Introduction to Modern Analysis

Second Edition

Shmuel Kantorovitz and Ami Viselter

OXFORD GRADUATE TEXTS IN MATHEMATICS	29

1 graduate mathemates

 textsIntroduction to Modern Analysis

Oxford Graduate Texts in Mathematics

Series Editors

R. Cohen S. K. Donaldson
T. J. Lyons M. J. Taylor

1. Keith Hannabuss: An Introduction to Quantum Theory
2. Reinhold Meise and Dietmar Vogt: Introduction to Functional Analysis
3. James G. Oxley: Matroid Theory
4. N. J. Hitchin, G. B. Segal, and R. S. Ward: Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces
5. Wulf Rossmann: Lie Groups: An Introduction Through Linear Groups
6. Qing. Liu: Algebraic Geometry and Arithmetic Curves
7. Martin R. Bridson and Simon M, Salamon (eds): Invitations to Geometry and Topology
8. Shmuel Kantorovitz: Introduction to Modern Analysis
9. Terry Lawson: Topology: A Geometric Approach
10. Meinolf Geck: An Introduction to Algebraic Geometry and Algebraic Groups
11. Alastair Fletcher and Vladimir Markovic: Quasiconformal Maps and Teichmüller Theory
12. Dominic Joyce: Riemannian Holonomy Groups and Calibrated Geometry
13. Fernando Villegas: Experimental Number Theory
14. Péter Medvegyev: Stochastic Integration Theory
15. Martin A. Guest: From Quantum Cohomology to Integrable Systems
16. Alan D. Rendall: Partial Differential Equations in General Relativity
17. Yves Félix, John Oprea, and Daniel Tanré: Algebraic Models in Geometry
18. Jie Xiong: Introduction to Stochastic Filtering Theory
19. Maciej Dunajski: Solitons, Instantons, and Twistors
20. Graham R. Allan: Introduction to Banach Spaces and Algebras
21. James Oxley: Matroid Theory, Second Edition
22. Simon Donaldson: Riemann Surfaces
23. Clifford Henry Taubes: Differential Geometry: Bundles, Connections, Metrics and Curvature
24. Gopinath Kallianpur and P. Sundar: Stochastic Analysis and Diffusion Processes
25. Selman Akbulut: 4-Manifolds
26. Fon-Che Liu: Real Analysis
27. Dusa McDuff and Dietmar Salamon: Introduction to Symplectic Topology, Third Edition
28. Chris Heunen, Jamie Vicary: Categories for Quantum Theory: An Introduction
29. Shmuel Kantorovitz, Ami Viselter: Introduction to Modern Analysis, Second Edition

Introduction to Modern Analysis

Second Edition

Shmuel Kantorovitz
Bar Ilan University, Israel
Ami Viselter
University of Haifa, Israel

OXFORD
 UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP, United Kingdom
Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries
© Shmuel Kantorovitz and Ami Viselter 2022
The moral rights of the authors have been asserted
Impression: 1
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this work in any other form and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press 198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data
Data available
Library of Congress Control Number: 2022933188
ISBN 978-0-19-284954-0 (hbk)
ISBN 978-0-19-284955-7 (pbk)
DOI: 10.1093/oso/9780192849540.001.0001
Printed and bound by
CPI Group (UK) Ltd, Croydon, CR0 4YY
Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.

To Ita, Bracha, Pnina, Pinchas, Ruth, and Lilach

Contents

Preface to the First Edition xv
Preface to the Second Edition xvii
1 Measures 1
1.1 Measurable sets and functions 2
1.2 Positive measures 8
1.3 Integration of non-negative measurable functions 10
1.4 Integrable functions 16
$1.5 \quad L^{p}$-spaces 23
1.6 Inner product 30
1.7 Hilbert space: a first look 33
1.8 The Lebesgue-Radon-Nikodym theorem 35
1.9 Complex measures 40
1.10 Convergence 47
1.11 Convergence on finite measure space 50
1.12 Distribution function 51
1.13 Truncation 53
Exercises 55
2 Construction of measures 59
2.1 Semi-algebras 59
2.2 Outer measures 62
2.3 Extension of measures on algebras 64
2.4 Structure of measurable sets 65
2.5 Construction of Lebesgue-Stieltjes measures 67
2.6 Riemann vs. Lebesgue 70
2.7 Product measure 71
Exercises 76
3 Measure and topology 81
3.1 Partition of unity 81
3.2 Positive linear functionals 84
3.3 The Riesz-Markov representation theorem 91
3.4 Lusin's theorem 93
3.5 The support of a measure 97
3.6 Measures on \mathbb{R}^{k}; differentiability 97
Exercises 101
4 Continuous linear functionals 107
4.1 Linear maps 108
4.2 The conjugates of Lebesgue spaces 110
4.3 The conjugate of $C_{c}(X)$ 114
4.4 The Riesz representation theorem 116
4.5 Haar measure 118
Exercises 126
5 Duality 129
5.1 The Hahn-Banach theorem 130
5.2 Reflexivity 134
5.3 Separation 137
5.4 Topological vector spaces 140
5.5 Weak topologies 143
5.6 Extremal points 146
5.7 The Stone-Weierstrass theorem 150
5.8 Operators between Lebesgue spaces: Marcinkiewicz's interpolation theorem 152
5.9 Fixed points 157
5.10 The bounded weak*-topology 165
Exercises 169
6 Bounded operators 173
6.1 Category 174
6.2 The uniform boundedness theorem 175
6.3 The open mapping theorem 177
6.4 Graphs 179
6.5 Quotient space 181
6.6 Operator topologies 182
Exercises 184
7 Banach algebras 193
7.1 Basics 194
7.2 Commutative Banach algebras 203
7.3 Involutions and C^{*}-algebras 207
7.4 Normal elements 211
7.5 The Arens products 212
Exercises 215
8 Hilbert spaces 225
8.1 Orthonormal sets 225
8.2 Projections 228
8.3 Orthonormal bases 231
8.4 Hilbert dimension 234
8.5 Isomorphism of Hilbert spaces 235
8.6 Direct sums 236
8.7 Canonical model 237
8.8 Tensor products 237
8.8.1 An interlude: tensor products of vector spaces 237
8.8.2 Tensor products of Hilbert spaces 240
Exercises 242
9 Integral representation 253
9.1 Spectral measure on a Banach subspace 254
9.2 Integration 255
9.3 Case $Z=X$ 257
9.4 The spectral theorem for normal operators 260
9.5 Parts of the spectrum 262
9.6 Spectral representation 264
9.7 Renorming method 265
9.8 Semi-simplicity space 267
9.9 Resolution of the identity on Z 270
9.10 Analytic operational calculus 274
9.11 Isolated points of the spectrum 277
9.12 Compact operators 279
Exercises 282
10 Unbounded operators 289
10.1 Basics 290
10.2 The Hilbert adjoint 293
10.3 The spectral theorem for unbounded selfadjoint operators 296
10.4 The operational calculus for unbounded selfadjoint operators 298
10.5 The semi-simplicity space for unbounded operators in Banach space 300
10.6 Symmetric operators in Hilbert space 303
10.7 Quadratic forms 307
Exercises 311
$11 C^{*}$-algebras 323
11.1 Notation and examples 324
11.2 The continuous operational calculus continued 325
11.3 Positive elements 327
11.4 Approximate identities 332
11.5 Ideals 333
11.6 Positive linear functionals 335
11.7 Representations and the Gelfand-Naimark-Segal construction 340
11.7.1 Irreducible representations 345
11.8 Positive linear functionals and convexity 346
11.8.1 Pure states 346
11.8.2 Decompositions of functionals 349
Exercises 350
12 Von Neumann algebras 355
12.1 Preliminaries 356
12.2 Commutants 359
12.3 Density 362
12.4 The polar decomposition 363
$12.5 W^{*}$-algebras 365
12.6 Hilbert-Schmidt and trace-class operators 368
12.7 Commutative von Neumann algebras 375
12.8 The enveloping von Neumann algebra of a C^{*}-algebra 376
Exercises 379
13 Constructions of C^{*}-algebras 383
13.1 Tensor products of C^{*}-algebras 383
13.1.1 Tensor products of algebras 384
13.1.2 Tensor products of C^{*}-algebras through representations 385
13.1.3 The maximal tensor product 390
13.1.4 Tensor products of bounded linear functionals 390
13.1.5 The minimal tensor product 393
13.1.6 Tensor products by commutative C^{*}-algebras 396
13.2 Group C^{*}-algebras 397
13.2.1 Unitary representations 398
13.2.2 The definition and representations of the group C^{*}-algebra 400
13.2.3 Properties of the group C^{*}-algebra 401
Exercises 403
Application I Probability 409
I. 1 Heuristics 409
I. 2 Probability space 411
I.2.1 $\quad L^{2}$-random variables 414
I. 3 Probability distributions 424
I. 4 Characteristic functions 433
I. 5 Vector-valued random variables 441
I. 6 Estimation and decision 450
I.6.1 Confidence intervals 455
I.6.2 Testing of hypothesis and decision 457
I.6.3 Tests based on a statistic 460
I. 7 Conditional probability 462
I.7.1 Heuristics 462
I.7.2 Conditioning by an r.v. 467
I. 8 Series of L^{2} random variables 475
I. 9 Infinite divisibility 481
I. 10 More on sequences of random variables 485
Application II Distributions 491
II. 1 Preliminaries 491
II. 2 Distributions 493
II. 3 Temperate distributions 503
II.3.1 The spaces $\mathcal{W}_{p, k}$ 514
II. 4 Fundamental solutions 520
II. 5 Solution in \mathcal{E}^{\prime} 523
II. 6 Regularity of solutions 525
II. 7 Variable coefficients 528
II. 8 Convolution operators 531
II. 9 Some holomorphic semigroups 542
Bibliography 549
Index 553

Preface to the First Edition

This book grew out of lectures given since 1964 at Yale University, the University of Illinois at Chicago, and Bar Ilan University. The material covers the usual topics of Measure Theory and Functional Analysis, with applications to Probability Theory and to the theory of linear partial differential equations. Some relatively advanced topics are included in each chapter (excluding the first two): the Riesz-Markov representation theorem and differentiability in Euclidean spaces (Chapter 3); Haar measure (Chapter 4); Marcinkiewicz's interpolation theorem (Chapter 5); the Gelfand-Naimark-Segal representation theorem (Chapter 7); the von Neumann double commutant theorem (Chapter 8); the spectral representation theorem for normal operators (Chapter 9); the extension theory for unbounded symmetric operators (Chapter 10); the Lyapounov Central Limit theorem and the Kolmogoroff "Three Series theorem" (Application I); the Hormander-Malgrange theorem, fundamental solutions of linear partial differential equations with variable coefficients, and Hormander's theory of convolution operators, with an application to integration of pure imaginary order (Application I). Some important complementary material is included in the 'Exercises' sections, with step-by-step detailed hints leading to the wanted results. Solutions to the end of chapter exercises may be found on the companion website for this text: http://www.oup.co.uk/academic/companion/mathematics/kantorovitz.

Ramat Gan
S. K.

July 2002

Preface to the Second Edition

The purpose of the second edition is to make our Introduction to Modern Analysis more modern. We did this mostly by broadening and deepening the presentation of operator algebras, which form a central area in functional analysis. There are three new chapters: Chapter 11 on C^{*}-algebras, Chapter 12 on von Neumann algebras, and Chapter 13 on constructions of C^{*}-algebras. They contain much more material on these subjects than the first edition. These chapters are also more advanced than the previous parts of the book and require more from the reader, occasionally in the form of guided exercises. Nevertheless, what we give here is merely a taste of operator algebras.

In addition, we made numerous corrections and added quite a lot of exercises. There are also new subjects of independent interest: fixed-point theorems (Chapter 5); the bounded weak*-topology (Chapter 5); the Arens products (Chapter 7); tensor products of vector spaces and of Hilbert spaces (Chapter 8); and quadratic forms (Chapter 10).

Ramat Gan and Haifa
S. K. and A. V.

December 2021

1

Measures

This chapter begins the study of measure theory, which spans Chapters $1-3$ and most of Chapter 4. Let us explain first what necessitated this theory.

Consider the set of all Riemann integrable functions on an interval $[a, b]$. It becomes a semi-normed space with respect to the semi-norm $\|f\|:=\int_{a}^{b}|f(x)| d x$. The problem is that this space is not complete: it admits non-convergent Cauchy sequences. As discussed later in the book, in modern analysis it is especially important for (semi-) normed spaces to be complete. Measure theory, invented by H. L. Lebesgue, introduces the concept of a measure space, which is a triple (X, \mathcal{A}, μ), where X is a set, \mathcal{A} is the σ-algebra of all measurable subsets of X, and $\mu: \mathcal{A} \rightarrow[0, \infty]$ is a measure. To each such triple there is an associated Lebesgue integral. In the particular case when $X=[a, b]$ and μ is the Lebesgue measure (very roughly, $\mu([c, d])=d-c$, which justifies the word "measure"), every Riemann integrable function is also Lebesgue integrable (but not conversely!) and the integrals coincide.

One big virtue of Lebesgue integration is that the space of integrable functions that comes out of it is complete. In fact, to every measure space we associate not one complete normed space, but a continuum of them - the so-called L^{p}-spaces $(p \in[1, \infty])$.

The chapter is structured as follows. We first introduce positive measure spaces and Lebesgue integration on them and prove several convergence theorems that are fundamental in the theory. We then define the L^{p}-spaces and prove that they are Banach spaces, that is, complete normed spaces. Next, we prove a few basic facts on Hilbert spaces culminating in the "little" Riesz representation theorem (we return to Hilbert spaces in Chapter 8). Hilbert spaces are needed in the proof of the Lebesgue-Radon-Nikodym theorem, a deep result about the relationship between two arbitrary measures. Complex measures are then introduced and studied. A few notions of convergence of sequences of measurable functions are defined and the relations between them are explained, including a surprising theorem of Egoroff saying that on finite measure spaces, pointwise convergence is "almost uniform". A short treatment of the distribution function of
a measurable function follows. The chapter ends with the notion of a truncation of a function.

1.1 Measurable sets and functions

The setting of abstract measure theory is a family \mathcal{A} of so-called measurable subsets of a given set X, and a function

$$
\mu: \mathcal{A} \rightarrow[0, \infty]
$$

so that the measure $\mu(E)$ of the set $E \in \mathcal{A}$ has some "intuitively desirable" property, such as "countable additivity":

$$
\mu\left(\bigcup_{i=1}^{\infty} E_{i}\right)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)
$$

for mutually disjoint sets $E_{i} \in \mathcal{A}$. In order to make sense, this setting has to deal with a family \mathcal{A} that is closed under countable unions. We then arrive to the concept of a measurable space.

Definition 1.1. Let X be a (non-empty) set. A σ-algebra of subsets of X (briefly, a σ-algebra on X) is a subfamily \mathcal{A} of the family $\mathbb{P}(X)$ of all subsets of X, with the following properties:
(1) $X \in \mathcal{A}$;
(2) if $E \in \mathcal{A}$, then the complement E^{c} of E belongs to \mathcal{A};
(3) if $\left\{E_{i}\right\}$ is a sequence of sets in \mathcal{A}, then its union belongs to \mathcal{A}.

The ordered pair (X, \mathcal{A}), with \mathcal{A} a σ-algebra on X, is called a measurable space. The sets of the family \mathcal{A} are called measurable sets (or \mathcal{A}-measurable sets) in X.

Observe that by (1) and (2), the empty set \emptyset belongs to the σ-algebra \mathcal{A}. Taking then $E_{i}=0$ for all $i>n$ in (3), we see that \mathcal{A} is closed under finite unions; if this weaker condition replaces (3), \mathcal{A} is called an algebra of subsets of X (briefly, an algebra on X).

By (2) and (3), and DeMorgan's Law, \mathcal{A} is closed under countable intersections (finite intersections, in the case of an algebra). In particular, any algebra on X is closed under differences $E-F:=E \cap F^{c}$.

The intersection of an arbitrary family of σ-algebras on X is a σ-algebra on X. If all the σ-algebras in the family contain some fixed collection $\mathcal{E} \subset \mathbb{P}(X)$, the said intersection is the smallest σ-algebra on X (with respect to set inclusion) that contains \mathcal{E}; it is called the σ-algebra generated by \mathcal{E}, and is denoted by $[\mathcal{E}]$.

An important case comes up naturally when X is a topological space (for some topology $\tau)$. The σ-algebra $[\tau]$ generated by the topology is called the Borel (σ)-algebra [denoted $\mathcal{B}(X)$], and the sets in $\mathcal{B}(X)$ are the Borel sets in X. For example, the countable intersection of τ-open sets (a so-called G_{δ}-set) and the countable union of τ-closed sets (a so-called F_{σ}-set) are Borel sets.

Definition 1.2. Let (X, \mathcal{A}) and (Y, \mathcal{B}) be measurable spaces. A map $f: X \rightarrow Y$ is measurable if for each $B \in \mathcal{B}$, the set

$$
f^{-1}(B):=\{x \in X ; f(x) \in B\}:=[f \in B]
$$

belongs to \mathcal{A}.
A constant map $f(x)=p \in Y$ is trivially measurable, since $[f \in B]$ is either \emptyset or X (when $p \in B^{\mathrm{c}}$ and $p \in B$, respectively), and so belongs to \mathcal{A}.

