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PREFACE

I first became interested in the acoustics of biological systems when I had the
opportunity of discussing with some biology colleagues the experiments they were
performing on the auditory systems of insects. The neurobiological techniques,
with which I was unfamiliar, were immensely impressive, but I found that they
tended to discuss the external acoustics of the system only in terms of greatly
simplified physical concepts such as the resonances of open or stopped pipes, or
the behavior of a simple Helmholtz resonator. Such ideas can often, it is true,
provide a useful qualitative guide, but rarely anything more. It seemed to me that
physical acoustics should be able to do better for the subject than this, and to provide
a description of the peripheral aspects of the auditory system at a level at least
comparable with the sophistication of the neurophysiological investigation. A trial
foray into the field showed me that, indeed, the physical input could be refined
without too much effort, and some productive collaborations developed.

I do not mean to imply by this that all biologists are unsophisticated in the
physical aspects of their studies, and indeed I came to admire the blend of careful
physical analysis and expert biological experimentation that some workers are able
to bring to their studies. In many cases, however, this stems in part from the fact
that these individuals, or members of their teams, began life as physicists or
engineers before turning to the more complex field of biology. What I have
observed, however, is that biologists are singularly poorly served when they search
in the library for acoustics texts that could aid them in their work. The selection
is between rather elementary and descriptive books on sound that stop at the level
of stretched strings and organ pipes, and the fully developed mathematical texts
that have been written for graduate level courses in physics departments. The
required results are certainly there somewhere, but it is very difficult to dissect out
just what is needed and to apply it to understanding the biological problem.

It is with this situation as background that the present book has been written.
I see a need among biologists studying auditory communication in animals at the
physiological level for an exposition of acoustics directed explicitly towards their
needs, covering the necessary ideas from acoustics and showing how these can be
applied quantitatively to understand the acoustic periphery of auditory and
sound-producing systems. It is only when this relatively simple mechanical part
of the system is properly understood that attention can be focused on the underlying
physiological processes.

The task immediately presents difficulties, since biologists are not tradi-
tionally well trained in mathematics, and a certain amount of mathematics is
inevitable if the treatment is to be more than descriptive in a hand-waving sort of
way. What I have tried to do, therefore, is to write the book simultaneously on
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three different levels. For those who want a brief general survey of the field, each
chapter begins with a completely non-mathematical Synopsis which summarizes
the content and refers to the figures, all of which are designed to be understood
even apart from the main text. At the next level, the reader should follow the main
text, but need not give close attention to anything but the general shape of the
equations involved. This will give a fairly detailed understanding of all the concepts
and techniques involved, and will probably suffice for most readers. At the third
level, the mathematical arguments should be followed in detail, and the discussion
questions at the end of each chapter attempted. Each question has a reasonably
detailed solution provided, and serves not just as a formal exercise but also as
further discussion of particular cases of biological relevance.

I hope the book will prove suitable for a one-semester course at beginning
graduate level for biologists with a general interest in auditory and vocal systems,
though the instructor will need to supplement the physical emphasis of the text
with appropriately realistic biological examples. Turning its purpose in reverse,
it should also be suitable for a similar course at advanced undergraduate level for
physics or engineering students, if the instructor is seeking a new approach to a
classical field of study.

Since the book is designed as a textbook rather than a research monograph,
there is no detailed list of references, and I have not tried in any way to give a
survey of the current literature. Instead I have simply given a short and rather
general annotated bibliography that refers the reader to standard sources from
which additional information or formal detail can be found on topics treated in the
book. Acoustics of the sort used here is one of the classical branches of physics,
and the treatments of 50 or even 100 years ago remain completely valid—Lord
Rayleigh's classic treatise of 1894 is fortunately readily available in reprint—and
can still provide guidance to the modern worker! This does not mean, however,
that modem approaches have been ignored. Electric network analogs, nonlinearity,
and information theory all have their appropriate place.

It is a pleasure to express my thanks to those colleagues here in Australia, in
the United States, and in Europe, who have taken time and trouble to educate me
in the facts and theories of sensory biology. The blame for any misconceptions
expressed in the book must, however, be mine alone. I hope that this book, by
making the techniques of physics applied to biological systems more accessible
to their students, will help repay that debt. I am particularly grateful to Ken Hill
and Jack Pettigrew for reading and commenting upon a draft of the manuscript,
and to Suszanne Thwaites for her collaboration in the earlier stages of this work.

Canberra, Australia N. H. F.
December 1991
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COMMON SYMBOLS
While the number of different situations discussed in the book requires that the
same symbol must be used to represent different things in different places, an
attempt has been made to unify the usage, and some symbols have unique meanings.
This list specifies the usual meaning of symbols; exceptional usage is local and is
explained in the appropriate section of the text.

A,B,C unspecified constants, amplitudes, etc.
(A) (as superscript) acoustic, as of impedances
a radius of a pipe, horn, or diaphragm; with subscript, a mode amplitude
C compliance; electrical capacitance
c speed of sound, generally in air, subscripts for other materials
E Young's modulus
£ efficiency
e exponential function; e = 2.7182 ...

