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Preface

This book tells about lives in science, specifically the lives of thirty from the

pantheon of physics. Some of the names are familiar (Newton, Einstein, Curie,

Heisenberg, Bohr), while others may not be (Clausius, Gibbs, Meitner, Dirac,

Chandrasekhar). All were, or are, extraordinary human beings, at least as fasci-

nating as their subjects. The short biographies in the book tell the stories of both

the people and their physics.

The chapters are varied in format and length, depending on the (sometimes

skimpy) biographical material available. Some chapters are equipped with short

sections (entitled “Lessons”) containing background information on topics in

mathematics, physics, and chemistry for the uninformed reader.

Conventional wisdom holds that general readers are frightened of mathemat-

ical equations. I have not taken that advice, and have included equations in some

of the chapters. Mathematical equations express the language of physics: you

can’t get the message without learning something about the language. That

should be possible if you have a rudimentary (high school) knowledge of algebra,

and, if required, you pay attention to the “Lessons” sections. The glossary and

chronology may also prove helpful. For more biographical material, consult the

works cited in the “Invitation to More Reading” section.

No claim is made that this is a comprehensive or scholarly study; it is intended

as recreational reading for scientists and students of science (formal or informal).

My modest hope is that you will read these chapters casually and for entertain-

ment, and learn the lesson that science is, after all, a human endeavor.

William H. Cropper
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i
MECHANICS
Historical Synopsis

Physics builds from observations. No physical theory can succeed if

it is not confirmed by observations, and a theory strongly supported

by observations cannot be denied. For us, these are almost truisms.

But early in the seventeenth century these lessons had not yet been

learned. The man who first taught that observations are essential and

supreme in science was Galileo Galilei.

Galileo first studied the motion of terrestrial objects, pendulums,

free-falling balls, and projectiles. He summarized what he observed

in the mathematical language of proportions. And he extrapolated

from his experimental data to a great idealization now called the

“inertia principle,” which tells us, among other things, that an object

projected along an infinite, frictionless plane will continue forever at

a constant velocity. His observations were the beginnings of the

science of motion we now call “mechanics.”

Galileo also observed the day and night sky with the newly

invented telescope. He saw the phases of Venus, mountains on the

Moon, sunspots, and the moons of Jupiter. These celestial

observations dictated a celestial mechanics that placed the Sun at

the center of the universe. Church doctrine had it otherwise: Earth

was at the center. The conflict between Galileo’s telescope and

Church dogma brought disaster to Galileo, but in the end the

telescope prevailed, and the dramatic story of the confrontation

taught Galileo’s most important lesson.

Galileo died in 1642. In that same year, his greatest successor,

Isaac Newton, was born. Newton built from Galileo’s foundations a

system of mechanics based on the concepts of mass, momentum,

and force, and on three laws of motion. Newton also invented a

mathematical language (the “fluxion” method, closely related to our

present-day calculus) to express his mechanics, but in an odd

historical twist, rarely applied that language himself.

Newton’s mechanics had—and still has—cosmic importance. It

applies to the motion of terrestrial objects, and beyond that to

planets, stars, and galaxies. The grand unifying concept is Newton’s

theory of universal gravitation, based on the concept that all objects,
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small, large, and astronomical (with some exotic exceptions), attract

one another with a force that follows a simple inverse-square law.

Galileo and Newton were the founders of modern physics. They

gave us the rules of the game and the durable conviction that the

physical world is comprehensible.



1
How the Heavens Go
Galileo Galilei

The Tale of the Tower

Legend has it that a young, ambitious, and at that moment frustrated mathematics

professor climbed to the top of the bell tower in Pisa one day, perhaps in 1591,

with a bag of ebony and lead balls. He had advertised to the university com-

munity at Pisa that he intended to disprove by experiment a doctrine originated

by Aristotle almost two thousand years earlier: that objects fall at a rate propor-

tional to their weight; a ten-pound ball would fall ten times faster than a one-

pound ball. With a flourish the young professor signaled to the crowd of amused

students and disapproving philosophy professors below, selected balls of the

same material but with much different weights, and dropped them. Without air

resistance (that is, in a vacuum), two balls of different weights (and made of any

material) would have reached the ground at the same time. That did not happen

in Pisa on that day in 1591, but Aristotle’s ancient principle was clearly violated

anyway, and that, the young professor told his audience, was the lesson. The

students cheered, and the philosophy professors were skeptical.

The hero of this tale was Galileo Galilei. He did not actually conduct that

“experiment” from the Tower of Pisa, but had he done so it would have been

entirely in character. Throughout his life, Galileo had little regard for authority,

and one of his perennial targets was Aristotle, the ultimate authority for univer-

sity philosophy faculties at the time. Galileo’s personal style was confronta-

tional, witty, ironic, and often sarcastic. His intellectual style, as the Tower

story instructs, was to build his theories with an ultimate appeal to obser-

vations.

The philosophers of Pisa were not impressed with either Galileo or his meth-

ods, and would not have been any more sympathetic even if they had witnessed

the Tower experiment. To no one’s surprise, Galileo’s contract at the University

of Pisa was not renewed.
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Padua

But Galileo knew how to get what he wanted. He had obtained the Pisa post with

the help of the Marquis Guidobaldo del Monte, an influential nobleman and

competent mathematician. Galileo now aimed for the recently vacated chair of

mathematics at the University of Padua, and his chief backer in Padua was Gian-

vincenzio Pinelli, a powerful influence in the cultural and intellectual life of

Padua. Galileo followed Pinelli’s advice, charmed the examiners, and won the

approval of the Venetian senate (Padua was located in the Republic of Venice,

about twenty miles west of the city of Venice). His inaugural lecture was a

sensation.

Padua offered a far more congenial atmosphere for Galileo’s talents and life-

style than the intellectual backwater he had found in Pisa. In the nearby city of

Venice, he found recreation and more—aristocratic friends. Galileo’s favorite de-

bating partner among these was Gianfrancesco Sagredo, a wealthy nobleman with

an eccentric manner Galileo could appreciate. With his wit and flair for polemics,

Galileo was soon at home in the city’s salons. He took a mistress, Marina Gamba,

described by one of Galileo’s biographers, James Reston, Jr., as “hot-tempered,

strapping, lusty and probably illiterate.” Galileo and Marina had three children:

two daughters, Virginia and Livia, and a son, Vincenzo. In later life, when tragedy

loomed, Galileo found great comfort in the company of his elder daughter,

Virginia.

During his eighteen years in Padua (1592–1610), Galileo made some of his

most important discoveries in mechanics and astronomy. From careful observa-

tions, he formulated the “times-squared” law, which states that the vertical dis-

tance covered by an object in free fall or along an inclined plane is proportional

to the square of the time of the fall. (In modern notation, the equation for free

fall is expressed , with s and t the vertical distance and time of the fall,
2gt

s �
2

and g the acceleration of gravity.) He defined the laws of projected motion with

a controlled version of the Tower experiment in which a ball rolled down an

inclined plane on a table, then left the table horizontally or obliquely and

dropped to the floor. Galileo found that he could make calculations that agreed

approximately with his experiments by resolving projected motion into two com-

ponents, one horizontal and the other vertical. The horizontal component was

determined by the speed of the ball when it left the table, and was “conserved”—

that is, it did not subsequently change. The vertical component, due to the ball’s

weight, followed the times-squared rule.

For many years, Galileo had been fascinated by the simplicity and regularity

of pendulum motion. He was most impressed by the constancy of the pendulum’s

“period,” that is, the time the pendulum takes to complete its back-and-forth

cycle. If the pendulum’s swing is less than about 30�, its period is, to a good

approximation, dependent only on its length. (Another Galileo legend pictures

him as a nineteen-year-old boy in church, paying little attention to the service,

and timing with his pulse the swings of an oil lamp suspended on a wire from

a high ceiling.) In Padua, Galileo confirmed the constant-period rule with exper-

iments, and then uncovered some of the pendulum’s more subtle secrets.

In 1609, word came to Venice that spectacle makers in Holland had invented

an optical device—soon to be called a telescope—that brought distant objects



Galileo Galilei 7

much closer. Galileo immediately saw a shining opportunity. If he could build a

prototype and demonstrate it to the Venetian authorities before Dutch entrepre-

neurs arrived on the scene, unprecedented rewards would follow. He knew

enough about optics to guess that the Dutch design was a combination of a con-

vex and a concave lens, and he and his instrument maker had the exceptional

skill needed to grind the lenses. In twenty-four hours, according to Galileo’s own

account, he had a telescope of better quality than any produced by the Dutch

artisans. Galileo could have demanded, and no doubt received, a large sum for

his invention. But fame and influence meant more to him than money. In an

elaborate ceremony, he gave an eight-power telescope to Niccolò Contarini, the

doge of Venice. Reston, in Galileo, paints this picture of the presentation of the

telescope: “a celebration of Venetian genius, complete with brocaded advance

men, distinguished heralds and secret operatives. Suddenly, the tube represented

the flowering of Paduan learning.” Galileo was granted a large bonus, his salary

was doubled, and he was reappointed to his faculty position for life.

Then Galileo turned his telescope to the sky, and made some momentous, and

as it turned out fateful, discoveries. During the next several years, he observed

the mountainous surface of the Moon, four of the moons of Jupiter, the phases

of Venus, the rings of Saturn (not quite resolved by his telescope), and sunspots.

In 1610, he published his observations in The Starry Messenger, which was an

immediate sensation, not only in Italy but throughout Europe.

But Galileo wanted more. He now contrived to return to Tuscany and Florence,

where he had spent most of his early life. The grand duke of Tuscany was the

young Cosimo de Medici, recently one of Galileo’s pupils. To further his cause,

Galileo dedicated The Starry Messenger to the grand duke and named the four

moons of Jupiter the Medicean satellites. The flattery had its intended effect.

Galileo soon accepted an astonishing offer from Florence: a salary equivalent to

that of the highest-paid court official, no lecturing duties—in fact, no duties of

any kind—and the title of chief mathematician and philosopher for the grand

duke of Tuscany. In Venice and Padua, Galileo left behind envy and bitterness.

Florence and Rome

Again the gregarious and witty Galileo found intellectual companions among the

nobility. Most valued now was his friendship with the young, talented, and skep-

tical Filippo Salviati. Galileo and his students were regular visitors at Salviati’s

beautiful villa fifteen miles from Florence. But even in this idyll Galileo was

restless. He had one more world to conquer: Rome—that is, the Church. In 1611,

Galileo proposed to the grand duke’s secretary of state an official visit to Rome

in which he would demonstrate his telescopes and impress the Vatican with the

importance of his astronomical discoveries.

This campaign had its perils. Among Galileo’s discoveries was disturbing ev-

idence against the Church’s doctrine that Earth was the center of the universe.

The Greek astronomer and mathematician Ptolemy had advocated this cosmology

in the second century, and it had long been Church dogma. Galileo could see in

his observations evidence that the motion of Jupiter’s moons centered on Jupiter,

and, more troubling, in the phases of Venus that the motion of that planet cen-

tered on the Sun. In the sixteenth century, the Polish astronomer Nicolaus Co-

pernicus had proposed a cosmology that placed the Sun at the center of the

universe. By 1611, when he journeyed to Rome, Galileo had become largely con-
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verted to Copernicanism. Holy Scripture also regarded the Moon and the Sun as

quintessentially perfect bodies; Galileo’s telescope had revealed mountains and

valleys on the Moon and spots on the Sun.

But in 1611 the conflict between telescope and Church was temporarily sub-

merged, and Galileo’s stay was largely a success. He met with the autocratic Pope

Paul V and received his blessing and support. At that time and later, the intel-

lectual power behind the papal throne was Cardinal Robert Bellarmine. It was

his task to evaluate Galileo’s claims and promulgate an official position. He, in

turn, requested an opinion from the astronomers and mathematicians at the Jesuit

Collegio Romano, who reported doubts that the telescope really revealed moun-

tains on the Moon, but more importantly, trusted the telescope’s evidence for the

phases of Venus and the motion of Jupiter’s moons.