When Y is a topological space, we shall usually take $\mathcal{B}=\mathcal{B}(Y)$, the Borel algebra on Y. In particular, for $Y=\mathbb{R}$ (the real line), $Y=[-\infty, \infty]$ (the "extended real line"), or $Y=\mathbb{C}$ (the complex plane), with their usual topologies, we shall call the measurable map a measurable function (more precisely, an \mathcal{A}-measurable function). If X is a topological space, a $\mathcal{B}(X)$-measurable map (function) is called a Borel map (function).

Given a measurable space (X, \mathcal{A}) and a map $f: X \rightarrow Y$, for an arbitrary set Y, the family

$$
\mathcal{B}_{f}:=\left\{F \in \mathbb{P}(Y) ; f^{-1}(F) \in \mathcal{A}\right\}
$$

is a σ-algebra on Y (because the inverse image operation preserves the set theoretical operations: $f^{-1}\left(\bigcup_{\alpha} F_{\alpha}\right)=\bigcup_{\alpha} f^{-1}\left(F_{\alpha}\right)$, etc. $)$, and it is the largest σ-algebra on Y for which f is measurable.

If Y is a topological space, and $f^{-1}(V) \in \mathcal{A}$ for every open V, then \mathcal{B}_{f} contains the topology τ, and so contains $\mathcal{B}(Y)$; that is, f is measurable. Since $\tau \subset \mathcal{B}(Y)$, the converse is trivially true.

Lemma 1.3. A map from a measurable space (X, \mathcal{A}) to a topological space Y is measurable if and only if $f^{-1}(V) \in \mathcal{A}$ for every open $V \subset Y$.

In particular, if X is also a topological space, and $\mathcal{A}=\mathcal{B}(X)$, it follows that every continuous map $f: X \rightarrow Y$ is a Borel map.

Lemma 1.4. A map from a measurable space (X, \mathcal{A}) to $[-\infty, \infty]$ is measurable if and only if

$$
[f>c] \in \mathcal{A}
$$

for all real c.
The non-trivial direction in the lemma follows from the fact that $(c, \infty] \in \mathcal{B}_{f}$ by hypothesis for all real c; therefore, the σ-algebra \mathcal{B}_{f} contains the sets

$$
\bigcup_{n=1}^{\infty}(b-1 / n, \infty]^{c}=\bigcup_{n=1}^{\infty}[-\infty, b-1 / n]=[-\infty, b)
$$

and $(a, b)=[-\infty, b) \cap(a, \infty]$ for every real $a<b$, and so contains all countable unions of "segments" of the above type, that is, all open subsets of $[-\infty, \infty]$.

The sets $[f>c]$ in the condition of Lemma 1.4 can be replaced by any of the sets $[f \geq c],[f<c]$, or $[f \leq c]$ (for all real c), respectively. The proofs are analogous.

For $f: X \rightarrow[-\infty, \infty]$ measurable and α real, the function αf (defined pointwise, with the usual arithmetics $\alpha \cdot \infty=\infty$ for $\alpha>0,=0$ for $\alpha=0$, and $=-\infty$ for $\alpha<0$, and similarly for $-\infty$) is measurable, because for all real $c,[\alpha f>c]=[f>c / \alpha]$ for $\alpha>0,=[f<c / \alpha]$ for $\alpha<0$, and αf is constant for $\alpha=0$.

If $\left\{a_{n}\right\} \subset[-\infty, \infty]$, one denotes the superior (inferior) limit, that is, the "largest" ("smallest") limit point, of the sequence by $\limsup a_{n}\left(\liminf a_{n}\right.$, respectively).

Let $b_{n}:=\sup _{k \geq n} a_{k}$. Then $\left\{b_{n}\right\}$ is a decreasing sequence, and therefore

$$
\exists \lim _{n} b_{n}=\inf _{n} b_{n} .
$$

Let $\alpha:=\lim \sup a_{n}$ and $\beta=\lim b_{n}$. For any given $n \in \mathbb{N}, a_{k} \leq b_{n}$ for all $k \geq n$, and therefore $\alpha \leq b_{n}$. Hence $\alpha \leq \beta$.

On the other hand, for any $t>\alpha, a_{k}>t$ for at most finitely many indices k. Therefore, there exists n_{0} such that $a_{k} \leq t$ for all $k \geq n_{0}$, hence $b_{n_{0}} \leq t$. But then $b_{n} \leq t$ for all $n \geq n_{0}$ (because $\left\{b_{n}\right\}$ is decreasing), and so $\beta \leq t$. Since $t>\alpha$ was arbitrary, it follows that $\beta \leq \alpha$, and the conclusion $\alpha=\beta$ follows. We showed

$$
\begin{equation*}
\lim \sup a_{n}=\lim _{n}\left(\sup _{k \geq n} a_{k}\right)=\inf _{n \in \mathbb{N}}\left(\sup _{k \geq n} a_{k}\right) \tag{1}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\liminf a_{n}=\lim _{n}\left(\inf _{k \geq n} a_{k}\right)=\sup _{n \in \mathbb{N}}\left(\inf _{k \geq n} a_{k}\right) \tag{2}
\end{equation*}
$$

Lemma 1.5. Let $\left\{f_{n}\right\}$ be a sequence of measurable $[-\infty, \infty]$-valued functions on the measurable space (X, \mathcal{A}). Then the functions sup $f_{n}, \inf f_{n}, \lim \sup f_{n}, \lim$ $\inf f_{n}$, and $\lim f_{n}$ (when it exists), all defined pointwise, are measurable.

Proof. Let $h=\sup f_{n}$. Then for all real c,

$$
[h>c]=\bigcup_{n}\left[f_{n}>c\right] \in \mathcal{A}
$$

so that h is measurable by Lemma 1.4.
As remarked, $-f_{n}=(-1) f_{n}$ are measurable, and therefore $\inf f_{n}=-\sup$ $\left(-f_{n}\right)$ is measurable.

The proof is completed by the relations (1), (2), and

$$
\lim f_{n}=\limsup f_{n}=\liminf f_{n},
$$

when the second equality holds (i.e. if and only if $\lim f_{n}$ exists).
In particular, taking a sequence with $f_{k}=f_{n}$ for all $k>n$, we see that $\max \left\{f_{1}, \ldots, f_{n}\right\}$ and $\min \left\{f_{1}, \ldots, f_{n}\right\}$ are measurable, when f_{1}, \ldots, f_{n} are measurable functions into $[-\infty, \infty]$. For example, the positive (negative) parts $f^{+}:=\max \{f, 0\}\left(f^{-}:=-\min \{f, 0\}\right)$ of a measurable function $f: X \rightarrow[-\infty, \infty]$ are (non-negative) measurable functions. Note the decompositions

$$
f=f^{+}-f^{-} ; \quad|f|=f^{+}+f^{-} .
$$

Lemma 1.6. Let $(X, \mathcal{A}),(Y, \mathcal{B})$ and (Z, \mathcal{C}) be measurable spaces. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are measurable, then so is the composite function $h:=g \circ f:$ $X \rightarrow Z$.

Indeed, for every $C \in \mathcal{C}$ we have $g^{-1}(C) \in \mathcal{B}$ by measurability of g, thus $h^{-1}(C)=f^{-1}\left(g^{-1}(C)\right) \in \mathcal{A}$ by measurability of f.

In particular, if Y, Z are topological spaces and $g: Y \rightarrow Z$ is continuous, then $g \circ f$ is measurable.

If

$$
Y=\prod_{k=1}^{n} Y_{k}
$$

is the product space of topological spaces Y_{k}, the projections $p_{k}: Y \rightarrow Y_{k}$ are continuous. Therefore, if $f: X \rightarrow Y$ is measurable, so are the "component functions" $f_{k}(x):=p_{k}(f(x)): X \rightarrow Y_{k}(k=1, \ldots, n)$, by Lemma 1.6. Conversely, if the topologies on Y_{k} have countable bases (for all k), a countable base for the topology of Y consists of sets of the form $V=\prod_{k=1}^{n} V_{k}$ with V_{k} varying in a countable base for the topology of Y_{k} (for each k). Now,

$$
[f \in V]=\bigcap_{k=1}^{n}\left[f_{k} \in V_{k}\right] \in \mathcal{A}
$$

if all f_{k} are measurable. Since every open $W \subset Y$ is a countable union of sets of the above type, $[f \in W] \in \mathcal{A}$, and f is measurable. We proved:

Lemma 1.7. Let Y be the Cartesian product of topological spaces Y_{1}, \ldots, Y_{n} with countable bases to their topologies. Let (X, \mathcal{A}) be a measurable space. Then $f: X \rightarrow Y$ is measurable iff the components f_{k} are measurable for all k.

For example, if $f_{k}: X \rightarrow \mathbb{C}$ are measurable for $k=1, \ldots, n$, then $f:=$ $\left(f_{1}, \ldots, f_{n}\right): X \rightarrow \mathbb{C}^{n}$ is measurable, and since $g\left(z_{1}, \ldots, z_{n}\right):=\Sigma \alpha_{k} z_{k}\left(\alpha_{k} \in \mathbb{C}\right)$ and $h\left(z_{1}, \ldots, z_{n}\right)=z_{1} \ldots z_{n}$ are continuous from \mathbb{C}^{n} to \mathbb{C}, it follows from Lemma 1.6 that (finite) linear combinations and products of complex measurable functions are measurable. Thus, the complex measurable functions form an algebra over the complex field (similarly, the real measurable functions form an algebra over the real field), for the usual pointwise operations.

If f has values in $\mathbb{R},[-\infty, \infty]$, or \mathbb{C}, its measurability implies that of $|f|$, by Lemma 1.6.

By Lemma 1.7, a complex function is measurable iff its real part $\Re f$ and imaginary part $\Im f$ are both measurable.

If f, g are measurable with values in $[0, \infty]$, the functions $f+g$ and $f g$ are well-defined pointwise (with values in $[0, \infty]$) and measurable, since the functions $(s, t) \rightarrow s+t$ and $(s, t) \rightarrow s t$ from $[0, \infty]^{2}$ to $[0, \infty]$ are Borel (cf. Lemmas 1.6 and 1.7).

The function $f: X \rightarrow \mathbb{C}$ is simple if its range is a finite set $\left\{c_{1}, \ldots, c_{n}\right\} \subset \mathbb{C}$. Let $E_{k}:=\left[f=c_{k}\right], \quad k=1, \ldots, n$. Then X is the disjoint union of the sets E_{k}, and

$$
f=\sum_{k=1}^{n} c_{k} I_{E_{k}}
$$

where I_{E} denotes the indicator of E (also called the characteristic function of E by non-probabilists, while probabilists reserve the later name to a different concept):

$$
I_{E}(x)=1 \quad \text { for } x \in E \quad \text { and } \quad=0 \quad \text { for } x \in E^{c}
$$

Since a singleton $\{c\} \subset \mathbb{C}$ is closed, it is a Borel set. Suppose now that the simple (complex) function f is defined on a measurable space (X, \mathcal{A}). If f is measurable, then $E_{k}:=\left[f=c_{k}\right]$ is measurable for all $k=1, \ldots, n$. Conversely, if all E_{k} are measurable, then for each open $V \subset \mathbb{C}$,

$$
[f \in V]=\bigcup_{\left\{k ; c_{k} \in V\right\}} E_{k} \in \mathcal{A}
$$

so that f is measurable. In particular, an indicator I_{E} is measurable iff $E \in \mathcal{A}$.
Let $B(X, \mathcal{A})$ denote the complex algebra of all bounded complex \mathcal{A}-measurable functions on X (for the pointwise operations), and denote

$$
\|f\|=\sup _{X}|f| \quad(f \in B(X, \mathcal{A})) .
$$

The map $f \rightarrow\|f\|$ of $B(X, \mathcal{A})$ into $[0, \infty)$ has the following properties:
(1) $\|f\|=0$ iff $f=0$ (the zero function);
(2) $\|\alpha f\|=|\alpha|\|f\|$ for all $\alpha \in \mathbb{C}$ and $f \in B(X, \mathcal{A})$;
(3) $\|f+g\| \leq\|f\|+\|g\|$ for all $f, g \in B(X, \mathcal{A})$;
(4) $\|f g\| \leq\|f\|\|g\|$ for all $f, g \in B(X, \mathcal{A})$.

For example, (3) is verified by observing that for all $x \in X$,

$$
|f(x)+g(x)| \leq|f(x)|+|g(x)| \leq \sup _{X}|f|+\sup _{X}|g| .
$$

A map $\|\cdot\|$ from any (complex) vector space Z to $[0, \infty)$ with Properties (1)-(3) is called a norm on Z. The previous example is the supremum norm or uniform norm on the vector space $Z=B(X, \mathcal{A})$. Property (1) is the definiteness of the norm; Property (2) is its homogeneity; Property (3) is the triangle inequality. A vector space with a specified norm is a normed space. If Z is an algebra, and the specified norm satisfies Property (4) also, Z is called a normed algebra. Thus, $B(X, \mathcal{A})$ is a normed algebra with respect to the supremum norm. Any normed space Z is a metric space for the metric induced by the norm

$$
d(u, v):=\|u-v\| \quad u, v \in Z .
$$

Convergence in Z is convergence with respect to this metric (unless stated otherwise). Thus, convergence in the normed space $B(X, \mathcal{A})$ is precisely uniform convergence on X (this explains the name "uniform norm").

If $x, y \in Z$, the triangle inequality implies $\|x\|=\|(x-y)+y\| \leq\|x-y\|+\|y\|$, so that $\|x\|-\|y\| \leq\|x-y\|$. Since we may interchange x and y, we have

$$
|\|x\|-\|y\|| \leq\|x-y\| .
$$

In particular, the norm function is continuous on Z.
The simple functions in $B(X, \mathcal{A})$ form a subalgebra $B_{0}(X, \mathcal{A})$; it is dense in $B(X, \mathcal{A})$:

Theorem 1.8 (Approximation theorem). Let (X, \mathcal{A}) be a measurable space. Then:
(1) $B_{0}(X, \mathcal{A})$ is dense in $B(X, \mathcal{A})$ (i.e., every bounded complex measurable function is the uniform limit of a sequence of simple measurable complex functions).
(2) If $f: X \rightarrow[0, \infty]$ is measurable, then there exists a sequence of measurable simple functions

$$
0 \leq \phi_{1} \leq \phi_{2} \leq \cdots \leq f
$$

such that $f=\lim \phi_{n}$.
Proof. (1) Since any $f \in B(X, \mathcal{A})$ can be written as

$$
f=u^{+}-u^{-}+\mathrm{i} v^{+}-\mathrm{i} v^{-}
$$

with $u=\Re f$ and $v=\Im f$, it suffices to prove (1) for f with range in $[0, \infty)$. Let N be the first integer such that $N>\sup f$. For $n=1,2, \ldots$, set

$$
\phi_{n}:=\sum_{k=1}^{N 2^{n}} \frac{k-1}{2^{n}} I_{E_{n, k}},
$$

where

$$
E_{n, k}:=f^{-1}\left(\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right)\right) .
$$

The simple functions ϕ_{n} are measurable,

$$
0 \leq \phi_{1} \leq \phi_{2} \leq \cdots \leq f
$$

and

$$
0 \leq f-\phi_{n}<\frac{1}{2^{n}}
$$

so that indeed $\left\|f-\phi_{n}\right\| \leq\left(1 / 2^{n}\right)$, as wanted.
If f has range in $[0, \infty]$, set

$$
\phi_{n}:=\sum_{k=1}^{n 2^{n}} \frac{k-1}{2^{n}} I_{E_{n, k}}+n I_{F_{n}},
$$

where $F_{n}:=[f \geq n]$. Again $\left\{\phi_{n}\right\}$ is a non-decreasing sequence of non-negative measurable simple functions $\leq f$. If $f(x)=\infty$ for some $x \in X$, then $x \in F_{n}$
for all n, and therefore $\phi_{n}(x)=n$ for all n; hence $\lim _{n} \phi_{n}(x)=\infty=f(x)$. If $f(x)<\infty$ for some x, let $n>f(x)$. Then there exists a unique $k, 1 \leq k \leq n 2^{n}$, such that $x \in E_{n, k}$. Then $\phi_{n}(x)=\left((k-1) / 2^{n}\right)$ while $\left((k-1) / 2^{n}\right) \leq f(x)<$ $\left(k / 2^{n}\right)$, so that

$$
0 \leq f(x)-\phi_{n}(x)<1 / 2^{n} \quad(n>f(x))
$$

Hence $f(x)=\lim _{n} \phi_{n}(x)$ for all $x \in X$.

1.2 Positive measures

Definition 1.9. Let (X, \mathcal{A}) be a measurable space. A (positive) measure on \mathcal{A} is a function

$$
\mu: \mathcal{A} \rightarrow[0, \infty]
$$

such that $\mu(\emptyset)=0$ and

$$
\begin{equation*}
\mu\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} \mu\left(E_{k}\right) \tag{1}
\end{equation*}
$$

for any sequence of mutually disjoint sets $E_{k} \in \mathcal{A}$. Property (1) is called σ-additivity of the function μ. The ordered triple (X, \mathcal{A}, μ) will be called a (positive) measure space.

