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Preface

The magnetic heating of stellar coronas and galactic halos has led to the realization
over the years that the electric currents associated with the magnetic fields are
universally partially concentrated into widely separated thin sheets. For otherwise
there is insufficient dissipation of magnetic energy to provide the observed heating.
The problem has been to understand why the currents should be concentrated,
rather than spread entirely smoothly over the field. Various special circumstances,
e.g., the collision of two distinct magnetic lobes, have been conceived and described
(over the last four decades) with an eye to understanding the flare phenomenon as
the most intense magnetic heating of all. However, the less intense and more
continuous heating of the X-ray corona of a star has proved more difficult, because
the heating appears where observation shows only a continuous field. The contin-
uous form of magnetic fields is taken for granted unless discontinuous fluid motions
are specified.

The need for this monograph arises, at least in part, from the widespread habit
of thinking that fields are generally continuous. The classical linear Maxwell equa-
tions with continuous sources have continuous solutions (excluding such supralu-
minous phenomena as Cerenkov radiation) and we all learned field theory in that
context. But only those fields described by fully elliptic equations, e.g., Laplace's
equation or the wave equation V2</> + k24> = 0, have exclusively continuous solu-
tions. The fact is that the field equations of magnetostatics in an electrically
conducting medium have the field lines as a set of real characteristics in addition to
the two sets of complex characteristics of the elliptic equation. So one should expect
surfaces of tangential discontinuity extending along the field lines unless there is
some special circumstance that would provide an entirely continuous field. That is to
say, we should expect the electric,currents to be concentrated into thin sheets unless
conditions conspire to distribute the currents more smoothly.

The situation is summarized by the basic theorem of magnetostatics that, in
relaxing to magnetostatic equilibrium in an infinitely conducting fluid, almost all
field topologies form internal surfaces of tangential discontinuity (current sheets).
The formation of the tangential discontinuities is caused by the balance of the
Maxwell stresses, and if the formation of a true mathematical discontinuity is
frustrated by the nonvanishing resistivity of real fluids, there can be no complete
static equilibrium. The Maxwell stresses drive fluid motions in their constant pursuit
of discontinuity. This is, of course, the phenomenon commonly called rapid recon-
nection, or neutral point reconnection, of the magnetic field across the site of the
potential tangential discontinuity.

This monograph is the extension of the theory of the universal suprathermal
activity of magnetic fields in both laboratory and astronomical settings, initiated in
Cosmical Magnetic Fields. Chapter 14 of that writing dealt with the dynamical
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nonequilibrium of magnetic fields lacking invariance of one form or another. The
nonequilibrium arises because, as already noted, complete magnetostatic equili-
brium of a magnetic field in a conducting fluid requires either a simple symmetric or
invariant field topology or, lacking the necessary symmetry, it requires the forma-
tion of surfaces of tangential discontinuity (current sheets) within the magnetic field.
Any slight resistivity in the fluid prevents the full achievement of the necessary
mathematical discontinuity, of course, so the absence of static equilibrium, viz.
dynamical nonequilibrium, is the result. The present writing approaches the problem
from another direction, beginning with the idealized case in which resistivity is
identically zero and the field has time to relax into a final asymptotic magnetostatic
state. Interest centers on fields with general topologies, lacking the special, and
apriori unlikely, topologies that provide a static field that is everywhere contin-
uous.

The length of the monograph arises from the need to understand the basis for
the theorem and to understand the implications of the theorem. So the writing
"begins at the beginning," with a brief development of the magnetohydrodynamic
equations as the proper description of the large-scale properties of a magnetic field
in a noninsulating fluid or plasma. There is a curious popular notion to the contrary
that has arisen in the past decade.

The basic theorem of magnetostatics then follows from the magnetohy-
drodynamic equations for static equilibrium. To see the theorem in perspective a
number of examples are presented to contrast the special character of the fully
continuous field. In particular, it is shown by example that the specification of a
magnetostatic field on the boundaries of a region provides a unique determination
of a continuous field throughout the region, exercising the elliptic aspect of the
field equations when there are no discontinuities along the real characteristics. On
the other hand, considering that the field is frozen into the ponderable conducting
fluid, the topology of the field in a region could have been manipulated into most
any internal form, with no impact on the normal component of the field on the
boundaries, etc. The discontinuity along the field lines is the means by which the
mathematics accommodates the arbitrary topology. Without it the field equations
would contradict the physics, and that would have far-reaching implications
indeed!

Then the geometry and topology of the surfaces of discontinuity need to be
studied, at least in a preliminary fashion. The magnetic field lines, as characteristics
of the magnetostatic equilibrium equations, play a prominent role in the develop-
ment so that the optical analogy is an appropriate device for understanding the form
of the static field.

Finally, we come to the specific application of the basic theorem to the corona
of the Sun, suggesting the origin of the X-ray corona of a solitary star like the Sun,
so that the necessary observational tests can be described. For it is the observations
now of the motion of the footpoints of the magnetic field of active regions and of the
detailed space and time behavior of the X-ray emission that must carry on from the
formal theoretical principles. For the basic theorem of magnetostatics asserts in
effect that the magnetic heating of the solar atmosphere depends only on the rate at
which the swirling and intermixing of the photospheric footpoints of the field
introduces magnetic free energy into the field. The spontaneous tangential disconti-
nuities automatically take care of the dissipation of that free energy into heat.
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The observations have not yet established the necessary swirling and intermixing
of the photospheric footpoints of the bipolar magnetic field on the Sun. It is that
continuing quasi-static deformation of the footpoints to which the necessary
magnetic free energy is attributed. Without such free energy there is nothing to
dissipate into coronal heat. The most interesting discovery of all would be the
absence of the assumed mixing of the footpoints. In that instance the only available
theoretical possibility would seem to be the dissipation of intense high frequency
Alfven waves (with periods of the general order of 1 sec or less). Their origin would
be mysterious indeed, requiring a wholly new and arbitrary dynamical state beneath
the visible surface of the Sun. And if in the Sun, what then in other stars? It follows
that the necessary studies of the small-scale dynamics of the photosphere should be
undertaken with a full appreciation of the implications of the results, whatever those
results might prove to be.

This is perhaps the appropriate place to note that a semantic difficulty has
arisen in the past year or so, based on the application of dynamical terminology to
magnetostatic phenomena. Specifically, some authors have presented elaborate
theories of magnetohydrodynamic "turbulence," with which they propose to
describe the small-scale structure of quasi-static magnetic fields in the corona of the
Sun, referring to the formation of current sheets as the "cascade of magnetic energy
to large wave number k." But the asymptotic relaxation of a magnetic field to static
equilibrium is neither "turbulent" nor "cascading," and the use of such terms is a
disservice to both the authors and the readers. It is a fact that the formation of a
tangential discontinuity represents an extension of a tail on the Fourier spectrum to
large wave numbers. But the extension is not a dynamical cascade in any sense. The
only dynamical aspect is the inhibiting effect of the inertia of the fluid being ejected
in the process of forming the discontinuities. Rather the declining thickness of the
magnetic shear layers and the associated ejection of fluid jets is in response to the
requirement for ultimate static balance of the Maxwell stresses.
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An X-ray photograph of the sun, seen in soft X-rays (17:03 UT, 11 July 1991) showing the
denser coronal gas with temperature in the range 1-3 x l(f K. The photograph was made with
the Normal Incidence X-ray Telescope ( NIXT) above the atmosphere of earth (Golub, et al.
1990, Chapter 11) and was kindly furnished by Dr Leon Golub, Harvard Smithsonian
Observatory.



1
Introduction

1.1 The General Picture

This monograph treats the basic theorem of magnetostatics, that the lowest avail-
able energy state of a magnetic field B(r) in an infinitely conducting fluid contains
surfaces of tangential discontinuity (current sheets, across which the direction of the
field changes discontinuously) for all but the most carefully tailored field topologies.
That is to say, almost all continuous magnetic field configurations develop internal
discontinuities as they relax to equilibrium. The theorem may be stated conversely to
the effect that continuous fields are associated only with special topologies. The
theorem is a consequence of the basic structure of the Maxwell stress tensor.

The magnetostatic theorem has broad application to the activity of the external
magnetic fields of planets, stars, interstellar gas clouds, and galaxies, and to the
magnetic fields in laboratory plasmas. In particular the theorem indicates that
magnetic fields are highly dissipative, as a consequence of their internal current
sheets, providing the principal heat source that creates the flares and X-ray coronas
of stars and galaxies, and providing the aurora in the magnetic field of the Earth and
other planets.

Observations show the remarkable fact that most stars emit X-rays' as thermal
bremsstrahlung and line emission, indicating outer atmospheres (coronas) of
106-107K. The Sun provides a laboratory to study the structure and the physics of
the stellar X-ray corona, which are otherwise lost in the unresolved telescopic images
of the more distant stars. Detailed observations of the Sun show that the X-ray
emission arises from gas trapped in local bipolar regions of magnetic field and
heated by some form of magnetic dissipation in the enclosing field. The theoretical
dilemma has been that the very small electrical resistivity of the hot X-ray emitting
gas is not conducive to dissipation of magnetic field. However, the ubiquitous
tangential discontinuity is unique in that it causes the free energy of the field to
dissipate by dynamical neutral-point reconnection at a rate determined more by the
Alfven speed than by the slight resistivity of the medium. It appears that the X-ray
luminosity of the Sun, and presumably, therefore, the X-ray luminosity of most
solitary middle and late main sequence stars, is a consequence of a sea of small

'White dwarfs and most solitary red giants provide exceptions. In the opposite extreme, the extraordinary
X-ray luminosities of certain special multiple star systems are attributed to the gravitational energy of
matter from a giant star falling onto the surface of a compact star (white dwarf or neutron star), and, in
somewhat less extreme cases, to the strong tidal churning of close companions.
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4 Spontaneous Current Sheets in Magnetic Fields

reconnection events — nanoflares — in the local surfaces of tangential discontinuity
throughout the bipolar magnetic fields of active regions. The degree of fluctuation,
i.e., the duration and intensity of the individual nanoflare, is not quantitatively
defined yet by the theory. The magnetic fields are continually deformed by the
underlying convection, so that they continually develop new tangential disconti-
nuities as the old discontinuities are dissipated, thereby providing an ongoing source
of heat for the active X-ray corona. Thus the spontaneous discontinuity is the basis
for much of X-ray astronomy.