Galileo found a new aristocratic benefactor in Rome. He was Prince Frederico

Cesi, the founder and leader of the “Academy of Lynxes,” a secret society whose

members were “philosophers who are eager for real knowledge, and who will

give themselves to the study of nature, and especially to mathematics.” The mem-

bers were young, radical, and, true to the lynx metaphor, sharp-eyed and ruthless

in their treatment of enemies. Galileo was guest of honor at an extravagant ban-

quet put on by Cesi, and shortly thereafter was elected as one of the Lynxes.

Galileo gained many influential friends in Rome and Florence—and, inevita-

bly, a few dedicated enemies. Chief among those in Florence was Ludovico della

Colombe, who became the self-appointed leader of Galileo’s critics. Colombe

means “dove” in Italian. Galileo expressed his contempt by calling Colombe and

company the “Pigeon League.”

Late in 1611, Colombe, whose credentials were unimpressive, went on the

attack and challenged Galileo to an intellectual duel: a public debate on the

theory of floating bodies, especially ice. A formal challenge was delivered to

Galileo by a Pisan professor, and Galileo cheerfully responded, “Ever ready to

learn from anyone, I should take it as a favor to converse with this friend of yours

and reason about the subject.” The site of the debate was the Pitti Palace. In the

audience were two cardinals, Grand Duke Cosimo, and Grand Duchess Christine,

Cosimo’s mother. One of the cardinals was Maffeo Barberini, who would later

become Pope Urban VIII and play a major role in the final act of the Galileo

drama.

In the debate, Galileo took the view that ice and other solid bodies float be-

cause they are lighter than the liquid in which they are immersed. Colombe held

to the Aristotelian position that a thin, flat piece of ice floats in liquid water

because of its peculiar shape. As usual, Galileo built his argument with demon-

strations. He won the audience, including Cardinal Barberini, when he showed

that pieces of ebony, even in very thin shapes, always sank in water, while a

block of ice remained on the surface.

The Gathering Storm

The day after his victory in the debate, Galileo became seriously ill, and he

retreated to Salviati’s villa to recuperate. When he had the strength, Galileo sum-

marized in a treatise his views on floating bodies, and, with Salviati, returned to

the study of sunspots. They mapped the motion of large spots as the spots trav-

eled across the sun’s surface near the equator from west to east.

Then, in the spring of 1612, word came that Galileo and Salviati had a com-
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petitor. He called himself Apelles. (He was later identified as Father Christopher

Scheiner, a Jesuit professor of mathematics in Bavaria.) To Galileo’s dismay, Apel-

les claimed that his observations of sunspots were the first, and explained the

spots as images of stars passing in front of the sun. Not only was the interloper

encroaching on Galileo’s priority claim, but he was also broadcasting a false in-

terpretation of the spots. Galileo always had an inclination to paranoia, and it

now had the upper hand. He sent a series of bold letters to Apelles through an

intermediary, and agreed with Cesi that the letters should be published in Rome

by the Academy of Lynxes. In these letters Galileo asserted for the first time his

adherence to the Copernican cosmology. As evidence he recalled his observations

of the planets: “I tell you that [Saturn] also, no less than the horned Venus agrees

admirably with the great Copernican system. Favorable winds are now blowing

on that system. Little reason remains to fear crosswinds and shadows on so bright

a guide.”

Galileo soon had another occasion to proclaim his belief in Copernicanism.

One of his disciples, Benedetto Castelli, occupied Galileo’s former post, the chair

of mathematics at Pisa. In a letter to Galileo, Castelli wrote that recently he had

had a disturbing interview with the pious Grand Duchess Christine. “Her Lady-

ship began to argue against me by means of the Holy Scripture,” Castelli wrote.

Her particular concern was a passage from the Book of Joshua that tells of God

commanding the Sun to stand still so Joshua’s retreating enemies could not es-

cape into the night. Did this not support the doctrine that the Sun moved around

Earth and deny the Copernican claim that Earth moved and the Sun was

stationary?

Galileo sensed danger. The grand duchess was powerful, and he feared that

he was losing her support. For the first time he openly brought his Copernican

views to bear on theological issues. First he wrote a letter to Castelli. It was

sometimes a mistake, he wrote, to take the words of the Bible literally. The Bible

had to be interpreted in such a way that there was no contradiction with direct

observations: “The task of wise interpreters is to find true meanings of scriptural

passages that will agree with the evidence of sensory experience.” He argued that

God could have helped Joshua just as easily under the Copernican cosmology as

under the Ptolemaic.

The letter to Castelli, which was circulated and eventually published, brought

no critical response for more than a year. In the meantime, Galileo took more

drastic measures. He expanded the letter, emphasizing the primacy of observa-

tions over doctrine when the two were in conflict, and addressed it directly to

Grand Duchess Christine. “The primary purpose of the Holy Writ is to worship

God and save souls,” he wrote. But “in disputes about natural phenomena, one

must not begin with the authority of scriptural passages, but with sensory ex-

perience and necessary demonstrations.” He recalled that Cardinal Cesare Bar-

onius had once said, “The Bible tells us how to go to Heaven, not how the

heavens go.”

The first attack on Galileo from the pulpit came from a young Dominican priest

named Tommaso Caccini, who delivered a furious sermon centering on the mir-

acle of Joshua, and the futility of understanding such grand events without faith

in established doctrine. This was a turning point in the Galileo story. As Reston

puts it: “Italy’s most famous scientist, philosopher to the Grand Duke of Tuscany,

intimate of powerful cardinals in Rome, stood accused publicly of heresy from

an important pulpit, by a vigilante of the faith.” Caccini and Father Niccolò
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Lorini, another Dominican priest, now took the Galileo matter to the Roman

Inquisition, presenting as evidence for heresy the letter to Castelli.

Galileo could not ignore these events. He would have to travel to Rome and

face the inquisitors, probably influenced by Cardinal Bellarmine, who had, four

years earlier, reported favorably on Galileo’s astronomical observations. But once

again Galileo was incapacitated for months by illness. Finally, in late 1615 he

set out for Rome.

As preparation for the inquisitors, a Vatican commission had examined the

Copernican doctrine and found that its propositions, such as placing the Sun at

the center of the universe, were “foolish and absurd and formally heretical.” On

February 25, 1616, the Inquisition met and received instructions from Pope Paul

to direct Galileo not to teach or defend or discuss Copernican doctrine. Disobe-

dience would bring imprisonment.

In the morning of the next day, Bellarmine and an inquisitor presented this

injunction to Galileo orally. Galileo accepted the decision without protest and

waited for the formal edict from the Vatican. That edict, when it came a few

weeks later, was strangely at odds with the judgment delivered earlier by Bellar-

mine. It did not mention Galileo or his publications at all, but instead issued a

general restriction on Copernicanism: “It has come to the knowledge of the Sa-

cred Congregation that the false Pythagorean doctrine, namely, concerning the

movement of the Earth and immobility of the Sun, taught by Nicolaus Coperni-

cus, and altogether contrary to the Holy Scripture, is already spread about and

received by many persons. Therefore, lest any opinion of this kind insinuate itself

to the detriment of Catholic truth, the Congregation has decreed that the works

of Nicolaus Copernicus be suspended until they are corrected.”

Galileo, always an optimist, was encouraged by this turn of events. Despite

Bellarmine’s strict injunction, Galileo had escaped personal censure, and when

the “corrections” to Copernicus were spelled out they were minor. Galileo re-

mained in Rome for three months, and found occasions to be as outspoken as

ever. Finally, the Tuscan secretary of state advised him not to “tease the sleeping

dog further,” adding that there were “rumors we do not like.”

Comets, a Manifesto, and a Dialogue

In Florence again, Galileo was ill and depressed during much of 1617 and 1618.

He did not have the strength to comment when three comets appeared in the

night sky during the last four months of 1618. He was stirred to action, however,

when Father Horatio Grassi, a mathematics professor at the Collegio Romano and

a gifted scholar, published a book in which he argued that the comets provided

fresh evidence against the Copernican cosmology. At first Galileo was too weak

to respond himself, so he assigned the task to one of his disciples, Mario Gui-

ducci, a lawyer and graduate of the Collegio Romano. A pamphlet, Discourse on

Comets, was published under Guiducci’s name, although the arguments were

clearly those of Galileo.

This brought a worthy response from Grassi, and in 1621 and 1622 Galileo

was sufficiently provoked and healthy to publish his eloquent manifesto, The

Assayer. Here Galileo proclaimed, “Philosophy is written in this grand book the

universe, which stands continually open to our gaze. But the book cannot be

understood unless one first learns to comprehend the language and to read the

alphabet in which it is composed. It is written in the language of mathematics,
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and its characters are triangles, circles and other geometric figures, without

which it is humanly impossible to understand a single word of it; without these,

one wanders about in a dark labyrinth.”

The Assayer received Vatican approval, and Cardinal Barberini, who had sup-

ported Galileo in his debate with della Colombe, wrote in a friendly and reas-

suring letter, “We are ready to serve you always.” As it turned out, Barberini’s

good wishes could hardly have been more opportune. In 1623, he was elected

pope and took the name Urban VIII.

After recovering from a winter of poor health, Galileo again traveled to Rome

in the spring of 1624. He now went bearing microscopes. The original microscope

design, like that of the telescope, had come from Holland, but Galileo had greatly

improved the instrument for scientific uses. Particularly astonishing to the Ro-

man cognoscenti were magnified images of insects.

Shortly after his arrival in Rome, Galileo had an audience with the recently

elected Urban VIII. Expecting the former Cardinal Barberini again to promise

support, Galileo found to his dismay a different persona. The new pope was

autocratic, given to nepotism, long-winded, and obsessed with military cam-

paigns. Nevertheless, Galileo left Rome convinced that he still had a clear path.

In a letter to Cesi he wrote, “On the question of Copernicus His Holiness said

that the Holy Church had not condemned, nor would condemn his opinions as

heretical, but only rash. So long as it is not demonstrated as true, it need not be

feared.”

Galileo’s strategy now was to present his arguments hypothetically, without

claiming absolute truth. His literary device was the dialogue. He created three

characters who would debate the merits of the Copernican and Aristotelian sys-

tems, but ostensibly the debate would have no resolution. Two of the characters

were named in affectionate memory of his Florentine and Venetian friends, Gian-

francesco Sagredo and Filippo Salviati, who had both died. In the dialogue Sal-

viati speaks for Galileo, and Sagredo as an intelligent layman. The third character

is an Aristotelian, and in Galileo’s hands earns his name, Simplicio.

The dialogue, with the full title Dialogue Concerning the Two Chief World

Systems, occupied Galileo intermittently for five years, between 1624 and 1629.

Finally, in 1629, it was ready for publication and Galileo traveled to Rome to

expedite approval by the Church. He met with Urban and came away convinced

that there were no serious obstacles.

Then came some alarming developments. First, Cesi died. Galileo had hoped

to have his Dialogue published by Cesi’s Academy of Lynxes, and had counted

on Cesi as his surrogate in Rome. Now with the death of Cesi, Galileo did not

know where to turn. Even more alarming was an urgent letter from Castelli ad-

vising him to publish the Dialogue as soon as possible in Florence. Galileo

agreed, partly because at the time Rome and Florence were isolated by an epi-

demic of bubonic plague. In the midst of the plague, Galileo found a printer in

Florence, and the printing was accomplished. But approval by the Church was

not granted for two years, and when the Dialogue was finally published it con-

tained a preface and conclusion written by the Roman Inquisitor. At first, the

book found a sympathetic audience. Readers were impressed by Galileo’s accom-

plished use of the dialogue form, and they found the dramatis personae, even

the satirical Simplicio, entertaining.

