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Preface

This book provides an overview of the phenomena arising when parametric pump-
ing is applied to oscillators. These phenomena include parametric amplification, noise
squeezing, spontaneous symmetry breaking, activated switching, cat states, and syn-
thetic Ising spin lattices. To understand these effects, we introduce topics such as non-
linear and stochastic dynamics, mode coupling, and quantum mechanics. Throughout
the book, we keep these introductions as succinct as possible and focus our attention
on understanding parametric oscillators. As a result, we familiarize ourselves with
many aspects of parametric systems and understand the common theoretical origin of
nanomechanical sensors, optical amplifiers, and superconducting qubits.

Parametric phenomena have enabled important scientific breakthroughs over recent
decades and are still the focus of intense research efforts. Our intention is to provide
a resource for experimental and theoretical physicists entering the field or wishing to
gain a deeper understanding of the underlying connections. As such, we combine formal
and intuitive explanations, accompanied by exercises based on numerical python codes.
This combination allows the reader to experience parametric phenomena from various
directions and to apply their understanding directly to their own research projects.
For lecturers, the book supplies all the material necessary for an advanced class on
the topic.
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List of Important Symbols

(in approximate order of appearance)

H Hamiltonian
Epot potential energy
Ekin kinetic energy
Etot = Epot + Ekin; total energy
x displacement
p momentum
t time
m mass
ω0 angular resonance frequency
ν0 = ω0/(2π); temporal resonance frequency
k = mω2

0 ; spring constant
T0 = 2π/ω0 = 1/ν0; unforced oscillator period
Q quality factor
Γ = ω0/Q; damping rate
τ0 = 2/Γ; amplitude decay time constant
ωΓ =

(
ω2

0 − Γ2/4
)1/2 ≈ ω0; dissipation-shifted angular resonance frequency

µ characteristic exponent
F0 amplitude of external force
F in Chapters 1 to 7: all force terms acting on the bare resonator

in Chapters 9 and 10: = F0
2
√
~/2mω0; rotating-frame quantum force term

ω angular frequency of external force
θ phase offset of external force
χ susceptibility function of driven resonator
X oscillation amplitude
x vector of a system’s degrees of freedom
G in Chapters 1 to 7: matrix containing the coefficients of the differential equation

in Chapter 10: parametric drive in the rotating-frame quantum Hamiltonian
W in Chapters 1 to 7: Wronskian matrix

in Chapters 8 to 10: Wigner quasiprobability density
Φ state transfer matrix
Tp period of parametric pump
ωp = 2π/Tp; angular frequency of parametric pump
λ parametric modulation depth
λth = 2/Q; parametric pumping threshold at ωp = 2ω0
β3 coefficient of cubic (Duffing) nonlinearity
β2 coefficient of quadratic nonlinearity
β = β3 − 10

9
β2

2
ω2 ; coefficient of effective Duffing nonlinearity

u in-phase oscillation quadrature
v out-of-phase oscillation quadrature



ψ phase offset of parametric pump
η coefficient of nonlinear damping
kB ≈ 1.38× 10−23 J T−1; Boltzmann constant
T temperature
Eeq equilibrium energy
ξ force noise term
ςD standard deviation of force noise
σx standard deviation of x (for any variable x)
SF power spectral density of force noise
Ξu in-phase quadrature of force noise
Ξv out-of-phase quadrature of force noise
ρ probability density

in Chapters 8 to 10: density operator
J coefficient of coupling between resonators
∆k detuning spring force
U in Chapter 6: normal-mode transformation matrix

in Chapter 10: Kerr nonlinearity
ω∆ = J

ω0m
; angular exchange rate and spectral splitting

t∆ = 2π
ω∆

; energy exchange time
g parametric coupling modulation depth
ωR angular Rabi frequency
~ ≈ 1.05× 10−34 J s−1; reduced Planck constant
στ state lifetime
σE energy uncertainty
Ψ wave function
n in Chapters 8 to 10: Fock state number
a = â; annihilation operator
a† = â†; creation operator
xdl = 1

2 (a† + a); dimensionless x operator
pdl = i

2 (a† − a); dimensionless x operator
α amplitude of coherent state
Pj probability of measuring the system in the state j
κ = Γ; system-environment coupling rate
nth mean thermal excitation
Urot rotating-frame transformation matrix
∆ ω − ω0; angular frequency detuning
ã annihilation operator in the rotating frame
ã† creation operator in the rotating frame
αR real part of coherent state amplitude
αI imaginary part of coherent state amplitude
∆U = ∆ + U ; detuning shifted by the Kerr nonlinearity



Introduction

“It’s still magic even if you know how it’s done.”
(Terry Pratchett, A Hat Full of Sky)

