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Preface

Ultrashort optical pulses, with duration ranging from a few picoseconds down to a few
femtoseconds, have been used to study dynamics in matter since pulsed lasers were
first developed in the 1960s. Indeed, this research area has been one of the drivers
for improvements in the field ultrafast optics, such as reductions in pulse duration.
The field of using ultrashort light pulses to probe dynamical processes in matter is
generally known as “ultrafast spectroscopy.”

Beginning in the late 1990s, the field of ultrafast spectroscopy underwent a rev-
olution due to the introduction of multidimensional coherent spectroscopy based on
concepts originally developed in nuclear magnetic resonance spectroscopy. Given their
power, multidimensional coherent methods are becoming the dominant ultrafast spec-
troscopic techniques.

This book presents optical multidimensional coherent spectroscopy methods and
their application to systems and materials that fall primarily within the field of physics.
The systems include atomic vapors and solids—particularly semiconductors and semi-
conductor nanostructures. Multidimensional coherent spectroscopy in the infrared and
visible spectral regions has been more extensively used to study molecules. As the ap-
plication of multidimensional coherent spectroscopy to molecular systems has been
covered by other books, we have chosen to not repeat that coverage here. Rather, we
seek to broaden the coverage by addressing applications that are largely not covered
elsewhere.

We begin by providing an introduction of multidimensional coherent spectroscopy
for researchers in all fields, whether or not they have a background in ultrafast spect-
roscopy, or even in optical spectroscopy more generally. We then focus on the use of
the technique to probe systems that are primarily of interest in the fields of physics
and materials science. Our goal is to illustrate the information that multidimensional
coherent spectroscopy can provide and its advantages over other methods. To do so,
we focus on several exemplary materials, but also aim to illustrate the technique’s
broader applicability.
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1

Basics of ultrafast spectroscopy

Starting from Issac Newton’s use of a prism to observe the spectrum of sunlight, optical
spectroscopists have been striving to further our understanding of matter by studying
how it absorbs and emits light. Spectroscopic techniques remained fundamentally un-
changed for centuries compared to Newton’s method. Light was dispersed by a prism
or diffraction grating and the intensity was measured as a function of angle, which can
be mapped into wavelength. Changes in the spectral intensity can be related to either
inherent properties of the source or the light passing through a medium that absorbs
at specific wavelengths. The absorption or emission wavelength can be converted to a
frequency through c = λν where c is the speed of light, λ is the wavelength of the light
and ν is its frequency. Using the quantum mechanical relation between energy, En, and
frequency, En = hν, where h is Planck’s constant, the frequency can be understood
as the energy difference between two quantum states such as electronic or vibrational
states.

Before the invention of the laser, spectroscopic measurements were all performed in
the linear regime where the material properties are independent of the intensity of the
light. In this regime the electric field of the light is weak compared to the internal fields
of the atom or molecule. A laser can produce light that is no longer weak compared to
the internal fields of an atom or molecule, thus the invention of the laser brought the
field of optical spectroscopy into a new era of nonlinear spectroscopy. In the nonlinear
regime, the material properties are no longer independent of the light intensity, signals
scale with a higher power of the laser intensity, and two laser beams can interact in a
sample. For instance, a strong pump beam can saturate an absorption resonance and
thus increase the transmission of a weaker probe beam. Also, wave-mixing of multiple
light fields in the sample can lead to a signal beam with an entirely new direction and
frequency.

