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PREFACE

Electron microscopy and electron beam microanalysis are techniques that are now
in daily use in many scientific disciplines and technologies. Their importance de-
rives from the fact that the information they generate comes from highly localized
regions of the specimen, the data produced are unique in scope, and the images and
spectra produced can be quantified to give detailed numerical data about the sample.
For quantification to be possible, however, it is necessary to be able to describe how
a beam of electrons interacts with a solid specimen—and such a description is
difficult to provide because of the very varied and complex nature of the interactions
between energetic electrons and solids.

The purpose of this book is to demonstrate how this interaction can be accu-
rately simulated and studied on a personal computer, by applying simple physical
principles and the mathematical technique of Monte Carlo (or random-number)
sampling. The aim is to provide a practical rather than a theoretical guide to this
technique, and the emphasis is therefore on how to program and subsequently use a
Monte Carlo model. The bibliography lists other books that cover the mathematics
of Monte Carlo sampling and the physical theory of electron scattering in detail. To
make the programs developed here as accessible as possible, a disk—for use with
MS-DOS-compatible computers—has been made available; it contains all of the
source code described in this book together with executable (i.e., runnable) versions.
To order see facing copyright page.

This book would not have been possible without the generous cooperation of
many other people. I am especially grateful to Dr. Dale Newbury of N.L.S.T., for
first introducing me to Monte Carlo models, and to him and Dr. Robert Myklebust,
also of N.I.S.T., for sharing their code with me. Dr. Hugh Bishop of A.E.R.E.
Harwell, whose Ph.D. work produced the first electron beam Monte Carlo pro-
grams, kindly lent me a copy of his thesis and provided some invaluable background
information. Dr. Peter Duncumb, of the University of Cambridge and Tube Invest-
ments Ltd., whose pioneering work on Monte Carlo modeling using minicomputers
ultimately made this book possible, lent me copies of his early reports and papers
and has been unfailingly helpful in answering many questions about the develop-
ment of the technique. The programs given in this volume have been refined and
improved through the efforts of many colleagues who have used them over the past
few years. Vital improvements in science, substance, and style have been made by
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Drs. John Armstrong (California Institute of Technology), Ed Cole (Sandia), Zibig-
niew Czyzewski (University of Tennessee), Raynald Gauvin (Université de Sher-
brooke), David Howitt (University of California), David Holt (Imperial College,
London), Peggy Mochel (University of Illinois), John Russ (North Carolina State
University), and Oliver Wells (IBM). To them, to my students Suichu Luo, Xinlei
Wang, and Xiao Zhang, and to many others who have given of their time and
expertise, I am deeply grateful. Any errors and problems that remain are strictly my
own responsibility.

Finally, I dedicate this book to my wife Carolyn, without whose love and
encouragement this manuscript would have remained just another pile of floppy
discs.

Knoxville D. 1L
August 1994



CONTENTS

1. An Introduction to Monte Carlo Methods 3

1.1. Electron Beam Interaction—The Problem 3
1.2. The Monte Carlo Method 4

1.3. Brief History of Monte Carlo Modeling 5
1.4. About This Book 7

2

2.1, Introduction 9

2.2. Describing the Problem 9

2.3. Programming the Simulation 12
2.4, Reading a PASCAL Program 13
2.5. Running the Simulation 23

Constructing a Simulation 9

3. The Single Scattering Model 25

3.1. Introduction 25

3.2. Assumptions of the Single Scattering Model 25

3.3. The Single Scattering Model 26

3.4. The Single Scattering Monte Carlo Code 37

3.5. Notes on the Procedures and Functions Used in the Program 46
3.6. Running the Program 50

4. The Plural Scattering Model 56

4.1. Introduction 56

4.2. Assumptions of the Plural Scattering Model 56

4.3. The Plurai Scattering Monte Carlo Code 62

4.4. Notes on the Procedures and Functions Used in the Program 71
4.5. Running the Program 75

5. The Practical Application of Monte Carlo Models 77

5.1. General Considerations 77
5.2. Which Type of Monte Carlo Model Should Be Used? 77



viii CONTENTS

5.3. Customizing the Generic Programs 78
5.4. The “All Purpose” Program 79
5.5. The Applicability of Monte Carlo Techniques 79