About This Work

This book emerged from a master-level course on “Parametric Phenomena” that the
authors held together at ETH Zurich between 2018 and 2021, and individually at their
respective universities since then. The course was organized as a reverse-classroom
event: students would prepare by reading material at home, and then use the time in
class to solve exercises and discuss with the teaching team. With this approach, we
hoped to present the topic in much the same way as we experience it during our own
research, and to encourage the students to formulate (and solve) their own questions.
In line with this philosophy, the graded deliverable that every student handed in for
passing the course was a poster that approximated one particular system as a paramet-
ric oscillator, including physical units and estimated numerical values. We saw many
creative results, ranging from an airplane wobbling in the wind and a ship rolling in
the sea to a nanoparticle trapped in an optical potential, a Josephson superconducting
resonator, an optical ring resonator, a yo-yo, and even the predator–prey dynamics
between a pack of wolves and a flock of sheep. This book is meant to provide all that
is necessary to hold such a course, including the reading material, exercises, codes to
solve the exercises, and a tutorial of how to map realistic physical systems onto the
desired equations.

In this book, we perform a diagonal cut through many different topics. We follow a
path from the deterministic mechanics of a harmonic oscillator all the way to the non-
deterministic physics of coupled nonlinear quantum oscillators. Along this trajectory,
we encounter many ideas and concepts that can fill entire books of their own accord.
Our discussions of these concepts are guided by the wish to build an understanding
without dealing with all possible details. This book is clearly not an exhaustive resource
on topics such as nonlinear mechanics, stochastic physics, or the quantum oscillator.
These topics have been treated in much more detail in other articles and books which
we cite where appropriate. Rather, we want to focus on the combination of all these
fundamental theories to gain a balanced and comprehensive view of the parametric
oscillator.

In Chapter 1, we start with the deterministic behavior of the classical harmonic
oscillator subject to damping and driving, and later to parametric pumping. Build-
ing on this foundation, we add nonlinearities in Chapter 2, and combine them with
a parametric pump in Chapter 3. In Chapter 4, we introduce fluctuating forces for
the example of the harmonic oscillator, which we generalize to the nonlinear para-
metric oscillator in Chapter 5. Coupling between oscillators is discussed in Chapter 6



2 Introduction

and applied to stochastic, nonlinear parametric oscillators in Chapter 7. The quan-
tum harmonic oscillator follows in Chapter 8, which leads to the driven and damped
quantum harmonic oscillator in Chapter 9, and the quantum parametric oscillators in
Chapter 10. Finally, in Chapter 11 we explain with several examples how mechanical,
electrical, and optical systems can all serve as parametric oscillators.

0.1 Historical Review

In this Introduction, we review historical examples of parametric phenomena and
understand why this topic is still the focus of so many research fields today. Before
we can embark on our tour through the centuries, we must clarify what we mean by
the term parametric. In our usage of the word, it refers to a periodic modulation of
a resonator’s potential — physically, the modulation could originate from a change in
the tension of a mechanical string, a child alternatively standing and squatting on a
swing, the effect of waves hitting a ship to change its buoyancy center, a variation in
the effective capacitance of an electrical resonator, or an increase of the polarization
of an optical medium in response to electromagnetic waves. All of these seemingly
disparate examples obey very similar equations, and many of them can be used for
similar technological applications (although so far no applications have been developed
for children on swings . . . ). The phenomena that arise as a consequence of parametric
modulation are as varied as the physical systems in which they appear. At first glance,
the menagerie of parametric phenomena may appear endless, but we will see that they
all follow a few intuitive rules and can be classified accordingly.

The earliest examples of parametric oscillation are found, not surprisingly, in the
mechanical domain. To our knowledge, the first experimental description of parametric
resonance is ascribed to the works of Michael Faraday in 1831 [1] and Franz Melde
in 1860 [2]. However, applications of the effect are much older: the big censer “O
Botafumeiro” used for certain rituals in the Cathedral of Santiago de Compostela
in Spain is set into pendulum motion by periodically modulating (i.e. parametrically
pumping) the length of its rope [3]. As the censer weights about 60 kg and moves
20 m up and down during its largest oscillations, a team of operators is needed for this
pumping, and their actions have to be coordinated in time to achieve the desired effect.
Reports of parametric pumping of O Botafumeiro reach back to the 13th century. A
mathematical treatment of parametric oscillation was not attempted until 1883, when
Lord Rayleigh published his paper “On maintained vibrations” [4]. He analyzed the
different types of driving that a system can experience and showed that parametric
modulations can explain Faraday’s experimental observations [1].