In August 1632, Galileo’s publisher received an order from the Inquisition to

cease printing and selling the book. Behind this sudden move was the wrath of
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Urban, who was not amused by the clever arguments of Salviati and Sagredo,

and the feeble responses of Simplicio. He even detected in the words of Simplicio

some of his own views. Urban appointed a committee headed by his nephew,

Cardinal Francesco Barberini, to review the book. In September, the committee

reported to Urban and the matter was handed over to the Inquisition.

Trial

After many delays—Galileo was once again seriously ill, and the plague had

returned—Galileo arrived in Rome in February 1633 to defend himself before the

Inquisition. The trial began on April 12. The inquisitors focused their attention

on the injunction Bellarmine had issued to Galileo in 1616. Francesco Niccolini,

the Tuscan ambassador to Rome, explained it this way to his office in Florence:

“The main difficulty consists in this: these gentlemen [the inquisitors] maintain

that in 1616 he [Galileo] was commanded neither to discuss the question of the

earth’s motion nor to converse about it. He says, to the contrary, that these were

not the terms of the injunction, which were that that doctrine was not to be held

or defended. He considers that he has the means of justifying himself since it

does not appear at all from his book that he holds or defends the doctrine . . . or

that he regards it as a settled question.” Galileo offered in evidence a letter from

Bellarmine, which bolstered his claim that the inquisitors’ strict interpretation

of the injunction was not valid.

Historians have argued about the weight of evidence on both sides, and on a

strictly legal basis, concluded that Galileo had the stronger case. (Among other

things, the 1616 injunction had never been signed or witnessed.) But for the

inquisitors, acquittal was not an option. They offered what appeared to be a

reasonable settlement: Galileo would admit wrongdoing, submit a defense, and

receive a light sentence. Galileo agreed and complied. But when the sentence

came on June 22 it was far harsher than anything he had expected: his book was

to be placed on the Index of Prohibited Books, and he was condemned to life

imprisonment.

Last Act

Galileo’s friends always vastly outnumbered his enemies. Now that he had been

defeated by his enemies, his friends came forward to repair the damage. Ambas-

sador Niccolini managed to have the sentence commuted to custody under the

Archbishop Ascanio Piccolomini of Siena. Galileo’s “prison” was the arch-

bishop’s palace in Siena, frequented by poets, scientists, and musicians, all of

whom arrived to honor Galileo. Gradually his mind returned to the problems of

science, to topics that were safe from theological entanglements. He planned a

dialogue on “two new sciences,” which would summarize his work on natural

motion (one science) and also address problems related to the strengths of ma-

terials (the other science). His three interlocutors would again be named Salviati,

Sagredo, and Simplicio, but now they would represent three ages of the author:

Salviati, the wise Galileo in old age; Sagredo, the Galileo of the middle years in

Padua; and Simplicio, a youthful Galileo.

But Galileo could not remain in Siena. Letters from his daughter Virginia, now

Sister Maria Celeste in the convent of St. Matthew in the town of Arcetri, near

Florence, stirred deep memories. Earlier he had taken a villa in Arcetri to be near
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Virginia and his other daughter, Livia, also a sister at the convent. He now ap-

pealed to the pope for permission to return to Arcetri. Eventually the request was

granted, but only after word had come that Maria Celeste was seriously ill, and

more important, after the pope’s agents had reported that the heretic’s comfort-

able “punishment” in Siena did not fit the crime. The pope’s edict directed that

Galileo return to his villa and remain guarded there under house arrest.

Galileo took up residence in Arcetri in late 1633, and for several months at-

tended Virginia in her illness. She did not recover, and in the spring of 1634,

she died. For Galileo this was almost the final blow. But once again work was

his restorative. For three years he concentrated on his Discourses on Two New

Sciences. That work, his final masterpiece, was completed in 1637, and in 1638

it was published (in Holland, after the manuscript was smuggled out of Italy).

By this time Galileo had gone blind. Only grudgingly did Urban permit Galileo

to travel the short distance to Florence for medical treatment.

But after all he had endured, Galileo never lost his faith. “Galileo’s own con-

science was clear, both as Catholic and as scientist,” Stillman Drake, a contem-

porary science historian, writes. “On one occasion he wrote, almost in despair,

that he felt like burning all his work in science; but he never so much as thought

of turning his back on his faith. The Church turned its back on Galileo, and has

suffered not a little for having done so; Galileo blamed only some wrong-headed

individuals in the Church for that.”

Methods

Galileo’s mathematical equipment was primitive. Most of the mathematical meth-

ods we take for granted today either had not been discovered or had not come

into reliable use in Galileo’s time. He did not employ algebraic symbols or equa-

tions, or, except for tangents, the concepts of trigonometry. His numbers were

always expressed as positive integers, never as decimals. Calculus, discovered

later by Newton and Gottfried Leibniz, was not available. To make calculations

he relied on ratios and proportionalities, as defined in Euclid’s Elements. His

reasoning was mostly geometric, also learned from Euclid.

Galileo’s mathematical style is evident in his many theorems on uniform and

accelerated motion; here a few are presented and then “modernized” through

translation into the language of algebra. The first theorem concerns uniform mo-

tion:

If a moving particle, carried uniformly at constant speed, traverses two dis-

tances, the time intervals required are to each other in the ratio of these

distances.

For us (but not for Galileo) this theorem is based on the algebraic equation s �
vt, in which s represents distance, v speed, and t time. This is a familiar calcu-

lation. For example, if you travel for three hours (t � 3 hours) at sixty miles per

hour (v � 60 miles per hour), the distance you have covered is 180 miles (s � 3

� 60 � 180 miles). In Galileo’s theorem, we calculate two distances, call them

s1 and s2, for two times, t1 and t2, at the same speed, v. The two calculations are

s � vt and s � vt1 1 2 2
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Dividing the two sides of these equations into each other, we get the ratio of

Galileo’s theorem,

t s1 1� .
t s2 2

Here is a more complicated theorem, which does not require that the two

speeds be equal:

If two particles are moved at a uniform rate, but with unequal speeds, through

unequal distances, then the ratio of time intervals occupied will be the product

of the ratio of the distances by the inverse ratio of the speeds.

In this theorem, there are two different speeds, v1 and v2, involved, and the two

equations are

s � v t and s � v t .1 1 1 2 2 2

Dividing both sides of the equations into each other again, we have

s v t1 1 1� .
s v t2 2 2

To finish the proof of the theorem, we multiply both sides of this equation by

and obtain
v2
v1

t s v1 1 2� .
t s v2 2 1

On the right side now is a product of the direct ratio of the distances and the
s1
s2

inverse ratio of the speeds , as required by the theorem.
v2
v1

These theorems assume that any speed v is constant; that is, the motion is not

accelerated. One of Galileo’s most important contributions was his treatment of

uniformly accelerated motion, both in free fall and down inclined planes. “Uni-

formly” here means that the speed changes by equal amounts in equal time in-

tervals. If the uniform acceleration is represented by a, the change in the speed

v in time t is calculated with the equation v � at. For example, if you accelerate

your car at the uniform rate a � 5 miles per hour per second for t � 10 seconds,

your final speed will be v � 5 � 10 � 50 miles per hour. A second equation,

, calculates s, the distance covered in time t under the uniform accelera-
2at

s �
2

tion a. This equation is not so familiar as the others mentioned. It is most easily

justified with the methods of calculus, as will be demonstrated in the next

chapter.

The motion of a ball of any weight dropping in free fall is accelerated in the

vertical direction, that is, perpendicular to Earth’s surface, at a rate that is con-
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ventionally represented by the symbol g, and is nearly the same anywhere on

Earth. For the case of free fall, with a � g, the last two equations mentioned are

v � gt, for the speed attained in free fall in the time t, and for the cor-
2gt

s �
2

responding distance covered.

Galileo did not use the equation , but he did discover through experi-
2gt

s �
2

mental observations the times-squared (t2) part of it. His conclusion is expressed

in the theorem,

The spaces described by a body falling from rest with a uniformly accelerated

motion are to each other as the squares of the time intervals employed in tra-

versing these distances.

Our modernized proof of the theorem begins by writing the free-fall equation

twice,

2 2gt gt1 2
s � and s � ,1 2

2 2

and combining these two equations to obtain

2s t1 1� .
2s t2 2

In addition to his separate studies of uniform and accelerated motion, Galileo

also treated a composite of the two in projectile motion. He proved that the

trajectory followed by a projectile is parabolic. Using a complicated geometric

method, he developed a formula for calculating the dimensions of the parabola

followed by a projectile (for example, a cannonball) launched upward at any

angle of elevation. The formula is cumbersome compared to the trigonometric

method we use today for such calculations, but no less accurate. Galileo dem-

onstrated the use of his method by calculating with remarkable precision a de-

tailed table of parabola dimensions for angles of elevation from 1� to 89�.
In contrast to his mathematical methods, derived mainly from Euclid, Galileo’s

experimental methods seem to us more modern. He devised a system of units

that parallels our own and that served him well in his experiments on pendulum

motion. His measure of distance, which he called a punto, was equivalent to

0.094 centimeter. This was the distance between the finest divisions on a brass

rule. For measurements of time he collected and weighed water flowing from a

container at a constant rate of about three fluid ounces per second. He recorded

weights of water in grains (1 ounce � 480 grains), and defined his time unit,

called a tempo, to be the time for 16 grains of water to flow, which was equivalent

to 1/92 second. These units were small enough so Galileo’s measurements of

distance and time always resulted in large numbers. That was a necessity because

decimal numbers were not part of his mathematical equipment; the only way he

could add significant digits in his calculations was to make the numbers larger.
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Legacy

Galileo took the metaphysics out of physics, and so begins the story that will

unfold in the remaining chapters of this book. As Stephen Hawking writes, “Ga-

lileo, perhaps more than any single person, was responsible for the birth of mod-

ern science. . . . Galileo was one of the first to argue that man could hope to

understand how the world works, and, moreover, that he could do this by ob-

serving the real world.” No practicing physicist, or any other scientist for that

matter, can do his or her work without following this Galilean advice.

I have already mentioned many of Galileo’s specific achievements. His work

in mechanics is worth sketching again, however, because it paved the way for

his greatest successor. (Galileo died in January 1642. On Christmas Day of that

same year, Isaac Newton was born.) Galileo’s mechanics is largely concerned with

bodies moving at constant velocity or under constant acceleration, usually that

of gravity. In our view, the theorems that define his mechanics are based on the

equations v � gt and , but Galileo did not write these, or any other, al-
2gt

s �
2

gebraic equations; for his numerical calculations he invoked ratios and propor-

tionality. He saw that projectile motion was a resultant of a vertical component

governed by the acceleration of gravity and a constant horizontal component

given to the projectile when it was launched. This was an early recognition that

physical quantities with direction, now called “vectors,” could be resolved into

rectangular components.

I have mentioned, but not emphasized, another building block of Galileo’s

mechanics, what is now called the “inertia principle.” In one version, Galileo

put it this way: “Imagine any particle projected along a horizontal plane without

friction; then we know . . . that this particle will move along this plane with a

motion which is uniform and perpetual, provided the plane has no limits.” This

statement reflects Galileo’s genius for abstracting a fundamental idealization from

real behavior. If you give a real ball a push on a real horizontal plane, it will not

continue its motion perpetually, because neither the ball nor the plane is per-

fectly smooth, and sooner or later the ball will stop because of frictional effects.

Galileo neglected all the complexities of friction and obtained a useful postulate

for his mechanics. He then applied the postulate in his treatment of projectile

motion. When a projectile is launched, its horizontal component of motion is

constant in the absence of air resistance, and remains that way, while the vertical

component is influenced by gravity.

Galileo’s mechanics did not include definitions of the concepts of force or

energy, both of which became important in the mechanics of his successors. He

had no way to measure these quantities, so he included them only in a qualitative

way. Galileo’s science of motion contains most of the ingredients of what we now

call “kinematics.” It shows us how motion occurs without defining the forces

that control the motion. With the forces included, as in Newton’s mechanics,

kinematics becomes “dynamics.”