Taking in particular $E_{k}=\emptyset$ for all $k>n$, it follows that

$$
\begin{equation*}
\mu\left(\bigcup_{k=1}^{n} E_{k}\right)=\sum_{k=1}^{n} \mu\left(E_{k}\right) \tag{2}
\end{equation*}
$$

for any finite collection of mutually disjoint sets $E_{k} \in \mathcal{A}, k=1, \ldots, n$. We refer to Property (2) by saying that μ is (finitely) additive.

Any finitely additive function $\mu \geq 0$ on an algebra \mathcal{A} is necessarily monotonic, that is, $\mu(E) \leq \mu(F)$ when $E \subset F(E, F \in \mathcal{A})$; indeed

$$
\mu(F)=\mu(E \cup(F-E))=\mu(E)+\mu(F-E) \geq \mu(E)
$$

If $\mu(E)<\infty$, we get

$$
\mu(F-E)=\mu(F)-\mu(E)
$$

Lemma 1.10. Let (X, \mathcal{A}, μ) be a positive measure space, and let

$$
E_{1} \subset E_{2} \subset E_{3} \subset \cdots
$$

be measurable sets with union E. Then

$$
\mu(E)=\lim _{n} \mu\left(E_{n}\right)
$$

Proof. The sets E_{n} and E can be written as disjoint unions

$$
\begin{aligned}
E_{n} & =E_{1} \cup\left(E_{2}-E_{1}\right) \cup\left(E_{3}-E_{2}\right) \cup \cdots \cup\left(E_{n}-E_{n-1}\right), \\
E & =E_{1} \cup\left(E_{2}-E_{1}\right) \cup\left(E_{3}-E_{2}\right) \cup \cdots,
\end{aligned}
$$

where all differences belong to \mathcal{A}. Set $E_{0}=\emptyset$. By σ-additivity,

$$
\begin{aligned}
\mu(E) & =\sum_{k=1}^{\infty} \mu\left(E_{k}-E_{k-1}\right) \\
& =\lim _{n} \sum_{k=1}^{n} \mu\left(E_{k}-E_{k-1}\right)=\lim _{n} \mu\left(E_{n}\right) .
\end{aligned}
$$

In general, if E_{j} belong to an algebra \mathcal{A} of subsets of X, set $A_{0}=\emptyset$ and $A_{n}=\bigcup_{j=1}^{n} E_{j}, n=1,2, \ldots$ The sets $A_{j}-A_{j-1}, 1 \leq j \leq n$, are disjoint \mathcal{A} measurable subsets of E_{j} with union A_{n}. If μ is a non-negative additive set function on \mathcal{A}, then

$$
\begin{equation*}
\mu\left(\bigcup_{j=1}^{n} E_{j}\right)=\mu\left(A_{n}\right)=\sum_{j=1}^{n} \mu\left(A_{j}-A_{j-1}\right) \leq \sum_{j=1}^{n} \mu\left(E_{j}\right) . \tag{*}
\end{equation*}
$$

This is the subadditivity property of non-negative additive set functions (on algebras).

If \mathcal{A} is a σ-algebra and μ is a positive measure on \mathcal{A}, then since $A_{1} \subset A_{2} \subset \cdots$ and $\bigcup_{n=1}^{\infty} A_{n}=\bigcup_{j=1}^{\infty} E_{j}$, letting $n \rightarrow \infty$ in (*), it follows from Lemma 1.10 that

$$
\mu\left(\bigcup_{j=1}^{\infty} E_{j}\right) \leq \sum_{j=1}^{\infty} \mu\left(E_{j}\right)
$$

This property of positive measures is called σ-subadditivity.
For decreasing sequences of measurable sets, the "dual" of Lemma 1.10 is false in general, unless we assume that the sets have finite measure:

Lemma 1.11. Let $\left\{E_{k}\right\} \subset \mathcal{A}$ be a decreasing sequence (with respect to setinclusion) such that $\mu\left(E_{1}\right)<\infty$. Let $E=\bigcap_{k} E_{k}$. Then

$$
\mu(E)=\lim _{n} \mu\left(E_{n}\right)
$$

Proof. The sequence $\left\{E_{1}-E_{k}\right\}$ is increasing, with union $E_{1}-E$. By Lemma 1.10 and the finiteness of the measures of E and E_{k} (subsets of $E_{1}!$),

$$
\begin{aligned}
\mu\left(E_{1}\right)-\mu(E) & =\mu\left(\bigcup_{k}\left(E_{1}-E_{k}\right)\right) \\
& =\lim \mu\left(E_{1}-E_{n}\right)=\mu\left(E_{1}\right)-\lim \mu\left(E_{n}\right)
\end{aligned}
$$

and the result follows by cancelling the finite number $\mu\left(E_{1}\right)$.

If $\left\{E_{k}\right\}$ is an arbitrary sequence of subsets of X, set $F_{n}=\bigcap_{k \geq n} E_{k}$ and $G_{n}=\bigcup_{k \geq n} E_{k}$. Then $\left\{F_{n}\right\}\left(\left\{G_{n}\right\}\right)$ is increasing (decreasing, respectively), and $F_{n} \subset E_{n} \subset G_{n}$ for all n.

One defines

$$
\liminf _{n} E_{n}:=\bigcup_{n} F_{n} ; \quad \limsup E_{n}:=\bigcap_{n} G_{n}
$$

These sets belong to \mathcal{A} if $E_{k} \in \mathcal{A}$ for all k. The set $\lim \inf E_{n}$ consists of all x that belong to E_{n} for all but finitely many n; the set $\lim \sup E_{n}$ consists of all x that belong to E_{n} for infinitely many n. By Lemma 1.10,

$$
\begin{equation*}
\mu\left(\lim \inf E_{n}\right)=\lim _{n} \mu\left(F_{n}\right) \leq \liminf \mu\left(E_{n}\right) \tag{3}
\end{equation*}
$$

If the measure of G_{1} is finite, we also have by Lemma 1.11

$$
\begin{equation*}
\mu\left(\lim \sup E_{n}\right)=\lim _{n} \mu\left(G_{n}\right) \geq \lim \sup \mu\left(E_{n}\right) \tag{4}
\end{equation*}
$$

1.3 Integration of non-negative measurable functions

Definition 1.12. Let (X, \mathcal{A}, μ) be a positive measure space, and $\phi: X \rightarrow[0, \infty)$ a measurable simple function. The integral over X of ϕ with respect to μ, denoted

$$
\int_{X} \phi d \mu
$$

or briefly

$$
\int \phi d \mu
$$

is the finite sum

$$
\sum_{k} c_{k} \mu\left(E_{k}\right) \in[0, \infty]
$$

where

$$
\phi=\sum_{k} c_{k} I_{E_{k}}, \quad E_{k}=\left[\phi=c_{k}\right]
$$

and c_{k} are the distinct values of ϕ.
Note that

$$
\int I_{E} d \mu=\mu(E) \quad E \in \mathcal{A}
$$

and

$$
\begin{equation*}
0 \leq \int \phi d \mu \leq\|\phi\| \mu([\phi \neq 0]) \tag{1}
\end{equation*}
$$

For an arbitrary measurable function $f: X \rightarrow[0, \infty]$, consider the (non-empty) set S_{f} of measurable simple functions ϕ such that $0 \leq \phi \leq f$, and define

$$
\begin{equation*}
\int f d \mu:=\sup _{\phi \in S_{f}} \int \phi d \mu \tag{2}
\end{equation*}
$$

For any $E \in \mathcal{A}$, the integral over E of f is defined by

$$
\begin{equation*}
\int_{E} f d \mu:=\int f I_{E} d \mu \tag{3}
\end{equation*}
$$

Let ϕ, ψ be measurable simple functions; let c_{k}, d_{j} be the distinct values of ϕ and ψ, taken on the (mutually disjoint) sets E_{k} and F_{j}, respectively. Denote $Q:=\left\{(k, j) \in \mathbb{N}^{2} ; E_{k} \cap F_{j} \neq \emptyset\right\}$.

If $\phi \leq \psi$, then $c_{k} \leq d_{j}$ for $(k, j) \in Q$. Hence

$$
\begin{aligned}
\int \phi d \mu & =\sum_{k} c_{k} \mu\left(E_{k}\right)=\sum_{(k, j) \in Q} c_{k} \mu\left(E_{k} \cap F_{j}\right) \\
& \leq \sum_{(k, j) \in Q} d_{j} \mu\left(E_{k} \cap F_{j}\right)=\sum_{j} d_{j} \mu\left(F_{j}\right)=\int \psi d \mu .
\end{aligned}
$$

Thus, the integral is monotonic on simple functions.
If f is simple, then $\int \phi d \mu \leq \int f d \mu$ for all $\phi \in S_{f}$ (by monotonicity of the integral on simple functions), and therefore the supremum in (2) is less than or equal to the integral of f as a simple function; since $f \in S_{f}$, the reverse inequality is trivial, so that the two definitions of the integral of f coincide for f simple.

Since $S_{c f}=c S_{f}:=\left\{c \phi ; \phi \in S_{f}\right\}$ for $0 \leq c<\infty$, we have (for f as above)

$$
\begin{equation*}
\int c f d \mu=c \int f d \mu \quad(0 \leq c<\infty) \tag{4}
\end{equation*}
$$

If $f \leq g\left(f, g\right.$ as above), $S_{f} \subset S_{g}$, and therefore $\int f d \mu \leq \int g d \mu$ (monotonicity of the integral with respect to the "integrand").

In particular, if $E \subset F$ (both measurable), then $f I_{E} \leq f I_{F}$, and therefore $\int_{E} f d \mu \leq \int_{F} f d \mu$ (monotonicity of the integral with respect to the set of integration).

If $\mu(E)=0$, then any $\phi \in S_{f I_{E}}$ assumes its non-zero values c_{k} on the sets $E_{k} \cap E$, that have measure 0 (as measurable subsets of E), and therefore $\int \phi d \mu=0$ for all such ϕ, hence $\int_{E} f d \mu=0$.

If $f=0$ on E (for some $E \in \mathcal{A}$), then $f I_{E}$ is the zero function, hence has zero integral (by definition of the integral of simple functions!); this means that $\int_{E} f d \mu=0$ when $f=0$ on E.

Consider now the set function

$$
\begin{equation*}
\nu(E):=\int_{E} \phi d \mu \quad E \in \mathcal{A}, \tag{5}
\end{equation*}
$$

for a fixed simple measurable function $\phi \geq 0$. As a special case of the preceding remark, $\nu(\emptyset)=0$. Write $\phi=\sum c_{k} I_{E_{k}}$, and let $A_{j} \in \mathcal{A}$ be mutually disjoint $(j=1,2, \ldots)$ with union A. Then

$$
\phi I_{A}=\sum c_{k} I_{E_{k} \cap A},
$$

so that, by the σ-additivity of μ and the possibility of interchanging summation order when the summands are non-negative,

$$
\begin{aligned}
\nu(A): & =\sum_{k} c_{k} \mu\left(E_{k} \cap A\right)=\sum_{k} c_{k} \sum_{j} \mu\left(E_{k} \cap A_{j}\right) \\
& =\sum_{j} \sum_{k} c_{k} \mu\left(E_{k} \cap A_{j}\right)=\sum_{j} \nu\left(A_{j}\right)
\end{aligned}
$$

Thus ν is a positive measure. This is actually true for any measurable $\phi \geq 0$ (not necessarily simple), but this will be proved later.

If ψ, χ are simple functions as above (the distinct values of ψ and χ being a_{1}, \ldots, a_{p} and b_{1}, \ldots, b_{q}, assumed on the measurable sets F_{1}, \ldots, F_{p} and G_{1}, \ldots, G_{q}, respectively), then the simple measurable function $\phi:=\psi+\chi$ assumes the constant value $a_{i}+b_{j}$ on the set $F_{i} \cap G_{j}$, and therefore, defining the measure ν as shown, we have

$$
\begin{equation*}
\nu\left(F_{i} \cap G_{j}\right)=\left(a_{i}+b_{j}\right) \mu\left(F_{i} \cap G_{j}\right) . \tag{6}
\end{equation*}
$$

But a_{i} and b_{j} are the constant values of ψ and χ on the set $F_{i} \cap G_{j}$ (respectively), so that the right-hand side of (6) equals $\nu^{\prime}\left(F_{i} \cap G_{j}\right)+\nu^{\prime \prime}\left(F_{i} \cap G_{j}\right)$, where ν^{\prime} and $\nu^{\prime \prime}$ are the measures defined as ν, with the integrands ψ and χ instead of ϕ. Summing over all i, j, since X is the disjoint union of the sets $F_{i} \cap G_{j}$, the additivity of the measures ν, ν^{\prime}, and $\nu^{\prime \prime}$ implies that $\nu(X)=\nu^{\prime}(X)+\nu^{\prime \prime}(X)$, that is,

$$
\begin{equation*}
\int(\psi+\chi) d \mu=\int \psi d \mu+\int \chi d \mu \tag{7}
\end{equation*}
$$

Property (7) is the additivity of the integral over non-negative measurable simple functions. This property too is extended later to arbitrary non-negative measurable functions.

Theorem 1.13. Let (X, \mathcal{A}, μ) be a positive measure space. Let

$$
f_{1} \leq f_{2} \leq f_{3} \leq \cdots: X \rightarrow[0, \infty]
$$

be measurable, and denote $f=\lim f_{n}$ (defined pointwise). Then

$$
\begin{equation*}
\int f d \mu=\lim \int f_{n} d \mu \tag{8}
\end{equation*}
$$

This is the Monotone Convergence theorem of Lebesgue.

Proof. By Lemma 1.5, f is measurable (with range in $[0, \infty]$). The monotonicity of the integral (and the fact that $f_{n} \leq f_{n+1} \leq f$) implies that

$$
\int f_{n} d \mu \leq \int f_{n+1} d \mu \leq \int f d \mu
$$

and therefore the limit in (8) exists $(:=c \in[0, \infty])$ and the inequality \geq holds in (8). It remains to show the inequality \leq in (8). Let $0<t<1$. Given $\phi \in S_{f}$, denote

$$
A_{n}=\left[t \phi \leq f_{n}\right]=\left[f_{n}-t \phi \geq 0\right] \quad(n=1,2, \ldots) .
$$

Then $A_{n} \in \mathcal{A}$ and $A_{1} \subset A_{2} \subset \cdots$ (because $f_{1} \leq f_{2} \leq \cdots$). If $x \in X$ is such that $\phi(x)=0$, then $x \in A_{n}$ (for all n). If $x \in X$ is such that $\phi(x)>0$, then $f(x) \geq \phi(x)>t \phi(x)$, and there exists therefore n, for which $f_{n}(x) \geq t \phi(x)$, that is, $x \in A_{n}$ (for that n). This shows that $\bigcup_{n} A_{n}=X$. Consider the measure ν defined by (5) (for the simple function $t \phi$). By Lemma 1.10,

$$
t \int \phi d \mu=\nu(X)=\lim _{n} \nu\left(A_{n}\right)=\lim _{n} \int_{A_{n}} t \phi d \mu
$$

However, $t \phi \leq f_{n}$ on A_{n}, so the integrals on the right are $\leq \int_{A_{n}} f_{n} d \mu \leq \int_{X} f_{n} d \mu$ (by the monotonicity property of integrals with respect to the set of integration). Therefore $t \int \phi d \mu \leq c$, and so $\int \phi d \mu \leq c$ by the arbitrariness of $t \in(0,1)$. Taking the supremum over all $\phi \in S_{f}$, we conclude that $\int f d \mu \leq c$ as wanted.

For arbitrary sequences of non-negative measurable functions we have the following inequality:

Theorem 1.14 (Fatou's lemma). Let $f_{n}: X \rightarrow[0, \infty], \quad n=1,2, \ldots$, be measurable. Then

$$
\int \liminf _{n} f_{n} d \mu \leq \liminf _{n} \int f_{n} d \mu
$$

Proof. We have

$$
\liminf _{n} f_{n}:=\lim _{n}\left(\inf _{k \geq n} f_{k}\right) .
$$

Denote the infimum on the right by g_{n}. Then $g_{n}, n=1,2, \ldots$, are measurable, $g_{n} \leq f_{n}$,

$$
0 \leq g_{1} \leq g_{2} \leq \cdots,
$$

and $\lim _{n} g_{n}=\lim \inf _{n} f_{n}$. By Theorem 1.13,

$$
\int \liminf _{n} f_{n} d \mu=\int \lim g_{n} d \mu=\lim \int g_{n} d \mu
$$

But the integrals on the right are $\leq \int f_{n} d \mu$, therefore their limit is $\leq \liminf \int f_{n} d \mu$.

Another consequence of Theorem 1.13 is the additivity of the integral of non-negative measurable functions.

