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Preface to the First Edition

This book grew out of lectures given since 1964 at Yale University, the
University of Illinois at Chicago, and Bar Ilan University. The material
covers the usual topics of Measure Theory and Functional Analysis, with
applications to Probability Theory and to the theory of linear partial differential
equations. Some relatively advanced topics are included in each chapter
(excluding the first two): the Riesz–Markov representation theorem and
differentiability in Euclidean spaces (Chapter 3); Haar measure (Chapter 4);
Marcinkiewicz’s interpolation theorem (Chapter 5); the Gelfand–Naimark–Segal
representation theorem (Chapter 7); the von Neumann double commutant
theorem (Chapter 8); the spectral representation theorem for normal operators
(Chapter 9); the extension theory for unbounded symmetric operators
(Chapter 10); the Lyapounov Central Limit theorem and the Kolmogoroff
“Three Series theorem” (Application I); the Hormander–Malgrange theorem,
fundamental solutions of linear partial differential equations with variable
coefficients, and Hormander’s theory of convolution operators, with an
application to integration of pure imaginary order (Application I). Some
important complementary material is included in the ‘Exercises’ sections, with
step-by-step detailed hints leading to the wanted results. Solutions to the end
of chapter exercises may be found on the companion website for this text:
http://www.oup.co.uk/academic/companion/mathematics/kantorovitz.

Ramat Gan S. K.
July 2002





Preface to the Second
Edition

The purpose of the second edition is to make our Introduction to Modern Analysis
more modern. We did this mostly by broadening and deepening the presentation
of operator algebras, which form a central area in functional analysis. There are
three new chapters: Chapter 11 on C∗-algebras, Chapter 12 on von Neumann
algebras, and Chapter 13 on constructions of C∗-algebras. They contain much
more material on these subjects than the first edition. These chapters are also
more advanced than the previous parts of the book and require more from the
reader, occasionally in the form of guided exercises. Nevertheless, what we give
here is merely a taste of operator algebras.

In addition, we made numerous corrections and added quite a lot of exercises.
There are also new subjects of independent interest: fixed-point theorems
(Chapter 5); the bounded weak∗-topology (Chapter 5); the Arens products
(Chapter 7); tensor products of vector spaces and of Hilbert spaces (Chapter 8);
and quadratic forms (Chapter 10).

Ramat Gan and Haifa S. K. and A. V.
December 2021





1

Measures

This chapter begins the study of measure theory, which spans Chapters 1–3 and
most of Chapter 4. Let us explain first what necessitated this theory.

Consider the set of all Riemann integrable functions on an interval [a, b]. It
becomes a semi-normed space with respect to the semi-norm ∥f∥ :=

∫ b

a
|f(x)|dx.

The problem is that this space is not complete: it admits non-convergent Cauchy
sequences. As discussed later in the book, in modern analysis it is especially
important for (semi-) normed spaces to be complete. Measure theory, invented
by H. L. Lebesgue, introduces the concept of a measure space, which is a triple
(X,A, µ), where X is a set, A is the σ-algebra of all measurable subsets of X, and
µ : A → [0,∞] is a measure. To each such triple there is an associated Lebesgue
integral. In the particular case when X = [a, b] and µ is the Lebesgue measure
(very roughly, µ([c, d]) = d − c, which justifies the word “measure”), every
Riemann integrable function is also Lebesgue integrable (but not conversely!)
and the integrals coincide.

One big virtue of Lebesgue integration is that the space of integrable functions
that comes out of it is complete. In fact, to every measure space we associate not
one complete normed space, but a continuum of them—the so-called Lp-spaces
(p ∈ [1,∞]).

The chapter is structured as follows. We first introduce positive measure
spaces and Lebesgue integration on them and prove several convergence theorems
that are fundamental in the theory. We then define the Lp-spaces and prove that
they are Banach spaces, that is, complete normed spaces. Next, we prove a few
basic facts on Hilbert spaces culminating in the “little” Riesz representation
theorem (we return to Hilbert spaces in Chapter 8). Hilbert spaces are needed
in the proof of the Lebesgue–Radon–Nikodym theorem, a deep result about
the relationship between two arbitrary measures. Complex measures are then
introduced and studied. A few notions of convergence of sequences of measurable
functions are defined and the relations between them are explained, including
a surprising theorem of Egoroff saying that on finite measure spaces, pointwise
convergence is “almost uniform”. A short treatment of the distribution function of

Introduction to Modern Analysis. Second Edition. Shmuel Kantorovitz and Ami Viselter, Oxford University Press.
© Shmuel Kantorovitz and Ami Viselter (2022). DOI: 10.1093/oso/9780192849540.003.0001



2 1. Measures

a measurable function follows. The chapter ends with the notion of a truncation
of a function.

1.1 Measurable sets and functions
The setting of abstract measure theory is a family A of so-called measurable
subsets of a given set X, and a function

µ : A → [0,∞],

so that the measure µ(E) of the set E ∈ A has some “intuitively desirable”
property, such as “countable additivity”:

µ

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

µ(Ei),

for mutually disjoint sets Ei ∈ A. In order to make sense, this setting has to
deal with a family A that is closed under countable unions. We then arrive to
the concept of a measurable space.
Definition 1.1. Let X be a (non-empty) set. A σ-algebra of subsets of X
(briefly, a σ-algebra on X) is a subfamily A of the family P(X) of all subsets
of X, with the following properties:

(1) X ∈ A;
(2) if E ∈ A, then the complement Ec of E belongs to A;
(3) if {Ei} is a sequence of sets in A, then its union belongs to A.
The ordered pair (X,A), with A a σ-algebra on X, is called a measurable

space. The sets of the family A are called measurable sets (or A-measurable sets)
in X.

Observe that by (1) and (2), the empty set ∅ belongs to the σ-algebra A.
Taking then Ei = 0 for all i > n in (3), we see that A is closed under finite
unions; if this weaker condition replaces (3), A is called an algebra of subsets
of X (briefly, an algebra on X).

By (2) and (3), and DeMorgan’s Law, A is closed under countable
intersections (finite intersections, in the case of an algebra). In particular, any
algebra on X is closed under differences E − F := E ∩ F c.

The intersection of an arbitrary family of σ-algebras on X is a σ-algebra
on X. If all the σ-algebras in the family contain some fixed collection E ⊂ P(X),
the said intersection is the smallest σ-algebra on X (with respect to set inclusion)
that contains E ; it is called the σ-algebra generated by E , and is denoted by [E ].

An important case comes up naturally when X is a topological space (for
some topology τ). The σ-algebra [τ ] generated by the topology is called the
Borel (σ)-algebra [denoted B(X)], and the sets in B(X) are the Borel sets in X.
For example, the countable intersection of τ -open sets (a so-called Gδ-set) and
the countable union of τ -closed sets (a so-called Fσ-set) are Borel sets.
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Definition 1.2. Let (X,A) and (Y,B) be measurable spaces. A map f : X → Y
is measurable if for each B ∈ B, the set

f−1(B) := {x ∈ X; f(x) ∈ B} := [f ∈ B]

belongs to A.

A constant map f(x) = p ∈ Y is trivially measurable, since [f ∈ B] is either
∅ or X (when p ∈ Bc and p ∈ B, respectively), and so belongs to A.

When Y is a topological space, we shall usually take B = B(Y ), the Borel
algebra on Y . In particular, for Y = R (the real line), Y = [−∞,∞] (the
“extended real line”), or Y = C (the complex plane), with their usual topologies,
we shall call the measurable map a measurable function (more precisely, an
A-measurable function). If X is a topological space, a B(X)-measurable map
(function) is called a Borel map (function).

Given a measurable space (X,A) and a map f : X → Y , for an arbitrary set
Y , the family

Bf := {F ∈ P(Y ); f−1(F ) ∈ A}

is a σ-algebra on Y (because the inverse image operation preserves the set
theoretical operations: f−1(

⋃
α Fα) =

⋃
α f

−1(Fα), etc.), and it is the largest
σ-algebra on Y for which f is measurable.

If Y is a topological space, and f−1(V ) ∈ A for every open V , then Bf
contains the topology τ , and so contains B(Y ); that is, f is measurable. Since
τ ⊂ B(Y ), the converse is trivially true.

Lemma 1.3. A map f from a measurable space (X,A) to a topological space Y
is measurable if and only if f−1(V ) ∈ A for every open V ⊂ Y .

In particular, if X is also a topological space, and A = B(X), it follows that
every continuous map f : X → Y is a Borel map.

Lemma 1.4. A map f from a measurable space (X,A) to [−∞,∞] is measurable
if and only if

[f > c] ∈ A

for all real c.

The non-trivial direction in the lemma follows from the fact that (c,∞] ∈ Bf
by hypothesis for all real c; therefore, the σ-algebra Bf contains the sets

∞⋃
n=1

(b− 1/n,∞]c =

∞⋃
n=1

[−∞, b− 1/n] = [−∞, b)

and (a, b) = [−∞, b) ∩ (a,∞] for every real a < b, and so contains all countable
unions of “segments” of the above type, that is, all open subsets of [−∞,∞].

The sets [f > c] in the condition of Lemma 1.4 can be replaced by any of
the sets [f ≥ c], [f < c], or [f ≤ c] (for all real c), respectively. The proofs are
analogous.
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For f : X → [−∞,∞] measurable and α real, the function αf (defined
pointwise, with the usual arithmetics α · ∞ = ∞ for α > 0,= 0 for α = 0,
and = −∞ for α < 0, and similarly for −∞) is measurable, because for all real
c, [αf > c] = [f > c/α] for α > 0,= [f < c/α] for α < 0, and αf is constant for
α = 0.

If {an} ⊂ [−∞,∞], one denotes the superior (inferior) limit, that is, the
“largest” (“smallest”) limit point, of the sequence by lim sup an (lim inf an,
respectively).

Let bn := supk≥n ak. Then {bn} is a decreasing sequence, and therefore

∃ lim
n
bn = inf

n
bn.

Let α := lim sup an and β = lim bn. For any given n ∈ N, ak ≤ bn for all k ≥ n,
and therefore α ≤ bn. Hence α ≤ β.

On the other hand, for any t > α, ak > t for at most finitely many indices k.
Therefore, there exists n0 such that ak ≤ t for all k ≥ n0, hence bn0

≤ t. But
then bn ≤ t for all n ≥ n0 (because {bn} is decreasing), and so β ≤ t. Since
t > α was arbitrary, it follows that β ≤ α, and the conclusion α = β follows. We
showed

lim sup an = lim
n

(
sup
k≥n

ak

)
= inf

n∈N

(
sup
k≥n

ak

)
. (1)

Similarly
lim inf an = lim

n

(
inf
k≥n

ak

)
= sup

n∈N

(
inf
k≥n

ak

)
. (2)

Lemma 1.5. Let {fn} be a sequence of measurable [−∞,∞]-valued functions
on the measurable space (X,A). Then the functions sup fn, inf fn, lim sup fn, lim
inf fn, and lim fn (when it exists), all defined pointwise, are measurable.

Proof. Let h = sup fn. Then for all real c,

[h > c] =
⋃
n

[fn > c] ∈ A,

so that h is measurable by Lemma 1.4.
As remarked, −fn = (−1)fn are measurable, and therefore inf fn = − sup

(−fn) is measurable.
The proof is completed by the relations (1), (2), and

lim fn = lim sup fn = lim inf fn,

when the second equality holds (i.e. if and only if lim fn exists).

In particular, taking a sequence with fk = fn for all k > n, we see
that max{f1, . . . , fn} and min{f1, . . . , fn} are measurable, when f1, . . . , fn are
measurable functions into [−∞,∞]. For example, the positive (negative) parts
f+ := max{f, 0} (f− := −min{f, 0}) of a measurable function f : X → [−∞,∞]
are (non-negative) measurable functions. Note the decompositions

f = f+ − f−; |f | = f+ + f−.
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Lemma 1.6. Let (X,A), (Y,B) and (Z, C) be measurable spaces. If f : X → Y
and g : Y → Z are measurable, then so is the composite function h := g ◦ f :
X → Z.