All of these specific Galilean contributions to the science of mechanics were

essential to Newton and his successors. But transcending all his other contribu-

tions was Galileo’s unrelenting insistence that the success or failure of a scientific

theory depends on observations and measurements. Stillman Drake leaves us

with this trenchant synopsis of Galileo’s scientific contributions: “When Galileo
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was born, two thousand years of physics had not resulted in even rough mea-

surements of actual motions. It is a striking fact that the history of each science

shows continuity back to its first use of measurement, before which it exhibits

no ancestry but metaphysics. That explains why Galileo’s science was stoutly

opposed by nearly every philosopher of his time, he having made it as nearly

free from metaphysics as he could. That was achieved by measurements, made

as precisely as possible with means available to Galileo or that he managed to

devise.”
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A Man Obsessed
Isaac Newton

Continual Thought

In his later years, Isaac Newton was asked how he had arrived at his theory of

universal gravitation. “By thinking on it continually,” was his matter-of-fact re-

sponse. “Continual thinking” for Newton was almost beyond mortal capacity. He

could abandon himself to his studies with a passion and ecstasy that others

experience in love affairs. The object of his study could become an obsession,

possessing him nonstop, and leaving him without food or sleep, beyond fatigue,

and on the edge of breakdown.

The world Newton inhabited in his ecstasy was vast. Richard Westfall, New-

ton’s principal biographer in this century, describes this “world of thought”:

“Seen from afar, Newton’s intellectual life appears unimaginably rich. He em-

braced nothing less than the whole of natural philosophy [science], which he

explored from several vantage points, ranging all the way from mathematical

physics to alchemy. Within natural philosophy, he gave new direction to optics,

mechanics, and celestial dynamics, and he invented the mathematical tool [cal-

culus] that has enabled modern science further to explore the paths he first

blazed. He sought as well to plumb the mind of God and His eternal plan for the

world and humankind as it was presented in the biblical prophecies.”

But, after all, Newton was human. His passion for an investigation would fade,

and without synthesizing and publishing the work, he would move on to another

grand theme. “What he thought on, he thought on continually, which is to say

exclusively, or nearly exclusively,” Westfall continues, but “[his] career was ep-

isodic.” To build a coherent whole, Newton sometimes revisited a topic several

times over a period of decades.

Woolsthorpe

Newton was born on Christmas Day, 1642, at Woolsthorpe Manor, near the Lin-

colnshire village of Colsterworth, sixty miles northwest of Cambridge and one
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hundred miles from London. Newton’s father, also named Isaac, died three

months before his son’s birth. The fatherless boy lived with his mother, Hannah,

for three years. In 1646, Hannah married Barnabas Smith, the elderly rector of

North Witham, and moved to the nearby rectory, leaving young Isaac behind at

Woolsthorpe to live with his maternal grandparents, James and Mary Ayscough.

Smith was prosperous by seventeenth-century standards, and he compensated

the Ayscoughs by paying for extensive repairs at Woolsthorpe.

Newton appears to have had little affection for his stepfather, his grandparents,

his half-sisters and half-brother, or even his mother. In a self-imposed confession

of sins, made after he left Woolsthorpe for Cambridge, he mentions “Peevishness

with my mother,” “with my sister,” “Punching my sister,” “Striking many,”

“Threatning my father and mother Smith to burne them and the house over

them,” “wishing death and hoping it to some.”

In 1653, Barnabas Smith died, Hannah returned to Woolsthorpe with the three

Smith children, and two years later Isaac entered grammar school in Grantham,

about seven miles from Woolsthorpe. In Grantham, Newton’s genius began to

emerge, but not at first in the classroom. In modern schools, scientific talent is

often first glimpsed as an outstanding aptitude in mathematics. Newton did not

have that opportunity; the standard English grammar school curriculum of the

time offered practically no mathematics. Instead, he displayed astonishing me-

chanical ingenuity. William Stukely, Newton’s first biographer, tells us that he

quickly grasped the construction of a windmill and built a working model,

equipped with an alternate power source, a mouse on a treadmill. He constructed

a cart that he could drive by turning a crank. He made lanterns from “crimpled

paper” and attached them to the tails of kites. According to Stukely, this stunt

“Wonderfully affrighted all the neighboring inhabitants for some time, and caus’d

not a little discourse on market days, among the country people, when over their

mugs of ale.”

Another important extracurricular interest was the shop of the local apothe-

cary, remembered only as “Mr. Clark.” Newton boarded with the Clark family,

and the shop became familiar territory. The wonder of the bottles of chemicals

on the shelves and the accompanying medicinal formulations would help direct

him to later interests in chemistry, and beyond that to alchemy.

With the completion of the ordinary grammar school course of studies, New-

ton reached a crossroads. Hannah felt that he should follow in his father’s foot-

steps and manage the Woolsthorpe estate. For that he needed no further educa-

tion, she insisted, and called him home. Newton’s intellectual promise had been

noticed, however. Hannah’s brother, William Ayscough, who had attended Cam-

bridge, and the Grantham schoolmaster, John Stokes, both spoke persuasively on

Newton’s behalf, and Hannah relented. After nine months at home with her rest-

less son, Hannah no doubt recognized his ineptitude for farm management. It

probably helped also that Stokes was willing to waive further payment of the

forty-shilling fee usually charged for nonresidents of Grantham. Having passed

this crisis, Newton returned in 1660 to Grantham and prepared for Cambridge.

Cambridge

Newton entered Trinity College, Cambridge, in June 1661, as a “subsizar,” mean-

ing that he received free board and tuition in exchange for menial service. In the

Cambridge social hierarchy, sizars and subsizars were on the lowest level. Evi-
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dently Hannah Smith could have afforded better for her son, but for some reason

(possibly parsimony) chose not to make the expenditure.

With his lowly status as a subsizar, and an already well developed tendency

to introversion, Newton avoided his fellow students, his tutor, and most of the

Cambridge curriculum (centered largely on Aristotle). Probably with few regrets,

he went his own way. He began to chart his intellectual course in a “Philosoph-

ical Notebook,” which contained a section with the Latin title Quaestiones quae-

dam philosophicam (Certain Philosophical Questions) in which he listed and

discussed the many topics that appealed to his unbounded curiosity. Some of

the entries were trivial, but others, notably those under the headings “Motion”

and “Colors,” were lengthy and the genesis of later major studies.

After about a year at Cambridge, Newton entered, almost for the first time, the

field of mathematics, as usual following his own course of study. He soon trav-

eled far enough into the world of seventeenth-century mathematical analysis to

initiate his own explorations. These early studies would soon lead him to a geo-

metrical demonstration of the fundamental theorem of calculus.

Beginning in the summer of 1665, life in Cambridge and in many other parts

of England was shattered by the arrival of a ghastly visitor, the bubonic plague.

For about two years the colleges were closed. Newton returned to Woolsthorpe,

and took with him the many insights in mathematics and natural philosophy that

had been rapidly unfolding in his mind.

Newton must have been the only person in England to recall the plague years

1665–66 with any degree of fondness. About fifty years later he wrote that “in

those days I was in the prime of my age for invention & minded Mathematicks

& Philosophy more then than at any time since.” During these “miracle years,”

as they were later called, he began to think about the method of fluxions (his

version of calculus), the theory of colors, and gravitation. Several times in his

later years Newton told visitors that the idea of universal gravitation came to him

when he saw an apple fall in the garden at Woolsthorpe; if gravity brought the

apple down, he thought, why couldn’t it reach higher, as high as the Moon?

These ideas were still fragmentary, but profound nevertheless. Later they

would be built into the foundations of Newton’s most important work. “The mir-

acle,” says Westfall, “lay in the incredible program of study undertaken in private

and prosecuted alone by a young man who thereby assimilated the achievement

of a century and placed himself at the forefront of European mathematics and

science.”

Genius of this magnitude demands, but does not always receive, recognition.

Newton was providentially lucky. After graduation with a bachelor’s degree, the

only way he could remain at Cambridge and continue his studies was to be

elected a fellow of Trinity College. Prospects were dim. Trinity had not elected

fellows for three years, only nine places were to be filled, and there were many

candidates. Newton was not helped by his previous subsizar status and unortho-

dox program of studies. But against all odds, he was included among the elected.

Evidently he had a patron, probably Humphrey Babington, who was related to

Clark, the apothecary in Grantham, and a senior fellow of Trinity.

The next year after election as a “minor” fellow, Newton was awarded the

Master of Arts degree and elected a “major” fellow. Then in 1668, at age twenty-

seven and still insignificant in the college, university, and scientific hierarchy,

he was appointed Lucasian Professor of Mathematics. His patron for this sur-

prising promotion was Isaac Barrow, who was retiring from the Lucasian chair
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and expecting a more influential appointment outside the university. Barrow had

seen enough of Newton’s work to recognize his brilliance.

Newton’s Trinity fellowship had a requirement that brought him to another

serious crisis. To keep his fellowship he regularly had to affirm his belief in the

articles of the Anglican Church, and ultimately be ordained a clergyman. Newton

met the requirement several times, but by 1675, when he could no longer escape

the ordination rule, his theological views had taken a turn toward heterodoxy,

even heresy. In the 1670s Newton immersed himself in theological studies that

eventually led him to reject the doctrine of the Trinity. This was heresy, and if

admitted, meant the ruination of his career. Although Newton kept his heretical

views secret, ordination was no longer a possibility, and for a time, his Trinity

fellowship and future at Cambridge appeared doomed.

But providence intervened, once again in the form of Isaac Barrow. Since leav-

ing Cambridge, Barrow had served as royal chaplain. He had the connections at

Court to arrange a royal dispensation exempting the Lucasian Professor from the

ordination requirement, and another chapter in Newton’s life had a happy

ending.

Critics

Newton could not stand criticism, and he had many critics. The most prominent

and influential of these were Robert Hooke in England, and Christiaan Huygens

and Gottfried Leibniz on the Continent.

Hooke has never been popular with Newton partisans. One of his contempo-

raries described him as “the most ill-natured, conceited man in the world, hated

and despised by most of the Royal Society, pretending to have all other inven-

tions when once discovered by their authors.” There is a grain of truth in this

concerning Hooke’s character, but he deserves better. In science he made contri-

butions to optics, mechanics, and even geology. His skill as an inventor was

renowned, and he was a surveyor and an architect. In personality, Hooke and

Newton were polar opposites. Hooke was a gregarious extrovert, while Newton,

at least during his most creative years, was a secretive introvert. Hooke did not

hesitate to rush into print any ideas that seemed plausible. Newton shaped his

concepts by thinking about them for years, or even decades. Neither man could

bear to acknowledge any influence from the other. When their interests over-

lapped, bitter confrontations were inevitable.

Among seventeenth-century physicists, Huygens was most nearly Newton’s

equal. He made important contributions in mathematics. He invented the pen-

dulum clock and developed the use of springs as clock regulators. He studied

telescopes and microscopes and introduced improvements in their design. His

studies in mechanics touched on statics, hydrostatics, elastic collisions, projectile

motion, pendulum theory, gravity theory, and an implicit force concept, includ-

ing the concept of centrifugal force. He pictured light as a train of wave fronts

transmitted through a medium consisting of elastic particles. In matters relating

to physics, this intellectual menu is strikingly similar to that of Newton. Yet

Huygens’s influence beyond his own century was slight, while Newton’s was

enormous. One of Huygens’s limitations was that he worked alone and had few

disciples. Also, like Newton, he often hesitated to publish, and when the work

finally saw print others had covered the same ground. Most important, however,

was his philosophical bias. He followed René Descartes in the belief that natural
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phenomena must have mechanistic explanations. He rejected Newton’s theory of

universal gravitation, calling it “absurd,” because it was no more than mathe-

matics and proposed no mechanisms.

