OXFORD MASTER SERIES IN STATISTICAL, COMPUTATIONAL, AND THEORETICAL PHYSICS

SECOND EDITION
Statistical Mechanics:
Entropy, Order Parameters, and Complexity

James P. Sethna

Statistical Mechanics: Entropy, Order Parameters, and Complexity

OXFORD MASTER SERIES IN PHYSICS

The Oxford Master Series is designed for final year undergraduate and beginning graduate students in physics and related disciplines. It has been driven by a perceived gap in the literature today. While basic undergraduate physics texts often show little or no connection with the huge explosion of research over the last two decades, more advanced and specialized texts tend to be rather daunting for students. In this series, all topics and their consequences are treated at a simple level, while pointers to recent developments are provided at various stages. The emphasis is on clear physical principles like symmetry, quantum mechanics, and electromagnetism which underlie the whole of physics. At the same time, the subjects are related to real measurements and to the experimental techniques and devices currently used by physicists in academe and industry. Books in this series are written as course books, and include ample tutorial material, examples, illustrations, revision points, and problem sets. They can likewise be used as preparation for students starting a doctorate in physics and related fields, or for recent graduates starting research in one of these fields in industry.

CONDENSED MATTER PHYSICS

1. M.T. Dove: Structure and dynamics: an atomic view of materials
2. J. Singleton: Band theory and electronic properties of solids
3. A.M. Fox: Optical properties of solids, second edition
4. S.J. Blundell: Magnetism in condensed matter
5. J.F. Annett: Superconductivity, superfluids, and condensates
6. R.A.L. Jones: Soft condensed matter
7. S. Tautz: Surfaces of condensed matter
8. H. Bruus: Theoretical microfluidics
9. C.L. Dennis, J.F. Gregg: The art of spintronics: an introduction
10. T.T. Heikkilä: The physics of nanoelectronics: transport and fluctuation phenomena at low temperatures
11. M. Geoghegan, G. Hadziioannou: Polymer electronics

ATOMIC, OPTICAL, AND LASER PHYSICS

7. C.J. Foot: Atomic physics
8. G.A. Brooker: Modern classical optics
9. S.M. Hooker, C.E. Webb: Laser physics
10. A.M. Fox: Quantum optics: an introduction
11. S.M. Barnett: Quantum information
12. P. Blood: Quantum confined laser devices

PARTICLE PHYSICS, ASTROPHYSICS, AND COSMOLOGY

10. D.H. Perkins: Particle astrophysics, second edition
11. Ta-Pei Cheng: Relativity, gravitation and cosmology, second edition
12. G. Barr, R. Devenish, R. Walczak, T. Weidberg: Particle physics in the LHC era
13. M. E. Peskin: Concepts of elementary particle physics

STATISTICAL, COMPUTATIONAL, AND THEORETICAL PHYSICS

12. M. Maggiore: A modern introduction to quantum field theory
13. W. Krauth: Statistical mechanics: algorithms and computations
14. J.P. Sethna: Statistical mechanics: entropy, order parameters, and complexity, second edition
15. S.N. Dorogovtsev: Lectures on complex networks
16. R. Soto: Kinetic theory and transport phenomena

Statistical Mechanics

Entropy, Order Parameters, and Complexity

SECOND EDITION

James P. Sethna

Laboratory of Atomic and Solid State Physics
Cornell University, Ithaca, NY

OXFORD

UNIVERSITY PRESS
Great Clarendon Street, Oxford, OX2 6DP,
United Kingdom
Oxford University Press is a department of the University of Oxford.
It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide. Oxford is a registered trade mark of Oxford University Press in the UK and in certain other countries
(C) Oxford University Press 2021

The moral rights of the author have been asserted
First Edition published in 2006
Second Edition published in 2021
Impression: 1
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission in writing of Oxford University Press, or as expressly permitted by law, by licence or under terms agreed with the appropriate reprographics rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department, Oxford University Press, at the address above

You must not circulate this work in any other form and you must impose this same condition on any acquirer
Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America
British Library Cataloguing in Publication Data
Data available
Library of Congress Control Number: 2020947122
ISBN 978-0-19-886524-7 (hbk.)
ISBN 978-0-19-886525-4 (pbk.)
DOI: 10.1093/oso/9780198865247.001.0001
Printed and bound by
CPI Group (UK) Ltd, Croydon, CR0 4YY
Links to third party websites are provided by Oxford in good faith and for information only. Oxford disclaims any responsibility for the materials contained in any third party website referenced in this work.

Preface to the second edition

The second edition of Statistical Mechanics: Entropy, Order Parameters, and Complexity features over a hundred new exercises, plus refinement and revision of many exercises from the first edition. The main chapters are largely unchanged, except for a refactoring of my discussion of the renormalization group in Chapter 12. Indeed, the chapters are designed to be the stable kernel of their topics, while the exercises cover the growing range of fascinating applications and implications of statistical mechanics.

This book reflects "flipped classroom" innovations, which I have found to be remarkably effective. I have identified a hundred pre-class questions and in-class activities, the former designed to elucidate and reinforce sections of the text, and the latter designed for group collaboration. These are denoted with the symbols (D) and (a), in an extension of the difficulty rating (1)-(5) used in the first edition. Human correlations, Fingerprints, and Crackling noises are some of my favorite activities. These exercises, plus a selection of less-specialized longer exercises, form the core of the undergraduate version of my course.

Extensive online material [181] is now available for the exercises. Mathematica and python notebooks provide hints for almost fifty computational exercises, allowing students to tackle serious new research topics like Conformal invariance, Subway bench Monte Carlo, and 2D turbulence and Jupiter's great red spot, while getting exposed to good programming practices. Handouts and instructions facilitate activities such as Pentagonal frustration and Hearing chaos. The answer key for the exercises now is polished enough that I regret not being able to share it with any but those teaching the course.

Finally, the strength of the first edition was in advanced exercises, which explored in depth the subtleties of statistical mechanics and the broad range of its application to various fields of science. Many substantive exercises continue this trend, such as Nucleosynthesis and the arrow of time, Word frequencies and Zipf's law, Pandemic, and Kinetic proofreading in cells.

I again thank the National Science Foundation and Cornell's physics department for making possible the lively academic atmosphere at Cornell and my amazing graduate students; both were crucial for the success of this endeavor. Thanks to the students and readers who stamped out errors and obscurities. Thanks to my group members and colleagues who
contributed some of the most creative and insightful exercises presented here - they are acknowledged in the masterpieces that they crafted. Thanks to Jaron Kent-Dobias for several years of enthusiasm, insight, and suggestions. A debt is gratefully due to Matt Bierbaum; many of the best exercises in this text make use of his wonderfully interactive Ising [28] and mosh pit [32] simulations.

Enormous thanks are due to my lifelong partner, spouse, and love, Carol Devine, who tolerates my fascination with solving physics puzzles and turning them into exercises, because she sees it makes me happy.

James P. Sethna
Ithaca, NY
September 2020

Preface

The purview of science grows rapidly with time. It is the responsibility of each generation to join new insights to old wisdom, and to distill the key ideas for the next generation. This is my distillation of the last fifty years of statistical mechanics - a period of grand synthesis and great expansion.

This text is careful to address the interests and background not only of physicists, but of sophisticated students and researchers in mathematics, biology, engineering, computer science, and the social sciences. It therefore does not presume an extensive background in physics, and (except for Chapter 7) explicitly does not assume that the reader knows or cares about quantum mechanics. The text treats the intersection of the interests of all of these groups, while the exercises encompass the union of interests. Statistical mechanics will be taught in all of these fields of science in the next generation, whether wholesale or piecemeal by field. By making statistical mechanics useful and comprehensible to a variety of fields, we enrich the subject for those with backgrounds in physics. Indeed, many physicists in their later careers are now taking excursions into these other disciplines.
To make room for these new concepts and applications, much has been pruned. Thermodynamics no longer holds its traditional key role in physics. Like fluid mechanics in the last generation, it remains incredibly useful in certain areas, but researchers in those areas quickly learn it for themselves. Thermodynamics also has not had significant impact in subjects far removed from physics and chemistry: nobody finds Maxwell relations for the stock market, or Clausius-Clapeyron equations applicable to compression algorithms. These and other important topics in thermodynamics have been incorporated into a few key exercises. Similarly, most statistical mechanics texts rest upon examples drawn from condensed matter physics and physical chemistry - examples which are then treated more completely in other courses. Even I, a condensed matter physicist, find the collapse of white dwarfs more fun than the low-temperature specific heat of metals, and the entropy of card shuffling still more entertaining.

The first half of the text includes standard topics, treated with an interdisciplinary slant. Extensive exercises develop new applications of statistical mechanics: random matrix theory, stock-market volatility, the KAM theorem, Shannon entropy in communications theory, and Dyson's speculations about life at the end of the Universe. The second half of the text incorporates Monte Carlo methods, order parameters,
linear response and correlations (including a classical derivation of the fluctuation-dissipation theorem), and the theory of abrupt and continuous phase transitions (critical droplet theory and the renormalization group).

This text is aimed for use by upper-level undergraduates and graduate students. A scientifically sophisticated reader with a familiarity with partial derivatives and introductory classical mechanics should find this text accessible, except for Chapter 4 (which demands Hamiltonian mechanics), Chapter 7 (quantum mechanics), Section 8.2 (linear algebra), and Chapter 10 (Fourier methods, introduced in the Appendix). An undergraduate one-semester course might cover Chapters 1-3, 5-7, and 9. Cornell's hard-working first-year graduate students covered the entire text and worked through perhaps half of the exercises in a semester. I have tried to satisfy all of these audiences through the extensive use of footnotes: think of them as optional hyperlinks to material that is more basic, more advanced, or a sidelight to the main presentation. The exercises are rated by difficulty, from (1) (doable by inspection) to (5) (advanced); exercises rated (4) (many of them computational laboratories) should be assigned sparingly. Much of Chapters $1-3,5$, and 6 was developed in an sophomore honors "waves and thermodynamics" course; these chapters and the exercises marked (1) and (2) should be accessible to ambitious students early in their college education. A course designed to appeal to an interdisciplinary audience might focus on entropy, order parameters, and critical behavior by covering Chapters $1-3,5,6,8,9$, and 12. The computational exercises in the text grew out of three different semester-long computational laboratory courses. We hope that the computer exercise hints and instructions on the book website [181] will facilitate their incorporation into similar courses elsewhere.

The current plan is to make individual chapters available as PDF files on the Internet. I also plan to make the figures in this text accessible in a convenient form to those wishing to use them in course or lecture presentations.

I have spent an entire career learning statistical mechanics from friends and colleagues. Since this is a textbook and not a manuscript, the presumption should be that any ideas or concepts expressed are not mine, but rather have become so central to the field that continued attribution would be distracting. I have tried to include references to the literature primarily when it serves my imagined student. In the age of search engines, an interested reader (or writer of textbooks) can quickly find the key ideas and articles on any topic, once they know what it is called. The textbook is now more than ever only a base from which to launch further learning. My thanks to those who have patiently explained their ideas and methods over the years - either in person, in print, or through the Internet.

I must thank explicitly many people who were of tangible assistance in the writing of this book. I thank the National Science Foundation and Cornell's Laboratory of Atomic and Solid State Physics for their support during the writing of this text. I thank Pamela Davis Kivel-
son for the magnificent cover art. I thank Eanna Flanagan, Eric Siggia, Saul Teukolsky, David Nelson, Paul Ginsparg, Vinay Ambegaokar, Neil Ashcroft, David Mermin, Mark Newman, Kurt Gottfried, Chris Henley, Barbara Mink, Tom Rockwell, Csaba Csaki, Peter Lepage, and Bert Halperin for helpful and insightful conversations. Eric Grannan, Piet Brouwer, Michelle Wang, Rick James, Eanna Flanagan, Ira Wasserman, Dale Fixsen, Rachel Bean, Austin Hedeman, Nick Trefethen, Sarah Shandera, Al Sievers, Alex Gaeta, Paul Ginsparg, John Guckenheimer, Dan Stein, and Robert Weiss were of important assistance in developing various exercises. My approach to explaining the renormalization group (Chapter 12) was developed in collaboration with Karin Dahmen, Chris Myers, and Olga Perković. The students in my class have been instrumental in sharpening the text and debugging the exercises; Jonathan McCoy, Austin Hedeman, Bret Hanlon, and Kaden Hazzard in particular deserve thanks. Adam Becker, Surachate (Yor) Limkumnerd, Sarah Shandera, Nick Taylor, Quentin Mason, and Stephen Hicks, in their roles of proofreading, grading, and writing answer keys, were powerful filters for weeding out infelicities. I thank Joel Shore, Mohit Randeria, Mark Newman, Stephen Langer, Chris Myers, Dan Rokhsar, Ben Widom, and Alan Bray for reading portions of the text, providing invaluable insights, and tightening the presentation. I thank Julie Harris at Oxford University Press for her close scrutiny and technical assistance in the final preparation stages of this book. Finally, Chris Myers and I spent hundreds of hours together developing the many computer exercises distributed through this text; his broad knowledge of science and computation, his profound taste in computational tools and methods, and his good humor made this a productive and exciting collaboration. The errors and awkwardness that persist, and the exciting topics I have missed, are in spite of the wonderful input from these friends and colleagues.

I especially thank Carol Devine, for consultation, insightful comments and questions, and for tolerating the back of her spouse's head for perhaps a thousand hours over the past two years.

