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Preface

This book aims to present a broad range of fundamental topics in theoretical
and mathematical physics in a thorough and transparent manner based on the
viewpoint of differential equations. The subject areas covered include classical
and quantum many-body problems, thermodynamics, electromagnetism,
magnetic monopoles, special relativity, gauge field theories, general relativity,
superconductivity, vortices and other topological solitons, and canonical
quantization of fields, for which, differential equations are essential for
comprehension and have played, and will continue to play important roles.
Over the past decade, the author has used most of these topics at several
universities, domestically and internationally, as courses and seminars mainly
for mathematical graduate students and researchers trained and interested in
differential equations. These activities and experiences convinced the author
that many of the concepts, construction, structures, ideas, and insights of
fundamental physics can be taught and learned effectively and productively,
with emphasis on what are offered by or demanded from differential equations.

With this in mind, the book has several goals to accomplish. Firstly, the style
of the presentation hopefully provides a handy and direct access to approach
the subjects discussed. Secondly, it serves to render a fairly wide selection
of themes that may further be tailored for a graduate-level mathematical
physics curriculum out of the individual preference of the instructor or reader.
Thirdly, it supplies a balanced pool of topics for upper-level or honors
undergraduate seminars. Fourthly, it offers guidance and stimulation to the
related contemporary research frontiers and literature.

Except for knowledge on differential equations, the prerequisite for the reader
of the book is kept minimal, although certain levels of acquaintance with
undergraduate general physics is helpful for the reader to proceed smoothly.
Thus, the book begins with classical mechanics in canonical formalism and moves
on to various advanced subjects. However, unless needed, the book excludes
specialized topics of traditional classical mechanics such as fluids and elasticity
theories, since they are treated extensively elsewhere in the literature. The
book may be used for self-study, as a textbook, or as a supplemental source
book for a course in mathematical physics with concentration and interests in
quantum mechanics, field theory, and general relativity, emphasizing insights
from differential equations.
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While the book holds fifteen chapters, each chapter may be studied or
presented separately in a more or less self-contained manner, depending on
interests and readiness of the reader or audience.

In Chapter 1, we start with a presentation of the canonical formalism of
classical mechanics. We then consider the classical many-body problems in
three-, two-, and one-dimensional settings, subsequently. Specifically, in three
dimensions, we discuss the many-body problem governed by Newton’s gravity,
consolidated by a thorough study of Kepler’s laws of planetary motion and a
derivation of Newton’s law of gravitation, as a by-product; in two dimensions, we
introduce the Helmholtz–Kirchhoff point-vortex model; and, in one dimension,
we present a dynamical system problem in biophysics known as the DNA
denaturation. For this third subject we also explain how to implement ideas
of thermodynamics to study a temperature-dependent mechanical system. The
goal of this chapter is to lay a Lagrangian field-theoretical foundation for field
theory and enlighten the study with some exemplary applications.

In Chapter 2, we consider quantum many-body problems. We explain how the
Schrödinger equation is conceptualized and the statistical interpretation of the
wave function. Then, we formulate the quantum many-body problem describing
an atomic system and discuss the hydrogen model as an illustration. Next,
we show how the Hartree–Fock method, Thomas–Fermi approach, and density
functional theory may be utilized in various situations as computational tools to
find the ground state solution of a quantum many-body problem. An initial goal
of this chapter is to illustrate a monumental transition from classical to quantum
mechanics based on the Schrödinger equation realization of the photoelectric
effect. A second goal of this chapter is to introduce some mathematical challenges
presented by quantum many-body problems. Here the study of the hydrogen
model serves as a motivating starting point of the quantum many-body problem,
which naturally leads to the development of subsequent analytic methods of
computational significance when the dimension of the problem goes up. In
particular, we show that the quantum-mechanical description of a many-body
problem, whose classical-mechanical behavior is governed by nonlinear ordinary
differential equations, is now given by a linear partial differential equation,
and that appropriate approximations of such a linear equation necessitate the
formulation of various nonlinear equation problems in respectively specialized
situations.

Chapter 3 is a study of the Maxwell equations and some distinguished
consequences. First, we present the equations and discuss the associated
electromagnetic duality phenomenon. We next formulate the Dirac monopole
and Dirac strings and show how to use a gauge field to resolve the Dirac string
puzzle and obtain Dirac’s charge quantization formula. We demonstrate how this
idea inspired Schwinger to derive a generalized quantization formula for a particle
carrying both electric and magnetic charges, known as dyon. We then present the
Aharonov–Bohm effect for wave interference, which demonstrates the significant
roles played by the gauge field and topology of a system at quantum level. The
goal of this chapter is to appreciate how some of the fundamental and rich
contents of electromagnetic interaction may be investigated productively through
exploring the structures of the differential equations governing the interaction.
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Specifically, by complexifying the wave equation, we obtain a novel derivation
of the Maxwell equations, which also embodies a clear and natural revelation of
the electromagnetic duality, and, by considering the topological properties of the
solutions to the Maxwell equations, we arrive at the findings of Dirac, Schwinger,
and Aharonov–Bohm.

Chapter 4 is a succinct introduction to special relativity. Since most of the
subjects covered in this text are concerned with relativistic field equations, some
solid knowledge on special relativity is necessary. Thus we carry out a study
of special relativity in this chapter. We first discuss spacetime, inertial frames,
and the Lorentz transformations. We present topics that include spacetime line
element, proper time, and a series of notions, including length contraction, time
dilation, and simultaneity of events. Then, we study relativistic mechanics.
Although this chapter is short, its goal is to serve as the foundation for
many following chapters, including those on the Dirac equations, gauge field
theory, general relativity, and topological solitons. In particular, the Lagrangian
action for the motion of a relativistic particle will be the starting point for the
formulation of the Nambu–Goto string action and the Born–Infeld theory.

In Chapter 5, we present the Abelian gauge field theory. We start with an
introduction to the notions of covariance, contravariance, and invariance for
quantities defined over a spacetime. We formulate the Klein–Gordon equation,
which is a relativistic extension of the Schrödinger equation. We then show
that a gauge field is brought up again naturally in order to promote the internal
symmetry of the system from global to local such that the Maxwell equations are
deduced as a consequence. Furthermore, we discuss various concepts of symmetry
breaking and illustrate the ideas of the Higgs mechanism as another important
application of gauge field equations. A goal achieved in this chapter is that a
vista of important physical consequences may be obtained from examining some
basic structural aspects of the equations of motion without sufficient knowledge
about their solutions.

Chapter 6 centers around the Dirac equation. We first show how to obtain the
classical Dirac equation and what immediate consequences the equation offers
in contrast to the Klein–Gordon equation. We next consider the Dirac equation
coupled with a gauge field and present its Schrödinger equation approximations
in electrostatic and magnetostatic limits, respectively. In particular, we derive
the Stern–Gerlach term, whose presence is essential for the explanation of the
Zeeman effect. We then review some nonlinear Dirac equations. This study
shows that sometimes profound physics may be unveiled unexpectedly through
an exploration of some deeply hidden internal structures of the governing
equations.

Chapter 7 covers the Ginzburg–Landau theory for superconductivity. We
begin with a discussion of perfect conductors, superconductors, the Meissner
effect, the London equations, and the Pippard equation. We next present the
Ginzburg–Landau equations for superconductivity and show how to come up
with the London equations in the uniform order-parameter limit and demonstrate
the Meissner effect. We then study the classification of superconductivity in
view of surface energy and discuss the appearance of mixed states in type
II superconductors. We end the chapter with a review of some generalized
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Ginzburg–Landau equations. This study retraces the historical path regarding
how differential equations of varied subtleties have been exploited in line with
real-world observations to advance the understanding of superconductivity.
In particular, it also describes an unsolved two-point boundary value
problem, arising in the Ginzburg–Landau theory, for the classification of
superconductivity.

Chapter 8 grows out of the subjects covered in Chapter 5 and Chapter 7.
Specifically, in this chapter, we focus on the static Abelian Higgs theory or the
Ginzburg–Landau theory in two dimensions, which possesses a distinctive class
of mixed-state solutions of a topological characteristic known as vortices. We
describe such solutions in detail in view of several important facets including
energy concentration, vortex-line distribution, quantization of magnetic flux or
charge, and exponential decay properties. We also discuss the use of such vortex-
line solutions in a linear confinement mechanism for magnetic monopoles, a
topic actively pursued in quark confinement research in recent years. This study
shows again the applications of solutions of gauge field equations, of topological
characteristics, to fundamental physics, of both quantitative and conceptual
values.

In Chapter 9, we move onto the subject of non-Abelian gauge field theory.
We first present the theory on a general level, and then specialize on the
Yang–Mills–Higgs theory. We discuss a series of concrete formalisms including
the Georgi–Glashow model and the Weinberg–Salam electroweak theory. We
also illustrate some important families of solutions such as the ’t Hooft–
Polyakov monopole, Julia–Zee dyon, and Bogomol’nyi–Prasad–Sommerfield
explicit solution. The main goal of this chapter is to present a broad family
of nonlinear partial differential equations of importance in elementary particle
physics.

In Chapter 10, we study the Einstein equations of general relativity and
related subjects. We begin with an introduction to the basics of Riemannian
geometry and then present the Einstein tensor and the Einstein equations
for gravitation. Subsequently, we unfold our discussion mainly around special
solutions of the Einstein equations, categorized into time-dependent space-
uniform solutions and time-independent space-symmetric solutions. In the
former category, we elaborate on the cosmological consequences and implications
richly contained in various solutions of the Friedmann type equations under the
Robertson–Walker metric, which include the Big Bang cosmological scenario,
patterns of expansion of the universe, and an estimate of the age of the universe.
In the latter category, we begin with a presentation of the Schwarzschild solution
and a discussion of several notions unveiled, such as the event horizon and
black hole. We then present a derivation of the Reissner–Nordström solution
for a black hole carrying both electric and magnetic charges and discuss its
consequences. We will also discuss the Kerr solution describing a rotating black
hole. Afterwards, we consider the gravitational mass problem and the Penrose
bounds as additional themes. We next present a discussion of gravitational waves
in the weak-field limit. We conclude the chapter with a study of the cosmological
expansion of an isotropic and homogeneous universe propelled by a scalar-wave
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matter known as quintessence. The main goal of this chapter is to use the Einstein
equations as a key to access a broad range of gravity-related research directions
of contemporary interests.

Chapter 11 is about charged vortices and the Chern–Simons equations. For
conciseness, we focus on the simplest Abelian situations. We first present the
Julia–Zee theorem and its proof, which states that finite-energy electrically
charged vortices, which are static solutions in two dimensions, do not exist in
the usual Yang–Mills–Higgs theory. Thus, some modification of the theory is
to be made in order to accommodate charged vortices, and the addition of a
Chern–Simons topological term to the Lagrangian action density will serve the
purpose. In this chapter, our goal is to present a brief introduction to the Chern–
Simons vortex equations. Besides the motivation for allowing electrically charged
vortices, other applications of the Chern–Simons theory include anyon physics
of condensed matters, gravity theory, and high-temperature superconductivity,
where non-Abelian structures are also abundantly utilized. It is hoped that
this introduction will serve to spark interest and inspiration in the study of
an enormous family of partial differential equation problems of challenges, under
the shared title of the Chern–Simons vortex equations.

