
intelligence and computer science. However, the
recent influence of cognitive neuroscience has led
to a retreat from this position. Cognitive neuro-
science proposes that neural structure and function
constrain and in some cases determine theories of
human mental processes (Gazzaniga, 2000).

If neuroscience has freed cognitive science
from rigid functionalism, then ergonomics may
serve to liberate it from a disembodied existence
devoid of context and provide it an anchor in the
real world. Even though researchers are aware of
the importance of ecological validity, modern cog-
nitive psychology (with a few exceptions) tends to
study mental processes in isolation, apart from the
artifacts and technologies of the world that require
the use of those processes. Technology, particularly
computers, can be viewed as an extension of hu-
man cognitive capability. Related to this view is the
framework of cognitive engineering, in which hu-
mans and intelligent computer systems constitute
“joint cognitive systems” (Hutchins, 1995; Roth,
Bennett, & Woods, 1987). Furthermore, much hu-
man behavior is situated and context dependent.
Context is often defined by and even driven by
technological change. How humans design, in-
teract with, and use technology—the essence of
ergonomics—should therefore also be central to
cognitive science.

The idea that cognition should be considered
in relation to action in the world has many an-
tecedents. Piaget’s (1952) work on cognitive devel-
opment in the infant and its dependence on
exploration of the environment anticipated the
concept of situated or embodied cognition. Clark
(1997) also examined the characteristics of an em-
bodied mind that is shaped by and helps shape ac-
tion in a physical world. If cognitive science should
therefore study the mind not in isolation but in in-
teraction with the physical world, then it is a natu-
ral second step to ask how to design artifacts in the
world that best facilitate that interaction. This is the
domain of ergonomics or human factors. Neuroer-
gonomics goes one critical step further. It postulates
that the human brain, which implements cognition
and is itself shaped by the physical environment,

must also be examined in interaction with the envi-
ronment in order to understand fully the interrela-
tionships of cognition, action, and the world of
artifacts.

Currently, a coherent body of concepts and
empirical evidence that constitutes neuroergonom-
ics theory does not exist. Of course, broad theories
in the human sciences are also sparse, whether in
ergonomics (Hancock & Chignell, 1995) or in
neuroscience (Albright, Jessell, Kandel, & Posner,
2001). Sarter & Sarter (2003) proposed that neu-
roergonomics must follow the same reductionist
approach of cognitive neuroscience in order to de-
velop viable theories. There are small-scale theories
that could be integrated into a macrotheory, but
which would still pertain only to a specific domain
of human functioning. For example, neural theo-
ries of attention are becoming increasingly well
specified, both at the macroscopic level of large-
scale neural networks (Parasuraman, 1998; Posner,
2004) and at the level of neuronal function and
gene expression (Parasuraman, Greenwood, Ku-
mar, & Fossella, 2005; Sarter, Givens, & Bruno,
2001). At the same time, psychological theories of
attention have informed human factors research
and design (Wickens & Hollands, 2000). Difficult
though the task may be, one can envisage amalga-
mation of these respective theories into a neuroer-
gonomic theory of attention. Integration across a
broader range of functional domains, however, is
as yet premature.

Methods

A number of methods have been developed for use
in neuroergonomic research and practice. Among
these are brain imaging techniques, which have
been influential in the development of the field
of cognitive neuroscience. Brain imaging tech-
niques can be roughly divided into two classes.
The first group of techniques is based on measure-
ment of cerebral hemodynamics (blood flow), such
as positron emission tomography (PET), fMRI, and
transcranial Doppler sonography (TCD). The sec-
ond group of methods involves measurement of
the electromagnetic activity of the brain, including
EEG, ERPs, and magnetoencephalography (MEG).
For a review of brain imaging techniques for use in
studies of cognition and human performance, see
Cabeza and Kingstone (2001).
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PET and fMRI currently provide the best nonin-
vasive imaging techniques for the evaluation and lo-
calization of neural activity. However, these methods
suffer from two drawbacks. First, their temporal res-
olution is poor compared to electrophysiological
techniques such as ERPs. Second, their use is re-
stricted to highly controlled lab environments in
which participants must not move. This limits their
use for examining the neural basis of performance in
more complex tasks with a view to ergonomic appli-
cations, as in flight, driving simulation, or the use of
virtual reality systems, although components of com-
plex task performance are being studied (Peres, Van
de Moortele, & Pierard, 2000; Calhoun et al., 2002;
see also chapter 4, this volume). Optical imaging
techniques such as fast near-infrared spectroscopy
(NIRS) may provide both spatial and temporal reso-
lution and the ability to be used in neuroergonomic
applications (see chapter 5, this volume).

An overview of the relative merits and disad-
vantages of these various techniques is shown in
figure 1.1. This illustration is a variant of a repre-

sentation of the spatiotemporal resolution of brain
imaging methods first described by Churchland and
Sejnowski (1988). The ease of ergonomic applica-
tion (color code) has been added to the trade-off be-
tween the criteria of spatial resolution and temporal
resolution in measuring neuronal activity. Currently,
there is no one technique that reaches the ideal (blue
circle) of 0.1 mm spatial resolution, 1 ms temporal
resolution, and ease of use in ergonomics.

In addition to brain imaging methods, oculo-
motor techniques can provide additional tools for
neuroergonomics researchers. With the advent of
low-cost, high-speed systems for measuring differ-
ent types of eye movements and increasing knowl-
edge of the underlying neural systems, oculomotor
measures can provide important information not
available from traditional measurement of response
accuracy and speed (see chapter 7, this volume).

It should be noted that the use of brain imag-
ing or oculomotor measures need not be a defining
characteristic of neuroergonomic research. A neu-
roergonomic study may use behavioral measures or

Introduction to Neuroergonomics 7

Figure 1.1. Resolution space of brain imaging techniques for ergonomic applications.
Trade-offs between the criteria of the spatial resolution (y-axis) and temporal resolution
(x-axis) of neuroimaging methods in measuring neuronal activity, as well as the relative
noninvasiveness and ease of use of these methods in ergonomic applications (color code).
EEG = electronencephalography; ERPs = event-related potentials; fMRI = functional
magnetic resonance imaging; MEG = magnetoencephalography; NIRS = near-infrared
spectroscopy; PET = positron emission tomography; TCDS = transcranial doppler
sonography. See also color insert.



a computational analysis; however, in each case the
performance measure or the computational model
is related to a theory of brain function.

Consider the following example. Suppose that
as a result of the manipulation of some factor,
performance on a target discrimination task (e.g.,
detection of an intruder aircraft in the cockpit
traffic-monitoring example discussed previously) in
which location cues are provided prior to the target
yields the following results: reaction time (RT) to
the target when preceded by an invalid location
cue is disproportionately increased, while that to a
valid cue is not. This might happen, for example,
if the cue is derived from the output of an auto-
mated detection system that is not perfectly reliable
(Hitchcock et al., 2003). In simple laboratory tasks
using such a cueing procedure, there is good evi-
dence linking this performance pattern to a basic
attentional operation and to activation of a specific
distributed network of cortical and subcortical
regions on the basis of previous research using
noninvasive brain imaging in humans, invasive
recordings in animals, and performance data from
individuals who have suffered damage to these
brain regions (Posner & Dehaene, 1994). One
could then conduct a study using the same cueing
procedure and performance measures as a behav-
ioral assay of the activation of the neural network
in relation to performance of a more complex task
in which the same basic cognitive operation is
used. If the characteristic performance pattern was
observed—a disproportionate increase in RT fol-
lowing an invalid location cue, with a normal de-
crease in RT following a valid cue—then one could
argue that the distributed cortical/subcortical net-
work of brain regions is likely to have been in-
volved in task performance. This would then
enable the researcher to link the full body of neuro-
science work on this aspect of attentional function
to performance on the complex intruder-detection
task. Thus, even though no physiological index was
used, and although the same performance measure
(RT) was used as in a traditional ergonomic analy-
sis, the type of question asked and the explanatory
framework can be quite different in the neuroer-
gonomic approach.