F,F force
/ frequency in hertz; acceleration
g gravitational acceleration

Hij Z,y coefficients for a horn

/ intensity
i, i electric current in a network

i, j, k (as subscripts) integers 1,2, 3 , . . .
Im imaginary part of a complex quantity
J (with subscript) Bessel function

j imaginary number identifier, defined by j2 = -1

K elastic bulk modulus
k (angular) wave number; k = w/c
L level in decibels, with argument I for intensity, p for sound pressure, v

for velocity; inertance; electrical inductance
l length

(M) (as superscript) mechanical
m, n (as subscript) integers 1,2, 3 , . . .

m mass; flare constant of an exponential horn
N (with subscript) Neumann function (Bessel function of the second kind);

as subscript, neural transducer



xii SYMBOLS

n integer 1,2, 3,...
P power

PIJ Ztf coefficients for a pipe

p, p acoustic pressure; with subscript E analog source pressure
Q quality factor of a resonance
q acoustic source strength (volume flow)
R resistance; real part of impedance; as subscript, radiation
r distance to observing point

Re real part of a complex quantity
S area or cross-section area; as subscript, solid, generally biological solid
T tension; as subscript, tympanum
t time

V, U acoustic volume flow
u vibration velocity of a surface; speed of an air jet

V, V volume; electric potential difference in a network
v, v velocity, usually acoustic particle velocity
W width dimension; as subscript, water
X reactance; imaginary part of impedance

x,y,z coordinates or displacements
Y (acoustic) admittance; superscript (A) for acoustic or (M) for mechanical

if necessary
Z (acoustic) impedance; superscript (A) for acoustic or (M) for mechanical

if necessary; subscript R radiation; subscript N neural transducer; sub-
script T tympanum

Zy two-port impedance coefficients for levers, pipes, or horns

2 wave impedance
(alpha) attenuation coefficient
(beta) spring constant; elastic coefficient
(gamma) resistive loss coefficient; Poisson' s ratio; nonlinear coefficient;
ratio of specific heats of air
(capital delta) symbol for a small increment
(delta) boundary layer thickness; symbol for a small increment
(epsilon) nonlinear parameters
(eta) coefficient of viscosity
(theta) angle



SYMBOLS xiii

(kappa) radius of gyration of the cross-section of a bar; transverse wave

number in a pipe of horn

(lambda) wavelength

(mu) mechanical compliance of the root of a sensory hair; with subscript
H, compliance of hair; with subscript B, compliance of bar; elastic shear
modulus
(nu) kinematic viscosity, v =

 (xi) acoustic displacement

(pi) = 3.14159...

(rho) density, generally density of air; ps density of solid biological

material
(capital sigma) summation

(sigma) elastic stress; surface tension; with subscript, parameter ±1

(tau) time; time interval

(phi) angle, generally phase angle

(psi) shape function for a normal mode, generally normalized

(omega) angular frequency in radians per second, = 2 f
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1 PHYSICS, BIOLOGY, AND MATHEMATICS

1.1 Physics and Biology
This book is about the application of physics to the understanding of biological
systems, so that it is appropriate to think briefly about the difference between the
approaches usually adopted in the physical and the biological sciences. This will
serve to explain the background to the approach adopted, which shows physics not
as an end in itself but as a tool to be used by biologists.

Biology is immensely complex, and it is in that systematic complexity that
much of the interest of the subject lies. Leaving aside ecologists, most biologists
work with individual animals (or, of course, plants) or with the subsystems that
make up those individuals. A good understanding of the biochemical and bio-
physical systems that make up a functioning individual has been achieved, and the
same is true of many of the features of the neurophysiological system. The biologist
makes free use of many physical concepts down to the molecular level, but beyond
that the subject ceases to be biology and becomes biochemistry or even physics.

Physics, on the other hand, deals essentially with simple laws and theories
that describe the behavior of the building blocks (from the interactions of ele-
mentary particles to the structure of space-time) from which the universe is made.
The fact that the universe is complicated reflects the complicated pattern in which
the blocks are arranged. Philosophically, physics does not claim that it will ever
truly understand the nature of the universe, but only that it may succeed in con-
structing a mathematical model, or hierarchy of models, that predict adequately
the behavior of the systems to which they apply. Ultimately we might hope that
the phenomenon of life—leaving aside consciousness—might also be predictable
from physical principles within this philosophical context, but the time when that
prediction will be possible is not yet near. Even if physics were to be successful
in this attempt, it would still not usurp the role of biology, nor, on a more philo-
sophical plane, would it necessarily imply a "clockwork" universe. Modern
developments in the mathematics of nonlinearity and chaotic behavior preserve us
from that unpalatable possibility!

The theories of physics have been developed as a hierarchy, and the choice
of one level or another depends upon the degree of sophistication and accuracy
that we want in our model. To model the interaction of elementary particles,
quantum chromodynamics is essential, but it merges into ordinary quantum
mechanics at the atomic and molecular level. This, in turn, gives results that are
essentially identical with those of Newtonian mechanics for all ordinary macro-
scopic phenomena but, if we increase scale and speed, we must use the theories
of special and then general relativity. The seams between these domains are not

3



4 ACOUSTIC SYSTEMS IN BIOLOGY

yet entirely smooth, but in principle we could put together a grand theory unifying
them all. To use a model in that form, however, particularly for ordinary
laboratory-scale applications, would not make sense, for many of the large-scale
and small-scale features of the theory would simply turn out to have no effect. The
whole art of investigation in physics is to use an appropriately complex theoretical
model. If the complexity is too small, we may miss out on modeling important
features of the real system, while if it is too great we may find the mathematics
too difficult or too tedious to complete.

