

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

Applied Statistics with R

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

Applied Statistics with R

A Practical Guide for the Life Sciences

JUSTIN C. TOUCHON
Department of Biology, Vassar College, USA

1

OUP CORRECTED PROOF – FINAL, 3/8/2023, SPi

3
Great Clarendon Street, Oxford, OX2 6DP,

United Kingdom
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries
© Justin C. Touchon 2021

The moral rights of the author have been asserted
First Edition published in 2021

Reprinted 2023 (with corrections)

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above
You must not circulate this work in any other form

and you must impose this same condition on any acquirer
Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data
Data available

Library of Congress Control Number: 2021934831
ISBN 978–0–19–886997–9 (hbk.)
ISBN 978–0–19–886933–7 (pbk.)

DOI: 10.1093/oso/9780198869979.001.0001
Printed and bound by

CPI Group (UK) Ltd, Croydon, CR0 4YY
Links to third party websites are provided by Oxford in good faith and

for information only. Oxford disclaims any responsibility for the materials
contained in any third party website referenced in this work.

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

For Myra

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

Preface

Welcome!

The statistical analyses that life-scientists are being expected to perform
are increasingly advanced and yet most graduate programs in the United
States do not even offer a statistics course that teaches beyond Analysis
of Variance (ANOVA) and linear regression. Undergraduate and graduate
students are thus rarely provided with the opportunity to learn the types of
analyses they need to know in order to publish and compete on the jobmar-
ket, much less simply analyze their data appropriately. Part of the reason
for this is that the way statistics are traditionally taught can be frustratingly
slow and tedious. When I was a graduate student, I remember excitedly
enrolling in a statistics class with the hope of learning how to analyze the
data I was collecting each summer in the field. Unfortunately, we spent the
entire semester learning how to perform an analysis of variance and a linear
regression, by hand. There has to be a better way!

This book is written with the belief that a comprehensive understanding
of practical data analyses is not as daunting as it might seem. I have
been teaching an annual statistics workshop at the Smithsonian Tropical
Research Institute for more than 10 years and I know that my approach
works. My teaching perspective is rooted in the idea that instead of spend-
ing time mired in statistical theory and learning data analysis by hand,
the most important thing to understand is what kind of data you have.
Once you know your data, you can then figure out how to analyze them

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

viii APPLIED STATISTICS WITH R

effectively. Whether at the undergraduate, graduate, or post-graduate level,
this book will provide the tools needed to properly analyze your data
in an efficient, accessible, plainspoken, frank, and (hopefully) humorous
manner, ensuring that readers come away with the knowledge of which
analyses they should use and when they should use them.

This book uses the statistical language R, which is the choice of ecologists
worldwide and is rapidly becoming the “go-to” stats program throughout
the life sciences.The examples in the book are rooted in a single, real dataset
(published in the journal Ecology in 2013) and use actual analyses that I
have conducted in my professional career as an ecologist. The dataset is
admittedly somewhat messy, and early chapters are designed so that stu-
dents “clean” the raw data as a way of learning basic data manipulation
skills and building good habits. Moreover, using a single relatively large
dataset (~2500 observations) allows students to get a good understanding
of what they are analyzing from chapter to chapter, instead of jumping from
one small pre-cleaneddataset to another throughout the book. It also allows
readers to see how they can view the same data through different lenses
and allows an easy and natural progression from linear and generalized
linear models to mixed effects versions of those same analyses, given the
hierarchically nested design of the example experiment.

Goals for the book

It is my sincere hope that you find this book useful and instructive. I have
tried my hardest to distill down everything I know and think about data
analysis into these pages. You will undoubtedly find that some of what I
suggest may differ from what you read elsewhere, either on the web or in
other books. Just about everyone these days happens to be rather opin-
ionated, and statisticians and R users are certaintly no different. Wherever
possible, I have tried to include the rationale behind my thinking.

Since you are reading this book, you evidently want to learn about data
analysis. I applaud your initiative and to hope to reward you by teaching you
how to do just that, efficiently and effectively.Here are the goals of this book.

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

PREFACE ix

• I hope to build your familiarity with R from the ground up via the
chapters and assignments. Even if you have some experience with
R, you will likely learn new ways to approach your data. If you
are relatively new to R, I hope the hands on experience of typing
along with the instructions will help you overcome “fear of the R
prompt.”

• I want to empower you to not only follow instructions carefully
and analyze the data presented in these chapters, but hopefully to
be able to analyze your own data and to think critically about data
when you see them presented in research and in the public realm.
As you may already know, science literacy is seriously lacking in the
public sphere and increasing the number of people who can think
critically about data presented in the news or elsewhere is extremly
important.