Finally, a neuroergonomic study could also
involve a computational analysis of brain or cog-
nitive function underlying performance of a com-
plex task. So long as the analysis was theoretically
driven and linked to brain function, the study

would qualify as neuroergonomic even though no
physiological index was used. Several computational
models of human performance have been developed
for use in human factors (Pew & Mavor, 1998). Of
these, models that can be linked, in principle, to
brain function—such as neural network (connec-
tionist) models (O’Reilly & Munakata, 2000)—
would be of relevance to neuroergonomics.

Neuroergonomics and
Neuropsychology

Neuropsychology and related fields (e.g., behav-
ioral neurology, clinical and health psychology,
neuropsychiatry, and neurorehabilitation) have also
helped pave the way for neuroergonomics. Hebb
(1949) used the term neuropsychology in his classic
book The Organization of Behavior: A Neuropsycho-
logical Theory. The field broadly aims to understand
how brain structure and function are related to
specific psychological processes. The neuropsycho-
logical approach uses statistical techniques for
standardizing psychological tests and scales to
provide clinical diagnostic and assessment tools in
normal and impaired individuals (de Oliveira Souza,
Moll, & Eslinger, 2004).

Like neuroergonomics, neuropsychology is
dedicated to a psychometric approach, holding
that human behavior can be quantified with ob-
jective tests of verbal and nonverbal behavior,
including neural states, and that these data reflect
a person’s states of mind and information pro-
cessing. These processes can be divided into dif-
ferent domains, such as perception, attention,
memory, language, executive functions (decision
making and implementation), and motor abilities,
and they can be assessed using a wide variety of
techniques.

Both neuropsychology and neuroergonomics
rely on principles of reliability (how repeatable a
behavioral measure is) and validity (what a mea-
sure really shows about human brain and behav-
ior). Neuropsychology has traditionally relied on
paper-and-pencil tests, many of which are stan-
dardized and well understood (e.g., Lezak, 1995).
The neuroergonomics approach is more rooted in
technology, as indicated in this book. Novel tech-
niques and tests are developing at a rapid pace,
and guidelines and standards are going to be
needed.

8 Introduction



Contributions to Neuroergonomics
from Other Fields: 
Genetics, Biotechnology, 
and Nanotechnology

While we have emphasized the contribution of neu-
roscience to neuroergonomics in this chapter, devel-
opments in other fields are also affecting the study of
human brain function at work. Three such fields are
molecular genetics, biotechnology, and nanotech-
nology, and we briefly consider their relevance here.

As discussed previously, cognitive psychology
has increasingly capitalized on findings from neu-
roscience. More recently, the study of individual
differences in cognitive function is being influ-
enced by developments in molecular genetics and,
in particular, the impressive results of the Human
Genome Project. Much of what we know about
the genetics of cognition has come from twin
studies in which identical and fraternal twins are
compared to assess the heritability of a trait. This
paradigm has been widely used in behavioral ge-
netics research for over a century. For example,
the method has been used to show that general in-
telligence, or g, is highly heritable (Plomin &
Crabbe, 2000). However, this approach cannot
identify the particular genes involved in intelli-
gence or the cognitive components of g. Recent
advances in molecular genetics now allow a differ-
ent, complementary approach to behavioral gene-
tics, called allelic association. This method has
been applied to the study of individual differences
in cognition in healthy individuals, revealing evi-
dence of modulation of cognitive task perfor-
mance by specific neurotransmitter genes (Fan,
Fossella, Sommer, Wu, & Posner, 2003; Green-
wood, Sunderland, Friz, & Parasuraman, 2000;
Parasuraman et al., 2005). This work is likely to
provide the basis not only for improved under-
standing of the neural basis of cognition, but also
for better characterization of individual differ-
ences in cognition. That, in turn, can have an im-
pact on important human factors issues such as
selection and training.

Reliable quantification of individual differ-
ences in cognitive function will have obvious
implications for selection of operators for occupa-
tions that demand a high workload. While it
would be premature to state that the molecular ge-
netic approach to cognition has immediate appli-
cations to selection, further programmatic research

on more complex cognitive tasks will undoubtedly
lead to progress in such an endeavor. The postge-
nomic era has clearly demonstrated that inheri-
tance of a particular genotype only sets a range for
the phenotypic expression of that genotype, with
the exact point within that range being determined
by other genetic and environmental factors. Ge-
nomic analysis allows for a much more precise
specification of that range for any phenotype, and
for linking phenotypic variation to specific genetic
polymorphisms. Selection and training have tradi-
tionally been considered together in human factors
research and practice (e.g., Sanders & McCormick,
1983) but rarely in terms of a common biological
framework. Examining the effects of normal gene-
tic variation and of various training regimens on
brain function may provide such a common frame-
work.

The goal of neuroergonomics is to better
understand the brain’s functional structures and
activities in relation to work and technology. In
addition to molecular genetics, biotechnology can
contribute to this effort by providing a means to
study neuronal activities down to the molecular
level. Biomimetic studies also allow for precise mod-
eling of the human brain’s activities. If the validity
of such models can be established in the near fu-
ture, then researchers could examine various ma-
nipulations of brain function that are not ethically
possible with human participants.

The currently available measures of brain
function are limited by sensor size and the inabil-
ity to monitor brain function and influence func-
tion simultaneously. Nanotechnology provides the
measurement tools that can achieve such dual-
purpose needs. It can also provide new sensors for
monitoring changes in neuronal function in other-
wise undetectable brain structures. In addition,
nanotechnology has the appropriate scale of oper-
ations necessary to deliver chemicals needed to
precisely monitor and modify effects of neuro-
transmitters or encourage targeted neurogenesis,
with the objective of improving human performance
in certain work environments.

Although there are few current examples of
the influence of biotechnology and nanotechnol-
ogy on neuroergonomics, these fields are likely to
have greater impact in the near future. De Pont-
briand (2005) provided a cogent discussion of the
potential benefits that biotechnology and nan-
otechnology can bring to neuroergonomics.

Introduction to Neuroergonomics 9



the application areas that are emerging as a result
of the use of neuroergonomic research. We chose
four: adaptive automation, virtual reality, robotics,
and neuroengineering.

Neuroengineering applications are designed in
part to help individuals with different disabilities
that make it difficult for them to communicate
effectively with the world. This area of work is
covered in more detail in part VI. Four chapters
describe neuroergonomic technologies that can be
used to help the paralyzed, individuals with low or
no vision, and those who require prostheses. A final
chapter in this section is concerned with the evalua-
tion of medical safety in health care settings.

Finally, in part VII, we close the volume by sur-
veying prospects for the future of neuroergonomics.

Conclusion

Neuroergonomics represents a deliberate merger of
neuroscience and ergonomics with the goal of ad-
vancing understanding of brain function underly-
ing human performance of complex, real-world
tasks. A second major goal is to use existing and
emerging knowledge of human performance and
brain function to design technologies and work en-
vironments for safer and more efficient operation.
More progress has been made on the first goal than
on the second, but both neuroergonomic research
and practice should flourish in the future, as the
value of the approach is appreciated. The basic en-
terprise of ergonomics—how humans design, inter-
act with and use technology—can be considerably
enriched if we also consider the human brain that
makes such activities possible.

MAIN POINTS

1. Neuroergonomics is the study of brain and
behavior at work.

2. Neuroergonomics attempts to go beyond its
constituent disciplines of neuroscience and
ergonomics by examining brain function and
cognitive processes not in isolation but in
relation to the technologies and artifacts of
everyday life.

