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Preface

This is not “yet another book on the general theory of relativity.” While the the-
ory did inspire, and indeed plays a major role in, our discussion, it can be thought
of as only one part of a greater whole. Initially developed as a theory of gravity, it
was slowly realized that general relativity had a deeper meaning than just that. It
teaches us, among other things, a completely new understanding of space and time,
together renamed spacetime: a single fabric with its own particular set of symme-
tries and properties. While we learn that the familiar Euclidean geometry1 that we
have all learned (and loved?) in school no longer applies, we also discover that its
most fundamental symmetries are not lost, but rather “upgraded” to new and deeper
ones; leading to a “spacetime” that’s a lot more dynamic and flexible than the one
we learned about from Euclid, Galileo,2 or Newton.3 A byproduct of this dynamical
flexibility, prominent in general relativity, is the phenomenon that we call “gravity;”
but it is only a byproduct. It is actually possible, at least in principle, to go through
an entire course on general relativity without mentioning the word “gravity” once, in-
stead just focusing on its formal structure and the symmetries it inspires! Clearly such
a choice would not be a very productive one, as it means that we would be missing out
on what is undoubtedly the most important application of the theory; nevertheless,
it is possible. The theory itself is the culmination of the efforts of many physicists
and mathematicians, most notably Albert Einstein,4 Hermann Minkowski,5 Hendrik
Lorentz,6 Henri Poincaré,7 David Hilbert,8 and others. Einstein, of course, is respon-
sible for the more revolutionary ideas in the theory. Today it is considered his greatest
contribution to physics, as well as possibly the most amazing singular achievement by
a human being in history.9

1Euclid of Alexandria was a Greek mathematician who lived around the third century BCE. His
book Elements is considered the foundational text of modern geometry in two- and three- dimensional
flat space. His axioms, theorems, and lemmas constitute the familiar geometry taught today to high
school students. The term “Euclidean,” coined in his honor, signifies flat space, as opposed to “non-
Euclidean,” or curved spaces.

2Galileo Galilei: Italian astronomer, physicist, engineer, philosopher, and mathematician (1564–
1642).

3Sir Isaac Newton: English mathematician, physicist, astronomer, theologian, and author, requiring
perhaps no introduction (1642–1726).

4German physicist (1879–1955).
5German mathematician (1864–1909).
6Dutch physicist (1853–1928).
7French mathematician and theoretical physicist (1854–1912).
8German mathematician (1862–1943).
9Charles Darwin’s theory of natural selection might be a close contender.
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One of the most fundamental characteristics of this new understanding of space
and time that has arisen from, but, one can argue, has become even more important
than, the theory of relativity, is what mathematicians sometimes call diffeomor-
phism invariance, which, as far as we are concerned, can be thought of as sim-
ply the “invariance of the laws of physics between coordinate systems,” also known
as coordinate covariance, or just covariance. This idea, which will be our main
focus for most of this book, lies at the deepest foundations of physics and is cer-
tainly true in the special theory of relativity (special covariance), the general the-
ory (general covariance), and even ordinary non-relativistic physics, i.e. the usual
Euclidean/Galilean/Newtonian world view (classical covariance). What it means is
this: The use of any type of coordinate system does not affect the physical outcome
of any given problem. A specific physics formula applied to some problem should give
exactly the same physical answers whether one has used Cartesian coordinates or any
other type of coordinate system (and they are legion). This should be intuitively true
even to the beginner, because coordinate systems are a human choice and nature
should not, and indeed does not, care about our choices or conventions. On the other
hand, the way the formula looks in Cartesian coordinates is significantly different from
the way it looks in other coordinates. So an important question to ask is this: How can
one write the laws of physics in a single form that is true in any coordinate system?
In other words, in a form that is coordinate covariant, yet is easy enough to use once
a choice of coordinates has been made? In this book we will approach our study of
space and time from the perspective of covariance; as such, it is perhaps important to
understand what we mean by this, even this early in the reading. Let’s then clarify
further: Consider Newton’s second law as an example. It is usually first encountered
in introductory courses in the following form:

F = ma, (0.1)

where F is the vector representing the net sum of all external forces acting on a mass
m and resulting in an acceleration a.10 Written in this form, eqn (0.1) is correct in
any coordinate system, i.e. in a sense it is already covariant. But to actually calculate
numerical results one still needs to make a specific choice of coordinates which will
necessarily split the equation into its constituent components and have a form that
is highly dependent on the coordinate system used. For example, in two-dimensional
Cartesian coordinates (x, y), Newton’s law reduces to the following set of equations:

Fx = max

Fy = may, (0.2)

where (Fx, Fy) and (ax, ay) are the Cartesian components of the force and acceleration
respectively. With the knowledge that acceleration is the second derivative of the
position we can write

10We will mostly denote vectors by bold face type font, except when there is a possibility of

confusion. In such cases we will use an arrow over the symbol to denote a vector; for example,
⇀

F .
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Fx = m
d2x

dt2

Fy = m
d2y

dt2
, (0.3)

or in a more compact form

Fx = mẍ

Fy = mÿ, (0.4)

where an over dot is the standard notation for a derivative with respect to time (ẋ = dx
dt ,

ẍ = d2x
dt2 , and so on). This should be familiar even to the reader who has only had

an introductory physics course, but now consider writing the equivalent equations in
polar coordinates (ρ, ϕ). We find that they are not :

Fρ = mρ̈

Fϕ = mϕ̈. Wrong! (0.5)

In other words, one does not simply replace x→ ρ or y → ϕ and expect to get the
right answer. (In fact, it is clear that the second equation in (0.5) does not even have
the correct units.) The correct relationships are actually

Fρ = mρ̈−mρϕ̇2

Fϕ = mρϕ̈+ 2mρ̇ϕ̇. (0.6)