Indeed, for every C ∈ C we have g−1(C) ∈ B by measurability of g, thus
h−1(C) = f−1(g−1(C)) ∈ A by measurability of f .

In particular, if Y, Z are topological spaces and g : Y → Z is continuous,
then g ◦ f is measurable.

If

Y =

n∏
k=1

Yk

is the product space of topological spaces Yk, the projections pk : Y → Yk are
continuous. Therefore, if f : X → Y is measurable, so are the “component
functions” fk(x) := pk(f(x)) : X → Yk (k = 1, . . . , n), by Lemma 1.6.
Conversely, if the topologies on Yk have countable bases (for all k), a countable
base for the topology of Y consists of sets of the form V =

∏n
k=1 Vk with Vk

varying in a countable base for the topology of Yk (for each k). Now,

[f ∈ V ] =

n⋂
k=1

[fk ∈ Vk] ∈ A

if all fk are measurable. Since every open W ⊂ Y is a countable union of sets of
the above type, [f ∈W ] ∈ A, and f is measurable. We proved:

Lemma 1.7. Let Y be the Cartesian product of topological spaces Y1, . . . , Yn
with countable bases to their topologies. Let (X,A) be a measurable space. Then
f : X → Y is measurable iff the components fk are measurable for all k.

For example, if fk : X → C are measurable for k = 1, . . . , n, then f :=
(f1, . . . , fn) : X → Cn is measurable, and since g(z1, . . . , zn) := Σαkzk(αk ∈ C)
and h(z1, . . . , zn) = z1 . . . zn are continuous from Cn to C, it follows from
Lemma 1.6 that (finite) linear combinations and products of complex measurable
functions are measurable. Thus, the complex measurable functions form an
algebra over the complex field (similarly, the real measurable functions form
an algebra over the real field), for the usual pointwise operations.

If f has values in R, [−∞,∞], or C, its measurability implies that of |f |, by
Lemma 1.6.

By Lemma 1.7, a complex function is measurable iff its real part ℜf and
imaginary part ℑf are both measurable.

If f, g are measurable with values in [0,∞], the functions f + g and fg are
well-defined pointwise (with values in [0,∞]) and measurable, since the functions
(s, t) → s + t and (s, t) → st from [0,∞]2 to [0,∞] are Borel (cf. Lemmas 1.6
and 1.7).

The function f : X → C is simple if its range is a finite set {c1, . . . , cn} ⊂ C.
Let Ek := [f = ck], k = 1, . . . , n. Then X is the disjoint union of the sets
Ek, and
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f =

n∑
k=1

ckIEk
,

where IE denotes the indicator of E (also called the characteristic function of
E by non-probabilists, while probabilists reserve the later name to a different
concept):

IE(x) = 1 for x ∈ E and = 0 for x ∈ Ec.

Since a singleton {c} ⊂ C is closed, it is a Borel set. Suppose now that the
simple (complex) function f is defined on a measurable space (X,A). If f is
measurable, then Ek := [f = ck] is measurable for all k = 1, . . . , n. Conversely,
if all Ek are measurable, then for each open V ⊂ C,

[f ∈ V ] =
⋃

{k;ck∈V }

Ek ∈ A,

so that f is measurable. In particular, an indicator IE is measurable iff E ∈ A.
Let B(X,A) denote the complex algebra of all bounded complex

A-measurable functions on X (for the pointwise operations), and denote

∥f∥ = sup
X
|f | (f ∈ B(X,A)).

The map f → ∥f∥ of B(X,A) into [0,∞) has the following properties:

(1) ∥f∥ = 0 iff f = 0 (the zero function);
(2) ∥αf∥ = |α| ∥f∥ for all α ∈ C and f ∈ B(X,A);
(3) ∥f + g∥ ≤ ∥f∥+ ∥g∥ for all f, g ∈ B(X,A);
(4) ∥fg∥ ≤ ∥f∥ ∥g∥ for all f, g ∈ B(X,A).

For example, (3) is verified by observing that for all x ∈ X,

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ sup
X
|f |+ sup

X
|g|.

A map ∥ · ∥ from any (complex) vector space Z to [0,∞) with Properties (1)–(3)
is called a norm on Z. The previous example is the supremum norm or uniform
norm on the vector space Z = B(X,A). Property (1) is the definiteness of the
norm; Property (2) is its homogeneity; Property (3) is the triangle inequality. A
vector space with a specified norm is a normed space. If Z is an algebra, and the
specified norm satisfies Property (4) also, Z is called a normed algebra. Thus,
B(X,A) is a normed algebra with respect to the supremum norm. Any normed
space Z is a metric space for the metric induced by the norm

d(u, v) := ∥u− v∥ u, v ∈ Z.

Convergence in Z is convergence with respect to this metric (unless stated
otherwise). Thus, convergence in the normed space B(X,A) is precisely uniform
convergence on X (this explains the name “uniform norm”).
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If x, y ∈ Z, the triangle inequality implies ∥x∥ = ∥(x−y)+y∥ ≤ ∥x−y∥+∥y∥,
so that ∥x∥ − ∥y∥ ≤ ∥x− y∥. Since we may interchange x and y, we have

|∥x∥ − ∥y∥ | ≤ ∥x− y∥.

In particular, the norm function is continuous on Z.
The simple functions in B(X,A) form a subalgebra B0(X,A); it is dense in

B(X,A):

Theorem 1.8 (Approximation theorem). Let (X,A) be a measurable space.
Then:

(1) B0(X,A) is dense in B(X,A) (i.e., every bounded complex measurable
function is the uniform limit of a sequence of simple measurable complex
functions).

(2) If f : X → [0,∞] is measurable, then there exists a sequence of measurable
simple functions

0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ f,

such that f = limϕn.

Proof. (1) Since any f ∈ B(X,A) can be written as

f = u+ − u− + iv+ − iv−

with u = ℜf and v = ℑf , it suffices to prove (1) for f with range in [0,∞). Let
N be the first integer such that N > sup f . For n = 1, 2, . . . , set

ϕn :=

N2n∑
k=1

k − 1

2n
IEn,k

,

where
En,k := f−1

([
k − 1

2n
,
k

2n

))
.

The simple functions ϕn are measurable,

0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ f,

and
0 ≤ f − ϕn <

1

2n
,

so that indeed ∥f − ϕn∥ ≤ (1/2n), as wanted.
If f has range in [0,∞], set

ϕn :=

n2n∑
k=1

k − 1

2n
IEn,k

+ nIFn
,

where Fn := [f ≥ n]. Again {ϕn} is a non-decreasing sequence of non-negative
measurable simple functions ≤ f . If f(x) = ∞ for some x ∈ X, then x ∈ Fn
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for all n, and therefore ϕn(x) = n for all n; hence limn ϕn(x) = ∞ = f(x). If
f(x) < ∞ for some x, let n > f(x). Then there exists a unique k, 1 ≤ k ≤ n2n,
such that x ∈ En,k. Then ϕn(x) = ((k − 1)/2n) while ((k − 1)/2n) ≤ f(x) <
(k/2n), so that

0 ≤ f(x)− ϕn(x) < 1/2n (n > f(x)).

Hence f(x) = limn ϕn(x) for all x ∈ X.

1.2 Positive measures
Definition 1.9. Let (X,A) be a measurable space. A (positive) measure on A
is a function

µ : A → [0,∞]

such that µ(∅) = 0 and

µ

( ∞⋃
k=1

Ek

)
=

∞∑
k=1

µ(Ek) (1)

for any sequence of mutually disjoint sets Ek ∈ A. Property (1) is called
σ-additivity of the function µ. The ordered triple (X,A, µ) will be called a
(positive) measure space.

Taking in particular Ek = ∅ for all k > n, it follows that

µ

( n⋃
k=1

Ek

)
=

n∑
k=1

µ(Ek) (2)

for any finite collection of mutually disjoint sets Ek ∈ A, k = 1, . . . , n. We refer
to Property (2) by saying that µ is (finitely) additive.

Any finitely additive function µ ≥ 0 on an algebra A is necessarilymonotonic,
that is, µ(E) ≤ µ(F ) when E ⊂ F (E,F ∈ A); indeed

µ(F ) = µ(E ∪ (F − E)) = µ(E) + µ(F − E) ≥ µ(E).

If µ(E) <∞, we get

µ(F − E) = µ(F )− µ(E).

Lemma 1.10. Let (X,A, µ) be a positive measure space, and let

E1 ⊂ E2 ⊂ E3 ⊂ · · ·

be measurable sets with union E. Then

µ(E) = lim
n
µ(En).
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Proof. The sets En and E can be written as disjoint unions
En = E1 ∪ (E2 − E1) ∪ (E3 − E2) ∪ · · · ∪ (En − En−1),

E = E1 ∪ (E2 − E1) ∪ (E3 − E2) ∪ · · · ,

where all differences belong to A. Set E0 = ∅. By σ-additivity,

µ(E) =

∞∑
k=1

µ(Ek − Ek−1)

= lim
n

n∑
k=1

µ(Ek − Ek−1) = lim
n
µ(En).

In general, if Ej belong to an algebra A of subsets of X, set A0 = ∅ and
An =

⋃n
j=1Ej , n = 1, 2, . . . . The sets Aj − Aj−1, 1 ≤ j ≤ n, are disjoint A-

measurable subsets of Ej with union An. If µ is a non-negative additive set
function on A, then

µ

( n⋃
j=1

Ej

)
= µ(An) =

n∑
j=1

µ(Aj −Aj−1) ≤
n∑

j=1

µ(Ej). (∗)

This is the subadditivity property of non-negative additive set functions (on
algebras).

If A is a σ-algebra and µ is a positive measure on A, then since A1 ⊂ A2 ⊂ · · ·
and

⋃∞
n=1An =

⋃∞
j=1Ej , letting n→∞ in (*), it follows from Lemma 1.10 that

µ

 ∞⋃
j=1

Ej

 ≤ ∞∑
j=1

µ(Ej).

This property of positive measures is called σ-subadditivity.
For decreasing sequences of measurable sets, the “dual” of Lemma 1.10 is

false in general, unless we assume that the sets have finite measure:
Lemma 1.11. Let {Ek} ⊂ A be a decreasing sequence (with respect to set-
inclusion) such that µ(E1) <∞. Let E =

⋂
k Ek. Then

µ(E) = lim
n
µ(En).

Proof. The sequence {E1−Ek} is increasing, with union E1−E. By Lemma 1.10
and the finiteness of the measures of E and Ek (subsets of E1!),

µ(E1)− µ(E) = µ

(⋃
k

(E1 − Ek)

)
= limµ(E1 − En) = µ(E1)− limµ(En),

and the result follows by cancelling the finite number µ(E1).
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If {Ek} is an arbitrary sequence of subsets of X, set Fn =
⋂

k≥nEk and
Gn =

⋃
k≥nEk. Then {Fn} ({Gn}) is increasing (decreasing, respectively), and

Fn ⊂ En ⊂ Gn for all n.
One defines

lim inf
n

En :=
⋃
n

Fn; lim sup
n

En :=
⋂
n

Gn.

These sets belong to A if Ek ∈ A for all k. The set lim infEn consists of all x
that belong to En for all but finitely many n; the set lim supEn consists of all x
that belong to En for infinitely many n. By Lemma 1.10,

µ(lim infEn) = lim
n
µ(Fn) ≤ lim infµ(En). (3)

If the measure of G1 is finite, we also have by Lemma 1.11

µ(lim supEn) = lim
n
µ(Gn) ≥ lim supµ(En). (4)

1.3 Integration of non-negative
measurable functions

Definition 1.12. Let (X,A, µ) be a positive measure space, and ϕ : X → [0,∞)
a measurable simple function. The integral over X of ϕ with respect to µ, denoted∫

X

ϕdµ

or briefly ∫
ϕdµ,

is the finite sum ∑
k

ckµ(Ek) ∈ [0,∞],

where
ϕ =

∑
k

ckIEk
, Ek = [ϕ = ck],

and ck are the distinct values of ϕ.

