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Preface

For many decades, quantum field theory has played an important role in the successful
description of the interactions of elementary particles. Besides, this area of theoretical
physics has been always important due to the exchange of new ideas and methods with
other branches of physics, such as statistical mechanics, condensed matter physics,
gravitational physics, and cosmology. The last applications are becoming more impor-
tant nowadays, especially because the amount of experimental and observational data
demonstrates a fast growth and requires more detailed and reliable theoretical back-
ground. One of the most evident examples is the study of dark energy. Every few years,
the estimates of its equation of state (EoS) become more precise and it can not be
ruled out that, at some point, the EoS of the cosmological constant may be excluded
from the list of phenomenologically acceptable possibilities. Does this necessarily mean
that there is some special fluid (quintessence or alike) in the Universe? Or that the
situation can be explained by the variable cosmological constant, e.g., some quantum
effects? This is a phenomenologically relevant question, which should be answered at
some point. On the other hand, this is a theoretical question, that can be answered
only within a correctly formulated framework of quantum or semiclassical gravity.

In gravitational theory, general relativity represents a successful theory of relativis-
tic gravitational phenomena, confirmed by various experiments in the laboratories and
astronomical observations. Starting from the seventies and eighties, there has been a
growing interest in the idea of the unification of all fundamental forces, including
electroweak and strong interactions. Also, there is a general understanding that the
final theory should also include gravitation. An important component of such unifi-
cation is the demand for a quantum description of the gravitational field itself or, at
least, a consistent formulation of the quantum theory of matter fields on the classical
gravitational background, called semiclassical gravity.

The application of quantum field theory methods to gravitational physics, in both
semiclassical and full quantum frameworks, requires a careful formulation of the fun-
damental base of quantum theory, with special attention to such important issues as
renormalization, the quantum theory of gauge theories and especially effective action
formalism. The existing literature on these subjects includes numerous review papers
and also many books, e.g., [172,56,80,150,199,240]. At the same time, the experience
of the present authors, after giving many courses on the subject worldwide, shows that
there is a real need to have a textbook with a more elementary introduction to the
subject. This situation was one of the main motivations for writing this book which
ended up being much longer than originally planned.

The textbook consists of two parts. Part I is based on the one-semester course
given by I.B. in many places, including the Tomsk State Pedagogical University and
the Federal University of Juiz de Fora. It includes a detailed introduction to the general
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methods of quantum field theory, which are relevant for quantum gravity, including its
semiclassical part. Part II is mainly based on the one-semester course given regularly
by I.Sh. in the Federal University of Juiz de Fora and on the numerous mini-courses
in many countries. We did not pretend to do the impossible, that is, produce a com-
prehensive course of quantum field theory or quantum gravity. Instead, our purpose
was to give a sufficiently detailed introduction to the fundamental, basic notions and
methods, which would enable the interested reader to understand at least part of the
current literature on the subject and, in some cases, start original research work.

It is a pleasure for us to acknowledge the collaborations on various subjects dis-
cussed in this book with M. Asorey, R. Balbinot, E.V. Gorbar, A. Fabbri, J.C. Fab-
ris, J.-A. Helaël-Neto, P.M. Lavrov, T.P. Netto, S.D. Odintsov, F.O. Salles and A.A.
Starobinsky. We would like also to thank many colleagues, especially A.O. Barvin-
sky, A.S. Belyaev, E.S. Fradkin, V.P. Frolov, S.J. Gates, E.A. Ivanov, D.I. Kazakov,
S.M. Kuzenko, O. Lechnetfeld, H. Osborn, B.A. Ovrut, N.G. Pletnev, K. Stelle, A.A.
Tseytlin, I.V. Tyutin, and G.A. Vilkovisky for fruitful discussions of the problems of
quantum field theory.

We are grateful to Guilherme H.S. Camargo, Eduardo A. dos Reis, and especially
to Wagno Cesar e Silva for communicating to us misprints and corrections; and also
to Andreza R. Rodrigues and Yackelin Z. R. López for typing certain parts of the
manuscript, and to Vadim Zyubanov for valuable technical assistance.

The main work on Part I of the book was done during the long-term visit of J.B.
to the Federal University of Juiz de Fora (UFJF). The authors are grateful to UFJF
and especially to the Physics Department for providing both kind hospitality and the
conditions for productive work during this visit. Throughout the preparations of the
manuscript, the work of the authors has been supported by a special project APQ-
01205-16 from the Fundação de Amparo á Pesquisa de Minas Gerais (FAPEMIG). On
the top of that, the scientific activity of I.Sh. was partially supported by the Conselho
Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq/Brazil). The authors
are also grateful to the Russian Ministry of Science and High Education and Russian
Foundation for Basic Research for their long-term support of the Center of Theoretical
Physics at the Tomsk State Pedagogical University.
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1

Introduction

1.1 What is quantum field theory, and some preliminary notes

Quantum field theory (QFT) is part of the broader field of theoretical physics and is the
study of quantum effects in continuous physical systems called fields. One can say that
quantum field theory represents the unification of quantum mechanics and classical
field theory. Since a natural and consistent description of fundamental interactions can
be achieved in the framework of special relativity, it is also true to say that relativistic
quantum field theory represents the unification of quantum mechanics and special
relativity.