James P. Sethna
Ithaca, NY
February, 2006

Copyright Oxford University Press 2021 v2.0

Contents

Preface to the second edition v
Preface vii
Contents xi
List of figures xxi
1 What is statistical mechanics? 1
Exercises 4
1.1 Quantum dice and coins 5
1.2 Probability distributions 6
1.3 Waiting time paradox 6
1.4 Stirling's formula 7
1.5 Stirling and asymptotic series 8
1.6 Random matrix theory 9
1.7 Six degrees of separation 10
1.8 Satisfactory map colorings 13
1.9 First to fail: Weibull 14
1.10 Emergence 15
1.11 Emergent vs. fundamental 15
1.12 Self-propelled particles 16
1.13 The birthday problem 17
1.14 Width of the height distribution 18
1.15 Fisher information and Cramér-Rao 19
1.16 Distances in probability space 20
2 Random walks and emergent properties 23
2.1 Random walk examples: universality and scale invariance 23
2.2 The diffusion equation 27
2.3 Currents and external forces 28
2.4 Solving the diffusion equation 30
2.4.1 Fourier 31
2.4.2 Green 31
Exercises 33
2.1 Random walks in grade space 33
2.2 Photon diffusion in the Sun 34
2.3 Molecular motors and random walks 34
2.4 Perfume walk 35
Copyright Oxford University Press 2021
2.5 Generating random walks 36
2.6 Fourier and Green 37
2.7 Periodic diffusion 38
2.8 Thermal diffusion 38
2.9 Frying pan 38
2.10 Polymers and random walks 38
2.11 Stocks, volatility, and diversification 39
2.12 Computational finance: pricing derivatives 40
2.13 Building a percolation network 41
2.14 Drifting random walk 43
2.15 Diffusion of nonconserved particles 44
2.16 Density dependent diffusion 44
2.17 Local conservation 44
2.18 Absorbing boundary conditions 44
2.19 Run \& tumble 44
2.20 Flocking 45
2.21 Lévy flight 46
2.22 Continuous time walks: Ballistic to diffusive 47
2.23 Random walks and generating functions 48
3 Temperature and equilibrium 49
3.1 The microcanonical ensemble 49
3.2 The microcanonical ideal gas 51
3.2.1 Configuration space 51
3.2.2 Momentum space 53
3.3 What is temperature? 56
3.4 Pressure and chemical potential 59
3.5 Entropy, the ideal gas, and phase-space refinements 63
Exercises 65
3.1 Temperature and energy 66
3.2 Large and very large numbers 66
3.3 Escape velocity 66
3.4 Pressure simulation 67
3.5 Hard sphere gas 67
3.6 Connecting two macroscopic systems 68
3.7 Gas mixture 68
3.8 Microcanonical energy fluctuations 68
3.9 Gauss and Poisson 69
3.10 Triple product relation 70
3.11 Maxwell relations 70
3.12 Solving the pendulum 71
3.13 Weirdness in high dimensions 73
3.14 Pendulum energy shell 73
3.15 Entropy maximum and temperature 74
3.16 Taste, smell, and μ 74
3.17 Undistinguished particles 75
3.18 Ideal gas glass 75
3.19 Random energy model 76
Copyright Oxford University Press 2021 v2.0
4 Phase-space dynamics and ergodicity 79
4.1 Liouville's theorem 79
4.2 Ergodicity 81
Exercises 85
4.1 Equilibration 86
4.2 Liouville vs. the damped pendulum 86
4.3 Invariant measures 87
4.4 Jupiter! and the KAM theorem 89
4.5 No Hamiltonian attractors 91
4.6 Perverse initial conditions 91
4.7 Crooks 91
4.8 Jarzynski 93
4.9 2D turbulence and Jupiter's great red spot 94
5 Entropy 99
5.1 Entropy as irreversibility: engines and the heat death of the Universe 99
5.2 Entropy as disorder 103
5.2.1 Entropy of mixing: Maxwell's demon and osmotic pressure 104
5.2.2 Residual entropy of glasses: the roads not taken 105
5.3 Entropy as ignorance: information and memory 107
5.3.1 Nonequilibrium entropy 108
5.3.2 Information entropy 109
Exercises 112
5.1 Life and the heat death of the Universe 113
5.2 Burning information and Maxwellian demons 113
5.3 Reversible computation 115
5.4 Black hole thermodynamics 116
5.5 Pressure-volume diagram 116
5.6 Carnot refrigerator 117
5.7 Does entropy increase? 117
5.8 The Arnol'd cat map 117
5.9 Chaos, Lyapunov, and entropy increase 119
5.10 Entropy increases: diffusion 120
5.11 Entropy of glasses 120
5.12 Rubber band 121
5.13 How many shuffles? 122
5.14 Information entropy 123
5.15 Shannon entropy 123
5.16 Fractal dimensions 124
5.17 Deriving entropy 126
5.18 Entropy of socks 126
5.19 Aging, entropy, and DNA 127
5.20 Gravity and entropy 127
5.21 Data compression 127
5.22 The Dyson sphere 129
5.23 Entropy of the galaxy 130
Copyright Oxford University Press 2021 v2.0
5.24 Nucleosynthesis and the arrow of time 130
5.25 Equilibration in phase space 133
5.26 Phase conjugate mirror 134
6 Free energies 139
6.1 The canonical ensemble 140
6.2 Uncoupled systems and canonical ensembles 143
6.3 Grand canonical ensemble 146
6.4 What is thermodynamics? 147
6.5 Mechanics: friction and fluctuations 151
6.6 Chemical equilibrium and reaction rates 152
6.7 Free energy density for the ideal gas 155
Exercises 157
6.1 Exponential atmosphere 158
6.2 Two-state system 159
6.3 Negative temperature 159
6.4 Molecular motors and free energies 160
6.5 Laplace 161
6.6 Lagrange 162
6.7 Legendre 162
6.8 Euler 162
6.9 Gibbs-Duhem 163
6.10 Clausius-Clapeyron 163
6.11 Barrier crossing 164
6.12 Michaelis-Menten and Hill 165
6.13 Pollen and hard squares 166
6.14 Statistical mechanics and statistics 167
6.15 Gas vs. rubber band 168
6.16 Rubber band free energy 169
6.17 Rubber band formalism 169
6.18 Langevin dynamics 169
6.19 Langevin simulation 170
6.20 Gibbs for pistons 171
6.21 Pistons in probability space 171
6.22 FIM for Gibbs 172
6.23 Can we burn information? 172
6.24 Word frequencies: Zipf's law 173
6.25 Epidemics and zombies 175
6.26 Nucleosynthesis as a chemical reaction 177
7 Quantum statistical mechanics 179
7.1 Mixed states and density matrices 179
7.2 Quantum harmonic oscillator 183
7.3 Bose and Fermi statistics 184
7.4 Noninteracting bosons and fermions 185
7.5 Maxwell-Boltzmann "quantum" statistics 188
7.6 Black-body radiation and Bose condensation 190
7.6.1 Free particles in a box 190
Copyright Oxford University Press 2021 v2.0
7.6.2 Black-body radiation 191
7.6.3 Bose condensation 192
7.7 Metals and the Fermi gas 194
Exercises 195
7.1 Ensembles and quantum statistics 195
7.2 Phonons and photons are bosons 196
7.3 Phase-space units and the zero of entropy 197
7.4 Does entropy increase in quantum systems? 198
7.5 Photon density matrices 198
7.6 Spin density matrix 198
7.7 Light emission and absorption 199
7.8 Einstein's A and B 200
7.9 Bosons are gregarious: superfluids and lasers 200
7.10 Crystal defects 201
7.11 Phonons on a string 202
7.12 Semiconductors 202
7.13 Bose condensation in a band 203
7.14 Bose condensation: the experiment 203
7.15 The photon-dominated Universe 204
7.16 White dwarfs, neutron stars, and black holes 206
7.17 Eigenstate thermalization 206
7.18 Drawing wavefunctions 206
7.19 Many-fermion wavefunction nodes 207
7.20 Cooling coffee 207
7.21 The greenhouse effect 208
7.22 Light baryon superfluids 208
7.23 Why are atoms classical? 208
7.24 Is sound a quasiparticle? 209
7.25 Quantum measurement and entropy 210
7.26 Entanglement of two spins 212
7.27 Heisenberg entanglement 213
8 Calculation and computation 217
8.1 The Ising model 217
8.1.1 Magnetism 218
8.1.2 Binary alloys 219
8.1.3 Liquids, gases, and the critical point 220
8.1.4 How to solve the Ising model 220
8.2 Markov chains 221
8.3 What is a phase? Perturbation theory 225
Exercises 227
8.1 The Ising model 228
8.2 Ising fluctuations and susceptibilities 228
8.3 Coin flips and Markov 229
8.4 Red and green bacteria 229
8.5 Detailed balance 229
8.6 Metropolis 230
8.7 Implementing Ising 230
Copyright Oxford University Press 2021 v2.0
8.8 Wolff 231
8.9 Implementing Wolff 232
8.10 Stochastic cells 232
8.11 Repressilator 234
8.12 Entropy increases! Markov chains 236
8.13 Hysteresis and avalanches 237
8.14 Hysteresis algorithms 239
8.15 NP-completeness and kSAT 240
8.16 Ising hard disks 243
8.17 Ising parallel updates 243
8.18 Ising low temperature expansion 243
8.19 2D Ising cluster expansions 244
8.20 Unicycle 244
8.21 Fruit flies and Markov 245
8.22 Metastability and Markov 246
8.23 Kinetic proofreading in cells 248
9 Order parameters, broken symmetry, and topology 253
9.1 Identify the broken symmetry 254
9.2 Define the order parameter 254
9.3 Examine the elementary excitations 258
9.4 Classify the topological defects 260
Exercises 265
9.1 Nematic defects 265
9.2 XY defects 267
9.3 Defects and total divergences 267
9.4 Domain walls in magnets 268
9.5 Landau theory for the Ising model 269
9.6 Symmetries and wave equations 271
9.7 Superfluid order and vortices 273
9.8 Superfluids and ODLRO 274
9.9 Ising order parameter 276
9.10 Nematic order parameter 276
9.11 Pentagonal order parameter 277
9.12 Rigidity of crystals 278
9.13 Chiral wave equation 279
9.14 Sound and Goldstone's theorem 280
9.15 Superfluid second sound 281
9.16 Can't lasso a basketball 281
9.17 Fingerprints 282
9.18 Defects in crystals 284
9.19 Defect entanglement 285
9.20 Number and phase in superfluids 285
10 Correlations, response, and dissipation 287
10.1 Correlation functions: motivation 287
10.2 Experimental probes of correlations 289
10.3 Equal-time correlations in the ideal gas 290
Copyright Oxford University Press 2021 v2.0
10.4 Onsager's regression hypothesis and time correlations 292
10.5 Susceptibility and linear response 294
10.6 Dissipation and the imaginary part 295
10.7 Static susceptibility 296
10.8 The fluctuation-dissipation theorem 299
10.9 Causality and Kramers-Krönig 301
Exercises 303
10.1 Cosmic microwave background radiation 303
10.2 Pair distributions and molecular dynamics 305
10.3 Damped oscillator 307
10.4 Spin 308
10.5 Telegraph noise in nanojunctions 308
10.6 Fluctuation-dissipation: Ising 309
10.7 Noise and Langevin equations 310
10.8 Magnet dynamics 311
10.9 Quasiparticle poles and Goldstone's theorem 312
10.10 Human correlations 313
10.11 Subway bench Monte Carlo 313
10.12 Liquid free energy 315
10.13 Onsager regression hypothesis 315
10.14 Liquid dynamics 316
10.15 Harmonic susceptibility, dissipation 316
10.16 Harmonic fluctuation-dissipation 317
10.17 Susceptibilities and correlations 317
10.18 Harmonic Kramers-Krönig 318
10.19 Critical point response 318
11 Abrupt phase transitions 321
11.1 Stable and metastable phases 321
11.2 Maxwell construction 323
11.3 Nucleation: critical droplet theory 324
11.4 Morphology of abrupt transitions 326
11.4.1 Coarsening 326
11.4.2 Martensites 330
11.4.3 Dendritic growth 330
Exercises 331
11.1 Maxwell and van der Waals 332
11.2 The van der Waals critical point 332
11.3 Interfaces and van der Waals 333
11.4 Nucleation in the Ising model 333
11.5 Nucleation of dislocation pairs 334
11.6 Coarsening in the Ising model 335
11.7 Origami microstructure 336
11.8 Minimizing sequences and microstructure 338
11.9 Snowflakes and linear stability 339
11.10 Gibbs free energy barrier 341
11.11 Unstable to what? 342
11.12 Nucleation in 2D 342
Copyright Oxford University Press 2021 v2.0
11.13 Linear stability of a growing interface 342
11.14 Nucleation of cracks 343
11.15 Elastic theory does not converge 344
11.16 Mosh pits 346
12 Continuous phase transitions 349
12.1 Universality 351
12.2 Scale invariance 358
12.3 Examples of critical points 363
12.3.1 Equilibrium criticality: energy versus entropy 364
12.3.2 Quantum criticality: zero-point fluctuations ver- sus energy 364
12.3.3 Dynamical systems and the onset of chaos 365
12.3.4 Glassy systems: random but frozen 366
12.3.5 Perspectives 367
Exercises 368
12.1 Ising self-similarity 368
12.2 Scaling and corrections to scaling 368
12.3 Scaling and coarsening 369
12.4 Bifurcation theory 369
12.5 Mean-field theory 370
12.6 The onset of lasing 371
12.7 Renormalization-group trajectories 372
12.8 Superconductivity and the renormalization group 373
12.9 Period doubling and the RG 375
12.10 RG and the central limit theorem: short 378
12.11 RG and the central limit theorem: long 378
12.12 Percolation and universality 381
12.13 Hysteresis and avalanches: scaling 383
12.14 Crackling noises 384
12.15 Hearing chaos 385
12.16 Period doubling and the onset of chaos 386
12.17 The Gutenberg-Richter law 386
12.18 Random walks and universal exponents 386
12.19 Diffusion equation and universal scaling functions 387
12.20 Hysteresis and Barkhausen noise 388
12.21 Earthquakes and wires 388
12.22 Activated rates and the saddle-node transition 389
12.23 Biggest of bunch: Gumbel 391
12.24 Extreme values: Gumbel, Weibull, and Fréchet 392
12.25 Critical correlations 393
12.26 Ising mean field derivation 394
12.27 Mean-field bound for free energy 394
12.28 Avalanche size distribution 395
12.29 The onset of chaos: lowest order RG 396
12.30 The onset of chaos: full RG 397
12.31 Singular corrections to scaling 398
12.32 Conformal invariance 399
Copyright Oxford University Press 2021 v2.0
12.33 Pandemic 402
Fourier methods 405
A. 1 Fourier conventions 405
A. 2 Derivatives, convolutions, and correlations 408
A. 3 Fourier methods and function space 409
A. 4 Fourier and translational symmetry 411
Exercises 413
A. 1 Sound wave 413
A. 2 Fourier cosines 413
A. 3 Double sinusoid 413
A. 4 Fourier Gaussians 414
A. 5 Uncertainty 415
A. 6 Fourier relationships 415
A. 7 Aliasing and windowing 415
A. 8 White noise 416
A. 9 Fourier matching 417
A. 10 Gibbs phenomenon 417
References 419
Index 433
EndPapers 465

Copyright Oxford University Press 2021 v2.0

List of figures

1.1 Random walks
1.2 Ising model at the critical point2
1.3 The onset of chaos3
1.4 Quantum dice4
1.5 Network5
101.6 Small world network
1.7 Betweenness 1211
1.8 Graph coloring 13
1.9 Emergent
1.10 Fundamental
2.1 Drunkard's walk
2.2 Random walk: scale invariance 26
1515
2.3 S\&P 500, normalized 27
2.4 Continuum limit for random walks25
28
2.5 Conserved current
2.6 Many random walks2.7 Motor protein322.8 Effective potential for moving along DNA342.9 Laser tweezer experiment3535
2.10 Emergent rotational symmetry 36
2.11 Initial profile of density 37
2.12 Bond percolation network 42
2.13 Site percolation network 43
2.14 Lévy flight 47
3.1 Energy shell 50
3.2 The energy surface 54
3.3 Two subsystems 59
3.4 The surface of state 60
3.5 Hard sphere gas 67
3.6 Excluded area around a hard disk 67
3.7 Pendulum energy shells 73
3.8 Glass vs. Crystal 76
4.1 Conserved currents in 3D 80
4.2 Incompressible flow 81
4.3 KAM tori and nonergodic motion 82
4.4 Total derivatives 86
Copyright Oxford University Press 2021