Note that ∫
IE dµ = µ(E) E ∈ A

and
0 ≤

∫
ϕdµ ≤ ∥ϕ∥µ([ϕ ̸= 0]). (1)
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For an arbitrary measurable function f : X → [0,∞], consider the (non-empty)
set Sf of measurable simple functions ϕ such that 0 ≤ ϕ ≤ f , and define∫

f dµ := sup
ϕ∈Sf

∫
ϕdµ. (2)

For any E ∈ A, the integral over E of f is defined by∫
E

f dµ :=

∫
fIE dµ. (3)

Let ϕ, ψ be measurable simple functions; let ck, dj be the distinct values of ϕ
and ψ, taken on the (mutually disjoint) sets Ek and Fj , respectively. Denote
Q := {(k, j) ∈ N2;Ek ∩ Fj ̸= ∅}.

If ϕ ≤ ψ, then ck ≤ dj for (k, j) ∈ Q. Hence∫
ϕdµ =

∑
k

ckµ(Ek) =
∑

(k,j)∈Q

ckµ(Ek ∩ Fj)

≤
∑

(k,j)∈Q

djµ(Ek ∩ Fj) =
∑
j

djµ(Fj) =

∫
ψ dµ.

Thus, the integral is monotonic on simple functions.
If f is simple, then

∫
ϕdµ ≤

∫
f dµ for all ϕ ∈ Sf (by monotonicity of the

integral on simple functions), and therefore the supremum in (2) is less than
or equal to the integral of f as a simple function; since f ∈ Sf , the reverse
inequality is trivial, so that the two definitions of the integral of f coincide for
f simple.

Since Scf = cSf := {cϕ;ϕ ∈ Sf} for 0 ≤ c <∞, we have (for f as above)∫
cf dµ = c

∫
f dµ (0 ≤ c <∞). (4)

If f ≤ g (f, g as above), Sf ⊂ Sg, and therefore
∫
f dµ ≤

∫
g dµ (monotonicity

of the integral with respect to the “integrand”).
In particular, if E ⊂ F (both measurable), then fIE ≤ fIF , and therefore∫

E
f dµ ≤

∫
F
f dµ (monotonicity of the integral with respect to the set of

integration).
If µ(E) = 0, then any ϕ ∈ SfIE assumes its non-zero values ck on the

sets Ek ∩ E, that have measure 0 (as measurable subsets of E), and therefore∫
ϕdµ = 0 for all such ϕ, hence

∫
E
f dµ = 0.

If f = 0 on E (for some E ∈ A), then fIE is the zero function, hence has
zero integral (by definition of the integral of simple functions!); this means that∫
E
f dµ = 0 when f = 0 on E.
Consider now the set function

ν(E) :=

∫
E

ϕdµ E ∈ A, (5)
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for a fixed simple measurable function ϕ ≥ 0. As a special case of the preceding
remark, ν(∅) = 0. Write ϕ =

∑
ckIEk

, and let Aj ∈ A be mutually disjoint
(j = 1, 2, . . .) with union A. Then

ϕIA =
∑

ckIEk∩A,

so that, by the σ-additivity of µ and the possibility of interchanging summation
order when the summands are non-negative,

ν(A) : =
∑
k

ckµ(Ek ∩A) =
∑
k

ck
∑
j

µ(Ek ∩Aj)

=
∑
j

∑
k

ckµ(Ek ∩Aj) =
∑
j

ν(Aj).

Thus ν is a positive measure. This is actually true for any measurable ϕ ≥ 0
(not necessarily simple), but this will be proved later.

If ψ, χ are simple functions as above (the distinct values of ψ and χ
being a1, . . . , ap and b1, . . . , bq, assumed on the measurable sets F1, . . . , Fp and
G1, . . . , Gq, respectively), then the simple measurable function ϕ := ψ + χ
assumes the constant value ai + bj on the set Fi ∩ Gj , and therefore, defining
the measure ν as shown, we have

ν(Fi ∩Gj) = (ai + bj)µ(Fi ∩Gj). (6)

But ai and bj are the constant values of ψ and χ on the set Fi∩Gj (respectively),
so that the right-hand side of (6) equals ν′(Fi ∩Gj)+ ν′′(Fi ∩Gj), where ν′ and
ν′′ are the measures defined as ν, with the integrands ψ and χ instead of ϕ.
Summing over all i, j, since X is the disjoint union of the sets Fi ∩ Gj , the
additivity of the measures ν, ν′, and ν′′ implies that ν(X) = ν′(X) + ν′′(X),
that is, ∫

(ψ + χ) dµ =

∫
ψ dµ+

∫
χdµ. (7)

Property (7) is the additivity of the integral over non-negative measurable
simple functions. This property too is extended later to arbitrary non-negative
measurable functions.

Theorem 1.13. Let (X,A, µ) be a positive measure space. Let

f1 ≤ f2 ≤ f3 ≤ · · · : X → [0,∞]

be measurable, and denote f = lim fn (defined pointwise). Then∫
f dµ = lim

∫
fn dµ. (8)

This is the Monotone Convergence theorem of Lebesgue.
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Proof. By Lemma 1.5, f is measurable (with range in [0,∞]). The monotonicity
of the integral (and the fact that fn ≤ fn+1 ≤ f) implies that∫

fn dµ ≤
∫
fn+1 dµ ≤

∫
f dµ,

and therefore the limit in (8) exists (:= c ∈ [0,∞]) and the inequality ≥ holds
in (8). It remains to show the inequality ≤ in (8). Let 0 < t < 1. Given ϕ ∈ Sf ,
denote

An = [tϕ ≤ fn] = [fn − tϕ ≥ 0] (n = 1, 2, . . .).

Then An ∈ A and A1 ⊂ A2 ⊂ · · · (because f1 ≤ f2 ≤ · · · ). If x ∈ X is such
that ϕ(x) = 0, then x ∈ An (for all n). If x ∈ X is such that ϕ(x) > 0, then
f(x) ≥ ϕ(x) > tϕ(x), and there exists therefore n, for which fn(x) ≥ tϕ(x), that
is, x ∈ An (for that n). This shows that

⋃
nAn = X. Consider the measure ν

defined by (5) (for the simple function tϕ). By Lemma 1.10,

t

∫
ϕdµ = ν(X) = lim

n
ν(An) = lim

n

∫
An

tϕ dµ.

However, tϕ ≤ fn on An, so the integrals on the right are ≤
∫
An

fn dµ ≤
∫
X
fn dµ

(by the monotonicity property of integrals with respect to the set of integration).
Therefore t

∫
ϕdµ ≤ c, and so

∫
ϕdµ ≤ c by the arbitrariness of t ∈ (0, 1). Taking

the supremum over all ϕ ∈ Sf , we conclude that
∫
f dµ ≤ c as wanted.

For arbitrary sequences of non-negative measurable functions we have the
following inequality:

Theorem 1.14 (Fatou’s lemma). Let fn : X → [0,∞], n = 1, 2, . . . , be
measurable. Then ∫

lim inf
n

fn dµ ≤ lim inf
n

∫
fn dµ.

Proof. We have
lim inf

n
fn := lim

n
( inf
k≥n

fk).

Denote the infimum on the right by gn. Then gn, n = 1, 2, . . . , are measurable,
gn ≤ fn,

0 ≤ g1 ≤ g2 ≤ · · · ,

and limn gn = lim infn fn. By Theorem 1.13,∫
lim inf

n
fn dµ =

∫
lim gn dµ = lim

∫
gn dµ.

But the integrals on the right are ≤
∫
fn dµ, therefore their limit is

≤ lim inf
∫
fn dµ.
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Another consequence of Theorem 1.13 is the additivity of the integral of
non-negative measurable functions.

Theorem 1.15. Let f, g : X → [0,∞] be measurable. Then∫
(f + g) dµ =

∫
f dµ+

∫
g dµ.

Proof. By the Approximation theorem (Theorem 1.8), there exist simple
measurable functions ϕn, ψn such that

0 ≤ ϕ1 ≤ ϕ2 ≤ . . . , limϕn = f,

0 ≤ ψ1 ≤ ψ2 ≤ . . . , limψn = g.

Then the measurable simple functions χn = ϕn + ψn satisfy

0 ≤ χ1 ≤ χ2 ≤ . . . , limχn = f + g.

By Theorem 1.13 and the additivity of the integral of (non-negative measurable)
simple functions (cf. (7)), we have∫

(f + g) dµ = lim
∫
χn dµ = lim

∫
(ϕn + ψn) dµ

= lim
∫
ϕn dµ+ lim

∫
ψn dµ =

∫
f dµ+

∫
g dµ.

The additivity property of the integral is also true for infinite sums of non-
negative measurable functions:

Theorem 1.16 (Beppo Levi). Let fn : X → [0,∞], n = 1, 2, . . . , be meas-
urable. Then ∫ ∞∑

n=1

fn dµ =

∞∑
n=1

∫
fn dµ.

Proof. Let

gk =

k∑
n=1

fn; g =

∞∑
n=1

fn.

The measurable functions gk satisfy

0 ≤ g1 ≤ g2 ≤ . . . , lim gk = g,

and by Theorem 1.15 (and induction)∫
gk dµ =

k∑
n=1

∫
fn dµ.
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Therefore, by Theorem 1.13

∫
g dµ = lim

k

∫
gk dµ = lim

k

k∑
n=1

∫
fn dµ =

∞∑
n=1

∫
fn dµ.

We may extend now the measure property of ν, defined earlier with a simple
integrand, to the general case of a non-negative measurable integrand.

Theorem 1.17. Let f : X → [0,∞] be measurable, and set

ν(E) :=

∫
E

f dµ, E ∈ A.

Then ν is a (positive) measure on A, and for any measurable g : X → [0,∞],∫
g dν =

∫
gf dµ. (∗)

Proof. Let Ej ∈ A, j = 1, 2, . . . be mutually disjoint, with union E. Then

fIE =

∞∑
j=1

fIEj
,

and therefore, by Theorem 1.16,

ν(E) :=

∫
fIE dµ =

∑
j

∫
fIEj

dµ =
∑
j

ν(Ej).

Thus, ν is a measure.
If g = IE for some E ∈ A, then∫

g dν = ν(E) =

∫
IEf dµ =

∫
gf dµ.

By (4) and Theorem 1.15 (for the measures µ and ν), (∗) is valid for g simple.
Finally, for general g, the Approximation theorem (Theorem 1.8) provides a
sequence of simple measurable functions

0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ; limϕn = g.

Then the measurable functions ϕnf satisfy

0 ≤ ϕ1f ≤ ϕ2f ≤ · · · ; limϕnf = gf,
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and Theorem 1.13 implies that∫
g dν = lim

n

∫
ϕn dν = lim

n

∫
ϕnf dµ =

∫
gf dµ.

Relation (*) is conveniently abbreviated as

dν = f dµ.

Observe that if f1 and f2 coincide almost everywhere (briefly, “a.e.” or µ-a.e.,
if the measure needs to be specified), that is, if they coincide except on a null
set A ∈ A (more precisely, a µ-null set, that is, a measurable set A such that
µ(A) = 0), then the corresponding measures νi are equal, and in particular∫
f1 dµ =

∫
f2 dµ. Indeed, for all E ∈ A, µ(E ∩A) = 0, and therefore

νi(E ∩A) =
∫
E∩A

fi dµ = 0, i = 1, 2

by one of the observations following Definition 1.12. Hence

ν1(E) = ν1(E ∩A) + ν1(E ∩Ac) = ν1(E ∩Ac)

= ν2(E ∩Ac) = ν2(E).

