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INTRODUCTION

Context and Overview

SOCIAL SCIENTISTS frequently measure unobservable char-
acteristics of people such as mathematics achievement or musical
aptitude. These unobservable characteristics are also referred to as
constructs or latent traits. To accomplish this task, educational and
psychological tests are designed to elicit observable behaviors that
are hypothesized to be due to the underlying construct. For
example, math achievement manifests in an examinee’s ability to
select the correct answer to mathematical questions, and a flautist’s
musical aptitude manifests in the ratings of a music performance
task. Points are awarded for certain behaviors, and an examinee’s
observed score is the sum of these points. For example, each item on
a 60-item multiple-choice test may be awarded 1 point for a
correct response and 0 points for an incorrect response. An exam-
inee’s observed score is the sum of the points awarded. In this
manner, a score is assigned to an observable behavior that is
posited to be due to some underlying construct.

Simply eliciting a certain type of behavior is not sufficient for
educational and psychological measurement. Rather, the scores
ascribed to these behaviors should exhibit certain properties: the
scores should be consistent and lead to the proper interpretation of
the construct. The former property is a matter of test score
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reliability, whereas the latter concerns test score validation (Kane,
2006). Test score reliability refers to the degree of test score con-
sistency over many replications of a test or performance task. It is
inversely related to the concept of measurement error, which
reflects the discrepancy of an examinee’s scores over many replica-
tions. Reliability and measurement error are the focus of this text.
The extent to which test scores lead to proper interpretation of the
construct is a matter of test validity and is the subject of another
volume in this series.

The Importance of Test Score Reliability

Spearman (1904) recognized that measuring unobservable char-
acteristics, such as mathematics achievement or musical aptitude,
is not as deterministic as measuring physical attributes, such as the
length of someone’s arm or leg. Indeed, he acknowledged that
measurement error contributed to random variation among
repeated measurements of the same unobservable entity. For
example, an examinee may be distracted during one administra-
tion of a math test but not during another, causing a fluctuation in
test scores. Similarly, a flautist may perform one set of excerpts
better than another set, producing slight variations in the ratings
of musical aptitude. These random variations are due to measure-
ment error and are undesirable characteristics of scores from a test
or performance assessment. Therefore, one task in measurement is
to quantify the impact on observed test scores of one or more
sources of measurement error. Understanding the impact of mea-
surement error is important because it affects (a) statistics com-
puted from observed scores, (b) decisions made about examinees,
and (c) test score inferences.

Spearman (1904, 1910) showed that measurement error attenu-
ates the correlation between two measures, but other statistics are
affected as well (see Ree & Carretta, 2006). Test statistics, such as
the independent samples t-test, involve observed score variance in
their computation, and measurement error increases observed
score variance. Consequently, measurement error causes test sta-
tistics and effect size to be smaller, confidence intervals to be wider,
and statistical power to be lower than they should be (Kopriva &
Shaw, 1991). For example, Cohen’s d is the effect size for an
experimental design suitable for a independent-samples t-test.
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An effect size of d =0.67 that is obtained when reliability is 1.0
notably decreases as reliability decreases; decreasing reliability to .8
attenuates the effect size to .60, and decreasing reliability to .5
attenuates effect size to .47. Figure 1.1 demonstrates the impact of
this effect on statistical power for an independent-samples t-test.
The horizontal line marks the statistical power of 0.8. The curved
lines represent power as a function of sample size per group for
score reliabilities of 1.0, 0.8, and 0.5. Notice that as reliability
decreases, more examinees are needed per group to maintain a
power of 0.8. Indeed, a dramatic difference exists between scores
that are perfectly, but unrealistically, reliable and scores that are
not reliable. Given the influence of reliability on statistics, the
conclusions and inferences based on these statistics may be erro-
neous and misleading if scores are presumed to be perfectly
reliable.

Although biased statistics are of concern, some of the greatest
consequences of measurement error are found in applications that
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Figure 1.1. The Influence of Reliability on the Statistical Power of a
Two-sample t-Test