In Chapter 12, we consider the Skyrme model and some related topics. We
begin with an exploration of the well-known dimensionality constraints brought
forth by the Derrick theorem and the Pohozaev identity. We then introduce
the Skyrme model to maneuver around the dimensionality constraints. As a
related topic, we will also discuss the Faddeev model, which may be viewed
as a descent of the Skyrme model and which brings about knot-like solutions
characterized by fractionally-powered growth laws relating energy to topology.
In addition, we present a discussion of Coleman’s Q-ball model, which also has no
dimensionality restriction. Due to the difficulties associated with the structures of
the nonlinearities and topological characteristics of these field-theoretical models,
it has been a daunting task to consider the equations of motion directly, except
in numerical studies, and one needs to focus on their variational solutions. In
either situation, hopefully this chapter serves as an invitation to many related
research topics.

Chapter 13 is a short discussion on strings and branes. We first revisit the
relativistic motion of a free particle and subsequently formulate the Nambu–
Goto string equations. We then extend the study to consider branes and their
governing equations. We next present the Polyakov strings and branes and
their equations of motion. Thus, our goal of this chapter is to emphasize the
challenges and difficulties encountered in these highly geometric and nonlinear
partial differential equations as classical field-theory equations. Except in
some extremely simplified or reduced limits, these equations are not yet well
understood, regarding their solutions.

In Chapter 14, we present the Born–Infeld theory of electromagnetism and
some of the associated mathematical problems. To start, we recall the energy
divergence problem of the point-charge model of the electron and the idea of
Born and Infeld in tackling the problem based on a revision of the action density
motivated by special relativity, sometimes referred to as the first formulation of
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Born and Infeld. Within this formalism, we consider some interesting illustrative
calculations around the electric and dyonic point charge problems. We next
present the second formulation of Born–Infeld based on invariance consideration
and show how to resolve the energy divergence problem associated with a dyonic
point charge encountered in the first formulation of Born and Infeld. We then
relate the Born–Infeld equations to the minimal surface equations and propose
some generalized Bernstein problems. Subsequently, we conduct a discussion
of an integer-squared law of a universal nature regarding the global vortex
solutions of the Born–Infeld equations in two dimensions. Furthermore, we
also present a series of electrically and dyonically charged black hole solutions
of the Einstein equations coupled with the Born–Infeld equations. Thereafter,
we consider the generalized Born–Infeld theories and present some interesting
applications, including a nonlinear mechanism for an exclusion of monopoles
as finite-energy magnetically charged point particles, relegation and removal of
curvature singularities of charged black holes of the Reissner–Nordström type,
and theoretical realizations of cosmological expansion and equations of state of
cosmological fluids through appropriate Born–Infeld scalar-wave matters in the
form of k-essence. In some sense, this chapter may be regarded as a gauge-
field or scalar-field extension of the subjects discussed in Chapter 13. Therefore,
the difficulties we encounter here are similar to those there. On the other
hand, within the limitation of the Born–Infeld theory, here we are able to
see how real progress is made for many important issues of concern, such as
the resolution of an electric point charge of divergent energy, electromagnetic
asymmetry, singularity relegation for charged black holes, and k-essence scalar
field cosmology, all based on pursuing special solutions of the governing equations
in various situations.

Chapter 15 is the final chapter and provides some taste of field quantization
and a further view expansion. For clarity and conciseness, our discussion
will be clustered around harmonic oscillators. We start with a study of the
quantum mechanics of harmonic oscillators based on canonical quantization.
We next consider the Hamiltonian formalism of general field equations in terms
of functional derivative and commutators. We then show how to quantize the
Klein–Gordon equation and the Schrödinger equation. In doing so, we encounter
the well-known infinity problem arising from a divergent zero-point energy,
which gives us an opportunity to explain the concept of renormalization. We
then move on to quantize the Maxwell equations that govern electromagnetic
fields propagating in free space. We focus our attention on the quantization
of energy, momentum, and spin angular momentum directly, rather than
the electromagnetic fields themselves, and derive the Planck–Einstein and
Compton–Debye formulas for the photoelectric effect and photon spin in the
context of quantum field theory. We conclude the chapter with a discussion
of the thermodynamics of a harmonic oscillator, both classically and quantum
mechanically, such that we are able to come up with a picture about the relation,
ranges of applicability and limitation, and transition with regard to temperature,
of classical and quantum-mechanical descriptions of a physical system, in general.
Thus, part of the goal of this chapter is to show in view of quantum field theory
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what may be expected beyond classical field equations both in sense of differential
equations and meaning of quantum physics.

Exercises appear at the end of each chapter. These mostly straightforward
problems serve either to supplement the details or expand the scope of the
materials of the text. Working out some of the problems may be useful for
checking the understanding of the subjects covered but omitting this process
should not compromise the quality of learning too much since throughout the
text the materials are presented in sufficient details and elaboration.

An ideal reader of this book is a person well versed in college-level differential
equations who is motivated by physical applications and is interested in gaining
insights into field-theoretical physics through differential equations. In order to
keep the volume of the book to a reasonable size, we leave out introductory
materials about basic physical concepts commonly covered in an undergraduate
course in general physics. For example, when we discuss the Ginzburg–Landau
theory of superconductivity, we assume the reader knows what a superconductor
is and how it behaves. Thus, if this book is used as a textbook for a short or
extensive course, it will serve the purpose better if it is supplemented with some
extra conceptual nontechnical reading materials, which should be easily available.

In addition to serving for self-study, the materials covered in the book are
planned in such a way that each of the chapters may be used for a short
concentrated topic course ranging from two to seven weeks or longer, with about
two to three hours of lectures per week. Specifically, Chapters 1, 3–9, 11, and
13 may be candidates for a two-week course, Chapters 2, 12, and 15 for a three-
to four-week course, and Chapters 10 and 14 for a six- to seven-week course.
For a one-semester course, the author suggests picking a collection of about six
to seven chapters depending on the interests of the instructor and students. At
an elementary level, a choice may be Chapters 1–4, Chapter 7, Chapter 8, and
Chapter 11, supplemented with Section 5.1 if necessary. At a more advanced
level, a choice may be Chapters 5–10 and Chapter 15. The materials of the full
book are more than enough for a year-long course. Moreover, except for Chapters
4 and 15, all other chapters may be studied for research topics and projects of
differential equations and nonlinear analysis in theoretical and mathematical
physics.

We supplement the book with an Appendices chapter of six sections, which
cover some concepts and subjects encountered and used elsewhere in the main
text. In the first section, we give a full introduction to the notions of indices
of vector fields and topological degrees of maps, in the context of the Euclidean
spaces. We begin our discussion from the argument principle in complex analysis
and then extend the construction to real situations, highlighted with some
applications as examples, including a proof of the fundamental theorem of
algebra and a study of the issue of existence and non-existence of periodic orbits
of some dynamical systems. Subsequently, we develop the concepts in higher
dimensions and conclude the discussion with a proof of the Brouwer fixed-point
theorem. In the second section, we consider the concepts of linking number
and the Hopf invariant based on our knowledge on the topological degree of
a map. We then consider these constructions in view of the concepts of the
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helicity of a vector field, the Chern–Simons invariant, and the classical integral
representation of the Hopf invariant by Whitehead. In the third section, we
present a comprehensive discussion of the Noether theorem, which associates
continuous symmetries of a Lagrangian mechanical or field-theoretical system
with its conserved quantities schematically. As illustrations, we first consider
the motion of a point mass and derive its energy, linear momenta, and
angular momenta, as consequences of time- and space-translation invariance and
rotation-invariance. We then develop the formalism in the setting of a general
Lagrangian field-theoretical framework and show how to construct the associated
energy-momentum tensor and various Noether charges and currents. In the
fourth section, we describe the possible eigenvalues of the angular momentum
operators of a particle in non-relativistic quantum-mechanical motion based on
the associated commutation relations of these operators. As a by-product, we
explain how to deduce Dirac’s charge quantization formula using Saha’s method
without resorting to a treatment of the Dirac strings. In the fifth section, we
show how the concept of the intrinsic spin of a particle in quantum-mechanical
motion arises as a result of “correcting” a “deficiency” in the spectra of orbital
quantum momentum operators. As a consequence, we are naturally led to the
introduction of spin matrices and spinors. In particular, we show how the Pauli
spin matrices are called upon, and then explain how the particle spins are related
to particle statistics and classification by virtue of the spin-statistics theorem.
In the sixth section, we present a comprehensive discussion on the problem
of gravitational deflection of light near a massive celestial body. We begin by
considering the light deflection problem in the context of Newtonian gravity
and derive the associated bending angle. We then study the geodesic equations
for the motion of a photon subject to the Schwarzschild black hole metric and
deduce Einstein’s deflection angle, that exactly doubles that of Newton and was
famously confirmed by Dyson, Eddington, and Davidson in 1919.

Thus, these sections may be clustered into four subgroups. The first subgroup
consists of the first two sections and concerns with some topological concepts and
constructions; the second subgroup is made of the subsequent section that focuses
on conservation laws in relation to continuous symmetries in a system; the third
subgroup is comprised of the next two sections and addresses issues around the
eigenvalues of angular momentum operators and spins of particles; the fourth
subgroup, which is the last section of this chapter and supplements Chapter 1
loosely and Chapter 10 tightly, is a study of the gravitational light deflection
phenomenon. Each of these four subgroups of subjects may be of independent
interest to some readers. As in the rest of the book, exercises appear at the end
of the chapter.

The author thanks Sven Bjarke Gudnason, Luciano Medina, Wenxuan Tao,
and Tigran Tchrakian for some constructive comments and suggestions, and Dan
Taber of Oxford University Press for valuable editorial suggestions and advice,
which helped improve the presentation and organization of the contents of the
book.

Author
West Windsor, New Jersey



Notation and Convention

We use N to denote the set of all natural numbers,

N = {0, 1, 2, . . . },

and Z the set of all integers,

Z = {. . . ,−2,−1, 0, 1, 2, . . . }.

We use R and C to denote the sets of real and complex numbers, respectively.
We use the roman type letter i to denote the imaginary unit

√
−1. For a

complex number c = a+ ib where a and b are real numbers we use

c = a− ib

to denote the complex conjugate of c. We use Re{c} and Im{c} to denote the
real and imaginary parts of the complex number c = a+ ib. That is,

Re{c} = a, Im{c} = b.

The signature of an (n+1)-dimensional Minkowski spacetime is always (+−
· · ·−). The (n+1)-dimensional flat Minkowski spacetime is denoted by Rn,1 and
is equipped with the scalar product

xy = x0y0 − x1y1 − · · · − xnyn,

where x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn) ∈ Rn,1 are spacetime vectors.
Unless otherwise stated, we always use the Greek letters α, β, µ, ν to denote

the spacetime indices,
α, β, µ, ν = 0, 1, 2, . . . , n,

and the Latin letters i, j, k, l to denote the space indices,

i, j, k, l = 1, 2, . . . , n.

We use t to denote the variable in a polynomial or a function or the transpose
operation on a vector or a matrix.

When an expression, say X or Y , is given, we use X ≡ Y to denote that Y ,
or X, is defined to be X, or Y , respectively.



xx Notation and Convention

Occasionally, we use the symbol ∀ to express “for all”, and ∃, to express
“there exists”.

We use [, ] to denote the commutators operated on suitable “quantities” so
that

[A,B] = AB −BA, A[aBb] = AaBb −AbBa,
and so on.

We observe the summation convention over repeated indices unless otherwise
stated. For example,

AiBi =

n∑
i=1

AiBi, AiB
i =

n∑
i=1

AiB
i,

EijF
ij =

n∑
i,j=1

EijF
ij , E2

ij =

n∑
i,j=1

E2
ij .

The roman type letter e is reserved to denote the Euler number or the base of
the natural logarithmic system and the italic type letter e to denote an irrelevant
physical coupling constant such as the charge of the positron (−e will then be
the charge of the electron). The roman type letter d denotes the differential and
the italic type letter d denotes a “quantity”, in mathematical display mode.