The two sets of eqns (0.4) and (0.6) are not identical in form, as (0.4) is with the
(wrong) eqns (0.5). Specifically, there are “extra” terms and multiplicative factors in
(0.6), and it is not immediately obvious where these came from or whether there is a
pattern that is common to them. It is, however, true that applying either one of these
choices to the same problem will describe the same physical behavior and give the same
physical results. But where did the extra quantities come from? Mathematically, they
arise from the relationships that relate polar coordinates to Cartesian coordinates, i.e.
x = ρ cosϕ and y = ρ sinϕ, as can be easily derived from Fig. [1.3b]. All one needs
to do is to use calculus to find how ẋ and ρ̇ (for example) are related, and so on. In
principle one needs to rederive the Newtonian equations of motion each and every time
one makes a specific choice of a coordinate system. This is indeed the way it is usually
done in physics classes. However, what if the coordinate system is not defined ahead
of time? What if it depends on the curvature of space and time that is not a priori
known? What if the coordinate system itself arises as the solution of the problem
under study? Can one rewrite (0.1) or any other law of physics in such a way that it
remains coordinate invariant and gives the correct set of equations for any coordinate
system, whether it was known from the start or still to be derived? This is the problem
of coordinate invariance in physics, or covariance as it is more commonly referred to.
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Learning how to do all of this is a useful thing, whether one is going to study rela-
tivity or not, because it provides the student with a recipe for dealing with any choice
of coordinate system in any physics problem, whether such a choice is one of the more
common ones, like polar coordinates in two dimensions or cylindrical and spherical
coordinates in three, or less common, such as parabolic coordinates or elliptic coordi-
nates. In short, it provides the physicist (or engineer) with a powerful mathematical
tool applicable to a variety of situations. It also acts as an easy (-ish) introduction to
the subject of tensor mathematics, rarely discussed in an undergraduate setting, yet
encountered in almost every branch of physics. While these “tensors” are particularly
useful in a relativistic setting, they can also be found in non-relativistic mechanics and
in electrodynamics, and knowledge of their properties and rules would be particularly
useful for the student wishing to delve deeper into these topics, or at least hopes for
a better understanding than is normally delivered to undergraduates.11 We will touch
upon all of this, and by the time we are done we will have a general understanding of
(almost) all of fundamental (non-quantum) physics in a covariant setting and arbitrary
spacetime backgrounds. We conclude the book with three chapters focusing on topics
rarely, if ever, found in similar treatments. These are: classical fields, differential forms,
and modified theories of gravity. These chapters are particularly geared towards the
students interested in reading modern research papers. They should provide just a bit
of extra preparation as well as possibly whet the reader’s appetite for more.

A note to instructors:

This book is written from a minimalist’s perspective. By no stretch of the imagina-
tion am I claiming that the discussions here are exhaustive or complete. In fact, I
imagine that most mathematicians would be particularly appalled by the lack of rigor
throughout, and most physicists will point out that many interesting applications and
discussions commonly found in similar monographs are missing. This is all quite in-
tentional. The intended audience of this book are those undergraduate students who
may have only had introductory mechanics and electromagnetism at the level of Ser-
way [1], for instance, as well as elementary calculus up to and including multivariable
calculus. While the mathematical background gets a bit more intense in some places,
it is my hope that students with only that much preparation can manage the major-
ity of the book. As the students progress in their studies and reach more advanced
courses in mechanics and electrodynamics, one hopes that this book, or the memory
thereof, would provide a background tying all the various disciplines together in one
continuous thread. The theme of covariance permeates all of physics, and yet is rarely
discussed in an undergraduate setting. I have tried to make the book as self-contained
as possible, such that a student reading it on their own would manage most of it with
as little help as possible.

11It truly hurts when in teaching an undergraduate class I find myself forced to say something like
“This is called the so-and-so tensor, but unfortunately we have no time in this class to explain what
that really means.”
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One also hopes that this book can provide the minimum mathematical training
needed by undergraduate students wishing to do research in certain areas of theoret-
ical physics. In fact, the idea of the book, as well as the level of detail and sequence
of topics, has arisen from my years of supervising undergraduate research. With grad-
uation dates preset, one would like one’s students to start their research experience
as early as possible in their college years, and get to finish within the time they have
available. In my undergraduate theoretical physics research program I have usually
designed my students’ learning experience in such a way that they would be able to
get to the research part as fast as possible, amassing the needed mathematical train-
ing in the shortest possible period of time. In many cases, I have instructed them to
focus on certain topics while skipping others, because of my preconceived knowledge
of the nature of the research problem that I will eventually pose to them. For exam-
ple, a student whose research will be calculating geodesic orbits of certain spacetime
backgrounds need not waste their initial study sessions on understanding the details of
how these spacetimes were derived in the first place; rather a cursory knowledge would
be acceptable. If undergraduate research is the instructor’s intention in assigning this
book to their students, then it is advisable to plan their reading ahead of time. Of
course, as they work on their projects they may go back and study in more detail
those sections that they have initially only skimmed over. I have tried to make this
book exhaustive enough for these purposes, although depending on what the research
mentor has in mind, other books and/or notes can be supplemented.

On the exercises in the book:

I have tried to include as many exercises for practice and/or homework assignments as
I could without overwhelming the reader. Many of the exercises in the book are chosen
not only because they provide practice on the topics we discuss, but also because they
include some additional material of their own. For example, some of the exercises
require the reader to teach themselves computational techniques not discussed in the
text or read on a topic that we didn’t include in detail. Some may even be long enough
to count as a final project or something similar, e.g. Exercise 6.49, or Exercises 7.26
and 7.27 combined. These increase in frequency, as well as intensity, as we get to the
final chapters. A word of warning, however: Please be aware that some of the exercises
list many different ways of practice; so many, in fact, that the student need not do
all. For example, an exercise may say “do such and such for the following cases” and
list 10 different cases; e.g. Exercise 2.22 which in turn is referred to multiple times in
subsequent exercises. The student really need not do all of the listed cases; only enough
to feel they have reached a certain degree of comfort with the techniques. Likewise, if
this book is used in a formal course, the instructor should choose some of the cases
for homework assignments, or even introduce their own. Many exercises depend on
previous ones, however. For example, Exercise 2.23 needs the results of Exercise 2.22,
so if the reader chooses to do, say three, of the cases in 2.22, then they would only be
able to do the same three cases in 2.23, and so on.
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Some of the exercises assigned already have solutions available in various places
around the internet. This is unavoidable. However, it is understood that it is in your
best interest to work out the exercises yourself, then check against the available solu-
tions. It is also true that there are freely available software packages that would solve
many of the exercises in this book for you. This is the case for most mathematical
topics in this day and age. I actually encourage the reader to find and download these
packages, or better yet learn to design and write your own. You can do so from scratch
using any programming language or from within one of the commercially available
symbolic manipulation software packages. In other words, you should treat the digital
computer as a tool for learning, not as a way of avoiding work. The choice of which
exercises to do by hand and which to do using the computer is mostly left to the reader
or their instructors, even if not specifically stated. For example, once the instructor is
satisfied that the students are able to calculate a specific quantity that usually takes
hours to find by hand, say the components of a particularly large tensor, then they
might just allow the students to use software packages for the remainder of the course.
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Coordinate Systems and Vectors

Geometry has two great treasures: one is the Theorem of Pythagoras; the other, the division

of a line into extreme and mean ratio. The first we may compare to a measure of gold; the

second we may name a precious jewel.

