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1
Introduction

The question of the microscopic composition of matter has preoccupied natural
philosophers since at least as far back as the 5th century BC. The atomic hypothesis,
i.e. the existence of “elementary” constituents, is attributed to Democritus of Abdera
(c.460 – c.370 BC). Determining the nature of these constituents and understanding
the interactions among them is the subject of a branch of fundamental physics called
the physics of elementary particles. It is the subject of this book. In the past few
decades this field has gone through a “phase transition”. At first sight the critical time
was somewhere between the late 1960s and the early 1970s when the theory, which
became known as the Standard Model, was fully formulated. However, this is only
part of the story and the term “phase transition” may be misleading. It took several
decades of intense effort by experimentalists and theorists, both before and after the
“critical point”, for the various ingredients of this Model to be discovered and for
its main predictions to be computed theoretically and verified experimentally. The
agreement has been impressive to the extent that we should no more talk about the
Standard Model, but rather the Standard Theory.

This transition has brought profound changes in our way of thinking and under-
standing the nature of the fundamental forces. The changes are subtle and a casual
observer may miss them. Superficially the Standard Model is not fundamentally dif-
ferent from other models that people have considered for many years. They are all
based on relativistic quantum mechanics or, as it is usually called, quantum field the-
ory. This has been the language of elementary particle physics since the early 1930s,
when Enrico Fermi introduced the notion of a quantum field associated with every
elementary particle. The main new element brought by the Standard Model concerns
the nature of the interactions between these various quantum fields. In the old days
the interactions were chosen on purely phenomenological grounds, like the various po-
tential functions V (x) used in non-relativistic quantum mechanics. The new vision
brought by the Standard Model is based on geometry: the interactions are required
to satisfy a certain geometrical principle. In the physicists’ jargon this principle is
called gauge invariance; in mathematics it is a branch of differential geometry. This
“geometrisation” of physics is the main legacy of the Standard Model.1

It is the purpose of this book to present and explain this modern viewpoint to
a readership of well-motivated undergraduate students. It is our impression that, al-
though the Standard Model is well established in elementary particle physics and is

1Above the entrance of Plato’s Academy there was the inscription: “Mηδέις αγεωµέτρητoς εισ́ιτω
µoι τη ϑύρα”, i.e. “Let no one ignorant of geometry enter my door”.
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2 1 Introduction

widely used, its underlying principles are not easily found in books that undergrad-
uate students usually read. Our ambition is to show that this theory is more than
an efficient way to compute scattering amplitudes at lowest order in the perturbation
expansion. The subjects we cover and the way we choose to present them are dictated
by this goal. We believe that it is time to introduce undergraduate students to these
new concepts and methods. And we mean physics concepts. Mathematics will be in-
troduced only when it is absolutely needed. The emphasis will be on the theoretical
aspects, and this choice is partly due to our own competence and partly to limitations
of space. A good exposition of experimental techniques would take a second volume.

The plan of the book is as follows: We start with a presentation of Dirac’s theory of
spontaneous emission in atomic physics. This makes it possible to introduce concepts
such as the quantised radiation field, canonical commutation relations, creation and
annihilation operators, gauge invariance and gauge fixing, but also transition proba-
bilities and Fermi’s golden rule, and all these in a concrete and well-defined physical
context. Indeed the problem we were facing was that presenting the Standard Model
required lengthy chapters of pure formalism before real physics questions could be
addressed.

In the following two chapters we recall some results from classical field theory and
we introduce the scattering formalism in non-relativistic quantum mechanics. Chapter
5 presents an elementary introduction to the theory of Lie groups and Lie algebras,
including Lorentz and Poincaré. The student who has attended a course on group
theory may go very fast through it.

Chapter 6 constitutes the introduction to the physics of elementary particles. It
is phenomenological and follows, to a certain extent, the historical evolution of the
field during the twentieth century. History is not our primary goal, but we believe
that it helps in understanding the birth and development of new ideas. The following
two chapters present, in a systematic way, the classical relativistic wave equations for
fields of low spin and the attempts to use them in order to build a relativistic one-
particle quantum mechanics. We derive the well known result that all these attempts
point unambiguously to a system with an infinite number of degrees of freedom, i.e.
to quantum field theory.

Going from a classical field theory to its quantum descendant is the object of
Chapters 9–12. We decided to do it using Feynman’s path integral method. Several
reasons made us choose this approach, although it is somewhat unorthodox for an
undergraduate textbook. First, we believe that the sum over histories, with its re-
lations to stochastic processes, offers a more profound vision of the quantum world.
Second, it is by far the most practical way to obtain the quantum theory of a non-
linear constrained system, such as a Yang–Mills theory. Third, and very important,
it offers the only quantisation method that is not restricted to the perturbation ex-
pansion. The path integral formulation does not assume that the coupling is weak. In
fact, appropriately truncated on a space-time lattice, it becomes suitable for numerical
simulations in the strong coupling regime. Non-perturbative results from lattice sim-
ulations have already reached a remarkable precision, and their agreement with the
observed hadronic spectrum is impressive. Furthermore, in the coming years, with the
continuing rise in computing power, the importance of these calculations is predicted
to increase accordingly.
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A systematic introduction to gauge invariant theories and the phenomenon of
spontaneous symmetry breaking are the subjects of Chapters 13 and 14. We want
to emphasise the conceptual step involved in the introduction of gauge invariant the-
ories. What we physicists call “gauge fields” are not like any other field. The correct
mathematical description is given by differential geometry, but we present a simpli-
fied version based on a formulation on a space-time lattice. Lattice field theory is poor
man’s differential geometry.

A book on particle physics today cannot be limited to the calculation of tree-
level Feynman diagrams. The precision of the experiments is such that a meaningful
comparison requires us to take into account the effects of higher orders. This cannot
be done consistently without some notions from the theory of renormalisation and the
renormalisation group. They can be found in Chapter 15. A simple treatment of the
infrared divergences associated with massless particles is given in Chapter 17.

Chapters 16 to 21 present the Standard Model. They contain a one-loop calculation
of the electron gyromagnetic ratio in quantum electrodynamics, the phenomenology
of the weak interactions, the SU(2) × U(1) electroweak gauge theory and quan-
tum chromodynamics. A discussion of neutrino physics, with the poorly understood
phenomenon of neutrino oscillations, can be found in Chapter 20

We end with Chapter 22, which offers a panorama of the comparison of the Stan-
dard Model theoretical predictions with experimental measurements, including the
most recent results. When the Large Hadron Collider (LHC) started operating in 2008
we were all expecting new physics to be around the corner. Today, more than a decade
later, we must admit that no corner has been found. The reasons why we still believe
that there must be physics beyond the Standard Model are briefly exposed in the last
chapter. Finally, in an appendix we explain the notation we are using and present a
collection of some useful formulae.

One of us (J.I.) has recently co-authored a book on quantum field theory.2 Although
the scope and level of this present book are different, there is some overlap in chapters
that are common to both.

2“From Classical to Quantum Fields”, by Laurent Baulieu, J.I. and Roland Sénéor, Oxford
University Press 2017.



2
Quantisation of the Electromagnetic
Field and Spontaneous
Photon Emission

2.1 Introduction
The first great success of quantum mechanics was the accurate description of atomic
spectra. However, this very success also showed its limitations. Indeed, by solving the
Schrödinger equation, we find the eigenstates of the Hamiltonian which correspond to
the stationary states. It follows that all levels should describe stable states of the atom.
On the other hand, we know experimentally, that only the ground state is stable. All
excited states decay by the emission of one or more quanta of radiation – photons.
Here we shall analyse the simplest case

A(n) → A(0) + γ (2.1)

in which the transition to the ground state is a single-step process accompanied by
the emission of one photon. A(n) represents the atom in the n-th excited state and
A(0) the same atom in the ground state. The phenomenon is known as spontaneous
emission of radiation, and it is not described by the Schrödinger equation. It was the
need to compute the rate of such decays that prompted Dirac in 1927 to develop and
use the quantum description of the electromagnetic field.

In quantum mechanics the time evolution of a physical system is given by the
operator U(t, t0) = e−iH(t−t0), where H is the Hamiltonian. So, we must first find the
Hamiltonian which, when applied to the state A(n), can yield the atom in its ground
state and a photon. In other words, this Hamiltonian should have terms with non-zero
matrix elements between states containing different numbers of particles. Since this
will turn out to be a central theme in our efforts to describe the phenomena we observe
in particle physics experiments, it will be useful, as a warm-up exercise, to start with
this problem of atomic physics. It will allow us to introduce, in a well-defined physical
context, several concepts that will be essential later.

2.2 The Principle of Canonical Quantisation
In the following we shall follow Dirac and build up a formalism, which will make it
possible for particles to be created, or absorbed, as a result of the interaction. This
formalism will turn out to be that of a quantised field theory and we will study first
the quantum theory of the electromagnetic field.

Elementary Particle Physics. John Iliopoulos and Theodore N. Tomaras, Oxford University Press.
© John Iliopoulos and Theodore N. Tomaras (2021). DOI: 10.1093/oso/9780192844200.003.0002



2.2 The Principle of Canonical Quantisation 5

Let us start with a brief reminder of the principle of canonical quantisation. It is
based on the knowledge of the physical system at the classical level. Let us consider, as
an example, a system with one degree of freedom. In classical mechanics it is described
by a generalised coordinate q(t) and its canonical conjugate momentum p(t). The so-
called “canonical quantisation” of this system is given, by definition, by the prescription
according to which q and p are promoted to operators, acting in a certain Hilbert space,
and satisfying the equal time commutation rule1

[q̂(t), p̂(t)] = ih̄ (2.2)

where we have used the notation Â to denote the operator corresponding to the clas-
sical quantity A.2 We recover the classical theory in the limit h̄ → 0, in which the
operators become commuting variables.

This prescription to pass from a classical to a quantum system generalises easily
to n degrees of freedom. The commutation relation (2.2) becomes

[q̂I(t), p̂J(t)] = ih̄δIJ , [q̂I(t), q̂J(t)] = [p̂I(t), p̂J(t)] = 0 , I, J = 1, . . . , n (2.3)

A special case of a system given by (2.3) consists of α = 1, 2, . . . , s degrees of freedom
living on each site of a space lattice with N points and lattice spacing a. In that case
the index I is naturally denoted as I = {i, α} with i = 1, 2, . . . , N labelling the lattice
points and n = sN . For s = 1, in particular, the indices i and j denote both the lattice
points and the variable at each point. We have studied such systems in statistical
mechanics where we often considered the limit N → ∞. We can also consider an
appropriate double limit N →∞ and a→ 0, in which i becomes the label x of points
of the spatial continuum and qI(t) → qx,α(t), which we shall write conveniently as
qα(t,x). We thus obtain a system with s continuous infinities of degrees of freedom. In
classical physics such a system is called a classical field and the best known example
is the electromagnetic field.