The main application of quantum field theory is the description of elementary
particles and their interactions. However, QFT has also extensive applications in other
areas of physics, including cosmology. Furthermore, quantum field theory plays an
important role in the theoretical condensed matter physics, especially in the description
of ensembles of a large number of interacting particles. The progress made in the theory
of superconductivity, the theory of phase transitions and other areas of condensed
matter physics is characterized by the consistent use of quantum field theory methods,
and vice versa.

The first part of this book is devoted to the basic notions and fundamental elements
of modern QFT formalism. In the second part, we present an introduction to the QFT
in curved space and quantum gravity, which are less developed and essentially more
complicated subjects.

The reader will note that the style of the two parts is different. In almost all of Part
I and in most of Part II, we tried to give a detailed presentation, so that the reader
could easily reproduce all calculations. However, following this approach for the whole
topic of quantum gravity would enormously increase the size of the book and make it
less readable. For this reason, in some places we avoided giving full technical details
and, instead, just provided references of papers or preprints where the reader can find
intermediate formulas. The same approach concerns the selection of the material. Since
we intended to write an introductory textbook, in Part II we gave only the need-to-
know information about quantum gravity. For this reason, many advanced subjects
were not included. In addition, in some cases, only qualitative discussion and minimal
references have been provided.

1.2 The notion of a quantized field

The field φ(x) = φ(t,x) is defined as a function of time t and the space coordinates,
that form a three-dimensional vector, x. It is assumed that the values of the space

Introduction to Quantum Field Theory with Applications to Quantum Gravity. Iosif L. Buchbinder
and Ilya L. Shapiro, Oxford University Press (2021). © Iosif L. Buchbinder and Ilya Shapiro.
DOI: 10.1093/oso/9780198838319.003.0001
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coordinates correspond to a bounded or unbounded domain of the three-dimensional
space. From the physical point of view, the field φ(t,x) can be treated as a dynamical
object with an infinite number of degrees of freedom, marked by the three-dimensional
vector index x.

The notion of a field naturally arises in the framework of special relativity. Since
there exists a maximal speed of propagation for any type of interaction, the physical
bodies separated by space intervals can not affect each other instantly. Therefore, there
should be a physical object responsible for transmitting perturbation from one body
to another. Such an object is a field that fills the space between the bodies and carries
perturbation from one body to another. The simplest example is an electromagnetic
field that carries interaction between electrically charged bodies.

Taking into account quantum mechanical universality, it is natural to assume that
fields should be quantized, like any other physical system. This means that quantum
states are given by wave functions, while dynamical variables are given by operators
acting on wave functions. Thus, in quantum theory, a field becomes an operator φ̂(t,x),
which is called a field operator.

As we have mentioned (and will discuss in more detail later on), a field is a system
with an infinite number of degrees of freedom. However, it turns out that the state of
the quantum field can be described in terms of either particles or fields. It turns out
that the quantum field is a physical notion that is most suitable for the description of
systems with an arbitrary number of particles.

It is well known that, in relativistic theory, there is a relation between momentum
p and the energy ε = ε(p) of a free particle,

ε2 = m2c4 + c2p2, (1.1)

where c is the speed of light, and m is the mass of the particle. If the field can describe
particles, it must take into account the relation (1.1) between energy and momentum.

Let us try to clarify how the relation (1.1) can be implemented for the field. Let φ̂(t,x)
be the field operator, associated with the free particle. We can write the expansion as
a Fourier integral,

φ̂(t,x) =

∫
d3p dε e

i
~
(p·x−εt) φ̂(ε,p) , (1.2)

where ~ is the Planck constant. According to the standard interpretation, the vector
p is treated as the momentum of a particle, and the quantity ε as the energy of the
particle. Then, since, for each Fourier mode, ε and p are related by Eq. (1.1), the
quantity ε under the integral (1.2) is not an independent variable but is a function of
p. In order to satisfy this condition, one can write

φ̂(ε,p) = δ(ε2 − ε2(p))φ̂∗(p), (1.3)

where φ̂∗(p) depends only on p. As a result, we arrive at the representation

φ̂(t,x) =

∫
d3p dε e

i
~
(px−εt)δ(ε2 − ε2(p))φ̂∗(p). (1.4)
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Consider the following expression showing a d’Alembert operator acting on the
field (1.2):

�φ̂(t,x) =
( 1

c2
∂2

∂t2
−∆

)
φ̂(t,x)

=

∫
d3p dε e

i
~
(p·x−εt) 1

~2

(
p2 − 1

c2
ε2
)
δ(ε2 − ε2(p))φ̂∗(p)

=

∫
d3p e

i
~
(p·x−ε(p)t) 1

~2

[
p2 − 1

c2
ε2(p)

]
δ(ε2 − ε2(p))φ̂∗(p)

=

∫
d3p e

i
~
(p·x−ε(p)t) 1

~2

[
p2 − 1

c2
(c2p +m2c4)

]
δ(ε2 − ε2(p))φ̂∗(p)

= −m
2c2

~2
φ̂(t,x).