With these ideas as background, it makes sense to look at the areas of biology,
particularly the areas of biological acoustics, to which physical theories and models
can make a useful contribution. In doing so, we should again be guided by the
hope of finding an appropriately complex model. In fact there are two areas to
which physical ideas can immediately contribute. The first is at the behavioral
level, where acoustic and vibratory signals often serve as a means of communic-
ation among individuals of the same or even of different species. Physical theories
can tell us a great deal about the propagation of such signals in the environment,
about the information content they can convey, and about appropriate coding
schemes to optimize performance. The second area is at the mechanical level in
an individual. The way in which sound signals are captured and led to an appro-
priate neural transducer is simply physical, and we might hope for a physical
understanding of the important anatomical and physiological features that have
developed under evolutionary pressures. The same is true of the sound-production
mechanism, though the analysis here may be more complicated since the system
is active, rather than simply passive. All this can be done within the domain of
ordinary classical Newtonian mechanics. The next level in the biological organism
involves the transduction of mechanical signals to neural form, and is much less
straightforward. The physics involved is at the level of quantum mechanics, which
is no great difficulty, but the biological mechanisms and membrane processes are
so complex that only parts of the system have yet been elucidated in detail.

Our discussion will therefore stop after brief consideration of the mechanical
behavior of the transducer organ. An understanding of the mechanical behavior
of the auditory system to this level is a good guide to many features of total system
behavior, and it does provide for the neurobiologist a specification of the mech-
anical input to the neural transducer cells. At a more preliminary level, even a
partial understanding of the behavior of the external part of the system allows the
design of crucial experiments to extend the model. Similar remarks can be made
in relation to vocal systems.

1.2 Building Blocks and Models
Physics proceeds by studying the simplest possible building blocks, because for
these the mathematical analysis is simplest and the physical behavior is most easily
defined. When the behavior of the simplest cases has been understood, then we
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can go on to more complex cases until we have enough building blocks to build a
conceptual approximation to the system we wish to study. The physical behavior
of this conceptual model can then be evaluated quantitatively by solving the
equations describing its components and their interactions.

That is the plan we shall follow in this book. The very simplest component
is a massive particle, constrained to move only along a straight line and bound to
a fixed point on that line by a force that is proportional to the displacement of the
particle from that point—the so-called simple-harmonic oscillator. The analysis,
we shall find, is very simple, and indeed it is probably familiar to all readers.
Nevertheless the behavior of this oscillator when acted upon by external forces
shows many of the features that turn out to be important in more complex systems.
Even the mathematics has a strong family resemblance, so that the more complex
formulae met later have an element of familiarity.

This one-dimensional point oscillator is a reasonable model for only one
biological component— the mass-loaded hair cell; in all other cases the biological
system has a significant extension in space. The first move towards this is to
discuss the behavior of a stretched string. Once again, this is the simplest such
system to analyze, and it shows up many of the features that are important in more
complex and realistic system elements. A string stiffened to the extent that it
becomes a rod is closer to a biological system component, so this is considered
next. From here we move on to the behavior of taut membranes—certainly
important biological components—and stiffened membranes, which behave more
like plates or elastic shells. This provides an adequate stock of mechanical com-
ponents from which to construct our model system.

We then focus attention on the medium with which the vibrating element
interacts and through which the sound or vibration is transmitted. The media of
greatest biological importance are air and water, and we consider waves in both
these fluids, as well as waves that travel along the surface of water. The other
major components of biological acoustic systems are air-filled tubes, horns or
cavities, generally connecting in some way with the outside environment.
Understanding and modeling the way in which sound propagates through these
components is an important part of understanding the whole system.

This list provides an adequate stock of components to model most of the
systems in which we are interested. Our understanding of each component must,
of course, be quantitative, since we now wish to assemble a selection of the
components into a simplified model representing the real biological system, and
to calculate its acoustic behavior. The rules for this model building are mostly
intuitive, but a few precautions must be observed and, of course, we need to have
available some simple way of carrying out the necessary final calculations to
determine important elements of the acoustic behavior such as sensitivity, fre-
quency response, and directionality. We consider this for a variety of model
systems, closely related to those found in the peripheral auditory apparatus of
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insects and vertebrates. We also give a brief discussion of the neural transducer
organ from a mechanical point of view, but stop short of considering transduction
at the cellular level.

In the case of active sound-producing systems, the model building proceeds
in much the same way, but we supply a source of steady energy, often in the form
of a supply of air under a small excess pressure. An important extra feature, the
necessity for nonlinearity in at least one of the system components, enters when
we begin to analyze such an active system to determine its acoustic output. We
will have met nonlinearity in the earlier discussion, but now we will put our
knowledge to use.