6. Backscattered Electrons 81

6.1. Backscattered Electrons 81

6.2. Testing the Monte Carlo Models of Backscattering 81
6.3. Predictions of the Monte Carlo Models 90

6.4. Modeling Inhomogeneous Materials 97

6.5. Notes on the Program 105

6.6. Incorporating Detector Geometry and Efficiency 111

7. Charge Collection Microscopy
and Cathodoluminescence 114

7.1. Introduction 114
7.2. The Principles of EBIC and C/L Image Formation 114
7.3. Monte Carlo Modeling of Charge Collection Microscopy 119

8. Secondary Electrons and Imaging 134

8.1. Introduction 134

8.2. First Principles—SE Models 136
8.3. The Fast Secondary Model 142
8.4. The Parametric Model 156

9. X-ray Production and Microanalysis 174

9.1. Introduction 174

9.2, The Generation of Characteristic X-rays 174
9.3. The Generation of Continuum X-rays 175
9.4. X-ray Production in Thin Films 177

9.5. X-ray Production in Bulk Samples 191

10. What Next in Monte Carlo Simulations? 199

10.1. Improving the Monte Carlo Model 199

10.2. Faster Monte Carlo Modeling 202

10.3. Alternatives to Sequential Monte Carlo Modeling 203
10.4. Conclusions 205

References 207
Index 213



Monte Carlo Modeling for Electron
Microscopy and Microanalysis



This page intentionally left blank



1

AN INTRODUCTION TO MONTE CARLO
METHODS

1.1 Electron beam interaction—the problem

The interaction of an electron beam with a solid is complex. Within a distance of a
few tens to a few hundreds of angstroms of entering the target, the electron will
interact with the sample in some way. The interaction could be the result of the
attraction between the negatively charged electron and the positively charged atomic
nucleus (and equally the repulsion between the negatively charged atomic electrons
and negative charge on the incident electron), in which case the electron will be
deflected through some angle relative to its previous direction of travel, but its
energy will remain essentially unaltered. This is called an elastic scattering event.
Alternatively, the incident electron could cause the ionization of the atom by remov-
ing an inner-shell electron from its orbit, so producing a characteristic x-ray or an
ejected Auger electron; it could have a collision with a valence electron to produce a
secondary electron; it could interact with the crystal lattice of the solid to generate
phonons; or, in one of several other possible ways, it could give up some of its
energy to the solid. These types of interactions in which the electron changes both
its direction of travel and its energy are examples of inelastic scattering events.
After traveling a further distance, the electron will then again be scattered, either
elastically or inelastically as before, and this process will continue until either the
electron gives up all of its energy to the solid and comes to thermal equilibrium with
it or until it manages to escape from the solid in some way.

While at a sufficiently atomistic level this train of scattering events is presum-
ably quite deterministic—given sufficient information about the electron and the
parameters describing it—to an observer able to watch the electron as it travels
through the solid, the sequence of events making up the trajectory for any given
electron would appear to be entirely random. Every electron would experience a
different set of scattering events and every trajectory would be unique. Since, in a
typical electron microscope, there are actually about 1019 electrons impinging on the
sample each second, it is clear that there is not likely to be any simple or compact
way to describe the spatial distribution of the innumerable interactions that can
occur or the various radiations resulting from these events. At best it will be possible
to assign probabilities to specific events, such as the chance of an electron being

3



4 MONTE CARLO MODELING

backscattered (i.e., being scattered through more than 90°) or of being transmitted
through the target; but any more detailed analysis of the interaction will be impossi-
ble. The Monte Carlo method described here uses such probabilities, together with the
idea of sampling by using random numbers, to compute one possible set of scattering
events for an electron as it travels into the solid. By repeating this process many times,
a statistically valid and detailed picture of the interaction process can be constructed.