The X-ray luminosity of solitary stars shows occasional transient increases as a
result of concentrated outbursts, or flares, at the star. The individual flare can be
studied at the Sun where it appears as an intense burst of dissipation of magnetic
energy in the corona (Parker, 1957a) as the subphotospheric convection rams toge-
ther two otherwise separate external magnetic lobes (usually bipoles) to produce a
particularly strong magnetic discontinuity. Following the initial burst of dissipation
at the discontinuity the flare continues with what appears to be a sea of nanoflares
within the colliding bipoles, triggered by the initial burst and by the overall defor-
mation of the colliding bipoles.

Much the same happens in the external magnetic fields of spiral galaxies, which
are continually and rapidly (20-100 km/sec) inflated by the powerful relativistic
cosmic ray gas generated within the disks of the galaxies. The current sheets
produced in the geomagnetic field by the strong deformation of the field by the
confining solar wind and by the dynamical reconnection with the field of the solar
wind represent another facet of the same general situation, that deformation of
magnetic field usually produces internal discontinuities.

In summary, wherever magnetic fields are deformed from the special geome-
trical form and internal topology of continuous fields, there arise internal surfaces of
tangential discontinuity, providing strong dissipation of magnetic energy in an
otherwise essentially dissipationless system. This process is manifest throughout the
astronomical universe in the exotic phenomena of X-ray emission.

The spontaneous formation of tangential discontinuities in a magnetic field
undergoing a simple (or complex) continuous deformation is a basic (but largely
unfamiliar) physical phenomenon arising directly from the nonlinear character of
the Maxwell stresses in the deformed magnetic field. In view of the unfamiliar
character of the special properties of the magnetostatic equation giving rise to the
discontinuities, the theoretical development progresses a step at a time, exploring in
detail the properties of the field equations for magnetostatic equilibrium to show
how the tangential discontinuity is a natural and necessary part of the equilibrium of
almost all field topologies.

As we shall see, the equilibrium equations for a magnetic field in an infinitely
conducting fluid are qualitatively different from the equilibrium equations for fields
in vacuum. The equations for a vacuum field are fully elliptic, with two sets of
imaginery characteristics. In a conducting medium the equations possess two sets of
imaginery characteristics, but in addition the equations possess a set of real char-
acteristics. The real characteristics are represented by the field lines, thereby
providing for the surfaces of tangential discontinuity. As with all physical phenom-
ena, the basic equations, with their stark economy of structure, possess precisely
those features that are necessary to reconcile the diverse physical properties of the
field. In the present case, it is the arbitrary topology of the field that must somehow
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be reconciled to the invariance of fluid pressure and/or the invariance of the torsion
along the field lines. The tangential discontinuity is precisely the means by which the
reconciliation is achieved. The essential point is that the convective motions in stars
and galaxies, and sometimes in laboratory plasma devices, deform magnetic fields
without regard for the special topological conditions necessary to avoid the forma-
tion of discontinuities. Hence the ubiquitous character of the tangential disconti-
nuity in the astronomical universe with the exotic pyrotechnic consequences already
mentioned.

Conventional mathematical methods are not particularly effective in dealing
with the nonlinear magnetostatic field equations, so in Chapter 7 the optical analogy
is introduced, which greatly facilitates the treatment the field line topology asso-
ciated with deformation of a magnetic field. The optical analogy takes advantage of
the fact that the lines of force of a static magnetic field B(r) in any isobaric surface
follow the same pattern as the optical ray paths in an index of refraction
B(r) = |B(r) . Indeed, the optical analogy applies to the projection of any vector
field F(r) onto the local flux surfaces of V x F. Hence a sufficiently concentrated
maximum in B(r) causes a bifurcation in the field pattern, as the field lines pass
around on either side, rather than over, the maximum. The bifurcation of the field
pattern is the singular feature that creates the tangential discontinuity. The gap in
the field pattern associated with the bifurcation is centered over the maximum and
permits the otherwise separated regions of field on either side to come into contact
through the gap. The separate fields create a tangential discontinuity at their contact
surface in the gap.

The optical analogy applies to stationary flow of ideal inviscid incompressible
fluid in the same special way that it applies to the magnetic field, because the
stationary Euler equation and the magnetostatic equation are identical in form. In
its general form the optical analogy applies to time-dependent turbulent hydro-
dynamic flows, showing the relation between local velocity maxima and vortex
sheets. A brief discussion is provided in Chapter 7. The essential point is that the
dynamical formation of vortex sheets in turbulent flows is a trend that is already
conspicuous in the stationary flow, of which the vortex sheet is an intrinsic part.

The general phenomenon of spontaneous internal tangential discontinuities has
received only limited attention in the literature, in most cases without appreciating
its general occurrence and its importance for astrophysics. In particular, the optical
analogy has not been previously recognized or exploited to describe the creation of
a discontinuity by the adjoining regions of the field. Hence one of the goals of this
monograph is to develop the optical analogy and then to exploit the analogy to
extend the general theory of the spontaneous tangential discontinuities in magne-
tostatic fields. We apply the general theory to the universal magnetic activity of
stars, planets, and galaxies and to the magnetic confinement of plasma in the
laboratory.

Now the theoretical development is extensive, as is the range of applications.
Hence this first chapter establishes a road map, a "cultural history," and a
commentary on some of the major points of interest along the way, describing the
general ideas involved in both the magnetostatic theorem and the astronomical
settings in which the magnetostatic theorem is to be applied. The succeeding chap-
ters provide detailed examination of the many individual aspects of the theory and
its applications.
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1.2 Activity of Stars and Galaxies

Consider the general nature of the activity of astronomical objects. Observa-
tions of the Sun show an active, rather than a placid, object. Observation leaves no
alternative to the idea that the activity is a direct consequence of magnetic fields.
Where there is magnetic field, there is activity, and vice versa.

Cowling (1958) gives a brief history of the study of magnetic fields in the Sun
(see also Cowling, 1953; Kiepenheuer, 1953; Parker, 1979, pp. 739-746; Priest,
1982; Weiss, 1983; Foukal, 1990). The existence of magnetic fields was first
inferred in 1889 by Bigelow from the filamentary appearance of the coronal
streamers seen during total eclipse. Hale (1908a-d, 1913; see also Hale and
Nicholson, 1938) was the first to observe the Zeeman effect, establishing that
sunspots represent regions where the field is 2-3 x 103 gauss. Hale's instrumental
noise was evidently about 50 gauss, because he thought (erroneously) that he
detected a general dipole magnetic field of about that intensity at the North and
South poles.

Detection and study of the magnetic fields outside sunspots had to wait for the
development of electronics and the Babcock magnetograph (Babcock and Babcock,
1955; Babcock, 1959) to map the line-of-sight component of magnetic field over the
solar photosphere (see also Howard, 1959; Leighton, 1959). The complex nature of
the large-scale photospheric magnetic fields throughout three complete 11-year
sunspot cycles is now a matter of record.

The outstanding aspects of the magnetic activity (besides the conspicuous
sunspots) are the suprathermal effects and the violent mass motions, with the tran-
sient solar flare and the coronal mass ejection as the extreme examples, respectively.
On a continuing basis there is coronal gas confined in the 100 gauss bipolar
magnetic fields of active regions, and heated to 2-3 x 106 K with densities as large as
1010 H atoms/cm3 so as to emit X-rays at a rate 107 ergs/cm2 sec, to be compared to
the photospheric radiation intensity of 6 x 1010 ergs/cm2 sec (Withbroe and Noyes,
1977). The coronal gas in open field configurations (5-10 gauss) reaches
1.5-2 x 106K and expands continually to produce the solar wind, requiring a heat
input of about 5 x 105 ergs/cm2 (Withbroe and Noyes, 1977; Withbroe, 1988). The
relatively low density (108 atoms/cm3) precludes significant emission of X-rays.

The coronal mass ejection represents a magnetic catapult that flings matter out
into space (Illing and Hundhausen, 1986; Athay and Tiling, 1986; Athay, Low, and
Rompolt, 1987; Webb and Hundhausen, 1987) with individual ejections estimated to
be sometimes as large as 1032ergs (Hundhausen, 1990). The solar flare, which may
also be as large as 1032 ergs, is an example of extreme intensity, emitting hard X-rays
and gamma-rays, and accelerating ions and electrons, sometimes to relativistic
energies (Svestka, 1976; Priest, 1981, 1982).

The more closely one looks at the Sun, the more activity there is to see on
progressively smaller scales. There is continual microflaring in the small-scale
network fields as small magnetic bipoles emerge in supergranule cells and are swept
into the cell boundaries, where they accumulate to provide the network fields. It
appears that this microflaring may be the principal source of heat in the regions of
weak open field (Martin, 1984, 1988, 1990; Porter, et al. 1987; Porter and Moore,
1988; Parker, 1991a), as already noted. Dere, Bartoe, and Brueckner (1991),
Brueckner and Bartoe (1983) and Brueckner, et al. (1986) find tiny jets and explo-
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sive events in the chromosphere-corona transition layer, evidently associated with
the microflaring in the network fields (Porter and Dere, 1991).

The X-ray corona, even with the very high space and time resolution of the recent
normal-incidence X-ray telescope (Walker, et al. 1988; Golub, et al. 1990), appears as
a filamentary continuum, the individual nanoflares being unresolved. The existence of
the nanoflares is indicated by the observed electromagnetic emission spectrum,
showing excitation well above the mean temperature (Sturrock, et al. 1990; Laming
and Feldman, 1992; Feldman, 1992; Feldman, et al. 1992), and implying that the
temperature varies sharply and intermittently through a wide range.

A somewhat similar situation is inferred for the solar flare, where it appears that
the principal emission arises from a sea of nanoflares in one or more of the magnetic
bipoles whose collision creates the initial impulsive phase of hard radiation (Parker,
1987; Machado, et al. 1988).