Leibniz, the second of Newton’s principal critics on the Continent, is re-

membered more as a mathematician than as a physicist. Like that of Huygens,

his physics was limited by a mechanistic philosophy. In mathematics he made

two major contributions, an independent (after Newton’s) invention of calculus,

and an early development of the principles of symbolic logic. One manifestation

of Leibniz’s calculus can be seen today in countless mathematics and physics

textbooks: his notation. The basic operations of calculus are differentiation and

integration, accomplished with derivatives and integrals. The Leibniz symbols

for derivatives (e.g., ) and integrals (e.g., ∫ydx) have been in constant use for
dy

dx

more than three hundred years. Unlike many of his scientific colleagues, Leibniz

never held an academic post. He was everything but an academic, a lawyer,

statesman, diplomat, and professional genealogist, with assignments such as ar-

ranging peace negotiations, tracing royal pedigrees, and mapping legal reforms.

Leibniz and Newton later engaged in a sordid clash over who invented calculus

first.

Calculus Lessons

The natural world is in continuous, never-ending flux. The aim of calculus is to

describe this continuous change mathematically. As modern physicists see it, the

methods of calculus solve two related problems. Given an equation that expresses

a continuous change, what is the equation for the rate of the change? And, con-

versely, given the equation for the rate of change, what is the equation for the

change? Newton approached calculus this way, but often with geometrical ar-

guments that are frustratingly difficult for those with little geometry. I will avoid

Newton’s complicated constructions and present here for future reference a few

rudimentary calculus lessons more in the modern style.

Suppose you want to describe the motion of a ball falling freely from the Tower

in Pisa. Here the continuous change of interest is the trajectory of the ball, ex-

pressed in the equation

2gt
s � (1)

2

in which t represents time, s the ball’s distance from the top of the tower, and g

a constant we will interpret later as the gravitational acceleration. One of the

problems of calculus is to begin with equation (1) and calculate the ball’s rate of

fall at every instant.

This calculation is easily expressed in Leibniz symbols. Imagine that the ball

is located a distance s from the top of the tower at time t, and that an instant

later, at time t � dt, it is located at s � ds; the two intervals dt and ds, called

“differentials” in the terminology of calculus, are comparatively very small. We

have equation (1) for time t at the beginning of the instant. Now write the equa-

tion for time t � dt at the end of the instant, with the ball at s � ds,



Isaac Newton 23

2g(t � dt)
s � ds �

2

g
2 2� [t � 2tdt � (dt) ] (2)

2
2gt g

2� � gtdt � (dt) .
2 2

Notice the term s on the left side of the last equation and the term the right.
2gt

2

According to equation (1), these terms are equal, so they can be canceled from

the last equation, leaving

g
2ds � gtdt � (dt) . (3)

2

In the realm where calculus operates, the time interval dt is very small, and

(dt)2 is much smaller than that. (Squares of small numbers are much smaller

numbers; for example, compare 0.001 with (0.001)2 � 0.000001.) Thus the term

containing (dt)2 in equation (3) is much smaller than the term containing dt, in

fact, so small it can be neglected, and equation (3) finally reduces to

ds � gtdt. (4)

Dividing by the dt factor on both sides of this equation, we have finally

ds
� gt. (5)

dt

(As any mathematician will volunteer, this is far from a rigorous account of the

workings of calculus.)

This result has a simple physical meaning. It calculates the instantaneous

speed of the ball at time t. Recall that speed is always calculated by dividing a

distance interval by a time interval. (If, for example, the ball falls 10 meters at

constant speed for 2 seconds, its speed is meters per second.) In equation
10

� 5
2

(5), the instantaneous distance and time intervals ds and dt are divided to cal-

culate the instantaneous speed .
ds

dt

The ratio in equation (5) is called a “derivative,” and the equation, like any
ds

dt

other containing a derivative, is called a “differential equation.” In mathematical

physics, differential equations are ubiquitous. Most of the theories mentioned in

this book rely on fundamental differential equations. One of the rules of theo-

retical physics is that (with a few exceptions) its laws are most concisely stated

in the common language of differential equations.

The example has taken us from equation (1) for a continuous change to equa-

tion (5) for the rate of the change at any instant. Calculus also supplies the means
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to reverse this argument and derive equation (1) from equation (5). The first step

is to return to equation (4) and note that the equation calculates only one differ-

ential step, ds, in the trajectory of the ball. To derive equation (1) we must add

all of these steps to obtain the full trajectory. This summation is an “integration”

operation and in the Leibniz notation it is represented by the elongated-S symbol

. For integration of equation (4) we write�

�ds � �gtdt. (6)

We know that this must be equivalent to equation (1), so we infer that the rules

for evaluating the two “integrals” in equation (6) are

�ds � s, (7)

and

2gt�gtdt � . (8)
2

Integrals and integration are just as fundamental in theoretical physics as dif-

ferential equations. Theoreticians usually compose their theories by first writing

differential equations, but those equations are likely to be inadequate for the

essential further task of comparing the predictions of the theory with experimen-

tal and other observations. For that, integrated equations are often a necessity.

The great misfortune is that some otherwise innocent-looking differential equa-

tions are extremely difficult to integrate. In some important cases (including one

Newton struggled with for many years, the integration of the equations of motion

for the combined system comprising Earth, the Moon, and the Sun), the equations

cannot be handled at all without approximations.

A glance at a calculus textbook will reveal the differentiation rule used to

arrive at equation (5), the integration rules (7) and (8), and dozens of others. As

its name implies, calculus is a scheme for calculating, in particular for calcula-

tions involving derivatives and differential equations. The scheme is organized

around the differentiation and integration rules.

Calculus provides a perfect mathematical context for the concepts of mechan-

ics. In the example, the derivative calculates a speed. Any speed v is calcu-
ds

dt

lated the same way,

ds
v � . (9)

dt

If the speed changes with time—if there is an acceleration—that can be expressed

as the rate of change in v, as the derivative . So the acceleration differential
dv

dt

equation is
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dv
a � , (10)

dt

in which a represents acceleration. The freely falling ball accelerates, that is, its

speed increases with time, as equation (5) combined with equation (9), which is

written

v � gt, (11)

shows. The constant factor g is the acceleration of free fall, that is, the gravita-

tional acceleration.

This discussion has used the Leibniz notation throughout. Newton’s calculus

notation was similar but less convenient. He emphasized rates of change with

time, called them “fluxions,” and represented them with an overhead dot nota-

tion. For example, in Newton’s notation, equation (5) becomes

ṡ � gt,

in which , Newton’s symbol for , is the distance fluxion, and equation (10) is
ds

ṡ
dt

˙a � v,

with representing , the speed fluxion.
dv

v̇
dt

Optics

The work that first brought Newton to the attention of the scientific community

was not a theoretical or even a mathematical effort; it was a prodigious technical

achievement. In 1668, shortly before his appointment as Lucasian Professor,

Newton designed and constructed a “reflecting” telescope. In previous tele-

scopes, beginning with the Dutch invention and Galileo’s improvement, light was

refracted and focused by lenses. Newton’s telescope reflected and focused light

with a concave mirror. Refracting telescopes had limited resolution and to

achieve high magnification had to be inconveniently long. (Some refracting tele-

scopes at the time were a hundred feet long, and a thousand-footer was planned.)

Newton’s design was a considerable improvement on both counts.

Newton’s telescope project was even more impressive than that of Galileo.

With no assistance (Galileo employed a talented instrument maker), Newton cast

and ground the mirror, using a copper alloy he had prepared, polished the mirror,

and built the tube, the mount, and the fittings. The finished product was just six

inches in length and had a magnification of forty, equivalent to a refracting tele-

scope six feet long.

Newton was not the first to describe a reflecting telescope. James Gregory,

professor of mathematics at St. Andrews University in Scotland, had earlier pub-

lished a design similar to Newton’s, but could not find craftsmen skilled enough

to construct it.

No less than Galileo’s, Newton’s telescope was vastly admired. In 1671, Barrow
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demonstrated it to the London gathering of prominent natural philosophers

known as the Royal Society. The secretary of the society, Henry Oldenburg, wrote

to Newton that his telescope had been “examined here by some of the most

eminent in optical science and practice, and applauded by them.” Newton was

promptly elected a fellow of the Royal Society.

Before the reflecting telescope, Newton had made other major contributions in

the field of optics. In the mid-1660s he had conceived a theory that held that

ordinarywhite light was amixture of pure colors ranging from red, throughorange,

yellow, green, and blue, to violet, the rainbow of colors displayed by a prism

when it receives a beam of white light. In Newton’s view, the prism separated

the pure components by refracting each to a different extent. This was a contra-

diction of the prevailing theory, advocated by Hooke, among others, that light in

the purest form is white, and colors are modifications of the pristine white light.

Newton demonstrated the premises of his theory in an experiment employing

two prisms. The first prism separated sunlight into the usual red-through-violet

components, and all of these colors but one were blocked in the beam received

by the second prism. The crucial observation was that the second prism caused

no further modification of the light. “The purely red rays refracted by the second

prism made no other colours but red,” Newton observed in 1666, “& the purely

blue no other colours but blue ones.” Red and blue, and other colors produced

by the prism, were the pure colors, not the white.

Soon after his sensational success with the reflecting telescope in 1671, New-

ton sent a paper to Oldenburg expounding this theory. The paper was read at a

meeting of the Royal Society, to an enthusiastically favorable response. Newton

was then still unknown as a scientist, so Oldenburg innocently took the addi-

tional step of asking Robert Hooke, whose manifold interests included optics, to

comment on Newton’s theory. Hooke gave the innovative and complicated paper

about three hours of his time, and told Oldenburg that Newton’s arguments were

not convincing.

This response touched off the first of Newton’s polemical battleswith his critics.

His first reply was restrained; it prompted Hooke to give the paper in question

more scrutiny, and to focus on Newton’s hypothesis that light is particle-like.

(Hooke had found an inconsistency here; Newton claimed that he did not rely on

hypotheses.) Newton was silent for awhile, and Hooke, never silent, claimed that

he had built a reflecting telescope before Newton. Next, Huygens and a Jesuit

priest, Gaston Pardies, entered the controversy. Apparently in support of Newton,

Huygens wrote, “The theory of Mr. Newton concerning light and colors appears

highly ingenious to me.” In a communication to the Philosophical Transactions of

the Royal Society, Pardies questioned Newton’s prism experiment, and Newton’s

reply, which also appeared in the Transactions, was condescending. Hooke com-

plained to Oldenburg that Newton was demeaning the debate, and Oldenburg

wrote a cautionary letter to Newton. By this time, Newton was aroused enough to

refute all of Hooke’s objections in a lengthy letter to the Royal Society, later pub-

lished in the Transactions. This did not quite close the dispute; in a final episode,

Huygens reentered the debate with criticisms similar to those offered by Hooke.

In too many ways, this stalemate between Newton and his critics was petty,

but it turned finally on an important point. Newton’s argument relied crucially

on experimental evidence; Hooke and Huygens would not grant the weight of

that evidence. This was just the lesson Galileo had hoped to teach earlier in the

century. Now it was Newton’s turn.
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Alchemy and Heresy

In his nineteenth-century biography of Newton, David Brewster surprised his

readers with an astonishing discovery. He revealed for the first time that Newton’s

papers included a vast collection of books, manuscripts, laboratory notebooks,

recipes, and copied material on alchemy. How could “a mind of such power . . .

stoop to be even the copyist of the most contemptible alchemical poetry,” Brew-

ster asked. Beyond that he had little more to say about Newton the alchemist.

By the time Brewster wrote his biography, alchemy was a dead and unla-

mented endeavor, and the modern discipline of chemistry was moving forward

at a rapid pace. In Newton’s century the rift between alchemy and chemistry was

just beginning to open, and in the previous century alchemy was chemistry.

Alchemists, like today’s chemists, studied conversions of substances into other

substances, and prescribed the rules and recipes that governed the changes. The

ultimate conversion for the alchemists was the transmutation of metals, including

the infamous transmutation of lead into gold. The theory of transmutation had

many variations and refinements, but a fundamental part of the doctrine was the

belief that metals are compounded of mercury and sulfur—not ordinary mercury

and sulfur but principles extracted from them, a “spirit of sulfur” and a “philo-

sophic mercury.” The alchemist’s goal was to extract these principles from im-

pure natural mercury and sulfur; once in hand, the pure forms could be com-

bined to achieve the desired transmutations. In the seventeenth century, this

program was still plausible enough to attract practitioners, and the practitioners

patrons, including kings.