Technological applications of parametric pumping in electronics began to appear
in the 20th century with the development of the Mag Amp [5] and the Klystron [6]
amplifiers, both of which were based on time-dependent modulation of a control pa-
rameter. The Mag Amp found application in early radio telephones around 1915, and
the Klystron allows high-power microwave generation and is still in use today for niche
applications such as spacecraft communication and synchrotrons. In the second half of
the century, inventions like the Parametric Amplifier by Arthur Ashkin and colleagues
in 1959 [7] and the Broadband cavity parametric amplifier with tuning by Closson in
1962 [8] opened up new perspectives for electrical signal amplification. It was un-
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derstood that a modulation of the reactance (i.e., the capacitance or inductance) of
a resonant electrical circuit can lead to strong signal amplification without adding
Nyquist noise which is unavoidable in resistor-based operational amplifiers [9, 10].

With the advent of superconducting circuits and the possibility of a strong nonlinear
inductance imposed by Josephson junctions, the parametric amplifier was brought to
its logical culmination, offering signal amplification with no more noise than what is
absolutely required by the laws of quantum mechanics [11–13]. However, it was only af-
ter the turn of the millennium that these Josephson parametric amplifiers moved fully
into the focus of the experimental quantum physics community [14–20], enabling exper-
iments that previously were unfeasible [21]. Around the same time, parametric ampli-
fication [22–27] and coupling [28–32] were also explored in the growing nanomechanics
community. A particularly important application arose in cavity optomechanics, where
the parametric coupling between a mechanical and an optical degree of freedom can be
used for precise control of the resonator and for cooling it down to its quantum ground
state [33]. Parametric squeezing can be used to reduce fluctuations [22, 34–36] and has
been employed as a means to generate nonclassical optical [37, 38] or mechanical [39–
41] states. Importantly, parametric squeezing has been proposed as a way to boost the
sensitivity of optical interferometers for gravitational wave detection [42–44].

Most of the above applications are achieved for relatively weak parametric mod-
ulation. By contrast, when the pumping exceeds a certain threshold, entirely new
phenomena appear. Under strong parametric pumping at a frequency close to twice
its resonance frequency, a resonator experiences a negative effective damping, such
that it will ring up to large amplitudes and be stabilized only by nonlinear potential
terms [45]. Such parametric instability appears in many contexts; for instance, it is held
responsible for the dreaded parametric rolling of ships that has caused catastrophic
accidents [46]. It is also considered as a possible mechanism for particle creation in
models of the early universe [47, 48].

Beyond the instability threshold, the parametrically driven resonator can select one
of two oscillation phases that are separated by a phase of π. This causes a spontaneous
breaking of the time-translation symmetry of the system — oscillations with either
phase are equivalent solutions in response to the drive, but only one of them can be
realized at the same time (in a classical system) [45, 49]. Around 1960, Eiichi Goto [50]
and John von Neumann [51] independently realized that these phase states offer a way
to encode digital information. The parametron was indeed used as a memory unit for
electrical computers in Japan until the invention of the transistor provided a more
efficient solution.

0.2 Present and Future

Over the last few years, the development of novel resonators in the electrical, mechani-
cal and optical domain has led to a revival of interest in the parametric oscillator1 and
the idea of parametron phase logic, in both the classical and quantum domains [52–
65]. Of particular interest is the idea of coupling many parametrons into a configurable

1 Other terms for the parametric oscillator are Kerr parametric oscillator or two-photon driven Kerr
resonator.
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Hopfield-type network [66, 67]. Here, the phase states of a single parametron represent
the two polarization states of a spin, and the entire network can be used to simulate the
behavior of the corresponding many-body Ising model [68]. Many optimization prob-
lems, such as the MAX-CUT problem [69, 70] or the number partitioning problem [71],
are isomorphic to finding the ground state of an Ising network, and at the same time
are nearly intractable with classical (sequential) computers [72]. Recent years have
therefore seen a surge of ideas related to parametron logic control [55, 57, 73–77] and
parametric network operation [62, 69–71, 78–86].

Whether the complexity of a multimode nonlinear oscillator network can be tamed
to enable parallel computing and quantum simulations is an open question and will
be the subject of intensive research over the coming years. What is safe to predict
is that every new physical implementation of the harmonic oscillator sooner or later
rediscovers parametric phenomena and applies it to a new purpose. A concept that
is so versatile and useful will remain important in science and technology, no matter
what the future brings.



1

The Harmonic Resonator

Harmonic oscillators are ubiquitous in nature and have been treated in many text-
books in depth [87, 88]. We briefly repeat in this first chapter those features that are
important for the rest of the book. To facilitate an intuitive approach, we adopt the
language of a mechanical oscillator, but the discussion may easily be translated to
any oscillating system, cf. Chapter 11. Examples will be calculated without units, to
preserve the spirit of a general treatment.