Optical spectroscopic measurements can also be made not as a function of wave-
length but rather of time. Time-domain spectroscopy is analogous to the idea of a stro-
boscope, in that short flashes of light can capture stop-action images of ultrafast dy-
namics such as a chemical reaction or charge carriers relaxing in a solid. Measurements
made in the time domain using laser pulses can be converted into frequency-domain
spectra using a Fourier transform. In general, the time-domain spectra can be func-
tions of multiple time delays, so the resulting frequency-domain spectra are functions
of multiple frequencies and thus are multidimensional. The concept of multidimen-
sional Fourier transform spectroscopy was developed in nuclear magnetic resonance
(NMR) [108] and is now transforming the field of ultrafast laser spectroscopy.
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Multidimensional coherent spectroscopy has a number of advantages over other
types of spectroscopy, including one-dimensional methods and multidimensional meth-
ods that are not coherent. At the same time, multidimensional coherent spectroscopy
is challenging to experimentally implement in the optical portion of the electromag-
netic spectrum due to the need to use phase-related light pulses to excite the sample
and to measure the phase of the emitted light signals.

To set the stage before discussing multidimensional coherent methods, in this chap-
ter we will review several ultrafast spectroscopic methods, both because they serve as
the foundation from which multidimensional coherent methods were developed, and
they provide context for describing the advantages of multidimensional coherent meth-
ods. In Chapter 2 we will introduce the basic concepts involved in multidimensional
coherent spectroscopy, followed by an in-depth discussion of how to interpret multidi-
mensional coherent spectra in Chapter 3. Chapter 4 will review several experimental
implementations, describing how each overcomes the aforementioned challenges.

1.1 Basics of spectroscopy: linear versus nonlinear

The field of spectroscopy involves measuring a spectrum that displays the frequency
(spectral) dependence of the interaction between matter and electromagnetic radiation.
The electromagnetic radiation may be incident on the matter from an external source,
or it may be emitted by the matter. In this book, we will discuss the former case.

When an electromagnetic field is incident on matter, it displaces the electrons or
ions in the matter from their equilibrium positions, producing a polarization in the
matter that in turn radiates a new electromagnetic field. Treating the polarization as a
driving term in Maxwell’s equations and taking the far-field limit gives the result that
the phase of the reradiated field lags the phase of the polarization by 90◦ (a factor of i
in complex phasor notation). The interference of this reradiated field with the incident
field results in modification of the field due to propagation through the matter, which
is usually attributed to material properties such as an index of refraction or absorption.

In linear spectroscopy, the incident electromagnetic field is weak and the induced
polarization is linearly proportional to the incident field. For a continuous wave (CW)
incident field, the polarization will have the same frequency and wavevector as the
incident field. However, the phase of the polarization with respect to the incident field
depends on frequency if resonances are present in the material. First, we consider only
a single resonance as the simplest example.

If the frequency of the incident field is significantly below the resonant frequency,
then the induced polarization will be in-phase with the incident field and the reradiated
field will be 90◦ out of phase in the far field due to aforementioned far-field phase lag.
Since the polarization has the same wavevector as the incident field, the reradiated
field will propagate in the same direction, so a detector placed after the sample will
detect the sum of the incident field and the reradiated field. If the reradiated field is
weak compared to the incident field, the dominant result will simply be a phase shift
of the transmitted field compared to the incident field, as illustrated in Fig. 1.1(a)
[note that eikx + iδeikx ≈ ei(kx+δ) for small values of δ, where k = 2πn/λ]. This phase
shift is consistent with a transparent material with an index of refraction n.
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Fig. 1.1 Sketch of linear spectroscopy showing incident fields and reradiated fields in the

vicinity of an optical resonance. (a) Below resonance. (b) On resonance. (c) Above resonance.

(d) Frequency dependence of the complex polarization, in terms of amplitude and phase (top)

and real and imaginary quadratures (bottom).

If the frequency of the incident field is tuned so that it is on the resonance in
the sample, the phase of the polarization will lag that of the incident field by 90◦.
Together with the far-field phase shift, the net result will be that the reradiated field
will be 180◦ out of phase with the incident field and they will experience destructive
interference when measured together, as sketched in Fig. 1.1(b). This destructive in-
terference means that a lower transmitted intensity is measured, as expected, because
the incident field is now being absorbed by the sample since it is on resonance.

Tuning the frequency of the incident field to be above resonance results in a situ-
ation similar to below resonance, just a phase shift of the transmitted field, although
the phase shift is in the opposite direction, as shown in Fig. 1.1(c).