If the classical theory is well defined and the canonical variables qα(t,x) and pβ(t,x)
correctly identified, the quantisation of such a system is, in principle, straightforward:
The commutation relation (2.3) is replaced by

[q̂α(t,x), p̂β(t,y)] = ih̄δαβδ
3(x − y) (2.4)

with the remaining equal time commutators of two q’s, as well as of two p’s equal to
zero. We notice that the right-hand side of the relations (2.4) is proportional to the
Dirac δ-function, which is not a “function” in the usual sense of the word. In particular,
the square, or any power of it, cannot be defined. In mathematics, such generalised
functions are called distributions. It follows that the operators q̂ and p̂ must also be

1In the usual formulation of non-relativistic quantum mechanics, the so-called Schrödinger rep-
resentation, states |Ψ(t)⟩ depend on time, and evolve according to |Ψ(t)⟩ = U(t, 0) |Ψ(0)⟩ =
exp(−iHt) |Ψ(0)⟩, while observables A without explicit time dependence are represented by time-
independent operators AS . In the commutation relation (2.2) we used the Heisenberg represen-
tation, in which the states are fixed |Ψ(0)⟩ = U−1(t, 0) |Ψ(t)⟩ and the observables AH(t) =
U−1(t, 0)ASU(t, 0) are time-dependent. At t = 0 the two coincide: AH(0) = AS .

2In order to simplify the formulae we will often drop the “hat” if there is no danger of confusion.
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represented by distributions, and we expect their powers to be ill defined. We say
that q̂ and p̂ are not operator valued functions of the space point, but become instead
operator valued distributions. This leads to some mathematical difficulties, which are
common to all quantum field theories and which are only partially mastered. We shall
come back to this point quite often in this book.

As promised, we next apply this programme to the electromagnetic field and obtain
the quantum descendant of Maxwell’s theory. It will be our first example of a quantum
field theory and the only one which has a well known classical limit.

2.3 The Quantum Theory of Radiation
2.3.1 Maxwell’s theory as a classical field theory
The simplest version of Maxwell’s equations takes the form3

∇ ·E = ρ , ∇ ·B = 0 (2.5)

∇ ∧B − ∂E
∂t

= j , ∇ ∧E +
∂B
∂t

= 0 (2.6)

where E(t,x) and B(t,x) are the electric and magnetic fields, respectively, while ρ(t,x)
and j(t,x) are the external electric charge and current densities. Consistency of (2.5),
(2.6), requires that ρ and j satisfy the continuity condition: ∂ρ/∂t+∇·j = 0. According
to our recipe, if we want to describe this system as a classical field theory, we must first
identify a set of independent variables qα(t,x). These cannot be the six components
of E(t,x) and B(t,x) because they are constrained by the first two equations (2.5).
We should solve these constraints and eliminate the redundant variables.

It seems that a first step in this direction was taken by Gauss in 1835, long before
Maxwell wrote his equations. It consists of introducing the vector and scalar potentials
A(t,x) and ϕ(t,x). It will be convenient to use a compact relativistic notation in which
x = (t,x) and introduce the four-vectors jµ(x) = (ρ, j) and Aµ(x) = (ϕ,A). We then
construct the two-index antisymmetric tensor

Fµν(x) =
∂Aν
∂xµ

− ∂Aµ
∂xν

(2.7)

Since the derivative operator ∂/∂xµ will appear very often, we introduce a short-hand
notation for it: ∂/∂xµ = ∂µ. Similarly, ∂/∂xµ = ∂µ. The electric and magnetic fields
are given in terms of Fµν by

F0i = −∂0Ai − ∂iA0 =

(
−∂A
∂t
−∇A0

)i
= Ei , Bi =

1

2
ϵijkFjk (2.8)

3We use the symbol ∧ to denote the vector product of two three-dimensional vectors : (a ∧ b)i =
ϵijkajbk.
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where ϵijk(= −ϵijk) is the three-index completely antisymmetric tensor, equal to +1
if {ijk} form an even permutation of {123}.4 It is now easy to check that the two
inhomogeneous equations (2.6) combine to

∂µFµν(x) = jν(x) (2.9)

while the two homogeneous ones (2.5) are automatically satisfied. The equation (2.9)
follows from a variational principle applied to the action

S =

∫
d4xL =

∫
d4x

(
−1

4
FµνF

µν +Aµj
µ

)
(2.10)

Can we choose the four components of Aµ as independent dynamical variables?
The answer is no, because the Lagrangian (2.10) does not contain the time derivative
of A0; in other words, the canonical conjugate momentum of A0 would be identically
zero. We know that this problem is related to the fact that the Lagrangian density
in (2.10) is invariant under the transformation Aµ(x) → Aµ(x) + ∂µθ(x) with θ(x)
an arbitrary function of x. In classical electrodynamics we call this invariance “gauge
invariance” and we can use the freedom of choosing a particular function θ to reduce the
number of independent variables. In Chapter 13 we will study this problem in a more
general context, but here we just recall that, experimentally, an electromagnetic wave
in empty space has only transverse degrees of polarisation. Therefore, we can impose
the transversality condition ∇ ·A(x) = 0 (the so-called “Coulomb gauge condition”)
under which the zero component of the vector potential satisfies5

∆A0(x) + ρ(x) = 0 (2.11)

where ∆ is the Laplacian. This implies the Coulomb law (hence the name of this
condition)

A0(t,x) =
1

4π

∫
d3x′

|x − x′|
ρ(t,x′) (2.12)

which shows that A0 is entirely given by the external source and it is not an indepen-
dent dynamical degree of freedom.6 We are left with the spatial components, which
are constrained by the Coulomb condition. The simplest way to solve it and obtain an
unconstrained system is to take the three-dimensional Fourier transform

A(t,x) = 1

(2π)3

∫
d3keik·xÃ(t, k) (2.13)

in terms of which the constraint becomes

4In this formula, raising and lowering the indices of three-dimensional vectors is performed using
the Minkowski metric, as we explain in Appendix A.

5Another choice is the Lorentz covariant gauge condition of the form ∂µAµ(x) = 0, the so-called
“Lorenz gauge condition”, first introduced by the Dane Ludvig Lorenz in 1867.

6Unless noted otherwise, we will assume that both the sources and the dynamical fields vanish at
infinity.
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k · Ã(t, k) = 0 (2.14)

which suggests to choose an orthonormal system of unit vectors ϵ(3)(k) = k/|k| and
ϵ(λ)(k), λ = 1, 2, satisfying

k · ϵ(λ)(k) = 0 , ϵ(λ)(k) · ϵ(λ′)(k) = δλλ′ , ϵ(λ)(−k) = (−)λϵ(λ)(k) (2.15)

i.e. ϵ(3)(k) is parallel to the wave vector and the other two are transverse to it. Be-
cause of the gauge condition, in this frame the vector potential has only transverse
components

A(t,x) =
2∑

λ=1

1

(2π)3

∫
d3k eik·xÃ(λ)(t, k)ϵ(λ)(k) (2.16)

in agreement with the experimental fact that the electromagnetic waves in empty space
are transverse.

Let us summarise: Formulating the theory in terms of the vector potential Aµ,
and making full use of its gauge invariance, allowed us to show that, out of the six
components of E and B, only two are really independent, as expected from the known
properties of electromagnetic radiation. This result, which, as we shall prove later,
follows from general invariance principles of the theory, made it possible to formulate
electromagnetism as a dynamical system. For each {k, λ}, Ã(λ)(t, k) is an independent
variable. The associated canonical momentum can be computed from the Lagrangian
(2.10). We find

qI → Ã(λ)(t, k) , pI → ∂L/∂ ˙̃
A

(λ)

(t, k) = ˙̃
A

(λ)∗
(t, k) (2.17)

where we have used the standard notation of mechanics in which “dot” means deriva-
tive with respect to time.

In the absence of external sources, the vector potential A(x) in the Coulomb gauge
satisfies the wave equation

Ä(x)−∆A(x) = 0 (2.18)

If Ã(k) is the four-dimensional Fourier transform of A(x), the wave equation (2.18)
becomes an algebraic equation: k2Ã(k) = 0, which implies that Ã(k) = F(k2) δ(k2)
with F(k2) arbitrary functions of k2, provided they are regular at k2 = 0.

The general solution of (2.18) can be expanded in plane waves, i.e. functions
of the form e−ik·x with k · x = k0t − k · x, and with the four vector kµ satisfying
k2 ≡ k20 − k2 = 0. It will be convenient to introduce the notation

dΩm(k) =
d3k

(2π)32Ek
=

d4k

(2π)4
(2π)δ(k2 −m2)θ(k0) , Ek =

√
k2 +m2 (2.19)

which is the Lorentz invariant measure on the positive energy branch of the mass
hyperboloid given by k2 = m2. We thus write
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A(t,x) =
∫

dΩ0(k)

2∑
λ=1

ϵ(λ)(k)
[
a(λ)(k)e−ik·x + a(λ)∗(k)eik·x

]
(2.20)

where dΩ0(k) is the value for m = 0 of the expression (2.19). It follows that the
integration in (2.20) is over the boundary of the positive energy k2 = 0 cone.

We can invert (2.20) to express the coefficient functions a(λ)(k) as

a(λ)(k) =
∫

d3x e−ik·xϵ(λ)(k) ·
[
EkA(t,x) + iȦ(t,x)

]
(2.21)

In Problem 2.1 we ask the reader to verify that the energy H and momentum P of
the field in terms of the coefficient functions are

H =

∫
dΩ0(k) Ek

2∑
λ=1

[
a(λ)∗(k)a(λ)(k)

]
, P =

∫
dΩ0(k) k

2∑
λ=1

[
a(λ)∗(k)a(λ)(k)

]
(2.22)

2.3.2 Quantum theory of the free electromagnetic field–photons
We are now ready to apply our general quantisation prescription and obtain the cor-
responding quantum theory. The canonical variables (2.17) are promoted to operators
satisfying the canonical commutation relations (2.4).7

[Ã(λ)(t, k), ˙̃A
(λ′)†

(t, k’)] = iδλλ
′
(2π)3δ3(k − k’)

[Ã(λ)(t, k), Ã(λ′)(t, k’)] = 0 , [
˙̃
A

(λ)†
(t, k), ˙̃A

(λ′)†
(t, k’)] = 0 (2.23)

where † denotes the Hermitian adjoint of the operator. The presence of the factor (2π)3
is due to our convention on the Fourier transform. Here, and throughout this book,
we have adopted the system of units we introduce in Appendix A in which c = h̄ = 1.
Physical units will be restored only when it is necessary.

The relations (2.23) imply for the operators corresponding to the coefficients of the
plane wave expansion (2.20) the commutation relations

[a(λ)(k), a(λ′)†(k′)] = δλλ
′
2Ek(2π)

3δ3(k − k′)

[a(λ)(k), a(λ′)(k′)] = 0 , [a(λ)†(k), a(λ′)†(k′)] = 0 (2.24)

These relations are still formal because we have not yet defined the space in which
these operators act. In order to do it we remark that, for every fixed value of {k, λ},
the operators a(λ)(k) and a(λ)†(k), appropriately rescaled, satisfy the commutation
relations of annihilation and creation operators for a harmonic oscillator with frequency
Ek = |k|. In other words, we can interpret the electromagnetic field in the vacuum
as a doubly (one for each value of λ) continuous infinite set of independent harmonic

7We omit the symbol ∧ on the operators.