3. Some examples of neuroergonomics include
research in the areas of aviation, driving,

10 Introduction

Overview of Neuroergonomics:
The Brain at Work

This book represents a collective examination of
the major theoretical, empirical, and practical is-
sues raised by neuroergonomics. In this opening
chapter, which forms part I, we have provided an
overview of the field, covering theoretical and con-
ceptual issues involved in the merging of cognitive
neuroscience and human factors research. We have
also briefly described neuroergonomic methods,
but these are covered in more detail in part II,
which consists of seven chapters describing differ-
ent cognitive neuroscience methods: fMRI, EEG,
ERPs, NIRS, TCD, and oculomotor measures. In
addition, measures to track behavior and brain
function in naturalistic environments are also de-
scribed. Each chapter outlines the major features of
each method, describes its principal merits and
limitations, and gives illustrative examples of its
use to address issues in neuroergonomics. We un-
derstand that readers will bring a variety of techni-
cal backgrounds to the examination of these
methodological issues. Accordingly, key readings
provided at the end of each chapter provide addi-
tional background for understanding some of the
more technical details of each method, as needed.

Part III examines basic research in a number of
different domains of cognition that have particular
relevance for the understanding of human perfor-
mance at work. We did not attempt to be com-
prehensive. Rather, we chose areas of cognition in
which significant progress has been made in identi-
fying the underlying neural mechanisms, thereby
allowing for theory-driven application to human
factors issues. The cognitive domains discussed are
spatial cognition, vigilance, executive functions, and
emotion and decision making. In addition, work-
ing memory, planning, and prospective memory
are variously described in some of these chapters as
well as in other sections of the book.

As the study of the brain at work, neuroer-
gonomics must also examine the work environment.
It is an undeniable fact that many work settings are
stressful, induce fatigue, and are poorly designed in
terms of workspace layout. Accordingly, part IV ex-
amines issues of stress, sleep loss, and fatigue, as
well as the effects of the physical work environment.

Part V consists of four chapters that discuss
several different domains of application of neuroer-
gonomics. Again, we did not attempt to cover all of
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brain-computer interfaces, and virtual 
reality.

4. Neuroergonomics is inconsistent with a
purely functional philosophy of mind, 
in which brain structure and function 
are deemed irrelevant. In addition,
neuroergonomics views brain and mind as
influenced by context and technology.

5. Neuroergonomic methods include behavioral
and performance studies, brain imaging,
oculomotor measures, and computational
techniques. These methods have different
relative merits and disadvantages.

Key Readings

Cabeza, R. M., & Kingstone, A. (2001). Handbook of
functional neuroimaging of cognition. Cambridge,
MA: MIT Press.

Kramer, A. F., & Weber, T. (2000). Applications of psy-
chophysiology to human factors. In J. T. Cac-
cioppo, L. G. Tassinary, & G. G. Berntson (Eds.),
Handbook of psychophysiology (2nd ed., pp.
794–814). New York: Cambridge University Press.

Mussa-Ivaldi, F. A., & Miller, L. E. (2003). Brain-
machine interfaces: Computational demands and
clinical needs meet basic neuroscience. Trends in
Cognitive Sciences, 26, 329–334.

Parasuraman, R. (2003). Neuroergonomics: Research
and practice. Theoretical Issues in Ergonomics Sci-
ence, 4, 5–20.
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This chapter considers the utility of the ongoing,
scalp-recorded, human electroencephalogram (EEG)
as a tool in neuroergonomics research and practice.
The EEG has been extensively documented to be a
sensitive index of changes in neuronal activity due
to variations in the amount or type of mental activity
an individual engages in, or to changes in his or her
overall state of alertness and arousal. The EEG is
recorded as a time-varying difference in voltage be-
tween an active electrode attached to the scalp and a
reference electrode placed elsewhere on the scalp or
body. In the healthy waking brain, the peak-to-peak
amplitude of this scalp-recorded signal is usually
well under 100 microvolts, and most of the signal
power comes from rhythmic oscillations below a
frequency of about 30 Hz. In many situations, the
EEG is recorded simultaneously from multiple elec-
trodes at different positions on the scalp, often
placed over frontal, parietal, occipital, and temporal
lobes of the brain according to a conventional place-
ment scheme.

The scalp-recorded EEG signal reflects postsy-
naptic (dendritic) potentials rather than action (ax-
onal) potentials. Since the laminar structure of the
cerebral cortex facilitates a large degree of electrical
summation (rather than mutual cancellation) of
these postsynaptic potentials, the extracellular EEG

recorded from a distance represents the passive
conduction of currents produced by summating
synchronous activity over large neuronal popula-
tions. Several factors determine the degree to which
potentials arising in the cortex will be recordable at
the scalp, including the amplitude of the signal at
the cortex, the size of a region over which postsy-
naptic potentials are occurring in a synchronous
fashion, the proportion of cells in that region that
are in synchrony, the location and orientation of
the activated cortical regions in relation to the scalp
surface, and the amount of signal attenuation and
spatial smearing produced by conduction through
the highly resistive skull and other intervening
tissue layers. While most of the scalp-recordable
signal in the ongoing EEG presumably originates
in cortical regions near the recording electrode,
large signals originating at more distal cortical loca-
tions can also make a significant contribution to
the activity observed at a given scalp recording site.
For example, because of the orientation of the pri-
mary auditory cortices, some EEG signals gener-
ated in them project more toward the top of the
head than to the geometrically closer lateral scalp
surfaces.

The decomposition of an instantaneous scalp-
recorded voltage measure into the constituent set
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of neuronal events throughout the brain that con-
tributed to it is a mathematically ill-conditioned
inverse problem that has no unique solution.
Because of this indeterminacy, the EEG has signifi-
cant limitations with respect to its use as a method
for three-dimensional anatomical localization of
neural activity in the same sense in which func-
tional magnetic resonance imagining (fMRI) or
positron emission tomography (PET) are used.
However, the EEG has obvious advantages relative
to other functional neuroimaging techniques as a
method for continuous monitoring of brain func-
tion, either over long periods of time or in environ-
ments such as a hospital bed. Indeed, it is often the
method of choice for some clinical monitoring
tasks. For example, continuous EEG monitoring is
an essential tool in the diagnostic evaluation of
epilepsy and in the evaluation and treatment of
sleep disorders. It is also coming to play an increas-
ingly important role in neurointensive care unit
monitoring and in gauging level of awareness dur-
ing anesthesia.

For many years, efforts have also been un-
der way to evaluate the extent to which the EEG
might be useful as a monitoring modality in the
context of human factors research. To be most
useful in such settings, a monitoring method
should be robust enough to be reliably measured
under relatively unstructured task conditions, sen-
sitive enough to consistently vary with some di-
mension of interest, unobtrusive enough to not
interfere with operator performance, and inexpen-
sive enough to eventually be deployable outside
of specialized laboratory environments. It should
also have reasonably good time resolution to allow
tracking of changes in mental status as complex be-
haviors unfold. The EEG appears to meet such re-
quirements. Furthermore, the compactness of EEG
technology also means that, unlike other func-
tional neuroimaging modalities (which typically
require large expensive measuring instruments
and complete immobilization of the subject), EEGs
can even be collected from an ambulatory sub-
ject wearing a lightweight and nonencumbering
headset.

A monitoring capability with such characteris-
tics could provide unique value in the context of
neuroergonomics research that seeks to better un-
derstand the neurobiological impact of task condi-
tions that impose excessive cognitive workload or
that result in significant mental fatigue. The need

for expansion of knowledge in this area is evi-
denced by the extensive literature indicating that
task conditions that impose cognitive overload of-
ten lead to performance errors even in alert indi-
viduals working under routine conditions. The
potential for compromised performance in such
circumstances can be exacerbated in individuals
who are debilitated because of fatigue or sleep loss,
illness or medication, or intoxication or hangover.
In fact, even modest amounts of sleep loss can de-
grade performance on tests that require contribu-
tions from prefrontal cortical regions that control
attention functions (Harrison & Horne, 1998,
1999; Harrison, Horne, & Rothwell, 2000; Linde
& Bergstrom, 1992; Smith, McEvoy, & Gevins,
2002; see also chapter 14, this volume) and the
magnitude of the behavioral impairment observed
on such tasks can exceed that observed following a
legally intoxicating dose of alcohol (Arendt, Wilde,
Munt, & MacLean, 2001; Krull, Smith, Kalbfleisch,
& Parsons, 1992; Williamson & Feyer, 2000).