Johannes Kepler

Introduction

Coordinate covariance is defined as the invariance of the laws of physics under change
of coordinate systems, whether they differ from each other by translation, rotation, or
both. In this chapter we begin by introducing the various two- and three-dimensional
coordinate systems usually used in problems of physics and engineering. Some of these
should be quite familiar to the reader, while others may be completely new. We specif-
ically highlight the concept of “line element,” also known as the “metric,” as a defining
principle of coordinate systems as well as a unifying theme amongst them. This should
allow for a smoother transition into physics later. In principle, all that an experienced
physicist needs in order to figure out what type of covariance is at play in a given
situation is knowledge of the metric. Hence introducing the concept early on makes
sense and allows us time to get used to it before things get more interesting. Next
we will turn to defining the basics of vector mathematics and discussing their for-
mulation in a new language simply known as the “index” or “component” notation.1

This notation by itself connects vectors to the coordinate systems they are defined in
and highlights their covariance. Furthermore, the notation provides the majority of
the mathematical material that we need to collect in our search for a fully covariant
formulation of physics, relativistic or not. In fact, I claim that the first two chapters
by themselves constitute at least 80 percent of the mathematics needed to study both
theories of relativity. As the reader will see, none of this mathematics is too far beyond
ordinary algebra and a bit of multivariable calculus.

1Also sometimes referred to as the “tensor notation;” however, this is somewhat misleading, so we
will avoid using it too much.
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1.1 Coordinate Systems

For the purposes of many science and engineering applications, the most commonly
used system of coordinates is the Cartesian,2 also known as box or rectangular
coordinates. By their very nature, Cartesian coordinates emphasize the intuitive con-
cepts of width, depth, and height. It is usually the coordinate system of choice for
Euclidean geometry; i.e. the ordinary geometry we all studied in school. It is, how-
ever, only one choice among many, as we will see. Euclidean geometry describes flat
space, where parallel lines stay parallel and the angles of a triangle sum up to exactly
180◦. If one happens to be interested in curved or non-Euclidean geometries, like
cartographers doing geometry on the surface of the spherical globe, then not only do
Cartesian coordinates stop making sense, but they actually become impossible to de-
fine, except approximately on a very small scale. To clarify this, consider the surface of
planet Earth as an example, assumed a perfect sphere; one can draw straight lines in
a grid on the floor in a room or in the street without trouble, but if you want to draw
longer “straight” lines between cities, countries, or even continents, you find that you
cannot do so and are forced to work with circles, like those of latitude or longitude. In
a sense, then, most curved surfaces of interest are approximately flat on small scales;
one says they are locally flat, as opposed to globally so.

(a) A right-handed coordinate system. (b) A left-handed coordinate system.

Fig. 1.1: Cartesian coordinates.

Traditionally, we use the symbols x, y, and z to denote the three Cartesian axes
in three-dimensional space, ordered in the so-called “right-handed” system, as shown
in Fig. [1.1a]. The right-handedness convention is particularly useful in physics, as
it is the basis of various mathematical operations such as vector cross products. For
comparison a left-handed system is shown, but we will not be using that. Generally,

2Invented in the seventeenth century by the French philosopher and mathematician René Descartes
(1596-1650), whose name in Latinized form is Cartesius.
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coordinate systems are defined via the geometric shapes they seem to trace. So in
the case of Cartesian coordinates, surfaces of constant x, y, and z are infinite flat
planes as shown in Fig. [1.2], hence the alternative title “box coordinates.” Now the
conventional choice of the letters x, y, and z to denote the Cartesian axes is very
familiar to most people; however, a more useful notation, and one that we might as
well start using right away, employs indices to denote the different axes. So x becomes
x1 (i.e. the first axis), y, being the second axis, becomes x2, and z → x3, where
the reader is warned not to confuse indices with powers, so x2 is not x squared,
but is simply pronounced “ex two” and similarly for “ex one” and “ex three.” If we
wish to denote exponentiation, then we can simply use parentheses; for example, the

square of “ex three” is
(
x3
)2

= x3 × x3 = z2. If there is a possibility of confusion,
we can temporarily go back to the old (x, y, z) system, depending on the context.
This “numbering” system, also known as the index notation or the component
notation, is a much more powerful choice than the conventional one for a variety of
reasons, as we will see.

z

y

x

Fig. 1.2: The Cartesian grid: planes of constant x, y, and z.

The next most commonly used system of coordinates in three dimensions is cylin-
drical coordinates (which become polar coordinates in the x–y plane), also known
as cylindrical polar coordinates. They are denoted by (ρ, ϕ, z) and are related to
the Cartesian coordinates via
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x1 = ρ cosϕ

x2 = ρ sinϕ

x3 = z, (1.1)

and their inverse

ρ2 =
(
x1
)2

+
(
x2
)2

tanϕ =
x2

x1

z = x3, (1.2)

as is easy to confirm by inspecting Fig. [1.3]. Cylindrical coordinates are a particularly
useful choice in physics when the problem under study has cylindrical symmetry, i.e.
studies a situation with cylindrical shapes or a reasonable approximation thereof.
The name comes from the fact that surfaces of constant ρ describe infinite cylinders
spanning the entire z direction. Surfaces of constant z are of course still infinite planes,
and so are surfaces of constant ϕ (Fig. [1.4]).

(a) Cylindrical polar coordinates. (b) Planar polar coordinates.