Finally, we examine the external environment in which acoustic
communication takes place: the propagation of sound in the atmosphere and the
ocean, the competing sources of interfering noise, and the coding strategies that
animals use to transmit information. This is a large subject—the whole basis of
modern communications theory—and a rather brief survey must necessarily
suffice.

1.3 Appropriately Complex Models
The whole art of applying physical ideas to the analysis of biological systems rests
on constructing an appropriately complex model for the system under study.
Experience acts as a guide here, but the general philosophy should be to construct
first the simplest model that appears to be a possible representation of the system.
This will generally have a relatively small number of components connected
together quite simply, the physical dimensions, densities and elastic properties of
all these elements being reasonably well known. The behavior of such a simple
model will be easy to calculate and to compare with such experimental data as are
available. When this has been done, refinements can be added to improve the
agreement, again constrained by anatomical and physical information, and their
effect evaluated. Any refinements that make negligible difference to the system
behavior can be discarded.

In the course of the book we shall try to give some guidance, by example, on
the way this should be done. A model must often be based, however, on some sort
of physical or biological intuition, and the process of analysis allows this intuition
to be critically tested through additional measurements. In this way, we hope that
the procedures outlined will be of value to active researchers in the field, as well
as to those simply seeking a general understanding.

1.4 Mathematics
The object of this book is to show how we can construct simplified models that
will help us to understand the behavior of biological systems. It would be possible
to build these models in physical reality and then to measure them. Though this
would be easier than making measurements on biological systems, it would tell us
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little more and, every time we wished to vary a physical parameter to see its effect
on the behavior of the system, we would have to build a new model. For this reason
all our models are mathematical—they are quick to build, trivially simple to
change, and calculation provides predicted behavior over very wide ranges of
frequency or other parameters.

This means, however, that we must be prepared to use mathematics at every
stage of the development, and this may not come naturally to many people trained
in the biological sciences. In writing the book, therefore, I have assumed very
little in the way of prior mathematical knowledge or technique apart from ele-
mentary algebra and the ability to differentiate and integrate, and I have introduced
only those mathematical ideas that are essential for analyzing the acoustic models.
When a mathematical technique is needed, it is developed at that point, so that its
use is clear, and a few practice examples are given at the end of the chapter. For
convenience of reference, some relevant mathematical results are collected in
Appendix A.

The same comments apply to computers. In the present context they are
simply machines for quickly doing arithmetic, and we should recognize that there
are powerful numerical procedures that can help us in the calculation. The final
stage of evaluating a model will almost always be the calculation and graphical
display of its performance, giving, for example, membrane vibration amplitude as
a function of frequency or of the direction of sound incidence. Most of these
calculations are quite straightforward for anyone with a modest background in
computer programming in a language such as Basic, and require only a small
desk-top microcomputer.

Finally, a word of caution. With modern computers, and even hand-held
calculators, it is very easy to arrive at results to many decimal places, and it is
tempting to believe that this precision is significant. For the simple entities of
physics—electrons, atoms, electromagnetic waves, and so on—this is often true,
for our mathematical models take proper account of all the features of the system.
For the complex systems of biology, however, the models with which we are
working are only first approximations to the real world, and many subtle factors
have been omitted in the interests of simplicity. Even anatomical shapes, and basic
physical quantities such as density and elastic moduli for many biological materials,
are not well defined in many cases. While, therefore, we hope that our models are
able to mimic and explain the behavior of the real system, we should not expect
very close numerical agreement. In general, agreement to within 10% would be
extremely good, while agreement to within a factor 3 in either direction (or ±5 dB)
might be completely acceptable, provided the qualitative behavior of the system
is predicted over a wide frequency range. With these limitations in mind, it is
rarely useful to give numerical results to more than two significant figures, and
often one figure will suffice. This convention has been adhered to in the text.



2 SIMPLE VIBRATORS

SYNOPSIS. The simple vibrator, or simple harmonic oscillator, is perhaps the most
important system in all of physics. In particular, it is vital for the understanding of acoustic
phenomena, and for this reason we treat it in some detail. Essentially it consists of a small
mass, able to move only along a line and bound to a fixed point on that line by a spring that
exerts a restoring force proportional to the displacement. Such a system vibrates about the
fixed point with a natural frequency w0 which is determined by the mass of the particle and
the strength of the spring. This behavior is illustrated in Fig. 2.1.

In all real oscillators there is dissipation of energy, the mostusual mechanism in simple
systems being losses caused by the viscosity of the medium in which the mass moves. Even
air has appreciable viscosity. The viscous force is proportional to the speed of the motion,
and we can define the constant of proportionality, divided by twice the mass, to be the
damping constant a of the oscillator. The oscillations of a damped vibrator decay with time
as shown in Fig. 2.2. We define the quality factor, or Q value, of an oscillator to be w0/2 .