4.5 Invariant density 88
4.6 Bifurcation diagram in the chaotic region 88
4.7 The Earth's trajectory 89
4.8 Torus 90
4.9 The Poincaré section 90
4.10 Crooks fluctuation theorem: evolution in time 92
4.11 Crooks fluctuation theorem: evolution backward in time 92
4.12 One particle in a piston 93
4.13 Collision phase diagram 94
4.14 Jupiter's Red Spot 94
4.15 Circles 96
5.1 Perpetual motion and Carnot's cycle 100
5.2 Prototype heat engine 100
5.3 Carnot cycle $P-V$ diagram 101
5.4 Unmixed atoms 104
5.5 Mixed atoms 104
5.6 Ion pump as Maxwell's demon 105
5.7 Double-well potential 106
5.8 Roads not taken by the glass 107
5.9 Entropy is concave 110
5.10 Information-burning engine 114
5.11 Minimalist digital memory tape 114
5.12 Expanding piston 114
5.13 Pistons changing a zero to a one 114
5.14 Exclusive-or gate 115
$5.15 \quad P-V$ diagram 117
5.16 Arnol'd cat map 118
5.17 Evolution of an initially concentrated phase-space density 118
5.18 Glass transition specific heat 121
5.19 Rubber band 121
5.20 Rational probabilities and conditional entropy 126
5.21 Three snapshots 128
5.22 The Universe as a piston 130
5.23 PV diagram for the universe 131
5.24 Nonequilibrium state in phase space 133
5.25 Equilibrating the nonequilibrium state 133
5.26 Phase conjugate mirror 135
5.27 Corner mirror 135
5.28 Corner reflector 136
6.1 The canonical ensemble 140
6.2 Uncoupled systems attached to a common heat bath 143
6.3 The grand canonical ensemble 146
6.4 The Gibbs ensemble 150
6.5 A mass on a spring 151
6.6 Ammonia collision 152
6.7 Barrier-crossing potential 154
6.8 Density fluctuations in space 155
6.9 Coarse-grained density in space 156
6.10 Negative temperature 160
6.11 RNA polymerase molecular motor 160
6.12 Hairpins in RNA 161
6.13 Telegraph noise in RNA unzipping 161
6.14 Generic phase diagram 163
6.15 Well probability distribution 164
6.16 Crossing the barrier 164
6.17 Michaelis-Menten and Hill equation forms 165
6.18 Square pollen 167
6.19 Piston with rubber band 168
6.20 Piston control 173
6.21 Zipf's law for word frequencies 174
7.1 The quantum states of the harmonic oscillator 183
7.2 The specific heat for the quantum harmonic oscillator 184
7.3 Feynman diagram: identical particles 185
7.4 Bose-Einstein, Maxwell-Boltzmann, and Fermi-Dirac 186
7.5 The Fermi distribution $f(\varepsilon)$ 187
7.6 Particle in a box 190
7.7 k-sphere 191
7.8 The Planck black-body radiation power spectrum 192
7.9 Bose condensation 193
7.10 The Fermi surface for lithium 194
7.11 The Fermi surface for aluminum 195
7.12 Microcanonical three particles 196
7.13 Canonical three particles 196
7.14 Grand canonical three particles 196
7.15 Photon emission from a hole 199
7.16 Bose-Einstein condensation 203
7.17 Planck microwave background radiation 204
8.1 The 2D square-lattice Ising model 218
8.2 Ising magnetization 218
8.3 The Ising model as a binary alloy 219
8.4 $P-T$ phase diagram 220
8.5 $H-T$ phase diagram for the Ising model 220
8.6 Bose and Fermi specific heats 225
8.7 Perturbation theory 226
8.8 Oil, water, and alcohol 227
8.9 Cluster flip: before 231
8.10 Cluster flip: after 231
8.11 Dimerization reaction 233
8.12 Biology repressilator 234
8.13 Computational repressilator 234
8.14 Barkhausen noise experiment 237
8.15 Hysteresis loop with subloops 237

8.16 Tiny jumps: Barkhausen noise 237
8.17 Avalanche propagation in the hysteresis model 238
8.18 Avalanche time series 239
8.19 Using a sorted list 239
8.20 D-P algorithm 242
8.21 Ising model for 1D hard disks 243
8.22 Three-state unicycle 244
8.23 Fruit fly behavior map 245
8.24 Metastable state in a barrier 246
8.25 DNA polymerase 248
8.26 DNA proofreading 249
8.27 Naive DNA replication 249
8.28 Equilibrium DNA replication 250
8.29 Kinetic proofreading 250
8.30 Impossible stair 251
9.1 Quasicrystals 253
9.2 Which is more symmetric? Cube and sphere 254
9.3 Which is more symmetric? Ice and water 254
9.4 Magnetic order parameter 255
9.5 Nematic order parameter space 256
9.6 Two-dimensional crystal 256
9.7 Crystal order parameter space 257
9.8 One-dimensional sound wave 258
9.9 Magnets: spin waves 259
9.10 Nematic liquid crystals: rotational waves 259
9.11 Dislocation in a crystal 260
9.12 Loop around the dislocation 261
9.13 Hedgehog defect 261
9.14 Defect line in a nematic liquid crystal 262
9.15 Multiplying two paths 263
9.16 Escape into 3D: nematics 263
9.17 Two defects: can they cross? 264
9.18 Pulling off a loop around two defects 264
9.19 Noncommuting defects 265
9.20 Defects in nematic liquid crystals 266
9.21 XY defect pair 267
9.22 Looping the defect 267
9.23 Landau free energy 271
9.24 Fluctuations on all scales 271
9.25 Shift symmetry 272
9.26 Flips and inversion 272
9.27 Superfluid vortex line 273
9.28 Delocalization and ODLRO 275
9.29 Projective Plane 277
9.30 Frustrated soccer ball 277
9.31 Cutting and sewing: disclinations 278
9.32 Crystal rigidity 278
9.33 Sphere 281
9.34 Escape into the third dimension 282
9.35 Whorl 282
9.36 Transmuting defects 283
9.37 Smectic fingerprint 283
10.1 Phase separation 288
10.2 Surface annealing 288
10.3 Critical fluctuations 289
10.4 Equal-time correlation function 289
10.5 Power-law correlations 290
10.6 X-ray scattering 290
10.7 Noisy decay of a fluctuation 292
10.8 Deterministic decay of an initial state 292
10.9 The susceptibility 298
10.10 Time-time correlation function 300
10.11 Cauchy's theorem 302
10.12 Kramers-Krönig contour 303
10.13 Map of the microwave background radiation 304
10.14 Correlation function of microwave radiation 304
10.15 Pair distribution function 306
10.16 Telegraph noise in a metallic nanojunction 308
10.17 Telegraph noise with three metastable states 309
10.18 Humans seated on a subway car 313
10.19 Two springs 316
10.20 Pulling 317
10.21 Hitting
11.1 $P-T$ and $T-V$ phase diagrams 321
11.2 Stable and metastable states 322
11.3 Maxwell equal-area construction 324
11.4 Vapor bubble 324
11.5 Free energy barrier 325
11.6 Equilibrium crystal shape 327
11.7 Coarsening 327
11.8 Curvature-driven interface motion 328
11.9 Coarsening for conserved order parameter 328
11.10 Logarithmic growth of an interface 329
11.11 Martensite 330
11.12 Dendrites 331
11.13 $P-V$ plot: van der Waals 332
11.14 Chemical potential: van der Waals 333
11.15 Dislocation pair 335
11.16 Paper order parameter space 337
11.17 Paper crease 337
11.18 Origami microstructure 338
11.19 Function with no minimum 339
11.20 Crystal shape coordinates 340

11.21 Diffusion field ahead of a growing interface 340
11.22 Snowflake 341
11.23 Stretched block 343
11.24 Fractured block 343
11.25 Critical crack 344
11.26 Contour integral in complex pressure 345
12.1 The Ising model at $\mathbf{T}_{\mathbf{c}}$ 349
12.2 Percolation transition 350
12.3 Earthquake sizes 351
12.4 The Burridge-Knopoff model of earthquakes 351
12.5 A medium-sized avalanche 352
12.6 Universality 353
12.7 Universality in percolation 354
12.8 The renormalization group 355
12.9 Ising model at $\mathbf{T}_{\mathbf{c}}$: coarse-graining 356
12.10 Generic and self-organized criticality 357
12.11 Avalanches: scale invariance 359
12.12 Scaling near criticality 361
12.13 Disorder and avalanche size: renormalization-group flows 362
12.14 Avalanche size distribution 363
12.15 Superfluid density in helium: scaling plot 364
12.16 The superconductor-insulator transition 365
12.17 Self-similarity at the onset of chaos 365
12.18 Frustration 366
12.19 Frustration and curvature 367
12.20 Pitchfork bifurcation diagram 369
12.21 Fermi liquid theory renormalization-group flows 374
12.22 Period-eight cycle 375
12.23 Self-similarity in period-doubling bifurcations 376
12.24 Renormalization-group transformation 377
12.25 Scaling in the period doubling bifurcation diagram 386
12.26 Noisy saddle-node transition 389
12.27 Two proteins in a critical membrane 399
12.28 Ising model of two proteins in a critical membrane 400
12.29 Ising model under conformal rescaling 401
A. 1 Approximating the integral as a sum 406
A. 2 The mapping \mathcal{T}_{Δ} 411
A. 3 Real-space Gaussians 415
A. 4 Fourier matching 417
A. 5 Step function 418

What is statistical mechanics?

Many systems in nature are far too complex to analyze directly. Solving for the behavior of all the atoms in a block of ice, or the boulders in an earthquake fault, or the nodes on the Internet, is simply infeasible. Despite this, such systems often show simple, striking behavior. Statistical mechanics explains the simple behavior of complex systems.

The concepts and methods of statistical mechanics have infiltrated into many fields of science, engineering, and mathematics: ensembles, entropy, Monte Carlo, phases, fluctuations and correlations, nucleation, and critical phenomena are central to physics and chemistry, but also play key roles in the study of dynamical systems, communications, bioinformatics, and complexity. Quantum statistical mechanics, although not a source of applications elsewhere, is the foundation of much of physics. Let us briefly introduce these pervasive concepts and methods.

Ensembles. The trick of statistical mechanics is not to study a single system, but a large collection or ensemble of systems. Where understanding a single system is often impossible, one can often calculate the behavior of a large collection of similarly prepared systems.

For example, consider a random walk (Fig. 1.1). (Imagine it as the trajectory of a particle in a gas, or the configuration of a polymer in solution.) While the motion of any given walk is irregular and typically impossible to predict, Chapter 2 derives the elegant laws which describe the set of all possible random walks.

Chapter 3 uses an ensemble of all system states of constant energy to derive equilibrium statistical mechanics; the collective properties of temperature, entropy, and pressure emerge from this ensemble. In Chapter 4 we provide the best existing mathematical justification for using this constant-energy ensemble. In Chapter 6 we develop free energies which describe parts of systems; by focusing on the important bits, we find new laws that emerge from the microscopic complexity.

Entropy. Entropy is the most influential concept arising from statistical mechanics (Chapter 5). It was originally understood as a thermodynamic property of heat engines that inexorably increases with time. Entropy has become science's fundamental measure of disorder and information-quantifying everything from compressing pictures on the Internet to the heat death of the Universe.

Quantum statistical mechanics, confined to Chapter 7, provides the microscopic underpinning to much of astrophysics and condensed

Fig. 1.1 Random walks. The motion of molecules in a gas, and bacteria in a liquid, and photons in the Sun, are described by random walks. Describing the specific trajectory of any given random walk (left) is not feasible. Describing the statistical properties of a large number of random walks is straightforward (right, showing endpoints of many walks starting at the origin). The deep principle underlying statistical mechanics is that it is often easier to understand the behavior of these ensembles of systems.

matter physics. There we use it to explain metals, insulators, lasers, stellar collapse, and the microwave background radiation patterns from the early Universe.

Monte Carlo methods allow the computer to find ensemble averages in systems far too complicated to allow analytical evaluation. These tools, invented and sharpened in statistical mechanics, are used everywhere in science and technology-from simulating the innards of particle accelerators, to studies of traffic flow, to designing computer circuits. In Chapter 8, we introduce Monte Carlo methods, the Ising model, and the mathematics of Markov chains.

Phases. Statistical mechanics explains the existence and properties of phases. The three common phases of matter (solids, liquids, and gases) have multiplied into hundreds: from superfluids and liquid crystals, to vacuum states of the Universe just after the Big Bang, to the pinned and sliding "phases" of earthquake faults. We explain the deep connection between phases and perturbation theory in Section 8.3. In Chapter 9 we introduce the order parameter field, which describes the properties, excitations, and topological defects that emerge in a given phase.

Fluctuations and correlations. Statistical mechanics not only describes the average behavior of an ensemble of systems, it describes the entire distribution of behaviors. We describe how systems fluctuate and evolve in space and time using correlation functions in Chapter 10. There we also derive powerful and subtle relations between correlations, response, and dissipation in equilibrium systems.

Abrupt phase transitions. Beautiful spatial patterns arise in statistical mechanics at the transitions between phases. Most such transitions are abrupt; ice is crystalline and solid until (at the edge of the ice cube) it becomes unambiguously liquid. We study the nucleation

of new phases and the exotic structures that can form at abrupt phase transitions in Chapter 11.

Criticality. Other phase transitions are continuous. Figure 1.2 shows a snapshot of a particular model at its phase transition temperature T_{c}. Notice the self-similar, fractal structures; the system cannot decide whether to stay gray or to separate into black and white, so it fluctuates on all scales, exhibiting critical phenomena. A random walk also forms a self-similar, fractal object; a blow-up of a small segment of the walk looks statistically similar to the original (Figs. 1.1 and 2.2). Chapter 12 develops the scaling and renormalization-group techniques that explain these self-similar, fractal properties. These techniques also explain universality; many properties at a continuous transition are surprisingly system independent.

Science grows through accretion, but becomes potent through distillation. Statistical mechanics has grown tentacles into much of science and mathematics (see, e.g., Fig. 1.3). The body of each chapter will provide the distilled version: those topics of fundamental importance to all fields. The accretion is addressed in the exercises: in-depth introductions to applications in mesoscopic physics, astrophysics, dynamical systems, information theory, low-temperature physics, statistics, biology, lasers, and complexity theory.

Fig. 1.2 Ising model at the critical point. The two-dimensional Ising model of magnetism at its transition temperature T_{c}. At higher temperatures, the system is nonmagnetic; the magnetization is on average zero. At the temperature shown, the system is just deciding whether to magnetize upward (white) or downward (black).

Fig. 1.3 The onset of chaos. Mechanical systems can go from simple, predictable behavior (left) to a chaotic state (right) as some external parameter μ is tuned. Many disparate systems are described by a common, universal scaling behavior near the onset of chaos (note the replicated structures near μ_{∞}). We understand this scaling and universality using tools developed to study continuous transitions in liquids and gases. Conversely, the study of chaotic motion provides statistical mechanics with our best explanation for the increase of entropy.

Exercises

Two exercises, Emergence and Emergent vs. fundamental, illustrate and provoke discussion about the role of statistical mechanics in formulating new laws of physics.

Four exercises review probability distributions. Quantum dice and coins explores discrete distributions and also acts as a preview to Bose and Fermi statistics. Probability distributions introduces the key distributions for continuous variables, convolutions, and multidimensional distributions. Waiting time paradox uses public transportation to concoct paradoxes by confusing different ensemble averages. And The birthday problem calculates the likelihood of a school classroom having two children who share the same birthday.

Stirling's approximation derives the useful approximation $n!\sim \sqrt{2 \pi n}(n / \mathrm{e})^{n}$; more advanced students can continue with Stirling and asymptotic series to explore the zero radius of convergence for this series, often found in statistical mechanics calculations.

Five exercises demand no background in statistical mechanics, yet illustrate both general themes of the subject and the broad range of its applications. Random matrix theory introduces an entire active field of research, with applications in nuclear physics, mesoscopic physics, and number theory, beginning with histograms and ensembles, and continuing with level repulsion, the Wigner surmise, universality, and emergent symmetry. Six degrees of separation introduces the ensemble of small world net-
works, popular in the social sciences and epidemiology for modeling interconnectedness in groups; it introduces network data structures, breadth-first search algorithms, a continuum limit, and our first glimpse of scaling. Satisfactory map colorings introduces the challenging computer science problems of graph colorability and logical satisfiability: these search through an ensemble of different choices just as statistical mechanics averages over an ensemble of states. Self-propelled particles discusses emergent properties of active matter. First to fail: Weibull introduces the statistical study of extreme value statistics, focusing not on the typical fluctuations about the average behavior, but the rare events at the extremes.

Finally, statistical mechanics is to physics as statistics is to biology and the social sciences. Four exercises here, and several in later chapters, introduce ideas and methods from statistics that have particular resonance with statistical mechanics. Width of the height distribution discusses maximum likelihood methods and bias in the context of Gaussian fits. Fisher information and Cramér Rao introduces the Fisher information metric, and its relation to the rigorous bound on parameter estimation. And Distances in probability space then uses the local difference between model predictions (the metric tensor) to generate total distance estimates between different models.
(1.1) Quantum dice and coins. ${ }^{1}$ (Quantum) (a) You are given two unusual three-sided dice which, when rolled, show either one, two, or three spots. There are three games played with these dice: Distinguishable, Bosons, and Fermions. In each turn in these games, the player rolls the two dice, starting over if required by the rules, until a legal combination occurs. In Distinguishable, all rolls are legal. In Bosons, a roll is legal only if the second of the two dice shows a number that is is larger or equal to that of the first of the two dice. In Fermions, a roll is legal only if the second number is strictly larger than the preceding number. See Fig. 1.4 for a table of possibilities after rolling two dice.
Our dice rules are the same ones that govern the quantum statistics of noninteracting identical particles.