Taken as a whole, this simplified picture of absorption spectroscopy is useful be-
cause it emphasizes the importance of the relative phase between the incident field and
the induced polarization: it is all the difference between a material being transparent
but causing a phase shift of the transmitted light and the material absorbing the light
and resulting in less light being transmitted. The ability to measure the phase of the
polarization with respect to the incident fields can be implemented in multidimensional
coherent spectroscopy, and it yields important information about how the material is
responding to the incident light.

The complete frequency dependence of the material polarization in the vicinity of
the resonance is depicted in Fig. 1.1(d), divided into complex amplitude and phase
components at top and into real and imaginary quadratures on bottom. The quadra-
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ture depiction, in particular, exhibits a number of important features that will serve as
useful reference points for the nonlinear multidimensional spectra that will be discussed
in much of the rest of this book. As mentioned above, when the polarization signal is
both small and primarily real-valued, the dominant effect on the emitted signal is a
change in phase. In fact, the real part of the polarization remains closely connected
to phase shifts in the optical field regardless of what imaginary part if the overall
reradiated signal amplitude remains small in comparison to the incident field. Because
these phase shifts are different for light at different frequencies, the quadrature is very
often referred to in spectroscopy literature as the polarization’s “dispersive” compo-
nent. Likewise, the polarization’s imaginary component bears a strong resemblance
to the material’s absorption properties and as such is frequently termed the signal’s
“absorptive” component. In terms of the reradiated field—which is the most com-
monly examined quantity in MDCS—the dispersive component shifts into the signal’s
imaginary quadrature and the absorptive component shifts into the real quadrature.

This discussion has described a simple spectroscopy experiment, namely sweep-
ing the frequency of an electromagnetic field incident on a sample and measuring the
transmitted intensity. If a dip in the transmitted intensity is observed at a specific
frequency it indicates the presence of resonance; the width of the resonance character-
izes the damping of the resonance. However, there are important ambiguities in linear
spectra, namely the inability to distinguish between homogeneous and inhomogeneous
broadening and the inability to determine if two resonances are coupled or uncoupled.

Typically the sample is an ensemble of many systems, whether they are atoms un-
dergoing electronic transitions, molecules undergoing vibrational transitions, or nuclei
flipping their spins. If all the systems in the ensemble are identical, i.e., they have the
same resonant frequency and same linewidth, the ensemble is designated as being “ho-
mogeneously broadened”; however, this may not necessarily be the case. In particular,
there may be a distribution of resonant frequencies due to effects such as the Doppler
shift in a vapor, random crystal fields in an ion-doped solid or structural disorder in a
nanostructure. In this case, the linewidth of the measured resonance may have nothing
to do with the linewidth of the individual members of the ensemble, but rather re-
flects the distribution of resonance frequencies. This case is known as “inhomogeneous
broadening.”

The linear spectrum of an inhomogeneously broadened ensemble will have a res-
onance feature (the absorption “line”) that has a width that is characteristic of the
inhomogeneous distribution, not the damping of the individual members of the en-
semble. While both are useful to know, they provide quite different information. The
width in the absence of the inhomogeneous broadening, often called the “homoge-
neous width” provides information about processes that interrupt the oscillations, for
example collisions and radiative decay.

There is also an ambiguity in linear spectroscopy if two resonances are observed in
a linear spectrum. There are two possible situations. One possibility is that the sample
is heterogeneous, i.e., a mixture of two species with different resonance frequencies.
The other possibility is that it is pure, i.e., a single substance, but that substance has
two transitions. A good example of this latter case would be the D1 and D2 lines in
the alkali metals, which correspond to the single outer electron making a transition
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to ground S1/2 state the P1/2 and P3/2 states. Linear spectroscopy cannot distinguish
between these two possibilities.