The magnetic field of the Sun at the photosphere is composed of tiny, intense,
and widely separated magnetic fibrils of 1-2 x 103 gauss across diameters as small as
107cm (Beckers and Schroter, 1968; Livingston and Harvey, 1969, 1971; Simon and
Noyes, 1971; Howard and Stenflo, 1972; Frazier and Stenflo, 1972; Stenflo, 1973;
Chapman, 1973), with the fibrils expanding to fill the entire space in the chromo-
sphere above (Kopp and Kuperus, 1968; Gabriel, 1976; Athay, 1981). The magnetic
fibrils are unresolved for the most part (cf. Dunn and Zirker, 1973) and are carried
with the photospheric convection (Title, et al. 1989).

Observations of stars and galaxies show universal X-ray emission, flaring, etc.,
suggesting that the active Sun is a paradigm rather than an anomaly. Evidently
magnetic fields and magnetic activity are everywhere (Parker, 1979, p. 6). On the
other hand, from the point of view of the physicist, the Sun is unique, being the only
star for which the form of the activity can be seen. This is essential because, first, the
nature of the magnetic activity is exotic, lying outside the realm of the terrestrial
physics laboratory. Second, the basic equations of physics admit of so many differ-
ent classes of solutions (for which general mathematical descriptions are not avail-
able) that the nature of the observed magnetic activity cannot be deduced from first
principles. Hence a theoretical understanding can be developed only with quantita-
tive and qualitative guidance from detailed observations.

1.3 The Nature of Active Magnetic Fields

There is an initial puzzle at the simplest theoretical level. For it must be remembered
that the general occurrence of magnetic fields in astronomical objects can be
understood only from the fact of their long life implied by the relative unimportance
of resistive dissipation in the interior of the objects, whereas the observed continuing
activity of the external fields of astronomical objects implies bursts of rapid dissi-
pation, converting magnetic energy into heat, fast particles, etc. To elaborate, the
existence of magnetic fields in planets, stars, gas clouds, and galaxies can be under-
stood only from the fact of the relatively small effective resistive diffusion coefficient
r\ and the relatively large scale I, so that the characteristic resistive decay time l2/r; is
long compared to any convective turn over time l/v in the internal fluid motion v.
The appropriate dimensionless number is the magnetic Reynolds number
NM = fv/ri, representing the ratio of these two characteristic times. It is sometimes
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convenient to define the Lundquist number NL as IC/r/, where C is the characteristic
Alfven speed C = B/(4np)^ in the field. A typical value of NL in the solar corona,
where t = 1010 cm, 77 ^ 103 cm2/sec, and C = 108 cm/sec, is 1015, indicating the rela-
tive smallness of resistive dissipation of the magnetic field.

Note, then, the limitations of the terrestrial plasma laboratory where I may
perhaps be as large as a meter, which is 10~7 or less of the gross scale of the fields in
the solar corona. The resistive decay time fr/rj in a cubic meter of laboratory plasma
with a thermal energy of 102 eV may be 1 sec where the Lundquist number is gener-
ally 104 or less, making it impossible to study more than relatively transient dyna-
mical effects. Needless to say, the laboratory experiments that have been performed
on plasma confinement, on the formation and coalescence of islands, and on a
variety of major instabilities, have been essential in guiding the theoretical develop-
ment of the basic plasma phenomena. But the quasi-equilibrium magnetic config-
urations that ultimately ignite into extended sequences of flaring require the
enormous Lundquist numbers of the astronomical setting.

Having established the essential resistive longevity of the magnetic fields in
astronomical settings, how is it, then, that the fields observed in the Sun are in a
state of perpetual internal dissipation (and sometimes explosive dissipation), divert-
ing free magnetic energy to heat the X-ray corona and the solar wind, sometimes
accelerating particles to cosmic ray energies, sometimes flinging mass out into space,
etc.? These dissipative phenomena occur in seconds or minutes. They involve
reconnection of field lines, which is intrinsically a resistive effect. For without resis-
tivity the field lines are permanently connected and can do little or nothing to heat
the ambient gases, nor can they cut loose from their moorings to depart into space.
So on the one hand there is longevity because of the small resistivity and large scale,
while on the other hand there is vigorous dissipation.

The resolution of the contradiction has gradually emerged over the years,
beginning with studies of large solar flares, where it is well established that the
explosive dissipation is a consequence of rapid neutral point reconnection of
magnetic fields. Evidently this provides the conspicuous impulsive onset of a flare,
as already noted, when separate lobes (topological regions) of field are rammed
together (cf. Parker, 1957b; Sweet, 1958) squashing the X-type neutral point where
the fields come into contact. Unless by chance the colliding fields are closely parallel,
one field component meets its opposite number in the other bipole and dynamical
annihilation occurs. The process is simply that the intervening gas is rapidly
squeezed out from between the opposite components until the separation becomes
so small that the opposite fields dissipate. No matter how small the effective resis-
tivity the separation is soon sufficiently small, and the electric current density suffi-
ciently large, as to dissipate the opposite components in a short time. The
dissipation frees the gas from the field, but the gas thus liberated is continually
squeezed out from between the opposite components. So the process of rapid
reconnection continues as long as there is free energy available in the colliding fields
(Parker, 1957b).

Flaring by rapid reconnection was not initially associated with the general
heating of the active X-ray corona because the field within a magnetic bipole was
assumed to be continuous throughout. A prescient paper by Gold (1964) noted that
the photosphcric convective turbulence deforms, wraps, and winds the bipolar
magnetic fields above the surface of the Sun, continually increasing the magnetic
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free energy. He proposed that the convective turbulence twists the fields so tightly
that some form of dissipation (dynamical instability, reconnection, etc.) must occur,
continually converting magnetic energy into heat and causing the elevated tempera-
ture of the solar atmosphere. Syrovatskii (1971, 1978, 1981) was the first to recog-
nize the universal vulnerability of .the X-type neutral point in the projection of the
magnetic field onto any plane perpendicular to B. He noted that any squeezing of
the neutral point creates a current sheet, or pinch sheet as he sometimes referred to
it. Parker (1972, 1973, 1979 pp. 511-519) pointed out that special invariance of the
magnetic field is necessary to avoid current sheets or tangential discontinuities as an
intrinsic part of the equilibrium of a magnetic field. He noted that the magnetic
fields created in the convective fluid of a star generally do not have the necessary
invariance or symmetry and so they may be expected to contain surfaces of tangen-
tial discontinuity, subject to rapid reconnection. He proposed that the otherwise
runaway increase in the small-scale components (large wave number k) of a
magnetic field in a turbulent fluid may be checked by such rapid reconnection. It
was Glencross (1975, 1980) who first suggested explicitly that the general occurrence
of current sheets pointed out by Parker provides the heat source for the X-ray
corona of the Sun. Parker (1981, 1983a) sketched out some specific circumstances
for heating the active corona in that way.

The basic idea behind the application of the magnetostatic theorem to magnetic
activity and coronal heating can be expressed in the following way. A simple
continuous magnetic field configuration B(r) is preserved by its large scale
L(NL ^> 1) in the presence of small resistivity. But the large-scale field B(r) of a
convective object, e.g., a star or galaxy, is internally wrapped and interwoven,
producing strong local deformation AB on intermediate scales, i. These inter-
mediate scales are sufficiently large that they too are preserved. However, the
topology of B + AB is no longer the simple topology of the basic form B(r). The
magnetostatic theorem asserts that the field B + AB develops internal disconti-
nuities as it relaxes to equilibrium. The internal tangential discontinuities involve
magnetic free energy, and, since r\ is small but not identically zero in the real physi-
cal world, the discontinuities provide rapid reconnection and quick dissipation of
the free energy into heat. The dissipation consumes AB but not B, of course,
because the topology of B(r) is simple enough to permit a continuous equilibrium
field, which is preserved by its large-scale L, as remarked in the beginning. Thus the
dissipation is active so long as there is enough AB(r) that the topology requires
discontinuities for equilibrium.

This fundamental property of magnetostatic fields merits further elaboration,
because there is at least some slight resistive dissipation everywhere in the gases in
the astronomical universe or in the terrestrial laboratory. The resistivity converts
each ideal surface of tangential discontinuity into a thin transition layer, or current
sheet, in which magnetic energy is rapidly dissipated as a consequence of the high
current density. In fact the characteristic thickness of the current sheet is prevented
from reaching the zero of the true discontinuity in a ideal fluid with zero resistivity.
The thickness falls only to a value sufficiently small that the dissipation balances the
dynamical trend toward zero thickness. The rapid dissipation and the associated
field line reconnection continues only so long as the field topology requires discon-
tinuities for magnetostatic equilibrium. The thin current sheet is not in internal
equilibrium, of course. It is the topology of the quasi-static equilibrium fields in the
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regions of continuous field, filling the volume between the current sheets, that drives
the formation of the discontinuities. The dissipation continually reduces the topol-
ogy of the continuous field to simpler forms through reconnection of field across the
current sheet. So the rapid dissipation continues until the topology is so simple that
it no longer requires the current sheets.

This point is often ignored and it deserves an illustration. Consider a tangential
discontinuity in a static field in an infinite space, where the discontinuity is not
required by the topology, i.e., a passive discontinuity. An example would be an
initial equilibrium field extending uniformly in the z-direction (Bx = By = 0) from
z = -oo to z = +00, with B, = +B0 in y > 0 and B, — —B0 in y < 0. The field is
filled with an infinitely conducting incompressible fluid and is clearly in magneto-
static equilibrium with a surface of discontinuity (current sheet) at y = 0. Then
suppose that at some time / = 0 a small uniform resistivity 77 is introduced through-
out the fluid, so that the field remains in static equilibrium, evolving according to
the familiar magnetohydrodynamic diffusion equation

It is readily shown that

for t > 0, where erf denotes the error function

The characteristic thickness of the current sheet increases from zero with the passage
of time, in the form (4rjt)~~. The dissipation rate per unit volume varies as
(/?Q/47if)exp( - y2/2'r/t). The total rate of dissipation of energy (throughout
— oo < y < + oo) per unit area of the current sheet is (iri/2nf)'1 B^/Sn, declining as
t~'1/2 with the passage of time.2

The essential point of this example of a passive discontinuity is that the initial
rapid dissipation of magnetic energy into heat quickly declines to a low level because
the current sheet rapidly thickens when it is not rejuvenated by the Maxwell stresses.
It follows that the creation of tangential discontinuities or current sheets is not
sufficient to guarantee continuing magnetic dissipation unless the discontinuities are
required by the topology of the continuous portions of the field. In that case the
Maxwell stresses continually extract the field and fluid from the thickening current
sheet, thereby maintaining a thickness 5 so small as to continue rapid dissipation
and reconnection of field. This is, of course, the basis for rapid reconnection of fields
(Sweet, 1958; Parker, 1957b, 1963a) across a scale t in a time f . N } / 2 / C or less,
instead of the passive diffusion time £NL/C, where C is the characteristic Alfven
speed and NL ( 3> 1) is the Lundquist number IC/rj.