Theorem 1.15. Let $f, g: X \rightarrow[0, \infty]$ be measurable. Then

$$
\int(f+g) d \mu=\int f d \mu+\int g d \mu
$$

Proof. By the Approximation theorem (Theorem 1.8), there exist simple measurable functions ϕ_{n}, ψ_{n} such that

$$
\begin{gathered}
0 \leq \phi_{1} \leq \phi_{2} \leq \ldots, \quad \lim \phi_{n}=f \\
0 \leq \psi_{1} \leq \psi_{2} \leq \ldots, \quad \lim \psi_{n}=g
\end{gathered}
$$

Then the measurable simple functions $\chi_{n}=\phi_{n}+\psi_{n}$ satisfy

$$
0 \leq \chi_{1} \leq \chi_{2} \leq \ldots, \quad \lim \chi_{n}=f+g
$$

By Theorem 1.13 and the additivity of the integral of (non-negative measurable) simple functions (cf. (7)), we have

$$
\begin{aligned}
\int(f+g) d \mu & =\lim \int \chi_{n} d \mu=\lim \int\left(\phi_{n}+\psi_{n}\right) d \mu \\
& =\lim \int \phi_{n} d \mu+\lim \int \psi_{n} d \mu=\int f d \mu+\int g d \mu
\end{aligned}
$$

The additivity property of the integral is also true for infinite sums of nonnegative measurable functions:

Theorem 1.16 (Beppo Levi). Let $f_{n}: X \rightarrow[0, \infty], n=1,2, \ldots$, be measurable. Then

$$
\int \sum_{n=1}^{\infty} f_{n} d \mu=\sum_{n=1}^{\infty} \int f_{n} d \mu
$$

Proof. Let

$$
g_{k}=\sum_{n=1}^{k} f_{n} ; \quad g=\sum_{n=1}^{\infty} f_{n}
$$

The measurable functions g_{k} satisfy

$$
0 \leq g_{1} \leq g_{2} \leq \ldots, \quad \lim g_{k}=g
$$

and by Theorem 1.15 (and induction)

$$
\int g_{k} d \mu=\sum_{n=1}^{k} \int f_{n} d \mu
$$

Therefore, by Theorem 1.13

$$
\int g d \mu=\lim _{k} \int g_{k} d \mu=\lim _{k} \sum_{n=1}^{k} \int f_{n} d \mu=\sum_{n=1}^{\infty} \int f_{n} d \mu
$$

We may extend now the measure property of ν, defined earlier with a simple integrand, to the general case of a non-negative measurable integrand.

Theorem 1.17. Let $f: X \rightarrow[0, \infty]$ be measurable, and set

$$
\nu(E):=\int_{E} f d \mu, \quad E \in \mathcal{A} .
$$

Then ν is a (positive) measure on \mathcal{A}, and for any measurable $g: X \rightarrow[0, \infty]$,

$$
\begin{equation*}
\int g d \nu=\int g f d \mu \tag{*}
\end{equation*}
$$

Proof. Let $E_{j} \in \mathcal{A}, j=1,2, \ldots$ be mutually disjoint, with union E. Then

$$
f I_{E}=\sum_{j=1}^{\infty} f I_{E_{j}}
$$

and therefore, by Theorem 1.16,

$$
\nu(E):=\int f I_{E} d \mu=\sum_{j} \int f I_{E_{j}} d \mu=\sum_{j} \nu\left(E_{j}\right)
$$

Thus, ν is a measure.
If $g=I_{E}$ for some $E \in \mathcal{A}$, then

$$
\int g d \nu=\nu(E)=\int I_{E} f d \mu=\int g f d \mu
$$

By (4) and Theorem 1.15 (for the measures μ and ν), $\left(^{*}\right)$ is valid for g simple. Finally, for general g, the Approximation theorem (Theorem 1.8) provides a sequence of simple measurable functions

$$
0 \leq \phi_{1} \leq \phi_{2} \leq \cdots ; \quad \lim \phi_{n}=g
$$

Then the measurable functions $\phi_{n} f$ satisfy

$$
0 \leq \phi_{1} f \leq \phi_{2} f \leq \cdots ; \quad \lim \phi_{n} f=g f
$$

and Theorem 1.13 implies that

$$
\int g d \nu=\lim _{n} \int \phi_{n} d \nu=\lim _{n} \int \phi_{n} f d \mu=\int g f d \mu .
$$

Relation $\left({ }^{*}\right)$ is conveniently abbreviated as

$$
d \nu=f d \mu
$$

Observe that if f_{1} and f_{2} coincide almost everywhere (briefly, "a.e." or μ-a.e., if the measure needs to be specified), that is, if they coincide except on a null set $A \in \mathcal{A}$ (more precisely, a μ-null set, that is, a measurable set A such that $\mu(A)=0$), then the corresponding measures ν_{i} are equal, and in particular $\int f_{1} d \mu=\int f_{2} d \mu$. Indeed, for all $E \in \mathcal{A}, \mu(E \cap A)=0$, and therefore

$$
\nu_{i}(E \cap A)=\int_{E \cap A} f_{i} d \mu=0, \quad i=1,2
$$

by one of the observations following Definition 1.12. Hence

$$
\begin{aligned}
\nu_{1}(E) & =\nu_{1}(E \cap A)+\nu_{1}\left(E \cap A^{\mathrm{c}}\right)=\nu_{1}\left(E \cap A^{\mathrm{c}}\right) \\
& =\nu_{2}\left(E \cap A^{\mathrm{c}}\right)=\nu_{2}(E) .
\end{aligned}
$$

1.4 Integrable functions

Let (X, \mathcal{A}, μ) be a positive measure space, and let f be a measurable function with range in $[-\infty, \infty]$ or $\overline{\mathbb{C}}:=\mathbb{C} \cup\{\infty\}$ (the Riemann sphere). Then $|f|$: $X \rightarrow[0, \infty]$ is measurable, and has therefore an integral $(\in[0, \infty])$. In case this integral is finite, we shall say that f is integrable. In that case, the measurable set $[|f|=\infty]$ has measure zero. Indeed, it is contained in $[|f|>n]$ for all $n=1,2, \ldots$, and

$$
n \mu([|f|>n])=\int_{[|f|>n]} n d \mu \leq \int_{[|f|>n]}|f| d \mu \leq \int|f| d \mu .
$$

Hence for all n

$$
0 \leq \mu([|f|=\infty]) \leq \frac{1}{n} \int|f| d \mu
$$

and since the integral on the right is finite, we must have $\mu([|f|=\infty])=0$.
In other words, an integrable function is finite a.e.
We observed previously that non-negative measurable functions that coincide a.e. have equal integrals. This property is desirable in the general case now considered. If f is measurable, and if we redefine it as the finite arbitrary constant c on a set $A \in \mathcal{A}$ of measure zero, then the new function g is also measurable. Indeed, for any open set V in the range space,

$$
[g \in V]=\left\{[g \in V] \cap A^{c}\right\} \cup\{[g \in V] \cap A\} .
$$

The second set on the right is empty if $c \in V^{\mathrm{c}}$, and is A if $c \in V$, thus belongs to \mathcal{A} in any case. The first set on the right is equal to $[f \in V] \cap A^{\mathrm{c}} \in \mathcal{A}$, by the measurability of f. Thus $[g \in V] \in \mathcal{A}$.

If f is integrable, we can redefine it as an arbitrary finite constant on the set $[|f|=\infty]$ (that has measure zero) and obtain a new finite-valued measurable function, whose integral should be the same as the integral of f (by the "desirable" property mentioned before). This discussion shows that we may restrict ourselves to complex (or, as a special case, to real) valued measurable functions.

Definition 1.18. Let (X, \mathcal{A}, μ) be a positive measure space. The function f : $X \rightarrow \mathbb{C}$ is integrable if it is measurable and

$$
\|f\|_{1}:=\int|f| d \mu<\infty
$$

The set of all (complex) integrable functions will be denoted by

$$
L^{1}(X, \mathcal{A}, \mu)
$$

or briefly by $L^{1}(\mu)$ or $L^{1}(X)$ or L^{1}, when the unmentioned "objects" of the measure space are understood.

Defining the operations pointwise, L^{1} is a complex vector space, since the inequality

$$
|\alpha f+\beta g| \leq|\alpha||f|+|\beta||g|
$$

implies, by monotonicity, additivity, and homogeneity of the integral of nonnegative measurable functions:

$$
\|\alpha f+\beta g\|_{1} \leq|\alpha|\|f\|_{1}+|\beta|\|g\|_{1}<\infty
$$

for all $f, g \in L^{1}$ and $\alpha, \beta \in \mathbb{C}$.
In particular, $\|\cdot\|_{1}$ satisfies the triangle inequality (take $\alpha=\beta=1$), and is trivially homogeneous.

Suppose $\|f\|_{1}=0$. For any $n=1,2, \ldots$,

$$
\begin{aligned}
0 & \leq \mu([|f|>1 / n])=\int_{[|f|>1 / n]} d \mu=n \int_{[|f|>1 / n]}(1 / n) d \mu \\
& \leq n \int_{|f|>1 / n]}|f| d \mu \leq n\|f\|_{1}=0
\end{aligned}
$$

so $\mu([|f|>1 / n])=0$. Now the set where f is not zero is

$$
[|f|>0]=\bigcup_{n=1}^{\infty}[|f|>1 / n]
$$

and by the σ-subadditivity property of positive measures, it follows that this set has measure zero. Thus, the vanishing of $\|f\|_{1}$ implies that $f=0$ a.e.
(the converse is trivially true). One verifies easily that the relation " $f=g$ a.e." is an equivalence relation for complex measurable functions (transitivity follows from the fact that the union of two sets of measure zero has measure zero, by subadditivity of positive measures). All the functions f in the same equivalence class have the same value of $\|f\|_{1}$ (cf. discussion following Theorem 1.17).

We use the same notation L^{1} for the space of all equivalence classes of integrable functions, with operations performed as usual on representatives of the classes, and with the $\|\cdot\|_{1}$-norm of a class equal to the norm of any of its representatives; L^{1} is a normed space (for the norm $\|\cdot\|_{1}$). It is customary, however, to think of the elements of L^{1} as functions (rather than equivalence classes of functions!).

If $f \in L^{1}$, then $f=u+\mathrm{i} v$ with $u:=\Re f$ and $v:=\Im f$ real measurable functions (cf. discussion following Lemma 1.7), and since $|u|,|v| \leq|f|$, we have $\|u\|_{1},\|v\|_{1} \leq\|f\|_{1}<\infty$, that is, u, v are real elements of L^{1} (conversely, if u, v are real elements of L^{1}, then $f=u+\mathrm{i} v \in L^{1}$, since L^{1} is a complex vector space).

Writing $u=u^{+}-u^{-}$(and similarly for v), we obtain four non-negative (finite) measurable functions (cf. remarks following Lemma 1.5), and since $u^{+} \leq$ $|u| \leq|f|$ (and similarly for u^{-}, etc.), they have finite integrals. It makes sense therefore to define

$$
\int u d \mu:=\int u^{+} d \mu-\int u^{-} d \mu
$$

(on the right, one has the difference of two finite non-negative real numbers!).
Doing the same with v, we then let

$$
\int f d \mu:=\int u d \mu+\mathrm{i} \int v d \mu
$$

Note that according to this definition,

$$
\Re \int f d \mu=\int \Re f d \mu
$$

and similarly for the imaginary part.
Theorem 1.19. The map $f \rightarrow \int f d \mu \in \mathbb{C}$ is a continuous linear functional on the normed space $L^{1}(\mu)$.

Proof. Consider first real-valued functions $f, g \in L^{1}$. Let $h=f+g$. Then

$$
h^{+}-h^{-}=\left(f^{+}-f^{-}\right)+\left(g^{+}-g^{-}\right),
$$

and since all functions here have finite values,

$$
h^{+}+f^{-}+g^{-}=h^{-}+f^{+}+g^{+} .
$$

By Theorem 1.15,

$$
\int h^{+} d \mu+\int f^{-} d \mu+\int g^{-} d \mu=\int h^{-} d \mu+\int f^{+} d \mu+\int g^{+} d \mu
$$

All integrals above are finite, so we may subtract $\int h^{-}+\int f^{-}+\int g^{-}$from both sides of the equation. This yields:

$$
\int h d \mu=\int f d \mu+\int g d \mu
$$

The additivity of the integral extends trivially to complex functions in L^{1}.
If $f \in L^{1}$ is real and $c \in[0, \infty),(c f)^{+}=c f^{+}$and similarly for f^{-}. Therefore, by (4) (following Definition 1.12),

$$
\int c f d \mu=\int c f^{+} d \mu-\int c f^{-} d \mu=c \int f^{+} d \mu-c \int f^{-} d \mu=c \int f d \mu
$$

If $c \in(-\infty, 0),(c f)^{+}=-c f^{-}$and $(c f)^{-}=-c f^{+}$, and a similar calculation shows again that $\int(c f)=c \int f$. For $f \in L^{1}$ complex and c real, write $f=u+\mathrm{i} v$. Then

$$
\int c f=\int(c u+\mathrm{i} c v):=\int(c u)+\mathrm{i} \int(c v)=c\left(\int u+\mathrm{i} \int v\right):=c \int f .
$$

Note next that

$$
\int(\mathrm{i} f)=\int(-v+\mathrm{i} u)=-\int v+\mathrm{i} \int u=\mathrm{i} \int f
$$

Finally, if $c=a+\mathrm{i} b$ (a, b real), then by additivity of the integral and the previous remarks,

$$
\int(c f)=\int(a f+\mathrm{i} b f)=\int(a f)+\int \mathrm{i} b f=a \int f+\mathrm{i} b \int f=c \int f
$$

Thus

$$
\int(\alpha f+\beta g) d \mu=\alpha \int f d \mu+\beta \int g d \mu
$$

for all $f, g \in L^{1}$ and $\alpha, \beta \in \mathbb{C}$.
For $f \in L^{1}$, let $\lambda:=\int f d \mu(\in \mathbb{C})$. Then, since the left-hand side of the following equation is real,

$$
\begin{aligned}
|\lambda| & =\mathrm{e}^{\mathrm{i} \theta} \lambda=\mathrm{e}^{\mathrm{i} \theta} \int f d \mu=\int\left(\mathrm{e}^{\mathrm{i} \theta} f\right) d \mu=\Re \int\left(\mathrm{e}^{\mathrm{i} \theta} f\right) d \mu=\int \Re\left(\mathrm{e}^{\mathrm{i} \theta} f\right) d \mu \\
& \leq \int\left|\mathrm{e}^{\mathrm{i} \theta} f\right| d \mu=\int|f| d \mu
\end{aligned}
$$

We thus obtained the important inequality

$$
\begin{equation*}
\left|\int f d \mu\right| \leq \int|f| d \mu \tag{1}
\end{equation*}
$$

If $f, g \in L^{1}$, it follows from the linearity of the integral and (1) that

$$
\begin{equation*}
\left|\int f d \mu-\int g d \mu\right|=\left|\int(f-g) d \mu\right| \leq\|f-g\|_{1} \tag{2}
\end{equation*}
$$

In particular, if f and g represent the same equivalence class, then $\|f-g\|_{1}=0$, and therefore $\int f d \mu=\int g d \mu$. This means that the functional $f \rightarrow \int f d \mu$ is well-defined as a functional on the normed space $L^{1}(\mu)$ (of equivalence classes!), and its continuity follows trivially from (2).

In term of sequences, continuity of the integral on the normed space L^{1} means that if $\left\{f_{n}\right\} \subset L^{1}$ converges to f in the L^{1}-metric, then

$$
\begin{equation*}
\int f_{n} d \mu \rightarrow \int f d \mu \tag{3}
\end{equation*}
$$

A useful sufficient condition for convergence in the L^{1}-metric, and therefore, for the validity of (3), is contained in the Dominated Convergence theorem of Lebesgue:

Theorem 1.20. Let (X, \mathcal{A}, μ) be a measure space. Let $\left\{f_{n}\right\}$ be a sequence of complex measurable functions on X that converge pointwise to the function f. Suppose there exists $g \in L^{1}(\mu)$ (with values in $[0, \infty)$) such that

$$
\begin{equation*}
\left|f_{n}\right| \leq g \quad(n=1,2, \ldots) \tag{4}
\end{equation*}
$$

Then $f, f_{n} \in L^{1}(\mu)$ for all n, and $f_{n} \rightarrow f$ in the $L^{1}(\mu)$-metric.
In particular, (3) is valid.
Proof. By Lemma 1.5, f is measurable. By (4) and monotonicity

$$
\|f\|_{1},\left\|f_{n}\right\|_{1} \leq\|g\|_{1}<\infty
$$

so that $f, f_{n} \in L^{1}$.
Since $\left|f_{n}-f\right| \leq 2 g$, the measurable functions $2 g-\left|f_{n}-f\right|$ are non-negative. By Fatou's Lemma (Theorem 1.14),

$$
\begin{equation*}
\int \liminf _{n} \inf \left(2 g-\left|f_{n}-f\right|\right) d \mu \leq \liminf _{n} \int\left(2 g-\left|f_{n}-f\right|\right) d \mu \tag{5}
\end{equation*}
$$

The left-hand side of (5) is $\int 2 g d \mu$. The integral on the right-hand side is $\int 2 g d \mu+\left(-\left\|f_{n}-f\right\|_{1}\right)$, and its liminf is

$$
=\int 2 g d \mu+\lim _{n} \inf \left(-\left\|f_{n}-f\right\|_{1}\right)=\int 2 g d \mu-\underset{n}{\limsup }\left\|f_{n}-f\right\|_{1}
$$

Subtracting the finite number $\int 2 g d \mu$ from both sides of the inequality, we obtain

$$
\limsup _{n}\left\|f_{n}-f\right\|_{1} \leq 0
$$

However, if a non-negative sequence $\left\{a_{n}\right\}$ satisfies $\limsup a_{n} \leq 0$, then it converges to 0 (because $0 \leq \lim \inf a_{n} \leq \limsup a_{n} \leq 0$ implies $\lim \inf a_{n}=$ $\limsup a_{n}=0$). Thus $\left\|f_{n}-f\right\|_{1} \rightarrow 0$.