1.2 The Monte Carlo method

One of the very earliest published papers on “Monte Carlo” methods (Kahn, 1950)
provides an excellent statement of the basis of the method—*“By applying random
sampling techniques to the problem [of interest] deductions about the behavior of a
large number of [electrons] are made from the study of comparatively few. The
technique is quite analogous to public opinion polling of a small sample to obtain
information concerning the population of the entire country.” The use of random
sampling to solve a mathematical problem can be characterized as follows. A game
of chance is played in which the probability of success P is a number whose value is
desired. If the game is played N times with » wins then #/N is an estimate of P. The
“game of chance” will be a direct analogy, or a simplified version, of the physical
problem to be solved. To play the game of chance on a computer, the roulette wheel
or dice are replaced by random numbers. The implication of a “random” number is
that any number within a specified range (usually O to 1) has an equal probability of
being selected, and all the digits that make up the number have an equal probability
(i.e., 1 in 10) of occurring. Thus to take a simple and relevant example, consider an
electron that can be scattered elastically or inelastically, the probability of either
occurrence being determined by its total cross section. If the probability that a given
scattering event is elastic is p, and p; is the probability of an inelastic scattering
event (and the sum of p, and p; is unity), then a choice could be made between the
two alternatives by picking a random number RND (0 < RND < 1) and specifying
that if RND = p,, then an elastic event occurs, otherwise an inelastic event is
assumed to have occurred. If this selection procedure is applied a large number of
times, then the predicted ratio of elastic to inelastic events will match the expected
probability derived from the given probabilities p, and p,, since a fraction p,
of the random numbers will be =<p,. Random numbers can also be used to make
other decisions. For example, if the probability p(6) of the electron being scattered
through some angle 6 is known, either experimentally or from some theoretical
model, then a specific scattering angle « can be obtained or picking another random
number and solving for a the equation:

f () db
RND = > (1.1)

j p(0) dé
0
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which equates RND to the probability of reaching the angle a given the known
distribution of p(8). By repeating these random-number sampling processes each
time a decision must be made, a Monte Carlo simulation of one particular electron
trajectory through the solid can be produced. The result of such a procedure is not
necessarily or even probably a trajectory representing one that could be observed
experimentally under equivalent conditions. However, by simulating a sufficiently
large number of such trajectories, a statistically significant mixture of all possible
scattering events will have been sampled and the composite result will be a sensible
approximation to experimental reality.

1.3 A brief history of Monte Carlo modeling

The first published example of the use of random numbers to solve a problem is
probably that of Buffon, who—in his 1777 volume Essai d’ Arithmetique Morale—
described an experiment in which needles of equal length were thrown at random
over a sheet marked with parallel lines. By counting the number of intersections
between lines and needles, Buffon was able to derive a value for 7. Subsequently,
other mathematicians and statisticians followed Buffon’s lead and made use of
random numbers as a way of testing theories and results. Because many of the
phenomena of interest to physicists in the early twentieth century, such as radioac-
tive decay or the transmission of cosmic rays through barriers, displayed an appar-
ently random behavior, it was also an obvious step to try to use random numbers to
investigate such problems. The procedure was to model, for example, a cosmic ray
interaction by permitting the “particle” to play a game of chance, the rules of the
game being such that the actual deterministic and random features of the physical
process were exactly imitated, step by step, by the game and in which random
numbers determined the “moves.”

During the Manhattan Project, which led to the development of the first atomic
bomb, John von Neumann, Stanislav Ulam, and others made innovative use of both
random-number sampling and game-playing situations involving random numbers
as a way of studying physical processes as diverse as particle diffusion and the
probability of a missile striking a flying aircraft. It was during this period that these
techniques were first dubbed “Monte Carlo methods” (Metropolis and Ulam, 1949;
MocCracken, 1955). Because the Monte Carlo method needs a large supply of ran-
dom numbers as well as much repetitious mathematical computation, the later
development of the technique was closely geared to the development of “automatic
computing machines.” As first mechanical and then electronic machines became
available during the 1950s, the technique found increasing application to problems
ranging in scope from diffusion studies in nuclear physics to the modeling of
population growth by the Bureau of the Census. A valuable bibliography of these
early papers and techniques can be found in Meyer (1956).

Although Monte Carlo methods had been applied to many other phenomena, it
was not until the work of Hebbard and Wilson (1955) that the method was suc-
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cessfully employed for charged particles. Later work by Sidei et al. (1957) and Leiss
et al. (1957) led to a major paper by Berger (1963) that laid the groundwork for
future developments. Simultaneously, in England, M. Green, a physics graduate
student in Cambridge working for V. E. Cosslett, was persuaded to investigate the
application of von Neumann’s Monte Carlo method, and the university’s EDSAC II
computer, to the scattering of electron beams. Taking experimental data on the
scattering of electrons in a 1000-A film as a starting point, Green (1963) and later
Bishop (1965) were able to derive the electron backscattering coefficient, and the
depth dependence of characteristic x-ray production, from a bulk sample and to
demonstrate good agreement with measured values. However, while this approach
showed the validity of the technique, it was limited in its application to those
situations where the suitably detailed initial experimental data were available. At the
4th International Conference on X-ray Optics and Microanalysis in Paris in 1965,
howeyver, two independent papers (Bishop, 1966; Shimizu et al., 1966) demonstrated
how theoretically based electron scattering distributions could replace and so gener-
alize experimental distributions; within a short time, groups in Europe, Japan, and
the United States had produced working programs based on this concept. One of the
most important of these was the one produced by Curgenven and Duncumb (1971)
working at the Tube Investments Laboratory in England. This program introduced
several new concepts, including the so-called multiple scattering approximation
discussed in Chapter 4 of this book, and was optimized to run on a relatively small
scientific computer. Copies of the FORTRAN code were generously made available
to interested laboratories throughout the world for their own use; as a result, this
program came into widespread use and made a significant contribution to populariz-
ing the idea that electron-solid interactions could be modeled conveniently and
accurately by computer.