The response of an oscillator to an external force of frequency w depends on its natural
frequency and Q value as shown in Fig. 2.3 for displacement and in Fig. 2.4 for velocity.
The response is a maximum when co = coo, a phenomenon called resonance. The resonance
is sharply defined in frequency if the Q value is high, but becomes very broad for Q values
near 1 or less. Indeed the full-width of the resonance at points where the amplitude has
dropped to 1/21/2 = 0.707 of its peak value is just w0 /Q. The Q values for biological oscillators
typically range from about 1 to 10. The phase angle for the response is also shown in these
two figures. If the phase angle for displacement is zero, then the displacement exactly
follows the applied force. If the phase angle is negative, then the displacement lags behind
the force. Similar remarks apply to the phase of the velocity. The velocity is always 90°
ahead of the displacement in phase. It is often useful to plot the displacement or velocity
response on logarithmic scales, as shown in Fig. 2.5.

In discussing vibrating systems it is very helpful to introduce complex numbers, written
here in bold italic type. The imaginary part of a complex number is labeled with the symbol
j, which is defined to have the propertyj2 = —1. A complex quantity has real and imaginary
parts, or equivalently a phase and an amplitude, so that its connection with vibrations is
formally very close. In interpreting complex quantities representing physical variables such
as velocity or position, we always take the real part of the quantity.

We define the admittance Y(M) of a mechanical system to be the ratio of the velocity
response to the exciting force. The admittance of a simple oscillator thus has the form
shown in Fig. 2.4, with a sharp maximum at the resonance frequency. Because the velocity
differs in phase from the exciting force, except at the resonance frequency, the admittance
is a complex quantity with both a magnitude and a phase angle. Another way to express
this is to split the admittance into the sum of two parts, one exactly in phase with the force
and one 90° ahead of the force in phase. We refer to these as the real and imaginary parts
of the admittance. Fig. 2.6 shows how they behave. The real part is always positive, but
the imaginary part may change sign. The mechanical impedance Z(M) is defined to be the
ratio of the force to the velocity, and is thus the reciprocal of the mechanical admittance.
Though the magnitude of the impedance is just the reciprocal of the magnitude of the
admittance, the same is not true individually for the real and imaginary parts, because of
complications caused by phase changes. The real and imaginary parts of both admittance
and impedance, for a simple oscillator, are shown in Fig. 2.6.

8
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Often in biological systems we are concerned not with steady signals but rather with
transients. The response of an oscillator to a transient force can be calculated. The simple
case of the behavior of an oscillator with natural frequency w0 and quality factor Q = 10 in
response to an abruptly applied sinusoidal force of frequency w is shown in Fig. 2.7. It
takes a time equal to about 10 cycles of the natural oscillation before a steady-state response
is reached. In general the duration of the transient is about Q cycles of the natural frequency.
A similar transient occurs when the force is switched off.

In quite a general way we conclude that oscillators with low damping and therefore
high Q values give a large response at resonance but have a narrow frequency bandwidth
for that response. They also have transients of long duration. In contrast, oscillators with
low Q values have good transient response and relatively wide bandwidth, but are handi-
capped by low sensitivity.

2.1 The One-Dimensional Simple Oscillator
Much of the theory of acoustics, and indeed of many other branches of physics, is
based upon the behavior of a mass connected by a simple linear spring to a fixed
point and constrained to move only along a line. This is often called a one-
dimensional simple-harmonic oscillator. Most of this chapter will be devoted to
examining the behavior of this simple system, not because anything exactly like
it occurs in biological systems, but because it is often a good first approximation,
and the mathematics of more complex models is usually quite similar.

In the simplest case, let us suppose that the mass of the oscillating particle is
m and that its displacement from the fixed point x - 0 along a straight line is
measured by the coordinate x. Let the elastic force in the x direction when the
particle is at position x be FE = - , where is a constant identified with the
stiffness of the spring, so that the force is always directed back towards the origin
x = 0. Then the motion of the particle is described by the law that the force is equal
to the mass times the acceleration or, in calculus notation,

This differential equation tells us all about the behavior of the system if we know
the position and velocity of the particle at some initial time, usually taken as t = 0.
Let us see how this comes about.

We can guess a formal solution to (2.1) based on our knowledge of the
properties of elementary functions. If we try

then this satisfies the equation provided that

No condition is placed upon the other parameters a and 6. This gives us a formal
solution for the motion, but we must look to see what it means. (An equally good
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Figure 2.1 The sinusoidal displacement of a simple oscillator as a function of
time. Because we have chosen a cosine representation, the phase angle 8 is
defined to be such that the displacement is a cos 6 at t = 0.

solution could have been obtained with a sine rather than a cosine function, as we
discuss at the end of this section.)

Figure 2.1 shows a plot of the behavior of the particle displacement x with

time t. It undergoes a regular repetitive oscillatory motion with period 2 / 0 and
amplitude a. The number of periods executed in each unit time is

andf is called the frequency of the vibration and is measured in hertz (previously
called "cycles per second") after the German physicist Heinrich Hertz
(1857-1894), celebrated for his experimental discovery of radio waves. The
quantity w0 is called the angular frequency of the natural oscillation, and is
measured in radians per second. Clearly, from (2.3), the frequency of the motion
increases if the particle is made lighter or the spring stiffer—a physical insight
that we need to keep in mind. Note that, if we know the mass m and measure the
free oscillation frequency w0 then (2.3) gives us the spring stiffness p. Finally, 9
is called the phase of the oscillation and indicates in just what part of the cycle the
system is at t = 0. The phase is measured in radians, but can be referred to in
degrees provided we remember to convert back to radians for calculations.