These ambiguities can be resolved by using some form of nonlinear spectroscopy. In
nonlinear spectroscopy, as the intensity of the excitation field is increased, the dielectric
polarization P (ω) of a material is no longer linearly proportional to the incident field,
but rather higher-order terms must be considered. In the frequency domain, we can
describe this in terms of a power series expansion of P (ω) as function of electric field
strength E(ω) as

P [E(ω)] = ϵ0

[
χ(1)E + χ(2)E2 + χ(3)E3 + χ(4)E4 + . . .

]
, (1.1)

where the constant ϵ0 is the vacuum permittivity and the coefficients χ(n)(ω) describe
electric susceptibility parameters of the material at each of the different orders n.
Linear spectroscopy corresponds to the situation where all the terms χ(n)En for n > 1
are small enough to be neglected, resulting in the relationship P (ω) = ϵ0χ

(1)(ω)E(ω).
Of course, this approximation depends on the strength of E , because for large enough
E , the En factor can make χ(n)En > χ(1)E , no matter how small the ratio χ(n)/χ(1). It
is possible to show that for inversion symmetric systems, the second-order term in the
expansion of Eq. (1.1), and indeed all of the even-valued higher-order terms, must be
identically equal to zero.1 Hence, in delving into the world of nonlinear spectroscopy, it
is often the χ(3) term that is actually the most important element governing nonlinear
corrections to the polarization as a whole, and so it is upon this term that we will
most heavily concentrate our attention in this book.

To understand how nonlinear spectroscopy can resolve the ambiguities in a linear
spectrum, it is easiest to consider a simple frequency-domain method known as “spec-
tral hole burning.” In spectral hole burning, a continuous wave (CW) “pump” laser
excites the sample, saturating its absorption. A second laser is then scanned to measure
the absorption of the sample. If the sample is homogeneously broadened, the absorp-
tion of the entire line simply decreases. However, if it is inhomogeneously broadened,
then the sub-ensemble that is resonant with the pump laser is most strongly saturated.
In this case, the measured absorption spectrum is unchanged, except in the spectral
region close to the pump, where the absorption is decreased, known as “burning a
hole.” The width of the spectral hole is proportional to the homogeneous width. Thus
the observation of spectral hole burning shows that the system is inhomogeneously
broadened and the width gives the homogeneous width.

Similarly, if two resonances are present in the spectrum, tuning the pump laser to
one resonance and probing the other can determine if they are coupled. If they are
coupled, then this situation will result in a change in the absorption, whereas if they
are uncoupled it will not. This example was based on using CW lasers. Although there
are some implementations of optical multidimensional coherent spectroscopy based
on this approach [55–57, 443], most are based on using mutually coherent pulses and
scanning their delays.

A time-domain multidimensional coherent spectroscopy (MDCS) measurement is
made by illuminating a sample with a series of light pulses and measuring a signal

1See, for example, Nonlinear Optics, by Robert W. Boyd [40].
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from the sample as a function of the delays between the pulses. Typically the pulses
have duration of a few picoseconds or less, which is considered the domain of “ultrafast
optics,” where traditional photodetectors are too slow to directly measure the pulse
duration. Due to their short duration, such pulses intrinsically have broad spectral
bandwidth, thus spectral features can be measured without tuning them spectrally,
but rather by spectrally resolving them. While this can be done using traditional
spectrometers, it can also be realized using Fourier transform methods. Some MDCS
approaches only use Fourier transforms, whereas others use a combination of Fourier
transforms and a spectrometer to spectrally resolve the signal.

Before we introduce MDCS, we need to briefly review the properties of ultrashort
pulses and introduce less related forms of spectroscopy that are based on ultrashort
optical pulses.

