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1

Introduction

analysis of variance. The phrase sounds ominous. The word “analysis” sug-
gests perhaps unfortunate associations with test tubes. Variance is a somewhat
formal term, one whose sound is familiar from previous adventures in the world
of statistics.

But whether or not previous statistical experiences were painful, analysis of
variance (ANOVA) can be learned. And if one postpones (perhaps indefinitely)
the proofs and algebraic derivations, it can be learned relatively painlessly.
ANOVA (I pronounce this acronym with the second syllable stressed) has an odd
resemblance to driving; it is easier to do than to describe, and the skill is more
readily acquired through practice than through an understanding of theory.

This presentation presumes knowledge of basic statistics. A course in which
elements of probability and hypothesis-testing logic were presented should suf-
fice. If you have had that experience but memory has faded somewhat, a review
of the Terms from Introductory Statistics (see p. 247) may be helpful. Terms in-
cluded in that glossary appear in boldface type when they first occur in the text.
The vocabulary of ANOVA will be further emphasized by the use of small capi-
tals as important terms are introduced.

I employ a classical approach to hypothesis testing, in which the researcher
sets a significance level for each test prior to examining the results. The American
Psychological Association does not share this perspective, preferring to ask in-
vestigators to report the significance level corresponding to the obtained statistic.
Either approach is compatible with the text.

You get a maximal return for learning ANOVA. It is a most powerful and ver-
satile technique; since the late 1940s it has been the primary statistical tool of
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behavioral psychology. For controlled experiments and the causal inferences they
allow, ANOVA remains the most natural approach. What you must learn, on the
other hand, is relatively limited. The more complex analyses are simply generaliza-
tions of the simpler ones. Once the fundamental concept of partitioning variance is
mastered, successively more sophisticated experimental designs can be analyzed.

In the everyday world of the practicing scientist, ANOVA is done on a com-
puter. Accordingly, this text will send you to a computer soon after you have
performed a few analyses by hand. But omission of the manual-labor phase will
inhibit your developing the intuitions that are needed to identify erroneous results
stemming from incorrect data entry or other, less common, computer problems.
All of the analyses described herein can be performed with the Windows pro-
grams in the CALSTAT series accompanying the text. These programs operate in
ordinary English. You need not speak a computer language to use them. I would
encourage you to learn to write your own programs, but you need not do so to
perform even quite complex ANOVAs.

In this text, I present more calculational detail and supporting details than
some readers will want to give much attention to, although my view is that every
word is a pearl. Material that can be skimmed, or even omitted, without serious
loss of understanding is set in all-italic type.

The Model Underlying ANOVA

Anyone who gathers data notices variability. When the same object is repeatedly
measured with a finely grained measuring instrument, as when I measure a child’s
height in millimeters, successive readings are rarely identical. If an examination of
the series of measurements reveals no pattern underlying the differences in the
observations, standard practice is to use the average of the measurements as an es-
timate of the value of the object. A sensible way to justify this averaging is to pos-
tulate that each observation is the sum of two components. One component is the
“true” value of the object; I use the quotation marks to emphasize that this true
value is unknowable and can only be estimated. The other component is a random
component, which means it has a value that changes unpredictably from observa-
tion to observation. The employment of an averaging procedure is tantamount to
assuming that on the average, the value of the random component is zero. The ran-
dom element is presumed to be drawn, then, from a normal distribution with mean
zero and variance σ2

e. This random component is a convenient fiction created to
explain the inexplicable inconsistencies in even the most careful measurements. A
simple equation using subscript notation summarizes the assumption:

Mi = T + ei (1-1)

Equation 1-1 states that Mi, the ith measurement of the object, is the algebraic
sum of T, the true value of the object, and ei, the value of the “error” on the ith
measurement. The term error is conventionally used for the random component.
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The term is historically entrenched, though it is an unfortunate usage because it
connotes a mistake rather than a normal aspect of the measurement process.