One may wonder, then, if the resistive dissipation of magnetic energy can be
maintained at a substantial level if some discontinuous motion (e.g., vx = +vkz in
y > 0 and vy = — vkz in y < 0 in the uniform field e, B) is introduced to regenerate
the passive discontinuity at a fixed rate. It is a simple matter to show (in § 10.2) that,

2Thc onset of the resistive tearing instability might enhance the dissipation somewhat, but that does not
prevent the decline with increasing t.
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even in that case, the dissipation is confined to a transition layer with the char-
acteristic diffusion thickness (4r]t)^, which grows too slowly to consume a significant
fraction of the available free magnetic energy.

In summary, rapid reconnection occurs only where the topology provides
Maxwell stresses in a form to drive the current sheet toward vanishing thickness.
Other surfaces of discontinuity are passive and do not drive the dynamical recon-
nection, so they are limited to the characteristic diffusion scale (4r/?)5-

If we view from a distance the theoretical problem of dissipation of magnetic free
energy with small resistivity, there are two obvious approaches. One, adopted in this
monograph, is to consider the ideal case of a magnetic field embedded in a fluid
whose resistivity is identically zero, so that strong deformation of the field develops
whatever tangential discontinuities are required for equilibrium by the field topology.

The other approach is to start with the nonvanishing resistivity and inquire into
its effects in a field containing internal shear. This begins with the universal resistive
magnetohydrodynamic instabilities shown by Spicer (1976, 1977, 1982) and Van
Hoven (1976, 1979, 1981) many years ago to occur wherever the magnetic field is
subject to shear or torsion. The resistive kink and tearing instabilities are the
primary candidates. If h is the characteristic scale of the shear, of the order of
B | / V x B, then the characteristic growth time T for the resistive instability is

given by (Furth, Killeen, and Rosenbluth, 1963; Parker, 1979; Van Hoven, 1981)

for wavelength 2n/k along the current sheet, Alfven speed C — B |/(47ip)5, and resis-
tive diffusion coefficient T). The characteristic diffusion time IR is h2/i] and the char-
acteristic Alfven transit time is h/C. Spicer and Van Hoven point out that T is a
relatively long time because of the magnitude of TR in the large dimension h of magnetic
fields in the typical astronomical setting. The essential point, then, is that the trend
toward a surface of tangential discontinuity provides a local shear scale h that tends
rapidly toward zero. It follows that the resistive tearing instability arises primarily in
the declining thickness of the current sheets when the sheets are well on their way to
becoming tangential discontinuities. Thus the resistive approach leads to the same
situation as the development that starts with a fluid of zero resistivity and notes that the
thickness of the current sheet declines until resistive dissipation — presumably in the
form of a resistive instability — prevents further decline (Parker, 1990d). In either case
we end up in the same final state, with the dissipation arising at the site of the potential
tangential discontinuities. Then since the theory of the spontaneous formation of
tangential discontinuities does not depend upon the resistivity, it is easiest to develop
the theory before bringing in the final limiting effect of resistivity. The conclusion is
simply that any magnetic field in a fluid of small resistivity in a convective astronomical
setting is subject to rapid internal dissipation of its magnetic free energy.

It follows that there is continual dissipation of magnetic energy into heat
throughout the bipolar fields of magnetic active regions and throughout the strong
small-scale bipoles of the network fields on the Sun. Quantitative estimates indicate
that the rate of dissipation of magnetic energy is substantial, providing most of the
heat that maintains the X-ray emitting gas trapped in the bipolar fields (Parker,
1983a). The individual reconnection fluctuations — nanoflares - are mostly below



12 Spontaneous Current Sheets in Magnetic Fields

the limit of detection, so that the observer sees only the general glow that represents
the sea of nanoflares. Similarly the magnetic bipoles that provide flares contain
internal discontinuities that dissipate rapidly when bipoles collide to produce a flare.
The observations of Machado, et al. (1988) indicate that well over half the energy of
a flare comes from the nanoflares within the bipoles, as distinct from the initial
explosive reconnection at the interface between two colliding bipoles.

With this general principle of spontaneous discontinuities in hand, it would
appear that substantial internal generation of heat by magnetic dissipation in most
active astronomical magnetic fields is inevitable. Planetary magnetospheres are
subject to varying deformation in the fluctuating solar wind, while the footpoints of
the planetary magnetic field move about in the ionosphere. The magnetic fields of
galaxies are subject to the motion of the interstellar gas, and particularly to rapid
inflation by the cosmic ray gas generated by supernovae, etc. We conjecture that the
X-ray emission from the halos of many spiral galaxies is a consequence of the
magnetic dissipation in the discontinuities associated with magnetostatic equilibrium
of the deformed fields (Parker, 1990a, 1992). Needless to say, the X-ray emission
from the Sun is the only case available for detailed telescopic observation, so it is the
primary focus for the theoretical development.

1.4 Rapid Dissipation

It was realized from the outset that the explosive dissipation of magnetic energy to
produce the flare must center around singular places in the magnetic field where
dissipation can occur in spite of the small resistivity. Thus Giovanelli (1947) and
Cowling (1953) considered the possibility of electrical discharges at neutral points in
the field as the cause of a solar flare. Dungey (1953, 1958a,b) and Chapman and
Kendall (1963) pursued the idea further, treating the stability of the (X-type) neutral
point. Sweet (1958) considered the results of the neutral point created when, for
instance, two bipolar regions on the Sun collide head to tail. Parker (1957b, 1963a,
1973) treated Sweet's scenario in the context of magnetohydrodynamics and showed
that when two oppositely directed (antiparallel) magnetic fields ±B are pressed
together over a width t in the presence of an incompressible fluid of density p and
resistive diffusion coefficient rj, the fluid is squeezed out from between the two
opposing fields, causing the field gradient to steepen until resistive dissipation
creates a steady state. The configuration is sketched in Fig. 1.1. The steady state
occurs when the characteristic thickness 3 of the transition from —B to +B is
reduced to the order of l/N2

L, where again NL is the Lundquist number £C/r), in
terms of the characteristic Alfven speed C = B/(4np)^. With this steep field gradient
(when NL » 1) the two oppositely directed fields move into the transition layer from

Fig. 1.1. A schematic drawing of the field
lines undergoing rapid reconnection across
the dashed center line.
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either side with a speed u of the order of rj/d = C/N2
L. The fluid swept into the

transition layer with the fields is expelled (by the magnetic tension and pressure) out
the ends of the layer at a speed of the order of C. This expulsion of fluid is respon-
sible for maintaining the small thickness <5 so that the dissipation continues at a
rapid pace C/N2

L. In the absence of the expulsion of fluid, the characteristic scale is
I, rather than 5, and the rate of dissipation is C/NL, smaller by the large factor N2

L.
The essential point is that the magnetic stresses throughout the region of field

are of such form as to push the thickness of the transition layer (from —B to +B)
continually toward zero, in an attempt to produce a tangential discontinuity. If the
resistivity rj were zero, then NL = oo and S would fall to zero, achieving a true
discontinuity. Insofar as r\ is small but not zero, the enhanced field gradient, O(B/S),
remains large but finite, with the fields flowing into the region of dissipation from
either side at a speed u = C/N2

L. So, the discontinuities are really thin transition
layers of small but nonvanishing thickness O(<5). The magnetic stresses throughout
the continuous fields on either side of the transition layer drive the thickness toward
zero while the resistivity tends to thicken the layer. A dynamical balance arises when
(5 is of the order of l/N2

L. Thus the original theory of reconnection represents the
essential feature of the spontaneous formation of the tangential discontinuity. What
was lacking until recently was an understanding of the general occurrence of the
scenario in all magnetic fields subject to continuous deformation.

Now the magnetic energy is dissipated by the reconnection speed M at a rate
uB2/8n ergs/cm2 sec. Some of the energy is converted directly into heat, with the rest
into the kinetic energy of the ejected fluid depending upon detailed conditions. It is
expected that the jet of ejected fluid is turbulent, so that it is quickly thermalized and
converted to heat. The phenomenon is sketched in Fig. 1.1, and is referred to as
rapid, or neutral point, reconnection, because the lines of force of the two initially
separate and oppositely oriented fields ±B (parallel to the transition layer) are
reconnected by the resistivity so as to lie across the transition layer of thickness 6.
Magnetic energy is dissipated into heat across 8 faster by a factor of the order of N2

L

than by resistive diffusion across the scale I.
The increased diffusion rate, by a factor N2

L, is large and interesting, but entirely
inadequate to account for the vigorous dissipation represented by a flare. The next
step came from Petschek (1964) and Petschek and Thorne (1967) who suggested that
two opposite fields ±B of scale I may, as a consequence of the dynamics of the
inflow and outflow, come into contact across only a narrow width h( <C £), rather
than across the full width £ of the field as assumed by Parker and Sweet. Petschek
argued from dynamical considerations that u might then be as large as C/ln NL, with
h as small as £(lnNf,)2/NL and 6 as small as £ \nNijNL, in order of magnitude, in
the limit of large NL. The dynamics involve resistive diffusion in a small neighbor-
hood of the neutral point, with oblique standing Alfven waves extending out from
each of the four corners of the small central diffusion region (with dimensions h x <5)
sketched in Fig. 1.2. It was clear that any intermediate merging rate
C/N2

L < u < C/ln NL is possible, depending upon the boundary conditions (see
discussion in Vasyliunas, 1975). This has been placed in a formal context recently by
Priest and Forbes (1986) and particularly elegant analytical solutions have been
provided by Hassam (1991) and Craig and Clymont (1991).