The references in bibliography and their citations in text follow alphabetic
orders by the last names of the authors.

Although the Greek letters µ, ν, etc., denote the indices of the spacetime
coordinates, occasionally, they are also used to denote the Radon measures or
some parameters in other contexts, when there is no risk of confusion but there
is a need to be consistent with literature. Furthermore, sometimes ν is used to
denote the outnormal to the boundary of a bounded domain.

The unit sphere centered at the origin, in Rn (n = 2, 3, . . . ), is denoted by
Sn−1.

The area element of a surface such as the boundary of a spatial domain is
often denoted by dσ. However, the Lebesgue measure of a domain for integration
is sometimes omitted to save space when there is no risk of confusion.

Let S be a set of finitely many points. We use |S| or #S to denote the number
of points in S.

Let S be a subset of the set T in a certain space. We use T \S to denote the
complement of S in T , or simply Sc when T is the full space.

We use the roman type abbreviation supp to denote the support of a function.
The letter C will be used to denote a positive constant which may assume

different values at different places.
For a complex matrix A, we use A† to denote its Hermitian conjugate, which

consists of a matrix transposition and a complex conjugation.
The symbol W k,p denotes the Sobolev space of functions whose distributional

derivatives up to the kth order are all in the space Lp.
By convention, various matrix Lie algebras are denoted by lowercase letters.

For example, the Lie algebras of the Lie groups SO(N) and SU(N) are denoted
by so(N) and su(N), respectively.



Notation and Convention xxi

The notation for various derivatives is as follows,

∂µ =
∂

∂xµ
, ∂± = ∂1 ± i∂2, ∂ =

1

2
(∂1 − i∂2), ∂ =

1

2
(∂1 + i∂2).

Besides, with the complex variable z = x1 + ix2, we always understand that
∂z = ∂

∂z = ∂, ∂z = ∂
∂z = ∂. Thus, for any function f that only has partial

derivatives with respect to x1 and x2, the quantities ∂zf = ∂f
∂z and ∂z =

∂f
∂z are

well defined.
Vectors and tensors are often simply denoted by their general components,

respectively, following physics literature. For example, it is understood that

Aµ ≡ (Aµ) = (A0, A1, A2, A3), gµν ≡ (gµν).

In a volume of this scope, it is inevitable to have a letter to carry different
but standard meanings in different contexts, although such a multiple usage
of letters has been kept to a minimum. Here are some examples. The Greek
letter ν usually denotes a spacetime coordinate index but also stands for a unit
normal vector to a surface; δ may stand for a small positive number, variation
of a functional, or the Dirac distribution, and δij is the Kronecker symbol; g
may stand for a coupling constant such as a magnetic charge, a metric tensor
or its determinant, or a function; x may denote the coordinate of a point in
the real axis or a point in space or spacetime; P may denote a magnetic charge
or a momentum vector; G usually stands for Newton’s universal gravitational
constant but may also denotes a Lie group or a function; ρ usually stands for
a charge, mass, probability, or energy density, but may also denotes a radial
variable or radial coordinate under consideration; the lower case letter c usually
denotes the speed of light in vacuum but also occasionally a constant that should
be made clear in the context.

For convenience, we sometimes use x to denote a point in R3 or Rn in general.
We use ∇×F and curl F, and, ∇·F and div F, interchangeably for the curl and
divergence operations, respectively, on a vector field F over R3. For an Rn-valued
vector, say A, we use ‖A‖ and |A| alternatively to denote the length or norm of
A with respect to the Euclidean scalar product · of Rn such that A ·A = |A|2
is also rewritten as A2 concisely.

For a positive quantity or variable, say, r, we use r � 1 or r � 1 to denote
the assumption that r is sufficiently small or large, respectively.

We use the overdot ˙ to denote differentiation with respect to a “time
variable”, t, and the prime ′ differentiation with respect to some other variable,
which should be self-evident from the context. Alternatively, we also use ′ to
denote a quantity that is a variation of an original one following a specific rule
or understanding.

All displayed mathematical expressions are numbered regardless whether they
are referred to in the text for the sake of convenience of the reader in case any
need of their reference is called on while using the book.

In some chapters, the first sections also serve to briefly survey the subjects
to be covered in the subsequent sections.





1

Hamiltonian systems
and applications

This chapter first introduces the Hamiltonian or Lagrangian formalism of
classical mechanics, which is the conceptual foundation of all later developments.
As illustrations of applications, it then presents a few important many-body
problems. Among these, it first discusses the classical N -body problem in R3 and
next considers Kepler’s laws of planetary motion as an important application of
the formalism and derive Newton’s law of gravitation as a by-product. It then
presents the Helmholtz–Kirchhoff point vortex problem, which may be regarded
as an N -body problem in R2. The chapter ends with a study of an N -body
problem in R modeling an over-simplified DNA system. In order to understand
a thermodynamical phenomenon of the system known as DNA denaturation, it
takes this opportunity to make a short introduction to some basic concepts of
statistical mechanics.

1.1 Motion of massive particle
The Hamiltonian or Lagrangian formalism of classical mechanics lays the
foundation of classical and quantum field theories and grows out of Newtonian
mechanics describing the interaction of point masses. In this section, we
formulate the Hamilton–Lagrange mechanics from Newton’s law of motion.

Equations of motion of Newton
Consider the motion of a point particle of mass m and coordinates (qi) = q in
a potential field V (q, t) described by Newtonian mechanics in the n-dimensional
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Figure 1.1 An illustrative example of a potential well of that of a two-dimensional
harmonic oscillator defined by the quadratic potential function V (q) = 1

2
([q1]2 + [q2]2)

for which the equations of motion are seen to “drive” the particle to the equilibrium
state given by q1 = q2 = 0, which minimizes the potential energy.

Euclidean space Rn. The equations of motion are

mq̈i = −∂V
∂qi

, i = 1, 2, . . . , n, (1.1.1)

where the (double) overdot ( ¨ ) ˙ denotes (second) first-order time derivative.
Since

−∇V = −∇qV = −
(
∂V

∂qi

)
(1.1.2)

defines the direction along which the potential energy V decreases most rapidly,
the equation (1.1.1) says that the particle is accelerated along the direction of
the flow of the steepest descent of V . Figure 1.1 shows a typical profile of the
potential energy function V in the form of a “potential well.”

Lagrangian formalism
With the Lagrangian function

L(q, q̇, t) =
1

2
m

n∑
i=1

(q̇i)2 − V (q, t), (1.1.3)

which is simply the difference of the kinetic and potential energies of the moving
particle, the equations in (1.1.1) are the Euler–Lagrange equations of the action∫ t2

t1

L(q(t), q̇(t), t)dt, (1.1.4)
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over the admissible space of trajectories {q(t) | t1 < t < t2} starting and
terminating at fixed points at t = t1 and t = t2, respectively.

Hamiltonian formalism
The Hamiltonian function or energy at any time t is the sum of kinetic and
potential energies given by

H =
1

2
m

n∑
i=1

(q̇i)2 + V (q, t) = m

n∑
i=1

(q̇i)2 − L. (1.1.5)

Introduce the momentum vector p = (pi),

pi = mq̇i =
∂L

∂q̇i
, i = 1, 2, . . . , n. (1.1.6)

Then, in view of (1.1.5), H is defined from L, through a Legendre transformation,
by

H(q, p, t) =

n∑
i=1

piq̇
i − L(q, q̇, t), (1.1.7)

with p = (pi), and the equations of motion, (1.1.1), are a Hamiltonian system,

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
, i = 1, 2, . . . , n. (1.1.8)

In a compressed fashion, the system (1.1.8) reads

d
dt

(
q
p

)
=

(
0 In
−In 0

)(
∇qH
∇pH

)
= J∇q,pH, (1.1.9)

where In denotes the n×n identity matrix and J is a symplectic matrix satisfying
J2 = −I2n.

General formalism
For general applications, it is important to consider when the Lagrangian
function L is an arbitrary function of q, q̇, and t. The equations of motion are
the Euler–Lagrange equations of (1.1.4),

d
dt

(
∂L

∂q̇i

)
=
∂L

∂qi
, i = 1, 2, . . . , n. (1.1.10)

To make a similar Hamiltonian formulation, we are motivated from (1.1.6)
to introduce the generalized momentum vector p = (pi) by setting

pi =
∂L

∂q̇i
, i = 1, 2, . . . , n. (1.1.11)
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We still use the Legendre transformation (1.1.7) to define the corresponding
Hamiltonian function H. A direct calculation shows that the system (1.1.10)
is now equivalent to the Hamiltonian system (1.1.8) in the present general
framework.

We note that an important property of a Hamiltonian function is that it is
independent of the variables q̇i (i = 1, 2, . . . , n). In fact, from the definition of
the generalized momentum vector given by (1.1.11), we have

∂H

∂q̇i
= pi −

∂L

∂q̇i
= 0, i = 1, 2, . . . , n. (1.1.12)

This fact justifies our notation of H(q, p, t) in (1.1.7) instead of H(q, p, q̇, t).

Evolution equation
Let F be a dynamical quantity that is an arbitrary function depending on qi, pi
(i = 1, 2, . . . , n) and time t. We see that F varies its value along a trajectory of
the equations of motion, (1.1.8), according to

dF
dt =

∂F

∂t
+
∂F

∂qi
q̇i +

∂F

∂pi
ṗi

=
∂F

∂t
+
∂F

∂qi
∂H

∂pi
− ∂F

∂pi

∂H

∂qi
, (1.1.13)

where, and in the sequel, we observe the summation convention over repeated
indices, although occasionally we also spell out the summation explicitly. Thus,
we are motivated to use the Poisson bracket {·, ·} defined by

{f, g} = ∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

= (∇qf,∇pf)
(

0 In
−In 0

)(
∇qg
∇pg

)
, (1.1.14)

to rewrite the rate of change of F with respect to time t as

dF
dt =

∂F

∂t
+ {F,H}. (1.1.15)

In particular, when the Hamiltonian H does not depend on time t explicitly,
H = H(q, p), then (1.1.15) implies that

dH
dt = 0, (1.1.16)

which gives the fact that energy is conserved and the mechanical system is thus
called conservative.
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Use of complexified coordinates
It will be useful to “complexify” our formulation of classical mechanics. For this
purpose we introduce the complex variables

ui =
1√
2
(qi + ipi), ui =

1√
2
(qi − ipi), i = 1, 2, . . . , n, i =

√
−1. (1.1.17)

Here the normalization factor 1√
2

is introduced in order to make the
transformation (qi, pi)→ (ui, ui) isometric or unitary, |ui|2+ |ui|2 = |qi|2+ |pi|2,
in the domain of complex quantities. Then the Hamiltonian function H depends
only on u = (ui) and u = (ui),

H = H(u, u, t). (1.1.18)

Hence, in terms of differential operators, there hold

∂

∂ui
=

1√
2

(
∂

∂qi
− i ∂

∂pi

)
,

∂

∂ui
=

1√
2

(
∂

∂qi
+ i ∂

∂pi

)
, (1.1.19)

and the Hamiltonian system (1.1.8) takes the concise form

iu̇i =
∂H

∂ui
, i = 1, 2, . . . , n. (1.1.20)

Again, let F be a function depending on u, u, and t. Then (1.1.20) gives us

dF
dt =

∂F

∂t
+
∂F

∂ui
u̇i +

∂F

∂ui
u̇i

=
∂F

∂t
− i ∂F

∂ui

∂H

∂ui
+ i ∂F

∂ui

∂H

∂ui
. (1.1.21)

Thus, with the notation

{f, g} = ∂f

∂ui

∂g

∂ui
− ∂f

∂ui

∂g

∂ui
(1.1.22)

for the Poisson bracket, we have

dF
dt =

∂F

∂t
+

1

i {F,H}. (1.1.23)

In particular, the complexified Hamiltonian system (1.1.20) becomes

u̇i =
1

i {ui,H}, i = 1, 2, . . . , n, (1.1.24)

which closely resembles the Heisenberg equation, in the Heisenberg representation
of quantum mechanics, which we discuss later.
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1.2 Many-body problem
The many-body, or more precisely, N -body problem stems from celestial
mechanics, which treats celestial bodies as point particles interacting through
Newton’s law of gravitation.