10 2 Quantisation of the Electromagnetic Field and Spontaneous Photon Emission

oscillators. Following the example of the harmonic oscillator, we define the space of
states as follows:

1. First we assume the existence of a state which is annihilated by all annihilation
operators a(λ)(k), for both values of λ and all k. We assume this state to be unique
and normalised to one. We denote it by |0〉 and we call it the vacuum state.

a(λ)(k) |0〉 = 0 , 〈0|0〉 = 1 (2.25)

2. Starting from this state we build excited states by applying the creation operators
on it. For example, the first excited states are given by

|k, λ〉 = a(λ)†(k) |0〉 (2.26)

Using the commutation relations (2.24) and the equation (2.25), which defined the
vacuum state, we find〈

k′, λ′
∣∣k, λ〉 = 〈0| a(λ

′)(k′)a(λ)†(k) |0〉 = δλλ
′
2Ek(2π)

3δ3(k − k’) (2.27)

Of course, we expect the state |k, λ〉, since it is a state with fixed momentum, to
correspond to a wave function described by a plane wave and, therefore, to be non-
normalisable. This is the meaning of the δ function on the r.h.s. of equation (2.27). As
we did in quantum mechanics, we can build normalisable states using wave packets.
Given a function Φ(k) satisfying∫

dΩ0(k)|Φ(k)|2 = 1 (2.28)

we define the wave packet

|Φ, λ〉 =
∫

dΩ0(k)Φ(k) |k, λ〉 (2.29)

which is normalised to one.
In the terminology of the harmonic oscillator, |k, λ〉 is the state of one excitation

of type {k, λ}. We see that, for each value of λ, the space of the one-excitation states
is our familiar Hilbert space of square-integrable complex-valued functions, which we
denote by H1.8

In a similar way we build “multi-excitation” states by acting on the vacuum with
products of creation operators

|k1, λ1; k2, λ2; . . . ; kn, λn〉 = a(λn)†(kn) . . . a(λ2)†(k2)a
(λ1)†(k1) |0〉 (2.30)

Again, for each set of values {λi, i = 1, ..., n}, we denote by Hn,λ the Hilbert space
of states in the direct product of H1 with itself n times. The entire space of states is

8More precisely, the space we use in quantum mechanics is a ray-space. Let |ψ⟩ be a vector in H1

normalised to 1 ⟨ψ|ψ⟩ = 1 and C ∈ C C ̸= 0. A unit ray associated to |ψ⟩ is the set of all vectors of
the form C |ψ⟩. In quantum mechanics we have learned that all vectors in this set represent the same
physical state because the wave functions Ψ(x) and CΨ(x) are identified.
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the direct sum of all Hn’s, for all n and all sets {λ}. We call this space the Fock space
of states

F =

∞∑
n=0

∑
{λ}

⊕Hn,λ (2.31)

where, for notational simplicity, we have defined H0 as the one-dimensional space
spanned by the vacuum state, i.e. the ray-space of complex numbers.

The physical meaning of the states in the Fock space becomes more transparent if
we express the Hamiltonian and the momentum operators of the system in terms of a
and a†, to obtain the quantum versions of the relations (2.22). It is easy to see that,
since creation and annihilation operators do not commute, we end-up with

H =
1

2

∫
dΩ0(k) Ek

2∑
λ=1

[
a(λ)†(k)a(λ)(k) + a(λ)(k)a(λ)†(k)

]
(2.32)

and

P =
1

2

∫
dΩ0(k) k

2∑
λ=1

[
a(λ)†(k)a(λ)(k) + a(λ)(k)a(λ)†(k)

]
(2.33)

We next use (2.32) and (2.33) to compute the energy and momentum of each state
in F . But here we face a subtle problem: Let us start with the energy of the vacuum
state. As usual, it is given by the expectation value of the Hamiltonian 〈0|H |0〉. Using
the commutation relations (2.24), we obtain

H =

∫
dΩ0(k) Ek

2∑
λ=1

(
a(λ)†(k)a(λ)(k) + 1

2

[
a(λ)(k) , a(λ)†(k)

])
(2.34)

The trouble comes from the commutator which, formally, is proportional to δ3(0)
and is, therefore, meaningless. It is easy to understand the origin of this problem, both
physically and mathematically. First with the physics: We recall that the energy of
a single harmonic oscillator with frequency ω is expressed as H = ω(a†a + 1/2) and
its mean value in the ground state is just ω/2, the zero-point energy of the harmonic
oscillator. It is a quantum mechanical phenomenon and, as such, in physical units
it is proportional to h̄. We have noted already that the quantum electromagnetic
field in the absence of sources is equivalent to an infinite set of harmonic oscillators
satisfying the relativistic dispersion law ω = |k|. So, it is not surprising that the ground
state energy is infinite; it is the infinite sum of the zero-point energies. Now with the
mathematics: A divergent expression often results from a mathematical mistake; some
quantity is ill defined. Indeed, in writing the Lagrangian density, or the Hamiltonian,
of the classical electromagnetic field, we used expressions such as those in equation
(2.10), which contain the square of the field Fµν(x). This is fine for the classical theory.
In the quantum theory, however, we have noted already that the field variables are
distributions, and their square, or any higher power, is not well defined. At this stage
the problem is a nuisance rather than a catastrophe. Since we understand its origin we
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can easily guess its solution. In the absence of a gravitational field we never measure
the absolute value of the energy of any state. Only energy differences are measurable.
In other words, the expression for the energy of a system is always defined up to an
arbitrary additive constant. So, the equation (2.34) should be corrected to H → H+C,
with C an arbitrary constant. We shall use this freedom to redefine the energy of the
electromagnetic field in the absence of sources so that the vacuum energy vanishes.
We define a renormalised energy operator by imposing the condition

〈0|Hren |0〉 = 0 (2.35)

We see that this amounts to dropping the constant divergent term in (2.34) and
we find

Hren =

∫
dΩ0(k) Ek

2∑
λ=1

(
a(λ)†(k)a(λ)(k)

)
(2.36)

This is an example of a general procedure, called renormalisation, which allows us
to attribute precise values to mathematically ill defined expressions involving products
of distributions. It is based on physical requirements, such as the vanishing of the
vacuum energy and it has been at the basis of all the spectacular success of quantum
field theory.

This prescription can also be expressed as an ordering prescription for a product
of operators. Consider an operator O, which is the product of n creation and m
annihilation operators. We shall call normal-ordered O, denoted by : O :, the expression
in which we write first the n creation operators and then the m annihilation ones:

: O :≡ a(λ1)†(k1)a
(λ2)†(k2)....a

(λn)†(kn)a(λ
′
1)(k′

1)a
(λ′

2)(k′
2)....a

(λ′
m)(k′

m) (2.37)

Obviously, the definition extends to sums and products of such operators. In any
product, all creation operators will be written on the left of all annihilation ones. As a
result, the vacuum expectation value of a normal-ordered operator vanishes identically.
We see also that for the Hamiltonian operator in particular : H : = Hren. Similarly, we
define the renormalised version of the momentum operator (2.33) with : P : = Pren.
Now it is straightforward to verify that a state in the Fock space of the form given
in (2.30) is an eigenstate of the renormalised energy and momentum operators with
eigenvalues E1+E2+ .....+En and k1+k2+ ....+kn, respectively. We remind ourselves
also that the momenta kµa = (Ea,ka) satisfy |ka| = Ea, i.e. k2a = E2

a − k2
a = 0. These

properties allow us to give a physical interpretation to the multi-excitation states
(2.30).

The state |k, λ〉 has momentum k and energy E = |k|, thus its 4-momentum satisfies
k2 = 0. Therefore, we can interpret it as describing a massless particle which we shall
call a photon.9 Similarly, the states (2.30) are energy and momentum eigenstates with
eigenvalues corresponding to any number of non-interacting photons. Therefore, the
quantised free electromagnetic Maxwell field theory is the theory of free photons.

9Looking at the transformation properties of the state under Lorentz transformations, we can prove
that λ, defined in (2.15), corresponds to the polarisation of the one-photon state, see section 5.6.2.
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Two remarks before closing this section: First, we note that, since the creation
operators for any values of momentum and polarisation commute, we can apply them
in any order in the formula (2.30). We conclude that the multiphoton state is totally
symmetric under the interchange of any pair of photons; in other words, photons obey
the Bose–Einstein statistics. The second is more general: Following this quantisation
procedure, we expressed a quantum field, here the electromagnetic field Aµ(x), which
satisfies a linear differential equation, as an infinite superposition of creation and
annihilation operators acting in a certain Fock space. The states in this space are
eigenstates of the operators of energy and momentum. This property makes it possible
to interpret these states as describing non-interacting particles. This field–particle
duality will be generalised and used extensively in this book. It will become clear
that at a fundamental level any types of elementary particles are the quanta of a
corresponding relativistic field.

2.4 Interaction of Atoms and Radiation
2.4.1 The Hamiltonian
We are now in a position to attack the problem of spontaneous emission, equation
(2.1). In order to simplify the discussion we shall make some assumptions and ap-
proximations. First, we take the atom to be infinitely heavy and neglect the recoil
resulting from the photon emission. Second, we choose a hydrogen-like atom with only
one electron in the outer shell. The approximation consists of treating this electron
as moving in an effective Coulomb potential and neglect the multibody interactions
with the individual electrons of the inner shells. Third, we shall neglect all relativistic
corrections for the electron.

The second assumption implies that the Hamiltonian of the atom alone is given by
the usual expression

Ha =
1

2m
p2 + eUC (2.38)

where m is the effective mass of the electron, e its electric charge and UC the Coulomb
potential. To this expression we must add the Hamiltonian Hr of the free electromag-
netic field, equation (2.36).

Finally, we must include the term that describes the interaction between the elec-
tron in the atom and the electromagnetic field. In classical electrodynamics we have
found a prescription, called minimal substitution, which amounts to replacing every-
where the momentum pµ by pµ − eAµ, with Aµ the electromagnetic vector potential.
In Chapter 13 we shall give a justification of this prescription based on fundamental
symmetry principles, but here we apply it starting from the Hamiltonian (2.38) with
the result

HI = −
e

2m
[p ·A + A · p] + e2

2m
A2 (2.39)

So, the total Hamiltonian of the system is
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H = Ha +Hr +HI (2.40)

where Ha is the hydrogen-like atom Hamiltonian (2.38) with UC = A0, Hr that of
the electromagnetic field in the vacuum (2.36) and HI is the interaction Hamiltonian
given by (2.39).10

The quantisation of this system is, in principle, straightforward. The canonical
variables are the position of the electron x and its conjugate momentum p, as well
as the infinite set of annihilation and creation operators a(λ)(k) and a(λ)†(k) of the
electromagnetic field. In the Coulomb gauge, p and A commute. However, the inter-
action term HI couples the electronic and the photonic degrees of freedom and, as a
result, we are unable to diagonalise H exactly and find its eigenvalues and eigenstates.
In fact, there is a very small number of physical problems for which we have exact
solutions and for the vast majority, we have to use some approximation scheme. The
most common is a perturbation expansion, which we have studied already in quantum
mechanics. We recall the main features of the method here.

2.4.2 Elements of perturbation theory
In quantum mechanics the probability amplitude Afi for the transition of a system
from an initial state |Ψi(ti)〉 to a final state |Ψf (tf )〉 is given by

Afi = 〈Ψf (tf )|U(tf , ti) |Ψi(ti)〉 (2.41)

where U(tf , ti) = exp[−iH(tf − ti)] is the evolution operator and H the Hamiltonian
of the system. For most interesting cases this expression is only formal, because we do
not know how to diagonalise the Hamiltonian and, consequently, we do not know how
to compute the evolution operator U .