Thus, we find that the free field operator should satisfy

( 1

c2
∂2

∂t2
−∆ +

m2c2

~2

)
φ̂(t,x) =

(
� +

m2c2

~2

)
φ̂(t,x) = 0, (1.5)

the Klein–Gordon equation. Equation (1.5) is a direct consequence of the relativistic
dispersion relation between the energy and the momentum of the particle.

If the field corresponds to a massless particle, the parameter m in Eq. (1.5) is zero.
Therefore, the field operator of a free massless field satisfies the wave equation

�φ̂(t,x) = 0. (1.6)

Thus, any kind of a free relativistic quantum field is a spacetime-dependent oper-
ator satisfying the Klein–Gordon equation. In the case of interacting quantum fields,
their dynamics is described by much more complicated equations which will be dis-
cussed in the following chapters.

1.3 Natural units, notations and conventions

It is evident that the units of measurements of physical quantities should correspond to
the scales of phenomena where these units are used. For example, it is not reasonable
to measure the masses of elementary particles in tons or grams, or the size of atomic
nuclei in kilometers or centimeters.

When we consider the relativistic high-energy quantum phenomena in the fun-
damental quantum physics of elementary particles, it is natural to employ the units
related to the fundamental constants of nature. This means that we have to choose
the system of units where the speed of light is c = 1, and the Planck constant (which
has the dimension of the action) is ~ = 1. As a result, we obtain the natural sys-
tem of units based only on the fundamental constants of nature. In these units, the
action is dimensionless, the speed is dimensionless and the dimensions of energy and
momentum coincide. As in quantum theory, there is a Planck formula, relating energy
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and frequency as ε ∼ ~ω, and ω ∼ 1
t , where t is time, and the dimensions satisfy the

relation

[ε] = [p] = [m] = [l]−1 = [t]−1. (1.7)

Thus, we have only one remaining dimensional quantity, the unit of energy. Usually,
the energy in high-energy physics is measured in electron-volts, such that the unit of
energy is 1 eV , or 1GeV = 109 eV . The dimensions of length and time are identical. In
what follows, we shall use this approach and assume the natural units of measurements
described above, with ~ = c = 1.

Other notations and conventions are as follows:
1) Minkowski space coordinates xµ ≡ (x0,x) ≡ (t,x) ≡ (x0, xi), where Greek letters
represent the spacetime indices α, . . . , µ = 0, 1, 2, 3, while Latin letters are reserved for
the space indices, i, j, k, · · · = 1, 2, 3.

2) Functions in Minkowski space are denoted as φ(x) ≡ φ(x0, xi) ≡ φ(x0,x) ≡ φ(t,x).

3) The Minkowski metric is

ηµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 ≡ diag(1,−1,−1,−1), (1.8)

and the same is true for the inverse metric, ηµν = diag(1,−1,−1,−1). One can easily
check the relations ηµνηνρ = δµρ and ηµνη

νρ = δµ
ρ.

Furthermore, εµναβ is the four-dimensional, totally antisymmetric tensor. The sign
convention is that ε0123 = 1 and hence ε0123 = −1.

4) Partial derivatives are denoted as

∂

∂xµ
≡ ∂µ,

∂2

∂xµ∂xν
≡ ∂µ∂ν , etc. (1.9)

5) Rising and lowering the indices looks like

Aµ = ηµνAν , Aµ = ηµνA
ν , ∂µ = ηµν∂ν , ∂µ = ηµν∂

ν , etc.

Let us note that these and some other rules will be changed in Part II, when we start
to deal with curved spacetime.

6) The scalar product is as follows:

AB = AµBµ = A0B0 +AiBi = A0B0 −AiBi.

In particular,

px = pµx
µ = p0x

0 + pix
i = p0x

0 − p · x,

where pµ ≡ (p0,p).
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7) The integral over four-dimensional space is

∫
d4x =

∫
d3x

∫
dx0,

while the integral over three-dimensional space is
∫
d3x.

8) Dirac’s delta function in Minkowski space is

δ4(x − x′) ≡ δ(t− t′)δ(x − x′) ≡ δ(t− t′)δ(x1 − x′1)δ(x2 − x′2)δ(x3 − x′3). (1.10)

In particular, this means
∫
d4x δ4(x− x′)φ(x′) = φ(x).

9) The d’Alambertian operator is

� = ∂20 − ∂21 − ∂22 − ∂23 = ηµν∂µ∂ν = ∂0
2 −∆, (1.11)

where the Laplace operator is

∆ = ∂20 + ∂22 + ∂23 . (1.12)

10) The convention is that repeated indices imply the summation in all cases, i.e.,

XIYI =

N∑

I=1

XIYI . (1.13)

Comments

There are many books on quantum field theory that differ in their manner and level of
presentation, targeting different audiences that range from beginners to more advanced
readers. Let us present a short list of basic references, which is based on our preferences.