Fig. 1.3: Two- and three-dimensional cylindrical polar coordinates.

An important difference between the cylindrical (as well as two-dimensional polar)
and Cartesian coordinate systems is that the cylindrical system does not cover all of
three-dimensional space. What this means is that while any point in space can be
described by a specific set of numbers in Cartesian coordinates

(
x1, x2, x3

)
, in the

cylindrical coordinate system there is a single point, out of the infinity of points in
space, that cannot be described by a unique set of the three numbers (ρ, ϕ, z). This
is the point located exactly at the origin of coordinates, which we usually denote by
O. While the coordinates of O in the Cartesian system are simply (0, 0, 0), in the
cylindrical system only ρ = 0 and z = 0 can be defined but ϕ remains ambiguous,
because any value can be used for it. In other words, there is no unique set of three
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numbers describing the location of O; the set of numbers (ρ = 0, ϕ = 0◦, z = 0) does
imply the origin, but so do the sets (ρ = 0, ϕ = 10◦, z = 0), (ρ = 0, ϕ = 20◦, z = 0),
(ρ = 0, ϕ = 312.56◦, z = 0), and so on. There is an infinite number of possibilities, all
describing a single point! This phenomenon is a defect in the coordinate system itself
and cannot be remedied; the system simply fails at that specific point. One then says
that while Cartesian coordinates cover, map, or chart all three-dimensional space,
cylindrical polar coordinates do not; exactly one point defies definition. Coordinate
systems in this regard can be thought of as a grid covering three-dimensional space;
the Cartesian grid or map is infinite, smooth, and complete, while the polar one has
a “hole” in it located at O. If one then wishes to do a problem that studies the point
at the origin using such a “defective” coordinate system, one has no choice but to
shift the coordinate system itself such that the point in question no longer coincides
with the origin. There is simply no other way. This issue also further emphasizes that
spatial points and coordinate maps are not the same thing; an obvious issue, perhaps,
but one that is sometimes confused in the minds of beginners.

Fig. 1.4: The cylindrical coordinates grid: cylinders of constant ρ and planes of constant
z and ϕ.

The remaining most commonly used system of coordinates in three-dimensional
space is the spherical coordinate system, particularly useful in physics when prob-
lems exhibit spherical symmetry. As shown in Fig. [1.5], we define the numbers (r, θ, ϕ).
They are related to the Cartesian coordinates as follows:

x1 = r sin θ cosϕ

x2 = r sin θ sinϕ

x3 = r cos θ (1.3)
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r2 =
(
x1
)2

+
(
x2
)2

+
(
x3
)2

tanϕ =
x2

x1

cos θ =
x3

r
. (1.4)

Fig. 1.5: Spherical coordinates.

It is also possible to define transformation relations between cylindrical coordinates
and spherical coordinates. These are:

ρ = r sin θ

z = r cos θ

r2 = ρ2 + z2

tan θ =
ρ

z
. (1.5)

Note that the spherical coordinate system also suffers from the same defect we
noted for cylindrical coordinates. Once again, the point at the origin cannot be specified
by three unique numbers: only r = 0 can be used, while both θ and ϕ are ambiguous.
As before, the only way to deal with this in calculations is to avoid addressing the
origin altogether or just shift the coordinate system. Now the defining property of
spherical coordinates is that surfaces of constant r describe spheres, concentric at the
origin, while surfaces of constant θ and ϕ define cones and flat surfaces respectively,
as shown in Fig [1.6].

As noted, coordinate systems are defined based on geometric shapes: flat planes
for Cartesian, cylinders for cylindrical (or circles for polar), and spheres for spherical.
We note here that these are not the only options; other shapes can also be used to
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(a) Spheres of constant r and cones of constant
θ in spherical coordinates.

x1

x3

x2

O

(b) The complete spherical coordinates grid.

Fig. 1.6: Spherical coordinates.

define coordinate systems. For example, consider the so-called elliptic cylindrical
coordinates (u, v, z), where surfaces of constant u define concentric elliptic cylinders
and surfaces of constant v are hyperbolas, as shown in Fig. [1.7]. They are related to
the Cartesian coordinates via

x1 = a coshu cos v

x2 = a sinhu sin v

x3 = z, (1.6)

where a is an arbitrary constant.

There are coordinate systems based on the parabolic shape, such as parabolic
cylindrical coordinates, as shown in Fig. [1.8]:

x1 = ξη

x2 =
1

2

(
η2 − ξ2

)
x3 = z. (1.7)

A final example is the parabolic coordinates, as shown in Fig. [1.9]:

x1 = uv cos θ

x2 = uv sin θ

x3 =
1

2

(
u2 − v2

)
. (1.8)
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Fig. 1.7: The elliptic cylindrical coordinates grid in the x–y plane: curves of constant
u (ellipses) and v (hyperbolas) in the z = 0 plane. The extension to three dimensions
is straightforward.

Fig. 1.8: The parabolic cylindrical coordinates grid in the x–y plane: parabolic curves
of constant ξ (upright) and η (inverted) in the z = 0 plane. The extension to three
dimensions is straightforward.

All of the systems of coordinates we discussed, and many others that exist, are
collectively known as orthogonal coordinate systems, i.e. perpendicular. In other
words, their respective grid lines are perpendicular to each other at every point. There
do exist non-orthogonal, or skew, coordinate systems, a simple example of which is
given in the exercises.

Exercise 1.1 Using a computer, see if you can reproduce some of the coordinate grids in
this section, such as Fig. [1.4], [1.7], or [1.9]. Once you have had enough practice, plot the
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Fig. 1.9: The parabolic coordinate grid: The paraboloidal surfaces of constant v (up-
right) and u (inverted) are shown. They can be thought of as the surfaces of revolution
of the parabolas of constant ξ and η respectively in the parabolic cylindrical coordi-
nates.

complete coordinates grids for the following systems. For the numerical values of the given
constants, you may wish to experiment with a few and see which ones give you the best plots.

1. Paraboloidal coordinates (µ, ν, λ) defined by

x2 =
4

a− b (µ− a) (a− ν) (a− λ)

y2 =
4

a− b (µ− b) (b− ν) (λ− b)

z = µ+ ν + λ− a− b, (1.9)

where the constants a and b set the following limits on the coordinates:

µ > a > λ > b > ν > 0.