While most often just a barrier to productivity,
some critical jobs are particularly demanding in
terms of the fatigue and cognitive workload they
impose, and are particularly unforgiving in terms
of the severe negative consequences that can be in-
curred when individuals performing those jobs
make mistakes. For instance, in medical triage and
crowded emergency room contexts the patient’s life
often hinges on a physician’s ability to manage
complex, competing demands, often after long
hours on the job (Chisholm, Collison, Nelson, &
Cordell, 2000). Similarly, the sleep deprivation and
circadian desynchronization imposed by shift work
scheduling has been noted to be a source of severe
performance decrements (Scott, 1994) and has
been implicated as a probable cause in a number of
aviation (Price & Holley, 1990) and locomotive
(Tepas, 1994) accidents. The high personal and so-
cietal costs associated with such performance fail-
ures motivate efforts to develop advanced methods
for detecting states of cognitive overload or mental
fatigue.

In this chapter, we review progress in develop-
ing EEG methods for such purposes. We first de-
scribe how the spectral composition of the EEG
changes in response to variations in task difficulty
or level of alertness during highly controlled cogni-
tive tasks. We also consider methods for analysis
of such signals that might be suitable for use in a
continuous monitoring context. Finally, we review
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generalizations of those methods to assess com-
plex, computer-based tasks that are more represen-
tative of real-world tasks.

EEG Signals Sensitive to Variations 
in Task Difficulty and Mental Effort

A significant body of literature exists concerning the
EEG changes that accompany increases in cognitive
workload and the allocation of mental effort. One
approach to this topic has focused on EEG changes
in response to varying working memory (WM) de-
mands. WM can be construed as an outcome of
the ability to control attention and sustain its focus
on a particular active mental representation (or set
of representations) in the face of distracting influ-
ences (Engle, Tuholski, & Kane, 1999). In many
ways, this notion is nearly synonymous with what
we commonly understand as effortful concentration
on task performance. WM plays an important role
in comprehension, reasoning, planning, and learn-
ing (Baddeley, 1992). Indeed, the effortful use of
active mental representations to guide performance
appears critical to behavioral flexibility (Goldman-
Rakic, 1987, 1988), and measures of it tend to be
positively correlated with performance on psycho-
metric tests of cognitive ability and other indices of
scholastic aptitude (Carpenter, Just, & Shell, 1990;
Gevins & Smith, 2000; Kyllonen & Christal, 1990).

Many EEG studies of WM have required
subjects to perform controlled n-back-style tasks
(Gevins & Cutillo, 1993; Gevins et al., 1990, 1996)
that demand sustained attention to a train of stim-
uli. In these tasks, the load imposed on WM varies
while perceptual and motor demands are kept rela-
tively constant. For example, in a spatial variant of
the n-back task, stimuli are presented at different
spatial positions on a computer monitor once every
4 or 5 seconds while the subject maintains a cen-
tral fixation. Subjects must compare the spatial lo-
cation of each stimulus with that of a previous
stimulus, indicating whether a match criterion is
met by making a key press response on a com-
puter mouse or other device. In an easy, low-load
version of the task, subjects compare each stimu-
lus to the first stimulus presented in each block of
trials (0-back task). In more difficult, higher-load
versions, subjects compare the position of the cur-
rent stimulus with that presented one, two, or
even three trials previously (1-, 2-, or 3-back tasks).

These require constant updating of the information
stored in WM on each trial, as well as constant
attention to new stimuli and maintenance of pre-
viously presented information. To be successful
in such tasks when WM demands are high, sub-
jects typically must exert significant and continu-
ous mental effort. Similar n-back tasks have been
used to activate WM networks in a controlled fash-
ion in the context of functional neuroimaging stud-
ies employing PET or fMRI methods (Braver et al.,
1997; Cohen et al., 1994; Jansma, Ramsey, Cop-
pola, & Kahn, 2000).

The spectral composition of the ongoing EEG
displays regular patterns of load-related modula-
tion during n-back task performance. For example,
figure 2.1 displays spectral power in the 4–14 Hz
range at a frontal midline (Fz) and a parietal midline
(Pz) scalp location computed from the continuous
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Figure 2.1. Effect of varying the difficulty of an n-back
working memory task on the spectral power of EEG
signals. The figure illustrates spectral power in dB of
the EEG in the 4–14 Hz range at frontal (Fz) and pari-
etal (Pz) midline electrodes, averaged over all trials of
the tasks and collapsed over 80 subjects. Data from
Gevins and Smith (2000).



EEG during performance of low-load (0-back) and
moderately high-load (2-back) versions of a spatial
n-back task. The data represent the average re-
sponse from a group of 80 subjects in a study of
individual differences in cognitive ability (Gevins
& Smith, 2000) and show significant differences
in spectral power as a function of task load that
vary between electrode locations and frequency
bands.

More specifically, at the Fz site a 5–7 Hz or
theta-band spectral peak is increased in power dur-
ing the high-load task relative to the low-load task.
This type of frontal midline theta signal has fre-
quently been reported to be enhanced in difficult,
attention-demanding tasks, particularly those re-
quiring a sustained focus of concentration (Gevins
et al., 1979; Gevins et al., 1998; Gevins, Smith,
McEvoy, & Yu, 1997; Miyata, Tanaka, & Hono,
1990; Mizuki, Tanaka, Iogaki, Nishijima, & Inanaga,
1980; Yamamoto & Matsuoka, 1990). Topographic
analyses have indicated that this task loading-
related theta signal tends to have a sharply defined
potential field with a focus in the anterior midline
region of the scalp (Gevins et al., 1997; Inouye
et al., 1994); such a restricted topography is un-
likely to result from distributed generators in dor-
solateral cortical regions. Instead, attempts to
model the generating source of the frontal theta
rhythm from both EEG (Gevins et al., 1997) and
magnetoencephalographic (Ishii et al., 1999) data
have implicated the anterior cingulate cortex as a
likely region of origin. This cortical region is thought
to be part of an anterior brain network that is criti-
cal to attention control mechanisms and that is acti-
vated by the performance of complex cognitive tasks
(Posner & Rothbart, 1992). Indeed, in a review of
over 100 PET activation studies that examined ante-
rior cingulate cortex activity, Paus and colleagues
found that the major source of variance that af-
fected activation in this region was associated with
changes in task difficulty (Paus, Koski, Caramanos,
& Westbury, 1998). The EEG results are thus con-
sistent with these views, implying that perfor-
mance of tasks that require significant mental effort
places high demands on frontal brain circuits in-
volved with attention control.

Figure 2.1 also indicates that signals in the
8–12 Hz or alpha band tend to be attenuated in the
high-load task relative to the low-load task. This in-
verse relationship between task difficulty and alpha
power has been observed in many studies in which

task difficulty has been systematically manipulated.
In fact, this task correlate of the alpha rhythm has
been recognized for over 70 years (Berger, 1929).
Because of this load-related attenuation, the magni-
tude of alpha activity during cognitive tasks has
been hypothesized to be inversely proportional to
the fraction of cortical neurons recruited into a tran-
sient functional network for purposes of task perfor-
mance (Gevins & Schaffer, 1980; Mulholland, 1995;
Pfurtscheller & Klimesch, 1992). This hypothesis is
consistent with current understanding of the neural
mechanisms underlying generation of the alpha
rhythm (reviewed in Smith, Gevins, Brown, Karnik,
& Du, 2001). Convergent evidence for this view is
also provided by observations of a negative correla-
tion between alpha power and regional brain activa-
tion as measured with hemodynamic measures
(Goldman, Stern, Engel, & Cohen, 2002; Moos-
mann et al., 2003) and the frequent finding from
neuroimaging studies of greater and more extensive
brain activation during task performance when task
difficulty increases (Bunge, Klingberg, Jacobsen, &
Gabrieli, 2000; Carpenter, Just, & Reichle, 2000).