• Lastly, I hope you can become a part of the global R community. R is
so big there is no single repository of information about it nor is there
a single manual that contains all the possible instructions you might
need to execute.Thus, in addition to books like this one, youwill need
to become familiar with using the web to find answers to questions. I
will provide examples in the later chapters of how you might seek out
information to help yourself when (not if, mind you, but when) you
get stuck or encounter an error.

Basic layout of the book

Thematerials presented in these chapters are set up as follows.There are ten
topics, each an explanatory chapter which will allow you to teach yourself
the code. I cannot stress enough that you really do want to type things in
and you need to think about what the code means and what it is doing if
youwant to learn this stuff. If you have an electronic copy of the book, avoid
any temptation to cut and paste. If you are reading this, you are interested
in learning R, right? Trust me, if you cut and paste code you will not learn
as well as if you type it in by hand.

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

x APPLIED STATISTICS WITH R

The ten topics are:

1 Introduction to R
2 Before You Begin (aka Thoughts on Proper Data Analysis)
3 Exploratory Data Analysis
4 The Basics of Plotting
5 Basic Statistical Analyses using R
6 More Linear Models!
7 Generalized Linear Models
8 Linear and Generalized Linear Mixed Effects Models
9 Data Wrangling and Advanced Plotting with the tidyverse

10 Writing Loops and Functions in R

Just a note about how each of the chapters will be formatted. Bits of code
that you can/should type in are displayed in light grey boxes, and the output
from that code is generally displayed directly below it. For example, check
out the code below. What is shown in the grey box “(2+2)” is what you
would type at the R prompt, and the bit of code below it is the output from
executing that command.

2+2

[1] 4

In general, if you type in exactly what is in the grey boxes you will get
what is shown after it! Amazing, I know. Yourmind is already blown, right?

The code that will be presented in this book is oftenwritten in a relatively
“long” format in order to make it more readable. This might not exactly be
how you type it to your computer though, which is perfectly fine.

At the end of each chapter is a short set of assignments to give you the
opportunity to practice what you have just learned. You can find solutions
to the assigments at the GitHub page for the book (https://github.com/
jtouchon/Applied-Statistics-with-R) as well as other important informa-
tion. Since R is an open source language it is likely that some of the code

https://github.com/jtouchon/Applied-Statistics-with-R
https://github.com/jtouchon/Applied-Statistics-with-R

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

PREFACE xi

needed to run the examples in this book may change over time, and I will
post code updates on that site.

A little background about R

R is a statistical programming package and a powerful graphics engine.
R is considered to be a dialect of the S and S+ language that was cre-
ated by AT&T Bell Labs. S is commercially available while R is open
source and freely available through theComprehensive RArchiveNetwork:
(https://cran.r-project.org). R has many advantages besides being freely
available. For example, a user might program loops to conduct many
repetitive statistical analyses or simulate thousands of data sets with known
parameters. In addition, in the fields of Ecology and Evolutionary Biology
at least, R is now by far the most commonly used statistical program (see
Touchon and McCoy 2016 Ecosphere). There is substantial evidence that
similar shifts are occurring in Psychology and Neuroscience as well.

A little about how Rworks

Because R creates objects from analyses that are stored in its memory,
new users often are surprised by the fact that the results of their analyses
are not immediately displayed on the screen. When you run something
successfully, all you generally see is the prompt, which is denoted by the
‘>’ sign.

There are several reasons for this. First, R does exactly what you tell it
to do. Thus, if you tell it to run an ANOVA and store that output as an
object, it does that, but you have to tell it a separate function to show you
the object you created. Second, printing stuff on the screen takes time and
computer power. By not showing everything that is going on, R is being very
effcient. For example, if you wanted to do 100 regressions on different data
sets, R can do this without opening 100 separate windows. One can store
only the regression coefficients and display all of them in a single line for
comparision. It is this flexibility thatmakes R a fantastic statistical program.
Also, it’s free. Did I mention that it is free yet?

https://cran.r-project.org

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

xii APPLIED STATISTICS WITH R

This book provides an introduction to using R in data analyses with
practical examples designed to be readily accessible to all life scientists.
Although the example dataset I will use is ecological in nature, the
parallels will hopefully be easy to see with other disciplines. Amore explicit
discussion of this is at the end of Chapter 2. R is also a very powerful
graphing tool and I will get you started on your way to making publication
quality figures.

This book is not a comprehensive overview of all available statistical
approaches and methods or experimental design. No single book could
do that. I will of course touch on many different topics, but there are over
16,000 packages available to use in R (as of July 2020), a number which is
growing by the day, so such an overview is impossible.