Rather than assuming pointwise convergence of the sequence $\left\{f_{n}\right\}$ at every point of X, we may assume that the sequence converges almost everywhere, that is, $f_{n} \rightarrow f$ on a set $E \in \mathcal{A}$ and $\mu\left(E^{c}\right)=0$. The functions f_{n} could be defined only a.e., and we could include the countable union of all the sets where these functions are not defined (which is a set of measure zero, by the σ-subadditivity of measures) in the "exceptional" set E^{c}. The limit function f is defined a.e., in any case. For such a function, measurability means that $[f \in V] \cap E \in \mathcal{A}$ for each open set V.

If f_{n} (defined a.e.) converge pointwise a.e. to f, then with E as mentioned, the restrictions $\left.f_{n}\right|_{E}$ are \mathcal{A}_{E}-measurable, where \mathcal{A}_{E} is the σ-algebra $\mathcal{A} \cap E$, because

$$
\left[\left.f_{n}\right|_{E} \in V\right]=\left[f_{n} \in V\right] \cap E \in \mathcal{A}_{E}
$$

By Lemma 1.5, $\left.f\right|_{E}:=\left.\lim f_{n}\right|_{E}$ is \mathcal{A}_{E}-measurable, and therefore the a.e.-defined function f is "measurable" in the above sense. We may define f as an arbitrary constant $c \in \mathbb{C}$ on E^{c}; the function thus extended to X is \mathcal{A}-measurable, as seen by the argument preceding Definition 1.18.

Now $f_{n} I_{E}$ are \mathcal{A}-measurable, converge pointwise everywhere to $f I_{E}$, and if $\left|f_{n}\right| \leq g \in L^{1}$ for all n (wherever the functions are defined), then $\left|f_{n} I_{E}\right| \leq g \in L^{1}$ (everywhere!). By Theorem 1.20,

$$
\left\|f_{n}-f\right\|_{1}=\left\|f_{n} I_{E}-f I_{E}\right\|_{1} \rightarrow 0
$$

We then have the following a.e. version of the Lebesgue Dominated Convergence theorem:

Theorem 1.21. Let $\left\{f_{n}\right\}$ be a sequence of a.e.-defined measurable complex functions on X, converging a.e. to the function f. Let $g \in L^{1}$ be such that $\left|f_{n}\right| \leq g$ for all n (at all points where f_{n} is defined). Then f and f_{n} are in L^{1}, and $f_{n} \rightarrow f$ in the L^{1}-metric (in particular, $\int f_{n} d \mu \rightarrow \int f d \mu$).

A useful "almost everywhere" proposition is the following:
Proposition 1.22. If $f \in L^{1}(\mu)$ satisfies $\int_{E} f d \mu=0$ for every $E \in \mathcal{A}$, then $f=0$ a.e.

Proof. Let $E=[u:=\Re f \geq 0]$. Then $E \in \mathcal{A}$, so

$$
\left\|u^{+}\right\|_{1}=\int_{E} u d \mu=\Re \int_{E} f d \mu=0
$$

and therefore $u^{+}=0$ a.e. Similarly $u^{-}=v^{+}=v^{-}=0$ a.e. (where $v:=\Im f$), so that $f=0$ a.e.

We should remark that, in general, a measurable a.e.-defined function f can be extended as a measurable function on X only by defining it as constant on the exceptional null set E^{c}. Indeed, the null set E^{c} could have a non-measurable subset A. Suppose $f: E \rightarrow \mathbb{C}$ is not onto, and let $a \in f(E)^{\text {c }}$. If we assign on A the (constant complex) value a, and any value $b \in f(E)$ on $E^{c}-A$, then the extended function is not measurable, because $[f=a]=A \notin \mathcal{A}$.

In order to be able to extend f in an arbitrary fashion and always get a measurable function, it is sufficient that subsets of null sets should be measurable (recall that a "null set" is measurable by definition!). A measure space with this property is called a complete measure space. Indeed, let f^{\prime} be an arbitrary extension to X of an a.e.-defined measurable function f, defined on $E \in \mathcal{A}$, with E^{c} null. Then for any open $V \subset \mathbb{C}$,

$$
\left[f^{\prime} \in V\right]=\left(\left[f^{\prime} \in V\right] \cap E\right) \cup\left(\left[f^{\prime} \in V\right] \cap E^{c}\right)
$$

The first set in the union is in \mathcal{A}, by measurability of the a.e.-defined function f; the second set is in \mathcal{A} as a subset of the null set E^{c} (by completeness of the measure space). Hence $\left[f^{\prime} \in V\right] \in \mathcal{A}$, and f^{\prime} is measurable.

We say that the measure space (X, \mathcal{M}, ν) is an extension of the measure space (X, \mathcal{A}, μ) (both on $X!$) if $\mathcal{A} \subset \mathcal{M}$ and $\nu=\mu$ on \mathcal{A}. It is important to know that any measure space (X, \mathcal{A}, μ) has a (unique) "minimal" complete extension (X, \mathcal{M}, ν), where minimality means that if (X, \mathcal{N}, σ) is any complete extension of (X, \mathcal{A}, μ), then it is an extension of (X, \mathcal{M}, ν). Uniqueness is of course trivial. The existence is proved below by a "canonical" construction.

Theorem 1.23. Any measure space (X, \mathcal{A}, μ) has a unique minimal complete extension (X, \mathcal{M}, ν) (called the completion of the given measure space).

Proof. We let \mathcal{M} be the collection of all subsets E of X for which there exist $A, B \in \mathcal{A}$ such that

$$
\begin{equation*}
A \subset E \subset B, \quad \mu(B-A)=0 \tag{6}
\end{equation*}
$$

If $E \in \mathcal{A}$, we may take $A=B=E$ in (6), so $\mathcal{A} \subset \mathcal{M}$. In particular $X \in \mathcal{M}$.
If $E \in \mathcal{M}$ and A, B are as in (6), then $A^{\mathrm{c}}, B^{\mathrm{c}} \in \mathcal{A}$,

$$
B^{\mathrm{c}} \subset E^{\mathrm{c}} \subset A^{\mathrm{c}}
$$

and $\mu\left(A^{\mathrm{c}}-B^{\mathrm{c}}\right)=\mu(B-A)=0$, so that $E^{\mathrm{c}} \in \mathcal{M}$.
If $E_{j} \in \mathcal{M}, j=1,2, \ldots$ and A_{j}, B_{j} are as in (6) (for E_{j}), then if E, A, B are the respective unions of E_{j}, A_{j}, B_{j}, we have $A, B \in \mathcal{A}, A \subset E \subset B$, and

$$
B-A=\bigcup_{j}\left(B_{j}-A\right) \subset \bigcup_{j}\left(B_{j}-A_{j}\right)
$$

The union on the right is a null set (as a countable union of null sets, by σ-subadditivity of measures), and therefore $B-A$ is a null set (by monotonicity of measures). This shows that $E \in \mathcal{M}$, and we conclude that \mathcal{M} is a σ-algebra.

For $E \in \mathcal{M}$ and A, B as in (6), we let $\nu(E)=\mu(A)$. The function ν is well defined on \mathcal{M}, that is, the definition does not depend on the choice of A, B as in (6). Indeed, if A^{\prime}, B^{\prime} satisfy (6) with E, then

$$
A-A^{\prime} \subset E-A^{\prime} \subset B^{\prime}-A^{\prime}
$$

so that $A-A^{\prime}$ is a null set. Hence by additivity of $\mu, \mu(A)=\mu\left(A \cap A^{\prime}\right)+$ $\mu\left(A-A^{\prime}\right)=\mu\left(A \cap A^{\prime}\right)$. Interchanging the roles of A and A^{\prime}, we also have $\mu\left(A^{\prime}\right)=\mu\left(A \cap A^{\prime}\right)$, and therefore $\mu(A)=\mu\left(A^{\prime}\right)$, as wanted.

If $E \in \mathcal{A}$, we could choose $A=B=E$, and so $\nu(E)=\mu(E)$. In particular, $\nu(\emptyset)=0$. If $\left\{E_{j}\right\}$ is a sequence of mutually disjoint sets in \mathcal{M} with union E, and A_{j}, B_{j} are as in (6) (for E_{j}), we observed above that we could choose A for E (for (6)) as the union of the sets A_{j}. Since $A_{j} \subset E_{j}, j=1,2, \ldots$ and E_{j} are mutually disjoint, so are the sets A_{j}. Hence

$$
\nu(E):=\mu(A)=\sum_{j} \mu\left(A_{j}\right):=\sum_{j} \nu\left(E_{j}\right)
$$

and we conclude that (X, \mathcal{M}, ν) is a measure space extending (X, \mathcal{A}, μ). It is complete, because if $E \in \mathcal{M}$ is ν-null and A, B are as in (6), then for any $F \subset E$, we have

$$
\emptyset \subset F \subset B
$$

and since $\mu(B-A)=0$,

$$
\mu(B-\emptyset)=\mu(B)=\mu(A):=\nu(E)=0
$$

so that $F \in \mathcal{M}$.
Finally, suppose (X, \mathcal{N}, σ) is any complete extension of (X, \mathcal{A}, μ), let $E \in \mathcal{M}$, and let A, B be as in (6). Write $E=A \cup(E-A)$. The set $B-A \in \mathcal{A} \subset \mathcal{N}$ is σ-null $(\sigma(B-A)=\mu(B-A)=0)$. By completeness of (X, \mathcal{N}, σ), the subset $E-A$ of $B-A$ belongs to \mathcal{N} (and is of course σ-null). Since $A \in \mathcal{A} \subset \mathcal{N}$, we conclude that $E \in \mathcal{N}$ and $\mathcal{M} \subset \mathcal{N}$. Also since $\sigma=\mu$ on $\mathcal{A}, \sigma(E)=\sigma(A)+\sigma(E-A)=$ $\mu(A):=\nu(E)$, so that $\sigma=\nu$ on \mathcal{M}.

$1.5 \quad L^{p}$-spaces

Let (X, \mathcal{A}, μ) be a (positive) measure space, and let $p \in[1, \infty)$. If $f: X \rightarrow[0, \infty]$ is measurable, so is f^{p} by Lemma 1.6, and therefore $\int f^{p} d \mu \in[0, \infty]$ is well defined. We denote

$$
\|f\|_{p}:=\left(\int f^{p} d \mu\right)^{1 / p}
$$

Theorem 1.24 (Holder's inequality). Let $p, q \in(1, \infty)$ be conjugate exponents, that is,

$$
\begin{equation*}
\frac{1}{p}+\frac{1}{q}=1 \tag{1}
\end{equation*}
$$

Then for all measurable functions $f, g: X \rightarrow[0, \infty]$,

$$
\begin{equation*}
\int f g d \mu \leq\|f\|_{p}\|g\|_{q} \tag{2}
\end{equation*}
$$

Proof. If $\|f\|_{p}=0$, then $\left\|f^{p}\right\|_{1}=0$, and therefore $f=0$ a.e.; hence $f g=0$ a.e., and the left-hand side of (2) vanishes (as well as the right-hand side). By symmetry, the same holds true if $\|g\|_{q}=0$. So we may consider only the case where $\|f\|_{p}$ and $\|g\|_{q}$ are both positive. Now if one of these quantities is infinite,
the right-hand side of (2) is infinite, and (2) is trivially true. So we may assume that both quantities belong to $(0, \infty)$ (positive and finite). Denote

$$
\begin{equation*}
u=f /\|f\|_{p}, \quad v=g /\|g\|_{q} . \tag{3}
\end{equation*}
$$

Then

$$
\begin{equation*}
\|u\|_{p}=\|v\|_{q}=1 . \tag{4}
\end{equation*}
$$

It suffices to prove that

$$
\begin{equation*}
\int u v d \mu \leq 1 \tag{5}
\end{equation*}
$$

because (2) would follow by substituting (3) in (5).
The logarithmic function is concave $\left((\log t)^{\prime \prime}=-\left(1 / t^{2}\right)<0\right)$. Therefore, by (1)

$$
\frac{1}{p} \log s+\frac{1}{q} \log t \leq \log \left(\frac{s}{p}+\frac{t}{q}\right)
$$

for all $s, t \in(0, \infty)$. Equivalently,

$$
\begin{equation*}
s^{1 / p} t^{1 / q} \leq \frac{s}{p}+\frac{t}{q}, \quad s, t \in(0, \infty) . \tag{6}
\end{equation*}
$$

When $x \in X$ is such that $u(x), v(x) \in(0, \infty)$, we substitute $s=u(x)^{p}$ and $t=v(x)^{q}$ in (6) and obtain

$$
\begin{equation*}
u(x) v(x) \leq \frac{u(x)^{p}}{p}+\frac{v(x)^{q}}{q} \tag{7}
\end{equation*}
$$

and this inequality is trivially true when $u(x), v(x) \in\{0, \infty\}$. Thus (7) is valid on X, and integrating the inequality over X, we obtain by (4) and (1)

$$
\int u v d \mu \leq \frac{\|u\|_{p}^{p}}{p}+\frac{\|v\|_{q}^{q}}{q}=\frac{1}{p}+\frac{1}{q}=1 .
$$

Theorem 1.25 (Minkowski's inequality). For any measurable functions $f, g: X \rightarrow[0, \infty]$,

$$
\begin{equation*}
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p} \quad(1 \leq p<\infty) \tag{8}
\end{equation*}
$$

Proof. Since (8) is trivial for $p=1$ (by the additivity of the integral of nonnegative measurable functions, we get even an equality), we consider $p \in(1, \infty)$. The case $\|f+g\|_{p}=0$ is trivial. By convexity of the function t^{p} (for $p>1$), $((s+t) / 2)^{p} \leq\left(s^{p}+t^{p}\right) / 2$ for $s, t \in(0, \infty)$. Therefore, if $x \in X$ is such that $f(x), g(x) \in(0, \infty)$,

$$
\begin{equation*}
(f(x)+g(x))^{p} \leq 2^{p-1}\left[f(x)^{p}+g(x)^{p}\right] \tag{9}
\end{equation*}
$$

and (9) is trivially true if $f(x), g(x) \in\{0, \infty\}$, and holds therefore on X. Integrating, we obtain

$$
\begin{equation*}
\|f+g\|_{p}^{p} \leq 2^{p-1}\left[\|f\|_{p}^{p}+\|g\|_{p}^{p}\right] . \tag{10}
\end{equation*}
$$

If $\|f+g\|_{p}=\infty$, it follows from (10) that at least one of the quantities $\|f\|_{p},\|g\|_{p}$ is infinite, and (8) is then valid (as the trivial equality $\infty=\infty$). This discussion shows that we may restrict our attention to the case

$$
\begin{equation*}
0<\|f+g\|_{p}<\infty \tag{11}
\end{equation*}
$$

We write

$$
\begin{equation*}
(f+g)^{p}=f(f+g)^{p-1}+g(f+g)^{p-1} . \tag{12}
\end{equation*}
$$

By Holder's inequality,

$$
\int f(f+g)^{p-1} d \mu \leq\|f\|_{p}\left\|(f+g)^{p-1}\right\|_{q}=\|f\|_{p}\|f+g\|_{p}^{p / q}
$$

since $(p-1) q=p$ for conjugate exponents p, q. A similar estimate holds for the integral of the second summand on the right-hand side of (12). Adding these estimates, we obtain

$$
\|f+g\|_{p}^{p} \leq\left(\|f\|_{p}+\|g\|_{p}\right)\|f+g\|_{p}^{p / q} .
$$

By (11), we may divide this inequality by $\|f+g\|_{p}^{p / q}$, and (8) follows since $p-p / q=1$.

In a manner analogous to that used for L^{1}, if $p \in[1, \infty)$, we consider the set

$$
L^{p}(X, \mathcal{A}, \mu)
$$

(or briefly, $L^{p}(\mu)$, or $L^{p}(X)$, or L^{p}, when the unmentioned parameters are understood) of all (equivalence classes) of measurable complex functions f on X, with

$$
\|f\|_{p}:=\||f|\|_{p}<\infty
$$

Since $\|\cdot\|_{p}$ is trivially homogeneous, it follows from (8) that L^{p} is a normed space (over \mathbb{C}) for the pointwise operations and the norm $\|\cdot\|_{p}$. We can restate Holder's inequality in the form:

Theorem 1.26. Let $p, q \in(1, \infty)$ be conjugate exponents. If $f \in L^{p}$ and $g \in L^{q}$, then $f g \in L^{1}$, and

$$
\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}
$$

A sufficient condition for convergence in the L^{p}-metric follows at once from Theorem 1.21:

Proposition. Let $\left\{f_{n}\right\}$ be a sequence of a.e.-defined measurable complex functions on X, converging a.e. to the function f. For some $p \in[1, \infty)$, suppose
there exists $g \in L^{p}$ such that $\left|f_{n}\right| \leq g$ for all n (with the usual equivalence class ambiguity). Then $f, f_{n} \in L^{p}$, and $f_{n} \rightarrow f$ in the L^{p}-metric.
Proof. The first statement follows from the inequalities $|f|^{p},\left|f_{n}\right|^{p} \leq g^{p} \in L^{1}$. Since $\left|f-f_{n}\right|^{p} \rightarrow 0$ a.e. and $\left|f-f_{n}\right|^{p} \leq(2 g)^{p} \in L^{1}$, the second statement follows from Theorem 1.21.