The alchemical literature was formidable. There were hundreds of books

(Newton had 138 of them in his library), and they were full of the bizarre ter-

minology and cryptic instructions alchemists devised to protect their work from

competitors. But Newton was convinced that with thorough and discriminating

study, coupled with experimentation, he could mine a vein of reliable observa-

tions beneath all the pretense and subterfuge. So, in about 1669, he plunged into

the world of alchemy, immediately enjoying the challenges of systematizing the

chaotic alchemical literature and mastering the laboratory skills demanded by

the alchemist’s fussy recipes.

Newton’s passion for alchemy lasted for almost thiry years. He accumulated

more than a million words of manuscript material. An assistant, Humphrey New-

ton (no relation), reported that in the laboratory the alchemical experiments gave

Newton “a great deal of satisfaction & Delight. . . . The Fire [in the laboratory

furnaces] scarcely going out either Night or Day. . . . His Pains, his Dilligence at

those sett times, made me think, he aim’d at something beyond ye Reach of

humane Art & Industry.”

What did Newton learn during his years in company with the alchemists? His

transmutation experiments did not succeed, but he did come to appreciate a

fundamental lesson still taught by modern chemistry and physical chemistry:

that the particles of chemical substances are affected by the forces of attraction

and repulsion. He saw in some chemical phenomena a “principle of sociability”

and in others “an endeavor to recede.” This was, as Westfall writes, “arguably

the most advanced product of seventeenth-century chemistry.” It presaged the

modern theory of “chemical affinities,” which will be addressed in chapter 10.

For Newton, the attraction forces he saw in his crucibles were of a piece with

the gravitational force. There is no evidence that he equated the two kinds of
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forces, but some commentators have speculated that his concept of universal

gravitation was inspired, not by a Lincolnshire apple, but by the much more

complicated lessons of alchemy.

During the 1670s, Newton had another subject for continual study and

thought; he was concerned with biblical texts instead of scientific texts. He be-

came convinced that the early Scriptures expressed the Unitarian belief that al-

though Christ was to be worshipped, he was subordinate to God. Newton cited

historical evidence that this text was corrupted in the fourth century by the in-

troduction of the doctrine of the Trinity. Any form of anti-Trinitarianism was

considered heresy in the seventeenth century. To save his fellowship at Cam-

bridge, Newton kept his unorthodox beliefs secret, and, as noted, he was rescued

by a special dispensation when he could no longer avoid the ordination require-

ment of the fellowship.

Halley’s Question

In the fall of 1684, Edmond Halley, an accomplished astronomer, traveled to

Cambridge with a question for Newton. Halley had concluded that the gravita-

tional force between the Sun and the planets followed an inverse-square law—

that is, the connection between this “centripetal force” (as Newton later called

it) and the distance r between the centers of the planet and the Sun is

1
centripetal force � .

2r

(Read “proportional to” for the symbol �.) The force decreases by 1⁄22 � 1⁄4 if r

doubles, by 1⁄32 � 1⁄9 if r triples, and so forth. Halley’s visit and his question were

later described by a Newton disciple, Abraham DeMoivre:

In 1684 Dr Halley came to visit [Newton] at Cambridge, after they had some

time together, the Dr asked him what he thought the curve would be that would

be described by the Planets supposing the force of attraction towards the Sun

to be reciprocal to the square of their distance from it. Sr Isaac replied imme-

diately that it would be an [ellipse], the Doctor struck with joy & amazement

asked him how he knew it, why saith he I have calculated it, whereupon Dr

Halley asked him for his calculation without farther delay, Sr Isaac looked

among his papers but could not find it, but he promised him to renew it, & then

send it to him.

A few months later Halley received the promised paper, a short, but remark-

able, treatise, with the title De motu corporum in gyrum (On the Motion of Bodies

in Orbit). It not only answered Halley’s question, but also sketched a new system

of celestial mechanics, a theoretical basis for Kepler’s three laws of planetary

motion.

Kepler’s Laws

Johannes Kepler belonged to Galileo’s generation, although the two never met.

In 1600, Kepler became an assistant to the great Danish astronomer Tycho Brahe,
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Figure 2.1. An elliptical planetary orbit. The orbit shown is
exaggerated. Most planetary orbits are nearly circular.

Figure 2.2. Kepler’s law of equal areas. The area A1 equals
the area A2.

and on Tycho’s death, inherited both his job and his vast store of astronomical

observations. From Tycho’s data Kepler distilled three great empirical laws:

1. The Law of Orbits: The planets move in elliptical orbits, with the Sun situ-

ated at one focus.

Figure 2.1 displays the geometry of a planetary ellipse. Note the dimensions a

and b of the semimajor and semiminor axes, and the Sun located at one focus.

2. The Law of Equal Areas: A line joining any planet to the Sun sweeps out

equal areas in equal times.

Figure 2.2 illustrates this law, showing the radial lines joining a planet with the

Sun, and areas swept out by the lines in equal times with the planet traveling

different parts of its elliptical orbit. The two areas are equal, and the planet

travels faster when it is closer to the Sun.

3. The Law of Periods: The square of the period of any planet about the Sun is

proportional to the cube of the length of the semimajor axis.

A planet’s period is the time it requires to travel its entire orbit—365 days for

Earth. Stated as a proportionality, with P representing the period and a the length

of the semimajor axis, this law asserts that

2 3P � a .
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Halley’s Reward

“I keep [a] subject constantly before me,” Newton once remarked, “and wait ’till

the first dawnings open slowly, by little and little, into a full and clear light.”

Kepler’s laws had been on Newton’s mind since his student days. In “first dawn-

ings” he had found connections between the inverse-square force law and Ke-

pler’s first and third laws, and now in De motu he was glimpsing in “a full and

clear light” the entire theoretical edifice that supported Kepler’s laws and other

astronomical observations. Once more, Newton’s work was “the passionate study

of a man obsessed.” His principal theme was the mathematical theory of univer-

sal gravitation.

First, he revised and expanded De motu, still focusing on celestial mechanics,

and then aimed for a grander goal, a general dynamics, including terrestrial as

well as celestial phenomena. This went well beyond De motu, even in title. For

the final work, Newton chose the Latin title Philosophiae naturalis principia

mathematica (Mathematical Principles of Natural Philosophy), usually shortened

to the Principia.

When it finally emerged, the Principia comprised an introduction and three

books. The introduction contains definitions and Newton’s candidates for the

fundamental laws of motion. From these foundations, book 1 constructs exten-

sive and sophisticated mathematical equipment, and applies it to objects moving

without resistance—for example, in a vacuum. Book 2 treats motion in resisting

mediums—for example, in a liquid. And book 3 presents Newton’s cosmology,

his “system of the world.”

In a sense, Halley deserves as much credit for bringing the Principia into the

world as Newton does. His initial Cambridge visit reminded Newton of unfin-

ished business in celestial mechanics and prompted the writing of De motu.

When Halley saw De motu in November 1684, he recognized it for what it was,

the beginning of a revolution in the science of mechanics. Without wasting any

time, he returned to Cambridge with more encouragement. None was needed.

Newton was now in full pursuit of the new dynamics. “From August 1684 until

the spring of 1686,” Westfall writes, “[Newton’s] life [was] a virtual blank except

for the Principia.”

By April 1686, books 1 and 2 were completed, and Halley began a campaign

for their publication by the Royal Society. Somehow (possibly with Halley ex-

ceeding his limited authority as clerk of the society), the members were per-

suaded at a general meeting and a resolution was passed, ordering “that Mr.

Newton’s Philosophiae naturalis principia mathematica be printed forthwith.”

Halley was placed in charge of the publication.

Halley now had the Principia on the road to publication, but it was to be a

bumpy ride. First, Hooke made trouble. He believed that he had discovered the

inverse-square law of gravitation and wanted recognition from Newton. The ac-

knowledgment, if any, would appear in book 3, now nearing completion. Newton

refused to recognize Hooke’s priority, and threatened to suppress book 3. Halley

had not yet seen book 3, but he sensed that without it the Principia would be a

body without a head. “Sr I must now again beg you, not to let your resentment

run so high, as to deprive us of your third book,” he wrote to Newton. The

beheading was averted, and Halley’s diplomatic appeals may have been the de-

cisive factor.

In addition to his editorial duties, Halley was also called upon to subsidize
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the publication of the Principia. The Royal Society was close to bankruptcy and

unable even to pay Halley his clerk’s salary of fifty pounds. In his youth, Halley

had been wealthy, but by the 1680s he was supporting a family and his means

were reduced. The Principia was a gamble, and it carried some heavy financial

risks.

But finally, on July 5, 1687, Halley could write to Newton and announce that

“I have at length brought your Book to an end.” The first edition sold out quickly.

Halley at least recovered his costs, and more important, he received the acknow-

ledgment from Newton that he deserved: “In the publication of this work the

most acute and universally learned Mr Edmund Halley not only assisted me in

correcting the errors of the press and preparing the geometrical figures, but it

was through his solicitations that it came to be published.”

The Principia

What Halley coaxed from Newton is one of the greatest masterpieces in scientific

literature. It is also one of the most inaccessible books ever written. Arguments

in the Principia are presented formally as propositions with (sometimes sketchy)

demonstrations. Some propositions are theorems and others are developed as

illustrative calculations called “problems.” The reader must meet the challenge

of each proposition in sequence to grasp the full argument.

Modern readers of the Principia are also burdened by Newton’s singular math-

ematical style. Propositions are stated and demonstrated in the language of geo-

metry, usually with reference to a figure. (In about five hundred pages, the Prin-

cipia has 340 figures, some of them extremely complicated.) To us this seems an

anachronism. By the 1680s, when the Principia was under way, Newton had

already developed his fluxional method of calculus. Why did he not use calculus

to express his dynamics, as we do today?

Partly it was an aesthetic choice. Newton preferred the geometry of the “an-

cients,” particularly Euclid and Appolonius, to the recently introduced algebra

of Descartes, which played an essential role in fluxional equations. He found the

geometrical method “much more elegant than that of Descartes . . . [who] attains

the result by means of an algebraic calculus which, if one transcribed it in words

(in accordance with the practice of the Ancients in their writings) is revealed

to be boring and complicated to the point of provoking nausea, and not be

understood.”

There was another problem. Newton could not use the fluxion language he

had invented twenty years earlier for the practical reason that he had never pub-

lished the work (and would not publish it for still another twenty years). As the

science historian François De Gandt explains, “[The] innovative character [of the

Principia] was sure to excite controversy. To combine with this innovative char-

acter another novelty, this time mathematical, and to make unpublished proce-

dures in mathematics the foundation for astonishing physical assertions, was to

risk gaining nothing.”

So Newton wrote the Principia in the ancient geometrical style, modified when

necessary to represent continuous change. But he did not reach his audience.

Only a few of Newton’s contemporaries read the Principia with comprehension,

and following generations chose to translate it into a more transparent, if less

elegant, combination of algebra and the Newton-Leibniz calculus. The fate of the

Principia, like that of some of the other masterpieces of scientific literature
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(Clausius on thermodynamics, Maxwell on the electromagnetic field, Boltzmann

on gas theory, Gibbs on thermodynamics, and Einstein on general relativity), was

to be more admired than read.

The fearsome challenge of the Principia lies in its detailed arguments. In out-

line, free of the complicated geometry and the maddening figures, the work is

much more accessible. It begins with definitions of two of the most basic concepts

of mechanics:

Definition 1: The quantity of matter is the measure of the same arising from its

density and bulk conjointly.

Definition 2: The quantity of motion is the measure of the same, arising from

the velocity and quantity of matter conjointly.