By 1976, the use of this technique was sufficiently common for a conference
entitled “Use of Monte Carlo Calculations in Electron Probe Microanalysis and
Scanning Electron Microscopy” to be held at the National Bureau of Standards
(NBS) in Washington, D.C. The proceedings of that meeting (Heinrich et al., 1976)
still form one of the basic resources for information in this field, and programs,
algorithms, and procedures developed by the NBS group have formed the starting
point for many of the programs in current use, including those described in this
volume.

Apart from the very earliest examples, which were run by hand, using random
numbers generated by spinning a “wheel of chance” (Wilson, 1952) or on mechani-
cal desk calculators (e.g., Hayward and Hubbell, 1954), Monte Carlo programs were
designed to be run on the main-frame computers then becoming available in most
government and industrial laboratories and universities. Although such machines
were both large and expensive, their capabilities were very limited, and considerable
ingenuity was necessary to produce workable programs within the limits set by the
available memory (often as little as 2000 words) and operating time between crashes
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of the system. Nevertheless Monte Carlo programs were often cited as a prime
example of the new analytical power made available through electronic computing.
With the advent of personal computers (PCs), this power is now available to anyone
who needs it. Monte Carlo programs are, in most cases, relatively short in length and
can readily be run on any modern PC without encountering any problems with the
lack of memory. The programs are also computationally intensive, in the sense that
once the program has obtained all the necessary data, it performs calculations
continuously until its task is finished. This is not the ideal situation for a program
that is run on a time-shared main-frame computer because it means that the actual
computing time will depend directly on the number of users working on the machine
at any given time (unlike programs such as word processing, where the majority of
the computer’s time is spent in waiting for the operator to enter the next character
and multiple users produce little apparent drop in response speed). Consequently,
even on relatively powerful time-share systems, the computational speed experi-
enced by a user when running a Monte Carlo program can seem very slow; thus to
calculate a sufficient number of trajectories to produce an accurate result can cost a
lot of both time and money. While PCs do not, in general, perform the individual
computations as rapidly as the main frame, they are dedicated to one task; as a
result, their effective throughput can easily rival that of much larger machines. Also,
since access to PCs is often free or at least very cheap, over-lunch or even overnight
runs are no financial burden to the user. Finally, the interactive nature of PCs and the
ready access to graphical presentation that they provide offers the chance to make
programs that are both more accessible and more immediately useful.

1.4 About this book

This volume is not intended to replace standard textbooks on the general theory of
Monte Carlo sampling (such as those by Hammersley, 1964, and Schreider, 1966),
nor is it a substitute for a comprehensive guide to electron beam microscopy and
microanalysis (such as Goldstein et al., 1992). Rather, it is intended to provide
electron microscopists, microanalysts, and anyone concerned with the behavior of
electrons in solids with ready access to the power of the Monte Carlo method. It
therefore provides working Monte Carlo simulation routines for the modeling of
electron trajectories in a solid and discusses procedures to deal with associated
phenomena such as secondary electron and x-ray production. These procedures can
then be added to the basic simulation as required to produce a program customized
to tackle particular problems in image interpretation or microanalysis. The goal is to
make available simulations whose accuracy is at least as good as that likely to be
achieved in a comparable measurement or experiment on an electron microscope.
The programs have been developed and have been designed to be run on personal
computers rather than on scientific minicomputers or full size main-frame machines.
Even given the advanced PC designs now available, this has occasionally made it
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necessary to compromise between the completeness of the model and the speed of
execution. In most cases the choice has been for the version that is fast in operation,
since a good approximation available rapidly is much more useful than an exact
result that takes a day to compute. No claim is made that these programs represent
the best or even the only way to do the job. Indeed, a large number of other
approaches are cited in the text. This book will have achieved its purpose if you—
the user—feel ready, willing, and able to use the printed programs given here, or
those available on the accompanying disk, as the basis for your own experimenta-
tion and development.