Equation 1-1 describes a situation that is too simple to be scientifically inter-
esting. In the late eighteenth century, there arose a complication that should be
dear to the hearts of all graduate students. The astronomy of that era required pre-
cise timing of the transit of a star across the meridian of the observatory. In 1795,
the head of the Greenwich observatory fired an assistant because the assistant’s
times were about a half second too slow (that is, they were slower than the
chief’s). Somewhat later, the German astronomer Bessel read about the incident,
and he began comparing astronomers. He found that even skilled, experienced as-
tronomers consistently disagreed, sometimes by as much as a second. Bessel at
first thought these interpersonal differences were constant, and he presented a
“personal equation” that could be cast in our notation as equation 1-2:

Mij = T + Pj + ei (1-2)

Here Pj is the personal contribution of observer j. It soon became clear that there
were also differences that depended on such complicating physical factors as the
size of the star and its rate of movement, so a more complex equation was needed:

Mijk = Tk + Pj + ei (1-3)

Equation 1-3 has three subscripts, because it is the ith measurement of the kth
object by the jth observer. The measurement now is held to depend upon the true
value of the kth object (Tk), the contribution of the particular observer (Pi), and
the random component (ei).

Equation 1-3 is sufficiently complex to deal with behavioral experiments of
substantive interest. Suppose, for example, one were studying how far people can
throw various projectiles. There might be five different projectiles and ten throw-
ers; fifty scores would be generated. Equation 1-3 would provide a model for the
distance traversed by each projectile as thrown by each hurler.

Equation 1-3 is an abstract statement of the process underlying a set of data to
be analyzed. While the statistical procedure does not make use of the model in a
direct way, the model clarifies the goal of the analysis. The aim is to tie variation
in the measurements to particular manipulations in the experiment. Specific
terms in the model may be replaced or omitted; for example, if each thrower
tossed only one projectile, there would be no way to isolate the effect on the mea-
surements of the individual’s strength. In that case, Pj would not appear in the
model for the experiment. On the other hand, additional experimental complica-
tions would call for incorporating more terms into the equation. The throwers
might be offered a systematically varied monetary incentive ($0 per meter, $1 per
meter, $10 per meter). This experimental manipulation would require a term ($l)
to specify the effect of the value of the incentive on each trial. Equation 1-4 in-
corporates the incentive effect:

Mijkl = Tk + Pi + $l + ei (1-4)
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Additional complexity in the model reflects potential difficulties in interpret-
ing the experimental results. Effects are not always simple. Suppose, for exam-
ple, that people try harder for $10 per meter than for $1 per meter. Accordingly,
the distances would be expected to be greater for the larger reward. But perhaps
the largest projectile is so heavy that for most people it can’t be thrown no matter
how hard one tries; it simply drops to the ground. In that case, the expected effect
of the incentive would be different for one projectile than for others. This is an
example of an interaction. Interaction between two variables means that the
effect of one variable depends on which value of the other variable is present.
Formally, interaction terms in the model represent the effects of specific combi-
nations of the model’s components. The hypothesized interaction appears in
equation 1-5:

Mijkl = Tk + Pi + $l + Tk$l + ei (1-5)

Equations 1-1 through 1-5 are all instances of linear models, so named be-
cause they express the response as a linear combination of contributing elements.
Other statistical procedures such as correlation and regression also employ linear
models. There is a formal equivalence among the various procedures for analyz-
ing linear models; this equivalence is conveyed by use of the term “general linear
model” to refer to the family of procedures. One can, in fact, analyze the problems
in this text with multiple regression (Cohen, 1968); experimental factors and their
interactions are regarded as predictors whose contributions can be assessed just
as one usually evaluates the impact of measured, noncontrolled variables. The
ANOVA framework, though, is the natural one for working with designed experi-
ments. Not only are the computations much simpler and easier to fathom but the
elements included in the model correspond directly to those built into the experi-
ment. With analysis of variance, one jointly plans the experiment and the analy-
sis, which is, in my view, the path to fruitful research.

Use of the Model

A model equation is simply an algebraic representation of an experimental hy-
pothesis. The researcher constructs the model as a guide; it points the way to the
appropriate statistical tests. Each term in the equation corresponds to a particular
statistical test; each term is a component in the ANOVA. The researcher does not
know the correct model before the data have been analyzed. Typically, one begins
by postulating a complex model, one with a term for each independent variable
and with terms corresponding to all of the possible interactions among them.
When the analysis reveals that some components make only negligible contribu-
tions to the variation in the scores, the corresponding terms are dropped from the
model. The reduced model is offered as a descriptive statement about the experi-
mental results.

In practice, researchers are seldom explicit about their use of these model equa-
tions. ANOVA procedures are routinized to the extent that one need not think
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about which components ought to be tested. Rather, the researcher identifies the
proper analysis to be conducted on the basis of the experimental design. The
model guides the tests, but it does so implicitly by providing a logical connection
between the experimental design and the proper analysis. The linkage is implicit
because it is common practice to learn the relationship between design and
analysis without using model equations. We shall follow this practice since the
analytical algorithms are, as a practical matter, independent of their theoretical
underpinnings. A model may be used to summarize an investigation, but it is not
required to carry out an appropriate data analysis. One merely tests for the fac-
tors built into the experiment along with the interactions among them. Standard
significance test procedures tell us whether the factors have had their anticipated
effects.