Sonnerup (1970, 1971) showed that with a somewhat different field profile,
determined by the forces pushing the two opposite fields together (Fig. 1.3), the rate
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Fig. 1.2. A sketch of the field config-
uration for Petschek's model of rapid
reconnection, with the configuration of
Fig. 1.1 in the small central rectangle,
where I is replaced by h.

Fig. 1.3. A sketch of the field config-
uration in Sonnerup's model of rapid
reconnection, with the central diffu-
sion region shrunk to zero.

of reconnection u may be as large or as small as desired, depending upon how firmly
the opposite fields are pushed together. In this case there are two slow waves in each
quadrant extending obliquely into the origin from some (unexplained) point of
creation at the periphery of the flow. The formal mathematical solution involves an
infinitely sharp corner in the fluid velocity and in the magnetic field at the origin so
that the resistivity of the fluid does not enter into the considerations.

Biskamp and Welter (1980) and Biskamp (1984, 1986) have constructed
2D-numerical simulations of reconnection and, so far, have found only slower
reconnection rates, along the lines of Syrovatskii's (1971) current sheet model.
Whether the failure to find the more rapid reconnection rates obtained by the
analytical solutions can be attributed to the boundary conditions or to the modest
Lundquist numbers to which numerical simulations are restricted, remains to be
seen.

The theoretical developments provide reconnection velocities u that readily
account for the initial intense phase of a solar flare as the rapid reconnection
between two large-scale lobes of magnetic field pushed together by the motion of
their footpoints in the photospheric convection. Priest (1981, pp. 139-216) Low
(1987, 1989, 1991), Low and Wolfson (1987), and Jensen (1989), among others,
provide explicit examples of the current sheets formed in this way.

To write down some specific numbers, note that with (. = 109 cm, r/ = 103 cm2/
sec and C = 108 cm/sec the Lundquist number NL = IC/rj may be as large as 1014

within a bipolar magnetic region on the Sun, so that the minimum reconnection rate
C/N2

L is small, of the order of 10 cm/sec. But In TV/ is only about 30, so that the
reconnection rate may be 106 times larger, or 102 km/sec, determined by the Alfven
speed C. Thus the explosive burst of energy release at the onset of a flare (in a period
of the order of 10 sec) is comprehensible in spite of the small resistivity.
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The geomagnetic substorm, associated with geomagnetic reconnection with a
southward component of the magnetic field in the solar wind and with the magnetic
reconnection across the neutral sheet between the north and south lobes of the
geomagnetic tail, is also understandable, if not precisely defined, by the theoretical
rapid reconnection (cf. Hones, 1984).

In summary, the large-scale Fourier components of the magnetic fields in
astronomical objects are preserved by the small resistivity. On the other hand, the
magnetostatic theorem asserts that in the absence of resistivity the magnetic stresses
cannot avoid creating small-scale Fourier components, in the form of tangential
discontinuities, in almost all field topologies. The discontinuities arise spontaneously
and asymptotically in time throughout the interior of each lobe of field simply as a
consequence of an overall continuous deformation of the field. So small reconnec-
tion events are expected throughout any magnetic field subject to continuing defor-
mation. The small and generally unresolved bursts of reconnection at the ubiquitous
internal surfaces of discontinuity appear to be the principal heat source for the
ongoing thermal X-ray emission from the solar corona (Parker, 1975, 1979, p. 359,
1981, 1983a; Glencross 1975. 1980) and appear (Parker, 1987; Machado, et al. 1988)
to be responsible for the continuing X-ray emission of a solar flare, following the
brief intense initial phase. One infers that the general X-ray emission from other
stars and the intense flare phenomena of the dM dwarf stars are to be understood on
a similar basis.

Now, it is apparent from this discussion that in the presence of a small resistivity
the magnetostatic theorem leads to conditions that are anything but static at the
surfaces of discontinuity. This does not invalidate the application of the theorem,
however, because it is the quasi-static balance of magnetic pressure and tension
throughout the continuous field filling the volume between surfaces of tangential
discontinuity that drives the formation of the tangential discontinuities. The field
throughout the volume moves only with the speed u that is small compared to the
Alfven speed, and the rapid reconnection at the discontinuity does not significantly
disturb the form of the quasi-static equilibrium throughout the volume. On the
other hand the dynamical conditions within the actual transition layer 8, represent-
ing the potential surface of discontinuity, are not at all like the static form, and there
is nothing that the magnetostatic theorem has to say about these dynamical condi-
tions, except that they are created by the static conditions throughout the volume of
the field. The situation is closely analogous to the strong shock in an otherwise
continuous hydrodynamic flow. The hydrodynamic equations apply to the volume
of continuous flow outside the thin shock transition and determine where the shock
appears, without describing the structure of the shock transition.

In practice it appears that the reconnection proceeds somewhere in the neigh-
borhood of the minimum rate C/NJ

L, except for sudden bursts of more rapid recon-
nection (Finn and Kaw, 1977; Van Hoven, 1981; Montgomery, 1982; Lichtenberg,
1984; Dahlburg, et al. 1986) perhaps triggered by passing magnetohydrodynamic
waves (Sakai, 1983a,b; Matthaeus and Lamkin, 1985, 1986; Tajima and Sakai,
1986). We have referred to the individual (usually unresolved) small reconnection
events as nanoflares (Parker, 1988) because it is estimated indirectly that in the solar
X-ray corona they are 10 8--10~9 of a large solar flare (at 1032 ergs/cm2). We wish to
distinguish them from microflares (typically 10 5-10 6 of a large flare), which are
small but individually observed where small magnetic bipoles collide in the conver-
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ging flows at the boundaries of supergranule cells on the solar surface. The true
nature of the nanoflare remains to be determined by direct means.

For the nanoflares, then, it appears that the internal winding and interweaving
of the field lines slowly accumulates without much reconnection (perhaps at the slow
rate C/N]) until an individual discontinuity exceeds some critical strength, where-
upon a local burst of reconnection (perhaps at a rate as large as C/ln NL) reduces the
strength to where the rapid reconnection falls back toward C/N2

L. Then the slow
accumulation begins again, to be followed after a time by another burst of recon-
nection, etc.

1.5 The Magnetostatic Theorem

Consider the basic magnetostatic theorem on which the foregoing inferences are
based. The theorem can be understood in a variety of ways. To begin, note the
magnetostatic equation

describing the balance between the gas pressure /?(r) and the Maxwell stresses in the
magnetic field B(r). Arnold (1965, 1966, 1974) pointed out from formal mathema-
tical considerations that almost all solutions to equations of the form of equation
(1.1) contain discontinuities. He dealt explicitly with the Euler equation

for the stationary flow of an ideal inviscid incompressible fluid, but, as emphasized
by Moffatt (1985, 1990), the solutions of equations (1.1) and (1.2) have identical
form. So there is a formal mathematical basis for the ubiquitous tangential discon-
tinuity.

Moffatt (1986) showed that the solutions to equation (1.2) are dynamically
unstable, in contrast to the general stability of many solutions of equation (1.1). The
difference arises because the Maxwell stress provides a tension B2/4n along the field
lines whereas the Reynolds stress provides a compressive force pv2 along the
streamlines.

So far as we are aware, Syrovatskii (1971, 1978, 1981) was the first to argue that
current sheets and rapid reconnection are a general and unavoidable consequence of
the quasi-static deformation of a magnetic field. To understand his approach
consider the projection of the field lines of B (r) onto the plane perpendicular to B (r)
at some specified point r0 in the field. Projection of B (r) onto the plane perpendi-
cular to B(r0) provides either an O-type or an X-type neutral point in the 2D field in
that plane (see discussion in Parker, 1979, pp. 383-391). Consider a point r0 such
that the neutral point is an X-type (Fig. 1.4a). Then apply external forces to the field
so as to squash the whole region, and hence squash the X-type vertex, in one
direction or another, splitting the X-type vertex into two Y-type vertices, as sketched
in Fig. 1.4(b). There is then a tangential discontinuity extending from one Y-vertex
to the other. There is also a weaker discontinuity extending away along the two arms
of each Y. Syrovatskii pointed out that this effect occurs at one or more points in
any quasi-static field subjected to anisotropic or inhomogeneous deformation.
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Fig. 1.4. (a) An X-type neutral point in the 2D field (on the plane perpendicular to B(r0)),
which is squeezed from above and below into two Y-type neutral points in (b). The heavy line
indicates the location of the tangential discontinuity.

Subsequent development of the theory of tangential discontinuities shows that
Syrovatskii's example illustrates the basic effect. The presentation of specific exam-
ples of the formation of discontinuities in Chapter 6 encounters the deformation of
one X-type neutral point into two Y-type points in every case. The optical analogy,
presented in Chapter 7, shows that the tangential discontinuity arises from gaps
created by local field maxima in the flux surfaces, and Syrovatskii's example proves to
be the elevation of the magnetic field whose plan view is the gap in the flux surface.

We begin, then, with a sketch of the standard setting for the construction of the
magnetic field and the spontaneous appearance of the tangential discontinuities. The
model is presented in detail in Chapter 3 and the sketch outlined here is intended
only to define the physical context of the discussion. The essential physics is most
simply described by starting with a uniform magnetic field B0 extending in the
z-direction through an infinitely conducting (77 = 0) fluid between the boundary
planes z = 0 and z — L (Parker, 1972). Then at time t = 0 the fluid is set into the
prescribed two dimensional incompressible transverse motion

determined by the arbitrary stream function \l/(x,y,kzf). The function \l/ is chosen to
be a well-behaved, bounded, smooth, continuous, n-times differentiable function of
its arguments. The deformation of the fluid and field is strong, and it is convenient
to think ofif/(x,y,kLt) as representing the introduction of a succession of unrelated
mixing patterns of the footpoints of the field at the boundary z = L while the foot-
points are held fixed at z = 0.

After a time t the magnetic field, which is carried with the fluid, has the form
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Fig. 1.5. A sketch of the arbitrary winding of the field lines of the continuous field described
by equation (1.4), beginning with (a) the uniform field BQ and become mixed and interlaced
after a time t in (b).