2. Oblate spheroidal coordinates (µ, ν, ϕ) defined by

x = a coshµ cos ν cosϕ

y = a coshµ cos ν sinϕ

z = a sinhµ sin ν, (1.10)

where a is an arbitrary constant.

3. Toroidal coordinates (σ, τ , ϕ) defined by

x =
a sinh τ

cosh τ − cosσ
cosϕ

y =
a sinh τ

cosh τ − cosσ
sinϕ

z =
a sinσ

cosh τ − cosσ
, where a is an arbitrary constant. (1.11)
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Exercise 1.2 As an example of non-orthogonal, or skew, coordinates, consider a Cartesian
coordinate system where the z axis has been rotated in the y–z plane by an angle α, as shown
in Fig. [1.10]. Derive the transformation equations relating the original orthogonal x, y, and
z coordinates to the skew coordinates x′, y′, and z′.

Fig. 1.10: The simplest possible example of a non-orthogonal, or skew, coordinate system.

1.2 Measurements and the Metric

A fundamental question in geometry is the question of spatial measurement—specifically:
How does one measure a distance in space and relate it to the coordinate system
in use? In Cartesian coordinates this is fully described by exploiting the familiar
Pythagorean theorem.3 Consider, to start, the two-dimensional plane with Carte-
sian coordinates shown in Fig. [1.11]. We define ∆l as the distance between two specific
points with coordinates (x1, x2) and (x1′ , x2′). The question is: How is ∆l related to
the changes in coordinates ∆x1 = x1′ − x1 and ∆x2 = x2′ − x2 between the points in
question? This is clearly a problem for Pythagoras:

∆l2 =
(
∆x1

)2
+
(
∆x2

)2
. (1.12)

Typically, we would be more interested in infinitesimal changes of coordinates (if
we wanted to do calculus), so making the distance ∆l arbitrarily small; i.e. ∆l → dl
gives

dl2 =
(
dx1
)2

+
(
dx2
)2
. (1.13)

3Pythagoras: Greek philosopher and mathematician (571–495 BCE).
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Fig. 1.11: The Pythagorean theorem.

The explicit use of indices in (1.13) is clearly becoming cumbersome. But this is
exactly where the index notation becomes truly powerful. To see this, let us begin by
using the summation symbol Σ in (1.13):

dl2 =

2∑
i=1

(
dxi
)2
. (1.14)

We can easily generalize to three dimensions by simply adding an extra term:

dl2 =
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2

(1.15)

=

3∑
i=1

(
dxi
)2
. (1.16)

Interestingly, if, for whatever reason, one imagines a higher-dimensional space, in,
say, arbitrary N dimensions, then (1.15) is easily generalized by just adding more
terms x4, x5, all the way up to xN ,

dl2 =
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2

+
(
dx4
)2

+
(
dx5
)2

+ · · ·+
(
dxN

)2
, (1.17)

or just changing the summation’s upper limit to whatever the value of N is:

dl2 =

N∑
i=1

(
dxi
)2
. (1.18)

So the same formula (1.18) can be used to represent the Pythagorean theorem in
any number of dimensions. All one needs to do is set the value of N . This simplicity
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is one reason why the index notation is a preferred choice. Now, expressions such as(
dxi
)2

may be a bit confusing. A common method used to avoid such confusion is to
write (1.18) as follows:

dl2 =

N∑
i=1

dxidxi, (1.19)

which should help a little. However, let us take this quest for simplification even
further: Summations such as (1.19) arise all the time—sometimes double, triple, or
more summations (as we will see). They are used to compactly write what would
otherwise be very long equations (sometimes pages long). This is very common in both
non-relativistic and relativistic physics. As he was pondering his theory of relativity,
Albert Einstein himself came up with another simplification to expressions such as
(1.19). This is now known as the Einstein summation convention, a particularly
simple idea that goes a long way in simplifying the form of the equations. This is done
by removing the summation symbol entirely:

dl2 = dxidxi. (1.20)

The summation is hidden but still exists; eqn (1.20) is identical in meaning to
(1.19).4 But when one encounters such an expression, how does one know whether or
not there is a summation if it is not explicitly written? The rule is this: If there are
two identical indices per term, then a summation over them exists (exactly two; no
more, no less). Either the limits of the summation are known beforehand or one can
simply express them like this:

dl2 = dxidxi, i = 1, 2, . . . N, (1.21)

where N can be 2 (1.13), 3 (1.15), or just arbitrary. This language is very commonly
used in theoretical physics and has more rules to it that we will explore later. On
first encounter, an equation such as (1.21) may cause a great deal of confusion to
the reader, so it may be advisable to go back and read from the beginning of this
section just to remind oneself that (1.21) is nothing more than a shorthand for the
Pythagorean theorem.

The quantity dl is a distance between two (infinitesimally close) points, so as far
as pure geometry is concerned it is always positive definite, as a distance should be.
Generally, dl is known as the line element. It is also sometimes referred to as the
metric (from Latin metricus, and Greek metrikos or metron, meaning “measure”).
In differential geometry and multivariable calculus dl represents the basic element for
measuring distances on curves. A familiar equation that arises from it is the formula
for distance between two points on a given curve in the x–y plane which one encounters
in calculus:

l =

x=b∫
x=a

dx

√
1 +

(
dy

dx

)2

, (1.22)

4I imagine Einstein simply got tired of writing summation symbols all the time.
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where in this context y (x) is the function describing the curve whose length is being
measured. For our purposes, however, the quantities l or dl are unessential; it is dl2

that is more important, for reasons that will become clear later. Hence, despite the
possible notational confusion this might cause, in physics textbooks the terms “line
element” and “metric” are more commonly used in reference to dl2, not dl.

Now, what about other coordinate systems? What does the Pythagorean theorem
look like in, say, two-dimensional polar coordinates? This is easily found; simply con-
sider Fig. [1.12]. Infinitesimally, the shaded area approaches a right triangle. Applying
the Pythagorean theorem to it gives

dl2 = dρ2 + ρ2dϕ2. (1.23)

Fig. 1.12: The Pythagorean theorem applied to dl in planar polar coordinates.