By “quantity of matter” Newton means what we call “mass,” “quantity of motion”

in our terms is “momentum,” “bulk” can be measured as a volume, and “density”

is the mass per unit volume (lead is more dense than water, and water more

dense than air). Translated into algebraic language, the two definitions read

m � ρV, (12)

and

p � mv, (13)

in which mass is represented by m, density by ρ, volume by V, momentum by

p, and velocity by v.

Following the definitions are Newton’s axioms, his famous three laws of mo-

tion. The first is Galileo’s law of inertia:

Law 1: Every body continues in its state of rest, or of uniform motion in a right

[straight] line, unless it is compelled to change that state by forces impressed

upon it.

The second law of motion has more to say about the force concept:

Law 2: The change of motion is proportional to the motive force impressed; and

is made in the direction of the right line in which the force is impressed.

By “change of motion” Newton means the instantaneous rate of change in the

momentum, equivalent to the time derivative . In the modern convention, force
dp

dt

is defined as this derivative, and the equation for calculating a force f is simply

dp
f � , (14)

dt

or, with the momentum p evaluated by equation (13),
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d(mv)
f � . (15)

dt

The first two laws convey simple physical messages. Imagine that your car is

coasting on a flat road with the engine turned off. If the car meets no resistance

(for example, in the form of frictional effects), Newton’s first law tells us that the

car will continue coasting with its original momentum and direction forever.

With the engine turned on, and your foot on the accelerator, the car is driven by

the engine’s force, and Newton’s second law asserts that the momentum increases

at a rate ( ) equal to the force. In other words: increase the force by depressing
dp

�
dt

the accelerator and the car’s momentum increases.

Newton’s third law asserts a necessary constraint on forces operating mutually

between two bodies:

Law 3: To every action there is always opposed an equal reaction: or, the mutual

actions of two bodies upon each other are always equal, and directed to con-

trary parts.

Newton’s homely example reminds us, “If you press on a stone with your finger,

the finger is also pressed by the stone.” If this were not the case, the stone would

be soft and not stonelike.

Building from this simple, comprehensible beginning, Newton takes us on a

grand tour of terrestrial and celestial dynamics. In book 1 he assumes an inverse-

square centripetal force and derives Kepler’s three laws. Along the way (in prop-

osition 41), a broad concept that we now recognize as conservation of mechanical

energy emerges, although Newton does not use the term “energy,” and does not

emphasize the conservation theme.

Book 1 describes the motion of bodies (for example, planets) moving without

resistance. In book 2, Newton approaches the more complicated problem of mo-

tion in a resisting medium. This book was something of an afterthought, origi-

nally intended as part of book 1. It is more specialized than the other two books,

and less important in Newton’s grand scheme.

Book 3 brings the Principia to its climax. Here Newton builds his “system of

the world,” based on the three laws of motion, the mathematical methods de-

veloped earlier, mostly in book 1, and empirical raw material available in astro-

nomical observations of the planets and their moons.

The first three propositions put the planets and their moons in elliptical orbits

controlled by inverse-square centripetal forces, with the planets orbiting the Sun,

and the moons their respective planets. These propositions define the centripetal

forces mathematically but have nothing to say about their physical nature.

Proposition 4 takes that crucial step. It asserts “that the Moon gravitates to-

wards the earth, and is always drawn from rectilinear [straight] motion, and held

back in its orbit, by the force of gravity.” By the “force of gravity” Newton means

the force that causes a rock (or apple) to fall on Earth. The proposition tells us

that the Moon is a rock and that it, too, responds to the force of gravity.

Newton’s demonstration of proposition 4 is a marvel of simplicity. First, from

the observed dimensions of the Moon’s orbit he concludes that to stay in its orbit

the Moon falls toward Earth 15.009 “Paris feet” (� 16.000 of our feet) every
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second. Then, drawing on accurate pendulum data observed by Huygens, he

calculates that the number of feet the Moon (or anything else) would fall in one

second on the surface of Earth is 15.10 Paris feet. The two results are close

enough to each other to demonstrate the proposition.

Proposition 5 simply assumes that what is true for Earth and the Moon is true

for Jupiter and Saturn and their moons, and for the Sun and its planets.

Finally, in the next two propositions Newton enunciates his universal law of

gravitation. I will omit some subtleties and details here and go straight to the

algebraic equation that is equivalent to Newton’s inverse-square calculation of

the gravitational attraction force F between two objects whose masses arem1 and

m2,

m m1 2
F � G , (16)

2r

where r is the distance separating the centers of the two objects, and G, called

the “gravitational constant,” is a universal constant. With a few exceptions, in-

volving such bizarre objects as neutron stars and black holes, this equation ap-

plies to any two objects in the universe: planets, moons, comets, stars, and gal-

axies. The gravitational constant G is always given the same value; it is the

hallmark of gravity theory. Later in our story, it will be joined by a few other

universal constants, each with its own unique place in a major theory.

In the remaining propositions of book 3, Newton turns to more-detailed prob-

lems. He calculates the shape of Earth (the diameter at the equator is slightly

larger than that at the poles), develops a theory of the tides, and shows how to

use pendulum data to demonstrate variations in weight at different points on

Earth. He also attempts to calculate the complexities of the Moon’s orbit, but is

not completely successful because his dynamics has an inescapable limitation:

it easily treats the mutual interaction (gravitational or otherwise) of two bodies,

but offers no exact solution to the problem of three or more bodies. The Moon’s

orbit is largely, but not entirely, determined by the Earth-Moon gravitational at-

traction. The full calculation is a “three-body” problem, including the slight ef-

fect of the Sun. In book 3, Newton develops an approximate method of calcula-

tion in which the Earth-Moon problem is first solved exactly and is then modified

by including the “perturbing” effect of the Sun. The strategy is one of successive

approximations. The calculations dictated by this “perturbation theory” are te-

dious, and Newton failed to carry them far enough to obtain good accuracy. He

complained that the prospect of carrying the calculations to higher accuracy

“made his head ache.”

Publication of the Principia brought more attention to Newton than to his

book. There were only a few reviews, mostly anonymous and superficial. As De

Gandt writes, “Philosophers and humanists of this era and later generations had

the feeling that great marvels were contained in these pages; they were told that

Newton revealed truth, and they believed it. . . . But the Principia still remained

a sealed book.”

The Opticks

Newton as a young man skirmished with Hooke and others on the theory of

colors and other aspects of optics. These polemics finally drove him into a silence
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of almost thirty years on the subject of optics, with the excuse that he did not

want to be “engaged in Disputes about these Matters.” What persuaded him to

break the silence and publish more of his earlier work on optics, as well as some

remarkable speculations, may have been the death of his chief adversary, Hooke,

in 1703. In any case, Newton published his other masterpiece, the Opticks, in

1704.

The Opticks and the Principia are contrasting companion pieces. The two

books have different personalities, and may indeed reflect Newton’s changing

persona. The Principia was written in the academic seclusion of Cambridge, and

the Opticks in the social and political environment Newton entered after moving

to London. The Opticks is a more accessible book than the Principia. It is written

in English, rather than in Latin, and does not burden the reader with difficult

mathematical arguments. Not surprisingly, Newton’s successors frequently men-

tioned the Opticks, but rarely the Principia.

In the Opticks, Newton presents both the experimental foundations, and an

attempt to lay the theoretical foundations, of the science of optics. He describes

experiments that demonstrate the main physical properties of light rays: their

reflection, “degree of refrangibility” (the extent to which they are refracted), “in-

flexion” (diffraction), and interference.

The term “interference” was not in Newton’s vocabulary, but he describes

interference effects in what are now called “Newton’s rings.” In the demonstra-

tion experiment, two slightly convex prisms are pressed together, with a thin

layer of air between them; a striking pattern of colored concentric rings appears,

surrounding points where the prisms touch.

Diffraction effects are demonstrated by admitting into a room a narrow beam

of sunlight through a pinhole and observing that shadows cast by this light source

on a screen have “Parallel Fringes or Bands of colour’d Light” at their edges.

To explain this catalogue of optical effects, Newton presents in the Opticks a

theory based on the concept that light rays are the trajectories of small particles.

As he puts it in one of the “queries” that conclude the Opticks: “Are not the

Rays of Light very small Bodies emitted from shining Substances? For such Bod-

ies will pass through Mediums in right Lines without bending into the Shadow,

which is the Nature of the Rays of Light.”

In another query, Newton speculates that particles of light are affected by op-

tical forces of some kind: “Do not Bodies act upon Light at a distance, and by

their action bend its Rays; and is not this action strongest at the least distance?”

With particles and forces as the basic ingredients, Newton constructs in the

Opticks an optical mechanics, which he had already sketched at the end of book

1 of the Principia. He explains reflection and refraction by assuming that optical

forces are different in different media, and diffraction by assuming that light rays

passing near an object are more strongly affected by the forces than those more

remote.

To explain the rings, Newton introduces his theory of “fits,” based on the idea

that light rays alternate between “Fits of easy Reflexion, and . . . Fits of easy

Transmission.” In this way, he gives the rays periodicity, that is, wavelike char-

acter. However, he does not abandon the particle point of view, and thus arrives

at a complicated duality.

We now understand Newton’s rings as an interference phenomenon, arising

when two trains of waves meet each other. This theory was proposed by Thomas

Young, one of the first to see the advantages of a simple wave theory of light,
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almost a century after the Optickswas published. By the 1830s, Young in England

and Augustin Fresnel in France had demonstrated that all of the physical prop-

erties of light known at the time could be explained easily by a wave theory.

Newton’s particle theory of light did not survive this blow. For seventy-five

years the particles were forgotten, until 1905, when, to everyone’s astonishment,

Albert Einstein brought them back. (But we are getting about two centuries be-

yond Newton’s story. I will postpone until later [chapter 19] an extended excur-

sion into the strange world of light waves and particles.)

The queries that close the Opticks show us where Newton finally stood on

two great physical concepts. In queries 17 through 24, he leaves us with a picture

of the universal medium called the “ether,” which transmits optical and gravi-

tational forces, carries light rays, and transports heat. Query 18 asks, “Is not this

medium exceedingly more rare and subtile than the Air, and exceedingly more

elastick and active? And doth not it readily pervade all Bodies? And is it not (by

its elastick force) expanded through all the Heavens?” The ether concept in one

form or another appealed to theoreticians through the eighteenth and nineteenth

centuries. It met its demise in 1905, that fateful year when Einstein not only

resurrected particles of light but also showed that the ether concept was simply

unnecessary.

In query 31, Newton closes the Opticks with speculations on atomism, which

he sees (and so do we) as one of the grandest of the unifying concepts in physics.

He places atoms in the realm of another grand concept, that of forces: “Have not

the small particles of Bodies certain Powers, Virtues or Forces, by which they

act at a distance, not only upon the Rays of Light for reflecting, refracting, and

inflecting them [as particles], but also upon one another for producing a great

Part of the Phaenomena of Nature?”

He extracts, from his intimate knowledge of chemistry, evidence for attraction

and repulsion forces among particles of all kinds of chemical substances, metals,

salts, acids, solvents, oils, and vapors. He argues that the particles are kinetic

and indestructible: “All these things being considered, it seems probable to me,

that God in the Beginning form’d Matter in solid, massy, hard, impenetrable,

moveable Particles, of such Sizes and Figures, and in such Proportion to Space,

as most conduced to the End for which he form’d them; even so very hard, as

never to wear or break in pieces; no ordinary Power being able to divide what

God himself made one in the First Creation.”

London

There were two great divides in Newton’s adult life: in the middle 1660s from

the rural surroundings of Lincolnshire to the academic world of Cambridge, and

thirty years later, when he was fifty-four, from the seclusion of Cambridge to the

social and political existence of a well-placed civil servant in London. The move

to London was probably inspired by a feeling that his rapidly growing fame

deserved a more material reward than anything offered by the Lucasian Profes-

sorship. We can also surmise that he was guided by an awareness that his for-

midable talent for creative work in science was fading.