The field lines wind and interweave among each other, following the same mixing in
passing from z = 0 (where the footpoints remain fixed) to z — L as the mapping
i]s(x,y, kLt) of the footpoints on z = L. Thus the field lines are strongly wrapped and
randomly intermixed in passing from z = Q to z = L. But note that the field is
continuous, because of the prescribed smooth behavior of \jj. Fig. 1.5 is a sketch of
the initial field and the interwoven state of that field after some time t.

The essential point is that any arbitrary, well-behaved function I/MS a physical
possibility. To fix ideas suppose that (l/(x,y,kLf) passes through n successive arbi-
trary, random swirling patterns at each value of ( x , y ) as t increases from 0 to T. If the
transverse swirling and mixing represented by \\i has a characteristic scale I, then a
footpoint of the field at z = L moves a distance of the order of I or more in each swirl,
thereby accumulating a total path length O(nl) or more on z = L. For purely random
swirling the final distance of almost all footpoints from their initial positions is
O (nJ t). Note that L may be so large that L » nt in the presence of strong winding, so
that the inclination of the field to the z-direction may be, but need not be, small.

Stop the fluid motion at t = z, then, and hold the footpoints of the field lines
fixed at z = 0 and at z = L. Release the fluid so that the continuous field is free to
relax to the lowest available energy state, ultimately achieving static equilibrium
after some sufficiently long period of time. The magnetostatic theorem states that
almost all strongly deformed fields develop internal tangential discontinuities in the
process of relaxing to static equilibrium (Parker, 1986a,b).

Consider some of the implications of this assertion. The first point is that the
choice of the stream function if/ determines the topology — the winding and inter-
weaving — of the field lines, and the topology is preserved by the infinite electrical
conductivity of the fluid, i.e., by the vanishing of the electric field in the frame of
reference moving with the fluid. The function i// does not provide the final equili-
brium field distribution B(r), which arises only in the relaxation of the field from the
continuous form in equation (1.4) to static equilibrium.
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1.6 Continuous Magnetostatic Fields

It comes to mind that there are extensive families of continuous solutions to the
magnetostatic equilibrium equation (1.1). Infinitely many different continuous
equilibrium fields! However, the known continuous equilibrium solutions involve
either only weak deformation of the field from a uniform state (cf. the interesting
numerical solutions by Van Ballegooijen, 1985, 1986; Mikic, Schnack, and Van
Hoven, 1989 and the analytic solutions by Zweibel and Li, 1987) or a symmetry,
degeneracy, or invariance (ignorable coordinate) of some form (see discussion in
Grad, 1967, 1984; Parker, 1979, pp. 359-378; Tsinganos, 1981, 1982a,b). The
requirement of invariance is not dissimilar to the well-known Taylor-Proudman
theorem of hydrodynamics (Proudman, 1916; Taylor, 1917; see also discussion in
Chandrasekhar, 1961) arising from the identical form of equations (1.1) and (1.2), to
the effect that a stationary velocity field in a system rotating with angular velocity 0
must be invariant in the direction of O.

A noteworthy example of an equilibrium based on degeneracy was pointed out
by Rosner and Knobloch (1982), involving force-free fields described by the solu-
tions of the field equation (Lundquist, 1950)

for a single value of a, say a — q. The equation is then linear and solutions may be
superposed without limit, providing no end of complexity in the total field B(r)
throughout the region.

Another class of continuous solution was found by Van Ballegooijen (1985)
who showed that small perturbations <5B about a uniform field B0 (which permits
strong mixing over the length of the field in the limit of large L) provide a field
described by an equation that is an exact analogy to the 2D time-dependent vorticity
equation. The equation is nonlinear and few analytic solutions are known, but one
expects that the equation has a variety of continuous solutions. This interesting class
of solutions is possible because the zero-order uniform field has no scale of its own,
on which more will be said in the sequel.

It is clear that strong winding of the field, wherein a substantial fraction of the field
lines extend through at least two different wrapping patterns between z = 0 and z = L,
permits neither an ignorable coordinate, nor a uniform a, nor an undetermined scale in
any direction. It is readily seen that such a field, if it were to remain continuous in static
equilibrium, would pose a contradiction. The nature of the contradiction is most
readily exhibited in the case that the pressure externally applied to the fluid at the
boundaries z = 0, L is uniform (p = p0). The scalar product of B with equation (1.1)
yields the condition B - V/> = 0, that the fluid pressure extends uniformly along each
field line. Then since all the field lines connect to the uniform pressure at z — 0, L, it
follows that p is uniform throughout the entire region (0 ̂  z ^ L). Equation (1.1)
reduces to the force-free form (1.5). Equation (1.5) has some interesting mathematical
properties. The coefficient a = a(r) represents the torsion in the field, with

The analogous quantity v • V x v in hydrodynamics is called the helicily. Since
V • B = 0, the divergence of equation (1.5) gives the well-known result
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stating that the torsion a is uniform along each field line. It is obvious that field lines
extending through two or more unrelated winding patterns may be subjected to
quite different torsions in the different patterns, because as each flux bundle wraps
in arbitrary ways around the neighboring flux bundles, its own internal torsion must
match the wrapping if it is to fit continuously against its neighbors. But the internal
torsion is fixed at some uniform value which cannot accommodate different topo-
logical wrappings. The only reconciliation with equation (1.7) is the development of
tangential discontinuities, across which there is a finite difference in field direction.
The net torsion across the tangential discontinuity is not restricted by equation (1.7)
because the surface of discontinuity is only the surface of contact between two
adjacent regions of field. The surface contains no magnetic flux — no field lines —
and the restriction posed by equation (1.7) is evaded.

The arbitrarily complicated continuous fields constructed by Rosner and
Knobloch (1982) are not restricted by equation (1.7) because they are based on
Vac = 0, for which equation (1.7) is trivially satisfied. On the other hand, if any
variation of a is present, the degeneracy is removed, superposition of solutions is not
possible, and equation (1.7) becomes a nontrivial restriction, requiring tangential
discontinuities if the field topology involves a change in the torsion along any flux
bundle anywhere in 0 < z < L.

Another way to state the problem is to note the two requirements (a) that the
torsion a is uniform along each field line while (b) an arbitrary topology is imposed
on the field through our choice of \f/ in equation (1.4). These two conditions are not
irreconcilable unless we also arbitrarily impose the condition that the field is
continuous everywhere. To insist on continuity is to restrict the function \ j / ( x , y , k z t )
to special invariant or degenerate forms that are incompatible with the physical
possibility of arbitrary weaving and wrapping of the field lines.

We are accustomed to continuous fields in classical field theory, enforced by the
fully elliptical character of the basic field equations, and leading to a unique determi-
nation of the field throughout a volume by specification of the field on the boundary of
the volume. The field equation and the boundary conditions determine the topology of
the field. But with a magnetic field in an infinitely conducting fluid the topology is
determined ahead of time by the choice of \]>, and the normal component of the field on
the boundary can be manipulated at will, by local compression or expansion of the
distribution of footpoints of the field, without affecting the topology. So there can be
no unique determination of the field topology throughout the volume by the field at
the boundaries. As already noted, the field equations reflect this different situation by
possessing an extra set of characteristics, in addition to the two imaginery character-
istics of the familiar elliptic field equations in a vacuum. The subject is taken up at
some length in Chapter 3, but the essential point is simply that the field lines represent a
family of real characteristics, across which the field may be discontinuous, thereby
accommodating the physics.

1.7 Perturbations of a Continuous Field

An obvious mathematical approach to the problem is to consider magnetostatic
fields in some functional neighborhood of a known invariant equilibrium solution.
This subject is taken up in Chapter 4 in detail, but it is appropriate to make some
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general comments here to establish perspective. A convenient example (Parker,
1979, pp. 370-378) is the field with linear invariance (d/dz — Q), satisfying the
familiar Grad-Shafranov equations

and

(see Tsinganos, 1981, 1982a,b for the field equations and solutions in other invariant
geometries). Treat the total field B(x,y) + SB(x,y,z) where the perturbation does
not share the invariance of B(x,y). The first order perturbation equations are

This equation can then be integrated along the real characteristics, which are the
projection of the field lines of B(x,y) onto any plane z = constant, given by
A(x,y) = constant. In the case of interest, most field lines of B do not extend to
x,y = ±00, and, hence, close locally on themselves. The equilibrium equation for oB
can be integrated along any field line, and it is found that generally the SB computed
after carrying the integration once around a closed field line is different from the
initial SB from which the integration started. The special conditions necessary to
produce the same final and initial SB can generally be met only on special field lines
and not over a finite region of field. Hence there must be a discontinuity in <5B
somewhere along the contour of integration.

The only way to satisfy the equations and avoid a discontinuity is to require that
doB/dz = 0, which provides a B + <5B that is a member of the same general class of
invariant solutions, described by equations (1.8) and (1.9). In other words, there are
discontinuous solutions dB(x,y,z) in the neighborhood of the continuous solutions
B(x,y), but the only continuous solutions B + §B necessarily possess the same
invariance (d/dz — 0) as B. So if i5B were produced by winding the field lines (by
moving the footpoints of the field at the end plates z = 0, L) in a pattern that varied
along the field, the resulting equilibrium of B + SB would possess internal disconti-
nuities. The same general result has been demonstrated by Vainshtein and Parker
(1986) for rotational invariance (d/dcp = 0) and more broadly by Tsinganos (1982c)
in the presence of a stationary velocity field.

Tsinganos, Distler, and Rosner (1984) have taken a somewhat different
approach, using a Hamiltonian formulation of the toroidal field, so that the field
lines are precisely analogous to the dynamical trajectories of a mechanical system in
phase space. They use the Kolmogoroff-Arnold-Moser theorem to show that if a
symmetric continuous magnetostatic equilibrium is subjected to a perturbation of
arbitrary symmetry, then for a finite range of pressure values, the 2D isobaric
surfaces do not necessarily coincide with magnetic flux surfaces. But, as already
noted, the scalar product of B with the magnetostatic equation (1.1) leads to
B • V/? = 0, stating that the isobaric surfaces lie along the field. Hence magnetostatic
equilibrium is no longer satisfied everywhere. They show that spatially symmetric
magnetostatic equilibria are topologically unstable to finite amplitude perturbations
which do not have the original symmetry properties. In other words, symmetric
continuous magnetostatic equilibria are special (and hence unlikely) states in which
to find a magnetic field.
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This development makes Grad's (1967, 1984) earlier point, that magnetostatic
equilibrium is unlikely in toroidal fields. More important, it extends the foregoing
perturbation calculation to finite amplitudes, and it provides a quantitative demon-
stration of the very special form required for a field to avoid discontinuities while in
a magnetostatic state. Invariance (an ignorable coordinate) is the simplest condition
providing continuity in static equilibrium, although, as already noted, there are
other special degenerate conditions permitting both static equilibrium and an
absence of discontinuities throughout the field.