1.4 Integrable functions
Let (X,A, µ) be a positive measure space, and let f be a measurable function
with range in [−∞,∞] or C := C ∪ {∞} (the Riemann sphere). Then |f | :
X → [0,∞] is measurable, and has therefore an integral (∈ [0,∞]). In case this
integral is finite, we shall say that f is integrable. In that case, the measurable
set [|f | = ∞] has measure zero. Indeed, it is contained in [|f | > n] for all
n = 1, 2, . . . , and

nµ([|f | > n]) =

∫
[|f |>n]

ndµ ≤
∫
[|f |>n]

|f | dµ ≤
∫
|f | dµ.

Hence for all n
0 ≤ µ([|f | =∞]) ≤ 1

n

∫
|f | dµ,

and since the integral on the right is finite, we must have µ([|f | =∞]) = 0.
In other words, an integrable function is finite a.e.
We observed previously that non-negative measurable functions that coincide

a.e. have equal integrals. This property is desirable in the general case now
considered. If f is measurable, and if we redefine it as the finite arbitrary constant
c on a set A ∈ A of measure zero, then the new function g is also measurable.
Indeed, for any open set V in the range space,

[g ∈ V ] = {[g ∈ V ] ∩Ac} ∪ {[g ∈ V ] ∩A}.
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The second set on the right is empty if c ∈ V c, and is A if c ∈ V , thus belongs
to A in any case. The first set on the right is equal to [f ∈ V ] ∩Ac ∈ A, by the
measurability of f . Thus [g ∈ V ] ∈ A.

If f is integrable, we can redefine it as an arbitrary finite constant on
the set [|f | = ∞] (that has measure zero) and obtain a new finite-valued
measurable function, whose integral should be the same as the integral of f (by
the “desirable” property mentioned before). This discussion shows that we may
restrict ourselves to complex (or, as a special case, to real) valued measurable
functions.

Definition 1.18. Let (X,A, µ) be a positive measure space. The function f :
X → C is integrable if it is measurable and

∥f∥1 :=

∫
|f | dµ <∞.

The set of all (complex) integrable functions will be denoted by

L1(X,A, µ),

or briefly by L1(µ) or L1(X) or L1, when the unmentioned “objects” of the
measure space are understood.

Defining the operations pointwise, L1 is a complex vector space, since the
inequality

|αf + βg| ≤ |α| |f |+ |β| |g|

implies, by monotonicity, additivity, and homogeneity of the integral of non-
negative measurable functions:

∥αf + βg∥1 ≤ |α| ∥f∥1 + |β| ∥g∥1 <∞,

for all f, g ∈ L1 and α, β ∈ C.
In particular, ∥ · ∥1 satisfies the triangle inequality (take α = β = 1), and is

trivially homogeneous.
Suppose ∥f∥1 = 0. For any n = 1, 2, . . . ,

0 ≤ µ([|f | > 1/n]) =

∫
[|f |>1/n]

dµ = n

∫
[|f |>1/n]

(1/n) dµ

≤ n
∫
|f |>1/n]

|f | dµ ≤ n ∥f∥1 = 0,

so µ([|f | > 1/n]) = 0. Now the set where f is not zero is

[|f | > 0] =

∞⋃
n=1

[|f | > 1/n],

and by the σ-subadditivity property of positive measures, it follows that this
set has measure zero. Thus, the vanishing of ∥f∥1 implies that f = 0 a.e.
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(the converse is trivially true). One verifies easily that the relation “f = g a.e.”
is an equivalence relation for complex measurable functions (transitivity follows
from the fact that the union of two sets of measure zero has measure zero, by
subadditivity of positive measures). All the functions f in the same equivalence
class have the same value of ∥f∥1 (cf. discussion following Theorem 1.17).

We use the same notation L1 for the space of all equivalence classes of
integrable functions, with operations performed as usual on representatives of
the classes, and with the ∥ · ∥1-norm of a class equal to the norm of any of its
representatives; L1 is a normed space (for the norm ∥ · ∥1). It is customary,
however, to think of the elements of L1 as functions (rather than equivalence
classes of functions!).

If f ∈ L1, then f = u + iv with u := ℜf and v := ℑf real measurable
functions (cf. discussion following Lemma 1.7), and since |u|, |v| ≤ |f |, we have
∥u∥1, ∥v∥1 ≤ ∥f∥1 < ∞, that is, u, v are real elements of L1 (conversely, if u, v
are real elements of L1, then f = u + iv ∈ L1, since L1 is a complex vector
space).

Writing u = u+ − u− (and similarly for v), we obtain four non-negative
(finite) measurable functions (cf. remarks following Lemma 1.5), and since u+ ≤
|u| ≤ |f | (and similarly for u−, etc.), they have finite integrals. It makes sense
therefore to define ∫

u dµ :=

∫
u+ dµ−

∫
u− dµ

(on the right, one has the difference of two finite non-negative real numbers!).
Doing the same with v, we then let∫

f dµ :=

∫
u dµ+ i

∫
v dµ.

Note that according to this definition,

ℜ
∫
f dµ =

∫
ℜf dµ,

and similarly for the imaginary part.

Theorem 1.19. The map f →
∫
f dµ ∈ C is a continuous linear functional on

the normed space L1(µ).

Proof. Consider first real-valued functions f, g ∈ L1. Let h = f + g. Then

h+ − h− = (f+ − f−) + (g+ − g−),

and since all functions here have finite values,

h+ + f− + g− = h− + f+ + g+.

By Theorem 1.15,∫
h+ dµ+

∫
f− dµ+

∫
g− dµ =

∫
h− dµ+

∫
f+ dµ+

∫
g+ dµ.
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All integrals above are finite, so we may subtract
∫
h− +

∫
f− +

∫
g− from both

sides of the equation. This yields:∫
h dµ =

∫
f dµ+

∫
g dµ.

The additivity of the integral extends trivially to complex functions in L1.
If f ∈ L1 is real and c ∈ [0,∞), (cf)+ = cf+ and similarly for f−. Therefore,

by (4) (following Definition 1.12),∫
cf dµ =

∫
cf+ dµ−

∫
cf− dµ = c

∫
f+ dµ− c

∫
f− dµ = c

∫
f dµ.

If c ∈ (−∞, 0), (cf)+ = −cf− and (cf)− = −cf+, and a similar calculation
shows again that

∫
(cf) = c

∫
f . For f ∈ L1 complex and c real, write f = u+ iv.

Then∫
cf =

∫
(cu+ icv) :=

∫
(cu) + i

∫
(cv) = c

(∫
u+ i

∫
v

)
:= c

∫
f.

Note next that ∫
(if) =

∫
(−v + iu) = −

∫
v + i

∫
u = i

∫
f.

Finally, if c = a+ ib (a, b real), then by additivity of the integral and the previous
remarks,∫

(cf) =

∫
(af + ibf) =

∫
(af) +

∫
ibf = a

∫
f + ib

∫
f = c

∫
f.

Thus ∫
(αf + βg) dµ = α

∫
f dµ+ β

∫
g dµ

for all f, g ∈ L1 and α, β ∈ C.
For f ∈ L1, let λ :=

∫
f dµ(∈ C). Then, since the left-hand side of the

following equation is real,

|λ| = eiθλ = eiθ
∫
f dµ =

∫
(eiθf) dµ = ℜ

∫
(eiθf) dµ =

∫
ℜ(eiθf) dµ

≤
∫
|eiθf | dµ =

∫
|f | dµ.

We thus obtained the important inequality∣∣∣∣ ∫ f dµ

∣∣∣∣ ≤ ∫ |f | dµ. (1)

If f, g ∈ L1, it follows from the linearity of the integral and (1) that∣∣∣∣ ∫ f dµ−
∫
g dµ

∣∣∣∣ = ∣∣∣∣ ∫ (f − g) dµ
∣∣∣∣ ≤ ∥f − g∥1. (2)
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In particular, if f and g represent the same equivalence class, then ∥f − g∥1 = 0,
and therefore

∫
f dµ =

∫
g dµ. This means that the functional f →

∫
f dµ is

well-defined as a functional on the normed space L1(µ) (of equivalence classes!),
and its continuity follows trivially from (2).

In term of sequences, continuity of the integral on the normed space L1 means
that if {fn} ⊂ L1 converges to f in the L1-metric, then∫

fn dµ→
∫
f dµ. (3)

A useful sufficient condition for convergence in the L1-metric, and therefore,
for the validity of (3), is contained in the Dominated Convergence theorem of
Lebesgue:

Theorem 1.20. Let (X,A, µ) be a measure space. Let {fn} be a sequence of
complex measurable functions on X that converge pointwise to the function f .
Suppose there exists g ∈ L1(µ) (with values in [0,∞)) such that

|fn| ≤ g (n = 1, 2, . . .). (4)

Then f, fn ∈ L1(µ) for all n, and fn → f in the L1(µ)-metric.

In particular, (3) is valid.

Proof. By Lemma 1.5, f is measurable. By (4) and monotonicity

∥f∥1, ∥fn∥1 ≤ ∥g∥1 <∞,

so that f, fn ∈ L1.
Since |fn− f | ≤ 2g, the measurable functions 2g− |fn− f | are non-negative.

By Fatou’s Lemma (Theorem 1.14),∫
lim inf

n
(2g − |fn − f |) dµ ≤ lim inf

n

∫
(2g − |fn − f |) dµ. (5)

The left-hand side of (5) is
∫
2g dµ. The integral on the right-hand side is∫

2g dµ+ (−∥fn − f∥1), and its lim inf is

=

∫
2g dµ+ lim inf

n
(−∥fn − f∥1) =

∫
2g dµ− lim sup

n
∥fn − f∥1.

Subtracting the finite number
∫
2g dµ from both sides of the inequality, we obtain

lim sup
n
∥fn − f∥1 ≤ 0.

However, if a non-negative sequence {an} satisfies lim sup an ≤ 0, then it
converges to 0 (because 0 ≤ lim inf an ≤ lim sup an ≤ 0 implies lim inf an =
lim sup an = 0). Thus ∥fn − f∥1 → 0.
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Rather than assuming pointwise convergence of the sequence {fn} at every
point of X, we may assume that the sequence converges almost everywhere, that
is, fn → f on a set E ∈ A and µ(Ec) = 0. The functions fn could be defined
only a.e., and we could include the countable union of all the sets where these
functions are not defined (which is a set of measure zero, by the σ-subadditivity
of measures) in the “exceptional” set Ec. The limit function f is defined a.e., in
any case. For such a function, measurability means that [f ∈ V ] ∩ E ∈ A for
each open set V .

If fn (defined a.e.) converge pointwise a.e. to f , then with E as mentioned,
the restrictions fn|E are AE-measurable, where AE is the σ-algebra A ∩ E,
because

[fn|E ∈ V ] = [fn ∈ V ] ∩ E ∈ AE .

By Lemma 1.5, f |E := lim fn|E is AE-measurable, and therefore the a.e.-defined
function f is “measurable” in the above sense. We may define f as an arbitrary
constant c ∈ C on Ec; the function thus extended to X is A-measurable, as seen
by the argument preceding Definition 1.18.

Now fnIE are A-measurable, converge pointwise everywhere to fIE , and if
|fn| ≤ g ∈ L1 for all n (wherever the functions are defined), then |fnIE | ≤ g ∈ L1

(everywhere!). By Theorem 1.20,

∥fn − f∥1 = ∥fnIE − fIE∥1 → 0.

We then have the following a.e. version of the Lebesgue Dominated Convergence
theorem:

Theorem 1.21. Let {fn} be a sequence of a.e.-defined measurable complex
functions on X, converging a.e. to the function f . Let g ∈ L1 be such that
|fn| ≤ g for all n (at all points where fn is defined). Then f and fn are in L1,
and fn → f in the L1-metric (in particular,

∫
fn dµ→

∫
f dµ).

A useful “almost everywhere” proposition is the following:

Proposition 1.22. If f ∈ L1(µ) satisfies
∫
E
f dµ = 0 for every E ∈ A, then

f = 0 a.e.

Proof. Let E = [u := ℜf ≥ 0]. Then E ∈ A, so

∥u+∥1 =

∫
E

u dµ = ℜ
∫
E

f dµ = 0,

and therefore u+ = 0 a.e. Similarly u− = v+ = v− = 0 a.e. (where v := ℑf), so
that f = 0 a.e.