Learning R is like learning any language. At times it will be diffcult
and frustrating, but it is worth it and if you stick with it you will have
breakthroughs that feel amazing (I call these “R-gasms”). Over time, you
may grow to love working in R!

There is a quote I love from the musician, actor, author, poet, and all
around amazing human Henry Rollins, which encapsulates a lot of how
I think about doing statistical analyses and using R.

Numbers are perfect, infallible and everlasting. You aren’t. Numbers are always right
in the end. You may see an incorrect figure, but that’s not the fault of the number,
the fault lies in the person doing the calculating.

–Henry Rollins, High Adventure in the Great Outdoors

Why do I like that quote so much? It’s because when you get an error
in R, it is almost certainly your fault. R didn’t mess up, you did. Sorry, but
that’s the honest truth. So check your code! :)

Why learn R?

Youmight be thinking to yourself “Whydo I need to learnR?” or “Seriously,
I have to type everything in by hand?!” or “Can’t I do this easier in another
program?” There are many answers to these questions.

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

PREFACE xiii

• If you are an undergraduate thinking of going to graduate school, it
is useful for you to learn R because you will almost certainly use R as
a graduate student. Thus, you will have a leg up on everyone else! Get
started now and be the best you can be.

• Yes, you have to type everything in, but that also helps you learn what
you are doing. It is very easy to click some buttons and get an answer
that you don’t really understand. If you have to type in the code for
the statistics you are doing, you will have a better understanding of
what you are doing.

• Having some basic familiarity with “coding” is increasingly useful
across a variety of disciplines. You don’t need to be a pro, but being
comfortable with a computer and with typing code to achieve a result
is very useful.

• Because it is free and extremely powerful, R is the only statistics
program you will ever really need to know. If you go on to graduate

0.35

0.30

0.25

0.20

0.15

P
ro

p
o
rt

io
n
 o

f
c
it
in

g
 p

a
p
e
rs

0.10

0.05

0.00

1990 1995 2000 2005

Year

2010

SAS

R

SPSS

JMP

Figure 0.1 This figure, from Touchon and McCoy (2016),
demonstrates the rise in usage of R as compared to SAS,
SPSS, and JMP, in the field of ecology. R really is the go-to
program, so it is in your best interest to learn it. Touchon, J.C.
and McCoy, M.W. (2016). “The mismatch between current
statistical practice and doctoral training in ecology.”
Ecosphere. 7(8):e01394. Reproduced under Creative
Commons Attribution License (CC-BY)

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

xiv APPLIED STATISTICS WITH R

school or into consulting or any field that deals with data, you will be
able to use R. This book will teach you many of the basics you will
need to know in R, but one of the best things about R is that it can
be expanded to accomplish nearly any statistical (or, more generally,
data analytic) needs you might have. The same cannot be said with
other programs like JMP, SPSS, or SAS, which are very expensive
and may not be available to you at another institution. Check out
Figure 0.1 for evidence that R has become the program of choice (at
least in Ecology, but the same is true in other fields as well).

Okay, shall we get started?

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

Acknowledgments

This book owes a tremendous debt to many people. First and foremost,
thank you to Andy Jones and Stuart Dennis. The three of us took a
germ of an idea—a desire to teach folks the practical tools they would
need to analyze their data in R—and created the initial workshop at the
Smithsonian Tropical Research Institute (STRI) that this material evolved
from. Thank you to Owen McMillan, Adriana Bilgray, and Paola Gomez
at STRI for their continued support of me and my desire to teach people
how to use R. More generally, thank you to the amazing community of
scientists at STRI for providing such an incredible environment to learn
and conduct research.Many thanks to James Vonesh andMikeMcCoy, two
invaluable mentors, colleagues, and friends over the years. Your knowledge
of R certainly eclipses mine, and I hope I’ve done justice to all that you
have taughtme.Thank you tomy doctoral and post-doctoral advisor Karen
Warkentin. Karen and James wrote the National Science Foundation grant
that generated the data used throughout this book. Many thanks to Tim
Thurman for opening my eyes to the world of ggplot2 and dplyr. Thank
you to the hundreds of interns, undergraduate, and graduate students,
postdocs, and professional scientists that I have had the pleasure of teaching
over the past decade or so. The lessons in this book have been continually
refined and improved based on your feedback, so thank you for making
me a better teacher. In particular, thank you to the students in my 2020

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

xvi APPLIED STATISTICS WITH R

Applied Biostatistics class at Vassar College for the countless typos they
found in early drafts of these chapters. Lastly, thank you to my wife Myra
Hughey for her patience, support, and editorial advice over the years. You
are the best partner in research and life I could ever hope for.