INTRODUCTION 7
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One-Way ANOVA

One-way ANOVA deals with the results of a straightforward experimental ma-
nipulation. There are several (two or more) groups of scores, with each group
having been subjected to a different experimental treatment. The term one-way
derives from the fact that the treatment for each group differs systematically from
that for other groups in only one respect: that is, there is one independent vari-
able. Within each group, the treatment should be identical for all members. Each
score comes from a separate individual, or, stated otherwise, each individual con-
tributes only one score.

The traditional name for an individual furnishing a score is subject. In recent
years, the more egalitarian term participant has come to be favored. The mod-
ern term connotes a voluntary contribution to the research, a partnership between
investigator and investigatee. volunteer is another label used for this usually
anonymous member of the research team. All of these terms will be employed in
the text.

The score is the quantified observation of the behavior under study. A score
must be a numerical value, an amount of something. For the analysis to be sensi-
ble, the score should directly reflect the behavior in question; the greater the
number, the more (or less, since it is the consistency rather than the direction of
the relation that is important) of the particular behavioral tendency. An individual
score must be free to take on any value in the defined range, controlled only by
the experimental conditions governing that score. Linked measures (for example,
sets of numbers that must sum to a particular value such as 100) do not qualify
for ANOVA.

8



ONE-WAY ANOVA 9

The null hypothesis is that the true values of the group means are equal. The
simplest way to express the alternative hypothesis is to say that the null hypoth-
esis is false. More definitively, at least one of the group means is different from at
least one other (note the difference between the latter expression and the incor-
rect phrasing that the group means are all different).

A simple example would be a drug-dosage study in which the scores might be
running times in a maze. We shall have three groups, with the members of each
group receiving a particular dosage of a specified drug. Usually a researcher tries
to have the same number of subjects in all of the groups, in order to estimate each
group mean with equal precision. But things don’t always work out as planned in
experimental work; and in a one-way design, inequality presents no difficulties.
For the sake of generality, then, our example will feature unequal group sizes.

The first group might consist of five animals, each of whom is given a 1-mg
dose ten minutes before running. The second group might also have five animals,
each of whom is given a 3-mg dose of the drug ten minutes before running. The
seven animals in the third group might each get a 5-mg dose. The average running
time for each group gives an idea of the effects of drug dosage.

If the scores in each group were completely distinct from those in the other
groups, no further analysis would be necessary. More realistically, however, one
would expect overlap among the scores. Some animals in the low-dosage group
will inevitably run faster than some in the high-dosage group, even though the
group means might suggest that, in general, higher doses lead to faster running.
In order to answer the question of whether the group means are reliably different,
one must carry out a statistical analysis in which the variability in the scores is
taken into account.

The test, of course, is ANOVA. The variability in the scores is partitioned into
two classes, systematic variance and error variance. Systematic variance is vari-
ability attributed to controlled elements in the experimental setting; in our exam-
ple, the dosage of the drug was controlled. The primary systematic variance is
that between groups. It measures how different each group mean is from the
overall mean. If all of the group means were similar, they would as well be simi-
lar to the overall mean. Consequently the between-groups variance would be
small.

error variance is variation that the experiment does not aim to understand.
This variation reflects idiosyncrasies participants bring with them to the experi-
ment. People can be expected to respond differently because they have different
histories and capabilities. Error variance is estimated from the average variance
within groups of participants treated the same way. Since the participants within
a group have been administered the same treatment, variation among their scores
provides a measure of the magnitude of the idiosyncratic contribution. The error
variance is, then, a composite determined from the variance within each group
weighted by the number of scores per group. For this reason, error variance is
also referred to as within-groups variance. The variance diagram illustrates
this.



In terms of the model given in chapter 1 (equation 1-3), the between-groups
variance includes the contributions of both the substantive variable (Tk) and the
random error component (ei). The within-groups term, on the other hand, con-
tains only the error component. In this experimental design, the personal contri-
bution of each participant (if a rat may be said to make a personal contribution) is
confounded with the error. Because the individual makes only one response, it is
not possible to identify the separate contributions of the personal component and
the error component. So the error component in this design includes individual
differences; both the between-groups variance and the within-groups variance in-
clude this masked contribution.