Fig. 1.4 Quantum dice. Rolling two dice. In Bosons, one accepts only the rolls in the shaded squares, with equal probability $1 / 6$. In Fermions, one accepts only the rolls in the darkly shaded squares (not including the diagonal from lower left to upper right), with probability $1 / 3$.
(a) Presume the dice are fair: each of the three numbers of dots shows up $1 / 3$ of the time. For a legal turn rolling a die twice in the three games (Distinguishable, Bosons, and Fermions), what is the probability $\rho(5)$ of rolling a 5 ?
(b) For a legal turn in the three games, what is the probability of rolling a double? (Hint: There is a Pauli exclusion principle: when playing Fermions, no two dice can have the same number of dots showing.) Electrons are fermions; no two noninteracting electrons can be in the same quantum state. Bosons are gregarious (Exercise 7.9); noninteracting bosons have a larger likelihood of being in the same state.
Let us decrease the number of sides on our dice
to $N=2$, making them quantum coins, with a head H and a tail T. Let us increase the total number of coins to a large number M; we flip a line of M coins all at the same time, repeating until a legal sequence occurs. In the rules for legal flips of quantum coins, let us make $T<H$. A legal Boson sequence, for example, is then a pattern $T T T T \cdots H H H H \cdots$ of length M; all legal sequences have the same probability.
(c) What is the probability in each of the games, of getting all the M flips of our quantum coin the same (all heads $H H H H \cdots$ or all tails $T T T T \ldots$)? (Hint: How many legal sequences are there for the three games? How many of these are all the same value?)
The probability of finding a particular legal sequence in Bosons is larger by a constant factor due to discarding the illegal sequences. This factor is just one over the probability of a given toss of the coins being legal, $Z=\sum_{\alpha} p_{\alpha}$ summed over legal sequences α. For part (c), all sequences have equal probabilities $p_{\alpha}=2^{-M}$, so $Z_{\text {Dist }}=\left(2^{M}\right)\left(2^{-M}\right)=1$, and $Z_{\text {Boson }}$ is 2^{-M} times the number of legal sequences. So for part (c), the probability to get all heads or all tails is $\left(p_{T T T} \ldots+p_{H H H} \ldots\right) / Z$. The normalization constant Z in statistical mechanics is called the partition function, and will be amazingly useful (see Chapter 6).
Let us now consider a biased coin, with probability $p=1 / 3$ of landing H and thus $1-p=2 / 3$ of landing T. Note that if two sequences are legal in both Bosons and Distinguishable, their relative probability is the same in both games.
(d) What is the probability $p_{T T T} \ldots$ that a given toss of M coins has all tails (before we throw out the illegal ones for our game)? What is $Z_{\text {Dist }}$? What is the probability that a toss in Distinguishable is all tails? If $Z_{\text {Bosons }}$ is the probability that a toss is legal in Bosons, write the probability that a legal toss is all tails in terms of $Z_{\text {Bosons. }}$. Write the probability $p_{\text {TTT }} \ldots$ ннн that a toss has $M-m$ tails followed by m heads (before throwing out the illegal ones). Sum these to find $Z_{\text {Bosons }}$. As M gets large, what is the probability in Bosons that all coins flip tails?
We can view our quantum dice and coins as noninteracting particles, with the biased coin having a lower energy for T than for H (Section 7.4). Having a nonzero probability of having all the

[^0]bosons in the single-particle ground state T is Bose condensation (Section 7.6), closely related to superfluidity and lasers (Exercise 7.9).
(1.2) Probability distributions. (2)

Most people are more familiar with probabilities for discrete events (like coin flips and card games), than with probability distributions for continuous variables (like human heights and atomic velocities). The three continuous probability distributions most commonly encountered in physics are: (i) uniform: $\rho_{\text {uniform }}(x)=1$ for $0 \leq x<1, \rho(x)=0$ otherwise (produced by random number generators on computers); (ii) exponential: $\rho_{\text {exponential }}(t)=\mathrm{e}^{-t / \tau} / \tau$ for $t \geq 0$ (familiar from radioactive decay and used in the collision theory of gases); and (iii) Gaussian: $\rho_{\text {gaussian }}(v)=\mathrm{e}^{-v^{2} / 2 \sigma^{2}} /(\sqrt{2 \pi} \sigma)$, (describing the probability distribution of velocities in a gas, the distribution of positions at long times in random walks, the sums of random variables, and the solution to the diffusion equation).
(a) Likelihoods. What is the probability that a random number uniform on $[0,1)$ will happen to lie between $x=0.7$ and $x=0.75$? That the waiting time for a radioactive decay of a nucleus will be more than twice the exponential decay time τ ? That your score on an exam with a Gaussian distribution of scores will be greater than 2σ above the mean? (Note: $\int_{2}^{\infty}(1 / \sqrt{2 \pi}) \exp \left(-v^{2} / 2\right) \mathrm{d} v=(1-\operatorname{erf}(\sqrt{2})) / 2 \sim$ 0.023 .)
(b) Normalization, mean, and standard deviation. Show that these probability distributions are normalized: $\int \rho(x) \mathrm{d} x=1$. What is the mean x_{0} of each distribution? The standard deviation $\sqrt{\int\left(x-x_{0}\right)^{2} \rho(x) \mathrm{d} x}$? (You may use the formulæ $\int_{-\infty}^{\infty}(1 / \sqrt{2 \pi}) \exp \left(-v^{2} / 2\right) \mathrm{d} v=1$ and $\int_{-\infty}^{\infty} v^{2}(1 / \sqrt{2 \pi}) \exp \left(-v^{2} / 2\right) \mathrm{d} v=1$.)
(c) Sums of variables. Draw a graph of the probability distribution of the sum $x+y$ of two random variables drawn from a uniform distribution on $[0,1)$. Argue in general that the sum $z=x+y$ of random variables with distributions $\rho_{1}(x)$ and $\rho_{2}(y)$ will have a distribution given by $\rho(z)=\int \rho_{1}(x) \rho_{2}(z-x) \mathrm{d} x$ (the convolution of ρ with itself).
Multidimensional probability distributions. In statistical mechanics, we often discuss probability distributions for many variables at once (for
example, all the components of all the velocities of all the atoms in a box). Let us consider just the probability distribution of one molecule's velocities. If v_{x}, v_{y}, and v_{z} of a molecule are independent and each distributed with a Gaussian distribution with $\sigma=\sqrt{k T / M}$ (Section 3.2.2) then we describe the combined probability distribution as a function of three variables as the product of the three Gaussians:

$$
\begin{align*}
\rho\left(v_{x}, v_{y}, v_{z}\right)= & \frac{1}{(2 \pi(k T / M))^{3 / 2}} \exp \left(-M \mathbf{v}^{2} / 2 k T\right) \\
= & \sqrt{\frac{M}{2 \pi k T}} \exp \left(\frac{-M v_{x}^{2}}{2 k T}\right) \\
& \times \sqrt{\frac{M}{2 \pi k T}} \exp \left(\frac{-M v_{y}^{2}}{2 k T}\right) \\
& \times \sqrt{\frac{M}{2 \pi k T}} \exp \left(\frac{-M v_{z}^{2}}{2 k T}\right) \tag{1.1}
\end{align*}
$$

(d) Show, using your answer for the standard deviation of the Gaussian in part (b), that the mean kinetic energy is $k T / 2$ per dimension. Show that the probability that the speed is $v=|\mathbf{v}|$ is given by a Maxwellian distribution

$$
\begin{equation*}
\rho_{\text {Maxwell }}(v)=\sqrt{2 / \pi}\left(v^{2} / \sigma^{3}\right) \exp \left(-v^{2} / 2 \sigma^{2}\right) \tag{1.2}
\end{equation*}
$$

(Hint: What is the shape of the region in 3D velocity space where $|\mathbf{v}|$ is between v and $v+\delta v$? The surface area of a sphere of radius R is $4 \pi R^{2}$.)
(1.3) Waiting time paradox. ${ }^{2}$ (a)

Here we examine the waiting time paradox: for events happening at random times, the average time until the next event equals the average time between events. If the average waiting time until the next event is τ, then the average time since the last event is also τ. Is the mean total gap between two events then 2τ ? Or is it τ, the average time to wait starting from the previous event? Working this exercise introduces the importance of different ensembles.
On a highway, the average numbers of cars and buses going east are equal: each hour, on average, there are 12 buses and 12 cars passing by. The buses are scheduled: each bus appears exactly 5 minutes after the previous one. On the other hand, the cars appear at random. In a short interval $\mathrm{d} t$, the probability that a car comes by is $\mathrm{d} t / \tau$, with $\tau=5$ minutes. This

[^1]leads to a distribution $P\left(\delta^{\mathrm{Car}}\right)$ for the arrival of the first car that decays exponentially, $P\left(\delta^{\mathrm{Car}}\right)=$ $1 / \tau \exp \left(-\delta^{\mathrm{Car}} / \tau\right)$.
A pedestrian repeatedly approaches a bus stop at random times t, and notes how long it takes before the first bus passes, and before the first car passes.
(a) Draw the probability density for the ensemble of waiting times $\delta^{\text {Bus }}$ to the next bus observed by the pedestrian. Draw the density for the corresponding ensemble of times $\delta^{\text {Car }}$. What is the mean waiting time for a bus $\left\langle\delta^{\mathrm{Bus}}\right\rangle_{t}$? The mean time $\left\langle\delta^{\mathrm{Car}}\right\rangle_{t}$ for a car?
In statistical mechanics, we shall describe specific physical systems (a bottle of N atoms with energy E) by considering ensembles of systems. Sometimes we shall use two different ensembles to describe the same system (all bottles of N atoms with energy E, or all bottles of N atoms at that temperature T where the mean energy is $E)$. We have been looking at the time-averaged ensemble (the ensemble $\langle\cdots\rangle_{t}$ over random times $t)$. There is also in this problem an ensemble average over the gaps between vehicles $\left(\langle\cdots\rangle_{\text {gap }}\right.$ over random time intervals); these two give different averages for the same quantity.
A traffic engineer sits at the bus stop, and measures an ensemble of time gaps $\Delta^{\text {Bus }}$ between neighboring buses, and an ensemble of gaps $\Delta^{\text {Car }}$ between neighboring cars.
(b) Draw the probability density of gaps she observes between buses. Draw the probability density of gaps between cars. (Hint: Is it different from the ensemble of car waiting times you found in part (a)? Why not?) What is the mean gap time $\left\langle\Delta^{\mathrm{Bus}}\right\rangle_{\text {gap }}$ for the buses? What is the mean gap time $\left\langle\Delta^{\text {Car }}\right\rangle_{\text {gap }}$ for the cars? (One of these probability distributions involves the Dirac δ-function ${ }^{3}$ if one ignores measurement error and imperfectly punctual public transportation.)
You should find that the mean waiting time for a bus in part (a) is half the mean bus gap time in (b), which seems sensible - the gap seen by the pedestrian is the sum of the $\delta_{+}^{\text {Bus }}+\delta_{-}^{\text {Bus }}$ of the waiting time and the time since the last bus. However, you should also find the mean waiting time for a car equals the mean car gap time. The equation $\Delta^{\mathrm{Car}}=\delta_{+}^{\text {Car }}+\delta_{-}^{\text {Car }}$ would seem to imply that the average gap seen by the pedestrian
is twice the mean waiting time.
(c) How can the average gap between cars measured by the pedestrian be different from that measured by the traffic engineer? Discuss.
(d) Consider a short experiment, with three cars passing at times $t=0,2$, and 8 (so there are two gaps, of length 2 and 6). What is $\left\langle\Delta^{\mathrm{Car}}\right\rangle_{\mathrm{gap}}$? What is $\left\langle\Delta^{\mathrm{Car}}\right\rangle_{t}$? Explain why they are different.
One of the key results in statistical mechanics is that predictions are independent of the ensemble for large numbers of particles. For example, the velocity distribution found in a simulation run at constant energy (using Newton's laws) or at constant temperature will have corrections that scale as one over the number of particles.
(1.4) Stirling's formula. (Mathematics) @

Stirling's approximation, $n!\sim \sqrt{2 \pi n}(n / \mathrm{e})^{n}$, is remarkably useful in statistical mechanics; it gives an excellent approximation for large n. In statistical mechanics the number of particles is so large that we usually care not about n !, but about its $\operatorname{logarithm}$, so $\log (n!) \sim n \log n-$ $n+\frac{1}{2} \log (2 \pi n)$. Finally, n is often so large that the final term is a tiny fractional correction to the others, giving the simple formula $\log (n!) \sim n \log n-n$.
(a) Calculate $\log (n!)$ and these two approximations to it for $n=2$, 4, and 50. Estimate the error of the simpler formula for $n=6.03 \times 10^{23}$. Discuss the fractional accuracy of these two approximations for small and large n.
Note that $\log (n!)=\log (1 \times 2 \times 3 \times \cdots \times n)=$ $\log (1)+\log (2)+\cdots+\log (n)=\sum_{m=1}^{n} \log (m)$.
(b) Convert the sum to an integral, $\sum_{m=1}^{n} \approx$ $\int_{0}^{n} \mathrm{~d} m$. Derive the simple form of Stirling's formula.
(c) Draw a plot of $\log (m)$ and a bar chart showing $\log (\operatorname{ceiling}(n))$. (Here ceiling (x) represents the smallest integer larger than x.) Argue that the integral under the bar chart is $\log (n!)$. (Hint: Check your plot: between $x=4$ and 5 , ceiling $(x)=5$.)
The difference between the sum and the integral in part (c) should look approximately like a collection of triangles, except for the region between zero and one. The sum of the areas equals the error in the simple form for Stirling's formula.

[^2](d) Imagine doubling these triangles into rectangles on your drawing from part (c), and sliding them sideways (ignoring the error for m between zero and one). Explain how this relates to the term $1 / 2 \log n$ in Stirling's formula $\log (n!)-(n \log n-n) \approx \frac{1}{2} \log (2 \pi n)=1 / 2 \log (2)+$ $1 / 2 \log (\pi)+\frac{1}{2} \log (n)$.
(1.5) Stirling and asymptotic series. ${ }^{4}$ (Mathematics, Computation) (3)
Stirling's formula (which is actually originally due to de Moivre) can be improved upon by extending it into an entire series. It is not a traditional Taylor expansion; rather, it is an asymptotic series. Asymptotic series are important in many fields of applied mathematics, statistical mechanics [171], and field theory [172].
We want to expand n ! for large n; to do this, we need to turn it into a continuous function, interpolating between the integers. This continuous function, with its argument perversely shifted by one, is $\Gamma(z)=(z-1)$!. There are many equivalent formulæ for $\Gamma(z)$; indeed, any formula giving an analytic function satisfying the recursion relation $\Gamma(z+1)=z \Gamma(z)$ and the normalization $\Gamma(1)=1$ is equivalent (by theorems of complex analysis). We will not use it here, but a typical definition is $\Gamma(z)=\int_{0}^{\infty} \mathrm{e}^{-t} t^{z-1} \mathrm{~d} t$; one can integrate by parts to show that $\Gamma(z+1)=z \Gamma(z)$. (a) Show, using the recursion relation $\Gamma(z+1)=$ $z \Gamma(z)$, that $\Gamma(z)$ has a singularity (goes to $\pm \infty$) at zero and all the negative integers.
Stirling's formula is extensible [18, p. 218] into a nice expansion of $\Gamma(z)$ in powers of $1 / z=z^{-1}$:
\[

$$
\begin{align*}
\Gamma[z]= & (z-1)! \\
\sim & (2 \pi / z)^{1 / 2} \mathrm{e}^{-z} z^{z}\left(1+(1 / 12) z^{-1}\right. \\
& +(1 / 288) z^{-2}-(139 / 51840) z^{-3} \\
& -(571 / 2488320) z^{-4} \\
& +(163879 / 209018880) z^{-5} \\
& +(5246819 / 75246796800) z^{-6} \\
& -(534703531 / 902961561600) z^{-7} \\
& -(4483131259 / 86684309913600) z^{-8} \\
& +\ldots) . \tag{1.3}
\end{align*}
$$
\]

The radius of convergence is the distance to the nearest singularity in the complex plane (see note 26 on p. 227 and Fig. 8.7(a)).
(b) Let $g(\zeta)=\Gamma(1 / \zeta)$; then Stirling's formula is something times a power series in ζ. Plot the poles (singularities) of $g(\zeta)$ in the complex ζ plane that you found in part (a). Show that the radius of convergence of Stirling's formula applied to g must be zero, and hence no matter how large z is Stirling's formula eventually diverges.
Indeed, the coefficient of z^{-j} eventually grows rapidly; Bender and Orszag [18, p. 218] state that the odd coefficients $\left(A_{1}=1 / 12, A_{3}=\right.$ $-139 / 51840, \ldots$) asymptotically grow as

$$
\begin{equation*}
A_{2 j+1} \sim(-1)^{j} 2(2 j)!/(2 \pi)^{2(j+1)} . \tag{1.4}
\end{equation*}
$$

(c) Show explicitly, using the ratio test applied to formula 1.4, that the radius of convergence of Stirling's formula is indeed zero. ${ }^{5}$
This in no way implies that Stirling's formula is not valuable! An asymptotic series of length n approaches $f(z)$ as z gets big, but for fixed z it can diverge as n gets larger and larger. In fact, asymptotic series are very common, and often are useful for much larger regions than are Taylor series.
(d) What is 0!? Compute 0! using successive terms in Stirling's formula (summing to A_{N} for the first few N). Considering that this formula is expanding about infinity, it does pretty well! Quantum electrodynamics these days produces the most precise predictions in science. Physicists sum enormous numbers of Feynman diagrams to produce predictions of fundamental quantum phenomena. Dyson argued that quantum electrodynamics calculations give an asymptotic series [172]; the most precise calculation in science takes the form of a series which cannot converge. Many other fundamental expansions are also asymptotic series; for example, Hooke's law and elastic theory have zero radius of convergence $[35,36]$ (Exercise 11.15).