1.2 Ultrashort pulses

A short optical pulse passing through a fixed point in space can be described by its
electric field in the time domain

E(t) =
∣∣Ê(t)

∣∣ cos (−ωct+ ϕ(t))

=
1

2
Ê(t)e−iωct + c.c., (1.2)

where ωc is the carrier frequency, and where ϕ(t) is a time-dependent phase. The
second line of the equation is expressed in phasor notation, with the complex-valued
amplitude Ê(t) = |Ê(t)|eiϕ(t), and with the abbreviation “c.c.” standing for “complex
conjugate.” For the discussion throughout the first three chapters of this book, we
ignore the the fact that light has a polarization, and thus treat the electric field as
a scalar. Note that the choice of ωc is in principle arbitrary; the same pulse could
be described using a different ωc by adjusting the time dependence of the amplitude
coefficients to include linearly ramping phase factors. Typically, however, ωc is chosen
to eliminate a linear ramp in ϕ(t). Throughout this book we use a caret (X̂) placed
over the top of a function X to indicate a value assumed to vary “slowly” in time (i.e.,
to be nearly constant over several periods of the optical frequencies).

Although slow in comparison to the carrier oscillations, time dependence of the
amplitude factor Ê(t) as introduced in Eq. (1.2) is still required to shape the light into
a pulse. Writing out the amplitude and phase components of Ê(t) explicitly and then
expressing them in terms of optical intensity I(t) ≡ nϵ0c⟨E(t)2⟩ leads to

E(t) =
1

2

√
2I(t)

nϵ0c
e−i[ωct−ϕ(t)] + c.c., (1.3)

where n is refractive index, ϵ0 is the vacuum permittivity, c is the speed of light,
and the angle brackets in the definition of intensity specify the time average over
an optical period. As shown in Fig. 1.2, the pulse described using Eq. (1.3) can be
visualized as an oscillating carrier, of frequency ωc, under an envelope proportional
to
√
I(t). The constant in the phase factor ϕ(t) allows the possibility of a shift in
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Fig. 1.2 The electric field (solid red line) and the envelope (blue line) of an ultrafast pulse.

alignment between the ripples of the carrier and the overall envelope position, known
as the “carrier-envelope phase.”

One reasonable mathematical description of an ultrafast pulse is Gaussian. The
envelope of a Gaussian pulse is

Ê(t) = E0e
− t2

(δte2)2 (1.4)

where E0 is the (real-valued) amplitude and the parameter δte2 describes pulse dura-
tion. The pulse intensity associated with Eq. (1.4) is

I(t) ∝ |Ê(t)|2 = E2
0e

− 2t2

(δte2)2 = E2
0e

− t2

(δte2/
√

2)2 , (1.5)

which demonstrates that for a Gaussian pulse, the duration parameter δte2 corresponds
to the half width at which the pulse intensity drops to 1/e2 (13.5%) of its peak. Beyond
this, the equation shows that the pulse duration of the intensity function is a factor of√

2 shorter than the pulse duration of the amplitude function. Although the 1/e2 half-
width definition of pulse duration is common, the duration of a pulse can be defined
according to any number of different conventions, including the intensity half width
1/e value (δte), the intensity full width at half maximum (FWHM) value (δtFWHM),
and various definitions associated with the intensity autocorrelation function. Thus, it
is important to define the pulse duration carefully when introducing it as a parameter
in order to avoid ambiguities. For Gaussian pulses, the duration parameters δte, δte2,
and δtFWHM are related to each other by
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(δtFWHM) =
√

2 ln 2 (δte2) = 2
√

ln 2 (δte). (1.6)

However, the conversion factors relating the various width definitions are different for
different pulse shapes.