To the extent that the substantive variable, in this example the drug dosage,
has a big effect, then the between-groups variance will be large relative to the
within-groups variance. In contrast, suppose that the substantive variable had
no effect, in other words, that the running times were not differentially affected
by how much of the drug the animal received. In that case, the between-groups
and within-groups variances would both simply be measuring unsystematic vari-
ation. One would expect the two variances to be comparable in magnitude. They
will not be identical, of course, because different scores are being processed in
the computations, and thus different instances of the random component are
involved.

There are two plausible ways to compare quantities. One can examine the dif-
ference between them, which ought to be close to zero if the quantities are the
same except for random error. Alternatively, one can examine the ratio, which
ought to be close to one if the quantities are the same except for random error.
Which method is preferable? The ratio conveys more information. An analogy
may clarify this argument. Suppose I have been trying the new Pasadena diet, and
I proudly report that I lost 10 pounds. Is that a sufficiently impressive reduction for
you to consider recommending the diet to a friend who wants to lose weight? In
order to make that judgment, you might want to know the weight I started from.
If I originally weighed 360 pounds, the reduction would hardly be noticeable, but
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if I had originally weighed 180 pounds, the difference in my weight would be more
impressive. The diet’s effectiveness can be conveyed compactly by reporting the
percentage of my original weight that I lost rather than the amount. With the per-
centage information, you don’t need to know how much I originally weighed in
order to evaluate the diet. Comparing two numbers via a ratio is akin to using a
percentage. The ratio expresses the magnitude of the one number (the numera-
tor) in units that are the magnitude of other number (the denominator) so that the
actual values of the numbers being compared are not required to appreciate their
relationship.

Following this reasoning, statisticians routinely express comparisons as ratios
in the procedures they develop. The F test, named in honor of R. A. Fisher, the
British agronomist and statistician who pioneered ANOVA, examines the ratio
of the between-groups variance to the within-groups variance. If the between-
groups variance is large compared to the within-groups variance, then this ratio,
called the F ratio, will be large; this would be evidence supporting the idea that
drug dosage makes a difference. On the other hand, if the treatment had no effect,
then the F ratio would be expected to be approximately one; that is, the between-
groups variance should be of about the same size as the within-groups variance.

Chance fluctuations that in terms of the model (equation 1-3) are randomly
varying values of the error component ei may affect either of the two critical vari-
ances and thus affect the F ratio. Therefore, the probability distribution of the
F ratio, under the assumption that the two involved variances are in truth of the
same magnitude, has been worked out. This distribution furnishes the entries in
the F table. The tabled value is employed as a critical value, or criterion. If the
F ratio obtained from the data is larger than the tabled value, then the between-
groups variance is deemed large relative to the yardstick of the within-groups
variance. In other words, a large, or significant, F ratio is evidence that the group
means are not all the same. An obtained F ratio not exceeding the critical value
suggests that the group means are not reliably different. Alternatively and equiva-
lently, if the p value associated with the obtained F ratio is less than the designated
significance level, the difference between the group means is deemed significant.
Because the fundamental quantities leading to the ratio are variances, all of which
must be positive, directions of differences between means are not preserved.
Therefore, all tests employ only the upper tail of the F distribution. F tests are
treated as one-tailed even though the alternative hypothesis is nondirectional.

Randomization and Independence

Suppose a woman receives the dreaded news that she has breast cancer and asks
you for advice about where to seek treatment. One element in the response might
be an evaluation of the survival duration for patients who have gone to various hos-
pitals. If this information were available, significant differences might well have
life-or-death implications. It would seem natural to avoid a facility whose patients
did not live a long time after treatment. Unfortunately, this natural conclusion
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might be the wrong one, and your advice might well prove fatal. You have made
the assumption that all patients are equivalent. Suppose, for example, the suspect
hospital was known among local physicians as the best, and accordingly physi-
cians directed their most seriously ill patients there. The statistical evaluation is
useless because we don’t know whether the patients in the different institutions
are comparable. Experimental control, as this realistic example vividly demon-
strates, is no mere technical nicety.

An experimental comparison depends upon the idea that consistent differences
between scores from participants in various groups are not the result of preexist-
ing differences. ANOVA can tell us whether group means are reliably different
but not whether the differences were caused by the experimental treatment. In order
to make the inference that group differences are linked to treatment effects, the
researcher must see that prior to treatment the groups are comparable in whatever
respects are crucial. The easiest and best way to achieve this goal is to randomly
assign participants to groups. Every subject should have the same probability of
being assigned to any of the experimental groups. While randomization cannot
guarantee that the groups are indeed equivalent prior to treatment, it does insure
against bias, that is, stacking the deck in a particular direction.