In addition to signals in the theta and alpha
bands, other spectral components of the EEG have
also been reported to be sensitive to changes in ef-
fortful attention. These include slow-wave activity
in the delta (<3 Hz) band (McCallum, Cooper, &
Pocock, 1988), high-frequency activity in the beta
(15–30 Hz) and gamma (30–50 Hz) band (Sheer,
1989), and rarely studied phenomena such as the
kappa rhythm that occurs around 8 Hz in a small
percentage of subjects (Chapman, Armington, &
Bragden, 1962).

Automated Detection of Mental 
Effort or Fatigue-Related 
Changes in the EEG

The results reviewed above indicate that spectral
components of the EEG vary in a predictable fashion
in response to variations in the cognitive demands of
tasks. While this is a necessary condition for the de-
velopment of EEG-based methods for monitoring
cognitive workload, a number of other issues must
also be addressed if such laboratory observations are
to be transitioned into practical tools. Foremost
among them is the problem of EEG artifact. That
is, in addition to brain activity, signals recorded at
the scalp include contaminating potentials from eye
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movements and blinks, muscle activity, head move-
ments, and other physiological and instrumental
sources of artifact. Such contaminants can easily
mask cognition-related EEG signals (Barlow, 1986;
Gevins, Doyle, Schaffer, Callaway, & Yeager, 1980;
Gevins, Zeitlin, Doyle, Schaffer, & Callaway, 1979;
Gevins, Zeitlin, Doyle, Yingling, et al., 1979; Gevins,
Zeitlin, Yingling, et al., 1979), an essential but diffi-
cult and often subtle issue that, unfortunately, is too
often given lip service but not actually dealt with. In
laboratory studies, human experts review the raw
data, identify artifacts and eliminate any contami-
nated EEG segments to ensure that data used in
analyses represent actual brain activity. For large
amounts of data, this is an expensive, labor-intensive
process which itself is both subjective and variable.
To be practical in more routine applied contexts,
such decisions must be made algorithmically.

We have directed a great deal of research toward
automated artifact detection. This has led to the de-
velopment and testing of multicriteria spectral de-
tectors (Gevins et al., 1975; Gevins, Yeager, Zeitlin,
Ancoli, & Dedon, 1977), sharp transient waveform
detectors (Gevins et al., 1976), and detectors using
neural networks (Gevins & Morgan, 1986, 1988).
In some cases, automated detection algorithms can
perform about as well as the consensus of expert hu-
man judges. For example, in a database of about
40,000 eye movement, head/body movement, and
muscle artifacts, we found that algorithmic methods
successfully detected 98.3% of the artifacts with a
false detection rate of 2.9%, whereas on average ex-
pert human judges found 96.5% of the artifacts with
a 1.7% false detection rate. Thus, while further work
on the topic is needed, it is reasonable to expect that
the problem of automated artifact detection will not
be an insurmountable barrier to the development of
EEG-based cognitive monitoring methods.

A closely related problem is the fact that, in sub-
jects actively performing tasks with significant per-
ceptuomotor demands in a normal fashion, the
incidence of data segments contaminated by arti-
facts can be high. As a result, it can be difficult to
obtain enough artifact-free data segments for analy-
sis. To minimize data loss, effective digital signal
processing methods must also be developed to filter
contaminants out of the EEG when possible. One
powerful approach to this problem has been to
implement adaptive filtering methods to decon-
taminate artifacts from EEG signals (Du, Leong, &
Gevins, 1994). We have found such methods to

be effective at recovering most of the artifact-
contaminated data recorded in typical laboratory
studies of subjects working on computer-based
tasks. A variety of other methods have been em-
ployed by different investigators in response to this
problem, including such techniques as autoregres-
sive modeling (Van den Berg-Lensssen, Brunia, &
Blom, 1989), source-modeling approaches (Berg &
Scherg, 1994), and independent components analy-
sis (Jung et al., 2000). A difficult issue with contam-
inant removal is that bona fide brain signals can also
be removed with the artifacts. As with the problem
of artifact detection, continued progress in this area
suggests that, at least under some conditions and for
some types of artifacts, decontamination strategies
will evolve that will enable the automation of EEG
processing for continuous monitoring applications.

Presuming then that automated preprocessing
of the EEG can yield sufficient data for subsequent
analyses, questions still remain as to whether the
type of load-related changes in EEG signals can be
measured in a reliable fashion in individual sub-
jects, and whether such measurements can be ac-
complished with a temporal granularity suitable for
tracking complex behaviors. That is, in the experi-
ments described above, changes in the theta and al-
pha bands in response to variations in WM load
were demonstrated by collapsing over many min-
utes of data recorded from a subject at each load
level, and then comparing the mean differences be-
tween load levels across groups of subjects using
conventional parametric statistical tests. Under
normal waking conditions, such task-related EEG
measures have high test-retest reliability when com-
pared across a group of subjects measured during
two sessions with a week between them (McEvoy,
Smith, & Gevins, 2000). However, for the devel-
opment of automated EEG analysis techniques
suitable for monitoring applications, load-related
changes in the EEG would ideally also be replicable
when computed over short segments of data and
would need to have high enough signal-to-noise ra-
tios to be measurable within such segments.

Prior work has demonstrated that multivariate
combinations of EEG variables can be used to ac-
curately discriminate between specific cognitive
states (Gevins, Zeitlin, Doyle, Schaffer, et al., 1979;
Gevins, Zeitlin, Doyle, Yingling, et al., 1979; Gevins,
Zeitlin, Yingling, et al., 1979; Wilson & Fisher,
1995). Furthermore, neural network-based pat-
tern classification algorithms trained on data from
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individual subjects can also be used to automati-
cally discriminate data recorded during different
load levels of versions of the type of n-back WM
task described above. For example, in one experi-
ment (Gevins et al., 1998) eight subjects per-
formed both spatial and verbal versions of 3-, 2-,
and 1-back WM tasks on test sessions conducted
on different days. For each single trial of data in
each subject, spectral power estimates were com-
puted in the theta and alpha bands for each elec-
trode site. Pattern recognition was performed with
the classic Joseph-Viglione neural network algo-
rithm (Gevins, 1980; Gevins & Morgan, 1988;
Joseph, 1961; Viglione, 1970). This algorithm iter-
atively generates and evaluates two-layered feed-
forward neural networks from the set of signal
features, automatically identifying small subsets of
features that produce the best classification of ex-
amples from the sample of data set aside for train-
ing. The resulting classifier networks were then
cross-validated on the remaining data not included
in the training sample.

Utilizing these procedures, test data segments
from 3-back versus 1-back load levels could be dis-
criminated with over 95% (p < .001) accuracy.
Over 80% (p < .05) of test data segments associ-
ated with a 2-back load could also be discrimi-
nated from data segments in the 3-back or 1-back
task loads. Such results provide initial evidence
that, at least for these types of tasks, it is possible to
develop algorithms capable of discriminating dif-
ferent cognitive workload levels with a high degree
of accuracy. Not surprisingly, they also indicated
that relatively large differences in cognitive work-
load are easier to detect than smaller differences,
and that there is an inherent trade-off between the
accuracy of classifier performance and the tempo-
ral length of the data segments being classified.

High levels of accurate classification were also
achieved when applying networks trained with
data from one day to data from another day and
when applying networks trained with data from
one task (e.g., spatial WM) to data from another
task (e.g., verbal WM). It was also possible to suc-
cessfully apply networks trained with data from a
group of subjects to data from new subjects. Such
generic networks were found on average to yield
statistically significant classification results when
discriminating the 1-back from the 3-back task
load conditions, but their accuracy was much re-
duced from that achievable with subject-specific

networks. On the one hand, such results indicate
that there is a fair amount of commonality across
days, tasks, and subjects in the particular set of
EEG frequency-band measures that are sensitive
to increases in cognitive workload. Such common-
alities can be exploited in efforts to design efficient
sensor montages and signal-processing methods.
Nonetheless, they also indicate that to achieve
optimal performance using EEG-based cognitive
load-monitoring methods, it will likely be neces-
sary to calibrate algorithms to accommodate in-
dividual differences. Such conclusions are also
consistent with the observation that patterns of
task-related EEG changes vary in conjunction with
individual differences in cognitive ability and cog-
nitive style (Gevins & Smith, 2000).