We should remark that, in general, a measurable a.e.-defined function f can
be extended as a measurable function on X only by defining it as constant on
the exceptional null set Ec. Indeed, the null set Ec could have a non-measurable
subset A. Suppose f : E → C is not onto, and let a ∈ f(E)c. If we assign on
A the (constant complex) value a, and any value b ∈ f(E) on Ec − A, then the
extended function is not measurable, because [f = a] = A /∈ A.
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In order to be able to extend f in an arbitrary fashion and always get
a measurable function, it is sufficient that subsets of null sets should be
measurable (recall that a “null set” is measurable by definition!). A measure
space with this property is called a complete measure space. Indeed, let f ′ be
an arbitrary extension to X of an a.e.-defined measurable function f , defined on
E ∈ A, with Ec null. Then for any open V ⊂ C,

[f ′ ∈ V ] = ([f ′ ∈ V ] ∩ E) ∪ ([f ′ ∈ V ] ∩ Ec).

The first set in the union is in A, by measurability of the a.e.-defined function
f ; the second set is in A as a subset of the null set Ec (by completeness of the
measure space). Hence [f ′ ∈ V ] ∈ A, and f ′ is measurable.

We say that the measure space (X,M, ν) is an extension of the measure
space (X,A, µ) (both on X!) if A ⊂M and ν = µ on A. It is important to know
that any measure space (X,A, µ) has a (unique) “minimal” complete extension
(X,M, ν), where minimality means that if (X,N , σ) is any complete extension
of (X,A, µ), then it is an extension of (X,M, ν). Uniqueness is of course trivial.
The existence is proved below by a “canonical” construction.

Theorem 1.23. Any measure space (X,A, µ) has a unique minimal complete
extension (X,M, ν) (called the completion of the given measure space).

Proof. We let M be the collection of all subsets E of X for which there exist
A,B ∈ A such that

A ⊂ E ⊂ B, µ(B −A) = 0. (6)
If E ∈ A, we may take A = B = E in (6), so A ⊂M. In particular X ∈M.

If E ∈M and A,B are as in (6), then Ac, Bc ∈ A,

Bc ⊂ Ec ⊂ Ac

and µ(Ac −Bc) = µ(B −A) = 0, so that Ec ∈M.
If Ej ∈ M, j = 1, 2, . . . and Aj , Bj are as in (6) (for Ej), then if E,A,B are

the respective unions of Ej , Aj , Bj , we have A,B ∈ A, A ⊂ E ⊂ B, and

B −A =
⋃
j

(Bj −A) ⊂
⋃
j

(Bj −Aj).

The union on the right is a null set (as a countable union of null sets, by
σ-subadditivity of measures), and therefore B−A is a null set (by monotonicity
of measures). This shows that E ∈M, and we conclude thatM is a σ-algebra.

For E ∈ M and A,B as in (6), we let ν(E) = µ(A). The function ν is well
defined on M, that is, the definition does not depend on the choice of A,B as
in (6). Indeed, if A′, B′ satisfy (6) with E, then

A−A′ ⊂ E −A′ ⊂ B′ −A′,

so that A − A′ is a null set. Hence by additivity of µ, µ(A) = µ(A ∩ A′) +
µ(A − A′) = µ(A ∩ A′). Interchanging the roles of A and A′, we also have
µ(A′) = µ(A ∩A′), and therefore µ(A) = µ(A′), as wanted.



1.5. Lp-spaces 23

If E ∈ A, we could choose A = B = E, and so ν(E) = µ(E). In particular,
ν(∅) = 0. If {Ej} is a sequence of mutually disjoint sets in M with union E,
and Aj , Bj are as in (6) (for Ej), we observed above that we could choose A for
E (for (6)) as the union of the sets Aj . Since Aj ⊂ Ej , j = 1, 2, . . . and Ej are
mutually disjoint, so are the sets Aj . Hence

ν(E) := µ(A) =
∑
j

µ(Aj) :=
∑
j

ν(Ej),

and we conclude that (X,M, ν) is a measure space extending (X,A, µ). It is
complete, because if E ∈ M is ν-null and A,B are as in (6), then for any
F ⊂ E, we have

∅ ⊂ F ⊂ B,

and since µ(B −A) = 0,

µ(B − ∅) = µ(B) = µ(A) := ν(E) = 0,

so that F ∈M.
Finally, suppose (X,N , σ) is any complete extension of (X,A, µ), let E ∈M,

and let A,B be as in (6). Write E = A∪(E−A). The set B−A ∈ A ⊂ N is σ-null
(σ(B −A) = µ(B −A) = 0). By completeness of (X,N , σ), the subset E −A of
B − A belongs to N (and is of course σ-null). Since A ∈ A ⊂ N , we conclude
that E ∈ N and M ⊂ N . Also since σ = µ on A, σ(E) = σ(A) + σ(E − A) =
µ(A) := ν(E), so that σ = ν onM.

1.5 Lp-spaces
Let (X,A, µ) be a (positive) measure space, and let p ∈ [1,∞). If f : X → [0,∞]
is measurable, so is fp by Lemma 1.6, and therefore

∫
fp dµ ∈ [0,∞] is well

defined. We denote

∥f∥p :=

(∫
fp dµ

)1/p

.

Theorem 1.24 (Holder’s inequality). Let p, q ∈ (1,∞) be conjugate
exponents, that is,

1

p
+

1

q
= 1. (1)

Then for all measurable functions f, g : X → [0,∞],∫
fg dµ ≤ ∥f∥p ∥g∥q. (2)

Proof. If ∥f∥p = 0, then ∥fp∥1 = 0, and therefore f = 0 a.e.; hence fg = 0
a.e., and the left-hand side of (2) vanishes (as well as the right-hand side). By
symmetry, the same holds true if ∥g∥q = 0. So we may consider only the case
where ∥f∥p and ∥g∥q are both positive. Now if one of these quantities is infinite,
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the right-hand side of (2) is infinite, and (2) is trivially true. So we may assume
that both quantities belong to (0,∞) (positive and finite). Denote

u = f/∥f∥p, v = g/∥g∥q. (3)

Then
∥u∥p = ∥v∥q = 1. (4)

It suffices to prove that ∫
uv dµ ≤ 1, (5)

because (2) would follow by substituting (3) in (5).
The logarithmic function is concave ((log t)′′ = −(1/t2) < 0). Therefore,

by (1)
1

p
log s+ 1

q
log t ≤ log

(
s

p
+
t

q

)
for all s, t ∈ (0,∞). Equivalently,

s1/pt1/q ≤ s

p
+
t

q
, s, t ∈ (0,∞). (6)

When x ∈ X is such that u(x), v(x) ∈ (0,∞), we substitute s = u(x)p and
t = v(x)q in (6) and obtain

u(x)v(x) ≤ u(x)p

p
+
v(x)q

q
, (7)

and this inequality is trivially true when u(x), v(x) ∈ {0,∞}. Thus (7) is valid
on X, and integrating the inequality over X, we obtain by (4) and (1)∫

uv dµ ≤
∥u∥pp
p

+
∥v∥qq
q

=
1

p
+

1

q
= 1.

Theorem 1.25 (Minkowski’s inequality). For any measurable functions
f, g : X → [0,∞],

∥f + g∥p ≤ ∥f∥p + ∥g∥p (1 ≤ p <∞). (8)

Proof. Since (8) is trivial for p = 1 (by the additivity of the integral of non-
negative measurable functions, we get even an equality), we consider p ∈ (1,∞).
The case ∥f + g∥p = 0 is trivial. By convexity of the function tp (for p > 1),
((s + t)/2)p ≤ (sp + tp)/2 for s, t ∈ (0,∞). Therefore, if x ∈ X is such that
f(x), g(x) ∈ (0,∞),

(f(x) + g(x))p ≤ 2p−1[f(x)p + g(x)p], (9)
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and (9) is trivially true if f(x), g(x) ∈ {0,∞}, and holds therefore on X.
Integrating, we obtain

∥f + g∥pp ≤ 2p−1[∥f∥pp + ∥g∥pp]. (10)

If ∥f+g∥p =∞, it follows from (10) that at least one of the quantities ∥f∥p, ∥g∥p
is infinite, and (8) is then valid (as the trivial equality ∞ =∞). This discussion
shows that we may restrict our attention to the case

0 < ∥f + g∥p <∞. (11)

We write
(f + g)p = f(f + g)p−1 + g(f + g)p−1. (12)

By Holder’s inequality,∫
f(f + g)p−1 dµ ≤ ∥f∥p∥(f + g)p−1∥q = ∥f∥p∥f + g∥p/qp ,

since (p− 1)q = p for conjugate exponents p, q. A similar estimate holds for the
integral of the second summand on the right-hand side of (12). Adding these
estimates, we obtain

∥f + g∥pp ≤ (∥f∥p + ∥g∥p)∥f + g∥p/qp .

By (11), we may divide this inequality by ∥f + g∥p/qp , and (8) follows since
p− p/q = 1.

In a manner analogous to that used for L1, if p ∈ [1,∞), we consider the set

Lp(X,A, µ)

(or briefly, Lp(µ), or Lp(X), or Lp, when the unmentioned parameters are
understood) of all (equivalence classes) of measurable complex functions f on
X, with

∥f∥p := ∥ |f | ∥p <∞.

Since ∥ · ∥p is trivially homogeneous, it follows from (8) that Lp is a normed
space (over C) for the pointwise operations and the norm ∥ · ∥p. We can restate
Holder’s inequality in the form:

Theorem 1.26. Let p, q ∈ (1,∞) be conjugate exponents. If f ∈ Lp and g ∈ Lq,
then fg ∈ L1, and

∥fg∥1 ≤ ∥f∥p ∥g∥q.

A sufficient condition for convergence in the Lp-metric follows at once from
Theorem 1.21:

Proposition. Let {fn} be a sequence of a.e.-defined measurable complex
functions on X, converging a.e. to the function f . For some p ∈ [1,∞), suppose
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there exists g ∈ Lp such that |fn| ≤ g for all n (with the usual equivalence class
ambiguity). Then f, fn ∈ Lp, and fn → f in the Lp-metric.

Proof. The first statement follows from the inequalities |f |p, |fn|p ≤ gp ∈ L1.
Since |f−fn|p → 0 a.e. and |f−fn|p ≤ (2g)p ∈ L1, the second statement follows
from Theorem 1.21.

The positive measure space (X,A, µ) is said to be finite if µ(X) <∞. When
this is the case, the Holder inequality implies that Lp(µ) ⊂ Lr(µ) topologically
(i.e., the inclusion map is continuous) when 1 ≤ r < p <∞. Indeed, if f ∈ Lp(µ),
then by Holder’s inequality with the conjugate exponents p/r and s := p/(p−r),

∥f∥rr =

∫
|f |r.1 dµ

≤
[ ∫

(|f |r)p/r dµ
]r/p[ ∫

1s dµ

]1/s
= µ(X)1/s∥f∥rp.

Since 1/rs = (1/r)− (1/p), we obtain

∥f∥r ≤ µ(X)1/r−1/p∥f∥p. (13)

Hence, f ∈ Lr(µ), and (13) (with f − g replacing f) shows the continuity of the
inclusion map of Lp(µ) into Lr(µ).

Taking in particular r = 1, we get that Lp(µ) ⊂ L1(µ) (topologically) for all
p ≥ 1, and

∥f∥1 ≤ µ(X)1/q∥f∥p, (14)
where q is the conjugate exponent of p.

We formalize this discussion for future reference.

Proposition. Let (X,A, µ) be a finite positive measure space. Then Lp(µ) ⊂
Lr(µ) (topologically) for 1 ≤ r < p <∞, and the norms inequality (13) holds.