Sometimes practical constraints prohibit a random assignment. This situation
occurs when the variable is classificatory rather than experimental. For example,
if gender or age is the variable of interest, the assignment of participant to group
can hardly be determined randomly. In such a situation, the problem is that one
cannot say with confidence that observed between-group differences are related
to the variable of interest. There may be a hidden variable, such as weight or
height or years of education, that is truly responsible for the experimental effect.
The classificatory variable, sometimes called a subject variable, may be naturally
confounded with a hidden variable that, although logically distinct, is associated
with the classification. Random assignment minimizes the chance that such a
concomitant variable will confuse the researcher.

It is worth noting that this problem is not related to ANOVA but to the design
of the experiment. The statistical analysis is neutral. It is designed to tell you
whether the average scores in the experimental groups are reliably different. The
issue of what the scores mean or of whether the numbers are meaningful at all is
not in the domain of statistics but of experimental logic.

Experimental logic also demands that the observations be independent of one
another. This means primarily that the researcher must collect each score in the
same way. In a practical sense, of course, it is not possible for an experimenter to
be equally tired or for the apparatus to be in the same condition for all observa-
tions. Once again, randomization comes to the rescue. By interweaving the sub-
jects from the various groups according to a random sequence, the researcher
avoids biasing the results.

How does one achieve randomization? Suppose it is desired to assign five
subjects to each of four experimental groups. As volunteers report in from the in-
troductory class pool, each one is placed in a particular group according to a pre-
determined scheme. Since there are four groups, regard the subjects as coming in
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ONE-WAY ANOVA 13

sets of four. For each set, shuffle the four names, or more conveniently the index
numbers 1, 2, 3, and 4, in a hat (hats are traditional for shuffling, though no one I
know owns a hat these days, so you may have to improvise). The first one drawn
goes into group 1, the second into group 2, and so on. Repeat this shuffling pro-
cess five times, in each case using a separate shuffle. Alternatively, use a com-
puter program to generate random permutations to accomplish the shuffling.
A major advantage of the permutation scheme, as opposed to independent ran-
domization as each subject comes along, is that equal group sizes are automati-
cally attained as each permutation is implemented.

The F Table

The F distribution is actually a family of distributions. There are two parameters
that serve to distinguish the members of the family. Each F distribution is charac-
terized by two degrees of freedom (df ) values. The phrase “degrees of freedom”
has little explanatory or mnemonic value, but it is unfortunately embedded in the
literature. The degrees of freedom for numerator heading and the degrees
of freedom for denominator headings guide the table user to the proper criti-
cal values, as do the coordinates on a map. The values of these parameters are de-
termined by the structure of the experiment. The degrees of freedom for numerator
are one less than the number of groups (for our drug experiment, dfnum = 2). The
degrees of freedom for denominator are computed by subtracting the number of
groups from the total number of scores (for our drug example, dfdenom = 14).

A researcher arbitrarily chooses a significance level, or in other words, deter-
mines the probability that the true group means will be declared different when
they are in fact the same. This misjudgment is called a Type I error. This signif-
icance level is usually set conventionally at either .05 or .01, though there is no
logical necessity governing the choice. Throughout this text, the .05 level is pre-
sumed to have been selected. The significance level also determines the critical
value of F. Examination of the F table appendix A reveals that the more strict the
criterion (that is, the lower the significance level chosen), the larger the obtained
F ratio must be in order to exceed the tabled critical value. This means that the
choice of significance level plays a role in determining how large an observed
difference among group means will be required before those group means are
pronounced different. For the drug experiment with df = 2, 14, the table shows
the critical value for F for the .05 level of significance to be 3.74, while that for
the .01 level is 6.51.

Power

The significance level also affects the probability of a Type II error, that is, fail-
ing to confirm a true difference among the group means. The capability of detect-
ing a difference is known as the power of the statistical test, and obviously it is



desirable for a test to be powerful. The less stringent the significance level (that
is, the larger the value of α), the more powerful the test is because a smaller F
ratio is required in order to attain significance. But manipulating the significance
level to gain power is a dangerous game because there may in fact be no true dif-
ference among means, and a higher significance level increases the risk of a Type
I error.