To proceed, let us start by addressing a general problem in which the Hamiltonian
H, is the sum

H = H0 +HP (2.42)

of a part H0, whose spectrum is supposed to be known

H0 |n〉(0) = E(0)
n |n〉(0) (2.43)

and a perturbation HP . In order to simplify the discussion let us first assume that
H0 has a discrete, non-degenerate spectrum with normalisable eigenstates. We shall
deal shortly with the case of the spontaneous emission, in which the spectrum of
the Hamiltonian for the free electromagnetic field is continuous. Furthermore, we
shall assume that the set of vectors |n〉(0) form a basis in the entire Hilbert space,
so that any state can be written as a linear superposition of them. If H0 and HP

were not operators but c-number functions, the evolution operator could be written as

10We see here the physical interpretation of the constant e: it is the electric charge of the particle,
which characterises the strength of its coupling with the electromagnetic field. We shall call it the
coupling constant, a terminology we shall use more generally, when we want to speak about the
strength of an interaction.
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U(t) = U0(t)UP (t) = exp[−iH0t] exp[−iHP t]. However, for operators this is not true
because exp[A]exp[B] 6= exp[A+B]. Nevertheless, let us define the unitary operator

ŨP (t) = U−1
0 (t)U(t) (2.44)

Both U(t) and U0(t) satisfy the Schrödinger equation with Hamiltonian H and H0,
respectively, and it is straightforward to derive the equation satisfied by ŨP (t)

i
∂ŨP
∂t

= −U−1
0 i

∂U0

∂t
U−1
0 U + U−1

0 (H0 +HP )U0ŨP = H̃P ŨP (2.45)

where
H̃P (t) = U−1

0 (t)HPU0(t) (2.46)

Equation (2.45), together with the initial condition ŨP (0) = 1, can be written as
the integral equation

ŨP (t) = 1− i

∫ t

0

H̃P (t
′)ŨP (t

′)dt′ (2.47)

It is this equation that we want to solve perturbatively in powers of HP . Once ŨP (t)
is known we can reconstruct the total evolution operator from the definition U(t) =

U0(t)ŨP (t). We find

ŨP (t) = 1− i

∫ t

0

H̃P (t1)dt1 −
∫ t

0

∫ t1

0

H̃P (t1)H̃P (t2)dt1dt2 + . . . (2.48)

which gives, for U(t),

U(t) = e−iH0t

(
1− i

∫ t

0

eiH0t1HP e−iH0t1dt1 + . . .

)
(2.49)

In this formula HP is the perturbation Hamiltonian in the Schrödinger represen-
tation.

2.4.3 The transition probability
Let us assume that at t = ti the system is in an eigenstate |i〉 ofH0. Under the influence
of the perturbation, at time t = tf the system will be in some state |f〉, which, under
our assumptions, we can write as a linear superposition of the eigenstates of H0. We
would like to compute the probability to find the system in a particular eigenstate of
H0. It will be given by the square of the amplitude (2.41):

Pfi = | 〈f |U(tf , ti) |i〉 |2 (2.50)

We wish to compute this matrix element in perturbation theory using the expan-
sion (2.49). In all interesting cases, the initial and the final states are different and
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Fig. 2.1 The function f(ω, t).

orthogonal to each other, so the zeroth order term, the unit operator, drops out. At
first order we obtain

Pfi =
∣∣∣∣∫ t

0

ei(Ei−Ef )t1 〈f |HP |i〉dt1
∣∣∣∣2 (2.51)

where we have set ti = 0 and tf = t.
In our problem of spontaneous emission, as well as in most physically interest-

ing problems, the perturbation Hamiltonian is time-independent. In this case the
integration over t1 is trivial and gives

Pfi = | 〈f |HP |i〉 |2f(ω, t)t2 (2.52)

where ω = Ei − Ef and

f(ω, t) =

(
sinγ

γ

)2

(2.53)

with γ = ωt/2. This is shown graphically in Figure 2.1. The maximum around ω =

0 gets more and more pronounced as t increases. In fact, we can show that, as a
distribution, f satisfies

limt→∞tf(ω, t) = 2πδ(ω) (2.54)

Contrary to what we have assumed up to now, the unperturbed Hamiltonian H0 =
Ha +Hr of our problem, describing the atom and the free electromagnetic radiation,
has a continuous spectrum. We go around this problem by imagining that we quantise
the electromagnetic field in a large box of size L with periodic boundary conditions.
The spectrum is discrete but, if L is large enough, the energy difference between
adjacent levels can be taken to be arbitrarily small, much smaller than the experimental
resolution. So, the sensible quantity to compute is the transition probability of the
system from the state |i〉 at t = ti to any state belonging to a set F of states with
energies in the interval (Ef , Ef +∆E) at a much later time t = tf , i.e.

Pi→F =
∑
f∈F

Pfi (2.55)
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It will prove convenient to replace the sum in (2.55) by an integral, but, in order
to do that, we must assume that the matrix element 〈f |HP |i〉 for all f ∈ F , depends
only on Ef . Let ρF (Ef )dEf be the number of states f ∈ F with energies between Ef
and Ef + dEf . Then the probability (2.55) can be written as

Pi→F =

∫ Ef+∆E

Ef

dEfρF (Ef )| 〈f |HP |i〉 |2f(ω, t)t2 (2.56)

Because of the property (2.54), when t tends to infinity, the transition strictly conserves
energy, but in such a case both the physical and the mathematical problems are not
well defined. Indeed, this calculation shows that the excited state of the atom has a
finite lifetime, so we cannot perform infinite time experiments in such a system. On the
other hand, equation (2.56) shows that the perturbation expansion will break down for
very large times. For a finite time, let us call it ∆t, we expect to have an uncertainty in
energy of the order of ∆t−1. This is a result of classical wave mechanics supplemented
with the quantum mechanical condition that relates energy to frequency. Notice also
that this result is, to first order in perturbation, independent of the strength of the
perturbation.

Thus, let us assume that t is large enough for (2.54) to be approximately valid.
A non-zero result for Pi→F requires that Ei belongs to the interval (Ef ,Ef + ∆E).
Finally, dividing by t we obtain for the transition probability per unit time

λi→F =
Pi→F

t
= 2π

[
ρF (Ef )| 〈f |HP |i〉 |2

]
Ef=Ei

(2.57)

This formula is called Fermi’s golden rule. The transition probability per unit time
is constant, independent of t, with dimensions of energy. The sum of λi→F over all
possible final states F gives what is called the “total decay rate” Γ of the unstable
system in the state |i〉, which in turn leads to the well known “Law of Radioactivity”.
Indeed, if at time t we have a number N(t) of unstable objects (excited atoms, nuclei,
or anything else) with decay probability per unit time given by a constant Γ, in the
time interval (t, t + dt) its population will change by dN(t) = −ΓN(t)dt.11 Upon
integration with initial condition N(0) = N0 we obtain

N(t) = N0 e
−Γt (2.58)

In the special case at hand, we see that Γ is proportional to the square of the matrix
element of the perturbation Hamiltonian, i.e. the square of the coupling constant e,
which characterises the strength of the interaction. It is a straightforward exercise in
probability theory to show that τ = Γ−1, is the mean lifetime, or simply the lifetime
of the excited state, a concept first introduced by Rutherford in 1900.

In non-relativistic quantum mechanics we have established the result that the time
evolution of a stationary state with energy Ei is given by Ψ(t,x) = Ψ(0,x)exp(−iEit).

11If dN(t) objects “succeeded” to decay in the time interval dt out of the total N(t) which “tried”
to decay, the probability of success, i.e. decay, per unit time is dN(t)/(N(t)dt).
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We can incorporate the result we just obtained by saying that, at first order in
perturbation theory, the time evolution is corrected to become

Ψ(t,x) = Ψ(0,x)e−i(Ei−iΓ/2)t (2.59)

It is in this sense that we often say that excited states correspond to complex values
of the energy. We shall give a more rigorous justification of this terminology when we
discuss resonance phenomena in scattering experiments.

Before closing this general discussion, let us come back to the conditions for the
validity of (2.57) and (2.58). We have noted already that, for the first order pertur-
bation theory to be valid, t must be smaller than τ = Γ−1. On the other hand, since
Γ is given in terms of the matrix elements of the perturbation Hamiltonian, we must
have Ei � Γ. Finally, for the delta-function approximation we used in deriving the
equation (2.57) to be valid, t must be much larger than ω = Ei−Ef , which is bounded
by the experimental resolution ∆E. We conclude that Fermi’s golden rule is valid if
the following inequalities are satisfied

Ei � Γ� ∆E (2.60)

which seem to be intuitively obvious. We often say that they are “obviously” satisfied
in real experiments, but we shall see that, at least in one case, namely in the detection
of the so-called J/ψ resonance, it was crucial to make sure that they were indeed
satisfied.

2.4.4 Application to the problem of spontaneous emission
After all this general discussion, let us return to our problem of spontaneous emission.
We start by splitting the Hamiltonian (2.40) into an unperturbed part H0 and a
perturbation: H = H0 +HP . H0 must be exactly solvable; in other words we must be
able to find its eigenvalues and eigenvectors exactly, so we choose

H0 = Ha +Hr , HP = HI (2.61)

in the notation of the equations (2.40) and (2.39). We denote the eigenvectors of H0

by |Em, {n(k, λ)}〉 in an obvious notation in which Em is the energy of the m-th level
of the atom and n(k, λ) the number of photons with momentum k and polarisation λ.
In other words, the space of states of H0 is the direct product of the Hilbert space of
the atomic eigenfunctions and the Fock space of the photons.

Ha |Em, {n(k, λ)}〉 = Em |Em, {n(k, λ)}〉

Hr |Em, {n(k, λ)}〉 =
∑
λ,k

n(k, λ)|k| |Em, {n(k, λ)}〉 (2.62)

Two remarks:
1) When we set up the quantisation prescription for the operator A of the electro-

magnetic field, we used the Heisenberg representation in which the operator is time
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dependent: A(t,x). However, the expressions that appear in the Hamiltonian (2.39)
are in the Schrödinger representation. Therefore we must use A(0,x).

2) We shall use the parameter e, the electric charge of the electron, to organise the
terms in the perturbation expansion. Terms multiplied by e1, e2, ... are respectively
terms of first order, second order, and so on. It follows that, at first order, we can keep
in (2.39) only the term that is linear in A.

We must now compute the matrix element of HI between the initial and the final
states

〈f |HI |i〉 =
e

2me
〈f |p ·A + A · p |i〉 =

∫
d3x 〈{nf}|A(0,x) |{ni}〉 · jfi(x) (2.63)

where |{ni}〉 and |{nf}〉 are the initial and final states of the Fock space of free photons
and jfi(x) is given by the matrix element of the current operator j between the initial
and final atomic wave functions, i.e.

jfi(x) =
e

2 ime

[
Ψ∗
f∇Ψi − (∇Ψ∗

f )Ψi
]

(2.64)

The expansion (2.20) of the electromagnetic potential A(0,x) in terms of cre-
ation and annihilation operators shows that the matrix element (2.63) vanishes unless
the number of photons in the final and the initial states differs by ±1. Therefore
this expression contributes only to the processes of emission or absorption of a single
photon.