In addition to being sensitive to variations in
attention and mental effort, the EEG also changes
in a predictable fashion as individuals become
sleepy and fatigued, or when they experience
other forms of transient cognitive impairment. For
example, it has long been known that the EEG of
drowsy subjects has diffusely increased lower theta
band activity and decreased alpha band activity
(Davis, Davis, Loomis, Harvey, & Hobart, 1937;
Gevins, Zeitlin, Ancoli, & Yeager, 1977). These
changes are distinct from those described above
characterizing increasing task load based on topog-
raphy and spectral characteristics. Because such
EEG changes are robust and reliable, a number of
laboratories have developed and tested computer-
ized algorithms for automated detection of drowsi-
ness (Gevins, Zeitlin, et al., 1977; Hasan, Hirkoven,
Varri, Hakkinen, & Loula, 1993). Such methods
have produced highly promising results. For exam-
ple, in one study we used neural network-based
methods to compare task-related EEG features be-
tween alert and drowsy states in individual sub-
jects performing the n-back WM tasks described
above (Gevins & Smith, 1999). Utilizing EEG fea-
tures in the alpha and theta bands, average test set
classification accuracy was 92% (range 84–100%,
average binomial p < .001). In another study, we
explicitly compared metrics based on either behav-
ioral response measures during an n-back WM
task, EEG recordings during task performance and
control conditions, or combinations of behavioral
and EEG variables with respect to their relative
sensitivity for discriminating conditions of drowsi-
ness associated with sleep loss from alert, rested
conditions (Smith et al., 2002). Analyses based

20 Neuroergonomics Methods



on behavior alone did not yield a stable pattern
of results when viewed over test intervals. In con-
trast, analyses that incorporated both behavioral
and neurophysiological measures displayed a
monotonic increase in discriminability from alert
baseline with increasing amounts of sleep depri-
vation. Such results indicate that fairly modest
amounts of sleep loss can induce neurocognitive
changes detectable in individual subjects perform-
ing computer-based tasks, and that the sensitivity
for detecting such states is significantly improved
by the addition of EEG measures to behavioral
indices.

Extension of EEG-Based Cognitive
State Monitoring Methods to More
Realistic Task Conditions

The results described above provide evidence
for the basic feasibility of using EEG-based meth-
ods for monitoring cognitive task load, mental fa-
tigue, and drowsiness in individuals engaged in
computer-based work. However, the n-back WM
task makes minimal demands on perceptual and
motor systems, and only requires that a subject’s
effort be focused on a single repetitive activity. In
more realistic work environments, task demands
are usually less structured and mental resources of-
ten must be divided between competing activities,
raising questions as to whether results obtained
with the n-back task could generalize to such con-
texts.

Studies have demonstrated that more com-
plicated forms of human-computer interaction
(such as videogame play) produce mental effort-
related modulation of the EEG that is similar to
that observed during n-back tasks (Pellouchoud,
Smith, McEvoy, & Gevins, 1999; Smith, McEvoy, &
Gevins, 1999). This implies that it might be pos-
sible to extend EEG-based multivariate methods
for monitoring task load to such circumstances.
To evaluate this possibility, a subsequent study
(Smith et al., 2001) was performed in which the
EEG was recorded while subjects performed the
Multi-Attribute Task Battery (MATB; Comstock
& Arnegard, 1992). The MATB is a personal
computer-based multitasking environment that
simulates some of the activities a pilot might be re-
quired to perform. It has been used in several prior
studies of mental workload and adaptive automa-

tion (e.g., Fournier, Wilson, & Swain, 1999; Para-
suraman, Molloy, & Singh, 1993; Parasuraman,
Mouloua, & Molloy, 1996). The data collected dur-
ing performance of the MATB were used to test
whether it is possible to derive combinations of
EEG features that can be used for indexing task
loading during a relatively complex form of human-
computer interaction.

The MATB task included four concurrently
performed subtasks in separate windows on a com-
puter screen (for graphic depictions of the MATB
visual display, see Fournier et al., 1999; Molloy &
Parasuraman, 1996). These included a systems-
monitoring task that required the operator to mon-
itor and respond to simulated warning lights and
gauges, a resource management task in which fuel
levels in two tanks had to be maintained at a cer-
tain level, a communications task that involved
receiving audio messages and making frequency
adjustments on virtual radios, and a compensatory
tracking task that simulated manual control of air-
craft position. Manipulating the difficulty of each
subtask served to vary load; such manipulations
were made in a between-blocks fashion. Subjects
learned to perform low-, medium-, and high-load
(LL, ML, and HL) versions of the tasks. For com-
parison purposes they also performed a passive
watching (PW) condition in which they observed
the tasks unfolding without actively performing
them.

Subjects engaged in extensive training on the
tasks on one day, and then returned to the labora-
tory on a subsequent day for testing. On the test
day, subjects performed multiple 5-minute blocks
of each task difficulty level. Behavioral and subjec-
tive workload ratings provided evidence that on
average workload did indeed increase in a monoto-
nic fashion across the PW, LL, ML, and HL task
conditions. This increase in workload was associ-
ated with systematic changes in the EEG. In partic-
ular, as in the prior study of workload changes in
the n-back task paradigm, frontal theta band activ-
ity tended to increase with increasing task difficulty,
whereas alpha band activity tended to decrease.
Such results indicated that the workload manipula-
tions were successful, and that spectral features in
the theta and alpha range might be useful in at-
tempting to automatically monitor changes in
workload with EEG measures.

Separate blocks of data were thus used to derive
and then independently validate subject-specific,
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EEG-based, multivariate cognitive workload func-
tions. In contrast to the two-class pattern detection
functions that were employed to discriminate be-
tween different task load levels in the prior study,
we evaluated a different technique that results in a
single subject-specific function that produces a
continuous index of cognitive workload and hence
could be applied to data collected at each difficulty
level of the task. In this procedure, the EEG data
were first decomposed into short windows and a
set of spectral power estimates of activity in the
theta and alpha frequency ranges was extracted
from each window. A unique multivariate function
was then defined for each subject that maximized
the statistical divergence between a small sample of
data from low and high task load conditions. To
cross-validate the function, it was tested on new
data segments from the same subject. Across sub-
jects (figure 2.2), mean task load index values were
found to increase systematically with increasing
task difficulty and differed significantly between the
different versions of the task (Smith et al., 2001).
These results provide encouraging initial evidence
that EEG measures can indeed provide a modality
for measuring cognitive workload during more
complex forms of computer interaction. Although
complex, the signal processing and pattern classifi-
cation algorithms employed in this study were de-
signed for real time implementation. In fact, a
prototype online system running on a circa 1997
personal computer performed the requisite calcula-
tions online and provided an updated estimate of

cognitive workload at 4-second intervals while
subjects were engaged in task performance.