Fortunately, power may also be increased by means that do not affect the Type
I error rate. The most fruitful ways under the control of the researcher involve re-
ducing the within-groups variability, thus producing a smaller denominator for
the F ratio. Possibilities include choosing participants to be homogeneous, speci-
fying experimental instructions and procedures carefully so that all observations
are generated under the same conditions, and eliminating or controlling (via the
more complex experimental designs to be encountered in later chapters) extrane-
ous variables such as time of day or temperature of the room.

Power can also be increased by increasing the number of participants because
the corresponding increase in the denominator df means that a smaller F ratio is
needed to reach statistical significance. However, in addition to the economic
burden, there is another drawback to solving the power problem by running
hordes of subjects. This drawback can be illuminated by considering the extreme
case. Suppose there is a very small but true difference among the group means.
The greater the df for the denominator, the more likely this difference is to be sig-
nificant. With a very large number of subjects, even a tiny difference may prove
significant. But few researchers want to discover or confirm experimental manip-
ulations that produce small differences. Rather they want to demonstrate potent
treatment effects. Because ANOVA addresses the question of reliability rather
than magnitude of effect, a significant F ratio does not necessarily imply an im-
pressive result. Most researchers are wary of studies that employ huge numbers
of participants to obtain small but significant F ratios for fear that the effects are
small and therefore perhaps not worthy of attention. So an experimenter should
run enough, but not too many, subjects. This can be a tricky problem. More will
be said on this matter in chapter 10, where we discuss strength of effect in detail.

Computation

Although it is feasible to determine the between-groups and within-groups vari-
ances with formulas based on the usual definition of a variance (the only compli-
cation is that when group sizes are unequal, each group’s contribution must be
weighted proportionately to its size), a much more convenient computational
scheme is available. With this algorithm comes a standard format for presenting
the results and some new terminology.

ANOVAs are customarily presented in a table, and the table has conventional
headings for its columns. The term source is used to refer to the particular
source of variation for each row in the table; at this point, our sources will be be-
tween groups and within groups. Later, as we encounter more complex designs in
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ONE-WAY ANOVA 15

which variability is further partitioned, there will be more sources and thus more
rows. Each source’s df are given, and then we come to the crucial sum of squares
(SS) and mean square (MS) columns. The mean square for a source is the
(weighted) average variance for that source, and it is the mean squares that are
used to construct the F ratio that appears in the final column. The sum of squares
for each source is the quantity computed directly from the data. From each SS the
corresponding MS is derived. Sums of squares merit an entry in the table, though,
because they are not merely an intermediate calculation on the way to the mean
squares. The theoretical importance of the SSs is that they are additive. This addi-
tive property means that sums of squares for the various sources add up to the
total sum of squares for the whole experiment. Similarly, when we do the further
partitioning called for by more complex designs, it is the SS that is partitioned.
Mean squares, on the other hand, are not additive.

An Example of One-Way ANOVA

The scores in the table represent running times from three groups of animals in a
drug-dosage study. Placing the data in tabular format is a worthwhile step in the
analytic procedure. Neatness doesn’t exactly count, but it is useful to avoid get-
ting lost in a maze of numbers.

Running Time Scores, in Seconds

Group 1 Group 2 Group 3

18 16 10
23 16 17
14 11 8
16 18 12
23 14 14

7
11

t1 = 94 t2 = 75 t3 = 79 T = 248

There are three numbers to calculate; I refer to them imaginatively as (1), (2),
and (3).

(1) ΣX2: Each of the scores is squared, and these squares are then summed.
This is usually the most tedious step in any ANOVA, although it is not too
unpleasant if your calculator has an “M+” key. Simply punch the “×”, “=”,
and “M+” keys in sequence after you enter each of the scores, and the ΣX2

should appear when you press the memory recall key. This convenience
does not add much to the price of a calculator, and it should swing your
buying decision.
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(2) T2/N: T is the grand total, the sum of all of the scores. (T should be called
ΣX for consistency’s sake, but the label is traditional.) N is the number of
scores that went into T, that is, the total number of scores in the experi-
ment.

(3) Σ(tj
2/nj): tj is the total for the jth group, and nj is the number of scores in

that jth group. Compute each tj by summing the scores in each group sepa-
rately. Each group total is squared and then divided by the number of num-
bers that contributed to the total. The results of these divisions are then
summed.