Since there are still two parameters a and 6 to be determined, we need to
know two independent pieces of information about the system. These might be
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the displacement x0 and the velocity v0 at time r = 0. Substituting these values in
the general solution (2.2), we easily find that

This then specifies the solution completely.
We remarked above that we could have carried out this discussion using in

(2.1) the trial function a sin(w0 t + rather than a cosine function, and indeed the
interpretation of the solution would have been just the same. The only difference
would have been in the phase constant or, equivalently, in the choice of the zero
of time. The two solutions are identical if we choose It is simply a
matter of convenience which form we use and, in this book, we shall keep con-
sistently to the form (2.1).

2.2 Choice of Units
It is possible to carry out calculations in acoustics in a variety of different systems
of units, provided we are absolutely consistent about it. Older books often use the
c.g.s. system and, indeed, we may feel that its fundamental units are of more nearly
appropriate size for problems in sensory biology than are other systems. There
are, however, considerable advantages to be gained from consistent use of the SI
system, now standard in almost all of science. Indeed, when dimensions are given
in microns (micrometers) and masses in milligrams, it is just as easy to convert to
meters and kilograms as to anything else. We have therefore used the SI system
exclusively in this book, and we must warn against the random use of other units
if the results of calculations are to be correct. Details of these units are given in
Appendix C.

In the case of the simple oscillator it is easy to think of the mass and convert
it to kilograms. The force constant for the spring is less familiar, however. Its
value must be given in the appropriate SI units, which are newtons per meter, since
the force FE is in newtons and the displacement x in meters. The examples at the
end of the chapter give some practice in performing the necessary calculations.

2.3 Complex Notation
We now discuss a mathematical device that may seem unnecessarily complicated
at this stage, but that leads to immense simplification in all our later discussion.
It is therefore worthwhile to spend a little effort to master the ideas. It is as well
to remember, from the outset, that the development is a piece of pure mathematics
in which we explore the consequences of particular formal assumptions, so that
we should not be worried by the assumption of "imaginary" numbers with particular
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unusual properties—they exist only within the framework of the mathematical
theory that defines them. More detail is given in Appendix A.

We know that the exponential function exp nt or e" can be differentiated with

respect to f to give

Let us try x - ae"' as a solution to equation (2.1). Substitution and use of (2.6)

twice shows that this is a satisfactory solution provided that

The problem is that the right-hand side of this equation is negative, while if n is

an ordinary number then its square is necessarily positive.
We can get over this difficulty, and in doing so extend the domain of

mathematics, by introducing a symbol j defined by the relation

Clearly j cannot be an ordinary number, but is a new sort of number that has been

traditionally called an imaginary number. There is a related imaginary number i
defined by

which similarly satisfies the equation i2 = -l. We could develop our discussion

in terms of either i orj. Traditionally physicists and mathematicians have used i,
while engineers have used j, and books on acoustics may use either. In this book
we shall use j, because some of our methods will turn out to be closely related to
those of electrical engineering, but it is possible to convert any result to the other
convention by simply writing —i for j wherever it occurs.

Equation (2.8) contains nearly all we need to know about imaginary numbers.
Mathematics is a formalism that follows from basic definitions such as this
equation, and all we need to do is follow the rules. Since imaginary numbers such
as j or 3.7j are different from ordinary numbers such as 1 or 3.7, they must be kept
separate from them. A general number, traditionally called a complex number,
has a real part and a complex part and is written a+jb, for example. In this book,
to avoid confusion, we shall print the symbols for all complex numbers in bold
italic typeface. Other books may not use this convention, relying upon the context
to indicate whether the number is real or complex, or may use a different con-
vention. Complex numbers can be added or multiplied, simply remembering to
apply the definition (2.8). Complex numbers can also be divided one into the other,
but the details are a little more complicated and are set out in Appendix A.
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It turns out, as again we show in more detail in Appendix A, that there is a
close relationship between the ordinary trigonometric sine and cosine functions
and the exponential function with an imaginary argument. The connection is
expressed by the result

where we take to be real. This leads to the inverse relations

Finally we note a further definition, that of the magnitude or absolute value
of a complex number. If z = a + jb, then the magnitude of z, written as | z \ or simply
as z, is defined to be

This is almost as though real and imaginary numbers are geometrically at right
angles to one another, and indeed a diagram in which complex numbers are drawn
on a plane with the x axis representing their real component and the y axis their
imaginary component is often useful. This too is discussed in Appendix A. From
this definition (2.12) and (2.10) it follows that

for any real 0.
This digression into complex number notation finally allows us to write formal

solutions for the displacement x and velocity v = dxldt in the simple oscillator
problem, which is defined by the equation (2.1), as

The second form for v comes about from (2.10), from which we see that ejM = j.

These complex expressions, because they contain j, are mathematical constructs
that require interpretation when applied to physical systems. Indeed they have no
physical meaning at all until we have decided how this interpretation is to be made.