The positive measure space (X, \mathcal{A}, μ) is said to be finite if $\mu(X)<\infty$. When this is the case, the Holder inequality implies that $L^{p}(\mu) \subset L^{r}(\mu)$ topologically (i.e., the inclusion map is continuous) when $1 \leq r<p<\infty$. Indeed, if $f \in L^{p}(\mu)$, then by Holder's inequality with the conjugate exponents p / r and $s:=p /(p-r)$,

$$
\begin{aligned}
\|f\|_{r}^{r} & =\int|f|^{r} .1 d \mu \\
& \leq\left[\int\left(|f|^{r}\right)^{p / r} d \mu\right]^{r / p}\left[\int 1^{s} d \mu\right]^{1 / s}=\mu(X)^{1 / s}\|f\|_{p}^{r}
\end{aligned}
$$

Since $1 / r s=(1 / r)-(1 / p)$, we obtain

$$
\begin{equation*}
\|f\|_{r} \leq \mu(X)^{1 / r-1 / p}\|f\|_{p} \tag{13}
\end{equation*}
$$

Hence, $f \in L^{r}(\mu)$, and (13) (with $f-g$ replacing f) shows the continuity of the inclusion map of $L^{p}(\mu)$ into $L^{r}(\mu)$.

Taking in particular $r=1$, we get that $L^{p}(\mu) \subset L^{1}(\mu)$ (topologically) for all $p \geq 1$, and

$$
\begin{equation*}
\|f\|_{1} \leq \mu(X)^{1 / q}\|f\|_{p} \tag{14}
\end{equation*}
$$

where q is the conjugate exponent of p.
We formalize this discussion for future reference.
Proposition. Let (X, \mathcal{A}, μ) be a finite positive measure space. Then $L^{p}(\mu) \subset$ $L^{r}(\mu)$ (topologically) for $1 \leq r<p<\infty$, and the norms inequality (13) holds.

Let (X, \mathcal{A}) and (Y, \mathcal{B}) be measurable spaces, and let $h: X \rightarrow Y$ be a measurable map (cf. Definition 1.2). If μ is a measure on \mathcal{A}, the function $\nu: \mathcal{B} \rightarrow[0, \infty]$ given by

$$
\begin{equation*}
\nu(E)=\mu\left(h^{-1}(E)\right), \quad E \in \mathcal{B} \tag{15}
\end{equation*}
$$

is well defined, and is clearly a measure on \mathcal{B}. Since $I_{h^{-1}(E)}=I_{E} \circ h$, we can write (15) in the form

$$
\int_{Y} I_{E} d \nu=\int_{X} I_{E} \circ h d \mu
$$

By linearity of the integral, it follows that

$$
\begin{equation*}
\int_{Y} f d \nu=\int_{X} f \circ h d \mu \tag{16}
\end{equation*}
$$

for every \mathcal{B}-measurable simple function f on Y. If $f: Y \rightarrow[0, \infty]$ is \mathcal{B}-measurable, use the Approximation Theorem 1.8 to obtain a non-decreasing
sequence $\left\{f_{n}\right\}$ of \mathcal{B}-measurable non-negative simple functions converging pointwise to f; then $\left\{f_{n} \circ h\right\}$ is a similar sequence converging to $f \circ h$, and the Monotone Convergence Theorem shows that (16) is true for all such f.

If $f: Y \rightarrow \mathbb{C}$ is \mathcal{B}-measurable, then $f \circ h$ is a (complex) \mathcal{A}-measurable function on X, and for any $1 \leq p<\infty$,

$$
\int_{Y}|f|^{p} d \nu=\int_{X}|f|^{p} \circ h d \mu=\int_{X}|f \circ h|^{p} d \mu .
$$

Thus, $f \in L^{p}(\nu)$ for some $p \in[1, \infty)$ if and only if $f \circ h \in L^{p}(\mu)$, and

$$
\|f\|_{L^{p}(\nu)}=\|f \circ h\|_{L^{p}(\mu)} .
$$

In particular (case $p=1$), f is ν-integrable on Y if and only if $f \circ h$ is μ-integrable on X. When this is the case, writing f as a linear combination of four nonnegative ν-integrable functions, we see that (16) is valid for all such f.

Proposition. Let (X, \mathcal{A}) and (Y, \mathcal{B}) be measurable spaces, and let $h: X \rightarrow Y$ be a measurable map. For any (positive) measure μ on \mathcal{A}, define $\nu(E):=\mu\left(h^{-1}(E)\right)$ for $E \in \mathcal{B}$. Then:
(1) ν is a (positive) measure on \mathcal{B};
(2) if $f: Y \rightarrow[0, \infty]$ is \mathcal{B}-measurable, then $f \circ h$ is \mathcal{A}-measurable and (16) is valid;
(3) if $f: Y \rightarrow \mathbb{C}$ is \mathcal{B}-measurable, then $f \circ h$ is \mathcal{A}-measurable; $f \in L^{p}(\nu)$ for some $p \in[1, \infty)$ if and only if $f \circ h \in L^{p}(\mu)$, and in that case, the map $f \rightarrow f \circ h$ is norm-preserving; in the special case $p=1$, the map is integral preserving (i.e. (16) is valid).

If ϕ is a simple complex measurable function with distinct non-zero values c_{j} assumed on E_{j}, then

$$
\|\phi\|_{p}^{p}=\sum_{j}\left|c_{j}\right|^{p} \mu\left(E_{j}\right)
$$

is finite if and only if $\mu\left(E_{j}\right)<\infty$ for all j, that is, equivalently, iff

$$
\mu([|\phi|>0])<\infty .
$$

Thus, the simple functions in L^{p} (for any $p \in[1, \infty)$) are the (measurable) simple functions vanishing outside a measurable set of finite measure (depending on the function). These functions are dense in L^{p}. Indeed, if $0 \leq f \in L^{p}$ (without loss of generality, we assume that f is everywhere defined!), the Approximation Theorem provides a sequence of simple measurable functions

$$
0 \leq \phi_{1} \leq \phi_{2} \leq \cdots \leq f
$$

such that $\phi_{n} \rightarrow f$ pointwise. By the proposition following Theorem 1.26, $\phi_{n} \rightarrow f$ in the L^{p}-metric.

For $f \in L^{p}$ complex, we may write $f=\sum_{k=0}^{3} \mathrm{i}^{k} g_{k}$ with $0 \leq g_{k} \in L^{p}$ ($g_{0}:=u^{+}$, etc., where $u=\Re f$). We then obtain four sequences $\left\{\phi_{n, k}\right\}$ of simple
functions in L^{p} converging, respectively, to $g_{k}, k=0, \ldots, 3$, in the L^{p}-metric; if $\phi_{n}:=\sum_{k=0}^{3} \mathrm{i}^{k} \phi_{n, k}$, then ϕ_{n} are simple L^{p}-functions, and $\phi_{n} \rightarrow f$ in the L^{p}-metric. We proved

Theorem 1.27. For any $p \in[1, \infty)$, the simple functions in L^{p} are dense in L^{p}.
Actually, L^{p} is the completion of the normed space of all measurable simple functions vanishing outside a set of finite measure, with respect to the L^{p}-metric (induced by the L^{p}-norm). The meaning of this statement is made clear by the following definition.

Definition 1.28. Let Z be a metric space, with metric d. A Cauchy sequence in Z is a sequence $\left\{z_{n}\right\} \subset Z$ such that $d\left(z_{n}, z_{m}\right) \rightarrow 0$ when $n, m \rightarrow \infty$. The space Z is complete if every Cauchy sequence in Z converges in Z. If $Y \subset Z$ is dense in Z, and Z is complete, we also say that Z is the completion of Y (for the metric d). The completion of Y (for the metric d) is unique in a suitable sense.

A complete normed space is called a Banach space.
In order to get the conclusion preceding Definition 1.28, we still have to prove that L^{p} is complete:

Theorem 1.29. L^{p} is a Banach space for each $p \in[1, \infty)$.
We first prove the following.
Lemma 1.30. Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $L^{p}(\mu)$. Then it has a subsequence converging pointwise μ-a.e.

Proof of Lemma. Since $\left\{f_{n}\right\}$ is Cauchy, there exists $m_{k} \in \mathbb{N}$ such that $\left\|f_{n}-f_{m}\right\|_{p}<1 / 2^{k}$ for all $n>m>m_{k}$. Set

$$
n_{k}=k+\max \left(m_{1}, \ldots, m_{k}\right)
$$

Then $n_{k+1}>n_{k}>m_{k}$, and therefore $\left\{f_{n_{k}}\right\}$ is a subsequence of $\left\{f_{n}\right\}$ satisfying

$$
\begin{equation*}
\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{p}<1 / 2^{k} \quad k=1,2, \ldots \tag{17}
\end{equation*}
$$

Consider the series

$$
\begin{equation*}
g=\sum_{k=1}^{\infty}\left|f_{n_{k+1}}-f_{n_{k}}\right| \tag{18}
\end{equation*}
$$

and its partial sums g_{m}. By Theorem 1.25 and (17),

$$
\left\|g_{m}\right\|_{p} \leq \sum_{k=1}^{m}\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{p}<\sum_{k=1}^{\infty} 1 / 2^{k}=1
$$

for all m. By Fatou's lemma,

$$
\int g^{p} d \mu \leq \liminf _{m} \int g_{m}^{p} d \mu=\liminf _{m}\left\|g_{m}\right\|_{p}^{p} \leq 1
$$

Therefore, $g<\infty$ a.e., that is, the series (18) converges a.e., that is, the series

$$
\begin{equation*}
f_{n_{1}}+\sum_{k=1}^{\infty}\left(f_{n_{k+1}}-f_{n_{k}}\right) \tag{19}
\end{equation*}
$$

converges absolutely pointwise a.e. to its sum f (extended as 0 on the null set where the series does not converge). Since the partial sums of (19) are precisely $f_{n_{m}}$, the lemma is proved.

Proof of Theorem 1.29. Let $\left\{f_{n}\right\} \subset L^{p}$ be Cauchy. Thus for any $\epsilon>0$, there exists $n_{\epsilon} \in \mathbb{N}$ such that

$$
\begin{equation*}
\left\|f_{n}-f_{m}\right\|_{p}<\epsilon \tag{20}
\end{equation*}
$$

for all $n, m>n_{\epsilon}$. By the lemma, let then $\left\{f_{n_{k}}\right\}$ be a subsequence converging pointwise a.e. to the (measurable) complex function f. Applying Fatou's lemma to the non-negative measurable functions $\left|f_{n_{k}}-f_{m}\right|$, we obtain

$$
\begin{equation*}
\left\|f-f_{m}\right\|_{p}^{p}=\int \lim _{k}\left|f_{n_{k}}-f_{m}\right|^{p} d \mu \leq \liminf _{k}\left\|f_{n_{k}}-f_{m}\right\|_{p}^{p} \leq \epsilon^{p} \tag{21}
\end{equation*}
$$

for all $m>n_{\epsilon}$. In particular, $f-f_{m} \in L^{p}$, and therefore $f=\left(f-f_{m}\right)+f_{m} \in L^{p}$, and (21) means that $f_{m} \rightarrow f$ in the L^{p}-metric.

Definition 1.31. Let (X, \mathcal{A}, μ) be a positive measure space, and let $f: X \rightarrow \mathbb{C}$ be a measurable function. We say that $M \in[0, \infty]$ is an a.e. upper bound for $|f|$ if $|f| \leq M$ a.e. The infimum of all the a.e. upper bounds for $|f|$ is called the essential supremum of $|f|$, and is denoted $\|f\|_{\infty}$. The set of all (equivalence classes of) measurable complex functions f on X with $\|f\|_{\infty}<\infty$ will be denoted by $L^{\infty}(\mu)$ (or $L^{\infty}(X)$, or $L^{\infty}(X, \mathcal{A}, \mu)$, or L^{∞}, depending on which "parameter" we wish to stress, if at all).

By definition of the essential supremum, we have

$$
\begin{equation*}
|f| \leq\|f\|_{\infty} \quad \text { a.e. } \tag{22}
\end{equation*}
$$

In particular, $\|f\|_{\infty}=0$ implies that $f=0$ a.e. (that is, f is the zero class).
If $f, g \in L^{\infty}$, then by $(22),|f+g| \leq|f|+|g| \leq\|f\|_{\infty}+\|g\|_{\infty}$ a.e., and so $\|f+g\|_{\infty} \leq\|f\|_{\infty}+\|g\|_{\infty}$.

The homogeneity $\|\alpha f\|_{\infty}=|\alpha|\|f\|_{\infty}$ is trivial if either $\alpha=0$ or $\|f\|_{\infty}=$ 0 . Assume then $|\alpha|,\|f\|_{\infty}>0$. For any $t \in(0,1), t\|f\|_{\infty}<\|f\|_{\infty}$, hence it is not an a.e. upper bound for $|f|$, so that $\mu\left(\left[|f|>t \mid\|f\|_{\infty}\right]\right)>0$, that is, $\mu\left(\left[|\alpha f|>t|\alpha|\|f\|_{\infty}\right]\right)>0$. Therefore, $\|\alpha f\|_{\infty} \geq t|\alpha|\|f\|_{\infty}$ for all $t \in(0,1)$, hence $\|\alpha f\|_{\infty} \geq|\alpha|\|f\|_{\infty}$. The reversed inequality follows trivially from (22), and the homogeneity of $\|\cdot\|_{\infty}$ follows. We conclude that L^{∞} is a normed space (over \mathbb{C}) for the pointwise operations and the L^{∞}-norm $\|\cdot\|_{\infty}$.

We verify its completeness as follows. Let $\left\{f_{n}\right\}$ be a Cauchy sequence in L^{∞}. In particular, it is a bounded set in L^{∞}. Let then $K=\sup _{n}\left\|f_{n}\right\|_{\infty}$. By (22), the sets $F_{k}:=\left[\left|f_{k}\right|>K\right] \quad(k \in \mathbb{N})$ and

$$
E_{n, m}:=\left[\left|f_{n}-f_{m}\right|>\left\|f_{n}-f_{m}\right\|_{\infty}\right] \quad(n, m \in \mathbb{N})
$$

are μ-null, so their (countable) union E is null. For all $x \in E^{c}$,

$$
\left|f_{n}(x)-f_{m}(x)\right| \leq\left\|f_{n}-f_{m}\right\|_{\infty} \rightarrow 0
$$

as $n, m \rightarrow \infty$ and $\left|f_{n}(x)\right| \leq K$. By completeness of \mathbb{C}, the limit $f(x):=$ $\lim _{n} f_{n}(x)$ exists for all $x \in E^{c}$ and $|f(x)| \leq K$. Defining $f(x)=0$ for all $x \in E$, we obtain a measurable function on X such that $|f| \leq K$, that is, $f \in L^{\infty}$. Given $\epsilon>0$, let $n_{\epsilon} \in \mathbb{N}$ be such that

$$
\left\|f_{n}-f_{m}\right\|_{\infty}<\epsilon \quad\left(n, m>n_{\epsilon}\right)
$$

Since $\left|f_{n}(x)-f_{m}(x)\right|<\epsilon$ for all $x \in E^{c}$ and $n, m>n_{\epsilon}$, letting $m \rightarrow \infty$, we obtain $\left|f_{n}(x)-f(x)\right| \leq \epsilon$ for all $x \in E^{c}$ and $n>n_{\epsilon}$, and since $\mu(E)=0$,

$$
\left\|f_{n}-f\right\|_{\infty} \leq \epsilon \quad\left(n>n_{\epsilon}\right)
$$

that is, $f_{n} \rightarrow f$ in the L^{∞}-metric. We proved
Theorem 1.32. L^{∞} is a Banach space.
Defining the conjugate exponent of $p=1$ to be $q=\infty$ (so that $(1 / p)+(1 / q)=1$ is formally valid in the usual sense), Holder's inequality remains true for this pair of conjugate exponents. Indeed, if $f \in L^{1}$ and $g \in L^{\infty}$, then $|f g| \leq\|g\|_{\infty}|f|$ a.e., and therefore $f g \in L^{1}$ and

$$
\|f g\|_{1} \leq\|g\|_{\infty}\|f\|_{1}
$$

Formally
Theorem 1.33. Holder's inequality (Theorem 1.26) is valid for conjugate exponents $p, q \in[1, \infty]$.