Let (X,A) and (Y,B) be measurable spaces, and let h : X → Y be a
measurable map (cf. Definition 1.2). If µ is a measure on A, the function
ν : B → [0,∞] given by

ν(E) = µ(h−1(E)), E ∈ B (15)

is well defined, and is clearly a measure on B. Since Ih−1(E) = IE ◦ h, we can
write (15) in the form ∫

Y

IE dν =

∫
X

IE ◦ h dµ.

By linearity of the integral, it follows that∫
Y

f dν =

∫
X

f ◦ h dµ (16)

for every B-measurable simple function f on Y . If f : Y → [0,∞] is
B-measurable, use the Approximation Theorem 1.8 to obtain a non-decreasing
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sequence {fn} of B-measurable non-negative simple functions converging
pointwise to f ; then {fn ◦ h} is a similar sequence converging to f ◦ h, and
the Monotone Convergence Theorem shows that (16) is true for all such f .

If f : Y → C is B-measurable, then f◦h is a (complex)A-measurable function
on X, and for any 1 ≤ p <∞,∫

Y

|f |p dν =

∫
X

|f |p ◦ h dµ =

∫
X

|f ◦ h|p dµ.

Thus, f ∈ Lp(ν) for some p ∈ [1,∞) if and only if f ◦ h ∈ Lp(µ), and

∥f∥Lp(ν) = ∥f ◦ h∥Lp(µ).

In particular (case p = 1), f is ν-integrable on Y if and only if f ◦h is µ-integrable
on X. When this is the case, writing f as a linear combination of four non-
negative ν-integrable functions, we see that (16) is valid for all such f .

Proposition. Let (X,A) and (Y,B) be measurable spaces, and let h : X → Y be
a measurable map. For any (positive) measure µ on A, define ν(E) := µ(h−1(E))
for E ∈ B. Then:

(1) ν is a (positive) measure on B;
(2) if f : Y → [0,∞] is B-measurable, then f ◦ h is A-measurable and (16) is

valid;
(3) if f : Y → C is B-measurable, then f ◦ h is A-measurable; f ∈ Lp(ν) for

some p ∈ [1,∞) if and only if f ◦ h ∈ Lp(µ), and in that case, the map
f → f ◦h is norm-preserving; in the special case p = 1, the map is integral
preserving (i.e. (16) is valid).

If ϕ is a simple complex measurable function with distinct non-zero values cj
assumed on Ej , then

∥ϕ∥pp =
∑
j

|cj |pµ(Ej)

is finite if and only if µ(Ej) <∞ for all j, that is, equivalently, iff

µ([|ϕ| > 0]) <∞.

Thus, the simple functions in Lp (for any p ∈ [1,∞)) are the (measurable) simple
functions vanishing outside a measurable set of finite measure (depending on the
function). These functions are dense in Lp. Indeed, if 0 ≤ f ∈ Lp (without
loss of generality, we assume that f is everywhere defined!), the Approximation
Theorem provides a sequence of simple measurable functions

0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ f

such that ϕn → f pointwise. By the proposition following Theorem 1.26, ϕn → f
in the Lp-metric.

For f ∈ Lp complex, we may write f =
∑3

k=0 i
kgk with 0 ≤ gk ∈ Lp

(g0 := u+, etc., where u = ℜf). We then obtain four sequences {ϕn,k} of simple
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functions in Lp converging, respectively, to gk, k = 0, . . . , 3, in the Lp-metric;
if ϕn :=

∑3
k=0 i

kϕn,k, then ϕn are simple Lp-functions, and ϕn → f in the
Lp-metric. We proved

Theorem 1.27. For any p ∈ [1,∞), the simple functions in Lp are dense in Lp.

Actually, Lp is the completion of the normed space of all measurable simple
functions vanishing outside a set of finite measure, with respect to the Lp-metric
(induced by the Lp-norm). The meaning of this statement is made clear by the
following definition.

Definition 1.28. Let Z be a metric space, with metric d. A Cauchy sequence
in Z is a sequence {zn} ⊂ Z such that d(zn, zm) → 0 when n,m → ∞. The
space Z is complete if every Cauchy sequence in Z converges in Z. If Y ⊂ Z is
dense in Z, and Z is complete, we also say that Z is the completion of Y (for the
metric d). The completion of Y (for the metric d) is unique in a suitable sense.

A complete normed space is called a Banach space.
In order to get the conclusion preceding Definition 1.28, we still have to prove

that Lp is complete:

Theorem 1.29. Lp is a Banach space for each p ∈ [1,∞).

We first prove the following.

Lemma 1.30. Let {fn} be a Cauchy sequence in Lp(µ). Then it has a
subsequence converging pointwise µ-a.e.

Proof of Lemma. Since {fn} is Cauchy, there exists mk ∈ N such that
∥fn − fm∥p < 1/2k for all n > m > mk. Set

nk = k +max(m1, . . . ,mk).

Then nk+1 > nk > mk, and therefore {fnk
} is a subsequence of {fn} satisfying

∥fnk+1
− fnk

∥p < 1/2k k = 1, 2, . . . (17)

Consider the series

g =

∞∑
k=1

|fnk+1
− fnk

|, (18)

and its partial sums gm. By Theorem 1.25 and (17),

∥gm∥p ≤
m∑

k=1

∥fnk+1
− fnk

∥p <
∞∑
k=1

1/2k = 1

for all m. By Fatou’s lemma,∫
gp dµ ≤ lim inf

m

∫
gpm dµ = lim inf

m
∥gm∥pp ≤ 1.
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Therefore, g <∞ a.e., that is, the series (18) converges a.e., that is, the series

fn1 +

∞∑
k=1

(fnk+1
− fnk

) (19)

converges absolutely pointwise a.e. to its sum f (extended as 0 on the null set
where the series does not converge). Since the partial sums of (19) are precisely
fnm , the lemma is proved.

Proof of Theorem 1.29. Let {fn} ⊂ Lp be Cauchy. Thus for any ϵ > 0, there
exists nϵ ∈ N such that

∥fn − fm∥p < ϵ (20)
for all n,m > nϵ. By the lemma, let then {fnk

} be a subsequence converging
pointwise a.e. to the (measurable) complex function f . Applying Fatou’s lemma
to the non-negative measurable functions |fnk

− fm|, we obtain

∥f − fm∥pp =

∫
lim
k
|fnk
− fm|p dµ ≤ lim inf

k
∥fnk

− fm∥pp ≤ ϵp (21)

for all m > nϵ. In particular, f−fm ∈ Lp, and therefore f = (f−fm)+fm ∈ Lp,
and (21) means that fm → f in the Lp-metric.

Definition 1.31. Let (X,A, µ) be a positive measure space, and let f : X → C
be a measurable function. We say that M ∈ [0,∞] is an a.e. upper bound for
|f | if |f | ≤ M a.e. The infimum of all the a.e. upper bounds for |f | is called
the essential supremum of |f |, and is denoted ∥f∥∞. The set of all (equivalence
classes of ) measurable complex functions f on X with ∥f∥∞ < ∞ will be
denoted by L∞(µ) (or L∞(X), or L∞(X,A, µ), or L∞, depending on which
“parameter” we wish to stress, if at all).

By definition of the essential supremum, we have

|f | ≤ ∥f∥∞ a.e. (22)

In particular, ∥f∥∞ = 0 implies that f = 0 a.e. (that is, f is the zero class).
If f, g ∈ L∞, then by (22), |f + g| ≤ |f | + |g| ≤ ∥f∥∞ + ∥g∥∞ a.e., and so

∥f + g∥∞ ≤ ∥f∥∞ + ∥g∥∞.
The homogeneity ∥αf∥∞ = |α| ∥f∥∞ is trivial if either α = 0 or ∥f∥∞ =

0. Assume then |α|, ∥f∥∞ > 0. For any t ∈ (0, 1), t∥f∥∞ < ∥f∥∞, hence it
is not an a.e. upper bound for |f |, so that µ([|f | > t∥f∥∞]) > 0, that is,
µ([|αf | > t|α| ∥f∥∞]) > 0. Therefore, ∥αf∥∞ ≥ t|α| ∥f∥∞ for all t ∈ (0, 1),
hence ∥αf∥∞ ≥ |α| ∥f∥∞. The reversed inequality follows trivially from (22),
and the homogeneity of ∥ · ∥∞ follows. We conclude that L∞ is a normed space
(over C) for the pointwise operations and the L∞-norm ∥ · ∥∞.

We verify its completeness as follows. Let {fn} be a Cauchy sequence in L∞.
In particular, it is a bounded set in L∞. Let then K = supn ∥fn∥∞. By (22), the
sets Fk := [|fk| > K] (k ∈ N) and

En,m := [|fn − fm| > ∥fn − fm∥∞] (n,m ∈ N)
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are µ-null, so their (countable) union E is null. For all x ∈ Ec,

|fn(x)− fm(x)| ≤ ∥fn − fm∥∞ → 0

as n,m → ∞ and |fn(x)| ≤ K. By completeness of C, the limit f(x) :=
limn fn(x) exists for all x ∈ Ec and |f(x)| ≤ K. Defining f(x) = 0 for all x ∈ E,
we obtain a measurable function on X such that |f | ≤ K, that is, f ∈ L∞. Given
ϵ > 0, let nϵ ∈ N be such that

∥fn − fm∥∞ < ϵ (n,m > nϵ).

Since |fn(x) − fm(x)| < ϵ for all x ∈ Ec and n,m > nϵ, letting m → ∞, we
obtain |fn(x)− f(x)| ≤ ϵ for all x ∈ Ec and n > nϵ, and since µ(E) = 0,

∥fn − f∥∞ ≤ ϵ (n > nϵ),

that is, fn → f in the L∞-metric. We proved

Theorem 1.32. L∞ is a Banach space.

Defining the conjugate exponent of p = 1 to be q = ∞ (so that
(1/p) + (1/q) = 1 is formally valid in the usual sense), Holder’s inequality
remains true for this pair of conjugate exponents. Indeed, if f ∈ L1 and g ∈ L∞,
then |fg| ≤ ∥g∥∞ |f | a.e., and therefore fg ∈ L1 and

∥fg∥1 ≤ ∥g∥∞∥f∥1.

Formally

Theorem 1.33. Holder’s inequality (Theorem 1.26) is valid for conjugate
exponents p, q ∈ [1,∞].

1.6 Inner product
For the conjugate pair (p, q) = (2, 2), Theorem 1.26 asserts that if f, g ∈ L2,
then the product fḡ is integrable, so we may define

(f, g) :=

∫
fḡ dµ (1)

(ḡ denotes here the complex conjugate of g). The function (or form) (· , ·) has
obviously the following properties on L2 × L2:

(i) (f, f) ≥ 0, and (f, f) = 0 if and only if f = 0 (the zero element);
(ii) (· , g) is linear for each given g ∈ L2;
(iii) (g, f) = (f, g).



1.6. Inner product 31

Property (i) is called positive definiteness of the form (· , ·); Properties (ii)
and (iii) (together) are referred to as sesquilinearity or Hermitianity of the form.
We may also consider the weaker condition

(i′)(f, f) ≥ 0 for all f,
called (positive) semi-definiteness of the form.

Definition 1.34. Let X be a complex vector space (with elements x, y, . . .).
A (semi)-inner product on X is a (semi)-definite sesquilinear form (· , ·) on X.
The space X with a given (semi)-inner product is called a (semi)-inner product
space.

If X is a semi-inner product space, the non-negative square root of (x, x) is
denoted ∥x∥.

Thus L2 is an inner product space for the inner product (1) and ∥f∥ :=
(f, f)1/2 = ∥f∥2. By Theorem 1.26 with p = q = 2,

|(f, g)| ≤ ∥f∥2 ∥g∥2 (2)

for all f, g ∈ L2. This special case of the Holder inequality is called the Cauchy–
Schwarz inequality. We demonstrate below that it is valid in any semi-inner
product space.

Observe that any sesquilinear form (· , ·) is conjugate linear with respect to
its second variable, that is, for each given x ∈ X,

(x, αu+ βv) = ᾱ(x, u) + β̄(x, v) (3)

for all α, β ∈ C and u, v ∈ X.
In particular

(x, 0) = (0, y) = 0 (4)
for all x, y ∈ X.