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

Contents

Preface vii
Acknowledgments xv

Chapter 1: Introduction to R 1

1 Introduction to R 1
1.1 Overview 1
1.2 Getting started 2
1.3 Working from the script window 3
1.4 Creating well-documented and annotated code 4
1.5 Before we get started 9
1.6 Creating objects 9
1.7 Functions 13
1.8 What your data should look like before loading into R 21
1.9 Understanding various types of objects in R 23
1.10 A litany of useful functions 34
1.11 Assignment! 35

Chapter 2: Before You Begin (aka Thoughts on Proper Data Analysis) 37

2 Before You Begin (aka Thoughts on Proper Data Analysis) 37
2.1 Overview 37
2.2 Basic principles of experimental design 37
2.3 Blocked experimental designs 39
2.4 You can (and should) plan your analyses before you have the data! 41
2.5 Best practices for data analysis 42
2.6 How to decide between competing analyses 44
2.7 Data are data are data 45

Chapter 3: Exploratory Data Analysis and Data Summarization 49

3 Exploratory Data Analysis and Data Summarization 49
3.1 The Resource-by-Predation dataset 49

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

xviii APPLIED STATISTICS WITH R

3.2 Reading in the data file 51
3.3 Data exploration and error checking 52
3.4 Summarizing and manipulating data 69
3.5 Assignment! 75

Chapter 4: Introduction to Plotting 77

4 Introduction to Plotting 77
4.1 Principles of effective figure making 77
4.2 Data exploration using ggplot2 80
4.3 Plotting your data 89
4.4 Assignment! 101

Chapter 5: Basic Statistical Analyses using R 103

5 Basic Statistical Analyses 103
5.1 Determining what type of analysis to do 103
5.2 Avoiding pseudoreplication 107
5.3 Testing for normality in your data 109
5.4 Non-parametric tests 117
5.5 Introducing linear models 124
5.6 One-way analysis of variance—ANOVA 125
5.7 Multiple comparisons 132
5.8 Assignment! 136

Chapter 6: More Linear Models in R! 139

6 More Linear Models! 139
6.1 Getting started 140
6.2 Multi-way Analysis of Variance—ANOVA 141
6.3 Linear regression 153
6.4 Analysis of covariance (ANCOVA) 163
6.5 The predict() function 168
6.6 Plotting with ggplot() instead of qplot() 174
6.7 Assignment! 179

Chapter 7: Generalized Linear Models (GLM) 181

7 Generalized Linear Models (GLM) 181
7.1 Understanding non-normal data 181
7.2 GLMs 183
7.3 Understanding and interpreting the GLM 188
7.4 Calculating statistical significance with GLMs 195
7.5 Coding the data as a binomial GLM 198
7.6 Mixing GLMs and ANCOVAs together 200
7.7 Using the predict() function with a GLM 204

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

CONTENTS xix

7.8 Making a much easier GLM/ANCOVA plot
using ggplot2 206

7.9 Assignment! 208

Chapter 8: Mixed Effects Models 209

8 Mixed Effects Models 209
8.1 Understanding mixed effects models 209
8.2 Assignment! 233

Chapter 9: Advanced Data Wrangling and Plotting 235

9 Advanced Data Wrangling and Plotting 235
9.1 The “tidyverse” 235
9.2 Basic data wrangling 238
9.3 Advanced data wrangling: Spreading and gathering your data 245
9.4 Even more advanced data wrangling!

Using the do() function 249
9.5 Making better figures with ggplot2 256
9.6 Basics of ggplot2 257
9.7 Customizing your figure 267
9.8 Combining data wrangling with plotting

with ggplot2 274
9.9 Assignment! 282

Chapter 10: Writing Loops and Functions in R 285

10 Writing Loops and Functions in R 285
10.1 for loops 286
10.2 Understanding functions 288
10.3 Writing functions 289
10.4 How a function works 289
10.5 Writing more complex functions: An example using simulations 292
10.6 Assignment! 306

Chapter 11: Final Thoughts 307

11 Final Thoughts 307
11.1 Understanding your data is the most important precursor to

analyzing it 307
11.2 Knowing how to get help is essential 308
11.3 Your data analysis should be clear from the outset and you should

avoid questionable techniques 308
11.4 Presenting your data in well-constructed figures is key 309