It is worth reiterating here the critical role that
effective automated artifact detection and filtering
plays in such analyses. Effective artifact detection
and filtering is particularly important during com-
plex computer-based activities such as videogame
play, as these types of behaviors tend to be associ-
ated with a great deal of artifact-producing head,
body, and eye movement that might confound
EEG-derived estimates of cognitive state. For ex-
ample, figure 2.3 illustrates the average workload
indices obtained from data from a single electrode
(frontal central site Fz) in an individual subject
during the MATB, obtained after calibrating a mul-
tivariate index function for that electrode using
artifact-decontaminated examples of data from the
low-load and high-load MATB conditions and then
applying the resulting function to new samples of
EEG data that were either decontaminated with
state-of-the-art EEG artifact detection and filtering
algorithms (leftmost and center columns) or with-
out systematic artifact detection and correction
(rightmost column), with N = 50 4-second index
function scores per task condition. A linear dis-
criminant function applied to the data was able
to correctly discriminate 95% of the individual
clean samples of LL MATB data as coming from
that category rather than from the HL category
(binomial p < .000001). In contrast, an equivalent
linear discriminant function applied to the artifact-
contaminated LL data performed at chance level.
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Analogous methods have also been used in a
small exploratory study that involved more natura-
listic computer tasks. In that experiment (Gevins &
Smith, 2003), the EEG data were recorded while
subjects performed more common computer-based
tasks that were performed under time pressure and
that were more or less intellectually demanding.
These more naturalistic activities required subjects
to perform word processing, take a computer-based
aptitude test, and search for information on the
Web. The word processing task required subjects to
correct as many misspellings and grammatical er-
rors as they could in the time allotted, working on a
lengthy text sample using a popular word pro-
cessing program. The aptitude test was a practice
version of the Computer-Adaptive GMAT test. Sub-
jects were asked to solve as many data-sufficiency
problems as possible in the time allotted; such prob-
lems make a high demand on logical and quantita-
tive reasoning skills and require significant mental
effort to complete in a timely fashion. The Web-
searching task required subjects to use a popular
Web browser and search engine to find as many an-
swers as possible in the time allotted to a list of
trivia questions provided by the experimenter. For
example, subjects were required to use the browser
and search engine to “convert 98.6 degrees Fahren-
heit into degrees Kelvin,” “find the population of
the 94105 area code in the 1990 U.S. Census,”
and “find the monthly mortgage payment on a
$349,000, 30-year mortgage with a 7.5% interest

rate.” Each type of task was structured such that
subjects would be unlikely to be able to complete it
in the time allotted. Data were also recorded from
subjects as they performed easy and difficult n-back
working memory tasks, and as they rested quietly,
for comparison with the more naturalistic tasks.

The same basic analysis procedure described
above that was applied to the EEG data recorded
during MATB performance was also employed in
this study to derive personalized continuous func-
tions indexing cognitive workload. The resulting
functions were then applied to new samples of that
subject’s data.

A summary of the results from these analyses,
averaged across data segments within each task con-
dition and compared between conditions, is pre-
sented in figure 2.4. These comparisons indicate
that the cognitive load index performed in a pre-
dictable fashion. That is, the condition in which the
subject was asked to passively view a blank screen
produced an average EEG-based cognitive workload
load around the zero point of the scale. Average in-
dex values during 0-back task performance were
slightly higher than those during the resting condi-
tion, and average index values during the 3-back
task were significantly higher than those recorded
either during the 0-back WM task or during the
resting state. All three naturalistic tasks produced
workload index values slightly higher than those ob-
tained in the 3-back task, which might be expected
given that the n-back tasks had been practiced and
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were repetitive in nature, whereas the other tasks
were novel and required the use of strategies of in-
formation gathering, reasoning, and responding that
were less stereotyped in form. Among the naturalis-
tic tasks, the highest levels of cognitive workload
were recorded during the computerized aptitude-
testing task—the condition that was also subjec-
tively experienced as the most difficult.

This pattern of results is interesting not only be-
cause it conforms with a priori expectations about
how workload would vary among the different
tasks, but also because it provides data relevant to
the issue of how the workload measure is affected by
differences in perceptuomotor demands across con-
ditions. Since in the n-back tasks stimuli and motor
demands are kept constant between the 0-back and
3-back load levels, the observed EEG differences in
those conditions are clearly closely related to differ-
ences in the amounts of mental work demanded by
the two task variants rather than other factors. How-
ever, in the study of MATB task performance de-
scribed above, the source of variation in the index is
somewhat less clear. On the one hand, performance
and subjective measures unambiguously indicated
that the mental effort required to perform the high-
load version of the MATB was substantially greater
than that required by the low-load (or passive

watching) versions. On the other hand, the percep-
tuomotor requirements in the high-load version
were also substantially greater than those imposed
by the other version. In this latter experiment, such
confounds were less of a concern. Indeed, both the
text editing task and the Web searching task re-
quired more effortful visual search and more active
physical responding than the aptitude test, whereas
the aptitude test had little reading and less respond-
ing and instead required a great deal of thinking
and mental evaluation of possibilities. Thus, the fact
that the average cognitive workload values during
performance of the aptitude test were higher than
those observed in the other tasks provides conver-
gent support for the notion that the subject-specific
indices were more closely tracking variations in
mental demands rather than variations in percep-
tuomotor demands in these instances. Nevertheless,
the results remain ambiguous in this regard.

From Unidimensional to
Multidimensional Neurophysiological
Measures of Workload

Another approach to resolving the inherent ambi-
guity of the sort of unidimensional “whole brain”
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metric used to quantify mental workload in the
studies described above is to generalize the metric
to separate index loading of different functional
brain systems. That is, the applied psychology and
ergonomics literature has long posited a relative in-
dependence of the resources involved with higher-
order executive processes and those involved with
perceptual processing and motor activity (Gopher,
Brickner, & Navon, 1982; Wickens, 1991). Fur-
thermore, related topographic differences can be
observed in regional patterns of EEG modulation.
For example, it is clear that alpha band activity
over posterior regions is particularly sensitive to vi-
sual stimulation and that increases in motor de-
mands are associated with suppression of alpha
and beta band activity over sensorimotor cortex
(Arroyo et al., 1993; Jasper & Penfield, 1949; Mul-
holland, 1995). Such regional differences can also
be observed during performance of complex tasks.
In one study, the EEG was recorded from subjects
while they either actively played a videogame or
watched the screen while someone else played the
game (Pellouchoud et al., 1999). Across the group
of subjects, the amplitude of the frontal midline
theta rhythm was larger in the active performance
condition than in the resting or passive watching
conditions. In contrast, a posterior alpha band sig-
nal was attenuated during both the playing and the
watching conditions relative to the resting condi-
tion, suggesting that it was responding primarily to
the presence of complex visual stimulation rather
than active task performance. Finally, a central mu
(10–13 Hz) rhythm recorded over sensorimotor
cortex was attenuated during the active game-
playing condition, but not during the passive
watching condition, presumably reflecting activa-
tion related to the game’s hand and finger motor
control requirements (Pellouchoud et al., 1999). In
another study where subjects were allowed to prac-
tice a videogame until they were skilled at it, the al-
pha rhythm recorded over frontal regions increased
in amplitude with progressive amounts of practice,
suggesting that smaller neuronal populations were
required to regulate attention as the task became
automated. In contrast, the alpha rhythm recorded
over posterior regions displayed no such effect,
suggesting that neural activation related to visual
processing did not diminish (Smith et al., 1999).

Such considerations have led to an extension
of the method described above to create multidi-
mensional indices that provide information about

the relative activation of a local neocortical region.
In particular, instead of defining a single load-
sensitive multivariate function for the whole head,
we have worked toward extracting three indepen-
dent topographically regionalized metrics from mul-
tielectrode data (Smith & Gevins, 2005) recorded in
the MATB experiment described above. One metric
was derived from data recorded over frontal corti-
cal areas. Since this region of the brain is known to
be involved in executive attention control and
working memory processes, we refer to this metric
as a measure of cortical activation related to frontal
executive workload. A second metric was derived
from data recorded from central and parietal re-
gions. Since these regions are activated by motor
control functions, somatosensory feedback, and
the coordination of action plans with representa-
tions of extra personal space, we refer to this second
metric as a measure of sensorimotor activation. A
third metric was derived from electrodes over oc-
cipital regions. Since this region includes primary
and secondary visual cortices, we refer to this third
metric as representing variation in cortical activa-
tion due to visuoperceptual functions. While these
labels are convenient for discussion, they of course
are highly oversimplified with regard to describing
the actual operations performed by the underlying
cortical systems. They may, however, be seen as
consistent with the results of fMRI studies of simu-
lator (driving) operation (Calhoun et al., 2002;
Walter et al., 2001), which have also reported acti-
vation in frontal attention networks, sensorimotor
cortex, and visual cortices (see also chapter 4, this
volume).