This looks like a Taylor series in $1 / z$, but is subtly different. For example, we might ask what the radius of convergence [174] of this series is.

[^3](1.6) Random matrix theory. ${ }^{6}$ (Mathematics, Quantum, Computation) (3)
One of the most active and unusual applications of ensembles is random matrix theory, used to describe phenomena in nuclear physics, mesoscopic quantum mechanics, and wave phenomena. Random matrix theory was invented in a bold attempt to describe the statistics of energy level spectra in nuclei. In many cases, the statistical behavior of systems exhibiting complex wave phenomena-almost any correlations involving eigenvalues and eigenstates-can be quantitatively modeled using ensembles of matrices with completely random, uncorrelated entries!
The most commonly explored ensemble of matrices is the Gaussian orthogonal ensemble (GOE). Generating a member H of this ensemble of size $N \times N$ takes two steps.

- Generate an $N \times N$ matrix whose elements are independent random numbers with Gaussian distributions of mean zero and standard deviation $\sigma=1$.
- Add each matrix to its transpose to symmetrize it.

As a reminder, the Gaussian or normal probability distribution of mean zero gives a random number x with probability

$$
\begin{equation*}
\rho(x)=\frac{1}{\sqrt{2 \pi} \sigma} \mathrm{e}^{-x^{2} / 2 \sigma^{2}} \tag{1.5}
\end{equation*}
$$

One of the most striking properties that large random matrices share is the distribution of level splittings.
(a) Generate an ensemble with $M=1,000$ or so GOE matrices of size $N=2$, 4, and 10 . (More is nice.) Find the eigenvalues λ_{n} of each matrix, sorted in increasing order. Find the difference between neighboring eigenvalues $\lambda_{n+1}-\lambda_{n}$, for n, say, equal to ${ }^{7} N / 2$. Plot a histogram of these eigenvalue splittings divided by the mean splitting, with bin size small enough to see some of the fluctuations. (Hint: Debug your work with $M=10$, and then change to $M=1,000$.)
What is this dip in the eigenvalue probability near zero? It is called level repulsion.

For $N=2$ the probability distribution for the eigenvalue splitting can be calculated pretty simply. Let our matrix be $M=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$.
(b) Show that the eigenvalue difference for M is $\lambda=\sqrt{(c-a)^{2}+4 b^{2}}=2 \sqrt{d^{2}+b^{2}}$ where $d=$ $(c-a) / 2$, and the trace $c+a$ is irrelevant. Ignoring the trace, the probability distribution of matrices can be written $\rho_{M}(d, b)$. What is the region in the (b, d) plane corresponding to the range of eigenvalue splittings $(\lambda, \lambda+\Delta)$? If ρ_{M} is continuous and finite at $d=b=0$, argue that the probability density $\rho(\lambda)$ of finding an eigenvalue splitting near $\lambda=0$ vanishes (level repulsion). (Hint: Both d and b must vanish to make $\lambda=0$. Go to polar coordinates, with λ the radius.)
(c) Calculate analytically the standard deviation of a diagonal and an off-diagonal element of the GOE ensemble (made by symmetrizing Gaussian random matrices with $\sigma=1$). You may want to check your answer by plotting your predicted Gaussians over the histogram of H_{11} and H_{12} from your ensemble in part (a). Calculate analytically the standard deviation of $d=(c-a) / 2$ of the $N=2$ GOE ensemble of part (b), and show that it equals the standard deviation of b.
(d) Calculate a formula for the probability distribution of eigenvalue spacings for the $N=2$ GOE, by integrating over the probability density $\rho_{M}(d, b)$. (Hint: Polar coordinates again.)
If you rescale the eigenvalue splitting distribution you found in part (d) to make the mean splitting equal to one, you should find the distribution

$$
\begin{equation*}
\rho_{\text {Wigner }}(s)=\frac{\pi s}{2} \mathrm{e}^{-\pi s^{2} / 4} \tag{1.6}
\end{equation*}
$$

This is called the Wigner surmise; it is within 2% of the correct answer for larger matrices as well. ${ }^{8}$
(e) Plot eqn 1.6 along with your $N=2$ results from part (a). Plot the Wigner surmise formula against the plots for $N=4$ and $N=10$ as well.
Does the distribution of eigenvalues depend in detail on our GOE ensemble? Or could it be universal, describing other ensembles of real symmetric matrices as well? Let us define a ± 1 ensemble of real symmetric matrices, by generating an $N \times N$ matrix whose elements are independent random variables, ± 1 with equal probability.

[^4](f) Generate an ensemble of $M=1,000$ symmetric matrices filled with ± 1 with size $N=2,4$, and 10. Plot the eigenvalue distributions as in part (a). Are they universal (independent of the ensemble up to the mean spacing) for $N=2$ and 4? Do they appear to be nearly universal ${ }^{9}$ (the same as for the GOE in part (a)) for $N=10$? Plot the Wigner surmise along with your histogram for $N=10$.
The GOE ensemble has some nice statistical properties. The ensemble is invariant under orthogonal transformations:
\[

$$
\begin{equation*}
H \rightarrow R^{\top} H R \quad \text { with } \quad R^{\top}=R^{-1} \tag{1.7}
\end{equation*}
$$

\]

(g) Show that $\operatorname{Tr}\left[H^{\top} H\right]$ is the sum of the squares of all elements of H. Show that this trace is invariant under orthogonal coordinate transformations (that is, $H \rightarrow R^{\top} H R$ with $R^{\top}=R^{-1}$). (Hint: Remember, or derive, the cyclic invariance of the trace: $\operatorname{Tr}[A B C]=\operatorname{Tr}[C A B]$.)
Note that this trace, for a symmetric matrix, is the sum of the squares of the diagonal elements plus twice the squares of the upper triangle of offdiagonal elements. That is convenient, because in our GOE ensemble the variance (squared standard deviation) of the off-diagonal elements is half that of the diagonal elements (part (c)).
(h) Write the probability density $\rho(H)$ for finding GOE ensemble member H in terms of the trace formula in part (g). Argue, using your formula and the invariance from part (g), that the $G O E$ ensemble is invariant under orthogonal transformations: $\rho\left(R^{\top} H R\right)=\rho(H)$.
This is our first example of an emergent symmetry. Many different ensembles of symmetric matrices, as the size N goes to infinity, have eigenvalue and eigenvector distributions that are invariant under orthogonal transformations even though the original matrix ensemble did not have this symmetry. Similarly, rotational symmetry emerges in random walks on the square lattice as the number of steps N goes to infinity, and also emerges on long length scales for Ising models at their critical temperatures.
(1.7) Six degrees of separation. ${ }^{10}$ (Complexity, Computation) (4)
One of the more popular topics in random network theory is the study of how connected they
are. Six degrees of separation is the phrase commonly used to describe the interconnected nature of human acquaintances: various somewhat uncontrolled studies have shown that any random pair of people in the world can be connected to one another by a short chain of people (typically around six), each of whom knows the next fairly well. If we represent people as nodes and acquaintanceships as neighbors, we reduce the problem to the study of the relationship network. Many interesting problems arise from studying properties of randomly generated networks. A network is a collection of nodes and edges, with each edge connected to two nodes, but with each node potentially connected to any number of edges (Fig. 1.5). A random network is constructed probabilistically according to some definite rules; studying such a random network usually is done by studying the entire ensemble of networks, each weighted by the probability that it was constructed. Thus these problems naturally fall within the broad purview of statistical mechanics.

Fig. 1.5 Network. A network is a collection of nodes (circles) and edges (lines between the circles).

In this exercise, we will generate some random networks, and calculate the distribution of distances between pairs of points. We will study small world networks $[140,206]$, a theoretical model that suggests how a small number of shortcuts (unusual international and intercultural friendships) can dramatically shorten the typical chain lengths. Finally, we will study how a simple, universal scaling behavior emerges for large networks with few shortcuts.

[^5]Constructing a small world network. The L nodes in a small world network are arranged around a circle. There are two kinds of edges. Each node has Z short edges connecting it to its nearest neighbors around the circle (up to a distance $Z / 2$). In addition, there are $p \times L \times Z / 2$ shortcuts added to the network, which connect nodes at random (see Fig. 1.6). (This is a more tractable version [140] of the original model [206], which rewired a fraction p of the $L Z / 2$ edges.)
(a) Define a network object on the computer. For this exercise, the nodes will be represented by integers. Implement a network class, with five functions:
(1) HasNode(node), which checks to see if a node is already in the network;
(2) AddNode(node), which adds a new node to the system (if it is not already there);
(3) AddEdge(node1, node2), which adds a new edge to the system;
(4) GetNodes(), which returns a list of existing nodes; and
(5) GetNeighbors(node), which returns the neighbors of an existing node.

Fig. 1.6 Small world network with $L=20$, $Z=4$, and $p=0.2 .{ }^{11}$

Write a routine to construct a small world network, which (given L, Z, and p) adds the nodes and the short edges, and then randomly adds the shortcuts. Use the software provided to draw this small world graph, and check that you have im-
plemented the periodic boundary conditions correctly (each node i should be connected to nodes $(i-Z / 2) \bmod L, \ldots,(i+Z / 2) \bmod L) .{ }^{12}$

Measuring the minimum distances between nodes. The most studied property of small world graphs is the distribution of shortest paths between nodes. Without the long edges, the shortest path between i and j will be given by hopping in steps of length $Z / 2$ along the shorter of the two arcs around the circle; there will be no paths of length longer than L / Z (halfway around the circle), and the distribution $\rho(\ell)$ of path lengths ℓ will be constant for $0<\ell<L / Z$. When we add shortcuts, we expect that the distribution will be shifted to shorter path lengths.
(b) Write the following three functions to find and analyze the path length distribution.
(1) FindPathLengthsFromNode(graph, node), which returns for each node2 in the graph the shortest distance from node to node2. An efficient algorithm is a breadth-first traversal of the graph, working outward from node in shells. There will be a currentShell of nodes whose distance will be set to ℓ unless they have already been visited, and a nextShell which will be considered after the current one is finished (looking sideways before forward, breadth first), as follows.

- Initialize $\ell=0$, the distance from node to itself to zero, and currentShell = [node].
- While there are nodes in the new currentShell:
* start a new empty nextShell;
* for each neighbor of each node in the current shell, if the distance to neighbor has not been set, add the node to nextShell and set the distance to $\ell+1$;
* add one to ℓ, and set the current shell to nextShell.
- Return the distances.

This will sweep outward from node, measuring the shortest distance to every other node in the network. (Hint: Check your code with a network with small N and small p, compar-
${ }^{11}$ There are seven new shortcuts, where $p L Z / 2=8$; one of the added edges overlapped an existing edge or connected a node to itself.
${ }^{12}$ Here $(i-Z / 2) \bmod L$ is the integer $0 \leq n \leq L-1$, which differs from $i-Z / 2$ by a multiple of L.
ing a few paths to calculations by hand from the graph image generated as in part (a).)
(2) FindAllPathLengths(graph), which generates a list of all lengths (one per pair of nodes in the graph) by repeatedly using FindPathLengthsFromNode. Check your function by testing that the histogram of path lengths at $p=0$ is constant for $0<\ell<L / Z$, as advertised. Generate graphs at $L=1,000$ and $Z=2$ for $p=0.02$ and $p=0.2$; display the circle graphs and plot the histogram of path lengths. Zoom in on the histogram; how much does it change with p ? What value of p would you need to get "six degrees of separation"?
(3) FindAveragePathLength(graph), which computes the mean $\langle\ell\rangle$ over all pairs of nodes. Compute ℓ for $Z=2, L=100$, and $p=0.1$ a few times; your answer should be around $\ell=10$. Notice that there are substantial statistical fluctuations in the value from sample to sample. Roughly how many long bonds are there in this system? Would you expect fluctuations in the distances?
(c) Plot the average path length between nodes $\ell(p)$ divided by $\ell(p=0)$ for $Z=2, L=50$, with p on a semi-log plot from $p=0.001$ to $p=1$. (Hint: Your curve should be similar to that of with Watts and Strogatz [206, Fig. 2], with the values of p shifted by a factor of 100 ; see the discussion of the continuum limit below.) Why is the graph fixed at one for small p?
Large N and the emergence of a continuum limit. We can understand the shift in p of part (c) as a continuum limit of the problem. In the limit where the number of nodes N becomes large and the number of shortcuts $p L Z / 2$ stays fixed, this network problem has a nice limit where distance is measured in radians $\Delta \theta$ around the circle. Dividing ℓ by $\ell(p=0) \approx L /(2 Z)$ essentially does this, since $\Delta \theta=\pi Z \ell / L$.
(d) Create and display a circle graph of your geometry from part (c) $(Z=2, L=50)$ at $p=0.1$; create and display circle graphs of Watts and Strogatz's geometry $(Z=10, L=1,000)$ at $p=0.1$ and $p=0.001$. Which of their systems looks statistically more similar to yours? Plot (perhaps using the scaling collapse routine provided) the rescaled average path length $\pi Z \ell / L$
versus the total number of shortcuts $p L Z / 2$, for a range $0.001<p<1$, for $L=100$ and 200 , and for $Z=2$ and 4 .
In this limit, the average bond length $\langle\Delta \theta\rangle$ should be a function only of M. Since Watts and Strogatz [206] ran at a value of $Z L$ a factor of 100 larger than ours, our values of p are a factor of 100 larger to get the same value of $M=p L Z / 2$. Newman and Watts [144] derive this continuum limit with a renormalizationgroup analysis (Chapter 12).
(e) Real networks. From the book website [181], or through your own research, find a real network ${ }^{13}$ and find the mean distance and histogram of distances between nodes.

Fig. 1.7 Betweenness Small world network with $L=500, K=2$, and $p=0.1$, with node and edge sizes scaled by the square root of their betweenness.