2
CONSTRUCTING A SIMULATION

2.1 Introduction

In this chapter, we will develop a Monte Carlo simulation of a random walk
(sometimes called a “drunken walk,” after its most popular mode of experimental
investigation). Although this particular problem is only loosely related to the studies
of electron beam interactions that foliow, the model that we will develop provides a
convenient way of establishing a framework for those subsequent simulations. It
also illustrates the general principles of programming to be followed in this book
and introduces some of the important practical details associated with constructing
and running such models on a personal computer.

2.2 Describing the problem

The random walk problem can be stated as follows: “How far from the starting point
would a walker be after taking N steps of equal length but in randomly chosen
directions?” In order to simulate this problem, we must break it down to a sequence
of instructions, or algorithms, that allow us to describe it mathematically. Figure 2.1
shows the situation for one of the steps making up the walk. It commences from the
coordinate (x, y) reached at the conclusion of the previous step and is made at some
random angle A with the X-axis, so that:

A = 2w*RND 2.1

where RND is a random number between 0 and 1. The coordinates xn, yn of the end
of the step are then:

xn = x + step*cos(4) 2.2)

i

yn =y + step*sin(A) 2.3)
Equations (2.2) and (2.3) can be cast in a more symmetrical form by writing

B=(m?2)—-A 24

9
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W}

(xn,yn)

step

(x,y) =X

(xn-1,yn-1) step

Figure 2.1. Coordinate system for the random walk simulation.

so that
xn = x + step*cos(A4) 2.5
yn =y + step*cos(B) (2.6)

cos (A) and cos (B), the cosines of the angles between the vector representing the
direction of the step and the axes, are called the direction cosines and will in future
be abbreviated to CA and CB.

Although Egs. (2.1), (2.5), and (2.6) give an accurate mathematical description
of one step of the random walk, the axes of the coordinate system are constantly
changing as the walker moves from one step to the next. It would intuitively be more
satisfactory to describe the progress of the walker with respect to a fixed reference
frame of axes (such as the walls of the room), because this makes it possible to
predict when, for example, a collision might occur. With this description then, as
shown in Fig. 2.2:

6 = 2w*RND Q.7
A=X+0 (2.8)
B=(m?2)—-A=Y—8 (2.9)

where X, Y are the angles described by the direction cosines CX, CY for the previous
step, and A, B are the angles for the new direction cosines CA, CB. As before

xn = x + step*CA (2.10)
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YA

(xn,yn)

Figure 2.2. Modified coordinate description using fixed axes for the random walk.
yn =y + step*CB .11
and from the usual trigonometric expansions we get
CA = cos(X + 0) = CX*cos(8) — CY*sin(6) (2.12)
CB = cos(Y — 0) = CY*cos(0) + CY*sin(8) (2.13)

using the result that sin (X)) = cos (¥) and sin (Y) = cos (X). Equations (2.7), (2.10),
(2.11), (2.12), and (2.13) now describe how to calculate the end point of a step,
given its starting point. The next step can similarly be computed using the identical
equations but resetting the coordinates so that the old end point becomes the new
starting point and the exit direction cosines become the entry direction cosines:

x=xny=yn CX=CA CY=CB (2.14)
The recipe for simulating the random walk is therefore as follows:

Given a starting point (x,, y,) and a starting direction (CX, CY), then
Repeat the sequence
Find the deviation angle 8 [Eq. (2.7)]
Calculate the new direction cosines CA,CB [Eqgs. (2.12) and (2.13)]
Calculate the new coordinates xn,yn [Eqgs. (2.10) and (2.11)]
Then reset the coordinates for the next step
x =1xn,y=yn CX = CA CY =CB
until the required number of steps has been taken
Then distance s from starting point is s = Vix — X2 + (y — yo)?
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2.3 Programming the simulation

To carry out the simulation on a computer, the recipe given above must be expressed
in a form that the computer can understand. This requires that we choose one
computer language, from among the many now available, in which to code our
program. Unfortunately, any discussion of programming languages is liable to lead
to acrimony, because anyone who regularly uses a particular language and has
become used to its syntax and particular strengths and weaknesses can always find
sufficient reasons to prove that any other language is deficient in power or conve-
nience. However, stripped of the theological overtones so often accompanying this
sort of debate, the truth is that any of the languages now in common use on personal
computers could be used to code this and the following, Monte Carlo simulations
without a noticeable effect on the quality of the final product. But since it is not
practical to provide equivalent code for all possible languages, it is necessary to
choose just one arbitrarily, for whatever reasons seem appropriate, and work with
that.