We start from considering the gravitational force between a point mass M
fixed at the origin of R3 and another point mass m at x ∈ R3\{0}. The potential
field that induces the gravitational force is

U(x) = −GMm

|x| , x ∈ R3 \ {0}, (1.2.1)

where G > 0 is Newton’s universal gravitational constant, so that it exerts the
force

−∇xU = −GMm

|x|3 x (1.2.2)

to the point mass m at x, leading to the equation of motion,

mẍ = −GMm

|x|3 x. (1.2.3)

Equations of motion of N-body problem
Now consider N point particles, each of mass mi, located at xi ∈ R3, i =
1, . . . , N . Then the equations governing the motion of these masses are

miẍi = −G
N∑
j ̸=i

mimj(xi − xj)
|xi − xj |3

= −∇xi
U, i = 1, . . . , N, (1.2.4)

where

U(x1, . . . ,xn) = −G
N∑

1≤i<j≤N

mimj

|xi − xj |
, (1.2.5)

is the total gravitational potential of the N -particle system. In particular, the
motion follows the principle that the particles are accelerated along the directions
of the fastest descendants that would lower the gravitational potential.

Hamiltonian system
In order to recast the system into a Hamiltonian system, we relabel the
coordinate variables and masses according to

(x1, . . . ,xN ) 7→ (q1, q2, . . . , q3N ),

(m1,m1,m1, . . . ,mN ,mN ,mN ) 7→ (m1,m2, . . . ,m3N ), (1.2.6)

which allows us to introduce the momentum variables

pi = miq̇
i, i = 1, 2, . . . , 3N. (1.2.7)
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It can be seen that the equations of motion now take the form of a Hamiltonian
system

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
, i = 1, 2, . . . , 3N, (1.2.8)

where the Hamiltonian function H is defined by

H =

3N∑
i=1

p2i
2mi

+ U =

3N∑
i=1

1

2
q̇ipi + U. (1.2.9)

Conserved quantities
As a general discussion, we begin with considering the first-order differential
equations

ẋi = f i(x), x = (xi) ∈ Rn, i = 1, . . . , n, (1.2.10)

where the functions f1(x), . . . , fn(x) do not depend on time t explicitly such
that the equations are referred to as autonomous. A first integration of (1.2.10)
is a function depending on x1, . . . , xn, say F (x), which is constant along any
solution of (1.2.10). That is,

dF (x(t))
dt =

∂F

∂xi
ẋi = f i∂iF = 0, (1.2.11)

where x = x(t) = (xi(t)) is a solution to (1.2.10). In other words, a first integral
is a conserved quantity of time t with respect to the equations of motion. On the
other hand, since any solution to (1.2.10) is considered as a curve in Rn which
may in turn be interpreted as the intersection of n − 1 hypersurfaces, thus the
general solution of (1.2.10) may assume the form

F1(x) = C1, . . . , Fn−1(x) = Cn−1, (1.2.12)

where F1, . . . , Fn are functionally independent first integrals of (1.2.10),
satisfying the condition that the Jacobian matrix

J(F, x) = (∂iFj) (1.2.13)

is of full rank. That is, J(F, x) is of rank n − 1. In this situation, we say
that the autonomous system (1.2.10) is integrable or completely integrable or
has a complete integration. Therefore, a system is integrable if and only if it
possesses the maximum possible number of independent conserved quantities.
In particular, an autonomous Hamiltonian system is integrable if and only if it
possesses the maximum number of functionally independent quantities, each of
which is commutative with respect to the underlying Hamiltonian function of
the system and the induced Poisson bracket.

Since the system (1.2.8) consists of 6N first-order autonomous equations, its
complete integration (solution) requires obtaining 6N − 1 independent integrals.
By exploring the mechanical properties of the system, we have the following
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immediate integrals (or conserved quantities), namely, the center of masses x0

determined by

x0

N∑
i=1

mi =

N∑
i=1

mixi, (1.2.14)

which moves at a constant velocity; the total (linear) momentum L0 given by

L0 =

N∑
i=1

miẋi =
N∑
i=1

pi; (1.2.15)

the total angular momentum a0 expressed as

a0 =

N∑
i=1

mixi × ẋi =
N∑
i=1

xi × pi; (1.2.16)

and the conserved total energy H stated in (1.2.9). Thus, we have a total of ten
obvious first integrals. This number count indicates that the N -body problem
quickly becomes highly nontrivial when N increases. Indeed, the N = 3 situation
is already notoriously hard, since its integration requires a total of 6 · 3− 1 = 17
independent integrals, and is known as the three-body problem. In general, it
is believed that the N -body problem is not integrable. The best understood
situation is the two-body problem [394, 453], also known as Kepler’s problem
[20]. Here we only mention that the two-body problem is completely integrable
for the following reasons:

(i) Using the center of mass coordinate frame it can be shown that the two-
body problem is actually planar.

(ii) Notice that, as a planar problem, an N -body Hamiltonian system consists
of 4N first-order equations.

(iii) The complete integration of an autonomous Hamiltonian system of 4N
equations requires 4N − 1 independent integrals.

(iv) The same collection of mechanical quantities give us 2 + 2 + 2 + 1 = 7
independent integrals.

(v) When N = 2 these 7 integrals render the required number of independent
integrals for a complete solution of the problem.

When the masses are replaced by charges so that Newton’s gravitation is
placed by Coulomb’s law of electrostatics, we can study the N -body problem of
charged particles. The quantum mechanical version of this is called the quantum
N -body problem [303], which has important applications in the theory of atoms
and molecules and is of contemporary research interest [357]. We consider this
problem in Chapter 2.

1.3 Kepler’s laws of planetary motion
As an important example of applications of Hamiltonian systems, this section
presents a thorough study of Kepler’s laws, which describe the motion of a planet
around the sun.
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v

x

Figure 1.2 The planar motion of a planet around the sun. The orbit is an ellipse with
the sun sitting at one of the foci of the ellipse.

Based on his study of then-available observed astronomical data for the
motion of planets around the sun, Kepler published between 1609 and 1619
three fundamental laws, known as Kepler’s laws of planetary motion, which may
be stated as follows.

(i) The motion of a planet about the sun is planar and the orbit is an ellipse
with the sun sitting at one of the foci of the ellipse. This is Kepler’s first
law.

(ii) The line segment connecting the sun and planet sweeps out equal areas
during equal time lapses. This is Kepler’s second law.

(iii) The square of the time period of the orbit of ellipse is proportional to
the cube of the length of the semi-major axis of the ellipse and the
proportionality constant is independent of the mass of the planet. This
is Kepler’s third law.

Figure 1.2 illustrates such planetary motion with the sun resting at a focus of
the elliptical trajectory orbited by a planet with the position vector x, measured
from the focus, and the velocity vector v = ẋ.

Note that, strictly speaking, this is not a two-body problem since the sun is
fixed.

Polar-variable representation of ellipse
In Cartesian coordinates x, y, the ellipse of semi-major axis a > 0 and semi-minor
axis b > 0 with a ≥ b and foci at (0, 0) and (2c, 0) where

c =
√
a2 − b2, (1.3.1)

centered at (c, 0), is given by the equation

(x− c)2

a2
+
y2

b2
= 1, (1.3.2)
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such that the quantity

e =
c

a
=

√
1− b2

a2
, (1.3.3)

is referred to as the eccentricity of the ellipse. Of course, 0 ≤ e < 1. Thus, in
terms of the polar coordinates r, θ, or

x = r cos θ, y = r sin θ, r > 0, 0 ≤ θ ≤ 2π, (1.3.4)

we can recast (1.3.2) into

r2 =
(
[1− e2]a+ er cos θ

)2
. (1.3.5)

Therefore we may resolve (1.3.5) to arrive at the polar-variable form of the ellipse
(1.3.2):

r = r(θ) =
a(1− e2)
1− e cos θ . (1.3.6)

More generally, if the major axis of the ellipse is tilted up from the x-axis at an
angle θ0 about the origin, then (1.3.6) assumes the modified form

r = r(θ) =
a(1− e2)

1− e cos(θ − θ0)
. (1.3.7)

Planar motion
Let x denote the position vector of a planet of mass m under consideration which
is attracted toward the sun of mass M resting at the origin. Thus the second
law of Newton leads to the equation of motion

ma = −F (r)u, a = v̇, v = ẋ, u =
x
r
, r = |x|, x 6= 0. (1.3.8)

An immediate consequence of (1.3.8) is that the vector

w = x× v (1.3.9)

is a constant vector. If w = 0, then the planet moves along the radial direction,
away or toward the sun. Eventually, a collision will occur, and the motion is
not sustainable. Such a situation should be excluded. Thus we may now assume
w 6= 0. In this case, we conclude that the motion is confined to a plane that is
perpendicular to w.

Proof of Kepler’s first law
To determine the orbit of the motion of the planet, we need to integrate the
second-order differential equation (1.3.8). We have seen that (1.3.9) is an integral.
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So we are to obtain another one. For this purpose, we form the vector v×w and
investigate how this vector evolves with time. Hence, with v = ṙu+ ru̇, we have

d
dt (v×w) = a×w

= −F (r)
m

u× (ru× [ṙu + ru̇])

= −F (r)r
2

m
u× (u× u̇). (1.3.10)

Now recall the vector cross-product identity

A× (B×C) = (A ·C)B− (A ·B)C. (1.3.11)

Using (1.3.11) in (1.3.10) and applying the properties u · u = 1 and u · u̇ = 0,
we obtain

d
dt (v×w) =

F (r)r2

m
u̇. (1.3.12)

The left-hand side of (1.3.12) is a total derivative of t. Therefore, in order
to render a total derivative for the right-hand side of (1.3.12) to maintain
consistency with its left-hand side, it suffices to take

F (r)r2 = K = constant. (1.3.13)

In other words, we can draw the conclusion that the function F (r) in (1.3.8)
may be taken to follow an inverse-square law,

F (r) =
K

r2
. (1.3.14)

Moreover, consistency in (1.3.12) indicates that K should contain m as a factor
such that the right-hand side of (1.3.12) is independent of m as its left-hand
side. Besides, by reciprocal symmetry, we then conclude that K should contain
M as a factor as well. Consequently we have

K = GmM, (1.3.15)

where G > 0 is a proportionality constant independent of m and M which is in
fact Newton’s universal gravitational constant.

In view of (1.3.8), (1.3.14), and (1.3.15), we have somehow derived Newton’s
law for gravitation. However, this derivation is heuristic or plausible and its
justification is yet to be made through a full examination of Kepler’s laws,
discussed next.

We now proceed to prove Kepler’s first law.
Inserting (1.3.14) and (1.3.15) into (1.3.12), we have

d
dt (v×w−GMu) = 0. (1.3.16)
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Hence
v×w−GMu = constant = −A (say), (1.3.17)

which is a second integral of the equation (1.3.8) as desired, in addition to the
first integral (1.3.9). Thus the equation (1.3.8) is integrated and it remains to
see what its integration or solution looks like.