By (ii) and (3), for all λ ∈ C and x, y ∈ X,

(x+ λy, x+ λy) = (x, x) + λ̄(x, y) + λ(y, x) + |λ|2(y, y).

Since λ(y, x) is the conjugate of λ̄(x, y) by (iii), we obtain the identity (for all
λ ∈ C and x, y ∈ X)

∥x+ λy∥2 = ∥x∥2 + 2ℜ[λ̄(x, y)] + |λ|2∥y∥2. (5)

In particular, for λ = 1 and λ = −1, we have the identities

∥x+ y∥2 = ∥x∥2 + 2ℜ(x, y) + ∥y∥2 (6)

and
∥x− y∥2 = ∥x∥2 − 2ℜ(x, y) + ∥y∥2. (7)

Adding, we obtain the so-called parallelogram identity for any s.i.p. (semi-inner
product):

∥x+ y∥2 + ∥x− y∥2 = 2∥x∥2 + 2∥y∥2. (8)
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Subtracting (7) from (6), we obtain

4ℜ(x, y) = ∥x+ y∥2 − ∥x− y∥2. (9)

If we replace y by iy in (9), we obtain

4ℑ(x, y) = 4ℜ[−i(x, y)] = 4ℜ(x, iy) = ∥x+ iy∥2 − ∥x− iy∥2. (10)

By (9) and (10),

(x, y) =
1

4

3∑
k=0

ik∥x+ iky∥2, (11)

where i =
√
−1. This is the so-called polarization identity (which expresses the

s.i.p. in terms of “induced norms”).
By (5),

0 ≤ ∥x∥2 + 2ℜ[λ̄(x, y)] + |λ|2∥y∥2 (12)

for all λ ∈ C and x, y ∈ X. If ∥y∥ > 0, take λ = −(x, y)/∥y∥2; then
|(x, y)|2/∥y∥2 ≤ ∥x∥2, and therefore

|(x, y)| ≤ ∥x∥ ∥y∥. (13)

If ∥y∥ = 0 but ∥x∥ > 0, interchange the roles of x and y and use (iii) to reach the
same conclusion. If both ∥x∥ and ∥y∥ vanish, take λ = −(x, y) in (12): we get
0 ≤ −2|(x, y)|2, hence |(x, y)| = 0 = ∥x∥ ∥y∥, and we conclude that (13) is valid
for all x, y ∈ X. This is the general Cauchy–Schwarz inequality for semi-inner
products.

By (6) and (13),

∥x+ y∥2 ≤ ∥x∥2 + 2|(x, y)|+ ∥y∥2 ≤ ∥x∥2 + 2∥x∥ ∥y∥+ ∥y∥2 = (∥x∥+ ∥y∥)2,

hence
∥x+ y∥ ≤ ∥x∥+ ∥y∥

for all x, y ∈ X. Taking x = 0 in (5), we get ∥λy∥ = |λ| ∥y∥ for all λ ∈ C and
y ∈ X. We conclude that ∥ · ∥ is a semi-norm on X; it is a norm iff the s.i.p. is
an inner product, that is, iff it is definite. Thus, an inner product space X is a
normed space for the norm ∥x∥ := (x, x)1/2 induced by its inner product (unless
stated otherwise, this will be the standard norm for such spaces). In case X is
complete, it is called a Hilbert space. Thus Hilbert spaces are special cases of
Banach spaces.

The norm induced by the inner product (1) on L2 is the usual L2-norm ∥ ·∥2,
so that, by Theorem 1.29, L2 is a Hilbert space.
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1.7 Hilbert space: a first look
We consider some “geometric” properties of Hilbert spaces.

Theorem 1.35 (Distance theorem). Let X be a Hilbert space, and let K ⊂ X
be non-empty, closed, and convex (i.e., (x+y)/2 ∈ K whenever x, y ∈ K). Then
for each x ∈ X, there exists a unique k ∈ K such that

d(x, k) = d(x,K). (1)

The notation d(x, y) is used for the metric induced by the norm, d(x, y) :=
∥x − y∥. As in any metric space, d(x,K) denotes the distance from x to K,
that is,

d(x,K) := inf
y∈K

d(x, y). (2)

Proof. Let d = d(x,K). Since d2 = infy∈K ∥x − y∥2, there exist yn ∈ K such
that

(d2 ≤)∥x− yn∥2 < d2 + 1/n, n = 1, 2, . . . . (3)

By the parallelogram identity,

∥yn − ym∥2 = ∥(x− ym)− (x− yn)∥2

= 2∥x− ym∥2 + 2∥x− yn∥2 − ∥(x− ym) + (x− yn)∥2.

Rewrite the last term on the right-hand side in the form

4∥x− (ym + yn)/2∥2 ≥ 4d2,

since (ym + yn)/2 ∈ K, by hypothesis. Hence by (3)

∥yn − ym∥2 ≤ 2/m+ 2/n→ 0

as m,n → ∞. Thus, the sequence {yn} is Cauchy. Since X is complete, the
sequence converges in X, and its limit k in necessarily in K because yn ∈ K for
all n and K is closed. By continuity of the norm on X, letting n→∞ in (3), we
obtain ∥x− k∥ = d, as wanted.

To prove uniqueness, suppose k, k′ ∈ K satisfy

∥x− k∥ = ∥x− k′∥ = d.

Again by the parallelogram identity,

∥k − k′∥2 = ∥(x− k′)− (x− k)∥2

= 2∥x− k′∥2 + 2∥x− k∥2 − ∥(x− k′) + (x− k)∥2.
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As before, write the last term as 4∥x− (k+ k′)/2∥2 ≥ 4d2 (since (k+ k′)/2 ∈ K
by hypothesis). Hence

∥k − k′∥2 ≤ 2d2 + 2d2 − 4d2 = 0,

and therefore k = k′.

We say that the vector y ∈ X is orthogonal to the vector x if (x, y) = 0. In
that case also (y, x) = (x, y) = 0, so that the orthogonality relation is symmetric.
For x given, let x⊥ denote the set of all vectors orthogonal to x. This is the kernel
of the linear functional ϕ = (· , x), that is, the set ϕ−1({0}). As such a kernel,
it is a subspace. Since |ϕ(y) − ϕ(z)| = |(y − z, x)| ≤ ∥y − z∥ ∥x∥ by Schwarz’s
inequality, ϕ is continuous, and therefore x⊥ = ϕ−1({0}) is closed. Thus, x⊥ is
a closed subspace. More generally, for any non-empty subset A of X, define

A⊥ :=
⋂
x∈A

x⊥ = {y ∈ Y ; (y, x) = 0 for all x ∈ A}.

As the intersection of closed subspaces, A⊥ is a closed subspace of X.

Theorem 1.36 (Orthogonal decomposition theorem). Let Y be a closed
subspace of the Hilbert space X. Then X is the direct sum of Y and Y ⊥, that is,
each x ∈ X has the unique orthogonal decomposition x = y + z with y ∈ Y and
z ∈ Y ⊥.

Note that the so-called components y and z of x (in Y and Y ⊥, respectively)
are orthogonal.

Proof. As a closed subspace of X, Y is a non-empty, closed, convex subset of
X. By the distance theorem, there exists a unique y ∈ Y such that

∥x− y∥ = d := d(x, Y ).

Letting z := x− y, the existence part of the theorem will follow if we show that
(z, u) = 0 for all u ∈ Y . Since Y is a subspace, and Y ̸= {0} without loss of
generality, every u ∈ Y is a scalar multiple of a unit vector in Y , so it suffices to
prove that (z, u) = 0 for unit vectors u ∈ Y . For all λ ∈ C, by the identity (5)
(following Definition 1.34),

∥z − λu∥2 = ∥z∥2 − 2ℜ[λ̄(z, u)] + |λ|2.

The left-hand side is
∥x− (y + λu)∥2 ≥ d2,

since y + λu ∈ Y . Since ∥z∥ = d, we obtain

0 ≤ −2ℜ[λ̄(z, u)] + |λ|2.

Choose λ = (z, u). Then 0 ≤ −|(z, u)|2, so that (z, u) = 0 as claimed.
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If x = y + z = y′ + z′ are two decompositions with y, y′ ∈ Y and z, z′ ∈ Y ⊥,
then y− y′ = z′− z ∈ Y ∩ Y ⊥, so that in particular y− y′ is orthogonal to itself
(i.e., (y − y′, y − y′) = 0), which implies that y − y′ = 0, whence y = y′ and
z = z′.

We observed in passing that for each given y ∈ X, the function ϕ := (· , y) is
a continuous linear functional on the inner product space X. For Hilbert spaces,
this is the general form of continuous linear functionals:

Theorem 1.37 (“Little” Riesz representation theorem). Let ϕ : X → C
be a continuous linear functional on the Hilbert space X. Then there exists a
unique y ∈ X such that ϕ = (· , y).

Proof. If ϕ = 0 (the zero functional), take y = 0. Assume then that ϕ ̸= 0,
so that its kernel Y is a closed subspace ̸= X. Therefore Y ⊥ ̸= {0}, by
Theorem 1.36. Let then z ∈ Y ⊥ be a unit vector. Since Y ∩ Y ⊥ = {0}, z /∈ Y ,
so that ϕ(z) ̸= 0. For any given x ∈ X, we may then define

u := x− ϕ(x)

ϕ(z)
z.

By linearity,
ϕ(u) = ϕ(x)− ϕ(x)

ϕ(z)
ϕ(z) = 0,

that is, u ∈ Y , and
x = u+

ϕ(x)

ϕ(z)
z (4)

is the (unique) orthogonal decomposition of x (corresponding to the particular
subspace Y , the kernel of ϕ). Define now y = ϕ(z)z(∈ Y ⊥). By (4),

(x, y) = (u, y) +
ϕ(x)

ϕ(z)
ϕ(z)(z, z) = ϕ(x)

since (u, y) = 0 and ∥z∥ = 1. This proves the existence part of the theorem.
Suppose now that y, y′ ∈ X are such that ϕ(x) = (x, y) = (x, y′) for all x ∈ X.
Then (x, y − y′) = 0 for all x, hence in particular (y − y′, y − y′) = 0, which
implies that y = y′.

1.8 The Lebesgue–Radon–Nikodym theorem
We apply the Riesz representation theorem to prove the Lebesgue decomposition
theorem and the Radon–Nikodym theorem for (positive) measures.

We start with a measure-theoretic lemma.
The positive measure space (X,A, µ) is σ-finite if there exists a sequence of

mutually disjoint measurable sets Xj with union X, such that µ(Xj) < ∞ for
all j.
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Lemma 1.38 (The averages lemma). Let (X,A, σ) be a σ-finite positive
measure space. Let g ∈ L1(σ) be such that, for all E ∈ A with 0 < σ(E) < ∞,
the “averages”

AE(g) :=
1

σ(E)

∫
E

g dσ

are contained in some given closed set F ⊂ C. Then g(x) ∈ F σ-a.e.

Proof. We need to prove that g−1(F c) is σ-null. Write the open set F c as the
countable union of the closed discs

∆n := {z ∈ C; |z − an| ≤ rn}, n = 1, 2, . . . .

Then
g−1(F c) =

∞⋃
n=1

g−1(∆n),

and it suffices to prove that E∆ := g−1(∆) is σ-null whenever ∆ is a closed disc
(with center a and radius r) contained in F c.

Write X as the countable union of mutually disjoint measurable sets Xk with
σ(Xk) <∞. Set E∆,k := E∆∩Xk, and suppose σ(E∆,k) > 0 for some ∆ as above
and some k. Since |g(x)− a| ≤ r on E := E∆,k, and 0 < σ(E) <∞, we have

|AE(g)− a| = |AE(g − a)| ≤
1

σ(E)

∫
E

|g − a| dσ ≤ r,

so that AE(g) ∈ ∆ ⊂ F c, contradicting the hypothesis. Hence σ(E∆,k) = 0 for
all k and therefore σ(E∆) = 0 for all ∆ as above.