1.6 Inner product

For the conjugate pair $(p, q)=(2,2)$, Theorem 1.26 asserts that if $f, g \in L^{2}$, then the product $f \bar{g}$ is integrable, so we may define

$$
\begin{equation*}
(f, g):=\int f \bar{g} d \mu \tag{1}
\end{equation*}
$$

(\bar{g} denotes here the complex conjugate of g). The function (or form) (\cdot, \cdot) has obviously the following properties on $L^{2} \times L^{2}$:
(i) $(f, f) \geq 0$, and $(f, f)=0$ if and only if $f=0$ (the zero element);
(ii) (\cdot, g) is linear for each given $g \in L^{2}$;
(iii) $(g, f)=\overline{(f, g)}$.

Property (i) is called positive definiteness of the form ((\cdot, \cdot); Properties (ii) and (iii) (together) are referred to as sesquilinearity or Hermitianity of the form. We may also consider the weaker condition

$$
\left(\mathrm{i}^{\prime}\right)(f, f) \geq 0 \text { for all } f
$$

called (positive) semi-definiteness of the form.
Definition 1.34. Let X be a complex vector space (with elements x, y, \ldots). A (semi)-inner product on X is a (semi)-definite sesquilinear form (\cdot, \cdot) on X. The space X with a given (semi)-inner product is called a (semi)-inner product space.

If X is a semi-inner product space, the non-negative square root of (x, x) is denoted $\|x\|$.

Thus L^{2} is an inner product space for the inner product (1) and $\|f\|:=$ $(f, f)^{1 / 2}=\|f\|_{2}$. By Theorem 1.26 with $p=q=2$,

$$
\begin{equation*}
|(f, g)| \leq\|f\|_{2}\|g\|_{2} \tag{2}
\end{equation*}
$$

for all $f, g \in L^{2}$. This special case of the Holder inequality is called the CauchySchwarz inequality. We demonstrate below that it is valid in any semi-inner product space.

Observe that any sesquilinear form (\cdot, \cdot) is conjugate linear with respect to its second variable, that is, for each given $x \in X$,

$$
\begin{equation*}
(x, \alpha u+\beta v)=\bar{\alpha}(x, u)+\bar{\beta}(x, v) \tag{3}
\end{equation*}
$$

for all $\alpha, \beta \in \mathbb{C}$ and $u, v \in X$.
In particular

$$
\begin{equation*}
(x, 0)=(0, y)=0 \tag{4}
\end{equation*}
$$

for all $x, y \in X$.
By (ii) and (3), for all $\lambda \in \mathbb{C}$ and $x, y \in X$,

$$
(x+\lambda y, x+\lambda y)=(x, x)+\bar{\lambda}(x, y)+\lambda(y, x)+|\lambda|^{2}(y, y) .
$$

Since $\lambda(y, x)$ is the conjugate of $\bar{\lambda}(x, y)$ by (iii), we obtain the identity (for all $\lambda \in \mathbb{C}$ and $x, y \in X)$

$$
\begin{equation*}
\|x+\lambda y\|^{2}=\|x\|^{2}+2 \Re[\bar{\lambda}(x, y)]+|\lambda|^{2}\|y\|^{2} . \tag{5}
\end{equation*}
$$

In particular, for $\lambda=1$ and $\lambda=-1$, we have the identities

$$
\begin{equation*}
\|x+y\|^{2}=\|x\|^{2}+2 \Re(x, y)+\|y\|^{2} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\|x-y\|^{2}=\|x\|^{2}-2 \Re(x, y)+\|y\|^{2} . \tag{7}
\end{equation*}
$$

Adding, we obtain the so-called parallelogram identity for any s.i.p. (semi-inner product):

$$
\begin{equation*}
\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2} \tag{8}
\end{equation*}
$$

Subtracting (7) from (6), we obtain

$$
\begin{equation*}
4 \Re(x, y)=\|x+y\|^{2}-\|x-y\|^{2} \tag{9}
\end{equation*}
$$

If we replace y by $i y$ in (9), we obtain

$$
\begin{equation*}
4 \Im(x, y)=4 \Re[-\mathrm{i}(x, y)]=4 \Re(x, \mathrm{i} y)=\|x+\mathrm{i} y\|^{2}-\|x-\mathrm{i} y\|^{2} \tag{10}
\end{equation*}
$$

By (9) and (10),

$$
\begin{equation*}
(x, y)=\frac{1}{4} \sum_{k=0}^{3} \mathrm{i}^{k}\left\|x+\mathrm{i}^{k} y\right\|^{2}, \tag{11}
\end{equation*}
$$

where $\mathrm{i}=\sqrt{-1}$. This is the so-called polarization identity (which expresses the s.i.p. in terms of "induced norms").

By (5),

$$
\begin{equation*}
0 \leq\|x\|^{2}+2 \Re[\bar{\lambda}(x, y)]+|\lambda|^{2}\|y\|^{2} \tag{12}
\end{equation*}
$$

for all $\lambda \in \mathbb{C}$ and $x, y \in X$. If $\|y\|>0$, take $\lambda=-(x, y) /\|y\|^{2}$; then $|(x, y)|^{2} /\|y\|^{2} \leq\|x\|^{2}$, and therefore

$$
\begin{equation*}
|(x, y)| \leq\|x\|\|y\| \tag{13}
\end{equation*}
$$

If $\|y\|=0$ but $\|x\|>0$, interchange the roles of x and y and use (iii) to reach the same conclusion. If both $\|x\|$ and $\|y\|$ vanish, take $\lambda=-(x, y)$ in (12): we get $0 \leq-2|(x, y)|^{2}$, hence $|(x, y)|=0=\|x\|\|y\|$, and we conclude that (13) is valid for all $x, y \in X$. This is the general Cauchy-Schwarz inequality for semi-inner products.

By (6) and (13),

$$
\|x+y\|^{2} \leq\|x\|^{2}+2|(x, y)|+\|y\|^{2} \leq\|x\|^{2}+2\|x\|\|y\|+\|y\|^{2}=(\|x\|+\|y\|)^{2}
$$

hence

$$
\|x+y\| \leq\|x\|+\|y\|
$$

for all $x, y \in X$. Taking $x=0$ in (5), we get $\|\lambda y\|=|\lambda|\|y\|$ for all $\lambda \in \mathbb{C}$ and $y \in X$. We conclude that $\|\cdot\|$ is a semi-norm on X; it is a norm iff the s.i.p. is an inner product, that is, iff it is definite. Thus, an inner product space X is a normed space for the norm $\|x\|:=(x, x)^{1 / 2}$ induced by its inner product (unless stated otherwise, this will be the standard norm for such spaces). In case X is complete, it is called a Hilbert space. Thus Hilbert spaces are special cases of Banach spaces.

The norm induced by the inner product (1) on L^{2} is the usual L^{2}-norm $\|\cdot\|_{2}$, so that, by Theorem $1.29, L^{2}$ is a Hilbert space.

1.7 Hilbert space: a first look

We consider some "geometric" properties of Hilbert spaces.
Theorem 1.35 (Distance theorem). Let X be a Hilbert space, and let $K \subset X$ be non-empty, closed, and convex (i.e., $(x+y) / 2 \in K$ whenever $x, y \in K$). Then for each $x \in X$, there exists a unique $k \in K$ such that

$$
\begin{equation*}
d(x, k)=d(x, K) \tag{1}
\end{equation*}
$$

The notation $d(x, y)$ is used for the metric induced by the norm, $d(x, y):=$ $\|x-y\|$. As in any metric space, $d(x, K)$ denotes the distance from x to K, that is,

$$
\begin{equation*}
d(x, K):=\inf _{y \in K} d(x, y) . \tag{2}
\end{equation*}
$$

Proof. Let $d=d(x, K)$. Since $d^{2}=\inf _{y \in K}\|x-y\|^{2}$, there exist $y_{n} \in K$ such that

$$
\begin{equation*}
\left(d^{2} \leq\right)\left\|x-y_{n}\right\|^{2}<d^{2}+1 / n, \quad n=1,2, \ldots \tag{3}
\end{equation*}
$$

By the parallelogram identity,

$$
\begin{aligned}
\left\|y_{n}-y_{m}\right\|^{2} & =\left\|\left(x-y_{m}\right)-\left(x-y_{n}\right)\right\|^{2} \\
& =2\left\|x-y_{m}\right\|^{2}+2\left\|x-y_{n}\right\|^{2}-\left\|\left(x-y_{m}\right)+\left(x-y_{n}\right)\right\|^{2}
\end{aligned}
$$

Rewrite the last term on the right-hand side in the form

$$
4\left\|x-\left(y_{m}+y_{n}\right) / 2\right\|^{2} \geq 4 d^{2}
$$

since $\left(y_{m}+y_{n}\right) / 2 \in K$, by hypothesis. Hence by (3)

$$
\left\|y_{n}-y_{m}\right\|^{2} \leq 2 / m+2 / n \rightarrow 0
$$

as $m, n \rightarrow \infty$. Thus, the sequence $\left\{y_{n}\right\}$ is Cauchy. Since X is complete, the sequence converges in X, and its limit k in necessarily in K because $y_{n} \in K$ for all n and K is closed. By continuity of the norm on X, letting $n \rightarrow \infty$ in (3), we obtain $\|x-k\|=d$, as wanted.

To prove uniqueness, suppose $k, k^{\prime} \in K$ satisfy

$$
\|x-k\|=\left\|x-k^{\prime}\right\|=d
$$

Again by the parallelogram identity,

$$
\begin{aligned}
\left\|k-k^{\prime}\right\|^{2} & =\left\|\left(x-k^{\prime}\right)-(x-k)\right\|^{2} \\
& =2\left\|x-k^{\prime}\right\|^{2}+2\|x-k\|^{2}-\left\|\left(x-k^{\prime}\right)+(x-k)\right\|^{2}
\end{aligned}
$$

As before, write the last term as $4\left\|x-\left(k+k^{\prime}\right) / 2\right\|^{2} \geq 4 d^{2}$ (since $\left(k+k^{\prime}\right) / 2 \in K$ by hypothesis). Hence

$$
\left\|k-k^{\prime}\right\|^{2} \leq 2 d^{2}+2 d^{2}-4 d^{2}=0
$$

and therefore $k=k^{\prime}$.
We say that the vector $y \in X$ is orthogonal to the vector x if $(x, y)=0$. In that case also $(y, x)=\overline{(x, y)}=0$, so that the orthogonality relation is symmetric. For x given, let x^{\perp} denote the set of all vectors orthogonal to x. This is the kernel of the linear functional $\phi=(\cdot, x)$, that is, the set $\phi^{-1}(\{0\})$. As such a kernel, it is a subspace. Since $|\phi(y)-\phi(z)|=|(y-z, x)| \leq\|y-z\|\|x\|$ by Schwarz's inequality, ϕ is continuous, and therefore $x^{\perp}=\phi^{-1}(\{0\})$ is closed. Thus, x^{\perp} is a closed subspace. More generally, for any non-empty subset A of X, define

$$
A^{\perp}:=\bigcap_{x \in A} x^{\perp}=\{y \in Y ;(y, x)=0 \text { for all } x \in A\}
$$

As the intersection of closed subspaces, A^{\perp} is a closed subspace of X.
Theorem 1.36 (Orthogonal decomposition theorem). Let Y be a closed subspace of the Hilbert space X. Then X is the direct sum of Y and Y^{\perp}, that is, each $x \in X$ has the unique orthogonal decomposition $x=y+z$ with $y \in Y$ and $z \in Y^{\perp}$.

Note that the so-called components y and z of x (in Y and Y^{\perp}, respectively) are orthogonal.

Proof. As a closed subspace of X, Y is a non-empty, closed, convex subset of X. By the distance theorem, there exists a unique $y \in Y$ such that

$$
\|x-y\|=d:=d(x, Y)
$$

Letting $z:=x-y$, the existence part of the theorem will follow if we show that $(z, u)=0$ for all $u \in Y$. Since Y is a subspace, and $Y \neq\{0\}$ without loss of generality, every $u \in Y$ is a scalar multiple of a unit vector in Y, so it suffices to prove that $(z, u)=0$ for unit vectors $u \in Y$. For all $\lambda \in \mathbb{C}$, by the identity (5) (following Definition 1.34),

$$
\|z-\lambda u\|^{2}=\|z\|^{2}-2 \Re[\bar{\lambda}(z, u)]+|\lambda|^{2} .
$$

The left-hand side is

$$
\|x-(y+\lambda u)\|^{2} \geq d^{2}
$$

since $y+\lambda u \in Y$. Since $\|z\|=d$, we obtain

$$
0 \leq-2 \Re[\bar{\lambda}(z, u)]+|\lambda|^{2} .
$$

Choose $\lambda=(z, u)$. Then $0 \leq-|(z, u)|^{2}$, so that $(z, u)=0$ as claimed.

If $x=y+z=y^{\prime}+z^{\prime}$ are two decompositions with $y, y^{\prime} \in Y$ and $z, z^{\prime} \in Y^{\perp}$, then $y-y^{\prime}=z^{\prime}-z \in Y \cap Y^{\perp}$, so that in particular $y-y^{\prime}$ is orthogonal to itself (i.e., $\left(y-y^{\prime}, y-y^{\prime}\right)=0$), which implies that $y-y^{\prime}=0$, whence $y=y^{\prime}$ and $z=z^{\prime}$.

We observed in passing that for each given $y \in X$, the function $\phi:=(\cdot, y)$ is a continuous linear functional on the inner product space X. For Hilbert spaces, this is the general form of continuous linear functionals:

Theorem 1.37 ("Little" Riesz representation theorem). Let $\phi: X \rightarrow \mathbb{C}$ be a continuous linear functional on the Hilbert space X. Then there exists a unique $y \in X$ such that $\phi=(\cdot, y)$.

Proof. If $\phi=0$ (the zero functional), take $y=0$. Assume then that $\phi \neq 0$, so that its kernel Y is a closed subspace $\neq X$. Therefore $Y^{\perp} \neq\{0\}$, by Theorem 1.36. Let then $z \in Y^{\perp}$ be a unit vector. Since $Y \cap Y^{\perp}=\{0\}, z \notin Y$, so that $\phi(z) \neq 0$. For any given $x \in X$, we may then define

$$
u:=x-\frac{\phi(x)}{\phi(z)} z
$$

By linearity,

$$
\phi(u)=\phi(x)-\frac{\phi(x)}{\phi(z)} \phi(z)=0
$$

that is, $u \in Y$, and

$$
\begin{equation*}
x=u+\frac{\phi(x)}{\phi(z)} z \tag{4}
\end{equation*}
$$

is the (unique) orthogonal decomposition of x (corresponding to the particular subspace Y, the kernel of ϕ). Define now $y=\overline{\phi(z)} z\left(\in Y^{\perp}\right)$. By (4),

$$
(x, y)=(u, y)+\frac{\phi(x)}{\phi(z)} \phi(z)(z, z)=\phi(x)
$$

since $(u, y)=0$ and $\|z\|=1$. This proves the existence part of the theorem. Suppose now that $y, y^{\prime} \in X$ are such that $\phi(x)=(x, y)=\left(x, y^{\prime}\right)$ for all $x \in X$. Then $\left(x, y-y^{\prime}\right)=0$ for all x, hence in particular $\left(y-y^{\prime}, y-y^{\prime}\right)=0$, which implies that $y=y^{\prime}$.

1.8 The Lebesgue-Radon-Nikodym theorem

We apply the Riesz representation theorem to prove the Lebesgue decomposition theorem and the Radon-Nikodym theorem for (positive) measures.

We start with a measure-theoretic lemma.
The positive measure space (X, \mathcal{A}, μ) is σ-finite if there exists a sequence of mutually disjoint measurable sets X_{j} with union X, such that $\mu\left(X_{j}\right)<\infty$ for all j.

Lemma 1.38 (The averages lemma). Let (X, \mathcal{A}, σ) be a σ-finite positive measure space. Let $g \in L^{1}(\sigma)$ be such that, for all $E \in \mathcal{A}$ with $0<\sigma(E)<\infty$, the "averages"

$$
A_{E}(g):=\frac{1}{\sigma(E)} \int_{E} g d \sigma
$$

are contained in some given closed set $F \subset \mathbb{C}$. Then $g(x) \in F \sigma$-a.e.
Proof. We need to prove that $g^{-1}\left(F^{c}\right)$ is σ-null. Write the open set F^{c} as the countable union of the closed discs

$$
\Delta_{n}:=\left\{z \in \mathbb{C} ;\left|z-a_{n}\right| \leq r_{n}\right\}, \quad n=1,2, \ldots
$$

Then

$$
g^{-1}\left(F^{\mathrm{c}}\right)=\bigcup_{n=1}^{\infty} g^{-1}\left(\Delta_{n}\right)
$$

and it suffices to prove that $E_{\Delta}:=g^{-1}(\Delta)$ is σ-null whenever Δ is a closed disc (with center a and radius r) contained in F^{c}.