Index 311

OUP CORRECTED PROOF – FINAL, 5/7/2023, SPi

OUP CORRECTED PROOF – FINAL, 2/7/2023, SPi

1

Introduction to R

1 Introduction to R

1.1 overview

The purpose of this first chapter is to introduce you to the basic workings
of R and get you up to speed. Some of this material might be familiar to
you if you’ve used R before, but the goal is to get anyone reading the book
up to a basic level of familiarity. You will learn many of the basic and very
important functions of R, such as:

• Creating objects
• Writing articulate R code
• Using functions
• Generating artificial data
• Entering data in a format that can be read and analyzed by R

This chapter does not intend to be an exhaustive introduction to all the
basic workings of R. In other words, we’ll move pretty quickly here. If you
would like a greater introduction, I highly recommend checking out the

Applied Statistics with R: A Practical Guide for the Life Sciences. Justin C. Touchon, Oxford
University Press (2021). © Justin C. Touchon. DOI: 10.1093/oso/9780198869979.003.0001

OUP CORRECTED PROOF – FINAL, 3/8/2023, SPi

2 APPLIED STATISTICS WITH R

excellent book Getting Started With R: An Introduction for Biologists by
Andrew Beckerman, Dylan Childs, and Owen Petchey.

1.2 getting started

1.2.1 Obtaining R
If you are brand new to this, you will have to download R in order to
do anything. Just navigate your web browser of choice to http://cran.r-
project.org to download the appropriate version of R for your operating
system. There is another program you may have heard of and may want to
use called RStudio, which can be found at http://www.rstudio.com.

Box 1.1 - RStudio

Please remember this: RStudio is a program that uses R. It helps keep things organized
and has some nice autocomplete functions, but R is the actual program that does
everything that we will cover in this book. RStudio has plenty of great features, don’t
get me wrong. It’s really great for writing in RMarkdown and LaTeX, if you choose to
do that. But, like I said, RStudio is a program that uses R. R does all the heavy lifting. R
is the statistics program. Personally, I use regular plain old R and not RStudio. To each
their own…

1.2.2 Installing and loading packages
R is designed to be a small program (currently just about 80 mb) which
makes it easy to download and install anywhere in the world. The base
version of R contains a great number of functions for organizing and
analyzing data, but the real strength comes in what are called packages.
Packages are freely downloadable additions to R that provide new functions
and datasets for particular analyses. For example, the base version of R can
conduct linear models and generalized linear models (Chapters 5 – 7) but
cannot conduct mixed effects models (Chapter 8). To do mixed effects
models, you need to download a specific package (of which there are
several).

The only important thing to remember about packages is that adding
them to R is a two-step process. First, you have to install a package, which
(perhaps counterintuitively) just downloads the package to your computer.

http://cran.r-project.org
http://cran.r-project.org
http://www.rstudio.com

OUP CORRECTED PROOF – FINAL, 2/7/2023, SPi

INTRODUCTION TO R 3

Secondly, you have to load the package, which is when you have actively
placed it in the current memory for use. You will generally obtain packages
from the Comprehensive R Archive Network (https://cran.r-project.org/)
(CRAN) directly through R.

Box 1.2 - Install some packages

Assuming you have installed R on your computer, you should run the following code
to install the various packages youwill need to have in order to execute the commands
presented throughout this book. If you are using RStudio you can click on the packages
tab and search for these one at time by using the little search window. Make sure to
click the button to “Install Dependencies.” We won’t do anything with these right now,
but they will be necessary later in the book.

install.packages(c(”lme4”,”multcomp”,”car”,”ggplot2”,”gplots”,
”MASS”,”tidyr”,”dplyr”,”broom”,”gridExtra”,
”cowplot”,”emmeans”,”glmmTMB”,”lattice”),

dependencies = T, repos =
”http://cran.us.r-project.org”)

1.3 working from the script window

The biggest mistake that most new R users make is to just type commands
into the command prompt. The problemwith this is that once you hit enter
the command is gone. If you hit the up-arrow, R will scroll through the
previously executed commands, but aside from this what you typed is gone
and it cannot be edited! It is of course reasonable to run lines from the
command line from time to time, but it is much better to work from a script
window.

The script window allows you to easily save and edit your code, and
to execute one or multiple lines of code at once. To open a blank script
window, go to the File menu and click on New Document, or just hit
command-N (Mac) or control-N (PC) on your keyboard.

In the script window you can type in your commands and then execute
them by hitting command-enter (Mac) or control-R (PC). This means you
type code into the script window and then the program sends the line of

https://cran.r-project.org/
http://cran.us.r-project.org

OUP CORRECTED PROOF – FINAL, 2/7/2023, SPi

4 APPLIED STATISTICS WITH R

code to the command prompt for you. Do not cut and paste code from the
script window to the command prompt; that is a waste of time. You can also
highlight multiple lines of code and execute them all at once. To save your
code simply go to the File menu and save as you would any other file (or
just hit command-S or control-S on your keyboard).