1.1 Newton’s Equation of Motion

Consider a mass on a spring, see Fig. 1.1. The system has kinetic and potential energy,
where the latter is stored in the spring proportional to the square of the displacement
x, such that

H = Etot = Ekin + Epot = p2

2m + 1
2kx

2 . (1.1)

Here, H is the Hamiltonian of the system, p the momentum and canonical conjugate
of the displacement x, k the spring constant, and m the mass. The Hamiltonian is a
function that describes the total kinetic and potential energy of a closed system. From
Hamiltonian mechanics, we can calculate the force that acts on the mass at any given
time t as

F ≡ ṗ ≡ dp

dt
= −∂H

∂x
= −kx , (1.2)

where dots denote differentiation with respect to time t. The quadratic potential,
thus, corresponds to a linear spring force. Combining eqn (1.1) with the second one of
Hamilton’s equations of motion (EOM),

ẋ = ∂H

∂p
= p

m
, (1.3)

we obtain a second-order differential equation that is known as Newton’s EOM,

ẍ+ k

m
x = 0 . (1.4)

Equation (1.4) is solved using the ansatz x(t) = xinie
iω0t, where xini is determined

by the initial boundary conditions, ω0 = (k/m)1/2 = 2πν0 = 2π/T0 is the angular
resonance frequency, T0 is the unforced periodicity of the oscillator, and we refer to
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x

m

(a) (b)

x

Epot

Fspring

Fspring

Fig. 1.1 (a) As an example of a harmonic oscillator, we use a mass on a spring. Displacing
the mass from its rest position by x results in a restoring spring force Fspring = −kx. A
displaced mass is shown in gray. (b) The potential energy of a harmonic oscillator is quadratic
in displacement, Epot = 1

2kx
2, cf. eqn (1.2).

ν0 as natural frequency. Note that eqn (1.4) describes an oscillator that is isolated
from its environment, that is, Hamiltonian evolution is energy-conserving and does
not feature damping terms.

Finding the microscopic origin of damping terms is an important topic on its
own [89]. For now, we assume a phenomenological source of dissipation that enters
Newton’s EOM and can stabilize the oscillator’s motion,

ẍ+ Γẋ+ k

m
x = 0 , (1.5)

where Γ is the coefficient corresponding to the dissipative (linear) damping enacted
by the environment. Note that from a mathematical point of view, we can account for
the added damping term through the transformation [88]

x(t) = e−Γt/2y(t) = e−t/τ0y(t) , (1.6)

where we define a decay time τ0 = 2/Γ. The equation of motion for y(t) then takes
the form of a closed harmonic oscillator,

ÿ + ω2
Γy = 0 , (1.7)

in an exponentially expanding or shrinking coordinate system and with a slightly
shifted resonance frequency

ω2
Γ = ω2

0 −
Γ2

4 . (1.8)

From the transformation in eqn (1.6), we observe that for 2ω0 > Γ > 0 the oscillator
coordinate x(t) decays exponentially in time in addition to an harmonic oscillation.
However, we can already guess that something different must happen once 2ω0 ≤ Γ.

A direct treatment of the homogeneous dissipative case in eqn (1.5) is possible
starting from the same ansatz that any particular solution has the form

x(t) = xinie
µt (1.9)
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Fig. 1.2 The real (solid) and imaginary (dashed) parts of the characteristic exponents,
cf. eqn (1.11), as a function of (a) damping coefficient Γ for a bare angular resonance frequency
ω0 = 2π, and of (b) ω0 for Γ = 2π.

with a complex characteristic exponent µ ∈. Inserting eqn (1.9) into eqn (1.5) leads
to

x
(
µ2 + µΓ + ω2

0
)

= 0 , (1.10)

which, for x 6= 0, results in a quadratic characteristic equation with the two roots

µa,b = −Γ
2 ±

√
Γ2/4− ω2

0 = −Γ
2 ± iωΓ . (1.11)

This is identical to what we obtained with the coordinate transformation method in
eqn (1.6), see eqn (1.8) and the discussion thereafter.

We can identify several distinct regimes of motion: for damped oscillators (Γ >
0) we distinguish between overdamped (ω2

Γ < 0), critically damped (ω2
Γ = 0), and

underdamped motion (ω2
Γ > 0), where oscillation appears only for the latter.1 For Γ <

0, the oscillator is unstable and the motion becomes unbounded. This is visualized by
plotting the real and imaginary part of the characteristic exponents µa,b, see Fig. 1.2.
Note that, in many cases, the small correction to the bare frequency due to the damping
term is neglected, such that ω2

Γ ≈ ω2
0 .

1.2 Response of the Driven Resonator

In large parts of our treatment, we will use Newton’s EOM to analyze the behavior of
driven oscillating systems. For our mass on a spring, we can write

ẍ+ k

m
x+ Γẋ = F0

m
cos(ωt) , (1.12)

where F = F0 cos(ωt) is an external driving force that turns eqn (1.12) into an in-
homogeneous differential equation.

1 The critically damped point is an example of an exceptional point where the roots are degenerate
and eqn (1.9) is insufficient [90].