In the small world network, a few long edges are crucial for efficient transfer through the system (transfer of information in a computer network, transfer of disease in a population model, ...). It is often useful to measure how crucial a given node or edge is to these shortest paths. We say a node or edge is between two other nodes if it is along a shortest path between them. We measure the betweenness of a node or edge as the total number of such shortest paths passing through it, with (by convention) the initial and final nodes included in the count of between nodes; see Fig. 1.7. (If there are K multiple shortest paths of equal length between two nodes, each path adds $1 / K$ to its intermediates.) The efficient algorithm to measure betweenness is a depth-first traversal quite analogous to the shortest-path-length algorithm discussed above.

[^6](f) Betweenness (advanced). Read [68, 141], which discuss the algorithms for finding the betweenness. Implement them on the small world network, and perhaps the real world network you analyzed in part (e). Visualize your answers by using the graphics software provided on the book website [181].
(1.8) Satisfactory map colorings. ${ }^{14}$ (Computer science, Computation, Mathematics) (3)

Fig. 1.8 Graph coloring. Two simple examples of graphs with $N=4$ nodes that can and cannot be colored with three colors.

Many problems in computer science involve finding a good answer among a large number of possibilities. One example is 3-colorability (Fig. 1.8). Can the N nodes of a graph be colored in three colors (say red, green, and blue) so that no two nodes joined by an edge have the same color? ${ }^{15}$ For an N-node graph one can of course explore the entire ensemble of 3^{N} colorings, but that takes a time exponential in N. Sadly, there are no known shortcuts that fundamentally change this; there is no known algorithm for determining whether a given N-node graph is three-colorable that guarantees an answer in a time that grows only as a power of $N .{ }^{16}$
Another good example is logical satisfiability (SAT). Suppose one has a long logical expression involving N boolean variables. The logical expression can use the operations NOT (\neg),

AND (\wedge), and $\mathrm{OR}(\vee)$. It is satisfiable if there is some assignment of True and False to its variables that makes the expression True. Can we solve a general satisfiability problem with N variables in a worst-case time that grows less quickly than exponentially in N ? In this exercise, you will show that logical satisfiability is in a sense computationally at least as hard as 3 -colorability. That is, you will show that a 3 -colorability problem with N nodes can be mapped onto a logical satisfiability problem with $3 N$ variables, so a polynomial-time (nonexponential) algorithm for the SAT would imply a (hitherto unknown) polynomial-time solution algorithm for 3-colorability.
If we use the notation A_{R} to denote a variable which is true when node A is colored red, then $\neg\left(A_{R} \wedge A_{G}\right)$ is the statement that node A is not colored both red and green, while $A_{R} \vee A_{G} \vee A_{B}$ is true if node A is colored one of the three colors. ${ }^{17}$
There are three types of expressions needed to write the colorability of a graph as a logical satisfiability problem: A has some color (above), A has only one color, and A and a neighbor B have different colors.
(a) Write out the logical expression that states that A does not have two colors at the same time. Write out the logical expression that states that A and B are not colored with the same color. Hint: Both should be a conjunction (AND, \wedge) of three clauses each involving two variables.
Any logical expression can be rewritten into a standard format, the conjunctive normal form. A literal is either one of our boolean variables or its negation; a logical expression is in conjunctive normal form if it is a conjunction of a series of clauses, each of which is a disjunction (OR, \checkmark) of literals.
(b) Show that, for two boolean variables X and Y, that $\neg(X \wedge Y)$ is equivalent to a disjunction of literals $(\neg X) \vee(\neg Y)$. (Hint: Test each of the four cases). Write your answers to part (a) in conjunctive normal form. What is the maximum

[^7]number of literals in each clause you used? Is it the maximum needed for a general 3-colorability problem?
In part (b), you showed that any 3-colorability problem can be mapped onto a logical satisfiability problem in conjunctive normal form with at most three literals in each clause, and with three times the number of boolean variables as there were nodes in the original graph. (Consider this a hint for part (b).) Logical satisfiability problems with at most k literals per clause in conjunctive normal form are called $\mathbf{k S A T}$ problems.
(c) Argue that the time needed to translate the 3colorability problem into a 3SAT problem grows at most quadratically in the number of nodes M in the graph (less than αM^{2} for some α for large $M)$. (Hint: the number of edges of a graph is at most M^{2}.) Given an algorithm that guarantees a solution to any N-variable 3SAT problem in a time $T(N)$, use it to give a bound on the time needed to solve an M-node 3-colorability problem. If $T(N)$ were a polynomial-time algorithm (running in time less than N^{x} for some integer $x)$, show that 3-colorability would be solvable in a time bounded by a polynomial in M.
We will return to logical satisfiability, kSAT, and NP-completeness in Exercise 8.15. There we will study a statistical ensemble of $\mathbf{k S A T}$ problems, and explore a phase transition in the fraction of satisfiable clauses, and the divergence of the typical computational difficulty near that transition.
(1.9) First to fail: Weibull. ${ }^{18}$ (Mathematics, Statistics, Engineering) (3)
Suppose you have a brand-new supercomputer with $N=1,000$ processors. Your parallelized code, which uses all the processors, cannot be restarted in mid-stream. How long a time t can you expect to run your code before the first processor fails?
This is example of extreme value statistics (see also exercises 12.23 and 12.24), where here we are looking for the smallest value of N random variables that are all bounded below by zero. For large N the probability distribution $\rho(t)$ and survival probability $S(t)=\int_{t}^{\infty} \rho\left(t^{\prime}\right) \mathrm{d} t^{\prime}$ are often
given by the Weibull distribution
\[

$$
\begin{align*}
& S(t)=\mathrm{e}^{-(t / \alpha)^{\gamma}} \\
& \rho(t)=-\frac{\mathrm{d} S}{\mathrm{~d} t}=\frac{\gamma}{\alpha}\left(\frac{t}{\alpha}\right)^{\gamma-1} \mathrm{e}^{-(t / \alpha)^{\gamma}} . \tag{1.8}
\end{align*}
$$
\]

Let us begin by assuming that the processors have a constant rate Γ of failure, so the probability density of a single processor failing at time t is $\rho_{1}(t)=\Gamma \exp (-\Gamma t)$ as $t \rightarrow 0$, and the survival probability for a single processor $S_{1}(t)=1-\int_{0}^{t} \rho_{1}\left(t^{\prime}\right) d t^{\prime} \approx 1-\Gamma t$ for short times. (a) Using $(1-\epsilon) \approx \exp (-\epsilon)$ for small ϵ, show that the the probability $S_{N}(t)$ at time t that all N processors are still running is of the Weibull form (eqn 1.8). What are α and γ ?
Often the probability of failure per unit time goes to zero or infinity at short times, rather than to a constant. Suppose the probability of failure for one of our processors

$$
\begin{equation*}
\rho_{1}(t) \sim B t^{k} \tag{1.9}
\end{equation*}
$$

with $k>-1$. (So, $k<0$ might reflect a breaking-in period, where survival for the first few minutes increases the probability for later survival, and $k>0$ would presume a dominant failure mechanism that gets worse as the processors wear out.)
(b) Show the survival probability for N identical processors each with a power-law failure rate (eqn 1.9) is of the Weibull form for large N, and give α and γ as a function of B and k.
The parameter α in the Weibull distribution just sets the scale or units for the variable t; only the exponent γ really changes the shape of the distribution. Thus the form of the failure distribution at large N only depends upon the power law k for the failure of the individual components at short times, not on the behavior of $\rho_{1}(t)$ at longer times. This is a type of universality, ${ }^{19}$ which here has a physical interpretation; at large N the system will break down soon, so only early times matter.
The Weibull distribution, we must mention, is often used in contexts not involving extremal statistics. Wind speeds, for example, are naturally always positive, and are conveniently fit by Weibull distributions.

[^8](1.10) Emergence. (p)

We begin with the broad statement "Statistical mechanics explains the simple behavior of complex systems." New laws emerge from bewildering interactions of constituents.
Discuss which of these emergent behaviors is probably not studied using statistical mechanics.
(a) The emergence of the wave equation from the collisions of atmospheric molecules,
(b) The emergence of Newtonian gravity from Einstein's general theory,
(c) The emergence of random stock price fluctuations from the behavior of traders,
(d) The emergence of a power-law distribution of earthquake sizes from the response of rubble in earthquake faults to external stresses.
(1.11) Emergent vs. fundamental. (p)

Statistical mechanics is central to condensed matter physics. It is our window into the behavior of materials-how complicated interactions between large numbers of atoms lead to physical laws (Fig. 1.9). For example, the theory of sound emerges from the complex interaction between many air molecules governed by Schrödinger's equation. More is different [10].

Fig. 1.9 Emergent. New laws describing macroscopic materials emerge from complicated microscopic behavior [177].

For example, if you inhale helium, your voice gets squeaky like Mickey Mouse. The dynamics of air molecules change when helium is introduced-the same law of motion, but with different constants.
(a) Look up the wave equation for sound in gases. How many constants are needed? Do the details of the interactions between air molecules matter for sound waves in air?
Statistical mechanics is tied also to particle physics and astrophysics. It is directly important in, e.g., the entropy of black holes (Exercise 7.16), the microwave background radiation (Exercises 7.15 and 10.1), and broken symmetry and phase transitions in the early Universe (Chapters 9, 11, and 12). Where statistical mechanics focuses on the emergence of comprehensible behavior at low energies, particle physics searches for the fundamental underpinnings at high energies (Fig. 1.10). Our different approaches reflect the complicated science at the atomic scale of chemistry and nuclear physics. At higher energies, atoms are described by elegant field theories (the standard model combining electroweak theory for electrons, photons, and neutrinos with QCD for quarks and gluons); at lower energies effective laws emerge for gases, solids, liquids, superconductors, ...

Fig. 1.10 Fundamental. Laws describing physics at lower energy emerge from more fundamental laws at higher energy [177].

The laws of physics involve parameters-real numbers that one must calculate or measure, like the speed of sound for a each gas at a given density and pressure. Together with the initial conditions (e.g., the density and its rate of change for a gas), the laws of physics allow us to predict how our system behaves.
Schrödinger's equation describes the Coulomb interactions between electrons and nuclei, and their interactions with electromagnetic field. It can in principle be solved to describe almost all of materials physics, biology, and engineering, apart from radioactive decay and gravity, using a Hamiltonian involving only the parameters \hbar, e, c, m_{e}, and the the masses of the nuclei. ${ }^{20} \mathrm{Nu}-$ clear physics and QCD in principle determine the nuclear masses; the values of the electron mass and the fine structure constant $\alpha=e^{2} / \hbar c$ could eventually be explained by even more fundamental theories.
(b) About how many parameters would one need as input to Schrödinger's equation to describe materials and biology and such? Hint: There are 253 stable nuclear isotopes.
(c) Look up the Standard Model-our theory of electrons and light, quarks and gluons, that also in principle can be solved to describe our Universe (apart from gravity). About how many parameters are required for the Standard Model?
In high-energy physics, fewer constants are usually needed to describe the fundamental theory than the low-energy, effective emergent theorythe fundamental theory is more elegant and beautiful. In condensed matter theory, the fundamental theory is usually less elegant and messier; the emergent theory has a kind of parameter compression, with only a few combinations of microscopic parameters giving the governing parameters (temperature, elastic constant, diffusion constant) for the emergent theory.
Note that this is partly because in condensed matter theory we confine our attention to one particular material at a time (crystals, liquids, superfluids). To describe all materials in our world, and their interactions, would demand many parameters.
My high-energy friends sometimes view this from a different perspective. They note that the meth-
ods we use to understand a new superfluid, or a topological insulator, are quite similar to the ones they use to study the Universe. They admit a bit of envy-that we get a new universe to study every time an experimentalist discovers another material.
(1.12) Self-propelled particles. ${ }^{21}$ (Active matter) (3) Exercise 2.20 investigates the statistical mechanical study of flocking-where animals, bacteria, or other active agents go into a collective state where they migrate in a common direction (like moshers in circle pits at heavy metal concerts [31, 188-190]). Here we explore the transition to a migrating state, but in an even more basic class of active matter: particles that are selfpropelled but only interact via collisions. Our goal here is to both study the nature of the collective behavior, and the nature of the transition between disorganized motion and migration.
We start with an otherwise equilibrium system (damped, noisy particles with soft interatomic potentials, Exercise 6.19), and add a propulsion term

$$
\begin{equation*}
F_{i}^{\mathrm{speed}}=\mu\left(v_{0}-v_{i}\right) \hat{v}_{i} \tag{1.10}
\end{equation*}
$$

which accelerates or decelerates each particle toward a target speed v_{0} without changing the direction. The damping constant μ now controls how strongly the target speed is favored; for $v_{0}=0$ we recover the damping needed to counteract the noise to produce a thermal ensemble.
This simulation can be a rough model for crowded bacteria propelling themselves around, or for artificially created Janus particles that have one side covered with a platinum catalyst that burns hydrogen peroxide, pushing it forward.
Launch the mosh pit simulator [32]. If necessary, reload the page to the default setting. Set all particles active (Fraction Red to 1), set the Particle count to $N=200$, Flock strength $=0$, Speed $v_{0}=0.25$, Damping $=0.5$ and Noise Strength $=0$, Show Graphs, and click Change. After some time, you should see most of the particles moving along a common direction. (Increase Frameskip to speed the process.) You can increase the Box size and number maintaining the density if you have a powerful computer, or

[^9]decrease it (but not below 30) if your computer is struggling.
(a) Watch the speed distribution as you restart the simulation. Turn off Frameskip to see the behavior at early times. Does it get sharply peaked at the same time as the particles begin moving collectively? Now turn up frameskip to look at the long-term motion. Give a qualitative explanation of what happens. Is more happening than just selection of a common direction? (Hint: Understanding why the collective behavior maintains itself is easier than explaining why it arises in the first place.)
We can study this emergent, collective flow by putting our system in a box-turning off the periodic boundary conditions along x and y. Reload parameters to default, then all active, $N=300$, flocking $=0$, speed $v_{0}=0.25$, raise the damping up to 2 and set noise $=0$. Turn off the periodic boundary conditions along both x and y, set the frame skip to 20 , and Change. Again, box sizes as low as 30 will likely work.
After some time, you should observe a collective flow of a different sort. You can monitor the average flow using the angular momentum (middle graph below the simulation).
(b) Increase the noise strength. Can you disrupt this collective behavior? Very roughly, a what noise strength does the transition occur? (You can use the angular momentum as a diagnostic.)
A key question in equilibrium statistical mechanics is whether a qualitative transition like this is continuous (Chapter 12) or discontinuous (Chapter 11). Discontinuous transitions usually exhibit both bistability and hysteresis: the observed transition raising the temperature or other control parameter is higher than when one lowers the parameter. Here, if the transition is abrupt, we should have a region with three states - a melted state of zero angular momentum, and a collective clockwise and counterclockwise state.
Return to the settings for part (b) to explore more carefully the behavior near the transition.
(c) Use the angular momentum to measure the strength of the collective motion (taken from the center graph, treating the upper and lower bounds as ± 1). Graph it against noise as you raise the noise slowly and carefully from zero, until it vanishes. (You may need to wait longer when you get close to the transition.) Graph it again as
you lower the noise. Do you find the same transition point on heating and cooling (raising and lowering the noise)? Is the transition abrupt, or continuous? Did you ever observe switches between the clockwise and anti-clockwise states?
(1.13) The birthday problem. (2)

Remember birthday parties in your elementary school? Remember those years when two kids had the same birthday? How unlikely!
How many kids would you need in class to get, more than half of the time, at least two with the same birthday?
(a) Numerical. Write BirthdayCoincidences (K, C), a routine that returns the fraction among C classes for which at least two kids (among K kids per class) have the same birthday. (Hint: By sorting a random list of integers, common birthdays will be adjacent.) Plot this probability versus K for a reasonably large value of C. Is it a surprise that your classes had overlapping birthdays when you were young?
One can intuitively understand this, by remembering that to avoid a coincidence there are $K(K-1) / 2$ pairs of kids, all of whom must have different birthdays (probability 364/365 = $1-1 / D$, with D days per year).