Now, we could have found eqn (1.23) analytically if we had considered how Carte-
sian coordinates are related to polar coordinates, i.e. by using the transformations
(1.1). Simply put, take the differentials of both sides of (1.1), then plug the result into
(1.13). Explicitly,

dx1 = dρ cosϕ− ρdϕ sinϕ

dx2 = dρ sinϕ+ ρdϕ cosϕ, (1.24)

leading to

dl2 =
(
dx1
)2

+
(
dx2
)2

= dρ2 cos2 ϕ+ ρ2dϕ2 sin2 ϕ− 2ρ dρ dϕ sinϕ cosϕ

+dρ2 cos2 ϕ+ ρ2dϕ2 sin2 ϕ+ 2ρ dρ dϕ sinϕ cosϕ

=
(
dρ2 + ρ2dϕ2

) (
sin2 ϕ+ cos2 ϕ

)
= dρ2 + ρ2dϕ2, (1.25)
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where we have used Euler’s5 extremely useful identity sin2 ϕ+cos2 ϕ = 1, itself another
form of Pythagoras’ theorem. Cylindrical coordinates are a straightforward extension;
just add dz2:

dl2 = dρ2 + ρ2dϕ2 + dz2. (1.26)

A similar calculation, albeit a bit longer, leads to the equivalent spherical coordi-
nates expression by either plugging (1.3) into (1.15) or (1.5) into (1.26) to find the line
element:

dl2 = dr2 + r2dθ2 + r2 sin2 θdϕ2. (1.27)

Exercise 1.3 Find the metric dl2 using the analytical method for:

1. Spherical coordinates using (1.3).

2. Spherical coordinates using (1.5).

3. Elliptic cylindrical coordinates (1.6).

4. Parabolic cylindrical coordinates (1.7).

5. The skew coordinates system of Exercise 1.2.

The analytical method just described is extremely useful because it provides a
systematic way of transforming or generating metrics from one system of coordinates
to another without having to draw sketches and agonizing over the trigonometry.
We can easily generalize the method to any arbitrary system of coordinates (u, v, w)
whose relationship to the Cartesian (or any other coordinate system for that matter) is
known; i.e. one can write the Cartesian coordinates as functions in, or transformations
to, the new coordinates, xi (u, v, w), such as (1.1) or (1.3). To find the metric in the
new coordinate system all one needs to do is take the appropriate derivatives and plug
into (1.15). For this purpose let’s define the so-called scale factors hu, hv, and hw:

h2
u =

(
∂x1

∂u

)2

+

(
∂x2

∂u

)2

+

(
∂x3

∂u

)2

h2
v =

(
∂x1

∂v

)2

+

(
∂x2

∂v

)2

+

(
∂x3

∂v

)2

h2
w =

(
∂x1

∂w

)2

+

(
∂x2

∂w

)2

+

(
∂x3

∂w

)2

. (1.28)

If we define a parameter k that can be either u, v, or w, we can more compactly
write

h2
k =

(
∂xi

∂k

)(
∂xi

∂k

)
, (1.29)

5Leonhard Euler: Swiss mathematician, physicist, astronomer, geographer, logician, and engineer
(1707–1783).
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with the summation convention on i assumed. These scale factors lead directly to the
metric/line element in the (u, v, w) coordinate system:

dl2 = h2
udu

2 + h2
vdv

2 + h2
wdw

2. (1.30)

For example, for spherical coordinates (1.3)

h2
r = sin2 θ cos2 ϕ+ sin2 θ sin2 ϕ+ cos2 θ = 1

h2
θ = r2 cos2 θ cos2 ϕ+ r2 cos2 θ sin2 ϕ+ r2 sin2 θ = r2

h2
ϕ = r2 sin2 θ sin2 ϕ+ r2 sin2 θ cos2 ϕ = r2 sin2 θ, (1.31)

which leads to (1.27) as required. Note that the scale factors method, as described,
works for orthogonal coordinates only.

Exercise 1.4 Find the metric dl2 using the scale factors method for:

1. Parabolic coordinates (1.8).

2. Paraboloidal coordinates (1.9).

3. Oblate spheroidal coordinates (1.10).

4. Toroidal coordinates (1.11).

Exercise 1.5 Consider the following metric:

dl2 = du2 + dv2 + dw2 −
(

3

13
du+

4

13
dv +

12

13
dw

)2

. (1.32)

It appears that this is a three-dimensional metric in u, v, and w. This is not true! This
metric is in fact two-dimensional in disguise. Prove this by finding a transformation between
the “coordinates” u, v, and w and the Cartesian coordinates x and y, similar to (1.1), for
example, that reduces (1.32) to

dl2 = dx2 + dy2. (1.33)

1.3 Vectors in Cartesian Coordinates

In introductory physics courses, vectors are defined as physical quantities that have
both magnitude and direction. They are abstractedly represented by directional arrows
whose lengths signify their magnitudes. This description, while correct, suffers from
the defect that the visual image that goes along with it is only useful in two or three
dimensions. In higher-dimensional physics, which we will consider soon, one can still
define vectors in the same way, but the visual is lost. This is not because it doesn’t exist,
but because our brains are not built to visualize more than three dimensions. It is also
true that the concept of vectors generalizes into a variety of more exotic mathematical
objects that go by the names “tensors,” “differential forms,” and “spinors,” all of
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which are quite useful in theoretical physics.6 These objects, by their very nature,
resist simple visualization except in the most restricted of special cases or analogies.
Given all of this, we need to redefine the language used to describe vectors to make
the transition to higher dimensions, as well as to the related objects, as smooth as
possible, while at the same time preserving the coordinate-invariant nature of vector
mathematics. We can still imagine, as well as sketch, vectors as “arrows” in space, but
the emphasis shifts toward the calculational over the graphical.

To start, let’s define vectors and their components in Cartesian coordinates in the
usual way:

V = Vxx̂ + Vyŷ + Vz ẑ, (1.34)

where x̂, ŷ, and ẑ are called the Cartesian basis vectors, usually defined as unit
vectors pointing in the directions of the x, y, and z axes respectively.7 Addition and
subtraction of vectors is defined pictorially as usual by completing the triangle formed
by two vectors to find the result, as shown in Fig. [1.13].

Fig. 1.13: Addition of vectors.

So, given two vectors V and U = Uxx̂ + Uyŷ + Uz ẑ, their sum is

V + U = (Vx + Ux) x̂ + (Vy + Uy) ŷ + (Vz + Uz) ẑ. (1.35)

Furthermore, the so-called dot product of two vectors V and U, also known as
the scalar or inner product, is defined as follows:

V ·U = VxUx + VyUy + VzUz, (1.36)

where the result no longer carries the vector status but is rather a scalar; a quantity
with magnitude only. Another equivalent definition of the dot product is

V ·U = |V| |U| cos θ, (1.37)

where θ is the angle between V and U, as shown in Fig. [1.14].

6Two of which, tensors and differential forms, we will study in this book.
7In introductory physics textbooks the notation î, ĵ, and k̂ is more commonly used.
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Fig. 1.14: The scalar or dot product of two vectors.

Now the magnitude of a vector, also known as its norm, is defined as the square
root of its dot product with itself:

V = |V| =
√

V ·V =
√
V 2
x + V 2

y + V 2
z . (1.38)

Note that we define everything in the most general sense, so the vectors considered
can be functions in space as well as time—in other words, they can be vector fields,
i.e. V (t, r) with components Vx (t, x, y, z), Vy (t, x, y, z), and Vz (t, x, y, z).

The main language needed to achieve our objectives in this chapter is exactly the
index notation briefly introduced in §1.2. As pointed out earlier, it is also sometimes
referred to as the tensor notation, since it becomes truly powerful when dealing with
tensors, which we will introduce later. For now let’s see how Cartesian vectors can be
recast in indices. Consider the definition (1.34). Rename the basis vectors as follows:

x̂→ ê1, ŷ→ ê2, ẑ→ ê3. (1.39)

Also rename the components of the vector

Vx → V 1, Vy → V 2, Vz → V 3, (1.40)

where once again it is extremely important not to confuse the superscripts with expo-
nents. The numbers 1, 2, and 3 simply keep track of which component of the vector
V we are talking about. We also note that we gave the basis vectors subscripts rather
than superscripts. At this point this is just a matter of convention, but it will acquire
a deeper meaning later.

It is now clearly possible to write the vector V in the following compact form:

V = V 1ê1 + V 2ê2 + V 3ê3 =

3∑
i=1

V iêi. (1.41)

Alternatively, by adopting the Einstein summation convention (i.e. dropping the
summation symbol) we get the elegant shorthand
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V = V iêi. (1.42)

Recall that the summation is still there, it is just hidden; once again, the rule is:
If an index appears twice in one term, it is summed over . Here is another
example: the vector addition formula (1.35) can now be written as follows:

V + U = V iêi + U iêi =
(
V i + U i

)
êi. (1.43)

Note that which letter to use as an index in a summation is completely arbitrary.
For example, V j êj or V aêa (or even U♥ê♥ if one wishes) still means exactly the same
thing. In fact, it is perfectly acceptable, as well as useful sometimes, to change the
letters of the indices in mid calculation. Consider that we can write

V + U = V iêi + U j êj =
(
V i + U i

)
êi (1.44)

and it is still equivalent to (1.43), even though we changed the index j into i in the
last step. Because of this freedom, summation indices are sometimes referred to as
dummy indices. There is another type of index that we will introduce soon.

The process of performing summations using the Einstein convention is known as
index contraction, so (1.42) may be described as “V i contracted with êi,” which is
exactly the same thing as saying multiply each individual V i with its respective êi and
sum them up. For ordinary two- or three-dimensional physics, the indices will count
over either 1, 2 or 1, 2, 3 depending on whether we are looking at two-dimensional
vectors in the plane or the full three-dimensional structure. For example, the position
vector

r = xx̂ + yŷ + zẑ (1.45)

can now be rewritten as
r = xiêi, (1.46)

where x = x1, y = x2, and z = x3 as before. We now use this language to reconstruct
everything we have ever learned about vectors. Note that we will be working purely in
Cartesian coordinates for a while. Attention to vectors in curvilinear coordinates will
be given eventually.

Suppose we want to find the dot product of the two vectors

V = V iêi, U = U iêi (1.47)

by putting them together as usual:

V ·U =
(
V iêi

)
·
(
U iêi

)
. Wrong! (1.48)

We remember that we are not allowed to have more than two repeating indices in
any one term of an equation, since this should be a double sum: one summation is
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for vector V and the other for U. As it stands now, expression (1.48) implies a single
sum, which is generally incorrect. To solve this problem we use the dummy property
of the summation indices and give one of them a different name, signifying a different
summation:

V ·U =
(
V iêi

)
·
(
U j êj

)
, (1.49)

where the index j also runs from 1 to 3. In other words, this is equivalent to

V ·U =

3∑
i=1

3∑
j=1

[(
V iêi

)
·
(
U j êj

)]
. (1.50)

Now, let’s continue by reordering:

V ·U = V iU j (êi · êj) . (1.51)

If an equation such as (1.51), or any other subsequent equation for that matter,
is not immediately obvious, then the reader is advised to write it out in detail to see
how the summation convention works. In this case (1.51) is simply shorthand for

V ·U = V 1U1 (ê1 · ê1) + V 1U2 (ê1 · ê2) + V 1U3 (ê1 · ê3)

+V 2U1 (ê2 · ê1) + V 2U2 (ê2 · ê2) + V 2U3 (ê2 · ê3)

+V 3U1 (ê3 · ê1) + V 3U2 (ê3 · ê2) + V 3U3 (ê3 · ê3) . (1.52)

Now we have known since introductory physics that the expression (êi · êj) can
only be either 1 or zero, because these are orthogonal (i.e. perpendicular) unit vectors.
So, if i = j, then (êi · êj) = 1, while for i 6= j we have (êi · êj) = 0 (previously known
as x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1 and x̂ · ŷ = ŷ · ẑ = ẑ · x̂ = 0). So applying this to (1.52)
leads to

V ·U = V 1U1 + V 2U2 + V 3U3, (1.53)

as required. The orthogonality property of the basis vectors allows us to symbolically
incorporate this information in (1.51) by introducing the following new symbol:

δij = êi · êj such that δij

{
= 1 for i = j
= 0 for i 6= j

. (1.54)

The symbol δij is known as the Kronecker delta,8 and can be understood at this
point as a “book keeping” method of deciding which expressions are vanishing and
which aren’t. We can then rewrite (1.51):

V ·U = V iU jδij . (1.55)

8Leopold Kronecker: Prussian/German mathematician (1823–1891).
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This is a double sum over i and j, which, if we perform faithfully, gives

V ·U = V iU jδij =

3∑
i=1

3∑
j=1

V iU jδij

= V 1U1δ11 + V 1U2δ12 + V 1U3δ13 + V 2U1δ21 + V 2U2δ22 + V 2U3δ23

+V 3U1δ31 + V 3U2δ32 + V 3U3δ33

= V 1U1 + V 2U2 + V 3U3, since only δ11, δ22, and δ33 are non-vanishing.