In our case of spontaneous emission we have ni = 0 and nf = 1. The calcu-
lation of the matrix element is now straightforward, but for the fact that, in the
continuum spectrum, the normalisation of the one photon state contains the factor
[2ωk(2π)

3δ3(0)]−1/2; see equation (2.27). It is simpler if we quantise the theory in a cu-
bic box of size L, with arbitrarily large but finite L with periodic boundary conditions.
In this case the factor (2π)3δ3(0) is replaced by L3. The final result is

〈f |HI |i〉 =
∫

d3x√
2ωqL3

e−iq·xϵ(λ)(q) · jfi(x) (2.65)

where q and λ are the momentum and polarisation of the emitted photon. In principle
we have completed the computation because the wave functions of the atom in the
initial and the final states are supposed to be known. However, using some reason-
able approximations, we can further simplify this expression and make the comparison
with experiment easier. First, let us note that the current matrix jfi(x) vanishes ex-
ponentially fast outside a sphere of roughly the Bohr radius, so in the exponential
of (2.65), x is on the order of the Bohr radius which is 1/meα, where α ≡ e2/4π '
1/137. Furthermore, |q| ' Ei − Ef , which is of order meα

2. So, q · x is of order
α and so, to leading order in our computation, we should approximate the expo-
nential by unity. Second, let us replace the current operator (2.64) by the electron
electric dipole moment operator d = ex. This can be done by using the commutation
relation
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[Ha,x] =
[

p2

2me
,x

]
= − i

me
p (2.66)

so that the spatial integral of the matrix element of the current takes the form∫
d3x jfi(x) =

e

me
〈Ψf |p |Ψi〉 = i 〈Ψf | [Ha,d] |Ψi〉 = i(Ef − Ei)dfi (2.67)

Let us now compute the density of states ρF . Again, it is simpler if we quantise the
electromagnetic field in a box. Every component of q takes the values qi = (2πni)L

−1,
with integer ni = 1, 2, 3, . . . . Therefore, the volume in momentum space corresponding
to each photon state is (2π)3/L3, and the number of photon states within the volume
element q2∆Ef∆Ω with q = |q| ' Ei − Ef is

∆NF =
L3q2 ∆Ef ∆Ω

(2π)3
(2.68)

The density of states, up to terms of order ∆Ef/q, is

ρF (Ef ) =
∆Nf
∆Ef

=
L3q2∆Ω

(2π)3
(2.69)

Putting everything together, we obtain that the transition probability per unit time
of an atom in an excited state Ψi to the same atom in a state Ψf with the simultaneous
emission of a photon inside a solid angle ∆Ωq and with polarisation vector ϵ(λ)(q) is

∆λi→F =
ω3
q

8π2

∣∣∣ϵ(λ)(q) · dfi∣∣∣2 ∆Ωq (2.70)

In order to compute the intensity ∆I of the emitted radiation, i.e. the energy
emitted per unit time in the solid angle ∆Ωq, we multiply (2.70) by ωq and sum over
the two polarisations making use of the relation

∑
λ ϵ

(λ)
k (q) ϵ(λ)∗l (q) = δkl − qkql/q2.12

We find
∆I =

ω4
q

8π2
sin2θ |dfi|2∆Ωq (2.71)

where θ is the angle between dfi and q. In physical units this expression becomes

∆I = (ω4
q/8π

2c3) sin2 θ|dfi|2 ∆Ωq (2.72)

We observe that ∆I is independent of h̄. Furthermore, it is identical to the expression
for the intensity emitted by an oscillating classical dipole. This explains the success of
the old Thomson model in describing the phenomenon of atomic radiation.

Formally, we can continue the calculation and compute the higher order terms in
the perturbation expansion, but we will not do it here; first, because they present some
technical difficulties which we will study in Chapter 15 and second because they are
smaller numerically than the relativistic corrections which we have not included. For
a qualitative discussion, see Problem 2.4.

12The left-hand side is a transverse two-index symmetric tensor under rotations, which depends
only on the vector q and has trace equal to 2. The right-hand side is the unique expression with these
properties.
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2.5 Problems
Problem 2.1 Compute the total energy and momentum of the electromagnetic field
in terms of the coefficient functions a(λ)(k) and derive the expressions (2.22).

Problem 2.2 Emission and absorption of radiation. In subsection 2.4.4 we computed
the probability per unit time for the transition of an atom from the initial state Ψi
to the final Ψf , accompanied by the emission of a photon with polarisation λ and
momentum in the solid angle ∆Ωq around q with |q| = Ei − Ef .

1. Compute the probability per unit time ∆λem for the same atomic transition,
assuming that there are Nqλ photons with the above characteristics present in the
initial state. Show, in particular, that ∆λem is proportional to Nqλ + 1. The 1 cor-
responds to the spontaneous emission, and the rest defines the induced emission. So,
∆λem = ∆λind +∆λspont.

2. Compute the probability per unit time ∆λabs of the inverse atomic process
(absorption), i.e. the transition of the atom from Ψf to Ψi with the absorption of
one of the Nqλ present initially. Show that they satisfy the relations (A. Einstein,
1916)

∆λabs = ∆λind = Nqλ∆λ
spont ,

∆λem

∆λabs
=
Nqλ + 1

Nqλ

Problem 2.3 The purpose of this problem is to study the properties of the electro-
magnetic field in a cavity with the help of the formalism of coherent states.

I. Introduction of the set of coherent states. Consider a one-dimensional harmonic
oscillator with frequency ω and let a and a† be the annihilation and creation operators,
respectively, and |n〉, n = 0, 1, . . . the eigenvectors of the operator N = a†a : N |n〉 =
n |n〉.

1. Show that to every complex number z, there corresponds a normalised state |z〉,
eigenstate of the operator a with eigenvalue z. Construct explicitly |z〉 as superposition
of the states |n〉. We shall call the states |z〉 coherent states. Find the coherent state
which corresponds to the complex number z = 0.

2. Show that |z〉 can be written as : |z〉 = exp[− |z|2
2 ] exp(za†) |0〉.

3. If |z1〉 and |z2〉 are two coherent states, find the value of the scalar product
〈z1|z2〉.

4. Give the physical meaning of the real number |z|2.
5. Consider the operator D(z) = exp[za†−z∗a], where z∗ is the complex conjugate

of z. Show that D is unitary and satisfies the relations:
D−1(z)aD(z) = a + z11 and D(z1) |z2〉 = |z1 + z2〉, where 11 is the unit operator.
Because of these properties we call D the translation operator.

II. Physical meaning of the coherent states.
1. Assuming that at t = 0 the oscillator is in the coherent state

|Ψ(t = 0)〉 = |z〉, find its state at a later time t.
2. Study the evolution of a classical harmonic oscillator which, at t = 0, is char-

acterised by q(0) and p(0). Find q(t) and p(t) and compare with the evolution of the
coherent state.
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3. Consider the harmonic oscillator subject to a time-dependent external force. We
write the Hamiltonian as:

H =
p2

2m
+

1

2
mω2q2 − qF (t) = H0 +H1

where H0 = ω(a†a+ 1/2) and H1 = −(2mω)−1/2(a† + a)F (t).
Show that the evolution operator of the system in the interaction representation,

UI(t) equals, up to a phase, the translation operator D(z(t)) and compute z(t). As-
suming that at t = 0 the system is in the fundamental state |0〉, find its state |Ψ(t)〉
at a later time t.

III. Coherent states of the electromagnetic field. Consider the electromagnetic field
quantised in a cubic box of dimension L.

1. Define the coherent states a such an electromagnetic field.
2. If |Ψ(0)〉 is the coherent state describing the state of the field at t = 0, find its

state |Ψ(t)〉 at a later time t.

Problem 2.4 The O(e2) terms in the perturbation expansion (2.49). In the notation
of section 2.4 we consider an initial state |Ei, ni = 0〉 and a final state |Ef , nf 〉.

1. Write the expression of the matrix element.
2. Show that the possible values of nf are 0 or 2 and give the physical meaning for

each value.
3. Are there any measurable effects corresponding to transitions with nf = 0?
Hint: Think of the case in which the unperturbed Hamiltonian has a degenerate

energy level.

Problem 2.5 “Atom” and photons in a cavity.
1. Consider a free two-state “atom” at rest: a system with just two states, the

ground state |g〉 with energy set to zero and an excited state |e〉 with energy E.
We define the operators b and b† which act in the two-dimensional space spanned

by the vectors |g〉 and |e〉 as follows:

b |g〉 = 0 , b |e〉 = |g〉 , b† |g〉 = |e〉 , b† |e〉 = 0

Prove that b and b† satisfy the anti-commutation relation {b, b†} ≡ bb† + b†b = 1 and
express the Hamiltonian which describes this atom in terms of them.

2. Consider a “cavity” with electromagnetic radiation, photons, which can only
have one value of energy, the energy E.

Using the corresponding creation and annihilation operators a† and a, write the
Hamiltonian for these free photons.

3. Describe the energy eigenstates and the corresponding spectrum of the whole
system of the “atom”, together with the radiation, ignoring their interaction. Show that
with the exception of the ground state, all energy eigenstates are doubly degenerate.

4. Allow the atom and the photons to interact, i.e. introduce an interaction term
in the Hamiltonian, which describes the fundamental processes

|e;n〉 → |g;n+ 1〉 , |g;n+ 1〉 → |e;n〉 , for any non-negative n
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where the second entry n is the number of photons in the state. Assume that the
interaction can be treated as a small perturbation. Show that the simplest interaction
term which describes the above processes is

HI = λa†b+ λ∗ab†

with λ a constant which is assumed to satisfy |λ| � E.
5. Compute to leading order in the perturbation HI the probabilities of the tran-

sitions:
|e;n〉 → |g;n+ 1〉

of induced (n 6= 0) or spontaneous (n = 0) photon emission by the excited atom.
6. Use the standard perturbation theory of degenerate states to compute the energies

of the first two excited states, after the degeneracy is lifted by the perturbation. Show
that the two new states have energies E±|λ|. What are the corresponding eigenstates?

7. Rabi oscillations. Assume that the cavity at time t = 0 is in the state ψ(0) =
|e; 0〉. Take for simplicity λ ∈ R and compute the probability that the cavity will be,
at time t, in the state |g; 1〉. Show that the cavity oscillates between the states |e; 0〉
and |g; 1〉 and compute the period of oscillation.



3
Elements of Classical Field Theory

3.1 Introduction
Although the natural framework to describe the interactions among elementary parti-
cles is the quantum theory, we will start here by recalling some elements of the classical
theory of fields. There is a good reason for that. As we alluded to in the first chapter,
in order to obtain a quantum theory we start from the corresponding classical theory
to which we apply the quantisation prescription. This applies to any physical system,
no matter whether it has a finite or an infinite number of degrees of freedom. It follows
that the knowledge of the classical system is essential in the formulation of the corre-
sponding quantum system. Since the quantum theory of fields will be the language of
elementary particle physics, it is essential to understand the corresponding classical
field theory.

3.2 Lagrangian and Hamiltonian Mechanics
The high level of conceptualisation of classical mechanics has, since the 19th century,
played an essential part in the development of physical theories. We shall give here
a very brief review of the main results with no proofs, essentially in order to fix
terminology and notations.