Write X as the countable union of mutually disjoint measurable sets X_{k} with $\sigma\left(X_{k}\right)<\infty$. Set $E_{\Delta, k}:=E_{\Delta} \cap X_{k}$, and suppose $\sigma\left(E_{\Delta, k}\right)>0$ for some Δ as above and some k. Since $|g(x)-a| \leq r$ on $E:=E_{\Delta, k}$, and $0<\sigma(E)<\infty$, we have

$$
\left|A_{E}(g)-a\right|=\left|A_{E}(g-a)\right| \leq \frac{1}{\sigma(E)} \int_{E}|g-a| d \sigma \leq r
$$

so that $A_{E}(g) \in \Delta \subset F^{c}$, contradicting the hypothesis. Hence $\sigma\left(E_{\Delta, k}\right)=0$ for all k and therefore $\sigma\left(E_{\Delta}\right)=0$ for all Δ as above.

Lemma 1.39. Let $0 \leq \lambda \leq \sigma$ be finite measures on the measurable space (X, \mathcal{A}). Then there exists a measurable function $g: X \rightarrow[0,1]$ such that

$$
\begin{equation*}
\int f d \lambda=\int f g d \sigma \tag{1}
\end{equation*}
$$

for all $f \in L^{2}(\sigma)$.
Proof. By Definition 1.12, the relation $\lambda \leq \sigma$ between positive measures implies that $\int f d \lambda \leq \int f d \sigma$ for all non-negative measurable functions f. Hence $L^{2}(\sigma) \subset$ $L^{2}(\lambda)\left(\subset L^{1}(\lambda)\right.$, by the second proposition following Theorem 1.26.)

For all $f \in L^{2}(\sigma)$, we have then by Schwarz's inequality:

$$
\left|\int f d \lambda\right| \leq \int|f| d \lambda \leq \int|f| d \sigma \leq \sigma(X)^{1 / 2}\|f\|_{L^{2}(\sigma)}
$$

Replacing f by $f-h$ (with $f, h \in L^{2}(\sigma)$), we get

$$
\left|\int f d \lambda-\int h d \lambda\right|=\left|\int(f-h) d \lambda\right| \leq \sigma(X)^{1 / 2}\|f-h\|_{L^{2}(\sigma)}
$$

so that the functional $f \rightarrow \int f d \lambda$ is a continuous linear functional on $L^{2}(\sigma)$. By the Riesz representation theorem for the Hilbert space $L^{2}(\sigma)$, there exists an element $g_{1} \in L^{2}(\sigma)$ such that this functional is $\left(\cdot, g_{1}\right)$. Letting $g=\overline{g_{1}}\left(\in L^{2}(\sigma)\right)$, we get the wanted relation (1).

Since $I_{E} \in L^{2}(\sigma)$ (because σ is a finite measure), we have in particular

$$
\lambda(E)=\int I_{E} d \lambda=\int_{E} g d \sigma
$$

for all $E \in \mathcal{A}$. If $\sigma(E)>0$,

$$
\frac{1}{\sigma(E)} \int_{E} g d \sigma=\frac{\lambda(E)}{\sigma(E)} \in[0,1] .
$$

By the Averages Lemma 1.38, $g(x) \in[0,1] \sigma$-a.e., and we may then choose a representative of the equivalence class g with range in $[0,1]$.

Terminology. Let $(X, \mathcal{A}, \lambda)$ be a positive measure space. We say that the set $A \in \mathcal{A}$ carries the measure λ (or that λ is supported by A) if $\lambda(E)=\lambda(E \cap A)$ for all $E \in \mathcal{A}$.

This is, of course, equivalent to $\lambda(E)=0$ for all measurable subsets E of A^{c}.
Two (positive) measures λ_{1}, λ_{2} on (X, \mathcal{A}) are mutually singular (notation $\lambda_{1} \perp \lambda_{2}$) if they are carried by disjoint measurable sets A_{1}, A_{2}. Equivalently, each measure is carried by a null set relative to the other measure.

On the other hand, if $\lambda_{2}(E)=0$ whenever $\lambda_{1}(E)=0$ (for $E \in \mathcal{A}$), we say that λ_{2} is absolutely continuous with respect to λ_{1} (notation: $\lambda_{2} \ll \lambda_{1}$).

Equivalently, $\lambda_{2} \ll \lambda_{1}$ if and only if any (measurable) set that carries λ_{1} also carries λ_{2}.

Theorem 1.40 (Lebesgue-Radon-Nikodym). Let (X, \mathcal{A}, μ) be a σ-finite positive measure space, and let λ be a finite positive measure on (X, \mathcal{A}). Then
(a) λ has the unique (so-called) Lebesgue decomposition

$$
\lambda=\lambda_{a}+\lambda_{s}
$$

with $\lambda_{a} \ll \mu$ and $\lambda_{s} \perp \mu$;
(b) there exists a unique $h \in L^{1}(\mu)$ such that

$$
\lambda_{a}(E)=\int_{E} h d \mu
$$

for all $E \in \mathcal{A}$.
(part (a) is the Lebesgue decomposition theorem; part (b) is the RadonNikodym theorem.)

Proof. Case $\mu(X)<\infty$.
Let $\sigma:=\lambda+\mu$. Then the finite positive measures λ, σ satisfy $\lambda \leq \sigma$, so that by Lemma 1.39 , there exists a measurable function $g: X \rightarrow[0,1]$ such that (1) holds, that is, after rearrangement,

$$
\begin{equation*}
\int f(1-g) d \lambda=\int f g d \mu \tag{2}
\end{equation*}
$$

for all $f \in L^{2}(\sigma)$. Define

$$
A:=g^{-1}([0,1)) ; \quad B:=g^{-1}(\{1\})
$$

Then A, B are disjoint measurable sets with union X.
Taking $f=I_{B}\left(\in L^{2}(\sigma)\right.$, since σ is a finite measure) in (2), we obtain $\mu(B)=0$ (since $g=1$ on B). Therefore, the measure λ_{s} defined on \mathcal{A} by

$$
\lambda_{s}(E):=\lambda(E \cap B)
$$

satisfies $\lambda_{s} \perp \mu$.
Define similarly $\lambda_{a}(E):=\lambda(E \cap A)$; this is a positive measure on \mathcal{A}, mutually singular with λ_{s} (since it is carried by $A=B^{\mathrm{c}}$), and by additivity of measures,

$$
\lambda(E)=\lambda(E \cap A)+\lambda(E \cap B)=\lambda_{a}(E)+\lambda_{s}(E)
$$

so that the Lebesgue decomposition will follow if we show that $\lambda_{a} \ll \mu$. This follows trivially from the integral representation (b), which we proceed to prove.

For each $n \in \mathbb{N}$ and $E \in \mathcal{A}$, take in (2)

$$
f=f_{n}:=\left(1+g+\cdots+g^{n}\right) I_{E}
$$

(Since $0 \leq g \leq 1, f$ is a bounded measurable function, hence $f \in L^{2}(\sigma)$.) We obtain

$$
\begin{equation*}
\int_{E}\left(1-g^{n+1}\right) d \lambda=\int_{E}\left(g+g^{2}+\cdots+g^{n+1}\right) d \mu \tag{3}
\end{equation*}
$$

Since $g=1$ on B, the left-hand side equals $\int_{E \cap A}\left(1-g^{n+1}\right) d \lambda$. However, $0 \leq g<1$ on A, so that the integrands form a non-decreasing sequence of non-negative measurable functions converging pointwise to 1. By the monotone convergence theorem, the left-hand side of (3) converges therefore to $\lambda(E \cap A)=\lambda_{a}(E)$. The integrands on the right-hand side of (3) form a nondecreasing sequence of non-negative measurable functions converging pointwise to the (measurable) function

$$
h:=\sum_{n=1}^{\infty} g^{n} .
$$

Again, by monotone convergence, the right-hand side of (3) converges to $\int_{E} h d \mu$, and the representation (b) follows. Taking in particular $E=X$, we get

$$
\|h\|_{L^{1}(\mu)}=\int_{X} h d \mu=\lambda_{a}(X)=\lambda(A)<\infty
$$

so that $h \in L^{1}(\mu)$, and the existence part of the theorem is proved in case $\mu(X)<\infty$.

General case. Let $X_{j} \in \mathcal{A}$ be mutually disjoint, with union X, such that $0<\mu\left(X_{j}\right)<\infty$. Define

$$
w=\sum_{j} \frac{1}{2^{j} \mu\left(X_{j}\right)} I_{X_{j}} .
$$

This is a strictly positive μ-integrable function, with $\|w\|_{1}=1$. Consider the positive measure

$$
\nu(E)=\int_{E} w d \mu
$$

Then $\nu(X)=\|w\|_{1}=1$, and $\nu \ll \mu$. On the other hand, if $\nu(E)=0$, then $\sum_{j}\left(1 / 2^{j} \mu\left(X_{j}\right)\right) \mu\left(E \cap X_{j}\right)=0$, hence $\mu\left(E \cap X_{j}\right)=0$ for all j, and therefore $\mu(E)=0$. This shows that $\mu \ll \nu$ as well (one says that the measures μ and ν are mutually absolutely continuous, or equivalent).

Since ν is a finite measure, the first part of the proof gives the decomposition $\lambda=\lambda_{a}+\lambda_{s}$ with $\lambda_{a} \ll \nu$ (hence $\lambda_{a} \ll \mu$ by the trivial transitivity of the relation \ll), and $\lambda_{s} \perp \nu$ (hence $\lambda_{s} \perp \mu$, because λ_{s} is supported by a ν-null set, which is also μ-null, since $\mu \ll \nu$). The first part of the proof gives also the representation (cf. Theorem 1.17)

$$
\lambda_{a}(E)=\int_{E} h d \nu=\int_{E} h w d \mu=\int_{E} \tilde{h} d \mu
$$

where $\tilde{h}:=h w$ is non-negative, measurable, and

$$
\|\tilde{h}\|_{1}=\int_{X} \tilde{h} d \mu=\lambda_{a}(X) \leq \lambda(X)<\infty
$$

This completes the proof of the "existence part" of the theorem in the general case.

To prove the uniqueness of the Lebesgue decomposition, suppose

$$
\lambda=\lambda_{a}+\lambda_{s}=\lambda_{a}^{\prime}+\lambda_{s}^{\prime}
$$

with

$$
\lambda_{a}, \lambda_{a}^{\prime} \ll \mu \quad \text { and } \quad \lambda_{s}, \lambda_{s}^{\prime} \perp \mu .
$$

Let B be a μ-null set that carries both λ_{s} and λ_{s}^{\prime}. Then

$$
\lambda_{a}(B)=\lambda_{a}^{\prime}(B)=0 \quad \text { and } \quad \lambda_{s}\left(B^{\mathrm{c}}\right)=\lambda_{s}^{\prime}\left(B^{\mathrm{c}}\right)=0
$$

so that for all $E \in \mathcal{A}$,

$$
\begin{aligned}
\lambda_{a}(E) & =\lambda_{a}\left(E \cap B^{\mathrm{c}}\right)=\lambda\left(E \cap B^{\mathrm{c}}\right) \\
& =\lambda_{a}^{\prime}\left(E \cap B^{\mathrm{c}}\right)=\lambda_{a}^{\prime}(E),
\end{aligned}
$$

hence also $\lambda_{s}(E)=\lambda_{s}^{\prime}(E)$.

In order to prove the uniqueness of h in (b), suppose $h, h^{\prime} \in L^{1}(\mu)$ satisfy

$$
\lambda_{a}(E)=\int_{E} h d \mu=\int_{E} h^{\prime} d \mu .
$$

Then $h-h^{\prime} \in L^{1}(\mu)$ satisfies $\int_{E}\left(h-h^{\prime}\right) d \mu=0$ for all $E \in \mathcal{A}$, and it follows from Proposition 1.22 that $h-h^{\prime}=0 \mu$-a.e., that is, $h=h^{\prime}$ as elements of $L^{1}(\mu)$.

If the measure λ is absolutely continuous with respect to μ, it has the trivial Lebesgue decomposition $\lambda=\lambda+0$, with the zero measure as singular part. By uniqueness, it follows that $\lambda_{a}=\lambda$, and therefore Part 2 of the theorem gives the representation $\lambda(E)=\int_{E} h d \mu$ for all $E \in \mathcal{A}$. Conversely, such an integral representation of λ implies trivially that $\lambda \ll \mu$ (if $\mu(E)=0$, the function $h I_{E}=0 \mu$-a.e., and therefore $\left.\lambda(E)=\int f I_{E} d \mu=0\right)$. Thus

Theorem 1.41 (Radon-Nikodym). Let (X, \mathcal{A}, μ) be a σ-finite positive measure space. A finite positive measure λ on \mathcal{A} is absolutely continuous with respect to μ if and only if there exists $h \in L^{1}(\mu)$ such that

$$
\begin{equation*}
\lambda(E)=\int_{E} h d \mu \quad(E \in \mathcal{A}) . \tag{*}
\end{equation*}
$$

By Theorem 1.17, Relation (*) implies that

$$
\begin{equation*}
\int g d \lambda=\int g h d \mu \tag{**}
\end{equation*}
$$

for all non-negative measurable functions g on X. Since we may take $g=I_{E}$ in $\left({ }^{* *}\right)$, this last relation implies $\left({ }^{*}\right)$. As mentioned after Theorem 1.17, these equivalent relations are symbolically written in the form $d \lambda=h d \mu$. It follows easily from Theorem 1.17 that, in that case, if $g \in L^{1}(\lambda)$, then $g h \in L^{1}(\mu)$ and (**) is valid for such (complex) functions g. The function h is called the Radon-Nikodym derivative of λ with respect to μ, and is denoted $d \lambda / d \mu$.

1.9 Complex measures

Definition 1.42. Let (X, \mathcal{A}) be an arbitrary measurable space. A complex measure on \mathcal{A} is a σ-additive function $\mu: \mathcal{A} \rightarrow \mathbb{C}$, that is,

$$
\begin{equation*}
\mu\left(\bigcup_{n} E_{n}\right)=\sum_{n} \mu\left(E_{n}\right) \tag{1}
\end{equation*}
$$

for any sequence of mutually disjoint sets $E_{n} \in \mathcal{A}$.
Since the left-hand side of (1) is independent of the order of the sets E_{n} and is a complex number, the right-hand side converges in \mathbb{C} unconditionally, hence absolutely. Taking $E_{n}=\emptyset$ for all n, the convergence of (1) shows that $\mu(\emptyset)=0$. It follows that μ is (finitely) additive, and since its values are complex numbers,
it is "subtractive" as well (i.e., $\mu(E-F)=\mu(E)-\mu(F)$ whenever $E, F \in \mathcal{A}$, $F \subset E)$.

A partition of $E \in \mathcal{A}$ is a sequence of mutually disjoint sets $A_{k} \in \mathcal{A}$ with union equal to E. We set

$$
\begin{equation*}
|\mu|(E):=\sup \sum_{k}\left|\mu\left(A_{k}\right)\right|, \tag{2}
\end{equation*}
$$

where the supremum is taken over all partitions of E.
Theorem 1.43. Let μ be a complex measure on \mathcal{A}, and define $|\mu|$ by (2). Then $|\mu|$ is a finite positive measure on \mathcal{A} that dominates μ (i.e., $|\mu(E)| \leq|\mu|(E)$ for all $E \in \mathcal{A}$).

Proof. Let $E=\bigcup E_{n}$ with $E_{n} \in \mathcal{A}$ mutually disjoint ($n \in \mathbb{N}$). For any partition $\left\{A_{k}\right\}$ of $E,\left\{A_{k} \cap E_{n}\right\}_{k}$ is a partition of $E_{n}(n=1,2, \ldots)$, so that

$$
\sum_{k}\left|\mu\left(A_{k} \cap E_{n}\right)\right| \leq|\mu|\left(E_{n}\right), \quad n=1,2, \ldots
$$

We sum these inequalities over all n, interchange the order of summation in the double sum (of non-negative terms!), and use the triangle inequality to obtain

$$
\sum_{n}|\mu|\left(E_{n}\right) \geq \sum_{k}\left|\sum_{n} \mu\left(A_{k} \cap E_{n}\right)\right|=\sum_{k}\left|\mu\left(A_{k}\right)\right|,
$$

since $\left\{A_{k} \cap E_{n}\right\}_{n}$ is a partition of A_{k}, for each $k \in \mathbb{N}$. Taking now the supremum over all partitions $\left\{A_{k}\right\}$ of E, it follows that

$$
\begin{equation*}
\sum_{n}|\mu|\left(E_{n}\right) \geq|\mu|(E) . \tag{3}
\end{equation*}
$$

On the other hand, given $\epsilon>0$, there exists a partition $\left\{A_{n, k}\right\}_{k}$ of E_{n} such that

$$
\sum_{k}\left|\mu\left(A_{n, k}\right)\right|>|\mu|\left(E_{n}\right)-\epsilon / 2^{n}, \quad n=1,2, \ldots
$$

Since $\left\{A_{n, k}\right\}_{n, k}$ is a partition of E, we obtain

$$
|\mu|(E) \geq \sum_{n, k}\left|\mu\left(A_{n, k}\right)\right|>\sum_{n}|\mu|\left(E_{n}\right)-\epsilon .
$$

Letting $\epsilon \rightarrow 0+$ and using (3), we conclude that $|\mu|$ is σ-additive. Since $|\mu|(\emptyset)=0$ is trivial, $|\mu|$ is indeed a positive measure on \mathcal{A}.

In order to show that the measure $|\mu|$ is finite, we need the following.