Coming back to the perturbation <5B about a solution B to the Grad-Shafranov
equations, the simplest example of B is a uniform field B0 in the z-direction. As
already noted this case is degenerate in the sense that there is no characteristic scale.
In any field but a uniform field the winding of the field lines of B about each other
provides a scale length in the z-direction that is related to the transverse scale, in the
x- and ^-directions. But the scale disappears for the uniform field and the scales of
variation of SB along and across B are independent of each other. Thus, if the two
scales are treated as being of the same order, the calculation is carried forward in the
manner just described, integrating along the field lines of the unperturbed field. The
necessary condition for equilibrium of a continuous field is again dSB/dz = 0
(Parker, 1972; 1979 pp. 363-368).

More recently Van Ballegooijen (1985) pointed out that the scale of variation of
c)B along the uniform field BO may be one order larger than across BQ providing a
different ordering of the terms in the field equation (1.5) and an interesting variation
in the requirement for solution (noted in §1.6) already noted in a different context in
§1.6. In particular, the perturbation <5B with a transverse scale I and a magnitude
sB0 (e <C 1) has a winding pattern that extends a distance O(l/s) along B if the
mutual wrapping of the field lines proceeds through one or more radians before the
winding pattern changes. Then d/dz is small O(B) compared to djdx and d/dy so
that dSB/dz is small O(e2) and should be dropped from the first-order equations.
Then if da, represents the torsion coefficient (the zero-order torsion coefficient being
identically zero for the uniform field) equation (1.7) reduces to

each term being small to second order. Thus by making <5B almost invariant O(e)
with respect to z, the mathematics recovers a condition that is less stringent than the
basic d/dz = 0. Equation (1.10) asserts that <5a is invariant along the field lines of the
perturbed field, rather than requiring that da be invariant along the lines of the zero-
order field. Van Ballegooijen goes on to point out the exact analogy between equa-
tion (1.10) and the equation for the time-dependent vorticity in the 2D motion of an
ideal inviscid incompressible fluid. The variable t in the vorticity equation plays the
role of z in equation (1.7), in this case, because the torsion <5a is invariant along each
field line and the vorticity is invariant along the world line of each element of fluid.
This example is interesting because it establishes the existence of continuous fields
which are not degenerate or symmetric or invariant in any simple way. Instead the
solutions are characterized by a transverse scale small compared to the longitudinal
scale.

There are no known continuous-time-depcndent analytical solutions to the 2D
vorticity equation, apart from the motion associated with one or two vortex lines
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with potential flow everywhere between, or the motion associated with many
moving vortex lines arranged in special symmetric patterns that do not change with
time. The equation describes the time behavior of a 2D fluid, which can be set in
arbitrary continuous motion at time t = 0, and which continues to move for an
indefinite period afterward. There is obviously a diversity of initially continuous-
time-dependent flows. One may wonder whether an initially continuous flow of an
ideal fluid may in a finite time form tangential discontinuities. The strict mathema-
tical analogy with the magnetostatic equation suggests that there are no such solu-
tions. As we shall see in Chapter 8, the structure of tangential discontinuities in
magnetic fields in static equilibrium indicates that they do not begin or end some-
where in the volume between the rigid end plates, z = 0, L. The formal analogy
between z in the magnetostatic field and t in the evolving hydrodynamic field implies
that discontinuities do not begin or end in finite time t. Note, however, that this
analogy does not exclude the asymptotic formation of vortex sheets in the limit of
large t. On the other hand, in the presence of a small but nonvanishing viscosity, the
final asymptotic approach of a vortex layer to zero thickness is irrelevant, and it is
well known that a slightly viscous fluid in inhomogeneous motion becomes turbu-
lent in a finite time, with the vortex sheet thickness limited by the viscosity. In a
similar way, a magnetostatic field may have an arbitrary winding pattern at z = 0,
but if the field is continuous, the pattern at z = 0 determines the continuous pattern
for all finite z > 0, producing whatever topology is compatible with the invariance
of a along each field line, just as the vorticity u> is transported bodily along the world
line of each element of fluid so that dca/dt = 0.

1.8 Tangential Discontinuities

In nature the winding of the field lines (carried out by random convective transport
of the footpoints of the field) is arbitrary so that the field is not expected to have the
symmetry, invariance, or degeneracy necessary for continuous solutions. To repeat
the point made earlier (following equation (1.7) in §1.6) for arbitary i// a flux bundle
threads around first one way and then the other through the spaghetti of neighbor-
ing interwoven flux bundles. The torsion within each elemental flux bundle must
vary along the bundle in precise coordination with the winding around the neigh-
boring flux bundles if the bundle is to fit continuously against each flux bundle that
it encounters. But B • Va — 0 requires that there is no variation in the torsion a
along the flux bundle. So the condition for a continuous field cannot generally be
met. There are unavoidable tangential discontinuities where the flux bundle winds
around neighboring flux bundles. There is no way that an arbitary winding and
interweaving of the field lines can relax to equilibrium and preserve continuity
(Parker, 1986a,b,c, 1989a).

The braiding of three flux bundles provides an elementary illustration of the
principles. A single wavelength of braiding is sketched in Fig. 1.6, in which each flux
bundle wraps first one way and then the other around each of the other two bundles.
Hence the net torsion along each flux bundle is zero, so a, being constant along each
line of force, can be set equal to zero. Then since V x B = «B, it follows that
V x B = 0 so that B = -V0 and V2c/> = 0. Within each flux bundle the field is a
potential field without torsion. There are no continuous solutions to Laplace's
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Fig. 1.6. A sketch of one wavelength of the braiding of three flux bundles.

equation representing a braided field. It follows that the fields are not aligned where
each flux bundle passes obliquely across a neighbor, so that there is necessarily a
tangential discontinuity. Note again, then, that the net torsion (i.e., the discontinuity
in field direction) at each mathematical surface of tangential discontinuity does not
violate B • Va = 0 because there is no magnetic flux in the mathematical surface.
The surface of discontinuity is merely the surface of contact between two regions of
nonparallel field.

The tangential discontinuity makes its appearance in the theory of magneto-
statics in other ways than through considerations on B • Va = 0. For instance, one
may construct any continuous magnetostatic field (e.g., a solution of equation (1.9))
containing more than one winding pattern, i.e., with two or more distinct topologi-
cal regions, and show from elementary considerations that almost any overall
deformation of that field creates tangential discontinuities, by upsetting the X-type
vertices of the topological separatrices (Parker, 1982, 1983b, 1990b). The process
can be seen in a variety of formal mathematical examples of tangential disconti-
nuities from simple compression or expansion of a continuous field (Priest, 1981,
pp. 144-171; Kulsrud and Hahm, 1982; Hahm and Kulsrud, 1985; Low, 1987, 1989;
Low and Wolfson, 1987; Jensen, 1989). The discontinuities form along the topolo-
gical separatrices of the original field. Chapter 6 treats several examples in detail.

A variation of this is to consider the construction of a continuous field by the
actual physical displacement of the fluid and field in a hypothetical laboratory
apparatus. It is then easy to show that the slightest random error in the mechanical
manipulation misses the desired mathematical continuity, producing tangential
discontinuities with two or more Y-type neutral points where one X-type is neces-
sary for continuity (Parker, 1982, 1990b).

As already noted, the magnetostatic equation (1.1) has two imaginery char-
acteristics (Parker, 1979, pp. 361-363). This fact in itself would make equation (1.1)
a fully elliptic equation, so that the internal field would be uniquely determined by
the arbitrary distribution of field at the boundaries. This is physically absurd, of
course, because the internal winding and intertwining of the field, i.e., the internal
topology, is arbitary, determined separately by the sequence of random swirling of
the footpoints of the field (at z = 0,L). Following the random intertwining of the
field lines the footpoints can be pushed together so that the normal component of
the field on z = 0, L has an arbitary distribution, without affecting the internal
topology. We remark again that the escape from this contradiction lies in the addi-
tional set of characteristics, represented by the field lines. Discontinuities along these
real characteristics arc permitted. The discontinuities avoid the uniqueness implied
by the imaginery characteristics alone, because the uniqueness depends on the
assumption that the field is continuous throughout. Thus, in the foregoing example
of the braided field, in which the field reduces to a solution of Laplace's equation,
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V20 = 0, the well known uniqueness of V2</> = 0 is avoided by the surfaces of
tangential discontinuity (the topological separatrices) between the three individual
flux bundles.

A direct approach to the formal problem is through integration of the nonlinear
magnetostatic equation (1.1). As already noted, there are many families of known
continuous solutions. Standard mathematical techniques automatically generate
continuous solutions, so they provide the special topologies required to achieve
continuity everywhere, but at the price of an ignorable coordinate or degeneracy.
Fortunately, there are some simple cases where the integration of equation(l.l) can
be carried through in the absence of the symmetry required for continuity (Parker,
1990c). One finds that, if the solution has the specified topology and fits the
boundary conditions, then it contains surfaces of tangential discontinuity. If, on the
other hand, the solution is required to be continuous, then there appears a unique
solution which satisfies the essential boundary condition on the normal component
of the field, but which necessarily has an internal topology different from the speci-
fied topology. Yet the specified topology is physically well posed, because it can be
produced by simple precise hypothetical physical manipulation of a magnetic field in
a ponderable fluid under ideal circumstances of zero resistivity. So complete conti-
nuity of a field simply does not conform to equation (1.1). An extended example is
explored in Chapter 5.

A straightforward integration of B • Va = 0 provides a general expression for a
in terms of B, in the form of a contour integral along the field lines and along the
orthogonal family of lines. It is shown (Parker, 1986a,b) that a is generally discon-
tinuous, which comes about through the discontinuity of B.