In March 1696, Newton left Cambridge, took up residence in London, and

started a new career as warden of the Mint. The post was offered by Charles

Montague, a former student and intimate friend who had recently become chan-

cellor of the exchequer. Montague described the warden’s office to Newton as a
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sinecure, noting that “it has not too much bus’nesse to require more attendance

than you may spare.” But that was not what Newton had in mind; it was not in

his character to perform any task, large or small, superficially.

Newton did what he always did when confronted with a complicated problem:

he studied it. He bought books on economics, commerce, and finance, asked

searching questions, and wrote volumes of notes. It was fortunate for England

that he did. The master of the Mint, under whom the warden served, was Thomas

Neale, a speculator with more interest in improving his own fortune than in

coping with a monumental assignment then facing the Mint. The English cur-

rency, and with it the Treasury, were in crisis. Two kinds of coins were in cir-

culation, those produced by hammering a metal blank against a die, and those

made by special machinery that gave each coin a milled edge. The hammered

coins were easily counterfeited and clipped, and thus worth less than milled

coins of the same denomination. Naturally, the hammered coins were used and

the milled coins hoarded.

An escape from this threatening problem, general recoinage, had already been

mandated before Newton’s arrival at the Mint. He quickly took up the challenge

of the recoinage, although it was not one of his direct responsibilities as warden.

As Westfall comments, “[Newton] was a born administrator, and the Mint felt the

benefit of his presence.” By the end of 1696, less than a year after Newton went

to the Mint, the crisis was under control. Montague did not hesitate to say later

that, without Newton, the recoinage would have been impossible. In 1699 Neale

died, and Newton, who was by then master in fact if not in name, succeeded

him.

Newton’s personality held many puzzles. One of the deepest was his attitude

toward women. Apparently he never had a cordial relationship with his mother.

Aside from a woman with whom he had a youthful infatuation and to whom he

may have made a proposal of marriage, there was one other woman in Newton’s

life. She was Catherine Barton, the daughter of Newton’s half-sister Hannah

Smith. Her father, the Reverend Robert Barton, died in 1693, and sometime in

the late 1690s she went to live with Newton in London. She was charming and

beautiful and had many admirers, including Newton’s patron, Charles Montague.

She became Montague’s mistress, no doubt with Newton’s approval. The affair

endured; when he died, Montague left her a generous income. She was also a

friend of Jonathan Swift’s, and he mentioned her frequently in his collection of

letters, called Journal to Stella. Voltaire gossiped: “I thought . . . that Newton

made his fortune by his merit. . . . No such thing. Isaac Newton had a very charm-

ing niece . . . who made a conquest of Minister Halifax [Montague]. Fluxions and

gravitation would have been of no use without a pretty niece.” After Montague’s

death, Barton married John Conduitt, a wealthy man who had made his fortune

in service to the British army. The marriage placed him conveniently (and he

was aptly named) for another career: he became an early Newton biographer.

Newton the administrator was a vital influence in the rescue of two institu-

tions from the brink of disaster. In 1703, long after the recoinage crisis at the

Mint, he was elected to the presidency of the Royal Society. Like the Mint when

Newton arrived, the society was desperately in need of energetic leadership.

Since the early 1690s its presidents had been aristocrats who were little more

than figureheads. Newton quickly changed that image. He introduced the practice

of demonstrations at the meetings in the major fields of science (mathematics,

mechanics, astronomy and optics, biology, botany, and chemistry), found the
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society a new home, and installed Halley as secretary, followed by other disci-

ples. He restored the authority of the society, but he also used that authority to

get his way in two infamous disputes.

On April 16, 1705, Queen Anne knighted Newton at Trinity College, Cam-

bridge. The ceremony appears to have been politically inspired by Montague

(Newton was then standing for Parliament), rather than being a recognition of

Newton’s scientific achievements. Political or not, the honor was the climactic

point for Newton during his London years.

More Disputes

Newton was contentious, and his most persistent opponent was the equally con-

tentious Robert Hooke. The Newton story is not complete without two more ac-

counts of Newton in rancorous dispute. The first of these was a battle over as-

tronomical data. John Flamsteed, the first Astronomer Royal, had a series of

observations of the Moon, which Newton believed he needed to verify and refine

his lunar perturbation theory. Flamsteed reluctantly supplied the requested ob-

servations, but Newton found the data inaccurate, and Flamsteed took offense at

his critical remarks.

About ten years later, Newton was still not satisfied with his lunar theory and

still in need of Flamsteed’s Moon data. He was now president of the Royal So-

ciety, and with his usual impatience, took advantage of his position and at-

tempted to force Flamsteed to publish a catalogue of the astronomical data. Flam-

steed resisted. Newton obtained the backing of Prince George, Queen Anne’s

husband, and Flamsteed grudgingly went ahead with the catalogue.

The scope of the project was not defined. Flamsteed wanted to include with

his own catalogue those of previous astronomers from Ptolemy to Hevelius, but

Newton wanted just the data needed for his own calculations. Flamsteed stalled

for several years, Prince George died, and as president of the Royal Society, New-

ton assumed dictatorial control over the Astronomer Royal’s observations. Some

of the data were published as Historia coelestis (History of the Heavens) in 1712,

with Halley as the editor. Neither the publication nor its editor was acceptable

to Flamsteed.

Newton had won a battle but not the war. Flamsteed’s political fortunes rose,

and Newton’s declined, with the deaths of Queen Anne in 1714 and Montague

in 1715. Flamsteed acquired the remaining copies of Historia coelestis, separated

Halley’s contributions, and “made a sacrifice of them to Heavenly Truth” (mean-

ing that he burned them). He then returned to the project he had planned before

Newton’s interference, and had nearly finished it when he died in 1719. The task

was completed by two former assistants and published as Historia coelestis bri-

tannica in 1725. As for Newton, he never did get all the data he wanted, and

was finally defeated by the sheer difficulty of precise lunar calculations.

Another man who crossed Newton’s path and found himself in an epic dispute

was Gottfried Leibniz. This time the controversy concerned one of the most pre-

cious of a scientist’s intellectual possessions: priority. Newton and Leibniz both

claimed to be the inventors of calculus.

There would have been no dispute if Newton had published a treatise com-

posed in 1666 on his fluxion method. He did not publish that, or indeed any

other mathematical work, for another forty years. After 1676, however, Leibniz

was at least partially aware of Newton’s work in mathematics. In that year, New-
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ton wrote two letters to Leibniz, outlining his recent research in algebra and on

fluxions. Leibniz developed the basic concepts of his calculus in 1675, and pub-

lished a sketchy account restricted to differentiation in 1684 without mentioning

Newton. For Newton, that publication and that omission were, as Westfall puts

it, Leibniz’s “original sin, which not even divine grace could justify.”

During the 1680s and 1690s, Leibniz developed his calculus further to include

integration, Newton composed (but did not publish) his De quadratura (quad-

rature was an early term for integration), and John Wallis published a brief ac-

count of fluxions in volume 2 of his Algebra. In 1699, a former Newton protégé,

Nicholas Fatio de Duillier, published a technical treatise, Lineae brevissimi (Line

of Quickest Descent), in which he claimed that Newton was the first inventor,

and Leibniz the second inventor, of calculus. A year later, in a review of Fatio’s

Lineae, Leibniz countered that his 1684 book was evidence of priority.

The dispute was now ignited. It was fueled by another Newton disciple, John

Keill, who, in effect, accused Leibniz of plagiarism. Leibniz complained to the

secretary of the Royal Society, Hans Sloane, about Keill’s “impertinent accusa-

tions.” This gave Newton the opportunity as president of the society to appoint

a committee to review the Keill and Leibniz claims. Not surprisingly, the com-

mittee found in Newton’s favor, and the dispute escalated. Several attempts to

bring Newton and Leibniz together did not succeed. Leibniz died in 1716; that

cooled the debate, but did not extinguish it. Newtonians and Leibnizians con-

fronted each other for at least five more years.

Nearer the Gods

Biographers and other commentators have never given us a consensus view of

Newton’s character. His contemporaries either saw him as all but divine or all

but monstrous, and opinions depended a lot on whether the author was friend

or foe. By the nineteenth century, hagiography had set in, and Newton as paragon

emerged. In our time, the monster model seems to be returning.

On one assessment there should be no doubt: Newton was the greatest creative

genius physics has ever seen. None of the other candidates for the superlative

(Einstein, Maxwell, Boltzmann, Gibbs, and Feynman) has matched Newton’s

combined achievements as theoretician, experimentalist, and mathematician.

Newton was no exception to the rule that creative geniuses lead self-centered,

eccentric lives. He was secretive, introverted, lacking a sense of humor, and prud-

ish. He could not tolerate criticism, and could be mean and devious in the treat-

ment of his critics. Throughout his life he was neurotic, and at least once

succumbed to breakdown.

But he was no monster. He could be generous to colleagues, both junior and

senior, and to destitute relatives. In disputes, he usually gave no worse than he

received. He never married, but he was not a misogynist, as his fondness for

Catherine Barton attests. He was reclusive in Cambridge, where he had little

admiration for his fellow academics, but entertained well in the more stimulating

intellectual environment of London.

If you were to become a time traveler and meet Newton on a trip back to the

seventeenth century, you might find him something like the performer who first

exasperates everyone in sight and then goes on stage and sings like an angel. The

singing is extravagantly admired and the obnoxious behavior forgiven. Halley,

who was as familiar as anyone with Newton’s behavior, wrote in an ode to New-
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ton prefacing the Principia that “nearer the gods no mortal can approach.” Albert

Einstein, no doubt equal in stature to Newton as a theoretician (and no paragon),

left this appreciation of Newton in a foreword to an edition of the Opticks:

Fortunate Newton, happy childhood of science! He who has time and tran-

quility can by reading this book live again the wonderful events which the great

Newton experienced in his young days. Nature to him was an open book, whose

letters he could read without effort. The conceptions which he used to reduce

the material of experience to order seemed to flow spontaneously from expe-

rience itself, from the beautiful experiments which he ranged in order like play-

things and describes with an affectionate wealth of details. In one person he

combined the experimenter, the theorist, the mechanic and, not least, the artist

in exposition. He stands before us strong, certain, and alone: his joy in creation

and his minute precision are evident in every word and in every figure.



ii
Thermodynamics
Historical Synopsis

Our history now turns from mechanics, the science of motion, to

thermodynamics, the science of heat. The theory of heat did not

emerge as a quantitative science until late in the eighteenth century,

when heat was seen as a weightless fluid called “caloric.” The fluid

analogy was suggested by the apparent “flow” of heat from a high

temperature to a low temperature. Eighteenth-century engineers

knew that with cleverly designed machinery, this heat flow could be

used in a “heat engine” to produce useful work output.

The basic premise of the caloric theory was that heat was

“conserved,” meaning that it was indestructible and uncreatable;

that assumption served well the pioneers in heat theory, including

Sadi Carnot, whose heat engine studies begin our story of

thermodynamics. But the doctrine of heat conservation was attacked

in the 1840s by Robert Mayer, James Joule, Hermann Helmholtz, and

others. Their criticism doomed the caloric theory, but offered little

guidance for construction of a new theory.

The task of building the rudiments of the new heat science,

eventually called thermodynamics, fell to William Thomson and

Rudolf Clausius in the 1850s. One of the basic ingredients of their

theory was the concept that any system has an intrinsic property

Thomson called “energy,” which he believed was somehow

connected with the random motion of the system’s molecules. He

could not refine this molecular interpretation because in the mid–

nineteenth century the structure and behavior—and even the

existence—of molecules were controversial. But he could see that

the energy of a system—not the heat—was conserved, and he

expressed this conclusion in a simple differential equation.

In modern thermodynamics, energy has an equal partner called

“entropy.” Clausius introduced the entropy concept, and supplied

the name, but he was ambivalent about recognizing its fundamental

importance. He showed in a second simple differential equation

how entropy is connected with heat and temperature, and stated

formally the law now known as the second law of thermodynamics:

that in an isolated system, entropy increases to a maximum value.

But he hesitated to go further. The dubious status of the molecular

hypothesis was again a concern.