Comparing the first of (2.14) with (2.10), we see that the complex expression
contains two versions of the simple oscillation (2.2) that we identified as the
physical solution to the simple oscillator problem. The real part gives the cosine
version and the imaginary part the sine version, though with the same value of 0
so that the two are always 90° out of phase. We need only one of these versions,
and we adopt the convention of always choosing the real part to represent the
physical quantity. We could just as easily have chosen the imaginary part, with
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the symbol j removed, but the convention is to take the real part, just as we chose
a cosine rather than a sine in (2.2). This interpretation now allows us to identify
a as the amplitude, w0 as the angular frequency, 0 as the phase angle of the dis-
placement, and as the phase angle of the velocity. We shall usually write all
oscillatory quantities in forms similar to (2.14), with the time variation e1wt

included. Sometimes, however, it is convenient to omit this factor and refer to
what remains, for example a = ae'6, as a complex amplitude.

The reason for adopting what looks like a great deal of mathematical soph-
istication only to arrive back at our original simple result is that it saves us a great
deal of difficulty when we must treat more complicated physical situations. If we
represent physical quantities as complex numbers, as in (2.14), then the single
symbol x or v includes information about amplitude, frequency, and phase, and
these are all dealt with correctly and automatically by the procedures of complex
algebra. It is easy, for example, to multiply together two or more exponential
functions, since we simply add their arguments, whereas the multiplication of two
or more cosine functions generates sines and cosines of sum and difference angles,
which are very difficult to keep track of.

In the sections that follow, and indeed throughout this whole book, we shall
come to appreciate the power and simplicity of this complex notation applied to
problems involving waves and vibrations. It is very far from being just a dem-
onstration of mathematical sophistication.

2.4 Damping
To bring the simple oscillator a little closer to physical reality, we must allow for
some imperfections in its behavior. The most important of these is the introduction
of energy losses, either through imperfection in the spring or because of viscous
losses in the medium through which the mass is moving. For our present purposes
it does not matter which of these forms of loss we consider, for in each of them
the force opposing the motion is proportional to the velocity of the oscillating
particle. This is quite different from the loss forces arising from sliding friction,
which are nearly independent of all but the sign of the velocity until the particle
is brought to rest.

We can represent the viscous drag forces by a term added to

the right-hand side of the equation of motion (2.1) so that, after rearrangement, it
can be written

To solve this equation we assume a solution in the form of an exponential, x = ae"

where a is real and « may be complex. If we substitute this into (2.15), then we
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Figure 12 The decay behavior of a simple damped oscillator, with natural
frequency w0 and damping constant a, as a function of the normalized damping

. For small damping , the decay is oscillatory; if the
damping is critical and the displacement tends to zero in the shortest possible
time; if the return to zero displacement is prolonged.

can simply divide out the amplitude a and we are left with a quadratic equation

for n, which is simply solved to give n = jw - a where

and (wo = (P/w)"2 as before. The motion is then given by

and a is called the damping coefficient of the oscillator. If the damping is small,

in the sense that , then but if the damping is large the frequency
may be significantly lowered. If , the damping is termed critical, and the
mass returns to rest without any oscillation at all. For damping greater than the
critical value, the return to rest is slower still. This behavior is illustratedin Fig. 2.2.

All real oscillators are damped to some extent, and the damping of springs
made of biological material is generally very much higher than that of the metal
springs found in mechanical systems. We defer more detailed comparisons until
we have a model that is more directly related to a real system.
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2.5 The Sinusoidally Driven Oscillator
A damped oscillator simply settles down to its stationary equilibrium position after
a time long compared with the reciprocal of the damping coefficient a. The
situation is then completely uninteresting unless something happens to excite the
oscillator into motion again. In the next few sections we examine how this happens,
starting with the simplest case in which the oscillator settles down into a steady-state
vibration under the influence of a sinusoidal external force.

Suppose the oscillator has mass m, restoring force constant and damping ,

so that its natural frequency is and its damping constant     .
Let the external force have magnitude F and frequency w so that, using complex
notation, we can write it asFe J w t with the zero of time chosen so that the phase of
the force is zero. The equation of motion is

or, dividing by m,

In the steady state, it is obvious that the displacement x must vary sinusoidally
with frequency w, and we need to find the amplitude of that motion and its phase
relative to the exciting force. To do this, we assume that x = aej(mt+6) as usual and
substitute this in (2.19). Dividing out the common factor ejwl then gives the result

To find the amplitude a we take the absolute value of each side of this equation,
giving

To find the phase 0 involves a little more algebra, but simplifies to

Here 9 is the phase angle of the displacement x relative to the exciting force F.
This somewhat involved bit of algebra has given us the results we need in the

form of equations (2.21) and (2.22). We now need to see what they mean in physical
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Figure 23 Response of a simple oscillator, with natural frequency and Q
value as shown, to an exciting force of constant amplitude as the frequency
is varied. The first panel shows the displacement amplitude response a, and the
second panel the phase response 8 of the displacement.

terms. The most obvious question to ask of the present system is: what is the
amplitude of the motion as the frequency is varied, keeping the magnitude of the
external force constant? The answer is given by equation (2.21), and typical
response curves are shown in Fig. 2.3(a). As is clear from the equation, the
amplitude is a maximum when w = w0 a condition known as resonance. The
amplitude response at low frequencies tends to a constant value, while at high
frequencies it declines steeply as 1/w2. Two curves are plotted in the figure, one
for a = 0.1 and one for a = 0.3.