A script allows you to edit, run, and tweak your code, save it, return to it
later, send it collaborators or mentors, and so on. Anything you think will
want to runmore than once, or that youmight want to edit, should be typed
into a script window (which is pretty much everything).

1.4 creating well-documented and annotated code

One of the most important things you can do is write orderly, well-
annotated code that not only functions well but explains what is happening
and why it is happening and does so in easy to read and understand
language. This idea was first introduced by computer scientist Donald
Knuth and is known as “literate programming.” Literate programming is
the process of interspersing your computer code, in this case R code, with
plain-language descriptions of what the code is doing. This allows a reader
to have a fully formed idea of what is going on. In R, you do this with
annotation, which is simply the process of leaving notes within the code
that are not actually code themselves. It’s like you are Hansel and Gretel
getting dragged into the woods: you want to leave plenty of clues for your
future self (or others) to be able to discern the trail you took.

Box 1.3 - Write good code, for yourself and others

For any bit of R code you write, you should consider that you are writing for three
audiences:

1) Your future self
2) Your collaborators
3) Everyone else that might look at your code one day

OUP CORRECTED PROOF – FINAL, 2/7/2023, SPi

INTRODUCTION TO R 5

1. Writing for yourself
Seldom (never?) will you have the opportunity to sit down with a dataset
and analyze it start to finish in a single sitting. It is rare that you even will
have the opportunity to work on it on consecutive days where what you did
yesterday is still fresh in your mind today. What is more realistic is that you
work on something for someperiod of time (hours, days,maybe evenweeks
if you are really lucky!) then have to put it down for some time because you
are distracted by other tasks (teaching, other research demands,manuscript
revisions, parenting, a pandemic, etc.). By the time you come back to your
code even a week later, you will likely have to invest some substantial time
getting back to where you were. Writing good, clear code will reduce that
restart time considerably.

2. Writing for collaborators
If you are, or are planning to be, a professional scientist, you are unlikely
to work exclusively by yourself. There will be times when you collaborate
with others. Maybe it’s your graduate advisor, maybe a colleague at another
institution. Whatever the scenario, it means you might be responsible for
analyzing or organizing some set of data, then sharing it with others. If
that’s the case, you want to make sure when you send your code it is clear
what you did and why you did it. Imagine the embarrassment of your
collaborator sending you question after question trying to figure out what
your code means!

3. Writing for folks in the future who might want to see your code
Increasingly, it is necessary to post both the data that go into a scientific
article and also the code that was used to analyze it. This is a tremendous
step towards increasing transparency in science and is to be applauded for
sure. But it also means that some stranger might look at your code a month
or a year ormore down the road, even after you thought youwere long done
with it all. Thus, just like writing for your future self or your collaborators,

OUP CORRECTED PROOF – FINAL, 2/7/2023, SPi

6 APPLIED STATISTICS WITH R

you want to make sure that your code is clean and organized and well-
annotated.

Box 1.4 - How do you create good code?

There are a few basic rules of thumb that you should do your best to adhere to.
These will help ensure you stay organized and help prevent embarrassment when you
inevitably have to show your script file to someone else! It will also just make your life
in R much, much easier.

1. Always start with your raw data
2. Annotate, annotate, annotate
3. Organize your script file into logical sections
4. Give your objects meaningful and unique names

1. Always start with your raw data
Import your raw file from Excel or whatever program you use for data
entry but do whatever data processing is necessary (removing outliers,
calculating new variables from old ones, etc.) within an R script. This way,
you have a record that others can follow that leads them from the raw data
to the final product. This also increases transparency in science: if you do
a bunch of data filtration before you import your data, you are omitting
potentially important information from the scientific record.

2. Annotate, annotate, annotate
Leave lots of notes to yourself or others about what certain bits of code are
doing and the rationale behind them. You annotate your code by using a
number sign, also called a pound sign (or hashtag, as the kids might say).
Whatever you call it, it’s this thing: #. Anything that is written after a # on a
given line won’t be executed. For example, consider the following two bits
of code (feel free to type this into your own R console and see for yourself
what happens).

Howdy

OUP CORRECTED PROOF – FINAL, 2/7/2023, SPi

INTRODUCTION TO R 7

Error in eval(expr, envir, enclos): object ’Howdy’ not found

Note that we got an error because R doesn’t know what this word is
supposed to mean. R assumes that “Howdy” must be an object in the
memory, but it is not there, so it gives us an error. Now see what happens
if we put a “#” in front of the word.