An ultrashort pulse can also be described in the frequency domain where the electric
field is written as a function of the angular frequency or frequency. The conversion
between the time and frequency domains is performed by the Fourier Transform of
the electric field (not the intensity), where the forward Fourier Transform

E(ω) =

∫ ∞

−∞
E(t)eiωtdt (1.7)

converts from a time-domain signal, E(t), to its frequency-domain representation,
E(ω), and the inverse Fourier transform

E(t) =
1

2π

∫ ∞

−∞
E(ω)e−iωtdω. (1.8)

converts the other direction, giving the time-domain waveform from the frequency-
domain representation. Note that there differing conventions for the definition of the
Fourier Transform with regards to the sign of the exponent in the kernel (eiωt versus

e−iωt) and normalization ( 1
2π in front of the inverse Fourier transform versus

√
1
2π in

front of both the forward and inverse transforms). Throughout this book we will use
the conventions given in Eqs. (1.7) and (1.8). The Fourier transform of Eq. (1.3) gives

E(ω) =
1

2

√
2I(ω − ωc)

nϵ0c
eiϕ(ω−ωc) +

1

2

√
2I(−ω − ωc)

nϵ0c
e−iϕ(−ω−ωc). (1.9)

The field in the frequency domain has both positive and negative frequencies. The two
frequency components are actually equivalent, but required to make the signal real.
We usually take only the positive frequency and center the pulse at zero frequency
(i.e., expressed in the rotating frame) in complex phasor notation as

E(ω) =
1

2

√
2I(ω)

nϵ0c
eiϕ(ω). (1.10)

Here I(ω) is the spectral intensity function and the frequency-domain phase is

ϕ(ω) = arctan

{
Im[E(ω)]

Re[E(ω)]

}
. (1.11)

The phase calculated from Eq. (1.11) can only vary from −π to π so there could be 2π
phase jumps. We can unwrap the phase by adding or subtracting 2π to avoid phase
jumps and have a continuous phase. The phase defined by Eq. (1.11) has no meaning
when the intensity is zero. The phase is noisy when the intensity is small at the wings
of spectrum, in which case the phase is usually not plotted. According to the Fourier
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shift theorem, a delay in the time domain is a linear phase ramp in the frequency
domain, i.e., F{E(t− t0)} = E(ω)eiωt0 .

Applying the Fourier transform to the time-domain Gaussian pulse described by
Eq. (1.4) gives the frequency-domain pulse in a frame rotating at the carrier frequency
as

E(ω) =
√
π(δte2)E0e

− (δte2)2ω2

4 . (1.12)

The intensity spectrum of the pulse is

I(ω) =
nϵ0c

2
π(δte2)2E2

0e
− (δte2)2ω2

2 ∝ E2
0e

− 2ω2

(2/δte2)2 , (1.13)

which demonstrates that the spectral profile of a time-domain Gaussian pulse is also
a Gaussian. The 1/e2 half width intensity spectral bandwidth of this Gaussian is
(δωe2) = 2/(δte2).

As in the time-domain representation of the electric field, there are different kinds
of conventions for describing spectral bandwidth, including the spectral intensity 1/e2

half width (δe2), the spectral intensity 1/e half width (δωe), and the spectral intensity
FWHM value (δωFWHM). In similar fashion to the ways that time-domain pulse dura-
tions are related to each other, for Gaussian pulses these frequency-domain bandwidth
descriptions are connected through the relationship

(δωFWHM) =
√

2 ln 2 (δωe2) = 2
√

ln 2 (δωe). (1.14)

Different research fields also use different units in the frequency domain. The spectrum
and bandwidth can be presented as a function of frequency (THz), angular frequency
(rad/s), wavelength (nm), energy (eV), or wavenumber (cm−1). The bandwidth and
even the lineshape are different when different units are used. The bandwidth can be
properly converted into different units. As an example, we consider a short pulse that
has a spectral bandwidth in frequency as

δν = 5 THz. (1.15)

This bandwidth can be converted, for example, into units of angular frequency,

δω = 2π(δν) = 3.14 × 1013 rad/s, (1.16)

wavenumber,

δκ =
(δν)

c
= 167 cm−1, (1.17)

energy,

δU = h(δν) = 20.7 meV, (1.18)

or wavelength,

δλ =
λ2

c
(δν), (1.19)

where the last of these expressions is wavelength dependent. Assuming a wavelength
of 800 nm, we have δλ ≈ 10 nm.
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Considering the intensity pulse duration δtFWHM =
√