1.9 The Optical Analogy

Finally, we construct the optical analogy (Parker, 1981, 1989b,c, 1991b) to show
how the tangential discontinuity arises from the local properties of the magnetic
field in the neighborhood of a maximum in the field magnitude B(r). The optical
analogy applies to the projection fs of any vector field F(r) onto the local flux
surfaces of V x F, because Fy can be described as the gradient of a scalar potential (/)
in that surface. For the force-free field V x B — aB, the local flux surfaces of V x B
coincide with the local flux surfaces of B. So in any flux surface of B(r) the field can
be written as B = -V0, (noting that V • B = -V2r/> ^ 0 in the 2D flux surface). The
equations for the field lines in the flux surface are the same as the equations for the
optical ray paths in a medium with index of refraction 5(r) = |B(r) |. This is the
optical analogy in its form for magnetostatic fields. Its importance lies in the fact
that it shows the direct connection between the field pattern and the local variation
of 5(r). In particular, the field lines are refracted around a local maximum in B(r).

If the maximum is sufficiently concentrated, the optical pathlength around the
maximum is shorter than across the maximum. So Fermat's principle specifies a
bifurcation in the field pattern where the field lines pass around the maximum rather
than across the maximum. This bifurcation or gap in the field pattern is the singular
property that leads to the formation of the tangential discontinuity. The gap permits
the fields on either side of the flux surface to come in contact, as already remarked.
These otherwise separate fields are generally not parallel, with the result that the
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contact surface, or separatrix, between the regions becomes a surface of tangential
discontinuity throughout the gap.

There is a theorem by Yu (1973) that demonstrates the association of a bifur-
cation in the field lines with a tangential discontinuity. Yu considered field lines in
the isobaric surfaces (p = constant) in a magnetic field in static equilibrium, descri-
bed by equation (1.1). Since B • Vp = V x B • Vp = 0, the isobaric surfaces are flux
surfaces of both B and V x B. Treating two near neighboring field lines he showed
that the current density jL perpendicular to the field varies in direct proportion to
the separation of the lines. A bifurcation of the field pattern in an isobaric surface
represents an increase in the separation of adjacent field lines from infinitesimal to
finite distances in a finite distance along the field. Hence the bifurcation is auto-
matically associated with an infinite current density, i.e., a current sheet or tangen-
tial discontinuity. It follows from the optical analogy that any field with localized
internal maxima produces internal tangential discontinuities, unless there are rigid
boundaries so close at to prevent any bifurcation in the field pattern.

1.10 General Discussion

The magnetostatic theorem is a statement about the relation between the topology
and the continuity of a magnetostatic field, and as such it touches upon several other
properties of the magnetic fields to be found in nature. Consider first the general
stochastic nature of the field lines of any magnetic field in the physical universe. The
field lines are defined as the integrals of

at any instant in time. Pick any two neighboring points r0 and rfl + <5r0 with or0

perpendicular to B(r0). These two points define two field lines to the specified field
B(r) with characteristic scale I. Assuming that |<5r <c i, the separation dr(s) of the
two field lines increases more or less exponentially with distance s measured along
either line from TO, as a consequence of the fluctuating gradients in B(r). The expo-
nential separation continues until |<5r(,«)| becomes comparable to (., beyond which the
two field lines random walk relative to each other and their separation increases
more like ̂  (Jokipii and Parker, 1968; Parker, 1979, pp. 274-297, 1992).

A Hamiltonian formulation of the field, in which the individual field line
corresponds to the trajectory of a particle in phase space, is particularly useful to
treat the topology when the field closes on itself, i.e., toroidal geometry. In any such
closed configuration the field lines are ergodic, as may be seen from the Hamiltonian
formulation (Kerst, 1962; Parker, 1969; Boozer, 1983; Cary and Littlejohn, 1983).
Since B • Vp = 0 it follows that Vp = 0 throughout an ergodic toroidal field in static
equilibrium, from which it follows that there can be no true static equilibrium if the
plasma is confined by the field or vice versa (Moser, 1962; Grad, 1967, 1984). The
construction of global flux surfaces and isobaric surfaces, which project along the
field, is problematical because any such surface fills the entire toroidal volume.
Needless to say a local flux surface is generated by the projection of any transverse
curve along the field lines.

The presence of a suprathermal plasma component (e.g., the multimillion degree
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gas of the solar corona, the 10 K plasma generated in a solar flare, or the cosmic
rays that fill the gaseous disk of the galaxy) provides another source of none-
quilibrium in any field rooted in the dense thermal gas of a self-gravitating body
such as a star or galaxy. For the free flow of the suprathermal gas (without signifi-
cant gravitational confinement) along the field lines inflates without limit the outer
lobes of the field, where the field falls asymptotically to zero. This nonequilibrium is
the means by which the open magnetic field regions are formed on the Sun to
provide the coronal holes and the solar wind (Parker, 1963b). It appears to be, at
least in part, the basis for the extended galactic magnetic halos (Parker, 1965, 1968,
1969, 1979, pp. 274-297, 1992) and for the resulting tangential discontinuities,
magnetic dissipation, and X-ray emission from those halos (Parker, 1990a, 1992).

In summary, the stochastic field lines extending between z = 0 and z = L
(equivalent to the mirror geometry employed in the plasma laboratory) become the
ergodic field of toroidal geometry (in which the field circles incommensurably
through itself).

The present writing is concerned primarily with the bounded "mirror geometry"
of a magnetic field extending in the z-direction between "end plates" z = 0 and
z = L (Parker, 1972, 1979, p. 364), thereby avoiding questions of the existence of
global flux surfaces, global isobaric surfaces, and static equilibrium and avoiding the
absence of equilibrium when a suprathermal gas component is present. The flux
surfaces are simply and uniquely defined (extending only between the end plates
z = 0, L) and play a key role in the development of the theory.

1.11 Hydrodynamic Turbulence

Consider the fact discussed in §1.5 that the magnetostatic equation (1.1) and the
stationary Euler equation (1.2) are analogous. Thus the surfaces of tangential
discontinuity (current sheets) in magnetostatic fields have an exact counterpart in
the surfaces of tangential discontinuity (vortex sheets) in stationary flows. Arnold
pointed out that almost all solutions of the Euler equation, and hence of the
magnetostatic equation, involve tangential discontinuities. It can now be stated that
there are no continuous solutions for almost all field topologies.

Now, we are familiar with the idea that the dynamical instability of a stationary
flow at high Reynolds number leads to turbulence and the formation of vortex
sheets (Batchelor, 1947). The interesting point is that the formation of vortex sheets
is already an intrinsic part of the initial stationary flow, arising from the nature of
the static Reynolds stresses (Parker, 1989b, 1991b). Turbulence is, then, the unstable
time-dependent form of the ubiquitous vortex sheet formation, driven by the
Reynolds stress in both the time-dependent and time-independent flow. Specifically,
the vorticity a) is transported bodily with the fluid velocity v, with

dco/dt = V x (v x oj),

and regions of different vorticity, i.e., separate eddies, coming into contact without
their velocities being compelled to match smoothly, creating a vortex sheet at the
surface of contact, i.e., at the topological scparatrix.

The formation of vortex sheets in a turbulent flow is conventionally referred to
as a "cascade" to large wave number k. The large wave number arises mainly from
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the abrupt change of v across the vortex sheet, remembering that the sheet itself is
relatively broad, involving small wave numbers. The broad vortex sheet is continu-
ally complicated by the Kelvin-Helmholtz instability which produces corrugations
at increasingly large wave number, of course. The cascade to large wave numbers in
statistically stationary turbulence may be thought of as the time-dependent unstable
form of the tangential discontinuities of the stationary flow with any but the
simplest topology.

The intrinsic role of tangential discontinuities in stationary velocity fields and in
static magnetic fields could also be referred to as a cascade to large wave numbers,
but in practice the term cascade suggests the concept of dynamical effects in turbu-
lence, which is absent in the quasi-static formation of tangential discontinuities. On
the other hand, the optical analogy, which is not restricted to quasi-static fields
provides an appropriate mathematical tool for treating the dynamical tendency
toward tangential discontinuities in the time-dependent turbulent flow, showing that
any sufficiently localized maximum in vs presses toward a gap in the pattern of vs,
where vs = \s and \s represents the instantaneous projection of the fluid velocity v
onto a flux surface of the vorticity V x v. This is developed at length in Chapter 7.



2
The Field Equations

2.1 Appropriate Field Concepts

Maxwell's equations can be written in terms of various field vectors E, D, H, B, A, j,
etc. The first step is to establish the most convenient vector quantities for formulat-
ing the basic equations of magnetohydrodynamics (MHD). We find it simplest to
deal directly with the electric field E and the magnetic field B, in a system of units
(e.g., cgs) that is compatible with the basic symmetry of Maxwell's equations. In
these units Maxwell's equations are

where s is the electric charge density and j is the electric current density. The electric
field E is defined in terms of the force on a static charge, and B can be defined by the
Lorentz force j x B/c or by the equivalent Lorentz transformation in the presence of
an electric field, there being no experimental evidence of magnetic charges in the
universe. The field pressures E2/8n and B2/8n and the field tensions E2/4n and
B2/4n are measured in dynes/cm2 and the electric and magnetic fields E and B are of
equal magnitude (girfcrrT^sec^1) when their stress densities are equal. The effect of
matter on the electromagnetic fields E and B appears through s and j.

The molecular electric and magnetic polarization of ionized gases is negligible in
most circumstances, in contrast to the dominant effect of the inertia of the bulk
motion v of the plasma. Thus, while the dielectric coefficient e and the magnetic
permeability fj, of gaseous materials are close to one, the inertia of the plasma
coupled to the magnetic field causes the phase velocity of a plane transverse MHD
(low frequency) wave to be of the order of the Alfven speed C = B/(4np)^, which is
small compared to the speed of light in any case with which we shall be concerned.
So the formulation of the MHD equations is carried out in the nonrelativistic
regime, neglecting the atomic polarization. That is to say, the development neglects
£ — I, fj. — 1, and v2/c2 compared to one. The effect of the inertia of the plasma is to
produce an effective plasma index of refraction kc/a> large compared to one, even if
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