Even though it might not have been your first or even your second choice, the
decision here has been to use PASCAL. The reasons for this decision were princi-
pally as follows:

1. PASCAL is a good example of a modern language. It allows for structured and
modular programming; it has a powerful yet simple syntax; and—since it is a
compiled language—it is fast in execution.

2. The style of a PASCAL program, in particular the use of indenting and the
availability of long descriptive variable names, leads to code that is easy to read
and understand.

3. Variants of PASCAL are commercially available for all computers likely to be
encountered in current use. Although there are slight differences between them,
the original definition of the language was sufficiently precise that these varia-
tions rarely pose a problem if a program must be moved from one version of
PASCAL to another.

4, Finally, if you cannot take PASCAL at any price, then—since other modern
languages such as QUICKBASIC, ADA, MODULA-2, or C now share so many
of the features of PASCAL—conversion from PASCAL to any other language of
your choice is straightforward. In fact, software is available that can effect such
transformations automatically in many cases.

The programs in this book are written in TURBO PASCAL™ (version 5.0),
which is perhaps the most widely used form of PASCAL for MS-DOS computers.
These programs will also compile and run, without any changes being necessary, in
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Microsoft QUICK PASCAL™ version 1.0 and higher. Other variants of PASCAL
and other types of computers may require some modifications to the code, especially
for the graphics commands. A disk (IBM/MS-DOS format) containing all of the
code discussed in this text, as both source code and as compiled and executable
code, is available from the author. Ordering details are given on the copyright page
of this book.

2.4 Reading a PASCAL program

The PASCAL program that implements the mathematical description derived above
for the random walk simulation is as follows:

Program Random_.walk;
{this stimulates a simple random walk with equal-length steps}

uses CRT,DOS,GRAPH; {resources required}

var
CA,CB,CX, CY:extended; {direction cosines}
x,%n,y,yn,theta,distance:extended; {step variables}
step:extended; {display variables}
hstart,vstart:integer; {screen center}
i,tries:integer; {counter variables}
GraphDriver:Integer; {which graphics card?}
GRAPHMODE: Integer; {which display mode?}
ErrorCode:Integer; {is there a problem?}
Xasp, Yasp:word; {aspect ratio of screen}

cons

twopi=6.28318; {27 constant}

Procedure set.up..screen;

{gets the required input data to run the simulation}

begin {ensures screen is clean}
ClrScr;
GoToXY (10,5);
writeln(’Random Walk Simulation’);

GoToXY (33,5); {get number of steps}
write( . . . . . . .. . how many steps?’});
readln(tries);

end;

Procedure initialize;
{identify which graphics card is in use and initialize it}
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var
InGraphicsMode:Boolean;
PathToDriver:String;

begin
DirectVideo:=False;
PathToDriver:="'"';
GraphDriver:=detect;
InitGraph (GraphDriver, GRAPHMODE, PathToDriver) ;

SetViewPort (0, 0, GetMaxX, GetMaxy, True) ; {clip view port}

hstart:=trunc(GetMaxX/2); {horizontal midpoint of screen}

vstart:=trunc(GetMaxY/2); {vertical midpoint of screen}

step: = (GetMaxX/50) ; {a suitable increment}

GetAspectRatio(Xasp, Yasp): {find aspect ratio of this display}
end;

Procedure initialize_coordinates;

{set up the starting values of all the parametersy

begin
x:=0;
y:=0;
CX:=1.0;
CY:=0.0;
randomize; {and reset the random-number generator}
end;

Procedure new_coord;

{computes the new coordinates xn,yn given x,y, CX,CY and theta}

var
V1,V2:extended;

begin

Vl1:=cos{theta);
V2:=sin(theta);

CA:=CX*Vl — CY*V2; {new direction cosines}
CB:=CY*V1 + CX*V2;

xn:= X + step*CA;
yn:= y + step*CB; {new coordinates}

end;