The Lagrangian. Let us consider a system with N degrees of freedom and let
qa(t), a = 1, . . . , N , denote the corresponding generalised coordinates. We will assume
that they determine a point q in an N -dimensional differentiable manifold M, for
example the N -dimensional real space RN .1 We shall call M the configuration space
of the system. SinceM is differentiable, we can consider at every point q the set of N
tangent vectors q̇a(t) = dqa(t)/dt of curves passing through q. Together with qa they
span a 2N -dimensional space, which we shall call T (M).2

1In the simple case of N unconstrained real variables we just write the corresponding dynamical
equations, for example Newton’s equations. However, during the 18th and 19th centuries people
realised that there were problems for which this simple formulation is not straightforward. A typical
example is a problem with constraints, such as a particle subject to an external force but constrained
to move on a given surface. The more abstract Lagrangian and Hamiltonian formulations of classical
mechanics were developed to make possible also the description of such dynamical systems.

2If the configuration space is the N -dimensional real space RN , the space of the tangent vectors is
again RN and T (M) = RN ×RN . However, for a general differentiable manifold M, this construction
cannot be done globally and we must consider the tangent space Tq(M) built above the point q. We
define T (M) as the union over all q of these tangent spaces and we call it the tangent space of the
manifold M. It is obvious that T (M) is a 2N -dimensional vector space because, given any two points
q1 and q2, in order to expand a vector of Tq1 (M) in terms of the basic vectors of Tq2 (M) we need
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A Lagrangian L is a real function of the 2N variables qa and q̇a and, possibly, the
time t, i.e. L(qa, q̇a, t) : T (M)× R→ R. An important mathematical tool, which was
developed for functional analysis problems, of the kind we shall deal with in this book,
is the calculus of variations. For the simple case of M = RN it derives the following
well-known theorem:
• Consider q ∈ RN and let γ = {t, q | q = q(t), t0 ≤ t ≤ t1} be a curve in RN × R

such that q(t0) = q0 and q(t1) = q1, and let the Lagrangian L : RN × RN × R → R
be a sufficiently regular function of 2N + 1 variables. We can prove that the curve γ
is extremal for the action functional defined by S[γ] =

∫ t1
t0
L(q, q̇, t)dt in the space of

the curves joining (t0, q0) to (t1, q1) if and only if the Euler–Lagrange equations

d

dt

(
∂L

∂q̇

)
− ∂L

∂q = 0 (3.1)

are satisfied along γ.

The Least Action Principle. We can now formulate the Principle of Least
Action which links Newton’s equations to the Euler–Lagrange equations:
• A dynamical system is called natural if L = T −V , with T the kinetic energy and

V the potential energy of the system. It is easy to prove that, for a natural system,
the extrema of the functional S[γ] are given by the solutions of Newton’s equations.

The Hamiltonian. The connection between the Lagrangian and the Hamilto-
nian formulations is given by a Legendre transformation. We define the N quantities
pa(t), usually called conjugate momenta to qa(t), and the Hamiltonian H(q,p, t) of
the system by

pa(t) =
∂L

∂q̇a
and H(q,p, t) = p q̇ − L(q, q̇, t) (3.2)

respectively. In writing equation (3.2) we assume that we can invert the definition of
p and express q̇ in terms of p and q. Then we can prove the following theorem:
• The Euler–Lagrange system (3.1) of N second order differential equations is

equivalent to the Hamilton system of 2N first order equations

ṗ = −∂H
∂q , q̇ =

∂H

∂p (3.3)

As a result of these equations the time evolution of any quantity f(p, q, t) is obtained
from its equation of motion

df

dt
=
∂f

∂t
+
∂f

∂q
∂H

∂p +
∂f

∂p

(
−∂H
∂q

)
=
∂f

∂t
+ {H, f} (3.4)

where, by definition, the Poisson bracket of two functions f and g is given by

{f, g} = ∂f

∂pa

∂g

∂qa
− ∂f

∂qa

∂g

∂pa
(3.5)

also the basic vectors of M. In addition, we can endow T (M) with the structure of a fibre bundle,
the tangent bundle, but we will not use it in this book.
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• It follows that if f does not depend explicitly on time, the statement “f is a
constant of the motion” is equivalent to {H, f} = 0. An important corollary of this
property is the fact that a Hamiltonian, which does not depend explicitly on time, is
conserved, i.e.

∂H

∂t
= 0 implies that

dH

dt
= 0 (3.6)

• Clearly qa and pa span a 2N -dimensional space which we will denote by T ∗(M).
It is the cotangent space ofM.3 In physics texts it is usually called the phase space of
the system. So, the Hamiltonian is a real function H : T ∗(M)× R→ R.

Noether’s theorem. Between 1915 and 1918 A.E. Noether proved a mathematical
theorem which profoundly influenced all aspects of the physical sciences. In rather loose
terms it established a connection between continuous symmetries and conservation
laws. We will give here a more precise formulation, still avoiding most technical details.
• To each one parameter group of diffeomorphisms of the configuration manifold,

which preserves the Lagrangian, there corresponds a prime integral of the equations
of motion, i.e. a conserved quantity.

Let us consider a differentiable map h :M → M and let T (h) : T (M) → T (M)
be the induced map on the tangent space. A Lagrangian system (M, L) is invariant
under h, if its Lagrangian function remains unchanged under the action of h on its
variables, i.e. if ∀ v ∈ T (M)

L(T (h)v) = L(v) (3.7)

Noether’s theorem asserts that:
Theorem: If the Lagrangian system (M, L) is invariant under the one parameter

group of diffeomorphisms hs :M→M, s ∈ R,4 then the system of the Euler–Lagrange
equations admits a prime integral I : T (M) → R, which, furthermore, in a local
coordinate system is given by

I(q, q̇) = ∂L

∂q̇
dhs(q)
ds

∣∣∣∣
s=0

(3.8)

Applications of Noether’s theorem. We present some important consequences
of this theorem. See also Problem 3.1. Let us consider a system of N particles5 with
Lagrangian

L =

N∑
a=1

1

2
maq̇2

a − V (q1, . . . , qN ), qa ∈ R3, a = 1, . . . , N

• We assume that the Lagrangian is invariant under translations

3We can again endow it with the structure of a fibre bundle, the cotangent bundle.
4In fact, we can prove Noether’s theorem without assuming the invariance of the Lagrangian

expressed by equation (3.7). A more global version, in which only the action S is invariant, suffices.
The difference is important because it allows to consider transformations under which the Lagrangian
changes by the time derivative of a function. We will need this more general version later in this
chapter.

5In this case the variables qa are just the position vectors ra of the particles.
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hs : qa → qa + s c, c ∈ R3, a = 1, . . . , N (3.9)

The corresponding conserved quantity is the total momentum of the system.

0 =
dP
dt
· c from which

dP
dt

= 0 (3.10)

We see that the invariance of the Lagrangian under translations implies the conserva-
tion of the total momentum.
• The Lagrangian is invariant under rotations

qa → R(n, θ)qa, a = 1, . . . , N (3.11)

where R(n, θ) is a rotation with axis of rotation and direction determined by n and
angle θ. In this case, what follows is the conservation of the total angular momentum

dL
dt

= 0 with L =

N∑
a=1

qa ∧ pa (3.12)

• The conservation of the Hamiltonian expressed in equation (3.6) is also a con-
sequence of Noether’s theorem. It is valid whenever the Lagrangian does not depend
explicitly on time, in which case it is invariant under time translations.

3.3 Classical Field Theory
Although in the discussion of the previous section we used mainly the example of a
system of point particles moving in space, nothing in the formalism depends on this.
We can consider a general dynamical system with qa(t) a = 1, . . . , N, the corresponding
generalised coordinates. In Chapter 2 we indicated a formal way to take the large N
limit and obtain a classical field theory starting from a system defined on the points of
a spatial lattice. In this book we shall be interested in Lorentz invariant field theories,
so we are led to formulate a classical field theory based on a set of postulates, which
extend those we used in the formulation of classical mechanics.

The Minkowski space. The base space of the theory is the four-dimensional
Minkowski space M4 with the metric ηµν= ηµν=diag(1,−1,−1,−1), which is left
invariant by the ten parameter group of the Poincaré transformations. A point in this
space will be denoted by x = (x0,x).

The fields. The dynamical variables are real or complex valued functions of x,
i.e. ϕ : M4 → R or C. Unless otherwise stated, they are taken to be C∞ and to
vanish at infinity. In addition, we will assume that the fields ϕ(x) may transform non-
trivially under a group of transformations, for example Lorentz transformations, whose
properties we will study in Chapter 5.

The set of fields forms an infinite-dimensional functional space M, which is the
configuration space of our dynamical system. It is a differentiable manifold, so at every
point ϕ we can consider the tangent vectors ∂µϕ. This way we can build the tangent
space at each point ϕ. The union of the tangent spaces for all ϕ forms the tangent
space of M and, by analogy with what we did in classical mechanics, we build the
space T (M) as the functional space build out of ϕ and ∂µϕ.
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Obviously, we can generalise this construction by considering a family of fields
{ϕa(x)}a∈I indexed by I.

The Lagrangian density. The Lagrangian density is a real function of ϕ, ∂µϕ
and, possibly, the space-time point x, that is L : T (M) ×M4 → R. We will always
choose L to be a Lorentz scalar. The action S is a functional of the fields given by

S[ϕ] =

∫
Ω

L(ϕ(x), ∂µϕ(x), x) d4x. (3.13)

where Ω is a regular region of space-time over which the Lagrangian density is being
integrated. We will usually take Ω to be the entire Minkowski space M4.

The principle of least action and the Euler–Lagrange equations. Only
very few changes are necessary in order to adapt the variational calculus of mechanics
to the case of a field theory. We define the functional derivative, δF [ϕ]/δϕ(x), of a
functional F [ϕ] by the limit, when it exists, of

δF [ϕ]

δϕ(x)
= lim
ε→0

F [ϕ+ εδx]− F [ϕ]
ε

(3.14)

where δx is the Dirac measure at the point x, δx(y) = δ(y − x). As an example, for
F =

∫
ϕn(y) d4y, we obtain

δF [ϕ]

δϕ(x)
= lim

ε→0

1

ε

(∫
d4y [(ϕ(y) + εδx(y))

n − ϕn(y)]
)

= n

∫
d4y ϕn−1(y)δ(y − x) = nϕn−1(x) (3.15)

On the other hand, the change in the Lagrangian, induced by an infinitesimal shift
δϕa(x) of the fields, ϕa(x)→ ϕa(x) + δϕa(x), is given by

δL =
∂L
∂ϕa

δϕa +
∂L

∂(∂µϕa)
δ∂µϕa

=
∂L
∂ϕa

δϕa + ∂µ

(
∂L

∂(∂µϕa)
δϕa

)
− ∂µ

(
∂L

∂(∂µϕa)

)
δϕa

=

[
∂L
∂ϕa

− ∂µ
(

∂L
∂(∂µϕa)

)]
δϕa + ∂µ

(
∂L

∂(∂µϕa)
δϕa

)
(3.16)

This relation is very important and can be used in various ways. Let us first consider
the induced variation of the action as defined in equation (3.13). The last term in
(3.16) is a 4-divergence. It gives no contribution upon integration in Ω, because of
the vanishing on the boundary ∂Ω of the fields and of their infinitesimal variations.
Thus, the first result derived from (3.16) is that the requirement that the action S[ϕ]
be stationary under an arbitrary variation ϕa(x) → ϕa(x) + δϕa(x) with ϕa and δϕa
vanishing on ∂Ω, implies the equations of motion for the fields ϕa:

∂L
∂ϕa(x)

− ∂µ
(

∂L
∂(∂µϕa(x))

)
= 0 (3.17)

These are the Euler–Lagrange equations of motion of the classical fields.
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It should be noted that, under the conditions we imposed for the derivation of the
Euler–Lagrange equations and, in particular, the vanishing of the field variables on
the boundary Ω, the action is not related in a unique way to the Lagrangian density.
We can in fact add to L a term of the form ∂µR

µ, with Rµ any sufficiently regular
function of the fields and their derivatives, since by Gauss’s theorem its integral over
Ω vanishes.