#Howdy

What happened? Nothing, absolutely nothing! The line was not executed
because it came after a #. This simple coding trick allows you to leave
yourself descriptive notes in your code that won’t interrupt the executable
code. Throughout this book, you will see notes embedded in the chunks of
code that help describe what is going on.

3. Organize your script file into logical sections
I like to use long strings of #s to create large visible breaks in my script files
that I can see when I’m quickly scrolling through it. At the top of the script
file, I will put a header, each line starting of coursewith #s, that describes the
basics of what the file is, where the data are from, the date I started working
on it, that sort of thing.Then, I create a sectionwhere I load all the packages
I will need for that script file. You can use a # and title it something like
“#Packages to load.” Then, create whatever other sections you might need
for your purposes. These might include sections for analyzing different
aspects of the data, or running different types of analyses, or to split apart
analyses vs figure making.

Box 1.5 - An example of a script header

I like to give my code a nice big clear header at the top which describes what that
particular file is for. I also like to put a block of code that loads whatever packages I will
need for that particular set of analyses. Here is an example of what that might look like.

OUP CORRECTED PROOF – FINAL, 2/7/2023, SPi

8 APPLIED STATISTICS WITH R

###
###Code for analyzing RxP experiment data
###Date created: Nov. 15, 2012

###Load the packages
library(dplyr)
library(ggplot2)
library(lme4)
library(emmeans)
library(MASS)

4. Give your objects meaningful and unique names
As my good friend Stu Dennis used to say, “You wouldn’t call your dog
‘dog,’ so don’t call your data ‘data.’ ” I couldn’t agree more. Make sure when
you are importing your dataset, creating objects, running and saving mod-
els, etc., that you assign useful and meaningful names. The flip side of this
is that you generally want those names to be short, since typing in a lengthy
object name over and over gets a little laborious. The same logic applies to
the names of variables in your data frame. For example, in the dataset we
will workwith in this book, there is a variable that represents the snout-vent
length of red-eyed treefrog froglets at the start of metamorphosis, which is
referred to as simply “SVL.initial” in the dataset. It’s short enough that you
don’t mind typing it, but unique enough to let you know what it refers to.

You can customize all of this for your own purposes, and it is a good idea
to try to be consistent throughout your coding. For example, in the previous
paragraph I used a period (.) to take the place of a space, since R generally
does not like spaces. Alternatively, I could have used an underscore (_) or a
hyphen (-), thus creating the hypothetical variables “SVL_initial” or “SVL-
initial.” Any of these are acceptable, the key is just to be consistent with how
you create spaces. Similarly, decide if you want to capitalize variable names
or not and stick to it. Remember, R will distinguish between uppercase and
lowercase characters (e.g., SVL.initial is different from svl.initial), so being
consistent will help you prevent frustrating mistakes.

The basic point is to just try to be clear and organized and leave instruc-
tions for yourself and others. There are many excellent resources out there

OUP CORRECTED PROOF – FINAL, 2/7/2023, SPi

INTRODUCTION TO R 9

that provide a much more exhaustive take on this subject than I have space
to provide here, and I certainly encourage you to seek them out. One that I
am quite fond of is the British Ecological Society’s A Guide to Reproducible
Code in Ecology and Evolution. A quick internet search will help you find it.

1.5 before we get started

Before we begin, there are just a couple of things that are really useful to
know about R and how it works. When you see the greater than sign (“>”)
in the console, thatmeans R is ready for you to type something in. If instead
you ever see a plus sign (“+”), thatmeans R is waiting for you to finish some
command. R generally knows when a command has been finished or not.
If you type into the console “2+”, R is going to wonder what you are adding
to that first 2. You can then type something at the “+” prompt to finish
the command you are trying to execute. You can also hit the escape key to
cancel whatever command R is waiting for you to finish. In the examples of
the code in this book, you won’t see the little greater than sign that you see
in your console window.

#An example of an unfinished command
> 2+
+

This works to our advantage when we are writing out more complex things
like statistical models. If we start a function, like lm() to run a linear model
(Chapters 5 and 6), R will keep the command open until we close the
parentheses and finish out the command. If that doesn’t make sense just
yet don’t worry, it will.