The defined quantities are calculated from the data:

(1) ΣX2: 182 + 232 + 142 + . . . + 142 + 72 + 112 = 3,950
(2) T 2/N: 2482/17 = 3,617.88
(3) Σ(tj2/nj): (942/5) + (752/5) + (792/7) = 3,783.77

Next, the calculated quantities are used to generate the numbers in the SS col-
umn of the ANOVA table. As SSs are literally sums of squares, they are necessar-
ily positive. It is inevitable that (1) should be the largest calculated quantity and
(2) should be the smallest. If an arithmetic error causes a violation of this order-
ing, a negative SS will result. The good news is that at least that error will be
spotted (for me, it’s quantity [1] on which my calculator is most likely to fail).

ANOVA Table

Source df SS MS F

Between groups 2 (3) − (2)
= 165.89

Within groups 14 (1) − (3)
= 166.23

SS

df

.
.

wg

wg

= =
166 23

14
11 87

MS

MS

.

.
. *

bg

wg

= =
82 95

11 87
6 99

SS

df

.
.

bg

bg

= =
165 89

2
82 95

The asterisk sitting proudly beside the F ratio denotes significance at the re-
searcher’s chosen level. In an actual table, of course, only the numerical values
appear, not the formulas or intermediate calculations.

Numerical Details

Numerical accuracy is certainly a goal worth striving for. In presenting results
for public consumption, though, one cannot expect ten decimal places to be tol-
erated. One must round the numbers to be presented in the ANOVA table. It is
customary to report sums of squares and mean squares to one or two decimal
places and F values to two places. Maximal accuracy is achieved by maintaining
as many decimal places as your calculator will hold until the computations are
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complete; only then should rounding be done. Consequently, the reported F ratio
occasionally will have a slightly surrealistic quality in that the ratio of the re-
ported mean squares does not precisely yield the F given in the table. It is more
important to provide a correct statistic than to appear consistent. One should
avoid rounding at intermediate stages.

The Responsiveness of ANOVA

A further example will serve to clarify the way the statistical test is sensitive to the
data. The table shows three groups of numbers drawn from a random number table.

The ANOVA computations yield an F of 0.46. Since F is less than one, no
table is necessary to verify the nonsignificance of the between-groups effect; in
fact, F ratios of less than one are customarily reported simply as “F < 1.” This re-
sult is hardly surprising, considering the origin of the scores.

Now modify the scores by adding 10 to each score in group 1 and 5 to each
score in group 2. Recompute the ANOVA. This time the F ratio leaps to a value
of 7.13*. This statistically significant F ratio reflects your having imposed a
between-groups effect onto the data. Notice that MSwg (27.0) for the modified
scores is the same as for the original scores; this reflects the fact that the variance
of the scores within each group did not change.

Next, return to the original scores and apply a different modification by adding
10 to the last score in each group. Once again, recompute the ANOVA. Now the F
ratio (0.29) is even smaller than that for the original scores. The reason is that this
second modification has increased the within-groups variance, but it has not in-
creased the between-groups variance since the group totals are as different from
one another as they were before.

A Test of the Grand Mean

Summing the degrees of freedom in the ANOVA table yields N − 1, one less than
the number of scores. Since the rule for generating degrees of freedom is that

Scores from Random Number Table

Group 1 Group 2 Group 3

4 13 14
11 7 2
13 6 5
16 16 4

1 4 6
2 12 10
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each score produces one degree, there must be an element missing from the table.
The missing link is a seldom-tested source that compares the overall mean re-
sponse to zero. The sum of squares for this source is T 2/N, which we know as (2),
and since SSmean has only one degree of freedom, the corresponding mean square
is also given by T 2/N. This mean square may be compared to the mean square
within, with an F ratio being formed and tested for significance in the standard
way. If the F ratio proves significant, it is interpreted as evidence against the null
hypothesis that the grand mean of the scores is zero.

It should be clear why this source is usually omitted from the ANOVA table.
The value of the average response is rarely of interest to the researcher; what is of
concern is whether the various treatments have had differential effects. The only
practical situation in which the test for the mean is likely to be useful is when the
data are comprised of difference or change scores. Consider a project in which
two different programs for weight loss are evaluated. Primary interest would
surely be in whether one program produces more weight loss than the other; with
individual losses as the scores, the ordinary between-groups F ratio is addressed
to that question. But also of interest might be the question of whether the pro-
grams are effective at all. If the average weight loss is not reliably different from
zero, then the reduction programs must be regarded as failures. The appropriate
test of this question employs the F for the mean.