The Hamiltonian density. With the Lagrangian density being a Lorentz scalar,
the entire formulation we presented so far is explicitly Lorentz covariant. The Hamil-
tonian on the other hand is supposed to transform like the zero component of a four
vector, therefore we must single out the time direction in x: x = (t,x) and perform a
Legendre transformation with respect to ϕ̇(x) = ∂0ϕ(x). Let us define

πa(x) =
∂L

∂ϕ̇a(x)
(3.18)

where we have assumed that the fields {ϕa(x)}a∈I form a set of independent dynamical
variables. We have seen already in Chapter 2 that this is not always true, for example
when the index “a” denotes the components of a vector field. We will address this
question in more detail in Chapter 7.

The Hamiltonian density is defined by the analogue of equation (3.2):

H =
∑
a∈I

πaϕ̇a − L , (3.19)

and the Hamiltonian H[ϕ] by

H[ϕa, πa, t] =

∫
d3xH (ϕa(x), ∂µϕa(x), x) (3.20)

from which Hamilton’s equations of motion

ϕ̇a(x) =
δH

δπa(x)
and π̇a(x) = −

δH

δϕa(x)
(3.21)

can be obtained.
Symmetry transformations. Following the formalism we developed for the case

of classical mechanics with a finite number of degrees of freedom, we shall call “symme-
try” a transformation that leaves invariant the equations of motion. Strictly speaking,
this implies that only the action should be left invariant, but unless stated otherwise
we will make here a stronger assumption, namely to assume that the transformations
leave invariant the Lagrangian density. As we will see shortly, this assumption, apart
from simplifying the formalism, will also have some important physical consequences.
For practical and conceptual reasons, we will distinguish two types of transformations,
space-time transformations and internal symmetry transformations.
• The space-time transformations are of the general form x → x′ = f(x), so they

are automorphisms of the Minkowski space M4. In this book we will consider only
the ten-parameter group of Poincaré transformations which we will study briefly in
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Chapter 5. They consist of the space-time translations and the Lorentz transforma-
tions. A translation is of the form x′µ = xµ + ϵµ which, for ϵ infinitesimal, induces a
transformation of the fields of the form ϕa(x)→ ϕ′a(x) = ϕ(x−ϵ) ' ϕa(x)−ϵµ∂µϕa(x).
A Lorentz transformation is of the form x′µ = Λµν x

ν and we assume that the fields
transform linearly. To these continuous transformations we should add the two dis-
crete ones, the space inversion, or parity (P): t′ = t, x′ = −x, and the time reversal
(T ): t′ = −t, x′ = x.
• Internal symmetry transformations. These do not affect the space-time point x

but transform the fields ϕa(x) among themselves. They play a very important role in
particle physics and we will see many examples in this book. We will assume that all
internal transformations form a compact Lie group6 G under which the fields transform
linearly. The action of an infinitesimal such transformation with parameters δθn on
the fields ϕa(x) has the general form

ϕa(x)→ ϕ′a(x) = ϕa(x) + δϕa(x) , δϕa(x) = i δθn (Tn)ab ϕb(x) (3.22)

The number N of parameters θn depends on the group G, while the form of the
matrices Tn depends on the group and the transformation properties of the fields ϕa.
• Global and local transformations. Most transformations we are considering, space-

time or internal symmetry ones, depend continuously on a set of parameters, such as ϵµ
and θn in the above examples. We will call a transformation global if the corresponding
parameters are constants, independent of the space-time point x. In the opposite case,
if the parameters are arbitrary functions of x, we will call the transformation local.
Local transformations are often also called gauge transformations. In Chapter 13 we
shall study the physical consequences of local symmetries in more detail, but here let
us just point out an obvious difference between the two cases. Let us consider the
example of the internal transformation of equation (3.22). If the transformation is
global, the derivative of the field ϕa(x) transforms the same way as the field itself. If,
however, the parameters become functions δθn(x), the derivative picks up a second
term proportional to ∂µδθn(x). This will make the transformed theory look more
complicated, but, as we will see, it will eventually result in a mathematically richer
structure with amazing physical consequences.

Noether’s theorem in classical field theory. We have seen in section 3.2
that to every continuous transformation that leaves the Lagrangian invariant there
corresponds a conserved quantity. We will now prove that to every continuous change
of the fields leaving invariant the action S[ϕ] there corresponds a conserved current.

We assume that the infinitesimal change of the fields, ϕa(x) → ϕa(x) + δϕa(x),
leaves the action S[ϕ] invariant. The variation of the Lagrangian due to this change is
still given by (3.16), but now the change δϕ is not arbitrary. By assumption, it leaves
the action invariant, which means that the change of the Lagrangian density has to
be the 4-divergence of some quantity, i.e.

δL = ∂µR
µ (3.23)

6Some notions of group theory will be necessary in analysing the symmetry properties of a system
and we will present a brief review in Chapter 5.
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and this is true for arbitrary configurations of the fields ϕa. This is often called an “off-
shell equality”, because the fields do not need to satisfy the Euler–Lagrange equations.

Now suppose that the fields ϕa satisfy the Euler–Lagrange equations of motion. In
this case, comparison of (3.23) and (3.16) leads to the relation

δL = ∂µR
µ = ∂µ

(
∂L

∂(∂µϕa)
δϕa

)
(3.24)

from which it follows that

Jµ =
∂L

∂(∂µϕa)
δϕa −Rµ (3.25)

is conserved (it is an “on-shell property”):

∂µJ
µ(x) = 0 . (3.26)

The Noether current Jµ is conserved and this conservation is a consequence of the
symmetry of the theory. The associated “charge” Q(V ) defined by the spatial integral
of J0(x) over a volume V bounded by the surface S(V ) satisfies the relation

dQ(V )

dt
=

∫
V

d3x
∂J0

∂t
= −

∫
V

d3x∇ · J = −
∫
S(V )

dS · J (3.27)

expressing the fact that the amount of charge Q(V ) inside any volume changes per unit
time by exactly the amount that flows through its boundary. Under the assumption
that nothing flows to infinity, the total charge Q in the entire space is conserved, since
it satisfies

dQ

dt
= 0 . (3.28)

There is a certain freedom in the definition of the Noether current because we
can add to it and/or multiply it by any constant without changing the fact that its
4-divergence vanishes.

Examples of Noether currents. We shall give examples of space-time and
internal symmetries.
• Space-time symmetries: The energy-momentum tensor. In classical mechanics,

invariance under spatial translations gives rise to the conservation of the linear momen-
tum while invariance under time translation gives rise to the conservation of energy.
We will now derive the analogue of this in field theories. Specifically, we will show
directly that the fact that the Lagrangian does not explicitly depend on x makes it
possible to define, using the Euler–Lagrange equations, a conserved tensor. We choose
Ω to be the entire four-dimensional space-time (a domain of integration which is in-
variant under translations) and assume that the fields decrease fast enough at infinity
to ignore all surface terms.7

7The invariance under translations is the only case we will consider in this book in which the
action is invariant but not the Lagrangian density. Indeed, L(ϕ(x), ∂µϕ(x)) cannot be invariant under
xµ → xµ+ϵµ, unless it is a constant. However, under the assumption that the fields vanish sufficiently
fast at infinity, its integral over the entire space-time, i.e. the action, is invariant.
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Let us write in two different ways the total derivative of L with respect to xµ.
Since L depends on xµ only through the dependence of the fields and their derivatives,
we have

dL
dxµ

=
∂L

∂ϕa(x)
∂µϕa(x) +

∂L
∂[∂νϕa(x)]

∂µ∂νϕa(x)

= ∂ν

(
∂L

∂[∂νϕa(x)]

)
∂µϕa(x) +

∂L
∂[∂νϕa(x)]

∂µ∂νϕa(x)

= ∂ν

(
∂L

∂[∂νϕa(x)]
∂µϕa(x)

)
But, for any field configuration ϕ(x) the Lagrangian density is a function of x and

its derivative with respect to xµ is then just

dL
dxµ

= ∂µL = δνµ ∂νL

Equating the above two expressions for dL/dxµ we find

∂ν T̃
ν
µ = 0 (3.29)

where
T̃ νµ (x) =

∂L
∂[∂νϕa(x)]

∂µϕa(x)− L(x) δνµ (3.30)

is called the energy-momentum tensor of the theory with Lagrangian density L.
We deduce from it that the four-vector Pµ given by

Pµ =

∫
d3x T̃ 0µ(t,x) (3.31)

is time independent since

Ṗµ =

∫
d3x ∂t T̃

0µ(t,x) = −
∫

d3x ∂iT̃
iµ(t,x) = 0 (3.32)

if the fields vanish fast enough at infinity, as it has been assumed.
The fact that Pµ is a four-vector can become manifest by changing the spatial

integration in their definition from an integration over a surface of constant t to one
over a space-like surface with d3x being replaced by the associated covariant surface
element dσν normal of the surface

Pµ =

∫
dσν T̃

νµ(x, t) (3.33)

For reasons which will become clear later on, it is useful to replace this energy-
momentum tensor by another conserved tensor Tµν symmetric in its two indices, ob-
tained from T̃µν by adding to it the 4-divergence of a three-index tensor. Alternatively,
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it can be shown that Tµν can be obtained by varying with respect to the space-
time metric gµν the action obtained when the “matter” theory with the given
L is coupled to gravity.
• Internal symmetry. Let us consider a global internal symmetry of the Lagrangian

density with the fields transforming as in equation (3.22). From the definition of the
Noether current (3.25), it follows

Jµ =
∂L(x)

∂(∂µϕa(x))
δϕa(x) = i δθn

∂L(x)
∂(∂µϕa(x))

(Tn)ab ϕb(x) (3.34)

thus showing the existence of N conserved currents

Jµn (x) = i
∂L(x)

∂(∂µϕa(x))
(Tn)ab ϕb(x) , n = 1, . . . , N (3.35)

where we made use of the previous remark, that we can add or multiply a current by
any constant.

3.4 Problems
Problem 3.1 Consider a system of N particles with Lagrangian:

L =

N∑
a=1

1

2
maq̇2

a − V (q1, . . . , qN ), qa ∈ R3, a = 1, . . . , N

Using Noether’s theorem prove that:
1. Invariance of L under translations implies the conservation of the total momen-

tum, eq. (3.10).
2. Invariance of L under rotations implies the conservation of the total angular

momentum, eq. (3.12).
Note that either one of these assumptions concerns in fact the potential V be-

cause the kinetic energy part, by construction, is invariant under both translations and
rotations.