1.6 creating objects

Let’s start with creating simple objects in R. Objects allow the user to create
very simple symbolic representations of simple or complex datasets or
other information which allows the user to then create and run elaborate
analyses from seemingly simple code with the object stored in the com-
puter’s memory. However, creating and manipulating objects can be hard
to get used to for those that are accustomed to drag and drop menus or

OUP CORRECTED PROOF – FINAL, 2/7/2023, SPi

10 APPLIED STATISTICS WITH R

using spreadsheets to manually manipulate and analyze data by selecting
columns or individual cells. In the end, however, creating andmanipulating
objects is far more efficient thanmanually manipulating data, as I hope you
will see by the end of the chapter.

Objects are created with the assign operator, which is an arrow made
from a less than sign and a minus sign and looks like “<-”. For example,
if we want to create an object called n and assign the value of 10 to it, we
would type the following:

n <- 10

In R lingo, you can say this as “n gets 10” or “10 is assigned to n.” It can go
the other way as well, although this is less common.

10 -> n

In both of these examples, you created an object called n and assigned it
the value of 10. You may have noticed that nothing happened after you hit
return. In general, that is good. You told R to do something and it did it.
You did not tell R to display what n was. To do that, you should just type n
at the command prompt.

n

[1] 10

Remember earlier when we typed the word “Howdy” at the prompt and got
an error? Well, if we assign something to be called “Howdy” then it will be
stored in the memory and we can access it.

#Assign a value to be stored as Howdy
Howdy <- 23
#See what happens when you type Howdy into the prompt
Howdy

OUP CORRECTED PROOF – FINAL, 2/7/2023, SPi

INTRODUCTION TO R 11

[1] 23

You can also use the = sign to do this (e.g., n = 10). Some folks prefer the
equal sign because it is one less key stroke, others prefer the little arrow.
I recommend the arrow because it separates assigning objects from other
uses of the equal sign, and that is what you will see in these chapters. Once
again, to each their own.

Names of objects MUST start with a letter and can include letters,
numbers, dots (.), and underscores (_). R is case sensitive, so “x” and “X” are
different objects. Remember, spelling always counts and spelling mistakes
are among the most frequent “bugs” in R code. Whenever you get an error,
the first thing you should always look for is a typo in your code.

Box 1.6 - Always remember the following!

R does exactly what you tell it to do and only what you tell it to do.
There is no spell check and no autocorrect.
Spelling counts.
R doesn’t make mistakes, we make mistakes.

One thing to be careful of is that it is very easy to write over and replace
existing objects. For example, earlier we made an object called n and
assigned it the value 10. We can easily write over the first n with a new
version assigned a different value.

n <- 15
n

[1] 15

Maybe it is obvious, but this is a really important thing to realize. Note that
when we overwrite n with a new value R doesn’t give us any warning or
anything to say “Hey, you already have something called n in the memory!
Are you sure you want to do this?” You could easily overwrite your whole

OUP CORRECTED PROOF – FINAL, 2/7/2023, SPi

12 APPLIED STATISTICS WITH R

dataset with a few keystrokes and R won’t blink an eye (not that R has an
eye to blink, because it is a computer program).

We can also use R as a calculator.

2+2

[1] 4

2*2+1

[1] 5

2*(2+1)

[1] 6

2^4/2+1

[1] 9

2^(4/2)+1

[1] 5

2^(4/(2+1))

[1] 2.519842

Objects stored in the memory can of course also be used in math calcula-
tions. Since we have assigned numerical values to both n and Howdy, we
can add them together.

OUP CORRECTED PROOF – FINAL, 2/7/2023, SPi

INTRODUCTION TO R 13

n + Howdy

[1] 38

1.7 functions

Most of the work done by R is going to be done by functions. In Chapter 10
you will learn how to write your own functions, but for now let’s just
discuss what they are. Functions are pre-written sets of code that we use
to do something to a numerical value or set of values organized into an
object. Functions can be very simple, like calculating the average of a set
of numbers, or very complicated. Functions have two basic parts: a name
and a set of parentheses where you specify the objects or values you want
to the function to work on. Everything you type between the parentheses
are called arguments.

For example, the rnorm() function calculates a randomnumber selected
from a normal distribution. In its simplest form, we can just pass it a single
number and see what happens.

rnorm(1)

[1] 0.565837

That produced a single value, whichmight be positive or negative and is not
too far from zero. What happens if you change the 1 to a different number?
What happens if you execute the function a bunch of times?

If you run that function over and over, you will notice a pattern and
you might start to wonder why the random values being generated are so
close to zero. There are a number of hidden default values for the rnorm()
function. How do we know what they are? This is a good time to introduce
the help function, which is just a simple ?. If you are using RStudio you
can click on the help tab (lower right screen) and type in your search term
there, but the quickest way is to just type a ? at the prompt followed by the
thing you are looking for, like so:

