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Preface to the second

edition

The second edition of Statistical Mechanics: Entropy, Order Parameters,
and Complexity features over a hundred new exercises, plus refinement
and revision of many exercises from the first edition. The main chapters
are largely unchanged, except for a refactoring of my discussion of the
renormalization group in Chapter 12. Indeed, the chapters are designed
to be the stable kernel of their topics, while the exercises cover the
growing range of fascinating applications and implications of statistical
mechanics.

This book reflects “flipped classroom” innovations, which I have found
to be remarkably effective. I have identified a hundred pre-class ques-
tions and in-class activities, the former designed to elucidate and rein-
force sections of the text, and the latter designed for group collaboration.
These are denoted with the symbols ©p and ©a , in an extension of the
difficulty rating ©1 –©5 used in the first edition. Human correlations,
Fingerprints, and Crackling noises are some of my favorite activities.
These exercises, plus a selection of less-specialized longer exercises, form
the core of the undergraduate version of my course.

Extensive online material [181] is now available for the exercises.
Mathematica and python notebooks provide hints for almost fifty com-
putational exercises, allowing students to tackle serious new research
topics like Conformal invariance, Subway bench Monte Carlo, and 2D
turbulence and Jupiter’s great red spot, while getting exposed to good
programming practices. Handouts and instructions facilitate activities
such as Pentagonal frustration and Hearing chaos. The answer key for
the exercises now is polished enough that I regret not being able to share
it with any but those teaching the course.

Finally, the strength of the first edition was in advanced exercises,
which explored in depth the subtleties of statistical mechanics and the
broad range of its application to various fields of science. Many sub-
stantive exercises continue this trend, such as Nucleosynthesis and the
arrow of time, Word frequencies and Zipf’s law, Pandemic, and Kinetic
proofreading in cells.
I again thank the National Science Foundation and Cornell’s physics

department for making possible the lively academic atmosphere at Cor-
nell and my amazing graduate students; both were crucial for the success
of this endeavor. Thanks to the students and readers who stamped out
errors and obscurities. Thanks to my group members and colleagues who
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contributed some of the most creative and insightful exercises presented
here—they are acknowledged in the masterpieces that they crafted.
Thanks to Jaron Kent-Dobias for several years of enthusiasm, insight,
and suggestions. A debt is gratefully due to Matt Bierbaum; many of
the best exercises in this text make use of his wonderfully interactive
Ising [28] and mosh pit [32] simulations.
Enormous thanks are due to my lifelong partner, spouse, and love,

Carol Devine, who tolerates my fascination with solving physics puzzles
and turning them into exercises, because she sees it makes me happy.

James P. Sethna
Ithaca, NY

September 2020
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The purview of science grows rapidly with time. It is the responsibility
of each generation to join new insights to old wisdom, and to distill the
key ideas for the next generation. This is my distillation of the last fifty
years of statistical mechanics—a period of grand synthesis and great
expansion.

This text is careful to address the interests and background not only
of physicists, but of sophisticated students and researchers in mathe-
matics, biology, engineering, computer science, and the social sciences.
It therefore does not presume an extensive background in physics, and
(except for Chapter 7) explicitly does not assume that the reader knows
or cares about quantum mechanics. The text treats the intersection of
the interests of all of these groups, while the exercises encompass the
union of interests. Statistical mechanics will be taught in all of these
fields of science in the next generation, whether wholesale or piecemeal
by field. By making statistical mechanics useful and comprehensible to
a variety of fields, we enrich the subject for those with backgrounds in
physics. Indeed, many physicists in their later careers are now taking
excursions into these other disciplines.

To make room for these new concepts and applications, much has
been pruned. Thermodynamics no longer holds its traditional key role
in physics. Like fluid mechanics in the last generation, it remains incred-
ibly useful in certain areas, but researchers in those areas quickly learn it
for themselves. Thermodynamics also has not had significant impact in
subjects far removed from physics and chemistry: nobody finds Maxwell
relations for the stock market, or Clausius–Clapeyron equations appli-
cable to compression algorithms. These and other important topics in
thermodynamics have been incorporated into a few key exercises. Sim-
ilarly, most statistical mechanics texts rest upon examples drawn from
condensed matter physics and physical chemistry—examples which are
then treated more completely in other courses. Even I, a condensed
matter physicist, find the collapse of white dwarfs more fun than the
low-temperature specific heat of metals, and the entropy of card shuf-
fling still more entertaining.

The first half of the text includes standard topics, treated with an
interdisciplinary slant. Extensive exercises develop new applications of
statistical mechanics: random matrix theory, stock-market volatility,
the KAM theorem, Shannon entropy in communications theory, and
Dyson’s speculations about life at the end of the Universe. The second
half of the text incorporates Monte Carlo methods, order parameters,
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linear response and correlations (including a classical derivation of the
fluctuation-dissipation theorem), and the theory of abrupt and contin-
uous phase transitions (critical droplet theory and the renormalization
group).
This text is aimed for use by upper-level undergraduates and gradu-

ate students. A scientifically sophisticated reader with a familiarity with
partial derivatives and introductory classical mechanics should find this
text accessible, except for Chapter 4 (which demands Hamiltonian me-
chanics), Chapter 7 (quantum mechanics), Section 8.2 (linear algebra),
and Chapter 10 (Fourier methods, introduced in the Appendix). An un-
dergraduate one-semester course might cover Chapters 1–3, 5–7, and 9.
Cornell’s hard-working first-year graduate students covered the entire
text and worked through perhaps half of the exercises in a semester.
I have tried to satisfy all of these audiences through the extensive use
of footnotes: think of them as optional hyperlinks to material that is
more basic, more advanced, or a sidelight to the main presentation. The
exercises are rated by difficulty, from ©1 (doable by inspection) to ©5 (ad-
vanced); exercises rated ©4 (many of them computational laboratories)
should be assigned sparingly. Much of Chapters 1–3, 5, and 6 was de-
veloped in an sophomore honors “waves and thermodynamics” course;
these chapters and the exercises marked ©1 and ©2 should be accessible
to ambitious students early in their college education. A course designed
to appeal to an interdisciplinary audience might focus on entropy, order
parameters, and critical behavior by covering Chapters 1–3, 5, 6, 8, 9,
and 12. The computational exercises in the text grew out of three differ-
ent semester-long computational laboratory courses. We hope that the
computer exercise hints and instructions on the book website [181] will
facilitate their incorporation into similar courses elsewhere.
The current plan is to make individual chapters available as PDF files

on the Internet. I also plan to make the figures in this text accessible
in a convenient form to those wishing to use them in course or lecture
presentations.
I have spent an entire career learning statistical mechanics from friends

and colleagues. Since this is a textbook and not a manuscript, the
presumption should be that any ideas or concepts expressed are not
mine, but rather have become so central to the field that continued
attribution would be distracting. I have tried to include references to
the literature primarily when it serves my imagined student. In the
age of search engines, an interested reader (or writer of textbooks) can
quickly find the key ideas and articles on any topic, once they know
what it is called. The textbook is now more than ever only a base from
which to launch further learning. My thanks to those who have patiently
explained their ideas and methods over the years—either in person, in
print, or through the Internet.
I must thank explicitly many people who were of tangible assistance

in the writing of this book. I thank the National Science Foundation
and Cornell’s Laboratory of Atomic and Solid State Physics for their
support during the writing of this text. I thank Pamela Davis Kivel-
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son for the magnificent cover art. I thank Eanna Flanagan, Eric Siggia,
Saul Teukolsky, David Nelson, Paul Ginsparg, Vinay Ambegaokar, Neil
Ashcroft, David Mermin, Mark Newman, Kurt Gottfried, Chris Hen-
ley, Barbara Mink, Tom Rockwell, Csaba Csaki, Peter Lepage, and Bert
Halperin for helpful and insightful conversations. Eric Grannan, Piet
Brouwer, Michelle Wang, Rick James, Eanna Flanagan, Ira Wasser-
man, Dale Fixsen, Rachel Bean, Austin Hedeman, Nick Trefethen, Sarah
Shandera, Al Sievers, Alex Gaeta, Paul Ginsparg, John Guckenheimer,
Dan Stein, and Robert Weiss were of important assistance in develop-
ing various exercises. My approach to explaining the renormalization
group (Chapter 12) was developed in collaboration with Karin Dah-
men, Chris Myers, and Olga Perković. The students in my class have
been instrumental in sharpening the text and debugging the exercises;
Jonathan McCoy, Austin Hedeman, Bret Hanlon, and Kaden Hazzard
in particular deserve thanks. Adam Becker, Surachate (Yor) Limkumn-
erd, Sarah Shandera, Nick Taylor, Quentin Mason, and Stephen Hicks,
in their roles of proofreading, grading, and writing answer keys, were
powerful filters for weeding out infelicities. I thank Joel Shore, Mohit
Randeria, Mark Newman, Stephen Langer, Chris Myers, Dan Rokhsar,
Ben Widom, and Alan Bray for reading portions of the text, providing
invaluable insights, and tightening the presentation. I thank Julie Harris
at Oxford University Press for her close scrutiny and technical assistance
in the final preparation stages of this book. Finally, Chris Myers and I
spent hundreds of hours together developing the many computer exer-
cises distributed through this text; his broad knowledge of science and
computation, his profound taste in computational tools and methods,
and his good humor made this a productive and exciting collaboration.
The errors and awkwardness that persist, and the exciting topics I have
missed, are in spite of the wonderful input from these friends and col-
leagues.

I especially thank Carol Devine, for consultation, insightful comments
and questions, and for tolerating the back of her spouse’s head for per-
haps a thousand hours over the past two years.

James P. Sethna
Ithaca, NY

February, 2006
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What is statistical

mechanics? 1
Many systems in nature are far too complex to analyze directly. Solving
for the behavior of all the atoms in a block of ice, or the boulders in an
earthquake fault, or the nodes on the Internet, is simply infeasible. De-
spite this, such systems often show simple, striking behavior. Statistical
mechanics explains the simple behavior of complex systems.

The concepts and methods of statistical mechanics have infiltrated
into many fields of science, engineering, and mathematics: ensembles,
entropy, Monte Carlo, phases, fluctuations and correlations, nucleation,
and critical phenomena are central to physics and chemistry, but also
play key roles in the study of dynamical systems, communications, bioin-
formatics, and complexity. Quantum statistical mechanics, although not
a source of applications elsewhere, is the foundation of much of physics.
Let us briefly introduce these pervasive concepts and methods.

Ensembles. The trick of statistical mechanics is not to study a single
system, but a large collection or ensemble of systems. Where under-
standing a single system is often impossible, one can often calculate the
behavior of a large collection of similarly prepared systems.

For example, consider a random walk (Fig. 1.1). (Imagine it as the
trajectory of a particle in a gas, or the configuration of a polymer in
solution.) While the motion of any given walk is irregular and typically
impossible to predict, Chapter 2 derives the elegant laws which describe
the set of all possible random walks.
Chapter 3 uses an ensemble of all system states of constant energy

to derive equilibrium statistical mechanics; the collective properties of
temperature, entropy, and pressure emerge from this ensemble. In Chap-
ter 4 we provide the best existing mathematical justification for using
this constant-energy ensemble. In Chapter 6 we develop free energies
which describe parts of systems; by focusing on the important bits, we
find new laws that emerge from the microscopic complexity.

Entropy. Entropy is the most influential concept arising from statis-
tical mechanics (Chapter 5). It was originally understood as a ther-
modynamic property of heat engines that inexorably increases with
time. Entropy has become science’s fundamental measure of disorder
and information—quantifying everything from compressing pictures on
the Internet to the heat death of the Universe.

Quantum statistical mechanics, confined to Chapter 7, provides
the microscopic underpinning to much of astrophysics and condensed

Statistical Mechanics: Entropy, Order Parameters, and Complexity. James P. Sethna, Oxford
University Press (2021). c©James P. Sethna. DOI:10.1093/oso/9780198865247.003.0001
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Fig. 1.1 Random walks. The mo-
tion of molecules in a gas, and bacteria
in a liquid, and photons in the Sun, are
described by random walks. Describing
the specific trajectory of any given ran-
dom walk (left) is not feasible. Describ-
ing the statistical properties of a large
number of random walks is straightfor-
ward (right, showing endpoints of many
walks starting at the origin). The deep
principle underlying statistical mechan-
ics is that it is often easier to under-
stand the behavior of these ensembles

of systems.

matter physics. There we use it to explain metals, insulators, lasers,
stellar collapse, and the microwave background radiation patterns from
the early Universe.
Monte Carlo methods allow the computer to find ensemble averages

in systems far too complicated to allow analytical evaluation. These
tools, invented and sharpened in statistical mechanics, are used every-
where in science and technology—from simulating the innards of particle
accelerators, to studies of traffic flow, to designing computer circuits. In
Chapter 8, we introduce Monte Carlo methods, the Ising model, and the
mathematics of Markov chains.
Phases. Statistical mechanics explains the existence and properties of

phases. The three common phases of matter (solids, liquids, and gases)
have multiplied into hundreds: from superfluids and liquid crystals, to
vacuum states of the Universe just after the Big Bang, to the pinned and
sliding “phases” of earthquake faults. We explain the deep connection
between phases and perturbation theory in Section 8.3. In Chapter 9
we introduce the order parameter field, which describes the properties,
excitations, and topological defects that emerge in a given phase.
Fluctuations and correlations. Statistical mechanics not only de-

scribes the average behavior of an ensemble of systems, it describes
the entire distribution of behaviors. We describe how systems fluctuate
and evolve in space and time using correlation functions in Chapter 10.
There we also derive powerful and subtle relations between correlations,
response, and dissipation in equilibrium systems.
Abrupt phase transitions. Beautiful spatial patterns arise in sta-

tistical mechanics at the transitions between phases. Most such tran-
sitions are abrupt; ice is crystalline and solid until (at the edge of the
ice cube) it becomes unambiguously liquid. We study the nucleation
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Fig. 1.2 Ising model at the criti-

cal point. The two-dimensional Ising
model of magnetism at its transition
temperature Tc. At higher tempera-
tures, the system is nonmagnetic; the
magnetization is on average zero. At
the temperature shown, the system is
just deciding whether to magnetize up-
ward (white) or downward (black).

of new phases and the exotic structures that can form at abrupt phase
transitions in Chapter 11.
Criticality. Other phase transitions are continuous. Figure 1.2 shows

a snapshot of a particular model at its phase transition temperature
Tc. Notice the self-similar, fractal structures; the system cannot decide
whether to stay gray or to separate into black and white, so it fluctuates
on all scales, exhibiting critical phenomena. A random walk also forms
a self-similar, fractal object; a blow-up of a small segment of the walk
looks statistically similar to the original (Figs. 1.1 and 2.2). Chapter 12
develops the scaling and renormalization-group techniques that explain
these self-similar, fractal properties. These techniques also explain uni-
versality; many properties at a continuous transition are surprisingly
system independent.

Science grows through accretion, but becomes potent through distil-
lation. Statistical mechanics has grown tentacles into much of science
and mathematics (see, e.g., Fig. 1.3). The body of each chapter will pro-
vide the distilled version: those topics of fundamental importance to all
fields. The accretion is addressed in the exercises: in-depth introductions
to applications in mesoscopic physics, astrophysics, dynamical systems,
information theory, low-temperature physics, statistics, biology, lasers,
and complexity theory.
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Fig. 1.3 The onset of chaos. Me-
chanical systems can go from simple,
predictable behavior (left) to a chaotic
state (right) as some external param-
eter µ is tuned. Many disparate sys-
tems are described by a common, uni-
versal scaling behavior near the onset
of chaos (note the replicated structures
near µ∞). We understand this scaling
and universality using tools developed
to study continuous transitions in liq-
uids and gases. Conversely, the study of
chaotic motion provides statistical me-
chanics with our best explanation for
the increase of entropy.

µ

µ
2

x  *(  )

µ
1

µ

Exercises

Two exercises, Emergence and Emergent vs. fundamen-
tal, illustrate and provoke discussion about the role of
statistical mechanics in formulating new laws of physics.

Four exercises review probability distributions. Quan-
tum dice and coins explores discrete distributions and also
acts as a preview to Bose and Fermi statistics. Probability
distributions introduces the key distributions for contin-
uous variables, convolutions, and multidimensional dis-
tributions. Waiting time paradox uses public transporta-
tion to concoct paradoxes by confusing different ensemble
averages. And The birthday problem calculates the likeli-
hood of a school classroom having two children who share
the same birthday.

Stirling’s approximation derives the useful approxima-
tion n! ∼

√
2πn(n/e)n; more advanced students can con-

tinue with Stirling and asymptotic series to explore the
zero radius of convergence for this series, often found in
statistical mechanics calculations.

Five exercises demand no background in statistical me-
chanics, yet illustrate both general themes of the subject
and the broad range of its applications. Random matrix
theory introduces an entire active field of research, with
applications in nuclear physics, mesoscopic physics, and
number theory, beginning with histograms and ensem-
bles, and continuing with level repulsion, the Wigner sur-
mise, universality, and emergent symmetry. Six degrees
of separation introduces the ensemble of small world net-

works, popular in the social sciences and epidemiology
for modeling interconnectedness in groups; it introduces
network data structures, breadth-first search algorithms,
a continuum limit, and our first glimpse of scaling. Sat-
isfactory map colorings introduces the challenging com-
puter science problems of graph colorability and logical
satisfiability: these search through an ensemble of differ-
ent choices just as statistical mechanics averages over an
ensemble of states. Self-propelled particles discusses emer-
gent properties of active matter. First to fail: Weibull in-
troduces the statistical study of extreme value statistics,
focusing not on the typical fluctuations about the average
behavior, but the rare events at the extremes.

Finally, statistical mechanics is to physics as statistics
is to biology and the social sciences. Four exercises here,
and several in later chapters, introduce ideas and methods
from statistics that have particular resonance with statis-
tical mechanics. Width of the height distribution discusses
maximum likelihood methods and bias in the context of
Gaussian fits. Fisher information and Cramér Rao intro-
duces the Fisher information metric, and its relation to
the rigorous bound on parameter estimation. And Dis-
tances in probability space then uses the local difference
between model predictions (the metric tensor) to generate
total distance estimates between different models.
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Exercises 5

(1.1) Quantum dice and coins.1 (Quantum) ©a
You are given two unusual three-sided dice
which, when rolled, show either one, two, or
three spots. There are three games played with
these dice: Distinguishable, Bosons, and Fer-
mions. In each turn in these games, the player
rolls the two dice, starting over if required by the
rules, until a legal combination occurs. In Dis-
tinguishable, all rolls are legal. In Bosons, a roll
is legal only if the second of the two dice shows
a number that is is larger or equal to that of the
first of the two dice. In Fermions, a roll is legal
only if the second number is strictly larger than
the preceding number. See Fig. 1.4 for a table of
possibilities after rolling two dice.
Our dice rules are the same ones that govern
the quantum statistics of noninteracting identi-
cal particles.

3

2

1

1 2 3

Roll #1

R
o

ll
 #

2

4

2 3 4

4 5 6

3 5

Fig. 1.4 Quantum dice. Rolling two dice. In
Bosons, one accepts only the rolls in the shaded
squares, with equal probability 1/6. In Fermions,
one accepts only the rolls in the darkly shaded
squares (not including the diagonal from lower left
to upper right), with probability 1/3.

(a) Presume the dice are fair: each of the three
numbers of dots shows up 1/3 of the time. For a
legal turn rolling a die twice in the three games
(Distinguishable, Bosons, and Fermions), what
is the probability ρ(5) of rolling a 5?
(b) For a legal turn in the three games, what is
the probability of rolling a double? (Hint: There
is a Pauli exclusion principle: when playing Fer-
mions, no two dice can have the same number
of dots showing.) Electrons are fermions; no
two noninteracting electrons can be in the same
quantum state. Bosons are gregarious (Exer-
cise 7.9); noninteracting bosons have a larger
likelihood of being in the same state.
Let us decrease the number of sides on our dice

to N = 2, making them quantum coins, with a
head H and a tail T . Let us increase the total
number of coins to a large number M ; we flip a
line of M coins all at the same time, repeating
until a legal sequence occurs. In the rules for
legal flips of quantum coins, let us make T < H.
A legal Boson sequence, for example, is then a
pattern TTTT · · ·HHHH · · · of length M ; all
legal sequences have the same probability.
(c) What is the probability in each of the games,
of getting all the M flips of our quantum coin
the same (all heads HHHH · · · or all tails
TTTT · · · )? (Hint: How many legal sequences
are there for the three games? How many of
these are all the same value?)
The probability of finding a particular legal se-
quence in Bosons is larger by a constant factor
due to discarding the illegal sequences. This fac-
tor is just one over the probability of a given toss
of the coins being legal, Z =

∑
α pα summed

over legal sequences α. For part (c), all se-
quences have equal probabilities pα = 2−M , so
ZDist = (2M )(2−M ) = 1, and ZBoson is 2−M

times the number of legal sequences. So for
part (c), the probability to get all heads or all
tails is (pTTT...+pHHH...)/Z. The normalization
constant Z in statistical mechanics is called the
partition function, and will be amazingly useful
(see Chapter 6).
Let us now consider a biased coin, with probabil-
ity p = 1/3 of landing H and thus 1−p = 2/3 of
landing T . Note that if two sequences are legal in
both Bosons and Distinguishable, their relative
probability is the same in both games.
(d) What is the probability pTTT... that a given
toss of M coins has all tails (before we throw out
the illegal ones for our game)? What is ZDist?
What is the probability that a toss in Distinguish-
able is all tails? If ZBosons is the probability
that a toss is legal in Bosons, write the prob-
ability that a legal toss is all tails in terms of
ZBosons. Write the probability pTTT...HHH that
a toss has M −m tails followed by m heads (be-
fore throwing out the illegal ones). Sum these
to find ZBosons. As M gets large, what is the
probability in Bosons that all coins flip tails?
We can view our quantum dice and coins as non-
interacting particles, with the biased coin having
a lower energy for T than for H (Section 7.4).
Having a nonzero probability of having all the

1This exercise was developed in collaboration with Sarah Shandera.
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bosons in the single-particle ground state T is
Bose condensation (Section 7.6), closely related
to superfluidity and lasers (Exercise 7.9).

(1.2) Probability distributions. ©2
Most people are more familiar with probabili-
ties for discrete events (like coin flips and card
games), than with probability distributions for
continuous variables (like human heights and
atomic velocities). The three continuous proba-
bility distributions most commonly encountered
in physics are: (i) uniform: ρuniform(x) = 1 for
0 ≤ x < 1, ρ(x) = 0 otherwise (produced by ran-
dom number generators on computers); (ii) ex-
ponential : ρexponential(t) = e−t/τ/τ for t ≥ 0 (fa-
miliar from radioactive decay and used in the
collision theory of gases); and (iii) Gaussian:

ρgaussian(v) = e−v2/2σ2

/(
√
2πσ), (describing the

probability distribution of velocities in a gas, the
distribution of positions at long times in random
walks, the sums of random variables, and the so-
lution to the diffusion equation).
(a) Likelihoods. What is the probability that
a random number uniform on [0, 1) will hap-
pen to lie between x = 0.7 and x = 0.75?
That the waiting time for a radioactive decay
of a nucleus will be more than twice the expo-
nential decay time τ? That your score on an
exam with a Gaussian distribution of scores will
be greater than 2σ above the mean? (Note:∫∞
2

(1/
√
2π) exp(−v2/2) dv = (1− erf(

√
2))/2 ∼

0.023.)
(b) Normalization, mean, and standard devia-
tion. Show that these probability distributions
are normalized:

∫
ρ(x) dx = 1.What is the mean

x0 of each distribution? The standard devia-

tion
√∫

(x− x0)2ρ(x) dx? (You may use the

formulæ
∫∞
−∞(1/

√
2π) exp(−v2/2) dv = 1 and∫∞

−∞ v
2(1/
√
2π) exp(−v2/2) dv = 1.)

(c) Sums of variables. Draw a graph of the prob-
ability distribution of the sum x+ y of two ran-
dom variables drawn from a uniform distribu-
tion on [0, 1). Argue in general that the sum
z = x+ y of random variables with distributions
ρ1(x) and ρ2(y) will have a distribution given by
ρ(z) =

∫
ρ1(x)ρ2(z− x) dx (the convolution of ρ

with itself).
Multidimensional probability distributions. In
statistical mechanics, we often discuss probabil-
ity distributions for many variables at once (for

example, all the components of all the velocities
of all the atoms in a box). Let us consider just
the probability distribution of one molecule’s ve-
locities. If vx, vy, and vz of a molecule are in-
dependent and each distributed with a Gaussian
distribution with σ =

√
kT/M (Section 3.2.2)

then we describe the combined probability dis-
tribution as a function of three variables as the
product of the three Gaussians:

ρ(vx, vy, vz) =
1

(2π(kT/M))3/2
exp(−Mv2/2kT )

=

√
M

2πkT
exp

(−Mv2x
2kT

)

×
√

M

2πkT
exp

(−Mv2y
2kT

)

×
√

M

2πkT
exp

(−Mv2z
2kT

)
. (1.1)

(d) Show, using your answer for the standard de-
viation of the Gaussian in part (b), that the mean
kinetic energy is kT/2 per dimension. Show that
the probability that the speed is v = |v| is given
by a Maxwellian distribution

ρMaxwell(v) =
√

2/π(v2/σ3) exp(−v2/2σ2).
(1.2)

(Hint: What is the shape of the region in 3D ve-
locity space where |v| is between v and v + δv?
The surface area of a sphere of radius R is
4πR2.)

(1.3) Waiting time paradox.2 ©a
Here we examine the waiting time paradox: for
events happening at random times, the average
time until the next event equals the average time
between events. If the average waiting time un-
til the next event is τ , then the average time
since the last event is also τ . Is the mean to-
tal gap between two events then 2τ? Or is it τ ,
the average time to wait starting from the previ-
ous event? Working this exercise introduces the
importance of different ensembles.
On a highway, the average numbers of cars and
buses going east are equal: each hour, on av-
erage, there are 12 buses and 12 cars passing
by. The buses are scheduled: each bus appears
exactly 5 minutes after the previous one. On
the other hand, the cars appear at random. In
a short interval dt, the probability that a car
comes by is dt/τ , with τ = 5 minutes. This

2The original form of this exercise was developed in collaboration with Piet Brouwer.
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leads to a distribution P (δCar) for the arrival of
the first car that decays exponentially, P (δCar) =
1/τ exp(−δCar/τ).
A pedestrian repeatedly approaches a bus stop
at random times t, and notes how long it takes
before the first bus passes, and before the first
car passes.
(a) Draw the probability density for the ensem-
ble of waiting times δBus to the next bus observed
by the pedestrian. Draw the density for the cor-
responding ensemble of times δCar. What is the
mean waiting time for a bus 〈δBus〉t? The mean
time 〈δCar〉t for a car?
In statistical mechanics, we shall describe spe-
cific physical systems (a bottle of N atoms with
energy E) by considering ensembles of systems.
Sometimes we shall use two different ensembles
to describe the same system (all bottles of N
atoms with energy E, or all bottles of N atoms
at that temperature T where the mean energy is
E). We have been looking at the time-averaged
ensemble (the ensemble 〈· · · 〉t over random times
t). There is also in this problem an ensemble av-
erage over the gaps between vehicles (〈· · · 〉gap
over random time intervals); these two give dif-
ferent averages for the same quantity.
A traffic engineer sits at the bus stop, and mea-
sures an ensemble of time gaps ∆Bus between
neighboring buses, and an ensemble of gaps ∆Car

between neighboring cars.
(b) Draw the probability density of gaps she ob-
serves between buses. Draw the probability den-
sity of gaps between cars. (Hint: Is it differ-
ent from the ensemble of car waiting times you
found in part (a)? Why not?) What is the mean
gap time 〈∆Bus〉gap for the buses? What is the
mean gap time 〈∆Car〉gap for the cars? (One of
these probability distributions involves the Dirac
δ-function3 if one ignores measurement error and
imperfectly punctual public transportation.)
You should find that the mean waiting time for
a bus in part (a) is half the mean bus gap time
in (b), which seems sensible—the gap seen by
the pedestrian is the sum of the δBus

+ + δBus
− of

the waiting time and the time since the last bus.
However, you should also find the mean waiting
time for a car equals the mean car gap time. The
equation ∆Car = δCar

+ + δCar
− would seem to im-

ply that the average gap seen by the pedestrian

is twice the mean waiting time.
(c) How can the average gap between cars mea-
sured by the pedestrian be different from that
measured by the traffic engineer? Discuss.
(d) Consider a short experiment, with three cars
passing at times t = 0, 2, and 8 (so there are two
gaps, of length 2 and 6). What is 〈∆Car〉gap?
What is 〈∆Car〉t? Explain why they are differ-
ent.
One of the key results in statistical mechanics is
that predictions are independent of the ensemble
for large numbers of particles. For example, the
velocity distribution found in a simulation run
at constant energy (using Newton’s laws) or at
constant temperature will have corrections that
scale as one over the number of particles.

(1.4) Stirling’s formula. (Mathematics) ©a
Stirling’s approximation, n! ∼

√
2πn(n/e)n, is

remarkably useful in statistical mechanics; it
gives an excellent approximation for large n.
In statistical mechanics the number of particles
is so large that we usually care not about n!,
but about its logarithm, so log(n!) ∼ n log n −
n + 1/2 log(2πn). Finally, n is often so large
that the final term is a tiny fractional correc-
tion to the others, giving the simple formula
log(n!) ∼ n log n− n.
(a) Calculate log(n!) and these two approxima-
tions to it for n = 2, 4, and 50. Estimate the
error of the simpler formula for n = 6.03×1023.
Discuss the fractional accuracy of these two ap-
proximations for small and large n.
Note that log(n!) = log(1 × 2 × 3 × · · · × n) =
log(1) + log(2) + · · ·+ log(n) =

∑n
m=1 log(m).

(b) Convert the sum to an integral,
∑n

m=1 ≈∫ n

0
dm. Derive the simple form of Stirling’s for-

mula.
(c) Draw a plot of log(m) and a bar chart
showing log(ceiling(n)). (Here ceiling(x) repre-
sents the smallest integer larger than x.) Argue
that the integral under the bar chart is log(n!).
(Hint: Check your plot: between x = 4 and 5,
ceiling(x) = 5.)
The difference between the sum and the integral
in part (c) should look approximately like a col-
lection of triangles, except for the region between
zero and one. The sum of the areas equals the
error in the simple form for Stirling’s formula.

3The δ-function δ(x−x0) is a probability density which has 100% probability of being in any interval containing x0; thus δ(x−x0)
is zero unless x = x0, and

∫
f(x)δ(x − x0) dx = f(x0) so long as the domain of integration includes x0. Mathematically, this

is not a function, but rather a distribution or a measure.
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(d) Imagine doubling these triangles into rect-
angles on your drawing from part (c), and slid-
ing them sideways (ignoring the error for m
between zero and one). Explain how this re-
lates to the term 1/2 log n in Stirling’s formula
log(n!)−(n log n−n) ≈ 1/2 log(2πn) =

1/2 log(2)+
1/2 log(π) +

1/2 log(n).

(1.5) Stirling and asymptotic series.4 (Mathe-
matics, Computation) ©3
Stirling’s formula (which is actually originally
due to de Moivre) can be improved upon by ex-
tending it into an entire series. It is not a tradi-
tional Taylor expansion; rather, it is an asymp-
totic series. Asymptotic series are important in
many fields of applied mathematics, statistical
mechanics [171], and field theory [172].
We want to expand n! for large n; to do this, we
need to turn it into a continuous function, inter-
polating between the integers. This continuous
function, with its argument perversely shifted by
one, is Γ(z) = (z − 1)!. There are many equiva-
lent formulæ for Γ(z); indeed, any formula giving
an analytic function satisfying the recursion re-
lation Γ(z + 1) = zΓ(z) and the normalization
Γ(1) = 1 is equivalent (by theorems of complex
analysis). We will not use it here, but a typi-
cal definition is Γ(z) =

∫∞
0

e−ttz−1 dt; one can
integrate by parts to show that Γ(z+1) = zΓ(z).
(a) Show, using the recursion relation Γ(z+1) =
zΓ(z), that Γ(z) has a singularity (goes to ±∞)
at zero and all the negative integers.
Stirling’s formula is extensible [18, p. 218] into a
nice expansion of Γ(z) in powers of 1/z = z−1:

Γ[z] = (z − 1)!

∼ (2π/z)
1/2e−zzz(1 + (1/12)z−1

+ (1/288)z−2 − (139/51840)z−3

− (571/2488320)z−4

+ (163879/209018880)z−5

+ (5246819/75246796800)z−6

− (534703531/902961561600)z−7

− (4483131259/86684309913600)z−8

+ . . .). (1.3)

This looks like a Taylor series in 1/z, but is sub-
tly different. For example, we might ask what
the radius of convergence [174] of this series is.

The radius of convergence is the distance to the
nearest singularity in the complex plane (see
note 26 on p. 227 and Fig. 8.7(a)).
(b) Let g(ζ) = Γ(1/ζ); then Stirling’s formula
is something times a power series in ζ. Plot
the poles (singularities) of g(ζ) in the complex
ζ plane that you found in part (a). Show that
the radius of convergence of Stirling’s formula
applied to g must be zero, and hence no matter
how large z is Stirling’s formula eventually di-
verges.
Indeed, the coefficient of z−j eventually grows
rapidly; Bender and Orszag [18, p. 218] state
that the odd coefficients (A1 = 1/12, A3 =
−139/51840, . . . ) asymptotically grow as

A2j+1 ∼ (−1)j2(2j)!/(2π)2(j+1). (1.4)

(c) Show explicitly, using the ratio test applied
to formula 1.4, that the radius of convergence of
Stirling’s formula is indeed zero.5

This in no way implies that Stirling’s formula
is not valuable! An asymptotic series of length
n approaches f(z) as z gets big, but for fixed
z it can diverge as n gets larger and larger. In
fact, asymptotic series are very common, and of-
ten are useful for much larger regions than are
Taylor series.
(d) What is 0!? Compute 0! using successive
terms in Stirling’s formula (summing to AN for
the first few N). Considering that this formula
is expanding about infinity, it does pretty well!
Quantum electrodynamics these days produces
the most precise predictions in science. Physi-
cists sum enormous numbers of Feynman di-
agrams to produce predictions of fundamental
quantum phenomena. Dyson argued that quan-
tum electrodynamics calculations give an asymp-
totic series [172]; the most precise calculation in
science takes the form of a series which cannot
converge. Many other fundamental expansions
are also asymptotic series; for example, Hooke’s
law and elastic theory have zero radius of con-
vergence [35,36] (Exercise 11.15).

4Hints for the computations can be found at the book website [181].
5If you do not remember about radius of convergence, see [174]. Here you will be using every other term in the series, so the
radius of convergence is limj→∞

√
|A2j−1/A2j+1|.
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(1.6) Random matrix theory.6 (Mathematics,
Quantum, Computation) ©3
One of the most active and unusual applications
of ensembles is random matrix theory, used to
describe phenomena in nuclear physics, meso-
scopic quantum mechanics, and wave phenom-
ena. Random matrix theory was invented in
a bold attempt to describe the statistics of en-
ergy level spectra in nuclei. In many cases, the
statistical behavior of systems exhibiting com-
plex wave phenomena—almost any correlations
involving eigenvalues and eigenstates—can be
quantitatively modeled using ensembles of ma-
trices with completely random, uncorrelated en-
tries!
The most commonly explored ensemble of matri-
ces is the Gaussian orthogonal ensemble (GOE).
Generating a member H of this ensemble of size
N ×N takes two steps.

• Generate an N × N matrix whose elements
are independent random numbers with Gaus-
sian distributions of mean zero and standard
deviation σ = 1.

• Add each matrix to its transpose to sym-
metrize it.

As a reminder, the Gaussian or normal proba-
bility distribution of mean zero gives a random
number x with probability

ρ(x) =
1√
2πσ

e−x2/2σ2

. (1.5)

One of the most striking properties that large
random matrices share is the distribution of level
splittings.
(a) Generate an ensemble with M = 1,000 or so
GOE matrices of size N = 2, 4, and 10. (More
is nice.) Find the eigenvalues λn of each matrix,
sorted in increasing order. Find the difference
between neighboring eigenvalues λn+1 − λn, for
n, say, equal to7 N/2. Plot a histogram of these
eigenvalue splittings divided by the mean split-
ting, with bin size small enough to see some of
the fluctuations. (Hint: Debug your work with
M = 10, and then change to M = 1,000.)
What is this dip in the eigenvalue probability
near zero? It is called level repulsion.

For N = 2 the probability distribution for the
eigenvalue splitting can be calculated pretty sim-
ply. Let our matrix be M =

(
a b
b c

)
.

(b) Show that the eigenvalue difference for M
is λ =

√
(c− a)2 + 4b2 = 2

√
d2 + b2 where d =

(c−a)/2, and the trace c+a is irrelevant. Ignor-
ing the trace, the probability distribution of ma-
trices can be written ρM (d, b). What is the region
in the (b, d) plane corresponding to the range of
eigenvalue splittings (λ, λ + ∆)? If ρM is con-
tinuous and finite at d = b = 0, argue that the
probability density ρ(λ) of finding an eigenvalue
splitting near λ = 0 vanishes (level repulsion).
(Hint: Both d and b must vanish to make λ = 0.
Go to polar coordinates, with λ the radius.)
(c) Calculate analytically the standard deviation
of a diagonal and an off-diagonal element of the
GOE ensemble (made by symmetrizing Gaussian
random matrices with σ = 1). You may want
to check your answer by plotting your predicted
Gaussians over the histogram of H11 and H12

from your ensemble in part (a). Calculate ana-
lytically the standard deviation of d = (c − a)/2
of the N = 2 GOE ensemble of part (b), and
show that it equals the standard deviation of b.
(d) Calculate a formula for the probability dis-
tribution of eigenvalue spacings for the N = 2
GOE, by integrating over the probability density
ρM (d, b). (Hint: Polar coordinates again.)
If you rescale the eigenvalue splitting distribu-
tion you found in part (d) to make the mean
splitting equal to one, you should find the distri-
bution

ρWigner(s) =
πs

2
e−πs2/4. (1.6)

This is called the Wigner surmise; it is within
2% of the correct answer for larger matrices as
well.8

(e) Plot eqn 1.6 along with your N = 2 results
from part (a). Plot the Wigner surmise formula
against the plots for N = 4 and N = 10 as well.
Does the distribution of eigenvalues depend in
detail on our GOE ensemble? Or could it be uni-
versal, describing other ensembles of real sym-
metric matrices as well? Let us define a ±1 en-
semble of real symmetric matrices, by generating
anN×N matrix whose elements are independent
random variables, ±1 with equal probability.

6This exercise was developed with the help of Piet Brouwer. Hints for the computations can be found at the book website [181].
7Why not use all the eigenvalue splittings? The mean splitting can change slowly through the spectrum, smearing the distri-
bution a bit.
8The distribution for large matrices is known and universal, but is much more complicated to calculate.
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(f) Generate an ensemble of M = 1,000 symmet-
ric matrices filled with ±1 with size N = 2, 4,
and 10. Plot the eigenvalue distributions as in
part (a). Are they universal (independent of the
ensemble up to the mean spacing) for N = 2 and
4? Do they appear to be nearly universal 9 (the
same as for the GOE in part (a)) for N = 10?
Plot the Wigner surmise along with your his-
togram for N = 10.
The GOE ensemble has some nice statistical
properties. The ensemble is invariant under or-
thogonal transformations:

H → R⊤HR with R⊤ = R−1. (1.7)

(g) Show that Tr[H⊤H] is the sum of the squares
of all elements of H. Show that this trace is in-
variant under orthogonal coordinate transforma-
tions (that is, H → R⊤HR with R⊤ = R−1).
(Hint: Remember, or derive, the cyclic invari-
ance of the trace: Tr[ABC] = Tr[CAB].)
Note that this trace, for a symmetric matrix, is
the sum of the squares of the diagonal elements
plus twice the squares of the upper triangle of off-
diagonal elements. That is convenient, because
in our GOE ensemble the variance (squared stan-
dard deviation) of the off-diagonal elements is
half that of the diagonal elements (part (c)).
(h) Write the probability density ρ(H) for finding
GOE ensemble member H in terms of the trace
formula in part (g). Argue, using your formula
and the invariance from part (g), that the GOE
ensemble is invariant under orthogonal transfor-
mations: ρ(R⊤HR) = ρ(H).
This is our first example of an emergent sym-
metry. Many different ensembles of symmetric
matrices, as the size N goes to infinity, have
eigenvalue and eigenvector distributions that are
invariant under orthogonal transformations even
though the original matrix ensemble did not have
this symmetry. Similarly, rotational symmetry
emerges in random walks on the square lattice
as the number of steps N goes to infinity, and
also emerges on long length scales for Ising mod-
els at their critical temperatures.

(1.7) Six degrees of separation.10 (Complexity,
Computation) ©4
One of the more popular topics in random net-
work theory is the study of how connected they

are. Six degrees of separation is the phrase com-
monly used to describe the interconnected na-
ture of human acquaintances: various somewhat
uncontrolled studies have shown that any ran-
dom pair of people in the world can be connected
to one another by a short chain of people (typi-
cally around six), each of whom knows the next
fairly well. If we represent people as nodes and
acquaintanceships as neighbors, we reduce the
problem to the study of the relationship network.
Many interesting problems arise from studying
properties of randomly generated networks. A
network is a collection of nodes and edges, with
each edge connected to two nodes, but with
each node potentially connected to any number
of edges (Fig. 1.5). A random network is con-
structed probabilistically according to some def-
inite rules; studying such a random network usu-
ally is done by studying the entire ensemble of
networks, each weighted by the probability that
it was constructed. Thus these problems natu-
rally fall within the broad purview of statistical
mechanics.

Fig. 1.5 Network. A network is a collection of
nodes (circles) and edges (lines between the circles).

In this exercise, we will generate some ran-
dom networks, and calculate the distribution
of distances between pairs of points. We will
study small world networks [140, 206], a theo-
retical model that suggests how a small number
of shortcuts (unusual international and intercul-
tural friendships) can dramatically shorten the
typical chain lengths. Finally, we will study how
a simple, universal scaling behavior emerges for
large networks with few shortcuts.

9Note the spike at zero. There is a small probability that two rows or columns of our matrix of ±1 will be the same, but this
probability vanishes rapidly for large N .
10This exercise and the associated software were developed in collaboration with Christopher Myers. Hints for the computations
can be found at the book website [181].
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Constructing a small world network. The L
nodes in a small world network are arranged
around a circle. There are two kinds of edges.
Each node has Z short edges connecting it to its
nearest neighbors around the circle (up to a dis-
tance Z/2). In addition, there are p × L × Z/2
shortcuts added to the network, which con-
nect nodes at random (see Fig. 1.6). (This is
a more tractable version [140] of the original
model [206], which rewired a fraction p of the
LZ/2 edges.)
(a) Define a network object on the computer. For
this exercise, the nodes will be represented by
integers. Implement a network class, with five
functions:

(1) HasNode(node), which checks to see if a node
is already in the network;

(2) AddNode(node), which adds a new node to
the system (if it is not already there);

(3) AddEdge(node1, node2), which adds a new
edge to the system;

(4) GetNodes(), which returns a list of existing
nodes; and

(5) GetNeighbors(node), which returns the
neighbors of an existing node.

Fig. 1.6 Small world network with L = 20,
Z = 4, and p = 0.2.11

Write a routine to construct a small world net-
work, which (given L, Z, and p) adds the nodes
and the short edges, and then randomly adds the
shortcuts. Use the software provided to draw this
small world graph, and check that you have im-

plemented the periodic boundary conditions cor-
rectly (each node i should be connected to nodes
(i− Z/2)modL, . . . , (i+ Z/2)modL).12

Measuring the minimum distances between
nodes. The most studied property of small world
graphs is the distribution of shortest paths be-
tween nodes. Without the long edges, the short-
est path between i and j will be given by hopping
in steps of length Z/2 along the shorter of the
two arcs around the circle; there will be no paths
of length longer than L/Z (halfway around the
circle), and the distribution ρ(ℓ) of path lengths
ℓ will be constant for 0 < ℓ < L/Z. When we
add shortcuts, we expect that the distribution
will be shifted to shorter path lengths.
(b) Write the following three functions to find
and analyze the path length distribution.

(1) FindPathLengthsFromNode(graph, node),
which returns for each node2 in the graph the
shortest distance from node to node2. An
efficient algorithm is a breadth-first traver-
sal of the graph, working outward from node

in shells. There will be a currentShell of
nodes whose distance will be set to ℓ un-
less they have already been visited, and a
nextShell which will be considered after
the current one is finished (looking sideways
before forward, breadth first), as follows.

– Initialize ℓ = 0, the distance from node

to itself to zero, and currentShell =

[node].

– While there are nodes in the new
currentShell:

∗ start a new empty nextShell;

∗ for each neighbor of each node in
the current shell, if the distance to
neighbor has not been set, add the
node to nextShell and set the dis-
tance to ℓ+ 1;

∗ add one to ℓ, and set the current
shell to nextShell.

– Return the distances.

This will sweep outward from node, measur-
ing the shortest distance to every other node
in the network. (Hint: Check your code with
a network with smallN and small p, compar-

11There are seven new shortcuts, where pLZ/2 = 8; one of the added edges overlapped an existing edge or connected a node
to itself.
12Here (i− Z/2) mod L is the integer 0 ≤ n ≤ L− 1, which differs from i− Z/2 by a multiple of L.



 Copyright Oxford University Press 2021  v2.0               --  

12 What is statistical mechanics?

ing a few paths to calculations by hand from
the graph image generated as in part (a).)

(2) FindAllPathLengths(graph), which gener-
ates a list of all lengths (one per pair
of nodes in the graph) by repeatedly us-
ing FindPathLengthsFromNode. Check your
function by testing that the histogram of path
lengths at p = 0 is constant for 0 < ℓ < L/Z,
as advertised. Generate graphs at L = 1,000
and Z = 2 for p = 0.02 and p = 0.2; display
the circle graphs and plot the histogram of
path lengths. Zoom in on the histogram; how
much does it change with p? What value of
p would you need to get “six degrees of sep-
aration”?

(3) FindAveragePathLength(graph), which
computes the mean 〈ℓ〉 over all pairs of
nodes. Compute ℓ for Z = 2, L = 100,
and p = 0.1 a few times; your answer should
be around ℓ = 10. Notice that there are sub-
stantial statistical fluctuations in the value
from sample to sample. Roughly how many
long bonds are there in this system? Would
you expect fluctuations in the distances?

(c) Plot the average path length between nodes
ℓ(p) divided by ℓ(p = 0) for Z = 2, L = 50, with
p on a semi-log plot from p = 0.001 to p = 1.
(Hint: Your curve should be similar to that of
with Watts and Strogatz [206, Fig. 2], with the
values of p shifted by a factor of 100; see the dis-
cussion of the continuum limit below.) Why is
the graph fixed at one for small p?
Large N and the emergence of a continuum limit.
We can understand the shift in p of part (c) as
a continuum limit of the problem. In the limit
where the number of nodes N becomes large and
the number of shortcuts pLZ/2 stays fixed, this
network problem has a nice limit where distance
is measured in radians ∆θ around the circle. Di-
viding ℓ by ℓ(p = 0) ≈ L/(2Z) essentially does
this, since ∆θ = πZℓ/L.
(d) Create and display a circle graph of your
geometry from part (c) (Z = 2, L = 50) at
p = 0.1; create and display circle graphs of Watts
and Strogatz’s geometry (Z = 10, L = 1,000) at
p = 0.1 and p = 0.001. Which of their sys-
tems looks statistically more similar to yours?
Plot (perhaps using the scaling collapse routine
provided) the rescaled average path length πZℓ/L

versus the total number of shortcuts pLZ/2, for
a range 0.001 < p < 1, for L = 100 and 200, and
for Z = 2 and 4.
In this limit, the average bond length 〈∆θ〉
should be a function only of M . Since Watts
and Strogatz [206] ran at a value of ZL a fac-
tor of 100 larger than ours, our values of p are
a factor of 100 larger to get the same value of
M = pLZ/2. Newman and Watts [144] de-
rive this continuum limit with a renormalization-
group analysis (Chapter 12).
(e) Real networks. From the book website [181],
or through your own research, find a real net-
work13 and find the mean distance and histogram
of distances between nodes.

Fig. 1.7 Betweenness Small world network with
L = 500, K = 2, and p = 0.1, with node and edge
sizes scaled by the square root of their betweenness.

In the small world network, a few long edges are
crucial for efficient transfer through the system
(transfer of information in a computer network,
transfer of disease in a population model, . . . ).
It is often useful to measure how crucial a given
node or edge is to these shortest paths. We say
a node or edge is between two other nodes if
it is along a shortest path between them. We
measure the betweenness of a node or edge as
the total number of such shortest paths pass-
ing through it, with (by convention) the initial
and final nodes included in the count of be-
tween nodes; see Fig. 1.7. (If there are K mul-
tiple shortest paths of equal length between two
nodes, each path adds 1/K to its intermediates.)
The efficient algorithm to measure betweenness
is a depth-first traversal quite analogous to the
shortest-path-length algorithm discussed above.

13Examples include movie-actor costars, Six degrees of Kevin Bacon, or baseball players who played on the same team.
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(f) Betweenness (advanced). Read [68, 141],
which discuss the algorithms for finding the be-
tweenness. Implement them on the small world
network, and perhaps the real world network you
analyzed in part (e). Visualize your answers by
using the graphics software provided on the book
website [181].

(1.8) Satisfactory map colorings.14 (Computer
science, Computation, Mathematics) ©3

A

D

C
B

A

D C

B

Fig. 1.8 Graph coloring. Two simple examples of
graphs with N = 4 nodes that can and cannot be
colored with three colors.

Many problems in computer science involve
finding a good answer among a large number
of possibilities. One example is 3-colorability
(Fig. 1.8). Can the N nodes of a graph be col-
ored in three colors (say red, green, and blue) so
that no two nodes joined by an edge have the
same color?15 For an N -node graph one can of
course explore the entire ensemble of 3N color-
ings, but that takes a time exponential in N .
Sadly, there are no known shortcuts that fun-
damentally change this; there is no known algo-
rithm for determining whether a given N -node
graph is three-colorable that guarantees an an-
swer in a time that grows only as a power of
N .16

Another good example is logical satisfiability
(SAT). Suppose one has a long logical expres-
sion involving N boolean variables. The logi-
cal expression can use the operations NOT (¬),

AND (∧), and OR (∨). It is satisfiable if there
is some assignment of True and False to its vari-
ables that makes the expression True. Can we
solve a general satisfiability problem with N
variables in a worst-case time that grows less
quickly than exponentially in N? In this ex-
ercise, you will show that logical satisfiability
is in a sense computationally at least as hard
as 3-colorability. That is, you will show that
a 3-colorability problem with N nodes can be
mapped onto a logical satisfiability problem with
3N variables, so a polynomial-time (nonexpo-
nential) algorithm for the SAT would imply a
(hitherto unknown) polynomial-time solution al-
gorithm for 3-colorability.
If we use the notation AR to denote a variable
which is true when node A is colored red, then
¬(AR ∧AG) is the statement that node A is not
colored both red and green, while AR∨AG∨AB

is true if node A is colored one of the three col-
ors.17

There are three types of expressions needed to
write the colorability of a graph as a logical sat-
isfiability problem: A has some color (above), A
has only one color, and A and a neighbor B have
different colors.
(a) Write out the logical expression that states
that A does not have two colors at the same time.
Write out the logical expression that states that
A and B are not colored with the same color.
Hint: Both should be a conjunction (AND, ∧)
of three clauses each involving two variables.
Any logical expression can be rewritten into a
standard format, the conjunctive normal form.
A literal is either one of our boolean variables or
its negation; a logical expression is in conjunc-
tive normal form if it is a conjunction of a series
of clauses, each of which is a disjunction (OR,
∨) of literals.
(b) Show that, for two boolean variables X and
Y , that ¬(X ∧ Y ) is equivalent to a disjunction
of literals (¬X) ∨ (¬Y ). (Hint: Test each of the
four cases). Write your answers to part (a) in
conjunctive normal form. What is the maximum

14This exercise and the associated software were developed in collaboration with Christopher Myers, with help from Bart
Selman and Carla Gomes. Computational hints can be found at the book website [181].
15The famous four-color theorem, that any map of countries on the world can be colored in four colors, shows that all planar
graphs are 4-colorable.
16Because 3-colorability is NP–complete (see Exercise 8.15), finding such a polynomial-time algorithm would allow one to solve
traveling salesman problems and find spin-glass ground states in polynomial time too.
17The operations AND (∧) and NOT ¬ correspond to common English usage (∧ is true only if both are true, ¬ is true only if
the expression following is false). However, OR (∨) is an inclusive or—false only if both clauses are false. In common English
usage or is usually exclusive, false also if both are true. (“Choose door number one or door number two” normally does not
imply that one may select both.)
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number of literals in each clause you used? Is it
the maximum needed for a general 3-colorability
problem?
In part (b), you showed that any 3-colorability
problem can be mapped onto a logical satisfia-
bility problem in conjunctive normal form with
at most three literals in each clause, and with
three times the number of boolean variables as
there were nodes in the original graph. (Con-
sider this a hint for part (b).) Logical satisfiabil-
ity problems with at most k literals per clause in
conjunctive normal form are called kSAT prob-
lems.
(c) Argue that the time needed to translate the 3-
colorability problem into a 3SAT problem grows
at most quadratically in the number of nodes M
in the graph (less than αM2 for some α for large
M). (Hint: the number of edges of a graph is at
most M2.) Given an algorithm that guarantees
a solution to any N-variable 3SAT problem in
a time T (N), use it to give a bound on the time
needed to solve an M-node 3-colorability prob-
lem. If T (N) were a polynomial-time algorithm
(running in time less than Nx for some integer
x), show that 3-colorability would be solvable in
a time bounded by a polynomial in M .
We will return to logical satisfiability, kSAT,
and NP–completeness in Exercise 8.15. There
we will study a statistical ensemble of kSAT
problems, and explore a phase transition in the
fraction of satisfiable clauses, and the divergence
of the typical computational difficulty near that
transition.

(1.9) First to fail: Weibull.18 (Mathematics,
Statistics, Engineering) ©3
Suppose you have a brand-new supercomputer
with N = 1,000 processors. Your parallelized
code, which uses all the processors, cannot be
restarted in mid-stream. How long a time t can
you expect to run your code before the first pro-
cessor fails?
This is example of extreme value statistics (see
also exercises 12.23 and 12.24), where here we
are looking for the smallest value of N random
variables that are all bounded below by zero. For
large N the probability distribution ρ(t) and sur-
vival probability S(t) =

∫∞
t
ρ(t′) dt′ are often

given by the Weibull distribution

S(t) = e−(t/α)γ ,

ρ(t) = −dS

dt
=
γ

α

(
t

α

)γ−1

e−(t/α)γ .
(1.8)

Let us begin by assuming that the processors
have a constant rate Γ of failure, so the prob-
ability density of a single processor failing at
time t is ρ1(t) = Γ exp(−Γt) as t → 0, and
the survival probability for a single processor
S1(t) = 1−

∫ t

0
ρ1(t

′)dt′ ≈ 1− Γt for short times.
(a) Using (1 − ǫ) ≈ exp(−ǫ) for small ǫ, show
that the the probability SN (t) at time t that all
N processors are still running is of the Weibull
form (eqn 1.8). What are α and γ?
Often the probability of failure per unit time
goes to zero or infinity at short times, rather
than to a constant. Suppose the probability of
failure for one of our processors

ρ1(t) ∼ Btk (1.9)

with k > −1. (So, k < 0 might reflect a
breaking-in period, where survival for the first
few minutes increases the probability for later
survival, and k > 0 would presume a dominant
failure mechanism that gets worse as the proces-
sors wear out.)
(b) Show the survival probability for N identi-
cal processors each with a power-law failure rate
(eqn 1.9) is of the Weibull form for large N , and
give α and γ as a function of B and k.
The parameter α in the Weibull distribution just
sets the scale or units for the variable t; only
the exponent γ really changes the shape of the
distribution. Thus the form of the failure distri-
bution at large N only depends upon the power
law k for the failure of the individual compo-
nents at short times, not on the behavior of ρ1(t)
at longer times. This is a type of universality,19

which here has a physical interpretation; at large
N the system will break down soon, so only early
times matter.
The Weibull distribution, we must mention, is
often used in contexts not involving extremal
statistics. Wind speeds, for example, are nat-
urally always positive, and are conveniently fit
by Weibull distributions.

18Developed with the assistance of Paul (Wash) Wawrzynek
19The Weibull distribution is part of a family of extreme value distributions, all of whom are universal. See Chapter 12 and
Exercise 12.24.
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(1.10) Emergence. ©p
We begin with the broad statement “Statistical
mechanics explains the simple behavior of com-
plex systems.” New laws emerge from bewilder-
ing interactions of constituents.
Discuss which of these emergent behaviors is
probably not studied using statistical mechanics.
(a) The emergence of the wave equation from

the collisions of atmospheric molecules,
(b) The emergence of Newtonian gravity from

Einstein’s general theory,
(c) The emergence of random stock price fluc-

tuations from the behavior of traders,
(d) The emergence of a power-law distribution

of earthquake sizes from the response of rubble
in earthquake faults to external stresses.

(1.11) Emergent vs. fundamental. ©p
Statistical mechanics is central to condensed
matter physics. It is our window into the behav-
ior of materials—how complicated interactions
between large numbers of atoms lead to physical
laws (Fig. 1.9). For example, the theory of sound
emerges from the complex interaction between
many air molecules governed by Schrödinger’s
equation. More is different [10].
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Fig. 1.9 Emergent. New laws describing macro-
scopic materials emerge from complicated micro-
scopic behavior [177].

For example, if you inhale helium, your voice
gets squeaky like Mickey Mouse. The dy-
namics of air molecules change when helium is
introduced—the same law of motion, but with
different constants.
(a) Look up the wave equation for sound in gases.
How many constants are needed? Do the details
of the interactions between air molecules matter
for sound waves in air?
Statistical mechanics is tied also to particle
physics and astrophysics. It is directly impor-
tant in, e.g., the entropy of black holes (Ex-
ercise 7.16), the microwave background radia-
tion (Exercises 7.15 and 10.1), and broken sym-
metry and phase transitions in the early Uni-
verse (Chapters 9, 11, and 12). Where statisti-
cal mechanics focuses on the emergence of com-
prehensible behavior at low energies, particle
physics searches for the fundamental underpin-
nings at high energies (Fig. 1.10). Our different
approaches reflect the complicated science at the
atomic scale of chemistry and nuclear physics.
At higher energies, atoms are described by el-
egant field theories (the standard model com-
bining electroweak theory for electrons, photons,
and neutrinos with QCD for quarks and gluons);
at lower energies effective laws emerge for gases,
solids, liquids, superconductors, . . .
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Fig. 1.10 Fundamental. Laws describing physics
at lower energy emerge from more fundamental laws
at higher energy [177].
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The laws of physics involve parameters—real
numbers that one must calculate or measure, like
the speed of sound for a each gas at a given den-
sity and pressure. Together with the initial con-
ditions (e.g., the density and its rate of change
for a gas), the laws of physics allow us to predict
how our system behaves.
Schrödinger’s equation describes the Coulomb
interactions between electrons and nuclei, and
their interactions with electromagnetic field. It
can in principle be solved to describe almost all
of materials physics, biology, and engineering,
apart from radioactive decay and gravity, using
a Hamiltonian involving only the parameters ~,
e, c, me, and the the masses of the nuclei.20 Nu-
clear physics and QCD in principle determine the
nuclear masses; the values of the electron mass
and the fine structure constant α = e2/~c could
eventually be explained by even more fundamen-
tal theories.
(b) About how many parameters would one need
as input to Schrödinger’s equation to describe
materials and biology and such? Hint: There
are 253 stable nuclear isotopes.
(c) Look up the Standard Model—our theory of
electrons and light, quarks and gluons, that also
in principle can be solved to describe our Uni-
verse (apart from gravity). About how many pa-
rameters are required for the Standard Model?
In high-energy physics, fewer constants are usu-
ally needed to describe the fundamental theory
than the low-energy, effective emergent theory—
the fundamental theory is more elegant and
beautiful. In condensed matter theory, the
fundamental theory is usually less elegant and
messier; the emergent theory has a kind of pa-
rameter compression, with only a few combi-
nations of microscopic parameters giving the
governing parameters (temperature, elastic con-
stant, diffusion constant) for the emergent the-
ory.
Note that this is partly because in condensed
matter theory we confine our attention to one
particular material at a time (crystals, liquids,
superfluids). To describe all materials in our
world, and their interactions, would demand
many parameters.
My high-energy friends sometimes view this from
a different perspective. They note that the meth-

ods we use to understand a new superfluid, or
a topological insulator, are quite similar to the
ones they use to study the Universe. They ad-
mit a bit of envy—that we get a new universe
to study every time an experimentalist discovers
another material.

(1.12) Self-propelled particles.21 (Active matter)©3
Exercise 2.20 investigates the statistical mechan-
ical study of flocking—where animals, bacte-
ria, or other active agents go into a collective
state where they migrate in a common direction
(like moshers in circle pits at heavy metal con-
certs [31, 188–190]). Here we explore the transi-
tion to a migrating state, but in an even more ba-
sic class of active matter: particles that are self-
propelled but only interact via collisions. Our
goal here is to both study the nature of the col-
lective behavior, and the nature of the transition
between disorganized motion and migration.
We start with an otherwise equilibrium system
(damped, noisy particles with soft interatomic
potentials, Exercise 6.19), and add a propulsion
term

F speed
i = µ(v0 − vi)v̂i, (1.10)

which accelerates or decelerates each particle to-
ward a target speed v0 without changing the
direction. The damping constant µ now con-
trols how strongly the target speed is favored;
for v0 = 0 we recover the damping needed to
counteract the noise to produce a thermal en-
semble.
This simulation can be a rough model for
crowded bacteria propelling themselves around,
or for artificially created Janus particles that
have one side covered with a platinum catalyst
that burns hydrogen peroxide, pushing it for-
ward.
Launch the mosh pit simulator [32]. If neces-
sary, reload the page to the default setting. Set
all particles active (Fraction Red to 1), set the
Particle count to N = 200, Flock strength = 0,
Speed v0 = 0.25, Damping = 0.5 and Noise
Strength = 0, Show Graphs, and click Change.
After some time, you should see most of the par-
ticles moving along a common direction. (In-
crease Frameskip to speed the process.) You can
increase the Box size and number maintaining
the density if you have a powerful computer, or

20The gyromagnetic ratio for each nucleus is also needed in a few situations where its coupling to magnetic fields are important.
21This exercise was developed in collaboration with David Hathcock. It makes use of the mosh pit simulator [32] developed by
Matt Bierbaum for [190].
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decrease it (but not below 30) if your computer
is struggling.
(a) Watch the speed distribution as you restart
the simulation. Turn off Frameskip to see the
behavior at early times. Does it get sharply
peaked at the same time as the particles begin
moving collectively? Now turn up frameskip to
look at the long-term motion. Give a qualitative
explanation of what happens. Is more happen-
ing than just selection of a common direction?
(Hint: Understanding why the collective behav-
ior maintains itself is easier than explaining why
it arises in the first place.)
We can study this emergent, collective flow by
putting our system in a box—turning off the
periodic boundary conditions along x and y.
Reload parameters to default, then all active,
N = 300, flocking = 0, speed v0 = 0.25, raise
the damping up to 2 and set noise = 0. Turn
off the periodic boundary conditions along both
x and y, set the frame skip to 20, and Change.
Again, box sizes as low as 30 will likely work.
After some time, you should observe a collective
flow of a different sort. You can monitor the av-
erage flow using the angular momentum (middle
graph below the simulation).
(b) Increase the noise strength. Can you disrupt
this collective behavior? Very roughly, a what
noise strength does the transition occur? (You
can use the angular momentum as a diagnos-
tic.)
A key question in equilibrium statistical me-
chanics is whether a qualitative transition like
this is continuous (Chapter 12) or discontin-
uous (Chapter 11). Discontinuous transitions
usually exhibit both bistability and hysteresis:
the observed transition raising the temperature
or other control parameter is higher than when
one lowers the parameter. Here, if the tran-
sition is abrupt, we should have a region with
three states—a melted state of zero angular mo-
mentum, and a collective clockwise and counter-
clockwise state.
Return to the settings for part (b) to explore
more carefully the behavior near the transition.
(c) Use the angular momentum to measure the
strength of the collective motion (taken from the
center graph, treating the upper and lower bounds
as ±1). Graph it against noise as you raise the
noise slowly and carefully from zero, until it van-
ishes. (You may need to wait longer when you
get close to the transition.) Graph it again as

you lower the noise. Do you find the same tran-
sition point on heating and cooling (raising and
lowering the noise)? Is the transition abrupt, or
continuous? Did you ever observe switches be-
tween the clockwise and anti-clockwise states?

(1.13) The birthday problem. ©2
Remember birthday parties in your elementary
school? Remember those years when two kids
had the same birthday? How unlikely!
How many kids would you need in class to get,
more than half of the time, at least two with the
same birthday?
(a) Numerical. Write BirthdayCoincidences(K,
C), a routine that returns the fraction among C
classes for which at least two kids (among K
kids per class) have the same birthday. (Hint:
By sorting a random list of integers, common
birthdays will be adjacent.) Plot this probability
versus K for a reasonably large value of C. Is
it a surprise that your classes had overlapping
birthdays when you were young?
One can intuitively understand this, by remem-
bering that to avoid a coincidence there are
K(K − 1)/2 pairs of kids, all of whom must
have different birthdays (probability 364/365 =
1− 1/D, with D days per year).

P (K,D) ≈ (1− 1/D)K(K−1)/2 (1.11)

This is clearly a crude approximation—it doesn’t
vanish if K > D! Ignoring subtle correlations,
though, it gives us a net probability

P (K,D) ≈ exp(−1/D)K(K−1)/2

≈ exp(−K2/(2D)) (1.12)

Here we’ve used the fact that 1 − ǫ ≈ exp(−ǫ),
and assumed that K/D is small.
(b) Analytical. Write the exact formula giving
the probability, for K random integers among D
choices, that no two kids have the same birthday.
(Hint: What is the probability that the second
kid has a different birthday from the first? The
third kid has a different birthday from the first
two?) Show that your formula does give zero if
K > D. Converting the terms in your product to
exponentials as we did above, show that your an-
swer is consistent with the simple formula above,
if K ≪ D. Inverting eqn 1.12, give a formula for
the number of kids needed to have a 50% chance
of a shared birthday.
Some years ago, we were doing a large simula-
tion, involving sorting a lattice of 1,0003 random



 Copyright Oxford University Press 2021  v2.0               --  

18 What is statistical mechanics?

fields (roughly, to figure out which site on the lat-
tice would trigger first). If we want to make sure
that our code is unbiased, we want different ran-
dom fields on each lattice site—a giant birthday
problem.
Old-style random number generators generated
a random integer (232 “days in the year”) and
then divided by the maximum possible integer
to get a random number between zero and one.
Modern random number generators generate all
252 possible double precision numbers between
zero and one.
(c) If there are 232 distinct four-byte unsigned
integers, how many random numbers would one
have to generate before one would expect coin-
cidences half the time? Generate lists of that
length, and check your assertion. (Hints: It is
faster to use array operations, especially in in-
terpreted languages. I generated a random ar-
ray with N entries, sorted it, subtracted the first
N−1 entries from the last N−1, and then called
min on the array.) Will we have to worry about
coincidences with an old-style random number
generator? How large a lattice L × L × L of
random double precision numbers can one gener-
ate with modern generators before having a 50%
chance of a coincidence?

(1.14) Width of the height distribution.22 (Statis-
tics) ©3
In this exercise we shall explore statistical meth-
ods of fitting models to data, in the context of
fitting a Gaussian to a distribution of measure-
ments. We shall find that maximum likelihood
methods can be biased. We shall find that all
sensible methods converge as the number of mea-
surements N gets large (just as thermodynam-
ics can ignore fluctuations for large numbers of
particles), but a careful treatment of fluctuations
and probability distributions becomes important
for small N (just as different ensembles become
distinguishable for small numbers of particles).
The Gaussian distribution, known in statistics
as the normal distribution

N (x|µ, σ2) =
1√
2πσ2

e−(x−µ)2/(2σ2) (1.13)

is a remarkably good approximation for many
properties. The heights of men or women in a
given country, or the grades on an exam in a
large class, will often have a histogram that is
well described by a normal distribution.23 If we
know the heights xn of a sample with N peo-
ple, we can write the likelihood that they were
drawn from a normal distribution with mean µ
and variance σ2 as the product

P ({xn}|µ, σ) =
N∏

n=1

N (xn|µ, σ2). (1.14)

We first introduce the concept of sufficient statis-
tics. Our likelihood (eqn 1.14) does not de-
pend independently on each of the N heights xn.
What do we need to know about the sample to
predict the likelihood?
(a) Write P ({xn}|µ, σ) in eqn 1.14 as a for-
mula depending on the data {xn} only through
N , x = (1/N)

∑
n xn and S =

∑
n(xn − x)2.

Given the model of independent normal distri-
butions, its likelihood is a formula depending
only on24 x and S, the sufficient statistics for
our Gaussian model.
Now, suppose we have a small sample and wish
to estimate the mean and the standard deviation
of the normal distribution.25 Maximum likeli-
hood is a common method for estimating model
parameters; the estimates (µML, σML) are given
by the peak of the probability distribution P .
(b) Show that P ({xn}|µML, σML) takes its max-
imum value at

µML =

∑
n xn

N
= x

σML =

√∑

n

(xn − x)2/N =
√
S/N.

(1.15)

(Hint: It is easier to maximize the log likelihood;
P (θ) and log(P (θ)) are maximized at the same
point θML.)
If we draw samples of size N from a distribution
of known mean µ0 and standard deviation σ0,

22This exercise was developed in collaboration with Colin Clement.
23This is likely because one’s height is determined by the additive effects of many roughly uncorrelated genes and life experiences;
the central limit theorem would then imply a Gaussian distribution (Chapter 2 and Exercise 12.11).
24In this exercise we shall use X denote a quantity averaged over a single sample of N people, and 〈X〉samp denote a quantity
also averaged over many samples.
25In physics, we usually estimate measurement errors separately from fitting our observations to theoretical models, so each
experimental data point di comes with its error σi. In statistics, the estimation of the measurement error is often part of the
modeling process, as in this exercise.
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how do the maximum likelihood estimates dif-
fer from the actual values? For the limiting case
N = 1, the various maximum likelihood esti-
mates for the heights vary from sample to sample
(with probability distribution N (x|µ, σ2), since
the best estimate of the height is the sampled
one). Because the average value 〈µML〉samp over
many samples gives the correct mean, we say
that µML is unbiased. The maximum likelihood
estimate for σ2

ML, however, is biased. Again, for
the extreme example N = 1, σ2

ML = 0 for every
sample!
(c) Assume the entire population is drawn from
some (perhaps non-Gaussian) distribution of
variance

〈
x2
〉
samp

= σ2
0. For simplicity, let the

mean of the population be zero. Show that

〈
σ2
ML

〉
samp

= (1/N)

〈
N∑

n=1

(xn − x)2
〉

samp

=
N − 1

N
σ2
0 . (1.16)

that the variance for a group of N people is on
average smaller than the variance of the popula-
tion distribution by a factor (N − 1)/N . (Hint:
x = (1/N)

∑
n xn is not necessarily zero. Ex-

pand it out and use the fact that xm and xn are
uncorrelated.)
The maximum likelihood estimate for the vari-
ance is biased on average toward smaller values.
Thus we are taught, when estimating the stan-
dard deviation of a distribution26 from N mea-
surements, to divide by

√
N − 1:

σ2
N−1 ≈

∑
n(xn − x)2
N − 1

. (1.17)

This correction N → N − 1 is generalized to
more complicated problems by considering the
number of independent degrees of freedom (here
N − 1 degrees of freedom in the vector xn− x of
deviations from the mean). Alternatively, it is
interesting that the bias disappears if one does
not estimate both σ2 and µ by maximizing the
joint likelihood, but integrating (or marginaliz-
ing) over µ and then finding the maximum like-
lihood for σ2.

(1.15) Fisher information and Cramér–Rao.27

(Statistics, Mathematics, Information geome-
try) ©4
Here we explore the geometry of the space of
probability distributions. When one changes the
external conditions of a system a small amount,
how much does the ensemble of predicted states
change? What is themetric in probability space?
Can we predict how easy it is to detect a change
in external parameters by doing experiments on
the resulting distribution of states? The met-
ric we find will be the Fisher information matrix
(FIM). The Cramér–Rao bound will use the FIM
to provide a rigorous limit on the precision of any
(unbiased) measurement of parameter values.
In both statistical mechanics and statistics, our
models generate probability distributions P (x|θ)
for behaviors x given parameters θ.

• A crooked gambler’s loaded die, where the
state space is comprised of discrete rolls
x ∈ {1, 2, . . . , 6} with probabilities θ =
{p1, . . . , p5}, with p6 = 1−∑5

j=1 θj .

• The probability density that a system with
a Hamiltonian H(θ) with θ = (T, P,N)
giving the temperature, pressure, and num-
ber of particles, will have a probability den-
sity P (x|θ) = exp(−H/kBT )/Z in phase
space (Chapter 3, Exercise 6.22).

• The height of women in the US, x =
{h} has a probability distribution well de-
scribed by a normal (or Gaussian) dis-
tribution P (x|θ) = 1/

√
2πσ2 exp(−(x −

µ)2/2σ2) with mean and standard devia-
tion θ = (µ, σ) (Exercise 1.14).

• A least squares model yi(θ) for N data
points di ± σ with independent, normally
distributed measurement errors predicts a
likelihood for finding a value x = {xi} of
the data {di} given by

P (x|θ) = e−
∑

i(yi(θ)−xi)
2/2σ2

(2πσ2)N/2
. (1.18)

(Think of the theory curves you fit to data
in many experimental labs courses.)

How “distant” is a loaded die is from a fair one?
How “far apart” are the probability distributions
of particles in phase space for two small system
at different temperatures and pressures? How

26Do not confuse this with the estimate of the error in the mean x.
27This exercise was developed in collaboration with Colin Clement and Katherine Quinn.
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hard would it be to distinguish a group of US
women from a group of Pakistani women, if you
only knew their heights?
We start with the least-squares model.
(a) How big is the probability density that a least-
squares model with true parameters θ would give
experimental results implying a different set of
parameters φ? Show that it depends only on the
distance between the vectors |y(θ)−y(φ)| in the
space of predictions. Thus the predictions of
least-squares models form a natural manifold in
a behavior space, with a coordinate system given
by the parameters. The point on the manifold
corresponding to parameters θ is y(θ)/σ given
by model predictions rescaled by their error bars,
y(θ)/σ.
Remember that the metric tensor gαβ gives
the distance on the manifold between two
nearby points. The squared distance between
points with coordinates θ and θ + ǫ∆ is
ǫ2
∑

αβ gαβ∆α∆β .
(b) Show that the least-squares metric is
gαβ = (JTJ)αβ/σ

2, where the Jacobian Jiα =
∂yi/∂θα.
For general probability distributions, the natu-
ral metric describing the distance between two
nearby distributions P (x|θ) and Q = P (x|θ +
ǫ∆) is given by the FIM:

gαβ(θ) = −
〈
∂2logP (x|θ)
∂θα∂θβ

〉

x

(1.19)

Are the distances between least-squares models
we intuited in parts (a) and (b) compatible with
the the FIM?
(c) Show for a least-squares model that eqn 1.19
is the same as the metric we derived in part (b).
(Hint: For a Gaussian distribution exp((x −
µ)2/(2σ2))/

√
2πσ2, 〈x〉 = µ.)

If we have experimental data with errors, how
well can we estimate the parameters in our the-
oretical model, given a fit? As in part (a), now
for general probabilistic models, how big is the
probability density that an experiment with true
parameters θ would give results perfectly corre-
sponding to a nearby set of parameters θ+ ǫ∆?
(d) Take the Taylor series of logP (θ + ǫ∆) to
second order in ǫ. Exponentiate this to estimate
how much the probability of measuring values
corresponding to the predictions at θ + ǫ∆ fall
off compared to P (θ). Thus to linear order the
FIM gαβ estimates the range of likely measured

parameters around the true parameters of the
model.
The Cramér–Rao bound shows that this estimate
is related to a rigorous bound. In particular, er-
rors in a multiparameter fit are usually described
by a covariance matrix Σ, where the variance
of the likely values of parameter θα is given by
Σαα, and where Σαβ gives the correlations be-
tween two parameters θα and θβ . One can show
within our quadratic approximation of part (d)
that the covariance matrix is the inverse of the
FIM Σαβ = (g−1)αβ . The Cramér–Rao bound
roughly tells us that no experiment can do better
than this at estimating parameters. In particu-
lar, it tells us that the error range of the individ-
ual parameters from a sampling of a probability
distribution is bounded below by the correspond-
ing element of the inverse of the FIM

Σαα ≥ (g−1)αα. (1.20)

(if the estimator is unbiased, see Exercise 1.14).
This is another justification for using the FIM as
our natural distance metric in probability space.
In Exercise 1.16, we shall examine global mea-
sures of distance or distinguishability between
potentially quite different probability distribu-
tions. There we shall show that these measures
all reduce to the FIM to lowest order in the
change in parameters. In Exercises 6.23, 6.21,
and 6.22, we shall show that the FIM for a Gibbs
ensemble as a function of temperature and pres-
sure can be written in terms of thermodynamic
quantities like compressibility and specific heat.
There we use the FIM to estimate the path length
in probability space, in order to estimate the en-
tropy cost of controlling systems like the Carnot
cycle.

(1.16) Distances in probability space.28 (Statis-
tics, Mathematics, Information geometry) ©3
In statistical mechanics we usually study the be-
havior expected given the experimental parame-
ters. Statistics is often concerned with estimat-
ing how well one can deduce the parameters (like
temperature and pressure, or the increased risk
of death from smoking) given a sample of the
ensemble. Here we shall explore ways of mea-
suring distance or distinguishability between dis-
tant probability distributions.
Exercise 1.15 introduces four problems (loaded
dice, statistical mechanics, the height distribu-

28This exercise was developed in collaboration with Katherine Quinn.
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tion of women, and least-squares fits to data),
each of which have parameters θ which pre-
dict an ensemble probability distribution P (x|θ)
for data x (die rolls, particle positions and mo-
menta, heights, . . . ). In the case of least-squares
models (eqn 1.18) where the probability is given
by a vector xi = yi(θ) ± σ, we found that
the distance between the predictions of two pa-
rameter sets θ and φ was naturally given by
|y(θ)/σ − y(φ)/σ|. We want to generalize this
formula—to find ways of measuring distances
between probability distributions given by arbi-
trary kinds of models.
Exercise 1.15 also introduced the Fisher infor-
mation metric (FIM) in eqn 1.19:

gµν(θ) = −
〈
∂2log(P (x))

∂θα∂θβ

〉

x

(1.21)

which gives the distance between probability dis-
tributions for nearby sets of parameters

d2(P (θ), P (θ+ ǫ∆)) = ǫ2
∑

µν

∆µgµν∆ν . (1.22)

Finally, it argued that the distance defined by
the FIM is related to how distinguishable the
two nearby ensembles are—how well we can de-
duce the parameters. Indeed, we found that to
linear order the FIM is the inverse of the co-
variance matrix describing the fluctuations in es-
timated parameters, and that the Cramér–Rao
bound shows that this relationship between the
FIM and distinguishability works even beyond
the linear regime.
There are several measures in common use, of
which we will describe three—the Hellinger dis-
tance, the Bhattacharyya “distance”, and the
Kullback–Liebler divergence. Each has its uses.
The Hellinger distance becomes less and less use-
ful as the amount of information about the pa-
rameters becomes large. The Kullback–Liebler
divergence is not symmetric, but one can sym-
metrize it by averaging. It and the Bhat-
tacharyya distance nicely generalize the least-
squares metric to arbitrary models, but they vio-
late the triangle inequality and embed the man-
ifold of predictions into a space with Minkowski-
style time-like directions [155].
Let us review the properties that we ordinarily
demand from a distance between points P and
Q.

• We expect it to be positive, d(P,Q) ≥ 0, with
d(P,Q) = 0 only if P = Q.

• We expect it to be symmetric, so d(P,Q) =
d(Q,P ).

• We expect it to satisfy the triangle inequality,
d(P,Q) ≤ d(P,R) + d(R,Q)—the two short
sides of a triangle must extend at total dis-
tance enough to reach the third side.

• We want it to become large when the points
P and Q are extremely different.

All of these properties are satisfied by the least-
squares distance of Exercise 1.15, because the
distances between points on the surface of model
predictions is the Euclidean distance between the
predictions in data space.
Our first measure, the Hellinger distance at first
seems ideal. It defines a dot product between
probability distributions P and Q. Consider the
discrete gambler’s distribution, giving the prob-
abilities P = {Pj} for die roll j. The normal-
ization

∑
Pj = 1 makes {

√
Pj} a unit vector

in six dimensions, so we define a dot product
P · Q =

∑6
j=1

√
Pj

√
Qj =

∫
dx
√
P (x)

√
Q(x).

The Hellinger distance is then given by the
squared distance between points on the unit
sphere:29

d2Hel(P,Q) = (P −Q)2 = 2− 2P ·Q

=

∫
dx
(√

P (x)−
√
Q(x)

)2
.

(1.23)

(a) Argue, from the last geometrical character-
ization, that the Hellinger distance must be a
valid distance function. Show that the Hellinger
distance does reduce to the FIM for nearby dis-
tributions, up to a constant factor. Show that
the Hellinger distance never gets larger than√
2. What is the Hellinger distance between

a fair die Pj ≡ 1/6 and a loaded die Qj =
{1/10, 1/10, . . . , 1/2} that favors rolling 6?
The Hellinger distance is peculiar in that, as the
statistical mechanics system gets large, or as one
adds more experimental data to the statistics
model, all pairs approach the maximum distance√
2.

(b) Our gambler keeps using the loaded die. Can
the casino catch him? Let PN (j) be the probabil-
ity that rolling the die N times gives the sequence
j = {j1, . . . , jN}. Show that

PN ·QN = (P ·Q)N, (1.24)

29Sometimes it is given by half the distance between points on the unit sphere, presumably so that the maximum distance
between two probability distributions becomes one, rather than

√
2.
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and hence

d2Hel(PN , QN ) = 1− (P ·Q)N. (1.25)

After N = 100 rolls, how close is the Hellinger
distance from its maximum value?
From the casino’s point of view, the cer-
tainty that the gambler is cheating is becoming
squeezed into a tiny range of distances. (PN and
QN becoming increasingly orthogonal does not
lead to larger and larger Hellinger distances.) In
an Ising model, or a system with N particles, or
a cosmic microwave background experiment with
N measured areas of the sky, even tiny changes
in parameters lead to orthogonal probability dis-
tributions, and hence Hellinger distances near its
maximum value of one.30

The Hellinger overlap (P ·Q)N = exp(N log(P ·
Q)) keeps getting smaller as we take N to in-
finity; it is like the exponential of an extensive
quantity.
Our second measure, the Bhattacharyya dis-
tance, can be derived from a limit of the
Hellinger distance as the number of data points
N goes to zero:

d2Bhatt(P,Q) = lim
N→0

1/2d
2
Hel(PN , QN )/N

= − log(P ·Q) (1.26)

= − log

(
∑

x

√
P (x)

√
Q(x)

)
.

We sometimes say that we calculate the behav-
ior of N replicas of the system, and then take
N → 0. Replica theory is useful, for exam-
ple, in disordered systems, where we can aver-
age F = −kBT log(Z) over disorder (difficult)

by finding the average of ZN over disorder (not
so hard) and then taking N → 0.
(d) Derive eqn 1.26. (Hint: ZN ≈
exp(N logZ) ≈ 1 +N logZ for small N .)
The third distance-like measure we introduce is
the Kullback–Leibler divergence from Q to P .

dKL(Q|P ) = −
∫

dxP (x) log(Q(x)/P (x)).

(1.27)
(c) Show that the Kullback–Liebler divergence is
positive, zero only if P = Q, but is not sym-
metric. Show that, to quadratic order in ǫ in
eqn 1.22, that the Kullback–Liebler divergence
does lead to the FIM.
The Kullback–Liebler divergence is sometimes
symmetrized:

dsKL(Q,P ) (1.28)

= 1/2(dKL(Q|P ) + dKL(P |Q))

=

∫
dx(P (x)−Q(x)) log(P (x)/Q(x)).

The Bhattacharyya distance and the sym-
metrized Kullback–Liebler divergence share sev-
eral features, both good and bad.
(d) Show that they are intensive [155]—that the
distance grows linearly with repeated measure-
ments31 (as for repeated rolls in part (b)). Show
that they do not satisfy the triangle inequality.
Show that they does satisfy the other conditions
for a distance. Show, for the nonlinear least-
squares model of eqn 1.18, that they equal the
distance in data space between the two predic-
tions.

30The problem is that the manifold of predictions is being curled up onto a sphere, where the short-cut distance between two
models becomes quite different from the geodesic distance within the model manifold.
31This also makes these measures behave nicely for large systems as in statistical mechanics, where small parameter changes
lead to nearly orthogonal probability distributions.
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What makes physics possible? Why are the mathematical laws that
describe our macroscopic world so simple? Our physical laws are not
direct statements about the underlying reality of the Universe. Rather,
our laws emerge out of far more complex microscopic behavior.1 Statis-

1You may think that Newton’s law of
gravitation, or Einstein’s refinement to
it, is more fundamental than the diffu-
sion equation. You would be correct;
gravitation applies to everything. But
the simple macroscopic law of gravita-
tion emerges, presumably, from a quan-
tum exchange of immense numbers of
virtual gravitons just as the diffusion
equation emerges from large numbers
of long random walks. The diffusion
equation and other continuum statisti-
cal mechanics laws are special to partic-
ular systems, but they emerge from the
microscopic theory in much the same
way as gravitation and the other fun-
damental laws of nature do. This is the
source of many of the surprisingly sim-
ple mathematical laws describing na-
ture [211].

tical mechanics provides a set of powerful tools for understanding simple
behavior that emerges from underlying complexity.

In this chapter we will explore the emergent behavior for random
walks. Random walks are paths that take successive steps in random
directions. They arise often in statistical mechanics: as partial sums of
fluctuating quantities, as trajectories of particles undergoing repeated
collisions, and as the shapes for long, linked systems like polymers. They
introduce two kinds of emergent behavior. First, an individual random
walk, after a large number of steps, becomes fractal or scale invariant
(explained in Section 2.1). Secondly, the endpoint of the random walk
has a probability distribution that obeys a simple continuum law, the
diffusion equation (introduced in Section 2.2). Both of these behaviors
are largely independent of the microscopic details of the walk; they are
universal. Random walks in an external field provide our first exam-
ples of conserved currents, linear response, and Boltzmann distributions
(Section 2.3). Finally, we use the diffusion equation to introduce Fourier
and Green’s function techniques (Section 2.4). Random walks neatly il-
lustrate many of the themes and methods of statistical mechanics.

2.1 Random walk examples: universality
and scale invariance

Statistical mechanics often demands sums or averages of a series of fluc-
tuating quantities: sN =

∑N
i=1 ℓi. The energy of a material is a sum

over the energies of the molecules composing the material; your grade
on a statistical mechanics exam is the sum of the scores on many indi-
vidual questions. Imagine adding up this sum one term at a time. The
path s1, s2, . . . forms an example of a one-dimensional random walk. We
illustrate random walks with three examples: coin flips, the drunkard’s
walk, and polymers.

Coin flips. For example, consider flipping a coin and recording the
difference sN between the number of heads and tails found. Each coin
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