Problem 3.2 Find the equations of motion for the field ϕ(x) resulting from the
following Lagrangian densities:

1. L1 = 1
2 ∂

µϕ(x) ∂µϕ(x)− 1
2m

2ϕ2(x)− λϕ3(x)
2. L2 = − 1

2ϕ(x)2ϕ(x)−
1
2m

2ϕ2(x)− λϕ3(x)
3. L3 = 1

2 ∂
µϕ(x) ∂µϕ(x)− 1

2m
2ϕ2(x)− λϕ3(x)

+ 2g ϕ(x) ∂µϕ(x) ∂µϕ(x) + gϕ2(x)2ϕ(x)
Comment on the results.

Problem 3.3 Let ϕa(x), a = 1, 2, · · · , N denote N real scalar fields. Find the group
of internal transformations which leave invariant the Lagrangian density:
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L = 1
2

∑N
a=1

[
∂µϕa(x) ∂µϕa(x)−m2ϕa(x)ϕa(x)

]
− λ

[∑N
a=1 ϕa(x)ϕa(x)

]2
where λ is a constant. Write the corresponding conserved currents.

Problem 3.4 The conserved charges generate the corresponding symmetry transfor-
mations. Consider a Lagrangian density L invariant under the global transformations
(3.22) leading to the conserved currents (3.35). Show that the Poisson brackets of the
corresponding conserved charges Qn with the fields ϕa(x) generate the infinitesimal
transformations (3.22).



4
Scattering in Classical and Quantum
Physics

4.1 Introduction
Almost every act of observation involves a scattering experiment. In everyday life it is
usually the scattering of visible light by the object under study and its resolution is lim-
ited by the light’s wavelength. During the last century the quest for higher resolution
forced us to abandon light as a probe and, following Rutherford’s pioneering experi-
ment, to use more and more energetic particle beams. Today all information we have
about the structure of matter at the deepest accessed level comes from high energy
scattering experiments. The probes are particles we can accelerate, which are essen-
tially protons (or ions) and electrons. A particle accelerator is, in fact, a “microscope”
whose spatial resolution is determined by its maximum energy. The CERN Large
Hadron Collider (LHC), with proton beams up to 7 TeV, has a resolution reaching
10−19 m,1 and is today – in 2021 – the most powerful microscope man has ever built.
In this chapter we shall introduce the basic concepts necessary to describe and under-
stand the results of scattering experiments in particle physics. Only the main ideas
will be presented, with no detailed proofs. Some of the proofs are proposed as exercises
at the end of the chapter.

4.2 The Scattering Cross Section
We start by considering the case of two colliding particles. The laboratory frame is
defined to be the reference frame in which one of these particles, called the target, is
at rest. The other is the projectile. By contrast, in the centre of mass reference frame
nothing distinguishes the target from the beam.2

In the simplest case a projectile, idealised as a hard sphere of radius r in straight
motion, will hit the target, a sphere of radius R, if the trajectory of the centre of the
projectile intersects the disk of radius r + R perpendicular to it and centred at the

1This is only a rough order-of-magnitude estimation of an “ideal resolution” δ obtained by setting
δ ∼ λ ∼ h/E. The actual resolution in a particular measurement will depend on the experimental
conditions.

2The terminology has a purely historical origin. In the early experiments a beam of accelerated
particles was hitting a target, which was fixed in the laboratory, hence the name of the reference frame.
Today, however, most accelerators are colliders, in which two beams of particles are accelerated in
opposite directions and are brought into a head-on collision. In these cases the “laboratory” frame is
in fact the centre-of-mass one.

Elementary Particle Physics. John Iliopoulos and Theodore N. Tomaras, Oxford University Press.
© John Iliopoulos and Theodore N. Tomaras (2021). DOI: 10.1093/oso/9780192844200.003.0004
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Fig. 4.1 Scattering in the lab frame. dN (Ω)/dΩ is the number of particles per unit time
scattered inside dΩ in the direction Ω(θ, ϕ).

centre of the target. The surface area of this disk, σtot = π(r+R)2, is called the total
cross section of this collision process.

In actual experiments the situation is more complex. First, we are not interested
only in collisions of hard spheres. Even in classical physics we may want to compute
the results of scattering among particles interacting through a potential, for example
two electrically charged particles. Second, we do not usually consider the collision
of just one particle against another. We send, instead, a beam of particles against a
target containing many particles and place a detector in the direction Ω(θ, ϕ) with an
acceptance of dΩ, which counts the number of particles dN (Ω)/dΩ going through it
per unit solid angle and per unit time. We want to extract out of such a measurement
a quantity, like the cross section we introduced previously, which refers to the collision
of one particle in the beam and one particle in the target.

Let us consider a unidirectional monoenergetic beam of particles scattered off a
target containing nt centres of collision per unit volume. Suppose, for concreteness,
that this target is a cylinder of length l and base area S perpendicular to the direction
of the beam (see Figure 4.1). If the target is thin enough, the density nt not too high
and the number of incoming particles per unit time large enough but not too large,3
then this experiment yields information about all processes involving one beam particle
and one particle in the target. The reason is that the number dN (Ω)/dΩ measured
in our detector is proportional to the number ntS l of scattering centres in the target
and to the relative flux Φb of the incoming particles in the beam, i.e. the number of
particles per unit transverse surface area, which reach the target per unit time. Thus,
we write

3All these restrictions amount to assuming that the probability of multiple scattering, i.e. the same
incident particle hitting several particles in the target, is small and can be neglected.
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dN (Ω)

dΩ
= ntSlΦb

dσ(Ω)

dΩ
(4.1)

We shall call the proportionality factor dσ(Ω)/dΩ differential cross section of the
scattering process involving one beam particle and one target particle. If the density of
particles in the beam is nb and they all move with speed vb with respect to the target,
the incident flux is given by Φb = nbvb. It is clear that by moving the detector around
we can determine the function N (Ω) and, assuming it is integrable, we can integrate
over all angles and obtain the integrated cross section σ. Note that the differential cross
section in the forward direction θ = 0, is not directly measurable because a detector
placed in the direction of the beam will count all particles in this direction, irrespective
of whether or not they had a collision with a particle in the target. It follows that the
forward cross section can be determined only by continuity.

From (4.1) we conclude that the total number dN of collisions that take place
inside the volume element dV of the target in the time interval dt is given by

dN = σ vb nb nt dV dt (4.2)

The differential cross section dσ/dΩ and the integrated cross section σ are defined in
the lab frame, i.e. with the target at rest. The same number dN will be measured by
any other observer, with respect to whom the colliding beams will have e.g. velocities
vA and vB , and particle densities nA and nB , respectively. In Problem 4.3 we invite
the reader to prove that, in terms of quantities measured in that frame, dN is given by

dN = σ
√

(vA − vB)2 − (vA ∧ vB)2 nA nB dV dt (4.3)

For collinear vA and vB , e.g. in the centre of mass frame, dN = σ|vA−vB | nA nB dV dt.
So far we have considered the collision of two classical particles but we can gener-

alise the picture. Let us call A the particle in the beam and B the one in the target.
The initial state, i.e. the state of the system before the collision, is characterised by
the momenta pA and pB of the two particles (and possibly other quantities like spin
orientations, which we will not discuss in this chapter). Assuming relativistic kinemat-
ics, they satisfy the on-shell condition, namely p2A = m2

A and p2B = m2
B . We shall call

elastic scattering the process described by A(pA) + B(pB) → A(p′A) + B(p′B), where
the final momenta p′A and p′B are also on-shell and subject to the condition imposed by
energy and momentum conservation: pA + pB = p′A + p′B . We know that in quantum
physics elastic scattering is only part of the total process because, as we have seen al-
ready in Chapter 2, particles may be created or destroyed as a result of the interaction.
Therefore the general process will be of the form A(pA)+B(pB)→ C(q1)+D(q2)+. . .,
where the particles C, D, etc. may or may not be one of the initial particles A or B. To
give an example, at the LHC the average number of final particles in a proton–proton
collision is on the order of 200. We often call the process, yielding a particular set of
particles in the final state, a channel and we can define a partial cross section σi or
partial differential cross section dσi corresponding to the channel i. The elastic cross
section σel corresponds to the elastic scattering channel, which is one of the channels
i. All the others correspond to inelastic processes. The sum over all channels gives the
total cross section σtot.



38 4 Scattering in Classical and Quantum Physics

Let us consider a particular channel consisting of r final particles with momenta
q1, q2, . . . , qr. They all satisfy the mass shell conditions q2a = m2

a, a = 1, 2, . . . , r,
with ma the mass of the a-th particle. The partial cross section σi will be given by an
expression of the form:

σi =

∫
dΩm1

· · ·
∫

dΩmr
(2π)4δ4(pA + pB − q1 − · · · − qr)

dσi
dΩm1

. . .
(4.4)

where dΩma
is the integration measure on the mass hyperboloid of the a-th particle

given by equation (2.19) and the four-dimensional delta function expresses the con-
servation of energy and momentum. The dσi is the differential cross section which
is a positive definite probability density depending on the initial and final momenta.
It is defined as the number of the corresponding events per unit time and per unit
target volume divided by the incident flux and by the initial densities.4 It is useful
to extract all these kinematic factors: If the incoming beams contain one particle per
unit volume, the division factor reduces to the incoming flux whose value is

v = |vA − vB | (4.5)

where vA and vB are the velocities of the two incoming particles, assumed to be
collinear, since this is the most interesting case in actual particle physics experiments.
In general, the density of initial states depends on the way the beams are prepared,
but here, although the discussion is classical, we shall adopt the normalisation given
by ϱA,B = 2ωA,B = 2

√
p2
A,B +m2

A,B , as we found in equation (2.27). So, the over-
all normalisation factor is (v2ωA2ωB)

−1. Let us compute the expression ϱAϱBv for
collinear initial momenta pA and pB in the centre-of-mass frame:

(ϱAϱBv)
2 = 16ω2

Aω
2
B

∣∣∣∣pAωA − pB
ωB

∣∣∣∣2 = 16|pA|2(ωA + ωB)
2 = 16

(
(pA · pB)2 −m2

Am
2
B

)
(4.6)

Therefore, the cross section can be written as:

σi =
1

4
√
(pA · pB)2 −m2

Am
2
B

∫
dΩm1

· · ·
∫

dΩmr
(2π)4δ4(pA + pB − Σq)|M|2 (4.7)

where |M|2 is a positive definite quantity that encodes the dynamics of the particular
process. Computing this function for any given scattering experiment is one of the main
goals of theoretical particle physics and in this book we shall develop the necessary
tools to do it. The 3r-dimensional integral is called the phase space of the process and
gives the cross section under the simplified assumption that |M| is a constant. We
see that the cross section increases with the total volume of the phase space, which is

4The expression (4.4) is only formal. It assumes that we are able to identify all particles in the
final state and define precisely the channel i. But in actual experiments there is no universal detector
capable of identifying all particles in all kinematical regions. Especially at very high energies where
the number of final particles is often very large, what we measure is a so-called inclusive cross section
i.e. one summed over a large number of channels. We will ignore this problem for the moment and
we shall give a more precise definition of inclusive processes in Chapter 21.