Lemma 1.39. Let 0 ≤ λ ≤ σ be finite measures on the measurable space (X,A).
Then there exists a measurable function g : X → [0, 1] such that∫

f dλ =

∫
fg dσ (1)

for all f ∈ L2(σ).

Proof. By Definition 1.12, the relation λ ≤ σ between positive measures implies
that

∫
f dλ ≤

∫
f dσ for all non-negative measurable functions f . Hence L2(σ) ⊂

L2(λ)(⊂ L1(λ), by the second proposition following Theorem 1.26.)
For all f ∈ L2(σ), we have then by Schwarz’s inequality:∣∣∣∣∫ f dλ

∣∣∣∣ ≤ ∫ |f | dλ ≤ ∫ |f | dσ ≤ σ(X)1/2∥f∥L2(σ).

Replacing f by f − h (with f, h ∈ L2(σ)), we get∣∣∣∣∫ f dλ−
∫
h dλ

∣∣∣∣ = ∣∣∣∣∫ (f − h)dλ
∣∣∣∣ ≤ σ(X)1/2∥f − h∥L2(σ),
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so that the functional f →
∫
f dλ is a continuous linear functional on L2(σ).

By the Riesz representation theorem for the Hilbert space L2(σ), there exists an
element g1 ∈ L2(σ) such that this functional is (· , g1). Letting g = g1 (∈ L2(σ)),
we get the wanted relation (1).

Since IE ∈ L2(σ) (because σ is a finite measure), we have in particular

λ(E) =

∫
IE dλ =

∫
E

g dσ

for all E ∈ A. If σ(E) > 0,

1

σ(E)

∫
E

g dσ =
λ(E)

σ(E)
∈ [0, 1].

By the Averages Lemma 1.38, g(x) ∈ [0, 1] σ-a.e., and we may then choose a
representative of the equivalence class g with range in [0, 1].

Terminology. Let (X,A, λ) be a positive measure space. We say that the set
A ∈ A carries the measure λ (or that λ is supported by A) if λ(E) = λ(E ∩ A)
for all E ∈ A.

This is, of course, equivalent to λ(E) = 0 for all measurable subsets E of Ac.
Two (positive) measures λ1, λ2 on (X,A) are mutually singular (notation

λ1 ⊥ λ2) if they are carried by disjoint measurable sets A1, A2. Equivalently,
each measure is carried by a null set relative to the other measure.

On the other hand, if λ2(E) = 0 whenever λ1(E) = 0 (for E ∈ A), we say
that λ2 is absolutely continuous with respect to λ1 (notation: λ2 ≪ λ1).

Equivalently, λ2 ≪ λ1 if and only if any (measurable) set that carries λ1 also
carries λ2.

Theorem 1.40 (Lebesgue–Radon–Nikodym). Let (X,A, µ) be a σ-finite
positive measure space, and let λ be a finite positive measure on (X,A). Then

(a) λ has the unique (so-called) Lebesgue decomposition

λ = λa + λs

with λa ≪ µ and λs ⊥ µ;
(b) there exists a unique h ∈ L1(µ) such that

λa(E) =

∫
E

h dµ

for all E ∈ A.

(part (a) is the Lebesgue decomposition theorem; part (b) is the Radon–
Nikodym theorem.)
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Proof. Case µ(X) <∞.
Let σ := λ+ µ. Then the finite positive measures λ, σ satisfy λ ≤ σ, so that

by Lemma 1.39, there exists a measurable function g : X → [0, 1] such that (1)
holds, that is, after rearrangement,∫

f(1− g) dλ =

∫
fg dµ (2)

for all f ∈ L2(σ). Define

A := g−1([0, 1)); B := g−1({1}).

Then A,B are disjoint measurable sets with union X.
Taking f = IB (∈ L2(σ), since σ is a finite measure) in (2), we obtain

µ(B) = 0 (since g = 1 on B). Therefore, the measure λs defined on A by

λs(E) := λ(E ∩B)

satisfies λs ⊥ µ.
Define similarly λa(E) := λ(E∩A); this is a positive measure on A, mutually

singular with λs (since it is carried by A = Bc), and by additivity of measures,

λ(E) = λ(E ∩A) + λ(E ∩B) = λa(E) + λs(E),

so that the Lebesgue decomposition will follow if we show that λa ≪ µ. This
follows trivially from the integral representation (b), which we proceed to prove.

For each n ∈ N and E ∈ A, take in (2)

f = fn := (1 + g + · · ·+ gn)IE .

(Since 0 ≤ g ≤ 1, f is a bounded measurable function, hence f ∈ L2(σ).) We
obtain ∫

E

(1− gn+1) dλ =

∫
E

(g + g2 + · · ·+ gn+1) dµ. (3)

Since g = 1 on B, the left-hand side equals
∫
E∩A

(1 − gn+1) dλ. However,
0 ≤ g < 1 on A, so that the integrands form a non-decreasing sequence
of non-negative measurable functions converging pointwise to 1. By the
monotone convergence theorem, the left-hand side of (3) converges therefore to
λ(E ∩ A) = λa(E). The integrands on the right-hand side of (3) form a non-
decreasing sequence of non-negative measurable functions converging pointwise
to the (measurable) function

h :=

∞∑
n=1

gn.

Again, by monotone convergence, the right-hand side of (3) converges to
∫
E
h dµ,

and the representation (b) follows. Taking in particular E = X, we get

∥h∥L1(µ) =

∫
X

h dµ = λa(X) = λ(A) <∞,
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so that h ∈ L1(µ), and the existence part of the theorem is proved in case
µ(X) <∞.

General case. Let Xj ∈ A be mutually disjoint, with union X, such that
0 < µ(Xj) <∞. Define

w =
∑
j

1

2jµ(Xj)
IXj .

This is a strictly positive µ-integrable function, with ∥w∥1 = 1. Consider the
positive measure

ν(E) =

∫
E

w dµ.

Then ν(X) = ∥w∥1 = 1, and ν ≪ µ. On the other hand, if ν(E) = 0, then∑
j(1/2

jµ(Xj))µ(E ∩ Xj) = 0, hence µ(E ∩ Xj) = 0 for all j, and therefore
µ(E) = 0. This shows that µ ≪ ν as well (one says that the measures µ and ν
are mutually absolutely continuous, or equivalent).

Since ν is a finite measure, the first part of the proof gives the decomposition
λ = λa+λs with λa ≪ ν (hence λa ≪ µ by the trivial transitivity of the relation
≪), and λs ⊥ ν (hence λs ⊥ µ, because λs is supported by a ν-null set, which is
also µ-null, since µ≪ ν). The first part of the proof gives also the representation
(cf. Theorem 1.17)

λa(E) =

∫
E

h dν =

∫
E

hw dµ =

∫
E

h̃ dµ,

where h̃ := hw is non-negative, measurable, and

∥h̃∥1 =

∫
X

h̃ dµ = λa(X) ≤ λ(X) <∞.

This completes the proof of the “existence part” of the theorem in the general
case.

To prove the uniqueness of the Lebesgue decomposition, suppose

λ = λa + λs = λ′a + λ′s,

with
λa, λ

′
a ≪ µ and λs, λ

′
s ⊥ µ.

Let B be a µ-null set that carries both λs and λ′s. Then

λa(B) = λ′a(B) = 0 and λs(B
c) = λ′s(B

c) = 0,

so that for all E ∈ A,

λa(E) = λa(E ∩Bc) = λ(E ∩Bc)

= λ′a(E ∩Bc) = λ′a(E),

hence also λs(E) = λ′s(E).
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In order to prove the uniqueness of h in (b), suppose h, h′ ∈ L1(µ) satisfy

λa(E) =

∫
E

h dµ =

∫
E

h′ dµ.

Then h−h′ ∈ L1(µ) satisfies
∫
E
(h−h′) dµ = 0 for all E ∈ A, and it follows from

Proposition 1.22 that h−h′ = 0 µ-a.e., that is, h = h′ as elements of L1(µ).

If the measure λ is absolutely continuous with respect to µ, it has the trivial
Lebesgue decomposition λ = λ + 0, with the zero measure as singular part. By
uniqueness, it follows that λa = λ, and therefore Part 2 of the theorem gives
the representation λ(E) =

∫
E
h dµ for all E ∈ A. Conversely, such an integral

representation of λ implies trivially that λ ≪ µ (if µ(E) = 0, the function
hIE = 0 µ-a.e., and therefore λ(E) =

∫
fIE dµ = 0). Thus

Theorem 1.41 (Radon–Nikodym). Let (X,A, µ) be a σ-finite positive
measure space. A finite positive measure λ on A is absolutely continuous with
respect to µ if and only if there exists h ∈ L1(µ) such that

λ(E) =

∫
E

h dµ (E ∈ A). (∗)

By Theorem 1.17, Relation (∗) implies that∫
g dλ =

∫
gh dµ (∗∗)

for all non-negative measurable functions g on X. Since we may take g = IE
in (∗∗), this last relation implies (∗). As mentioned after Theorem 1.17, these
equivalent relations are symbolically written in the form dλ = h dµ. It follows
easily from Theorem 1.17 that, in that case, if g ∈ L1(λ), then gh ∈ L1(µ)
and (∗∗) is valid for such (complex) functions g. The function h is called the
Radon–Nikodym derivative of λ with respect to µ, and is denoted dλ/dµ.

1.9 Complex measures
Definition 1.42. Let (X,A) be an arbitrary measurable space. A complex
measure on A is a σ-additive function µ : A → C, that is,

µ

(⋃
n

En

)
=
∑
n

µ(En) (1)

for any sequence of mutually disjoint sets En ∈ A.

Since the left-hand side of (1) is independent of the order of the sets En and
is a complex number, the right-hand side converges in C unconditionally, hence
absolutely. Taking En = ∅ for all n, the convergence of (1) shows that µ(∅) = 0.
It follows that µ is (finitely) additive, and since its values are complex numbers,
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it is “subtractive” as well (i.e., µ(E − F ) = µ(E) − µ(F ) whenever E,F ∈ A,
F ⊂ E).

A partition of E ∈ A is a sequence of mutually disjoint sets Ak ∈ A with
union equal to E. We set

|µ|(E) := sup
∑
k

|µ(Ak)|, (2)

where the supremum is taken over all partitions of E.

Theorem 1.43. Let µ be a complex measure on A, and define |µ| by (2). Then
|µ| is a finite positive measure on A that dominates µ (i.e., |µ(E)| ≤ |µ|(E) for
all E ∈ A).

Proof. Let E =
⋃
En with En ∈ A mutually disjoint (n ∈ N). For any partition

{Ak} of E, {Ak ∩ En}k is a partition of En (n = 1, 2, . . .), so that∑
k

|µ(Ak ∩ En)| ≤ |µ|(En), n = 1, 2, . . . .

We sum these inequalities over all n, interchange the order of summation in
the double sum (of non-negative terms!), and use the triangle inequality to
obtain ∑

n

|µ|(En) ≥
∑
k

|
∑
n

µ(Ak ∩ En)| =
∑
k

|µ(Ak)|,

since {Ak ∩En}n is a partition of Ak, for each k ∈ N. Taking now the supremum
over all partitions {Ak} of E, it follows that∑

n

|µ|(En) ≥ |µ|(E). (3)

On the other hand, given ϵ > 0, there exists a partition {An,k}k of En such
that ∑

k

|µ(An,k)| > |µ|(En)− ϵ/2n, n = 1, 2, . . . .

Since {An,k}n,k is a partition of E, we obtain

|µ|(E) ≥
∑
n,k

|µ(An,k)| >
∑
n

|µ|(En)− ϵ.

Letting ϵ→ 0+ and using (3), we conclude that |µ| is σ-additive. Since |µ|(∅) = 0
is trivial, |µ| is indeed a positive measure on A.

In order to show that the measure |µ| is finite, we need the following.