2 ln 2 (δte2), the pulse dura-
tion and the spectral bandwidth are related as δtFWHM = 4 ln 2/(δωFWHM). Therefore,
a shorter pulse in the time domain requires a broader spectrum in the frequency do-
main and vice versa. The shortest possible pulse for a given bandwidth, known as the
Fourier transform-limited pulse, can be achieved when the spectral phase is constant
across the spectrum. The product of the bandwidth and the temporal duration of a
pulse is a dimensionless number known as the time-bandwidth product (TBP). The
TBP has a minimum value for a transform-limited pulse and the exact value depends
on the pulse shape. If consistent units are used for time and bandwidth, the TBP
is a unitless number. For example, a transform-limited Gaussian pulse has a TBP
of (δtFWHM)(δνFWHM) = 0.441 while the TBP is (δtFWHM)(δνFWHM) = 0.315 for
a transform-limited sech2-shaped pulse. These relations imply that 100-fs Gaussian
pulses must have a bandwidth of 4.41 THz while 100-fs sech2-shaped pulses need a
minimum bandwidth of 3.15 THz.

A pulse can have a carrier frequency that varies in time, in which case the pulse is
called a chirped pulse. A linearly chirped Gaussian pulse can be written as

E(t) = E0e
− t2

(δte2)2 e−i(ωct+βt
2), (1.20)

where ωc is the carrier frequency and βt2 is the chirp. The term βt2 modifies the carrier
frequency and varies with time. It can be considered as a second-order phase. When
β is positive, the pulse increases its frequency linearly in time (from red to blue) and
is positively chirped. When β is negative, the pulse decreases its frequency linearly in
time (from blue to red) and is negatively chirped.

Fourier transforming Eq. (1.20) gives the frequency-domain expression of the chirped
pulse,

E(ω) = E0e
− 1/4

(δωe2/2)−iβ
(ω−ωc)

2

= E0e
− (δωe2/2)/4

(δωe2/2)2+β2 (ω−ωc)
2

e
−i β/4

(δωe2/2)2+β2 (ω−ωc)
2

,
(1.21)

with δωe2 = 2/(δte2). Adding a chirp in the time domain changes the spectral width
but not the temporal width of the pulse, while adding a chirp in the frequency domain
changes the temporal width but not the spectral width of the pulse. In an experiment,
a chirp is usually created by propagating through a dispersive medium, which is to say
that the chirp is added in the frequency domain. As a result, in experiments, adding
chirp typically results in increasing the temporal width of the pulses.

1.3 Ultrafast nonlinear/coherent spectroscopy

Ultrafast pulses enable unique capabilities in spectroscopy. First, the time resolution
provided by ultrafast pulses can probe events that occur on fs to ps timescales. Sec-
ond, the high instantaneous power and hence the strong electric field in ultrafast
pulses can lead to more efficient nonlinear effects for nonlinear spectroscopy. Finally,
a proper pulse sequence can be used to perform coherent spectroscopy. Incoherent
spectroscopy, such as time-resolved fluorescence/luminescence and transient absorp-
tion spectroscopy, is only sensitive to population relaxation and the results can be
interpreted by modeling with rate equations. In contrast, coherent spectroscopy, such
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Fig. 1.3 Schematic of a typical pump-probe setup with two pulses and lock-in detection.

as transient four-wave mixing and multidimensional coherent spectroscopy, also probes
phase relaxation and interpreting coherent spectra requires optical Bloch equations.

The simplest ultrafast technique is time-resolved fluorescence/luminescence spect-
roscopy. The technique uses only one pulse to excite the sample from the ground state
to a high-lying excited state. The sample then relaxes to a lower excited state from
which a fluorescence signal is spontaneously emitted. The fluorescence has a longer
wavelength than the pump pulse so the signal can be distinguished from scattered
pump photons. The signal can be recorded as a function of time by using time-resolved
detection such as time-correlated photon counting or a streak camera, which has a
typical time resolution of a few ps. The time resolution can be improved by cross
correlating the fluorescence signal and a reference pulse through an upconversion non-
linear process, in which case the time resolution is only limited by the pulse duration.
The measured fluorescence signal usually rises initially and then decays exponentially.
The rise time of fluorescence is related to the relaxation time from the high-lying state
to the lower excited state, while the decay dynamics are determined by the relaxation
from the lower excited state to the ground state.