One may also test the null hypothesis that the grand mean is equal to some
other predetermined constant, K, rather than zero. In this case, the numerator of
the F ratio is modified to incorporate the constant:

SSmean = N � (T/N − K)2

Notice that T/N is simply the grand mean, and so if K = 0 the expression reduces
to T 2/N. I have never seen this null hypothesis tested in print (please don’t deluge
me with citations), so the derivation is probably not of great importance. Still, it’s
nice to know where the missing df goes and to appreciate its meaning.

Exercises

You will see that I use varied formats for presentation of the data. This is a delib-
erate maneuver to prepare you for the wonderful variety used by researchers as
they scribble their scores. However, your ANOVA tables should rigidly follow the
format given in the text; it is considered anarchy to try a different format for the
table. Use the .05 level of significance as a default throughout the text.

2-1. I conducted an experiment on two sections of my introductory statistics
class. One section (with four students) had a graduate assistant, while the other
(with eight students) did not. Determine whether the assistant makes a difference.
The scores are from each student’s final exam.

Section 1 (with assistant): 70, 50, 60, 60

Section 2 (without assistant): 30, 20, 40, 10, 50, 30, 20, 40
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2-2. The following scores represent the number of errors made by each person
on a verbal learning task. Each person was assigned to one of four study groups.
Test the hypothesis that the different study groups all produced the same average
number of errors.

Group Error scores
1 16, 7, 19, 24, 31
2 24, 6, 15, 25, 32, 24, 29
3 16, 15, 18, 19, 6, 13, 18
4 25, 19, 16, 17, 42, 45

2-3. Students taking Psych 205 were randomly assigned to one of three
instructional conditions. The same test was given to all of the students at the end
of the quarter. Test the hypothesis that there were no differences in test scores
between groups.

Group Test Scores
Lecture 10, 13, 3, 38, 11, 23, 36, 3, 61, 21, 5
Programmed instruction 8, 36, 61, 23, 36, 48, 51, 36, 48, 36
Television 36, 48, 23, 48, 61, 61, 23, 36, 61

2-4. A professor of psychiatry evaluated three of her trainee therapists by ask-
ing their patients for self-reports of their perceived growth (0 = no growth;
20 = maximal growth) during the course of therapy. Test the null hypothesis that
the trainees were equally effective. Also evaluate the professor by testing the null
hypothesis that on the whole the patients experienced no growth at all.

Scores from Patients of Trainees

Trainee A Trainee B Trainee C

2 0 3
5 2 4
0 1 2
1 0 1
3 1

2-5. Bozo, a statistically minded clown, decided to evaluate five new routines
he had created. One of his fellow clowns, Dumbo, contended that children laugh
at anything done by a clown, but Bozo argued that some ideas are more hilarious
than others. Bozo went to the Stoneface Elementary School and successively
gathered 5 groups of 4 children. For each group, Bozo performed 3 minutes’
worth of one of the routines while Dumbo counted the number of laughs emitted
by each child. Whose point of view, Bozo’s or Dumbo’s, do these comical results
support? Each score given is the number of laughs by one child in response to the
routine.
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2-3. Source df SS MS F

Between groups 2 3141.93 1570.96 5.85*
Within groups 27 7249.53 268.50

2-6. The Committee Against Violent Television charged that Network 2 was
the most violent of them all; Network 2 responded that they were no worse than
their competitors. The committee assigned watchers to count the number of bru-
talities per evening for 5 days. Evaluate the data to determine if the networks are
equally culpable.

Number of Laughs Emitted by Groups of Children in Response to Comedy Routines

Pies in Monkey Snappy Revolting 
Group faces imitation Pratfalls insults smells

Group 1 12 7 20 4 15
Group 2 13 14 25 2 18
Group 3 11 22 17 0 23
Group 4 25 8 22 8 17

Number of Brutalities Counted on Television
Networks per Evening

Network 1 Network 2 Network 3

18 42 32
32 73 28
23 68 17
16 32 43
19 47 37

Answers to Exercises

2-1. Source df SS MS F

Between groups 1 2400.00 2400.00 17.14*
Within groups 10 1400.00 140.00

2-2. Source df SS MS F

Between groups 3 513.97 171.32 2.06
Within groups 21 1749.29 83.30
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2-4. Source df SS MS F

Between groups 2 7.76 3.88 1.89
Mean 1 44.64 44.64 21.73*
Within groups 11 22.60 2.05

2-5. Source df SS MS F

Between groups 4 721.30 180.33 7.21*
Within groups 15 375.25 25.02

2-6. Source df SS MS F

Between groups 2 2476.13 1238.07 8.41*
Within groups 12 1767.60 147.30