Figure 2.5 summarizes how the three regional
cortical activation metrics changed as a result of
task manipulations, describing the mean output of
the regional metrics computed across all of the
cross-validation data segments for each task diffi-
culty level for each subject. Each regional metric
was found to be significantly affected by the task
difficulty manipulation, consistent with the notion
that the MATB task increased workload on multi-
ple brain systems in parallel. Furthermore, both
subjective workload estimates and overt task per-
formance were found to covary with the regional
EEG-derived workload estimates, indicating the
metrics were tracking changes in brain activity that
were functionally significant.

In a second experiment, these regional work-
load metrics were tracked over the course of an

Electroencephalography (EEG) in Neuroergonomics 25



all-night experiment during which subjects per-
formed the HL version of the MATB and other
tasks in a more or less continuous fashion without
sleeping since early the prior morning (Smith &
Gevins, 2005; Smith et al., 2002). During this ex-
tended wakefulness session, cortical activation as
indexed by the regional EEG workload scores was
observed to change with time on task despite task

difficulty being held constant and despite the fact
that subjects were highly practiced in the task. The
changes are illustrated in figure 2.6. The daytime
values are contrasted with values representing the
first block of data from the overnight session,
where testing on average began around 11:00 p.m.
They are also contrasted with late night values
from the time period within the last four test inter-
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vals for each subject when he or she displayed a
minimum in total cortical activation (for 15/16
subjects this minimum occurred between 1:30 and
5:30 a.m.). Average values for each region declined
with sleep deprivation, with the largest overall de-
clines for the frontal region.

Interestingly, subjective workload was found
to be negatively correlated with the magnitude of
the fatigue-related decline in the frontal region—
but not the other regions—suggesting that as
frontal activation decreased the subjects found it
increasingly difficult to confront the demands of
the high-load MATB task. The fact that perceived
mental effort was observed to be positively corre-
lated with changes in frontal cortical activity in
alert individuals, yet negatively correlated with
frontal cortical activation with increases in mental
fatigue, might be seen as problematic for the even-
tual development of adaptive automation systems
that aim to dynamically modulate the cognitive
task demands placed on an individual in response
to momentary variations in the availability of
mental resources as reflected by real-time analysis
of neural activity. That is, it has sometimes been
suggested that it might be possible to use mea-
sures of brain activation as a basis for automated
systems to off-load tasks from an individual if he
or she was detected to be in a state of high cogni-
tive workload, or allocate more tasks to an indi-
vidual that appeared to have ample reserve
processing capacity and was in danger of becom-
ing bored or inattentive. The current results indi-
cate that a decrease in cortical activation in frontal
regions may reflect either a decrease in mental
workload or an increase in mental fatigue and a
heightened sense of mental stress. Assigning more
tasks to an individual in the former case may in-
deed serve to increase his or her cognitive
throughput. In the latter case, it may result in the
sort of tragic accident that is too often reported to
occur when fatigued personnel are confronted
with unexpected increases in task demands
(Dinges, 1995; Miller, 1996; Rosekind, Gander, &
Miller, 1994). Thus, while measures of brain func-
tion during complex task performance may serve
to accelerate research into the sources of perfor-
mance failure under stress, it seems likely that a
great deal of future research will be needed before
such measures can be adapted to the problem of
developing technology for adaptively augmenting
the capabilities of mission-critical personnel work-

ing in demanding and stressful computerized-task
environments.

Conclusion

In summary, the results reviewed above indicate that
the EEG changes in a highly predictable way in re-
sponse to sustained changes in task load and associ-
ated changes in the mental effort required for task
performance. It also changes in a reliable fashion in
response to variations in mental fatigue and level of
arousal. It appears that such changes can be auto-
matically detected and measured using algorithms
that combine parameters of the EEG power spectra
into multivariate functions. While such EEG metrics
lack the three-dimensional spatial resolution pro-
vided by neuroimaging methods such as PET or
fMRI, they can nonetheless provide useful informa-
tion about changes in regional functional brain sys-
tems that may have important implications for
ongoing task performance. Such methods can be ef-
fective both in gauging the variations in cognitive
workload imposed by highly controlled laboratory
tasks and in monitoring differences in the mental ef-
fort required to perform tasks that more closely re-
semble those that an individual might encounter in
a real-world work environment. Because this sensi-
tivity can in principle be obtained with technology
suitable for use in real-world work environments,
the EEG can be seen as a critical tool for research in
neuroergonomics.
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MAIN POINTS

1. The EEG recorded at the scalp is a record of
instantaneous fluctuations of mass electrical
activity in the brain, primarily summated
postsynaptic (dendritic) potentials of large
cortical neuronal populations.

2. Spectral components of the EEG signal show
characteristic changes in response to variations
in mental demands or state of alertness. As
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with all other means of measuring brain
function, EEG signals are also sensitive to the
perceptual and motor activities of the subject
in addition to mental activity. It is essential to
separately measure these perceptual and
motoric neural processes to have a strong
inference that the brain function signals one
would like to use as a measure of mental
activity actually in fact do so.

3. The high temporal resolution of the EEG in
combination with the simplicity and
portability of the technology used to record
and analyze it make it suitable for use in
unrestrained subjects in a relatively wide range
of environments, including real-world work
contexts.

4. The sensitivity of EEG signals to particular
task demands differs depending on the spatial
positioning of scalp electrodes and, in many
but not all cases, reflects functional
specialization of nearby underlying cortical
regions.

5. As with all brain function measurement
technologies, the EEG signal is sensitive to
artifactual contaminants not generated in the
brain, which must be removed from the signal
in order to make valid inferences about mental
function. This is easier said than done.

6. There is no simple one-to-one mapping
between a change in a measure of brain
activation and the cognitive loading of an
individual. Additional factors, such as the state
of alertness, must be taken into account.
Simplistic approaches to neuroadaptive
automation that do not take this complexity
into account will fail.
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Event-related potentials (ERPs) represent the brain’s
neural response to specific sensory, motor, and cog-
nitive events. ERPs are computed by recording the
electroencephalogram (EEG) from the scalp of a
human participant and by averaging EEG epochs
time-locked to a particular event. The use of ERPs
to examine various aspects of human cognitive
processes has a long history. Pioneering work on
ERP correlates of cognitive processes such as atten-
tion (Hillyard, Hink, Schwent, & Picton, 1973),
working memory (Donchin, 1981), and language
(Kutas & Hillyard, 1984) were carried out in the
1970s and 1980s. These studies were important
because they established the use of ERPs as a tool
for mental chronometry (Posner, 1978), or the ex-
amination of the timing of the neural events associ-
ated with different components of information
processing. However, these landmark studies did
not greatly influence theory or empirical research
in cognitive psychology in the era in which they
were carried out. Moreover, because of their poor
spatial resolution in localizing sources of neuronal
activity underlying scalp electrical potentials, ERPs
were not well regarded by neuroscientists accus-
tomed to the spatial precision of single-cell record-
ing in animals. The mid-1980s were a period when
the cognitive neuroscience revolution was in its

early phases (Gazzaniga, 1995). Consequently,
ERP research did not enjoy much currency in the
mainstream of either cognitive psychology or neu-
roscience.

The situation changed a few years later. The
development of other neuroimaging techniques
such as positron emission tomography (PET) and
functional magnetic resonance imaging (fMRI) led
to their growing use to examine the neural basis of
human cognitive processes, beginning with the
seminal work of Posner, Petersen, Fox, and Raichle
(1988). Neuroimaging allowed for the rediscovery
of ERPs in cognitive psychology and cognitive neu-
roscience. As a result, ERPs made a comeback in
relation to both psychology and neuroscience and
today enjoy an acknowledged status in both fields.
The importance of ERPs as a tool in cognitive neu-
roscience was further enhanced with the realiza-
tion that PET, fMRI, and related neuroimaging
techniques had serious limitations in their tempo-
ral resolution of assessing neural processing, de-
spite their great advantage over ERPs with respect
to spatial localization of neuronal activity.

At the present time, therefore, ERPs hold a
unique position in the toolshed of cognitive neu-
roscientists. Because of the inherent sluggishness
(several seconds) of neuroimaging techniques (PET
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