Pulse duration-limited time resolution can also be achieved by using a slow detector
in the two-pulse transient absorption technique (also known as pump-probe). A typical
pump-probe setup is depicted in Fig. 1.3. The sample is first excited by a pump pulse
and the change in absorption due excitation created by the pump pulse is measured
using a subsequent probe pulse. Typically the absorption decreases after the pump
pulse due to bleaching of the transition by the pump-induced population of excited
states and depletion of the ground state population. As the population relaxes from the
excited state back into the ground state, the absorption will recover, which is monitored
by changing the delay between pump and probe pulses. The time delay between the
pump and probe pulses can be varied by translating a mirror or retroreflector using a
delay stage, thereby changing the path length and hence time delay due to the changed
time-of-flight. The average power of the transmitted probe pulse is measured by a slow
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detector. The change in the probe power due to the excitation by the pump is detected
by using a lock-in amplifier as the pump beam is modulated by a optical chopper. The
signal is recorded as a function of the time delay between the pump and probe pulses.
The time resolution is determined by the minimum increment of the delay stage and
the pulse duration. Assume that the unexcited sample has an absorption coefficient
α0 and the absorption coefficient decreases by ∆α0 immediately after the excitation.
For an excited state that decays exponentially with an excited-state lifetime of τex,
the change in the absorption coefficient at a delay time τ is given by

∆α(τ) = ∆α0e
−τ/τex . (1.22)

So the transmitted probe intensity and hence the average power depend on the delay
τ and the lifetime τex as

Itran(τ) = Iince
−[α0−∆α0e

−τ/τex ]L

≈ Itran(0)(1 + ∆α0e
−τ/τexL), (1.23)

where Iinc and Itran are the incident intensity and the transmitted intensity, respec-
tively, L is the sample length, and we assume ∆α0L≪ 1. The differential transmission,
i.e., the relative change in transmitted intensity, or differential transmission, is

∆T (τ)

T0
=
Itran(τ) − Itran(0)

Itran(0)

≈ ∆α0e
−τ/τexL, (1.24)

where T0 is the transmission of unexcited sample and ∆T (τ) is the change in the
transmission at a delay τ . In the simplest case, the pump-probe signal features an
exponential decay and measures the population decay dynamics of the pump-induced
excitations. The pump-probe signal can be complicated in samples with more complex
decay dynamics, for example, systems with multiple decay channels or intermediate
states. The temporal behavior can deviate from a single exponential decay function and
the differential transmission can even be negative. In the frequency-resolved version
of pump-probe spectroscopy, known as spectrally resolved transient absorption, the
transmitted probe is analyzed with a spectrometer to measure the wavelength depen-
dence of the change in probe pulse. Spectral resolution can give more insight into the
origin of the signal itself as well as helping to identify the reason for non-exponential
dynamics.

A common coherent spectroscopic technique is transient four-wave mixing (TFWM),
which can be performed with two or three pulses. The basic geometry for a two-pulse
TFWM experiment is sketched in Fig. 1.4(a). Two pulses with wavevectors k1 and k2

are incident on the sample. The delay between the two pulses is τ and it is defined
to be positive when pulse k1 arrives first. The nonlinear interaction gives rise to a
TFWM signal in the direction ks = 2k2 − k1. A three-pulse TFWM experiment can
be configured in different geometries. A planar geometry is shown in Fig. 1.4(b). The
generated TFWM signal can be emitted in the direction ks = −k1 + k2 + k3. In the
two-pulse and planar three-pulse geometries, it might be difficult to align the detector