Another way in which to display these results, and one that is more often used,
is to plot not the displacement amplitude a but rather the velocity amplitude v = wa.
The change to the formula (2.21) is obvious, simply amounting to multiplying by
w, and the effect on the response curves is shown in Fig. 2.4(a). The response
maximum is still very close to w0 but the curve has now a nearly symmetrical bell
shape, going to zero in the limit of both low frequencies, where the response is
proportional to w, and of high frequencies, where the response varies as 1/co.

To describe these curves, and particularly their variation as the damping is
changed, it is usual to define a quality factor, denoted by Q, for the resonance. The
definition relates to the amplitude or velocity response curves and, provided the
damping is not too large, the Q value is defined to be the ratio of the frequency of
the peak response divided by the full-width w of the curve at the two points where
its amplitude is 0.707 times the peak value (also called the half-power full
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Figure 2.4 Response of a simple oscillator, with natural frequency (w0 and Q
value as shown, to an exciting force of constant amplitude as the frequency w
isvaried. The first panel shows the velocity amplitude response v, and the second
panel the phase response 0 of the velocity.

width, since power is proportional to the square of the amplitude). This leads
immediately to the result

In the case of very large damping becomes uncertain, and so Q is defined quite

generally as . The situation of critical damping, referred to in Fig. 2.2 in
relation to the decay of free vibration, corresponds to = 1 and thus to Q = 0.5.
The Q value for a vibrator is found by measuring the frequency response curve
and dividing the resonance frequency w0 at the response peak by the peak full-width

.
If we plot the displacement and velocity response curves using logarithmic

scales for both frequency and response axes as shown in Fig. 2.5, then the behavior
is seen to be particularly simple. The "skeleton" of the response is the two straight
lines, shown dotted in the figure. Superimposed upon their intersection is a peak
of height Q times the value of the response at the intersection, the width of the
peak being inversely proportional to Q. We shall often use this sort of logarithmic
plot in the later development.

In biological systems, the oscillators we meet have relatively small Q values,
in the range from 1 to about 30. Metallic vibrating systems such as tuning forks
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or gongs may have Q values of several hundreds, while specially prepared systems
such as vibrating quartz crystals can have Q values of many thousands. Systems
with high Q values have sharp response peaks, giving large response at the peak
frequency, but small bandwidth. Conversely, systems with low Q values have
modest peak response but broad bandwidth. In fact there is always a trade-off as
expressed by the relation

We shall later find that a law of this kind is quite general.
We can look at the phase response or of the oscillator in much the

same way, using equation (2.22). As far as the displacement response is concerned,
-> 0 at low frequencies, so that the displacement is exactly in phase with the

force. At the resonance     or , and at very high frequencies
or . The phase change takes place essentially over the width of the

response peak near , as shown in Fig. 2.3(b). The phase of the velocity
response has a similar variation but, because v = jwc and j - elia2, we find that

. This means that the velocity is exactly in phase with the external force
at the resonance frequency The variation in phase for the velocity response is
shown in Fig. 2.4(b).

Figure 2.5 Logarithmic plot of (a) the displacement response and (b) the velocity
response, for a simple oscillator, with natural frequency w0 and Q value as shown,
to an exciting force of frequency w. Note the straight dotted lines of the skeleton
that show the asymptotic response for w well away from w0,,. The peak response
at resonance is Q times the skeleton response.
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2.6 Impedance and Admittance
We now define two quantities which, in various guises, will be immensely
important in our development of the subject. It is clearly necessary to be able to
describe the response of a system to an applied force, and this is most usefully
specified for oscillatory systems by supposing that the force has oscillatory
behavior with frequency w and amplitude F. It turns out to be best to deal with
the velocity response v of the system, rather than the displacement response, so
that altogether we can write

We define the mechanical admittance y(M)(w) at frequency w to be the complex

quantity

with the superscript (M) implying "mechanical" to differentiate this admittance

from acoustic admittance, which we shall meet later. From (2.20), an explicit
expression for the admittance is

The magnitude | y(M)| of the mechanical admittance is, except for a constant

factor, the quantity illustrated in Figures 2.4 and 2.5(b). It measures how easy it
is to cause the mass of the oscillator to move at a given frequency. The admittance
itself is, however, a complex quantity. It does not have a physical existence like
a pressure or a displacement, but is rather an operator that converts one such
physical quantity (force) into another (velocity). Because of its complex nature it
generally introduces a phase shift into this conversion, so that this phase shift
appears between the two physical quantities that it connects. Note that at resonance,
when , the admittance as given by (2.27) is a real quantity and, by (2.26),

 and the velocity is in phase with the force.
The mechanical impedance is a related quantity, just the reciprocal of the

admittance,

and is often used for convenience in some contexts. Z(M)( ) is given explicitly by

taking the reciprocal of the complex expression in (2.27). The impedance, too, is
real at the resonance frequency w0,, but has a minimum rather than a maximum