$$
\begin{equation*}
P(K, D) \approx(1-1 / D)^{K(K-1) / 2} \tag{1.11}
\end{equation*}
$$

This is clearly a crude approximation-it doesn't vanish if $K>D$! Ignoring subtle correlations, though, it gives us a net probability

$$
\begin{align*}
P(K, D) & \approx \exp (-1 / D)^{K(K-1) / 2} \\
& \approx \exp \left(-K^{2} /(2 D)\right) \tag{1.12}
\end{align*}
$$

Here we've used the fact that $1-\epsilon \approx \exp (-\epsilon)$, and assumed that K / D is small.
(b) Analytical. Write the exact formula giving the probability, for K random integers among D choices, that no two kids have the same birthday. (Hint: What is the probability that the second kid has a different birthday from the first? The third kid has a different birthday from the first two?) Show that your formula does give zero if $K>D$. Converting the terms in your product to exponentials as we did above, show that your answer is consistent with the simple formula above, if $K \ll D$. Inverting eqn 1.12, give a formula for the number of kids needed to have a 50% chance of a shared birthday.
Some years ago, we were doing a large simulation, involving sorting a lattice of $1,000^{3}$ random
fields (roughly, to figure out which site on the lattice would trigger first). If we want to make sure that our code is unbiased, we want different random fields on each lattice site - a giant birthday problem.
Old-style random number generators generated a random integer (2^{32} "days in the year") and then divided by the maximum possible integer to get a random number between zero and one. Modern random number generators generate all 2^{52} possible double precision numbers between zero and one.
(c) If there are 2^{32} distinct four-byte unsigned integers, how many random numbers would one have to generate before one would expect coincidences half the time? Generate lists of that length, and check your assertion. (Hints: It is faster to use array operations, especially in interpreted languages. I generated a random array with N entries, sorted it, subtracted the first $N-1$ entries from the last $N-1$, and then called min on the array.) Will we have to worry about coincidences with an old-style random number generator? How large a lattice $L \times L \times L$ of random double precision numbers can one generate with modern generators before having a 50\% chance of a coincidence?
(1.14) Width of the height distribution. ${ }^{22}$ (Statistics) (3)
In this exercise we shall explore statistical methods of fitting models to data, in the context of fitting a Gaussian to a distribution of measurements. We shall find that maximum likelihood methods can be biased. We shall find that all sensible methods converge as the number of measurements N gets large (just as thermodynamics can ignore fluctuations for large numbers of particles), but a careful treatment of fluctuations and probability distributions becomes important for small N (just as different ensembles become distinguishable for small numbers of particles). The Gaussian distribution, known in statistics as the normal distribution

$$
\begin{equation*}
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)} \tag{1.13}
\end{equation*}
$$

is a remarkably good approximation for many properties. The heights of men or women in a given country, or the grades on an exam in a large class, will often have a histogram that is well described by a normal distribution. ${ }^{23}$ If we know the heights x_{n} of a sample with N people, we can write the likelihood that they were drawn from a normal distribution with mean μ and variance σ^{2} as the product

$$
\begin{equation*}
P\left(\left\{x_{n}\right\} \mid \mu, \sigma\right)=\prod_{n=1}^{N} \mathcal{N}\left(x_{n} \mid \mu, \sigma^{2}\right) \tag{1.14}
\end{equation*}
$$

We first introduce the concept of sufficient statistics. Our likelihood (eqn 1.14) does not depend independently on each of the N heights x_{n}. What do we need to know about the sample to predict the likelihood?
(a) Write $P\left(\left\{x_{n}\right\} \mid \mu, \sigma\right)$ in eqn 1.14 as a formula depending on the data $\left\{x_{n}\right\}$ only through $N, \bar{x}=(1 / N) \sum_{n} x_{n}$ and $S=\sum_{n}\left(x_{n}-\bar{x}\right)^{2}$.
Given the model of independent normal distributions, its likelihood is a formula depending only on ${ }^{24} \bar{x}$ and S, the sufficient statistics for our Gaussian model.
Now, suppose we have a small sample and wish to estimate the mean and the standard deviation of the normal distribution. ${ }^{25}$ Maximum likelihood is a common method for estimating model parameters; the estimates ($\mu_{\mathrm{ML}}, \sigma_{\mathrm{ML}}$) are given by the peak of the probability distribution P.
(b) Show that $P\left(\left\{x_{n}\right\} \mid \mu_{\mathrm{ML}}, \sigma_{\mathrm{ML}}\right)$ takes its maximum value at

$$
\begin{align*}
\mu_{\mathrm{ML}} & =\frac{\sum_{n} x_{n}}{N}=\bar{x} \\
\sigma_{\mathrm{ML}} & =\sqrt{\sum_{n}\left(x_{n}-\bar{x}\right)^{2} / N}=\sqrt{S / N} \tag{1.15}
\end{align*}
$$

(Hint: It is easier to maximize the log likelihood; $P(\boldsymbol{\theta})$ and $\log (P(\boldsymbol{\theta}))$ are maximized at the same point $\boldsymbol{\theta}_{\mathrm{ML}}$.)
If we draw samples of size N from a distribution of known mean μ_{0} and standard deviation σ_{0},

[^10]how do the maximum likelihood estimates differ from the actual values? For the limiting case $N=1$, the various maximum likelihood estimates for the heights vary from sample to sample (with probability distribution $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$, since the best estimate of the height is the sampled one). Because the average value $\left\langle\mu_{\mathrm{ML}}\right\rangle_{\text {samp }}$ over many samples gives the correct mean, we say that μ_{ML} is unbiased. The maximum likelihood estimate for σ_{ML}^{2}, however, is biased. Again, for the extreme example $N=1, \sigma_{\mathrm{ML}}^{2}=0$ for every sample!
(c) Assume the entire population is drawn from some (perhaps non-Gaussian) distribution of variance $\left\langle x^{2}\right\rangle_{\mathrm{samp}}=\sigma_{0}^{2}$. For simplicity, let the mean of the population be zero. Show that
\[

$$
\begin{align*}
\left\langle\sigma_{\mathrm{ML}}^{2}\right\rangle_{\mathrm{samp}} & =(1 / N)\left\langle\sum_{n=1}^{N}\left(x_{n}-\bar{x}\right)^{2}\right\rangle_{\text {samp }} \\
& =\frac{N-1}{N} \sigma_{0}^{2} . \tag{1.16}
\end{align*}
$$
\]

that the variance for a group of N people is on average smaller than the variance of the population distribution by a factor $(N-1) / N$. (Hint: $\bar{x}=(1 / N) \sum_{n} x_{n}$ is not necessarily zero. Expand it out and use the fact that x_{m} and x_{n} are uncorrelated.)
The maximum likelihood estimate for the variance is biased on average toward smaller values. Thus we are taught, when estimating the standard deviation of a distribution ${ }^{26}$ from N measurements, to divide by $\sqrt{N-1}$:

$$
\begin{equation*}
\sigma_{\mathrm{N}-1}^{2} \approx \frac{\sum_{n}\left(x_{n}-\bar{x}\right)^{2}}{N-1} \tag{1.17}
\end{equation*}
$$

This correction $N \rightarrow N-1$ is generalized to more complicated problems by considering the number of independent degrees of freedom (here $N-1$ degrees of freedom in the vector $x_{n}-\bar{x}$ of deviations from the mean). Alternatively, it is interesting that the bias disappears if one does not estimate both σ^{2} and μ by maximizing the joint likelihood, but integrating (or marginalizing) over μ and then finding the maximum likelihood for σ^{2}.
(1.15) Fisher information and Cramér-Rao. ${ }^{27}$ (Statistics, Mathematics, Information geometry) (4)
Here we explore the geometry of the space of probability distributions. When one changes the external conditions of a system a small amount, how much does the ensemble of predicted states change? What is the metric in probability space? Can we predict how easy it is to detect a change in external parameters by doing experiments on the resulting distribution of states? The metric we find will be the Fisher information matrix (FIM). The Cramér-Rao bound will use the FIM to provide a rigorous limit on the precision of any (unbiased) measurement of parameter values. In both statistical mechanics and statistics, our models generate probability distributions $P(\mathbf{x} \mid \boldsymbol{\theta})$ for behaviors \mathbf{x} given parameters $\boldsymbol{\theta}$.

- A crooked gambler's loaded die, where the state space is comprised of discrete rolls $\mathbf{x} \in\{1,2, \ldots, 6\}$ with probabilities $\boldsymbol{\theta}=$ $\left\{p_{1}, \ldots, p_{5}\right\}$, with $p_{6}=1-\sum_{j=1}^{5} \theta_{j}$.
- The probability density that a system with a Hamiltonian $\mathcal{H}(\boldsymbol{\theta})$ with $\boldsymbol{\theta}=(T, P, N)$ giving the temperature, pressure, and number of particles, will have a probability density $P(\mathbf{x} \mid \boldsymbol{\theta})=\exp \left(-\mathcal{H} / k_{B} T\right) / Z$ in phase space (Chapter 3, Exercise 6.22).
- The height of women in the US, $\mathbf{x}=$ $\{h\}$ has a probability distribution well described by a normal (or Gaussian) distribution $P(\mathbf{x} \mid \boldsymbol{\theta})=1 / \sqrt{2 \pi \sigma^{2}} \exp (-(x-$ $\mu)^{2} / 2 \sigma^{2}$) with mean and standard deviation $\boldsymbol{\theta}=(\mu, \sigma)$ (Exercise 1.14).
- A least squares model $y_{i}(\boldsymbol{\theta})$ for N data points $d_{i} \pm \sigma$ with independent, normally distributed measurement errors predicts a likelihood for finding a value $\mathbf{x}=\left\{x_{i}\right\}$ of the data $\left\{d_{i}\right\}$ given by

$$
\begin{equation*}
P(\mathbf{x} \mid \boldsymbol{\theta})=\frac{\mathrm{e}^{-\sum_{i}\left(y_{i}(\theta)-x_{i}\right)^{2} / 2 \sigma^{2}}}{\left(2 \pi \sigma^{2}\right)^{N / 2}} \tag{1.18}
\end{equation*}
$$

(Think of the theory curves you fit to data in many experimental labs courses.)
How "distant" is a loaded die is from a fair one? How "far apart" are the probability distributions of particles in phase space for two small system at different temperatures and pressures? How
${ }^{26}$ Do not confuse this with the estimate of the error in the mean \bar{x}.
${ }^{27}$ This exercise was developed in collaboration with Colin Clement and Katherine Quinn.

hard would it be to distinguish a group of US women from a group of Pakistani women, if you only knew their heights?
We start with the least-squares model.
(a) How big is the probability density that a leastsquares model with true parameters $\boldsymbol{\theta}$ would give experimental results implying a different set of parameters ϕ ? Show that it depends only on the distance between the vectors $|\mathbf{y}(\boldsymbol{\theta})-\mathbf{y}(\boldsymbol{\phi})|$ in the space of predictions. Thus the predictions of least-squares models form a natural manifold in a behavior space, with a coordinate system given by the parameters. The point on the manifold corresponding to parameters $\boldsymbol{\theta}$ is $\mathbf{y}(\boldsymbol{\theta}) / \sigma$ given by model predictions rescaled by their error bars, $\mathbf{y}(\boldsymbol{\theta}) / \sigma$.
Remember that the metric tensor $g_{\alpha \beta}$ gives the distance on the manifold between two nearby points. The squared distance between points with coordinates $\boldsymbol{\theta}$ and $\boldsymbol{\theta}+\epsilon \boldsymbol{\Delta}$ is $\epsilon^{2} \sum_{\alpha \beta} g_{\alpha \beta} \Delta_{\alpha} \Delta_{\beta}$.
(b) Show that the least-squares metric is $g_{\alpha \beta}=\left(J^{T} J\right)_{\alpha \beta} / \sigma^{2}$, where the Jacobian $J_{i \alpha}=$ $\partial y_{i} / \partial \theta_{\alpha}$.
For general probability distributions, the natural metric describing the distance between two nearby distributions $P(\mathbf{x} \mid \boldsymbol{\theta})$ and $Q=P(\mathbf{x} \mid \boldsymbol{\theta}+$ $\epsilon \boldsymbol{\Delta})$ is given by the FIM:

$$
\begin{equation*}
g_{\alpha \beta}(\boldsymbol{\theta})=-\left\langle\frac{\partial^{2} \log P(\mathbf{x} \mid \boldsymbol{\theta})}{\partial \theta_{\alpha} \partial \theta_{\beta}}\right\rangle_{\mathbf{x}} \tag{1.19}
\end{equation*}
$$

Are the distances between least-squares models we intuited in parts (a) and (b) compatible with the the FIM?
(c) Show for a least-squares model that eqn 1.19 is the same as the metric we derived in part (b). (Hint: For a Gaussian distribution $\exp ((x-$ $\left.\mu)^{2} /\left(2 \sigma^{2}\right)\right) / \sqrt{2 \pi \sigma^{2}},\langle x\rangle=\mu$.)
If we have experimental data with errors, how well can we estimate the parameters in our theoretical model, given a fit? As in part (a), now for general probabilistic models, how big is the probability density that an experiment with true parameters $\boldsymbol{\theta}$ would give results perfectly corresponding to a nearby set of parameters $\boldsymbol{\theta}+\epsilon \boldsymbol{\Delta}$? (d) Take the Taylor series of $\log P(\boldsymbol{\theta}+\epsilon \boldsymbol{\Delta})$ to second order in ϵ. Exponentiate this to estimate how much the probability of measuring values corresponding to the predictions at $\boldsymbol{\theta}+\epsilon \boldsymbol{\Delta}$ fall off compared to $P(\boldsymbol{\theta})$. Thus to linear order the FIM $g_{\alpha \beta}$ estimates the range of likely measured
parameters around the true parameters of the model.
The Cramér-Rao bound shows that this estimate is related to a rigorous bound. In particular, errors in a multiparameter fit are usually described by a covariance matrix Σ, where the variance of the likely values of parameter θ_{α} is given by $\Sigma_{\alpha \alpha}$, and where $\Sigma_{\alpha \beta}$ gives the correlations between two parameters θ_{α} and θ_{β}. One can show within our quadratic approximation of part (d) that the covariance matrix is the inverse of the FIM $\Sigma_{\alpha \beta}=\left(g^{-1}\right)_{\alpha \beta}$. The Cramér-Rao bound roughly tells us that no experiment can do better than this at estimating parameters. In particular, it tells us that the error range of the individual parameters from a sampling of a probability distribution is bounded below by the corresponding element of the inverse of the FIM

$$
\begin{equation*}
\Sigma_{\alpha \alpha} \geq\left(g^{-1}\right)_{\alpha \alpha} \tag{1.20}
\end{equation*}
$$

(if the estimator is unbiased, see Exercise 1.14). This is another justification for using the FIM as our natural distance metric in probability space. In Exercise 1.16, we shall examine global measures of distance or distinguishability between potentially quite different probability distributions. There we shall show that these measures all reduce to the FIM to lowest order in the change in parameters. In Exercises 6.23, 6.21, and 6.22 , we shall show that the FIM for a Gibbs ensemble as a function of temperature and pressure can be written in terms of thermodynamic quantities like compressibility and specific heat. There we use the FIM to estimate the path length in probability space, in order to estimate the entropy cost of controlling systems like the Carnot cycle.
(1.16) Distances in probability space. ${ }^{28}$ (Statistics, Mathematics, Information geometry) (3)
In statistical mechanics we usually study the behavior expected given the experimental parameters. Statistics is often concerned with estimating how well one can deduce the parameters (like temperature and pressure, or the increased risk of death from smoking) given a sample of the ensemble. Here we shall explore ways of measuring distance or distinguishability between distant probability distributions.
Exercise 1.15 introduces four problems (loaded dice, statistical mechanics, the height distribu-