(1.56)

The use of the Kronecker delta is extremely useful, as expressions tend toward
more complicated index manipulations. In reference to eqn (1.20), for example, one
can rewrite the Cartesian metric as follows:

dl2 = δijdx
idxj . (1.57)

The reader can verify that it means exactly the same thing as before.

Exercise 1.6 Expand (1.57) and show that it leads to (1.15).

Now, as briefly discussed earlier, the fact that we are using both upper and lower
indices may be slightly confusing at this point. As far as summations are concerned,
which is the reason the index language was invented in the first place, it apparently
doesn’t matter whether we use upper or lower indices. So the following expressions are
essentially all equivalent:

V iU jδij = ViUjδ
ij = V iU jδij = ViUjδij . (1.58)

The Kronecker delta does not change meaning, either; for instance, δ22 = δ22 =
δ2
2 = 1 and δ23 = δ23 = δ2

3 = 0, and so on. So if they are all the same, why are we
making a distinction between quantities with upper indices and quantities with lower
indices? The reason is that quantities with upper or lower indices are equivalent to each
other only in Cartesian coordinates! When we make the transition to non-Cartesian
coordinates we will find that vectors with upper indices and vectors with lower indices
are no longer exactly the same. So we might as well get used to the concept of upper
and lower indices from the start. At this point we can, however, define a relationship
between vector components with upper indices and those with lower indices as follows.
Let

U1δ11 = U1

U2δ22 = U2

U3δ33 = U3, (1.59)
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or symbolically
U jδij = Ui and V iδij = Vj (1.60)

for the components of any vectors U and V. Also,

Ujδ
ij = U i or Viδ

ij = V j . (1.61)

The process defined by (1.60) and (1.61) is usually known as the lowering or the
raising of indices respectively. If we begin with an upper index component U i, we can
contract it with a Kronecker delta to define a lower index Uj . We may even take this
further by defining the hybrid Kronecker delta as follows

δij = δikδkj , (1.62)

which can be used to change the names of the indices without raising or lowering

U jδij = U i, Uiδ
i
j = Uj . (1.63)

Notice the appearance of a single non-repeating index in (1.60), (1.61), and (1.63).
This is called a free index. The rule for free indices is that if there is one
of them in a term of the equation, then there should be one by the same
name in each other term . They are obviously not used in summations, but rather
to denote that an equation such as (1.60) is in fact three equations, one for each value
of the free index; in other words, (1.60) means the same thing as all three in (1.59).
Note that eqn (1.62) has two free indices and only one dummy index, which implies
that it is in fact equivalent to nine separate equations:

δ1
1 = δ1kδk1

δ2
1 = δ2kδk1

δ3
2 = δ3kδk2, and so on. (1.64)

Now in the literature a vector whose components carry upper indices is known as a
contravariant vector, while a vector whose components carry lower indices is known
as a covariant vector. Another terminology is in calling a lower-index vector the dual
vector, while the upper-index vector is simply the vector. There is no need to further
the reader’s confusion, though, so we will just call them “upper and lower indices.”
Once again, as far as Cartesian vectors are concerned, the components are the same
for both types of vectors anyway, so U1 = U1, U2 = U2, and U3 = U3. If it makes it
clearer, here is how one reads a formula such as (1.60):

U jδij = U1δi1 + U2δi2 + U3δi3 = Ui. (1.65)

Only one of the three terms in the last equation will be non-zero: the one where
the free index i has the same value as the other index on the Kronecker delta, yielding
Ui. Explicitly, (1.65) is equivalent to
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U jδ1j = U1δ11 + U2δ12 + U3δ13 = U1δ11 = U1

U jδ2j = U1δ21 + U2δ22 + U3δ23 = U2δ22 = U2

U jδ3j = U1δ31 + U2δ32 + U3δ33 = U3δ33 = U3. (1.66)

A similar process happens with (1.63):

U jδij = U1δi1 + U2δi2 + U3δi3 = U i. (1.67)

So, we conclude this rather lengthy definition of the dot product by noting that,
based on the preceding,

V ·U = V iU jδij = ViUjδ
ij = V iUjδ

j
i = V iUi = ViU

i (1.68)

are all equivalent, where the last two are derived by using either one of the equations
in (1.60) and (1.61) and the dummy indices can carry any labels as usual.

The language and rules defined here are extremely important for the rest of the
book. Yes, it is a lot to absorb all at once, but the reader is strongly advised not to
move forward without deeply understanding everything mentioned in this section so
far. In the hope of making all of this slightly more intuitive, let’s take it one step
further. The rather funny, and potentially confusing, upper and lower index notation
is closely related to something you may already be familiar with.9 In terms of matrices,
a vector is usually defined as a column matrix:

V =

Vx
Vy
Vz

 . (1.69)

In order to, say, dot this vector with another,

U =

Ux
Uy
Uz

 , (1.70)

one must follow the rules of matrix multiplication which insist that the transpose of
one of these vectors is found first, so:

V ·U =
(
Vx Vy Vz

) Ux
Uy
Uz


=
(
Ux Uy Uz

) Vx
Vy
Vz

 = VxUx + VyUy + VzUz

. (1.71)

9If the words “matrix” and “matrix multiplication” do not mean anything to you, then feel free
to temporarily skip the following to the end of the section, although eventually some knowledge of
matrices will be needed. Good tutorials in the language of matrices may be easily found online.