In fact, from (1.3.9) and (1.3.17), we get

w2 ≡ |w|2 = (x× v) ·w = x · (v×w)

= ru · (GMu−A)

= GMr − rA · u. (1.3.18)

Note that, since v×w lies in the plane of the motion of the planet, so does
the constant vector A in view of (1.3.17). Besides, in view of the relation (1.3.18)
and the condition w 6= 0, we have

A · u < GM. (1.3.19)

Thus, if the orbit of the planet is a closed curve so that the unit vector u
may assume all possible directions in the plane of the motion, then (1.3.19) is
equivalent to

|A| < GM. (1.3.20)

If (1.3.20) is violated, the orbit of the planet will not be a closed curve. This
situation is not our interest here.

Assume the condition (1.3.20). There are two cases to consider.

(i) A = 0. Then (1.3.18) gives us

r =
w2

GM
. (1.3.21)

Thus the orbit is a circle. This is clearly an exceptional case.
(ii) A 6= 0. Let θ be the angle between A and u. Then (1.3.18) leads to

r =
w2

GM − |A| cos θ ≡ r(θ). (1.3.22)

Comparing (1.3.22) with (1.3.6), we see that the orbit of the planet is an
ellipse with eccentricity and semi-major axis given to be

e =
|A|
GM

, a =
w2

GM

(
1−

[
|A|
GM

]2) , (1.3.23)

respectively, and a focus at r = 0. This is clearly a generic case.

Thus we have established Kepler’s first law.
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From (1.3.22), we see that the distance r is maximized at θ = 0, indicating
that the planet is at aphelion, and minimized at θ = π, at perihelion, with the
values

ra = r(0) =
w2

GM − |A| , rp = r(π) =
w2

GM + |A| , (1.3.24)

respectively. As a consequence of (1.3.23) and (1.3.24), we get

e =
ra − rp
ra + rp

. (1.3.25)

For the earth, this quantity is about 0.016710218.

Proof of Kepler’s second law
Use (r, θ) to denote the polar variables given in (1.3.22) which describe the
elliptical motion of a planet about the sun. The area swept out by the line
segment connecting the sun and the planet over the span of the angle θ between
θ = 0 (say) and θ > 0 is given by the integral

A(θ) =
∫ θ

0

1

2
r2(φ)dφ. (1.3.26)

Hence, we have
dA(θ)

dt =
1

2
r2(θ)θ̇. (1.3.27)

On the other hand, let e1 and e2 be two fixed orthonormal vectors in the plane of
the orbit of the planet and write the radial unit vector u as u = cos θ e1+sin θ e2.
Then we have

w = x× v = ru× ẋ = ru× (ṙu + ru̇) = r2u× u̇
= (r2θ̇) (cos θ e1 + sin θ e2)× (− sin θ e1 + cos θ e2)

= (r2θ̇)(e1 × e2), (1.3.28)

resulting in w2 = r4(θ) θ̇2. We may assume that θ increases with respect to time
t. Thus we have

θ̇ =
w

r2(θ)
. (1.3.29)

Inserting (1.3.29) into (1.3.27), we arrive at

dA(θ)
dt =

w

2
= constant, (1.3.30)

which establishes Kepler’s second law.
A by-product of (1.3.29) is that it gives a description how the angular velocity

of the planet depends on its distance from or location with respect to the sun.
Substituting (1.3.22) into (1.3.29), we have

θ̇ =
(GM − |A| cos θ)2

w3
. (1.3.31)
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Furthermore, using u · u̇ = 0 in v = ṙu + ru̇, we obtain the linear speed of the
motion of the planet to be

v = |v| =
√
ṙ2 + r2θ̇2

=
1

w

√
(|A| −GM)2 + 2GM |A|(1− cos θ), (1.3.32)

by virtue of (1.3.22) and (1.3.29). In particular, we see that the linear speed v
is maximized or minimized wherever the angular velocity θ̇ of the motion is.

Proof of Kepler’s third law
Use T > 0 to denote the time period for the orbiting planet. When it completes
one round of its trip along its elliptical orbit of semi-major axis a and semi-minor
axis b = a

√
1− e2 determined by (1.3.23) such that the area swept out by the

line segment connecting the planet to the sun equals πab, we have by applying
(1.3.30) the relation

πab =

∫ T

0

dA(θ)
dt dt = wT

2
. (1.3.33)

Using (1.3.23) in (1.3.33), we may eliminate the eccentricity to obtain the
following neat expression,

T 2 =
4π2a2b2

w2

=

(
4π2

GM

)
a3, (1.3.34)

which establishes Kepler’s third law.
The successful establishment of Kepler’s three laws justifies the earlier

plausible argument leading to the expression (1.3.15) and, as a consequence,
also renders Newton’s law for gravitation.

Note that, when Kepler’s problem is treated as a two-body system such that
the planet is considered to orbit around the center of mass, instead, of a joint
or effective total mass, M + m, the details of the results obtained are to be
correspondingly modified. For example, in the two-body context, the formula
(1.3.34) is updated by the analogous expression

a3

T 2
=
G(M +m)

4π2
. (1.3.35)

1.4 Helmholtz–Kirchhoff vortex model
In this section, we consider the motion of the Helmholtz–Kirchhoff point vortices
in a planar fluid, which may naturally be modeled by an N -body problem in the
plane for which a quantity called the vortex strength or vortex charge serves the
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role of mass as in the classical N -body problem in the Euclidean space discussed
in Section 1.2. At first sight, the study of fluid motion is concerned with the
dynamical properties of continuous media and does not seem to be a subject
that would lend itself to a Hamiltonian description of a discrete N -body system.
After all, it is a very different phenomenon from the study of orbits of planets
moving in empty space subject to gravity as seen in Section 1.3. However, in
this section, we will show that, in the context of the formalism by Helmholtz
[286] and Kirchhoff [332, 349], the motion of point vortices in a planar fluid can
indeed be described by a very simple Hamiltonian N -body system in the plane.

Vorticity field and strength of vorticity
It will be instructive to start from a general discussion. Let v be the velocity
field of a fluid. Then

w = ∇× v (1.4.1)
describes the tendency that the fluid swirls itself, which is commonly called the
vorticity field. Imagine that we form a vortex tube by vortex lines, similar to
streamlines induced from the velocity field. Then cut off two cross-sections, say
S1 and S2, to form a cylindrically shaped finite vortex tube, say T . Then the
divergence theorem says that∫

T

∇ ·w dx =

∫
T

∇ · (∇× v)dx = 0, (1.4.2)

which then implies ∫
S1

w · dS =

∫
S2

w · dS, (1.4.3)

where the orientations on S1 and S2 are chosen in an obviously compatible way.
In other words, the flux of vortex lines across the vortex tube is constant along
the tube. This common flux is called the strength or tension of the vortex tube.
On the other hand, the circulation of a vector field v along a closed curve C is
defined to be ∮

C

v · ds. (1.4.4)

Thus, if C is the boundary curve of a cross-section of a vortex tube of the fluid
with velocity field v, the above discussion indicates that the strength of the
vortex tube may be expressed as the circulation of the fluid around the vortex
tube.

Planar situation
Now consider the motion confined in a horizontal plane so that v = (v1, v2, 0).
Then the vorticity field w is always along the vertical direction so that we may
express it as a scalar field given by

w = ∂1v2 − ∂2v1. (1.4.5)

Of course, vortex lines are all vertical to the plane.
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Figure 1.3 A vector field that generates concentric flow-lines plotted in the (x1, x2)-
coordinate plane.

Helmholtz–Kirchhoff point vortices
A Helmholtz–Kirchhoff point vortex centered at the origin of R2 is an idealized
situation where the velocity field is centrally generated from a specified scalar
potential function according to the relations

vj = ϵjk∂kU, j, k = 1, 2, U(x) = − γ

2π
ln |x|, x = (x1, x2) ∈ R2, (1.4.6)

where ϵjk is the standard skew-symmetric Kronecker symbol with ϵ12 = 1 and
γ > 0 is a parameter. It is clear that the flow-lines are concentric circles around
the origin (Figure 1.3).

Let Cr be any one of such circles of radius r > 0. Then, we have∮
Cr

v · ds = γ, (1.4.7)

which says the circulation along any flow line or the strength of any vortex tube
containing the center of the vortex takes the constant value γ. Here we verify
these facts.

Indeed, along Cr, the line element in terms of the polar coordinates r, θ with

x1 = r cos θ, x2 = r sin θ, r > 0, 0 ≤ θ ≤ 2π, (1.4.8)

is
ds = d(r cos θ, r sin θ) = (−r sin θ, r cos θ)dθ, (1.4.9)
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and the velocity vector field v assumes the form

v = (∂2U,−∂1U) =

(
Ur
x2

r
,−Ur

x1

r

)
= Ur(sin θ,− cos θ), (1.4.10)

which is seen to generate concentric flowlines. Therefore, we have∮
Cr

v · ds = −
∫ 2π

0

Ur r dθ = −2πrUr. (1.4.11)

Hence, the constant circulation assumption leads to the differential equation

Ur = −
γ

2π

1

r
, (1.4.12)

which may be integrated to yield the result

U(r) = − γ

2π
ln r, (1.4.13)

as anticipated.
The quantity γ gives the r-independent circulation or strength of the vortex

centered at the origin. Furthermore, we can also compute the vorticity field
directly,

w = −∆U = −(∂21 + ∂22)U = γδ(x), (1.4.14)

in the sense of distributions or weak derivatives, which clearly reveals a point
vortex at the origin given by the Dirac function and justifies again the quantity
γ as the strength of the point vortex.

It may be instructive to make a note on how (1.4.13) is constructed. First
recall that it is clear that a radial vector field, u, can be realized as the gradient
of a radially symmetric scalar field, say U(r). That is,

u = ∇xU =
U ′(r)

r
x, (1.4.15)

as shown in Figure 1.4. Next we can obtain a vector field that generates concentric
flow-lines by a 90◦ counterclockwise rotation of the vector field u given in (1.4.15).
Hence, we arrive at (1.4.10) and all the rest follows naturally.

Planar N-body problem of point vortices
Following the vortex model of Helmholtz [286] and the Hamiltonian formalism
of Kirchhoff [332, 349], the dynamical interaction of N point vortices located at
xi = xi(t) ∈ R2 of respective strengths γi’s (i = 1, . . . , N) at time t is governed
by the interaction potential

U(x1, . . . ,xN ) = − 1

2π

∑
1≤i<j≤N

γiγj ln |xi − xj |, (1.4.16)
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Figure 1.4 A radial vector field that generates co-centered ray-like flow-lines plotted
in the (x1, x2)-coordinate plane.

and the equations of motion

γiẋi = J∇xi
U, i = 1, . . . , N, J =

(
0 1
−1 0

)
. (1.4.17)

Rewriting x in the coordinate form with x = (x1, x2) ∈ R2 and setting

x1i = qi, γix
2
i = pi, i = 1, . . . , N, (1.4.18)

we arrive at

q̇i =
∂U

∂pi
, ṗi = −

∂U

∂qi
, i = 1, . . . , N, (1.4.19)

which is a Hamiltonian system. Note that the “momenta” pi’s appear in the
Hamiltonian function U in a “non-standard” way. The reason for this odd
appearance is that the pi’s actually do not have a mechanical meaning as
momenta and are artificially identified as the momentum variables. However,
it is interesting to note how the circulations γi’s are being absorbed into these
momenta so consistently.

See [64, 65, 360, 361, 415, 564] and references therein for further developments
of the subject of the Helmholtz–Kirchhoff point vortices.
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1.5 Partition function and thermodynamics
This section considers some thermodynamical properties of a Hamiltonian system
in the formalism of statistical mechanics. The key to our study is the notion of
partition function.

Partition function
For simplicity, consider a closed system that can occupy a countable set of states
indexed by s ∈ N (the set of non-negative integers) and of distinct energies Es
(s ∈ N). Then the partition function of the system is defined by

Z =

∞∑
s=0

e−βEs , (1.5.1)

where
β =

1

kBT
(1.5.2)

is the inverse temperature for which kB > 0 is the Boltzmann constant and T the
absolute temperature. Thus, in order that (1.5.1) makes sense, the sequence {Es}
cannot have a limiting point and has to diverge sufficiently rapidly as s→∞.

Boltzmann factor
Assuming all conditions are valid so that Z <∞ in (1.5.1), we see that

Ps =
1

Z
e−βEs , s ∈ N, (1.5.3)

may naturally be interpreted as the probability that the system occupies the
state s so that its energy is E = Es (s ∈ N). The quantity e−βEs is also called
the Boltzmann factor. With such an understanding, the partition function Z
may be regarded as the normalization factor of the sequence of the Boltzmann
factors which give rise to the probability distribution of the random energy, E,
of the system.

Thermodynamic quantities
We now illustrate how to use Z to obtain statistical information of the system.

First, the expected value of the energy (the thermodynamic value of the
energy) is

〈E〉 =
∞∑
s=0

EsPs =
1

Z

∞∑
s=0

Ese−βEs

= −∂ lnZ
∂β

= kBT
2 ∂ lnZ
∂T

, (1.5.4)
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which is also commonly denoted as U . Next, in view of (1.5.4), the variance is

σ2
E = 〈(E − 〈E〉)2〉 = 〈E2〉 − 〈E〉2

=
1

Z

∞∑
s=0

E2
se−βEs −

(
∂ lnZ
∂β

)2

=
1

Z

∂2Z

∂β2
− 1

Z2

(
∂Z

∂β

)2

=
∂2 lnZ
∂β2

, (1.5.5)

which, in view of (1.5.4) and (1.5.5), gives rise to the heat capacity

Cv =
∂U

∂T
=
∂〈E〉
∂T

=
1

kBT 2

∂2 lnZ
∂β2

=
1

kBT 2
σ2
E . (1.5.6)

Besides, the entropy or the Gibbs entropy, also often called the Shannon
entropy, of the system, S, which measures the disorder or uncertainty of the
system, is given in view of (1.5.4) by

S = −kB

∞∑
s=0

Ps lnPs = −kB

∞∑
s=0

Ps ln e−βEs

Z

= kB

∞∑
s=0

(Ps lnZ + βEsPs)

= kB(lnZ + β〈E〉) = kB lnZ +
1

T
〈E〉

=
∂

∂T
(kBT lnZ) ≡ −∂A

∂T
, (1.5.7)

where

A = −kBT lnZ
= U − TS (U = 〈E〉), (1.5.8)

in view of the second line in (1.5.7), is the Helmholtz free energy. These examples
show the usefulness of the partition function.

Derivation of partition function
After seeing the importance of the partition function (1.5.1), here we show how
it arises naturally from the laws of thermodynamics.

First, when a system is at its thermodynamic equilibrium, the second law of
thermodynamics asserts a maximized entropy. Thus, mathematically, the system
follows the probability distribution

Ps = P ({E = Es}), (1.5.9)
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that maximizes the entropy

S = −kB

∞∑
s=0

Ps lnPs, (1.5.10)

subject to the constraints
∞∑
s=0

Ps = 1,

∞∑
s=0

EsPs = U, (1.5.11)

imposed to the total probability and average energy. Therefore, we are to
extremize the Lagrange function

L = −kB

∞∑
s=0

Ps lnPs + λ1

( ∞∑
s=0

Ps − 1

)
+ λ2

( ∞∑
s=0

EsPs − U

)
, (1.5.12)

where λ1, λ2 are the Lagrange multipliers. So we are led to setting up the
equations

∂L

∂Ps
= −kB (lnPs + 1) + λ1 + λ2Es = 0, ∀s ∈ N, (1.5.13)

which render the solution

Ps = ae
λ2Es
kB , a ≡ e−1+

λ2
kB . (1.5.14)

Next, multiplying (1.5.13) by Ps, summing up, and using (1.5.11), we have

S − kB + λ1 + λ2U = 0, (1.5.15)

which yields the differential relation

dS + λ2dU = 0. (1.5.16)

On the other hand, recall the first law of thermodynamics, which says the
increment of heat to the system, dQ = TdS, is the result of increment of average
energy, dU , and the extra mechanical work done to the system dW , namely,
TdS = dU + dW . However, in the present equilibrium situation, dW = 0.
Hence, TdS = dU . Inserting this into (1.5.16), we find

λ2 = − 1

T
. (1.5.17)

Then, substituting (1.5.17) into (1.5.14), we obtain

Ps = ae−βEs , β =
1

kBT
. (1.5.18)

Finally, summing up Ps in (1.5.18) and using (1.5.11), we have

1

a
=

∞∑
s=0

e−βEs , (1.5.19)

which gives us the partition function defined in (1.5.1).
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Hamiltonian system
For a classical Hamiltonian system with generalized coordinates q = (q1, . . . , qn)
and momenta p = (p1, · · · , pn), governed by the Hamiltonian function H(q, p),
the partition function is expressed by

Z =

∫
e−βH(q,p) dqdp, (1.5.20)

where q, p take over the role of the state index s and the integral replaces the
summation in our earlier discussion. Therefore, a similar collection of knowledge
can be gathered as before. For example, if F (q, p) is a mechanical quantity of
interest, then its expected or thermodynamic value is given by

〈F 〉 = 1

Z

∫
F (q, p)e−βH(q,p) dqdp. (1.5.21)

A fairly thorough treatment of statistical mechanics may be found in [252,
297, 350, 391]. The next section applies these ideas to study a thermodynamic
property of DNA.

1.6 Dynamic modeling of DNA denaturation
DNA, the short name for deoxyribonucleic acid, is a nucleic acid that contains
the genetic instructions used in the development and functioning of all known
living organisms. Chemically, a DNA consists of two long polymers of simple
units called nucleotides, with backbones made of sugars and phosphate groups.
These two strands run in parallel and form a double helix. Attached to
each sugar is one of four types of nucleotide molecules, also called bases,
named by letters A (adenine), C (cytosine), G (guanine), and, T (thymine),
so that only A and T, C and G, from opposite strands may bind to form
pairs. During the last four decades, biologists and physicists have carried out
extensive research on the dynamics of DNA, using mathematical modeling and
computer simulation, and obtained profound knowledge about DNA and its
function.

Mathematical modeling of dynamics of DNA was initiated in 1980 by
Englander and colleagues [192], who presented a discrete sine–Gordon soliton
interpretation of the DNA of n pairs of bases and used the solitary wave in
the continuous limit as an approximation in the limit n → ∞ to obtain some
qualitative behavior of DNA. In 1989, Peyrard and Bishop [446] published their
pioneering work on DNA dynamical modeling in which the base pairing due to
hydrogen bonding is recognized, the discreteness of the model is maintained,
and a statistical mechanics study is fully carried out which describes the inter-
strand separation in the double helix as a function of temperature, leading to a
mathematical formulation of DNA denaturation, that is, the phenomenon that
the two DNA strands in the double helix become separated when heated.
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Figure 1.5 An oversimplified DNA chain model.

Chain model
Following [446], here we initially allow two degrees of freedom for each pair of
bases and use ui and vi to denote the transverse displacements of the bases
from their equilibrium positions along the direction of the hydrogen bonds that
connect the two bases in a pair. The governing Hamiltonian for the double helix
model containing a longitudinal harmonic coupling between neighboring bases
due to stacking and n pairs of bases is given as

H =

n∑
i=1

(
1

2
m(u̇2i + v̇2i ) +

1

2
κ([ui − ui−1]

2 + [vi − vi−1]
2) + V (ui − vi)

)
,

(1.6.1)
where a common mass m is taken for all bases, a uniform “elastic” (stacking
force) constant κ is assumed for simplicity, and the potential energy V is defined
by

V (u) = D(e−au − 1)2, (1.6.2)

which accounts for the hydrogen bonding, with a,D some positive constants,
and is of the Morse type [401]. Figure 1.5 illustrates just such an oversimplified
model. Here we note that the definitions of u0 and v0 depend on the specific
boundary condition to be considered.

In terms of the new variables xi, yi and the associated momenta pi, Pi, defined
by

xi =
(ui + vi)√

2
, yi =

(ui − vi)√
2

, pi = mẋi, Pi = mẏi, (1.6.3)

the Hamiltonian (1.6.1) is normalized into the form

H =

n∑
i=1

(
p2i
2m

+
1

2
κ(xi − xi−1)

2

)

+

n∑
i=1

(
P 2
i

2m
+

1

2
κ(yi − yi−1)

2 +D(e−a
√
2yi − 1)2

)
. (1.6.4)

It is important to realize that the variable yi measures the stretching distance
between the bases in a pair of bases.
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Factorization of partition function
To understand the thermal dynamics of stretching, note that the partition
function Z is seen to be factored as

Z =

∫
e−βH(p,x,P,y) dxdydpdP = ZpZxZPZy, (1.6.5)

where β = (kBT )
−1, with T the absolute temperature and kB the Boltzmann

constant, and, to save space, we use dx (say) to denote dx1 · · · dxn and use
x to denote the vector coordinates (xi) or a single variable interchangeably if
there is no risk of confusion in the context. From this, Peyrard and Bishop [446]
recognized that the mean stretching 〈yℓ〉 of the bases at the position ℓ = 1, . . . , n,
due to the hydrogen bonding, is given by

〈yℓ〉 =
1

Z

∫
yℓe−βH dxdydpdP =

1

Zy

∫
yℓe−β

∑n
i=1 f(yi,yi−1) dy, (1.6.6)

where the factors involving x, p, P are dropped as a consequence of the
decomposed Hamiltonian (1.6.4) and f(y, y′) is the reduced potential given by
the y-dependent terms in (1.6.4) as

f(y, y′) =
1

2
κ(y − y′)2 +D

(
e−a

√
2y − 1

)2
. (1.6.7)

It is still rather difficult to analyze the quantity (1.6.6) as a function of the
temperature T without further simplification. In [446], Peyrard and Bishop take
n→∞ in (1.6.6) to arrive at the position-independent mean stretching

〈y〉 = 〈φ0|y|φ0〉 =
∫
φ2
0(y)y dy, (1.6.8)

where

φ0(y) =
(
√
2a)

1
2 (2d)d−

1
2

Γ(2d− 1)
1
2

exp(−de−
√
2ay)e−(d− 1

2 )
√
2ay, (1.6.9)

d =
1

a
β(κD)

1
2 >

1

2
. (1.6.10)

Based on this formalism, Peyrard and Bishop [446] succeeded in finding
a thermodynamical description of the DNA denaturation phenomenon. Using
(1.6.9) with (1.6.10) and numerical evaluation, they showed that the base
mean stretching 〈yℓ〉 increases significantly as the temperature climbs to a
particular level which is an unambiguous indication of DNA denaturation.
Another interesting by-product of such a calculation is that, since the dependence
of the ground state on the absolute temperature T = (kBβ)

−1 is through the
parameter d given earlier, a greater value of the elastic constant κ leads to a
higher DNA denaturation temperature, which is what was observed [214, 446]
in the laboratory.
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Hamiltonian of out-of-phase motion
In particular, we see that the dynamics of the DNA molecule is effectively
described by the reduced Hamiltonian that contains the “out-of-phase” motion
of the bases only given in terms of the y-variables as

H =

n∑
i=1

(
1

2
mẏ2i +

1

2
κ(yi − yi−1)

2 +D
(

e−a
√
2yi − 1

)2)
. (1.6.11)

See [445] for a review of related topics and directions. This example shows
how a simple system of ordinary differential equations may be used to investigate
a fundamental problem in biophysics.

Exercises
1. Let q = (q1, . . . , qn) ∈ Rn be the position coordinate vector of a particle

that passes the points q = q1 and q = q2 at the times t = t1 and t = t2,
respectively. Assume that the motion of such a particle is governed by the
action

A(q) =
∫ t2

t1

L(q(t), q̇(t), t)dt (1.E.1)

so that the trajectory of the motion q = q(t) is a critical point of the action.
Show that q(t) solves the equation of motion

d
dt

(
∂L

∂q̇i

)
=
∂L

∂qi
, i = 1, 2, . . . , n. (1.E.2)

2. Let (x, y) be a point on the ellipse defined by the equation (1.3.2). Show
that the sum of the distances from (x, y) to the two foci, (0, 0) and (2c, 0),
is 2a.

3. Consider the equation of an ellipse given by (1.3.6). It is clear that the
maximum rmax and minimum rmin of the radial distance r = r(θ) from
a point on the ellipse to its focus at the origin are attained at the points
where θ = 0 and θ = π, called the aphelion and perihelion, respectively.
Show that the eccentricity e of the ellipse can be represented in terms of
rmax and rmin by

e =
rmax − rmin
rmax + rmin

. (1.E.3)

4. Formulate the equation of motion (1.3.8) in the form of a Hamiltonian
system.

5. Consider the gravitational interaction of two point masses µ and m, fixed
at the origin and moving around the origin, respectively, in spherical
coordinates

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ. (1.E.4)
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(a) Show that the kinetic energy of the moving point mass m is given by

K =
1

2
m
(
ṙ2 + r2 θ̇2 + r2 sin2 θ ϕ̇2

)
, (1.E.5)

and obtain the associated Lagrangian function.
(b) Show that the momenta of the moving mass associated with the

cooordinates r, θ, ϕ are

pr = mṙ, pθ = mr2 θ̇, pϕ = mr2 sin2 θ ϕ̇. (1.E.6)

(c) Use (b) to show that the Hamiltonian of the problem is

H(r, θ, ϕ, pr, pθ, pϕ) =
1

2m

(
p2r +

p2θ
r2

+
p2ϕ

r2 sin2 θ

)
− µm

r
, (1.E.7)

(d) Derive the Hamiltonian equation from (c) governing the mechanical
variables r, θ, ϕ, pr, pθ, pϕ.

6. Consider the classical central-force motion of a particle of mass m governed
by the equation

mẍ = f(x, y, z)x, x = (x, y, z) ∈ R3 \ {0}, (1.E.8)

where f is a real-valued continuous function.
(a) Establish the law of conservation for the angular momentum

d
dt (mx× ẋ) = 0. (1.E.9)

(b) Use (a) to show that the motion of the particle is planar. That is, its
orbit is confined to a plane, say P .

(c) Prove that the areas in P swept out by the position vector x during
equal time intervals are equal. In other words, Kepler’s second law is
valid for central-force motion, in general, governed by the equation
(1.E.8).

7. Derive (1.3.32).
8. Consider the time-dependent Hamiltonian

H(q, p, t) =
p2

2m
+
kq2

2
− µ q cos(ωt), (1.E.10)

where m, k, µ, ω > 0 are constants.
(a) Write the Hamiltonian equations.
(b) Find the general solution of the Hamiltonian equations.
(c) Obtain the Lagrangian function and Lagrange equation.
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9. Consider the nonlinear equation

ẍ = −x+
λ

(1− x)2
, (1.E.11)

where λ > 0 is a constant, governing the dynamics of the moving plate of
an electrostatic actuator in a microelectromechanical system (MEMS).
(a) Find the Lagrangian and Hamiltonian functions of the equation.
(b) Show that when λ > 0 is small the solution with the initial condition

x(0) = 0, ẋ(0) = 0 (1.E.12)

is periodic. See [609].
10. Consider the motion of a point particle of mass m and electric charge Q in

an electromagnetic field of electric potential V and magnetic potential A.
If the spatial position vector x of the particle at time t is x(t), then x(t) is
governed by the Lagrangian function

L(x, ẋ, t) = 1

2
mẋ2 −QV (x, t) +Qẋ ·A(x, t). (1.E.13)

(a) Obtain the equation of motion or the Lagrange equation of the particle.
(b) Use (a) to show that the equation of motion of the charged particle is

of the form of the Newton law mẍ = F where F is the Lorentz force
given by

F = Q(E + ẋ×B), (1.E.14)

with
E = −∇V − ∂A

∂t
, B = ∇×A, (1.E.15)

being the electric and magnetic fields induced from the potential fields
V and A.

(c) Find the Hamiltonian function of the system.
(d) Recover the result in (a) by obtaining the Hamiltonian equations for

the motion of the particle.

11. As in the discussion of the Kirchhoff vortex model in R2, construct a
centralized (radial) vector field F in R3 such that the flux

Φ =

∫
∂Ω

F · dS (1.E.16)

is independent of the choice of the bounded domain Ω around the origin of
R3. (You may start your study with the situation when Ω is an arbitrary
ball.)

12. Let the energies of a system be Es = εs, s = 0, 1, 2, . . . , where ε > 0 is
fixed.
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(a) Find the partition function Z.
(b) Compute the Helmholtz free energy.
(c) Compute the entropy of the system.

13. Let the energy spectrum of a thermodynamic system be a continuum given
by {Es = εs | s > 0} where ε > 0 is fixed.
(a) Find the partition function Z.
(b) Find the distribution function of the energy.
(c) Find the thermodynamic energy U .

14. Let the partition function of a system be Z = 1 + e−βε where ε > 0.
(a) Compute the thermodynamic energy U and find how it depends on the

absolute temperature T . In particular, find

U(0) = lim
T→0

U, U(∞) = lim
T→∞

U. (1.E.17)

(b) Use (a) to find the heat capacity of the system.
15. Derive the Hamiltonian equations of the model (1.6.11) assuming y0 = 0

and y0 = yn, respectively.
16. Consider an over-simplified model of one-base DNA dynamics governed by

the equation
ẍ+ kx+Dex(ex − 1) = f(t), (1.E.18)

where k,D > 0 are constants and f(t) is a forcing term.
(a) Find the Lagrangian and Hamiltonian functions of the equation.
(b) Let f(t) be of period T > 0. Investigate whether the equation has a

solution of period T under some appropriate conditions.



2

Schrödinger equation
and quantum mechanics

Quantum mechanics, developed at the beginning of the twentiety century,
attempted to explain a broad range of physical phenomena in microscopic scales
based upon a series of celebrated experiments that could not be explained
within the conceptual framework of classical physics. This chapter focuses
on the Schrödinger equation, which is the foundation of quantum mechanics,
and aims to understand some fundamental features of it. It then presents a
few methodological approaches to analyzing the quantum many-body problem,
which is of contemporary research interest. In doing so, it shows that the
study of the quantum aspects of an N -body system, which is governed by
a set of nonlinear ordinary differential equations, renders the problem linear
through the Schrödinger equation, which is a partial differential equation,
governing the state of the system. Furthermore, the search for approximate
solutions of the Schrödinger equation leads us to considering nonlinear
equations of combined differential-integral type and problems of calculus of
variations.

2.1 Path to quantum mechanics
The core or essence of quantum mechanics is the Schrödinger equation. Thus,
the path to quantum mechanics lies in understanding how the Schrödinger
equation came about. The goal of the first two sections of this chapter is to
understand how the Schrödinger equation is introduced. To this goal, in this
section, we first recall some milestone early-day discoveries which revealed the
wave-particle duality nature of matter interaction in microscopic world and how
these discoveries were given precise mathematical perceptions or formulations
successfully by the pioneers of quantum mechanics. Then, the next section shows

Mathematical Physics with Differential Equations. Yisong Yang, Oxford University Press.
© Yisong Yang (2023). DOI: 10.1093/oso/9780192872616.003.0002



30 2. Schrödinger equation and quantum mechanics

electron

light

Figure 2.1 An illustration of the photoelectric effect that electrons in a piece of metal
may be energized by a light beam to escape from the metal.

how the Schrödinger equation may be “derived,” such that its distinguished
wave-equation characteristics serve to unify these formulations in a single
framework.

Photoelectric effect
Place a piece of metal in a vacuum tube and shoot a beam of light onto it. The
electrons in the metal may become sufficiently energized to be emitted from the
metal (Figure 2.1). This is known as the photoelectric effect, which has found a
wide range of applications in today’s electronics. Now measure the energy carried
by an emitted electron and denote it by Ee. It is known that Ee may be written
as the difference of two quantities, one is proportional to the frequency, ν, of the
light beam so that the proportionality constant, h, is universal and independent
of the metal, the other, ϕ, depends on the metal but is independent of the light
frequency. Therefore, we have

Ee = hν − ϕ. (2.1.1)

Einstein’s postulate
In 1905, Einstein postulated that light, a special form of electromagnetic waves,
is composed of particles called photons. Each photon carries an amount of energy
equal to hν. That is,

E = hν. (2.1.2)

When the photon hits an electron in a metal, the electron receives this amount of
energy, consumes the amount of the binding energy of the metal to the electron
to escape from the metal, and becomes an emitted electron of the energy given
by (2.1.1). The equation (2.1.2) is also known as the Planck–Einstein relation.
Section 15.6 presents a derivation of the formula (2.1.2) as a consequence of
quantization of electromagnetic fields.
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In terms of angular frequency
In physics, frequency ν is measured in hertz with unit second−1 (times per
second), and angular frequency ω is related to ν by ω = 2πν (radians per second).
Hence, in terms of ω, the Einstein formula becomes

E = h̄ω, h̄ =
h

2π
. (2.1.3)

Recall that energy is measured in unit of Joules and one Joule is equal to one
Newton×meter. The constant h̄ in (2.1.3), called the Planck constant, is a tiny
number of the unit of Joules × second and accepted to be

h̄ = 1.05457× 10−34. (2.1.4)

Historically, h is called the Planck constant, and h̄ the Dirac constant or the
extended Planck constant.

Compton effect
After Einstein’s 1905 postulate that light is composed of photons, physicists
began to wonder whether a photon might exhibit its kinetic momentum in
interaction, that is, when colliding with another particle. In 1922, Compton
and Debye came with a very simple mathematical description of this behavior,
which was then experimentally observed by Compton himself in 1923 and further
confirmed by Woo, then Compton’s graduate student. In simple terms, when a
photon hits an electron, it behaves like a particle when it collides with another
particle so that one observes energy as well as momentum conservation relations,
which is evidenced by a wavelength shift after the collision.

Intuitively and mathematically, we may write the energy of a photon by the
Einstein formula, E = mc2, where c is the speed of light in vacuum and m is
the “virtual rest mass” of photon (note that a photon in fact has no rest mass so
that the connection made this way is only intuitive, and a completely rigorous
treatment along the same line may be formulated with the full relativistic energy-
mass-momentum formula (4.3.22) to be derived in Chapter 4). Thus, in view of
(2.1.3), we have

E = mc2 = h̄ω. (2.1.5)
On the other hand, recall that the wavenumber (also called the angular
wavenumber) k, wavelength λ, frequency ν, angular frequency ω, and speed
c of a photon are related by

k =
2π

λ
, c = λν = λ

ω

2π
=
ω

k
. (2.1.6)

Consequently, the momentum of the photon is given by

p = mc =
E

c
= h̄

ω

c

= h̄ k. (2.1.7)
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De Broglie’s wave-particle duality hypothesis
In 1924, de Broglie formulated his celebrated wave-particle duality hypothesis in
his PhD thesis, which equalizes waves and particles, takes the Einstein formula
(2.1.3) and the Compton–Debye formula (2.1.7) as two axioms, and reiterates
the wave and particle characteristics of all interactions in nature:

E = h̄ ω, (2.1.8)
p = h̄ k. (2.1.9)

In other words, a particle of energy E and momentum p behaves like a wave of
wavenumber k and a wave of wavenumber k behaves like a particle of energy E
and momentum p such that E, p, and k are related through (2.1.8) and (2.1.9). In
Section 15.6, we show how the Compton–Debye formula (2.1.7) may be derived
when we quantize electromagnetic fields.

2.2 Schrödinger equation
Based on de Broglie’s wave-particle duality, we now derive the Schrödinger
equation, first published by Schrödinger in 1926. The wave-equation features
of this equation and the statistical interpretation of its solution enable us to
perceive and understand some of the most profound physical properties of nature
only available or observable at microscopic scales. Interestingly, we will see
how classical and quantum mechanics are statistically linked, also through the
Schrödinger equation.

Wave motion in terms of angular wavenumber and
frequency
Consider a stationary wave distributed over the x-axis of wavenumber k (the
wave has k repeated cycles over the standard angular (cell) interval [0, 2π]) whose
simplest form is given by

Ceikx. (2.2.1)

Switch on time-dependence so that the wave moves to right (say) at velocity
v > 0. We see from (2.2.1) that the wave is represented by

ϕ(x, t) = Ceik(x−vt). (2.2.2)

Notice that we can extend (2.1.6) as

k =
2π

λ
, v = λν = λ

ω

2π
. (2.2.3)

Combining (2.2.2) and (2.2.3), we have

ϕ(x, t) = Cei(kx−ωt). (2.2.4)



2.2. Schrödinger equation 33

Momentum and energy as eigenvalues
Formally, in view of (2.2.4), the de Broglie momentum (2.1.9) can be read off as
an eigenvalue of the operator −ih̄ ∂

∂x . That is,(
− ih̄ ∂

∂x

)
ϕ = (h̄ k)ϕ = pϕ, (2.2.5)

so that (
− ih̄ ∂

∂x

)2

ϕ = (h̄ k)2ϕ = p2ϕ. (2.2.6)

Similarly, the de Broglie energy (2.1.8) can be read off as an eigenvalue of the
operator ih̄ ∂

∂t . That is, (
ih̄ ∂
∂t

)
ϕ = (h̄ ω)ϕ = Eϕ. (2.2.7)

Schrödinger equation
For a free particle of mass m > 0, we know that there holds the classical relation

E =
p2

2m
. (2.2.8)

In view of (2.2.6)–(2.2.8), we arrive at the free Schrödinger equation

ih̄∂ϕ
∂t

= − h̄2

2m

∂2ϕ

∂x2
. (2.2.9)

For a particle moving in a potential field V = V (x, t), the energy-momentum
relation (2.2.8) becomes

E =
p2

2m
+ V. (2.2.10)

Therefore the Schrödinger equation (2.2.9) for a free particle is modified into
form

ih̄∂ϕ
∂t

= − h̄2

2m

∂2ϕ

∂x2
+ V ϕ. (2.2.11)

This is called the Schrödinger wave equation whose solution, ϕ, is called a wave
function.

Born’s statistical interpretation of wave function
Consider the Schrödinger equation (2.2.11) describing a particle of mass m
and assume that ϕ is a “normalized” solution of (2.2.11) which satisfies the
normalization condition ∫

|ϕ(x, t)|2 dx = 1, (2.2.12)
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and characterizes the “state” of the particle. According to Born, the
mathematical meaning of such a wave function is that ρ(x, t) = |ϕ(x, t)|2 gives
the probability density for the location of the particle at time t. In other words,
the probability of finding the particle in an interval (a, b) at time t is

P ({a < x(t) < b}) =
∫ b

a

|ϕ(x, t)|2 dx. (2.2.13)

With this interpretation, we see that the expected location of the particle at
time t is

〈x〉(t) =
∫
x|ϕ(x, t)|2 dx =

∫
ϕ(x, t)xϕ(x, t)dx. (2.2.14)

Operator representations of physical quantities
Naturally, the expected value of the momentum of the particle should be equal to
the product of the particle mass and the expected value of the particle velocity.
Therefore, in view of (2.2.11), we have

〈p̂〉(t) = m
d〈x〉(t)

dt

= m

∫
(ϕt(x, t)xϕ(x, t) + ϕ(x, t)xϕt(x, t))dx

= i h̄
2

∫
(xϕϕxx − xϕxxϕ)dx

=

∫
ϕ(x, t)

(
− ih̄ ∂

∂x

)
ϕ(x, t)dx. (2.2.15)

Hence, formally, the expected value of the momentum is the “expected value” of
the operator

p̂ = −ih̄ ∂

∂x
. (2.2.16)

In other words, within the framework of Born’s statistical interpretation of the
wave function, momentum has its elegant operator representation (2.2.16).

In this manner, we have the trivial operator representations

x̂ = x, f̂(x) = f(x), (2.2.17)

for the particle coordinate x and its functions. Besides, (2.2.10) gives us the
energy representation

Ê =
1

2m
p̂2 + V, (2.2.18)

which is the quantum-mechanical Hamiltonian. Thus,

〈Ê〉 =
∫
ϕ(x, t)

(
− h̄2

2m

∂2

∂x2
+ V

)
ϕ(x, t)dx. (2.2.19)
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Using (2.2.11) in (2.2.19), we have

〈Ê〉 =
∫
ϕ(x, t)

(
ih̄ ∂
∂t

)
ϕ(x, t)dx. (2.2.20)

In other words, energy should be represented by the operator

Ê = ih̄ ∂
∂t
. (2.2.21)

These fundamental operator representations of various physical quantities
composed from their classical counterparts, collectively carried out in a procedure
known as the first quantization, form the foundation of quantum mechanics.

Conservation law and probability current
It is easily checked that the normalization condition is well posed because

d
dt

∫
|ϕ(x, t)|2 dx = 0, (2.2.22)

by virtue of the equation (2.2.11) so that it suffices to require the condition∫
|ϕ(x, 0)|2 dx = 1, (2.2.23)

initially. Here, we look for some additional consequences from the global
conservation law (2.2.22). For this purpose, we differentiate the probability
density ρ to get

ρt = ϕtϕ+ ϕϕt

= −i h̄
2m

(ϕϕx − ϕϕx)x, (2.2.24)

where we have used (2.2.11) again. It is interesting to view ρ as a “charge” density
and rewrite (2.2.24) in the form of a conservation law,

∂

∂t
ρ+

∂

∂x
j = 0, (2.2.25)

where j may be viewed as a “current” density, which is identified to be

j = i h̄

2m
(ϕϕx − ϕϕx). (2.2.26)

We note that it is crucial that ϕ is complex-valued: if it is real-valued, the
current density will be zero identically and ρ will be time-independent.

Furthermore, differentiating (2.2.13) and using (2.2.26), we have
d
dtP ({a < x(t) < b}) = d

dtQ(a, b)(t)

=
d
dt

∫ b

a

ρ(x, t)dx

= j(a, t)− j(b, t), (2.2.27)
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where Q(a, b) may be interpreted as the charge contained in the interval (a, b)
at time t so that its rate of change is equal to the net current following into such
an interval. Or more correctly, we may call Q the “probability charge” and j the
“probability current.”

Ehrenfest theorem
Differentiating (2.2.15) and using (2.2.11), we have

d〈p̂〉
dt =

∫ (
ϕt

[
− ih̄ ∂

∂x

]
ϕ+ ϕ

[
− ih̄ ∂

∂x

]
ϕt

)
dx

= −ih̄
∫ ([

− i h̄

2m
ϕxx + i V

h̄
ϕ

]
ϕx + ϕ

∂

∂x

[
i h̄

2m
ϕxx − i V

h̄
ϕ

])
dx

= − h̄2

2m

∫
([ϕxϕx]x − [ϕϕxx]x)dx−

∫
Vx|ϕ|2 dx

= −〈Vx〉, (2.2.28)

which may be compared with the equation of motion in the classical Newtonian
mechanics,

m
d2x

dt2 =
dp
dt = −Vx. (2.2.29)

In other words, in quantum mechanics, in sense of expected value, quantum
operators obey the equation of motion of Newtonian mechanics. This statement
is known as the Ehrenfest theorem.

Complex potential and unstable particles
The profound meaning of the conservation law (2.2.12) is that a particle can
never disappear once it is present. Here we show that a small modification may be
made so that we are able to describe unstable particles which may disappear after
some time lapse. We will not justify whether such a modification is physically
correct but will only be content to know that there is room in the Schrödinger
equation to accommodate theoretical explorations. To this end, we assume that
the potential energy V in (2.2.11) is perturbed by an imaginary quantity,

V = V1 + iV2, V1 and V2 are both real-valued, (2.2.30)

which is allowed in the mathematical setting of the equation. Hence, (2.2.11)
becomes

ih̄∂ϕ
∂t

= − h̄2

2m

∂2ϕ

∂x2
+ (V1 + iV2)ϕ. (2.2.31)

In view of (2.2.31), we see that the probability that there is a particle present
at time t, that is,

P (t) =

∫
|ϕ(x, t)|2 dx, (2.2.32)
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satisfies the equation

P ′(t) =
2

h̄

∫
V2(x, t)|ϕ(x, t)|2 dx. (2.2.33)

This clearly indicates that it is the presence of V2 that breaks down the
probability conservation law (2.2.22).

For simplicity, we further assume that there is a constant K > 0 such that

V2(x, t) ≤ −K, ∀x, t. (2.2.34)

Then (2.2.33) and (2.2.34) lead us to

P ′(t) ≤ −2K

h̄
P (t). (2.2.35)

Thus, if a particle is present initially, then P (0) = 1. Consequently, we can
integrate (2.2.35) to infer that

P (t) ≤ e− 2K
h̄ t, t > 0. (2.2.36)

In other words, in a bulk situation, we will observe loss of particles as time
elapses, suggesting that we encounter unstable particles.

Equation in higher dimensions
Our discussion about the one-dimensional Schrödinger equations can be extended
to arbitrarily high dimensions. For this purpose, we consider the spacetime of
dimension (n+ 1) with coordinates t = x0,x = (x1, . . . , xn), for time and space,
respectively. We use the Greek letters µ, ν, etc., to denote the spacetime indices,
µ, ν = 0, 1, . . . , n, the Latin letters i, j, k, etc., the space indices, i, j, k = 1, . . . , n,
and ∇ the gradient operator on functions depending on x1, . . . , xn.

The Schrödinger equation that quantum-mechanically governs a particle of
mass m in Rn is given by

ih̄∂ϕ
∂t

= − h̄2

2m
∆ϕ+ V ϕ, (2.2.37)

since the energy and momentum operators are, respectively, given by

Ê = ih̄ ∂
∂t
, p̂ = −ih̄∇, (2.2.38)

and the total energy operator, or the Hamiltonian, is

Ĥ =
1

2m
p̂2 + V. (2.2.39)

Subsequently, the associated probability current j = (jµ) = (j0, j) = (ρ, ji) is
defined by

ρ = |ϕ|2, ji = i h̄

2m
(ϕ∂iϕ− ϕ∂iϕ), i = 1, . . . , n, (2.2.40)