[^11]tion of women, and least-squares fits to data), each of which have parameters $\boldsymbol{\theta}$ which predict an ensemble probability distribution $P(\mathbf{x} \mid \boldsymbol{\theta})$ for data \mathbf{x} (die rolls, particle positions and momenta, heights, ...). In the case of least-squares models (eqn 1.18) where the probability is given by a vector $x_{i}=y_{i}(\boldsymbol{\theta}) \pm \sigma$, we found that the distance between the predictions of two parameter sets $\boldsymbol{\theta}$ and ϕ was naturally given by $|\mathbf{y}(\boldsymbol{\theta}) / \sigma-\mathbf{y}(\boldsymbol{\phi}) / \sigma|$. We want to generalize this formula-to find ways of measuring distances between probability distributions given by arbitrary kinds of models.
Exercise 1.15 also introduced the Fisher information metric (FIM) in eqn 1.19:
\[

$$
\begin{equation*}
g_{\mu \nu}(\boldsymbol{\theta})=-\left\langle\frac{\partial^{2} \log (P(\mathbf{x}))}{\partial \theta_{\alpha} \partial \theta_{\beta}}\right\rangle_{\mathbf{x}} \tag{1.21}
\end{equation*}
$$

\]

which gives the distance between probability distributions for nearby sets of parameters

$$
\begin{equation*}
d^{2}(P(\boldsymbol{\theta}), P(\boldsymbol{\theta}+\epsilon \boldsymbol{\Delta}))=\epsilon^{2} \sum_{\mu \nu} \Delta_{\mu} g_{\mu \nu} \Delta_{\nu} \tag{1.22}
\end{equation*}
$$

Finally, it argued that the distance defined by the FIM is related to how distinguishable the two nearby ensembles are-how well we can deduce the parameters. Indeed, we found that to linear order the FIM is the inverse of the covariance matrix describing the fluctuations in estimated parameters, and that the Cramér-Rao bound shows that this relationship between the FIM and distinguishability works even beyond the linear regime.
There are several measures in common use, of which we will describe three-the Hellinger distance, the Bhattacharyya "distance", and the Kullback-Liebler divergence. Each has its uses. The Hellinger distance becomes less and less useful as the amount of information about the parameters becomes large. The Kullback-Liebler divergence is not symmetric, but one can symmetrize it by averaging. It and the Bhattacharyya distance nicely generalize the leastsquares metric to arbitrary models, but they violate the triangle inequality and embed the manifold of predictions into a space with Minkowskistyle time-like directions [155].
Let us review the properties that we ordinarily demand from a distance between points P and Q.

- We expect it to be positive, $d(P, Q) \geq 0$, with $d(P, Q)=0$ only if $P=Q$.
- We expect it to be symmetric, so $d(P, Q)=$ $d(Q, P)$.
- We expect it to satisfy the triangle inequality, $d(P, Q) \leq d(P, R)+d(R, Q)$ - the two short sides of a triangle must extend at total distance enough to reach the third side.
- We want it to become large when the points P and Q are extremely different.
All of these properties are satisfied by the leastsquares distance of Exercise 1.15, because the distances between points on the surface of model predictions is the Euclidean distance between the predictions in data space.
Our first measure, the Hellinger distance at first seems ideal. It defines a dot product between probability distributions P and Q. Consider the discrete gambler's distribution, giving the probabilities $\mathbf{P}=\left\{P_{j}\right\}$ for die roll j. The normalization $\sum P_{j}=1$ makes $\left\{\sqrt{P_{j}}\right\}$ a unit vector in six dimensions, so we define a dot product $P \cdot Q=\sum_{j=1}^{6} \sqrt{P_{j}} \sqrt{Q_{j}}=\int \mathrm{d} \mathbf{x} \sqrt{P(\mathbf{x})} \sqrt{Q(\mathbf{x})}$. The Hellinger distance is then given by the squared distance between points on the unit sphere: ${ }^{29}$

$$
\begin{gather*}
d_{\mathrm{Hel}}^{2}(P, Q)=(P-Q)^{2}=2-2 P \cdot Q \\
=\int \mathrm{d} \mathbf{x}(\sqrt{P(\mathbf{x})}-\sqrt{Q(\mathbf{x})})^{2} \tag{1.23}
\end{gather*}
$$

(a) Argue, from the last geometrical characterization, that the Hellinger distance must be a valid distance function. Show that the Hellinger distance does reduce to the FIM for nearby distributions, up to a constant factor. Show that the Hellinger distance never gets larger than $\sqrt{2}$. What is the Hellinger distance between a fair die $P_{j} \equiv 1 / 6$ and a loaded die $Q_{j}=$ $\{1 / 10,1 / 10, \ldots, 1 / 2\}$ that favors rolling 6 ?
The Hellinger distance is peculiar in that, as the statistical mechanics system gets large, or as one adds more experimental data to the statistics model, all pairs approach the maximum distance $\sqrt{2}$.
(b) Our gambler keeps using the loaded die. Can the casino catch him? Let $P_{N}(\mathbf{j})$ be the probability that rolling the die N times gives the sequence $\mathbf{j}=\left\{j_{1}, \ldots, j_{N}\right\}$. Show that

$$
\begin{equation*}
P_{N} \cdot Q_{N}=(P \cdot Q)^{N} \tag{1.24}
\end{equation*}
$$

[^12]and hence
\[

$$
\begin{equation*}
d_{\mathrm{Hel}}^{2}\left(P_{N}, Q_{N}\right)=1-(P \cdot Q)^{N} \tag{1.25}
\end{equation*}
$$

\]

After $N=100$ rolls, how close is the Hellinger distance from its maximum value?
From the casino's point of view, the certainty that the gambler is cheating is becoming squeezed into a tiny range of distances. (P_{N} and Q_{N} becoming increasingly orthogonal does not lead to larger and larger Hellinger distances.) In an Ising model, or a system with N particles, or a cosmic microwave background experiment with N measured areas of the sky, even tiny changes in parameters lead to orthogonal probability distributions, and hence Hellinger distances near its maximum value of one. ${ }^{30}$
The Hellinger overlap $(P \cdot Q)^{N}=\exp (N \log (P$. $Q)$) keeps getting smaller as we take N to infinity; it is like the exponential of an extensive quantity.
Our second measure, the Bhattacharyya distance, can be derived from a limit of the Hellinger distance as the number of data points N goes to zero:

$$
\begin{align*}
d_{\mathrm{Bhatt}}^{2}(P, Q) & =\lim _{N \rightarrow 0} 1 / 2 d_{\mathrm{Hel}}^{2}\left(P_{N}, Q_{N}\right) / N \\
& =-\log (P \cdot Q) \tag{1.26}\\
& =-\log \left(\sum_{\mathbf{x}} \sqrt{P(\mathbf{x})} \sqrt{Q(\mathbf{x})}\right) .
\end{align*}
$$

We sometimes say that we calculate the behavior of N replicas of the system, and then take $N \rightarrow 0$. Replica theory is useful, for example, in disordered systems, where we can average $F=-k_{B} T \log (Z)$ over disorder (difficult)
by finding the average of Z^{N} over disorder (not so hard) and then taking $N \rightarrow 0$.
(d) Derive eqn 1.26.
(Hint: $\quad Z^{N} \approx$ $\exp (N \log Z) \approx 1+N \log Z$ for small N.)
The third distance-like measure we introduce is the Kullback-Leibler divergence from Q to P.

$$
\begin{equation*}
d_{\mathbf{K L}}(Q \mid P)=-\int \mathrm{d} \mathbf{x} P(\mathbf{x}) \log (Q(\mathbf{x}) / P(\mathbf{x})) \tag{1.27}
\end{equation*}
$$

(c) Show that the Kullback-Liebler divergence is positive, zero only if $P=Q$, but is not symmetric. Show that, to quadratic order in ϵ in eqn 1.22, that the Kullback-Liebler divergence does lead to the FIM.
The Kullback-Liebler divergence is sometimes symmetrized:

$$
\begin{align*}
d_{\mathbf{s K L}} & (Q, P) \tag{1.28}\\
& =1 / 2\left(d_{\mathbf{K L}}(Q \mid P)+d_{\mathbf{K L}}(P \mid Q)\right) \\
& =\int \mathrm{d} \mathbf{x}(P(\mathbf{x})-Q(\mathbf{x})) \log (P(\mathbf{x}) / Q(\mathbf{x}))
\end{align*}
$$

The Bhattacharyya distance and the symmetrized Kullback-Liebler divergence share several features, both good and bad.
(d) Show that they are intensive [155]-that the distance grows linearly with repeated measurements ${ }^{31}$ (as for repeated rolls in part (b)). Show that they do not satisfy the triangle inequality. Show that they does satisfy the other conditions for a distance. Show, for the nonlinear leastsquares model of eqn 1.18, that they equal the distance in data space between the two predictions.

[^13]
Random walks and emergent properties

What makes physics possible? Why are the mathematical laws that describe our macroscopic world so simple? Our physical laws are not direct statements about the underlying reality of the Universe. Rather, our laws emerge out of far more complex microscopic behavior. ${ }^{1}$ Statistical mechanics provides a set of powerful tools for understanding simple behavior that emerges from underlying complexity.

In this chapter we will explore the emergent behavior for random walks. Random walks are paths that take successive steps in random directions. They arise often in statistical mechanics: as partial sums of fluctuating quantities, as trajectories of particles undergoing repeated collisions, and as the shapes for long, linked systems like polymers. They introduce two kinds of emergent behavior. First, an individual random walk, after a large number of steps, becomes fractal or scale invariant (explained in Section 2.1). Secondly, the endpoint of the random walk has a probability distribution that obeys a simple continuum law, the diffusion equation (introduced in Section 2.2). Both of these behaviors are largely independent of the microscopic details of the walk; they are universal. Random walks in an external field provide our first examples of conserved currents, linear response, and Boltzmann distributions (Section 2.3). Finally, we use the diffusion equation to introduce Fourier and Green's function techniques (Section 2.4). Random walks neatly illustrate many of the themes and methods of statistical mechanics.

2.1 Random walk examples: universality and scale invariance

Statistical mechanics often demands sums or averages of a series of fluctuating quantities: $s_{N}=\sum_{i=1}^{N} \ell_{i}$. The energy of a material is a sum over the energies of the molecules composing the material; your grade on a statistical mechanics exam is the sum of the scores on many individual questions. Imagine adding up this sum one term at a time. The path s_{1}, s_{2}, \ldots forms an example of a one-dimensional random walk. We illustrate random walks with three examples: coin flips, the drunkard's walk, and polymers.

Coin flips. For example, consider flipping a coin and recording the difference s_{N} between the number of heads and tails found. Each coin

2.1 Random walk examples: universality and scale invariance 23
2.2 The diffusion equation 27
2.3 Currents and external forces 28
2.4 Solving the diffusion equation 30
${ }^{1}$ You may think that Newton's law of gravitation, or Einstein's refinement to it, is more fundamental than the diffusion equation. You would be correct; gravitation applies to everything. But the simple macroscopic law of gravitation emerges, presumably, from a quantum exchange of immense numbers of virtual gravitons just as the diffusion equation emerges from large numbers of long random walks. The diffusion equation and other continuum statistical mechanics laws are special to particular systems, but they emerge from the microscopic theory in much the same way as gravitation and the other fundamental laws of nature do. This is the source of many of the surprisingly simple mathematical laws describing nature [211].

[^0]: ${ }^{1}$ This exercise was developed in collaboration with Sarah Shandera.

[^1]: ${ }^{2}$ The original form of this exercise was developed in collaboration with Piet Brouwer.

[^2]: ${ }^{3}$ The δ-function $\delta\left(x-x_{0}\right)$ is a probability density which has 100% probability of being in any interval containing x_{0}; thus $\delta\left(x-x_{0}\right)$ is zero unless $x=x_{0}$, and $\int f(x) \delta\left(x-x_{0}\right) \mathrm{d} x=f\left(x_{0}\right)$ so long as the domain of integration includes x_{0}. Mathematically, this is not a function, but rather a distribution or a measure.

[^3]: ${ }^{4}$ Hints for the computations can be found at the book website [181].
 ${ }^{5}$ If you do not remember about radius of convergence, see [174]. Here you will be using every other term in the series, so the radius of convergence is $\lim _{j \rightarrow \infty} \sqrt{\left|A_{2 j-1} / A_{2 j+1}\right|}$.

[^4]: ${ }^{6}$ This exercise was developed with the help of Piet Brouwer. Hints for the computations can be found at the book website [181].
 ${ }^{7}$ Why not use all the eigenvalue splittings? The mean splitting can change slowly through the spectrum, smearing the distribution a bit.
 ${ }^{8}$ The distribution for large matrices is known and universal, but is much more complicated to calculate.

[^5]: ${ }^{9}$ Note the spike at zero. There is a small probability that two rows or columns of our matrix of ± 1 will be the same, but this probability vanishes rapidly for large N.
 ${ }^{10}$ This exercise and the associated software were developed in collaboration with Christopher Myers. Hints for the computations can be found at the book website [181].

[^6]: ${ }^{13}$ Examples include movie-actor costars, Six degrees of Kevin Bacon, or baseball players who played on the same team.

[^7]: ${ }^{14}$ This exercise and the associated software were developed in collaboration with Christopher Myers, with help from Bart Selman and Carla Gomes. Computational hints can be found at the book website [181].
 ${ }^{15}$ The famous four-color theorem, that any map of countries on the world can be colored in four colors, shows that all planar graphs are 4-colorable.
 ${ }^{16}$ Because 3-colorability is NP-complete (see Exercise 8.15), finding such a polynomial-time algorithm would allow one to solve traveling salesman problems and find spin-glass ground states in polynomial time too.
 ${ }^{17}$ The operations AND (\wedge) and NOT \neg correspond to common English usage $(\wedge$ is true only if both are true, \neg is true only if the expression following is false). However, $\mathrm{OR}(\vee)$ is an inclusive or-false only if both clauses are false. In common English usage or is usually exclusive, false also if both are true. ("Choose door number one or door number two" normally does not imply that one may select both.)

[^8]: ${ }^{18}$ Developed with the assistance of Paul (Wash) Wawrzynek
 ${ }^{19}$ The Weibull distribution is part of a family of extreme value distributions, all of whom are universal. See Chapter 12 and Exercise 12.24.

[^9]: ${ }^{20}$ The gyromagnetic ratio for each nucleus is also needed in a few situations where its coupling to magnetic fields are important.
 ${ }^{21}$ This exercise was developed in collaboration with David Hathcock. It makes use of the mosh pit simulator [32] developed by Matt Bierbaum for [190].

[^10]: ${ }^{22}$ This exercise was developed in collaboration with Colin Clement.
 ${ }^{23}$ This is likely because one's height is determined by the additive effects of many roughly uncorrelated genes and life experiences; the central limit theorem would then imply a Gaussian distribution (Chapter 2 and Exercise 12.11).
 ${ }^{24}$ In this exercise we shall use \bar{X} denote a quantity averaged over a single sample of N people, and $\langle X\rangle_{\text {samp }}$ denote a quantity also averaged over many samples.
 ${ }^{25}$ In physics, we usually estimate measurement errors separately from fitting our observations to theoretical models, so each experimental data point d_{i} comes with its error σ_{i}. In statistics, the estimation of the measurement error is often part of the modeling process, as in this exercise.

[^11]: ${ }^{28}$ This exercise was developed in collaboration with Katherine Quinn.

[^12]: ${ }^{29}$ Sometimes it is given by half the distance between points on the unit sphere, presumably so that the maximum distance between two probability distributions becomes one, rather than $\sqrt{2}$.

[^13]: ${ }^{30}$ The problem is that the manifold of predictions is being curled up onto a sphere, where the short-cut distance between two models becomes quite different from the geodesic distance within the model manifold.
 ${ }^{31}$ This also makes these measures behave nicely for large systems as in statistical mechanics, where small parameter changes lead to nearly orthogonal probability distributions.