The standard textbooks covering the basic notions and methods are those by J.D.
Bjorken and S.D. Drell [57], C. Itzykson and J.-B. Zuber [187], M.E. Peskin and D.V.
Schroeder [250], M. Srednicki [304] and M.D. Schwartz [274].

A brief and self-contained introduction to modern quantum field theory can be
found in the books by P. Ramond [256], M. Maggiore [215] and L. Alvarez-Gaume and
M.A. Vazquez-Mozo [155].

Comprehensive monographs in modern quantum field theory, with extensive cover-
age but aimed for advanced readers are those by J. Zinn-Justin [356], S. Weinberg [345],
B.S. DeWitt [106, 109] and W. Siegel [293].

There are also very useful lecture notes available online, e.g., those by H. Osborn
[235]. For mathematical and axiomatical aspects and approaches to quantum field
theory see, e.g., the book by N.N. Bogolubov, A.A. Logunov, A.I. Oksak and I. Todorov
[60].



2

Relativistic symmetry

In this chapter, we briefly review special relativistic symmetry, which will be used
in the rest of the book. In particular, we introduce basic notions of the Lorentz and
Poincaré groups, which will be used in constructing classical and quantum fields.

In general, the principles of symmetry play a fundamental role in physics. One
of the most universal symmetries of nature is the one that we can observe in the
framework of special relativity.

2.1 Lorentz transformations

According to special relativity, a spacetime structure is determined by the following
general principles:

1) Space and time are homogeneous.
2) Space is isotropic.
3) There exists a maximal speed of propagation of a physical signal. This maximal

speed coincides with the speed of light. In all inertial reference frames the speed of
light has the same value, c.

Let P1 and P2 be two infinitesimally separated events that are points in spacetime.
In some inertial reference frame, the four-dimensional coordinates of these events are
xµ and xµ + dxµ. The interval between these two events is defined as

ds2 = ηµνdx
µdxν . (2.1)

In another inertial reference frame, the same two events have the coordinates x′µ and
x′µ + dx′µ. The corresponding interval is

ds′2 = ηµνdx
′µdx′ν . (2.2)

The two intervals (2.1) and (2.2) are equal, that is, ds′2 = ds2, reflecting the indepen-
dence of the speed of light on the choice of the inertial reference frame. Thus,

ηµνdx
µdxν = ηαβ dx

′αdx′β . (2.3)

Eq. (2.3) enables one to find the relation between the coordinates x′α and xµ.
Let x′α = fα(x), with some unknown function fα(x). Substituting this relation into
Eq. (2.3), one gets an equation for the function fα(x) that can be solved in a general
form. As a result,

x′α = Λαµx
ν + aα, (2.4)

Introduction to Quantum Field Theory with Applications to Quantum Gravity. Iosif L. Buchbinder
and Ilya L. Shapiro, Oxford University Press (2021). © Iosif L. Buchbinder and Ilya Shapiro.
DOI: 10.1093/oso/9780198838319.003.0002
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where Λ ≡ (Λαµ) is a matrix with constant elements, and aα is a constant four-vector.
Substituting Eq. (2.4) into Eq. (2.3), we get

ηαβΛαµΛβν = ηµν . (2.5)

The coordinate transformation (2.4) with the matrix Λαµ, satisfying Eq. (2.5), is called
the non-homogeneous Lorentz transformation. One can say that the non-homogeneous
Lorentz transformation is the most general coordinate transformation preserving the
form of the interval (2.1). If in Eq. (2.4) the vector aα = 0, the corresponding coordi-
nate transformation is called the homogeneous Lorentz transformation, or simply the
Lorentz transformation. Such a transformation has the form

x′µ = Λµνx
ν (2.6)

with the matrix Λµν satisfying Eq. (2.5).
It is convenient to present the relation (2.5) in a matrix form. Let us introduce the

matrices η ≡ (ηαβ) and Λ ≡ (Λαµ). Then Eq. (2.5) can be written as

ΛT η Λ = η, (2.7)

where ΛT is the transposed matrix with the elements (ΛT )µ
α

= Λαµ. One can regard
Eq. (2.7) as a basic relation. Any homogeneous Lorentz transformation is characterized
by the matrix Λ satisfying the basic relation, and vice versa. Therefore, the set of
all homogeneous Lorentz transformations is equivalent to the set of all matrices Λ,
satisfying (2.7).

Let us consider some important particular examples of Lorentz transformations:
1. Matrix Λ has the form

Λ =

(
1 0
0 Rij

)
(2.8)

where the matrix R = (Rij) transforms only space coordinates, x′i = Rijx
j . Substi-

tuting eq.(2.8) into the basic relation (2.7), we obtain the orthogonality condition

RTR = 13, or RikδijR
j
l = δkl, (2.9)

where 13 is a three-dimensional unit matrix with elements δij . Relation (2.9) defines
the three-dimensional rotations

x′0 = x0, x′i = Rijx
j . (2.10)

If matrix R satisfies Eq. (2.9), then the transformation (2.10) is the Lorentz transfor-
mation. Thus, the three-dimensional rotations represent a particular case of Lorentz
transformation.

2. Consider a matrix Λ with the form

Λ =




1
√

1− v2

c2

0 0
v
c

√

1− v2

c2

0 1 0 0
0 0 1 0
v
c

√

1− v2

c2

0 0 1
√

1− v2

c2



, (2.11)
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where (v/c)2 < 1. It is easy to show that this matrix satisfies the basic relation.
Therefore, this matrix describes a Lorentz transformation,

x′0 =
x0 + v

cx
1

√
1− v2

c2

, x′1 = x1, x′2 = x2, x′3 =
x3 + v

cx
0

√
1− v2

c2

. (2.12)

This is the standard form of the Lorentz transformation for the case when one inertial
frame moves with respect to another one in the x3 direction. Indeed, one can construct
a similar matrix describing relative motion in any other direction. Transformations of
the type (2.12) are called boosts.

3. The matrix Λ corresponding to the time inversion, or T -transformation, is

Λ = ΛT =




−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 .

This matrix corresponds to the Lorentz transformation

x′0 = −x0 , x′i = xi. (2.13)

4. Let the matrix Λ have the form

Λ = ΛP =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 .

It is easy to check that the basic relation (2.7) is fulfilled in this case. This matrix
corresponds to the following Lorentz transformation:

x′0 = x0 x′i = −xi, (2.14)

which is called the space reflection or parity (P) transformation.

5. The matrix Λ with the form

Λ = ΛPT = ΛPΛT = ΛTΛP =




−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




corresponds to the following Lorentz transformation:

x′µ = −xµ, (2.15)

which is called the full reflection.
Eqs. (2.13), (2.14), (2.15) are called discrete Lorentz transformations.
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We will mainly need only the subclass of all Lorentz transformations that can be
obtained by small deformations of the identical transformation. Let the transformation
matrix have the form Λ = I, where I is the unit 4 × 4 matrix with elements δµν .
Matrix I satisfies the basic relation (2.7). This matrix realizes the identical Lorentz
transformation

x′µ = xµ.

Stipulating small deformations of identical transformations means that we consider
matrices Λ of the form

Λ = I + ω, (2.16)

where ω is a matrix with infinitesimal elements ωµν . Requiring that the matrix Λ from
(2.16) correspond to a Lorentz transformation, we arrive at the relation

(I + ω)T η(I + ω) = η.

Taking into account only the first-order terms in ω, one gets

ωT η + ηω = 0.

Recovering the indices, we obtain

(ωT )µ
α
ηαν + ηµαω

α
ν = 0 =⇒ ωαµηαν + ηµαω

α
ν = ωµν + ωνµ = 0. (2.17)

One can see that the matrix ω is real and antisymmetric, and hence it has six inde-
pendent elements. The matrix Λ (2.16) corresponds to the coordinate transformation

x′µ = xµ + ωµνx
ν ,

which is called the infinitesimal Lorentz transformation.

2.2 Basic notions of group theory

Group theory is a branch of mathematics devoted to the study of the symmetries.
In this subsection, we consider the basic notions of group theory that will be used in
the rest of the book. It is worth noting that this section is not intended to replace a
textbook on group theory. In what follows, we consequently omit rigorous definitions
and proofs of the theorems and concentrate only on the main notions of our interest.

A set G of the elements g1, g2, g3, . . . , equipped with a law of composition (or
product of elements, or multiplication rule, or composition law), e.g., g1g2, is called a
group if for each pair of elements g1, g2 ∈ G, the composition law satisfies the following
set of conditions:
1) Closure, i.e., ∀g1, g2 ∈ G: g1g2 ∈ G.
2) Associativity, i.e., ∀g1, g2, g3 ∈ G, for the product g1(g2g3) = (g1g2)g3.
3) Existence of unit element, i.e., ∃e ∈ G, such that ∀g ∈ G : ge = eg = g.
4) Existence of inverse element, i.e., ∀g ∈ G, ∃g−1 ∈ G such that gg−1 = g−1g = e.
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Using these conditions, one can prove the uniqueness of the unit and inverse ele-
ments.

A group is called Abelian or commutative if, ∀g1, g2 ∈ G, the product satisfies
g1g2 = g2g1. In the opposite case, the group is called non-Abelian or non-commutative,
i.e., ∃g1, g2 ∈ G such that g1g2 6= g2g1.

A subset H ⊂ G is said to be a subgroup of group G if H itself is the group under
the same multiplication rule as group G. In particular, this means if h1, h2 ∈ H , then
h1h2 ∈ H . Also, e ∈ H , and if h ∈ H , then h−1 ∈ H .

A group consisting of a finite number of elements is called finite. In this case, it is
possible to form a group table gigj . A finite group is sometimes called a finite discrete
group.

Let us consider a few examples:

1. Let G be a set of n×n real matrices M such that detM 6= 0. It is evident that
if M1, M2 ∈ G, then detM1M2 = detM1 detM2 6= 0 and hence M1, M2 ∈ G. Thus,
this set forms a group under the usual matrix multiplication. The unit element is the
unit matrix E, and the element inverse to the matrix M is the inverse matrix M−1. We
know that the multiplication of matrices is associative. Thus, all group conditions are
fulfilled. This group is called a general linear n-dimensional real group and is denoted
as GL(n|R). Consider a subset H ⊂ GL(n|R) consisting of matrices N that satisfy the
condition detN = 1. It is evident that det (N1N2) = detN1 detN2 = 1. Hence

N1, N2 ∈ H =⇒ N1N2 ∈ H.

Consider other properties of this group. It is evident that E ∈ H . On the top of this,

N ∈ G =⇒ det
(
N−1

)
= ( detN)−1 = 1.

The last means N−1 ∈ H . Hence H is a subgroup of the group GL(n|R). Group H is
called a special linear n-dimensional real group and is denoted as SL(n|R). In a similar
way, one can introduce general and special complex groups GL(n|C) and SL(n|C),
respectively, where C is a set of complex numbers.

2. Let G be a set of complex n×n matrices U such that U+U = UU+ = E, where
E is the unit n× n matrix. Here, as usual, (U+)ab = (U∗)ba or U † = (U∗)T , where ∗
means the operation of complex conjugation, and T means transposition. Evidently,
E ∈ G and, for any U1, U2 ∈ G, the following relations take place:

(U1U2)+(U1U2) = U+
2 (U+

1 U1)U2 = U+
2 U2 = E,

(U1U2)(U1U2)+ = U1(U2U
+
2 )U+

1 = U1U
+
1 = E. (2.18)

In addition, if U ∈ G, then (U−1)+U−1 = (UU+)−1 = U−1(U−1)+ = (U+U)−1 =
E. Therefore, if U ∈ G, then U−1 ∈ G too. As a result, the set of matrices under
consideration form a group. This group is called the n-dimensional unitary group
U(n).

The condition U+U = E leads to | detU |2 = 1. Hence detU = eiα, where α ∈ R.
One can also consider a subset of matrices U ∈ U(n), that satisfy the relation detU =
1. This subset forms a special unitary group and is denoted SU(n).
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Since the multiplication of matrices is, in general, a non-commutative operation,
the matrix groups GL(n,R), SL(n,R), U(n) and SU(n) are, in general, non-Abelian.

A group G is called the Lie group if each of its element is a differentiable function
of the finite number of parameters, and the product of any two group elements is a
differentiable function of parameters of each of the factors. That is, consider, ∀g ∈ G,

and for g1 = g
(
ξ
(1)
1 , . . . , ξ

(1)
N

)
and g2 = g

(
ξ
(2)
1 , . . . , ξ

(2)
N

)
, g = g1g2 = g(ξ1, . . . , ξN ).

Then

ξI = fI
(
ξ
(1)
1 , . . . , ξ

(1)
N , ξ

(2)
1 , . . . , ξ

(2)
N

)
, (2.19)

where I = 1, 2, . . . , N are the differentiable functions of the parameters

ξ
(1)
1 , . . . , ξ

(1)
N , ξ

(2)
1 , . . . , ξ

(2)
N . The Lie group is called compact if the parameters ξ1, . . . , ξN

vary within a compact domain. One can prove that the parameters ξ1, . . . , ξN can be
chosen in such a way that g(0, . . . , 0) = e, where e is the unit element of the group.

All matrix groups described in the examples above are the Lie groups, where the
role of parameters is played by independent matrix elements.

The two groups G and G′ are called homomorphic if there exists a map f of the
group G into the group G′ such that, for any two elements g1, g2 ∈ G, the following
conditions take place: f(g1g2) = f(g1)f(g2), and if f(g) = g′, then f(g−1) = g′−1,
where g′−1 is an inverse element in the group G′. Such a map is called homomorphism.
One can prove that f(e) = e′, where e′ is the unit element of the group G′. One-to-
one homomorphism is called isomorphism, and the corresponding groups are called
isomorphic. We will write, in this case, G = G′.

Let G be some group, and V be a real or complex linear space. Consider a map
R such that, ∀g ∈ G, there exists an invertible operator DR(g) acting in the space V .
Furthermore, let the operators DR(g) satisfy the following conditions:

1) DR(e) = I, where I is a unit operator in the space V ; and 2) ∀g1, g2 ∈ G, we
have DR(g1g2) = DR(g1)DR(g2).

The mapR is called a representation of the groupG in the linear space V . Operators
DR(g) are called the operators of representation, and the space V is called the space
of the representation. One can prove that, ∀g ∈ G, there is DR(g−1) = D−1R (g), where
D−1R (g) is the inverse operator for DR(g). Thus, the set of operators DR(g) forms a
group where a multiplication rule is the usual operator product.

We will mainly concern ourselves with matrix representations, where the operators
DR(g) are the n×n matricesDR(g)ij , i, j = 1, 2, . . . , n. Let v be a vector in a space of
representation with the coordinates v1, v2, . . . , vn, in some basis. The matrices DR(g)ij
generate the coordinate transformation of the form

v′i = DR(g)ijv
j .

Let R be a representation of the group G in the linear space V , and Ṽ be a
subspace in V , i.e., Ṽ ⊂ V . We assume that, for any vector ṽ ∈ Ṽ and for any
operator DR(g), the condition DR(g)ṽ ∈ Ṽ takes place. Then, the subspace Ṽ is
called the invariant subspace of the representation R. Any representation always has
two invariant subspaces, which are called trivial. These are the subspace Ṽ = V , and
the subspace Ṽ = {0}, which consists of a single zero element. All other invariant
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subspaces, if they exist, are called non-trivial. A representation R is called reducible
if it has non-trivial invariant subspaces, and irreducible if it does not. In other words,
the representation R is called irreducible if it has only trivial invariant subspaces.
A representation is called completely irreducible if all representation matrices DR(g)
have the block-diagonal form. This means that, in a certain basis,

DR(g) =




D1(g) 0 0 ... 0

0 D2(g) 0 ... 0

0 0
. . . ... 0

0 0 0 ... Dk(g)



.

This situation means that the representation space has k non-trivial invariant sub-
spaces. In each of such subspaces, one can define an irreducible representation, Dk(g).

A given Lie group can have different representations, where the matricesDR(g) may
have different forms. However, some properties are independent of the representation.
Some of these properties can be formulated, e.g., in terms of Lie algebra. Let DR(g)
be the operators of representation, and g = g(ξ). Then, the operators DR(g) will be
the functions of N parameters ξ1, ξ2, . . . , ξN , i.e., DR(g) = DR(ξ) and DR(ξ)|ξI=0 =
DR(e) = 1, where 1 is a unit matrix in the given representation space. One can prove
that, in an infinitesimal vicinity of the unit element, operators DR(ξ) can be presented
in the form

DR(ξ) = 1 + iξITRI , where TRI = −i ∂DR(ξ)

∂ξI

∣∣∣∣
ξ=0

. (2.20)

The operators TRI are called the generators of the group G in the representation R.
One can show that any operator DR(ξ) which is obtained by the continuous deforma-
tion from the unit element can be written as

DR(ξ) = eiξ
ITRI . (2.21)

If the operator DR(ξ) is unitary, i.e., DR(ξ)D+
R(ξ) = D+

R(ξ)DR(ξ) = 1, then the
generators TRI are Hermitian, i.e., TRI = TR

+
I . The generators of our interest satisfy

the following relation in terms of commutators:

[TRI , TRJ ] = ifIJ
KTRK , (2.22)

where fIJ
K are the structure constants of the Lie group G. It is evident that

fIJ
K = −fJIK . In general, the form of the matrices TRI depends on the represen-

tation. However, one can prove that the structure constants do not depend on the
representation. Thus, these constants characterize the group G itself.

The group generators are closely related to the notion of Lie algebra. Let A be a
real or complex linear space with the elements a1, a2, . . . . A linear space A is called
Lie algebra, if for each two elements a1, a2 ∈ A, there exists a composition law (also
called multiplication or the Lie product) [a1, a2], such that



The Lorentz and Poincaré groups 15

1) [a1, a2] ∈ A,
2) [a1, a2] = −[a2, a1],

3) [c1a1 + c2a2, a3] = c1[a1, a3] + c2[a2, a3]and

4) [a1, [a2, a3]] + [a2, [a3, a1]] + [a3, [a1, a2]] = 0. (2.23)

Here, c1 and c2 are arbitrary real or complex numbers, and a3 ∈ A. The composition
law [a1, a2] is called the Lie bracket, or the commutator. Property 4 is called the Jacobi
identity.

It is easy to check that the commutator of the generators (2.22) of the represen-
tation of the Lie group G satisfies all properties of the composition law for the Lie
algebra. Therefore, the generators TRI form the Lie algebra which is called the Lie
algebra associated with a given Lie group G. To be more precise, they form a repre-
sentation of the Lie algebra. It means that one can define the map T (a) of the Lie
algebra into a linear space of operators such that

T : a −→ T (a) and [a1, a2] −→ [T (a1), T (a2)]. (2.24)

A Lie algebra is called commutative, or Abelian, if, for any two elements a1, a2 ∈ A,
[a1, a2] = 0. In the opposite case, the Lie algebra is called non-commutative, or non-
Abelian. One can prove that the Lie algebra associated with an Abelian Lie group is
Abelian.

2.3 The Lorentz and Poincaré groups

Consider the group properties of Lorentz transformations. The Lorentz transformation
has been defined in the form

x′µ = Λµνx
ν ,

where the matrix Λ satisfies the basic relation (2.7). Let us show that Lorentz transfor-
mations form a group. Consider the set of all Lorentz transformations or, equivalently,
the set of all matrices Λ satisfying ΛTηΛ = η.

For the product of two matrices corresponding to the Lorentz transformations, Λ1

and Λ2, we have

(Λ1Λ2)T η(Λ1Λ2) = Λ2
TΛ1

T ηΛ1Λ2 = Λ2
T ηΛ2 = η. (2.25)

Thus, the matrix product Λ1Λ2 satisfies the basic relation (2.7), and hence two con-
sequent Lorentz transformations are equivalent to another Lorentz transformation,

x′′µ = Λ1
µ
αΛ2

α
νx

ν . (2.26)

Let I be the unit 4× 4 matrix with the elements δµν . It is evident that IT ηI = η, i.e.,
the matrix I corresponds to a Lorentz transformation.

The next step is to check the existence of an inverse element. The basic relation
(2.7) can be recast in the form ΛT η = ηΛ−1 or, equivalently, η = (ΛT )−1ηΛ−1, or
(Λ−1)T ηΛ−1 = η. Thus, matrix Λ−1 also corresponds to a Lorentz transformation.
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Lorentz transformations form a group where the multiplication law is a standard
product of matrices Λ. Such a group is called the Lorentz group. Let us explore it in
more detail. From the basic relation ΛT ηΛ = η follows

det ΛT det η det Λ = det η and det η = −1 6= 0.

As a result, ( det Λ)2 = 1, and hence det Λ = ±1.
Starting from the relation ΛαµηαβΛβν = ηµν , and setting µ = 0 and ν = 0, one

gets 1 = Λ0
0 η00 Λ0

0 + Λi0 ηij Λj0. Since ηij = −δij and η00 = 1, one obtains

1 = (Λ0
0)2 − Λi0Λi0 =⇒ (Λ0

0)2 = 1 + Σ3
i=1(Λi0)2.

Therefore, (Λ0
0)2 ≥ 1, and hence |Λ0

0| ≥ 1. As a result, we have the two relations

( det Λ)2 = 1, |Λ0
0| ≥ 0. (2.27)

Thus, the following cases are possible:

det Λ = 1, Λ0
0 > 0,

det Λ = −1, Λ0
0 > 0,

det Λ = 1, Λ0
0 < 0,

det Λ = −1, Λ0
0 < 0.

It means that the set of all Lorentz transformation is separated into four subsets:

L+
↑ : the set of matrices Λ such that det Λ = 1, Λ0

0 > 0,

L−
↑ : the set of matrices Λ such that det Λ = −1, Λ0

0 > 0,

L+
↓ : the set of matrices Λ such that det Λ = 1, Λ0

0 < 0,

L−
↓ : the set of matrices Λ such that det Λ = −1, Λ0

0 < 0. (2.28)

It is easy to see that I ∈ L+
↑. One can show that the subset L+

↑ forms a group which
is called the proper Lorentz group. It is evident that the proper Lorentz group is a
subgroup of the Lorentz group. All other subsets do not form groups.

Remark. The infinitesimal Lorentz transformations are generated by the matrix
Λ = I + ω. Since I ∈ L+

↑, the matrices Λ = I + ω ∈ L+
↑. Since the matrix ω has

six real independent elements, the proper Lorentz group is a six-parametric real Lie
group.

Now let us consider a set of non-homogeneous Lorentz transformations

x′µ = Λµνx
ν + aµ,

where the matrix Λ satisfies the basic relation, and aµ is a constant four-vector. Ap-
plying two non-homogeneous Lorentz transformations, one after another, we get

x′α = Λ1
α
νx

ν + a1
α , x′′µ = Λ2

µ
αx
′α + a2

µ. (2.29)

Substituting the first relation into the second one, we get
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x′′µ = Λ2
µ
α(Λ1

α
νx

ν + a1
α) + a2

µ = Λ2
µ
αΛ1

α
νx

ν + Λ2
µ
αa1

α + a2
µ. (2.30)

According to what we proved before, the matrix Λ2
µ
αΛ1

α
ν = (Λ2Λ1)µα satisfies the

basic relation. Furthermore, the quantity Λ2
µ
αa1

α +a2
µ is a constant four-vector. Let

us denote

Λµν = Λ2
µ
αΛ1

α
ν , aµ = Λ2

µ
αa1

α + a2
µ.

Then the relation (2.30) becomes

x′′µ = Λµνx
ν + aµ. (2.31)

Since the matrix Λµν satisfies the basic relation, Eq. (2.31) gives us again the non-
homogeneous Lorentz transformation. We denote the non-homogeneous Lorentz trans-
formation as (Λ, a), and define, as per (2.30), the multiplication rule on a set of all
such transformations as follows:

(Λ2, a2)(Λ1, a1) = (Λ2Λ1,Λ2a1 + a2). (2.32)

Using the transformation (I, 0), we arrive at the relations

(Λ, a)(I, 0) = (ΛI,Λ · 0 + a) = (Λ, a) = (I, 0)(Λ, a).

It is clear that the transformation (I, 0) plays the role of the identity transformation.
Let (Λ, a) be a non-homogeneous Lorentz transformation, and consider the transfor-
mation (Λ−1,−Λ−1a). We have

(Λ, a)(Λ−1,−Λ−1a) = (ΛΛ−1, −ΛΛ−1a+ a) = (I, 0) = (Λ−1,−Λ−1a)(Λ, a).

Hence, the transformation (Λ−1,−Λ−1a) is the inverse of (Λ, a). As a result, the set of
all non-homogeneous Lorentz transformations forms a group, with the multiplication
rule given by Eq. (2.32). This is the Poincaré group.

An infinitesimal non-homogeneous Lorentz transformation has the form

x′µ = xµ + ωµνx
ν + aµ, (2.33)

where ωµν is a matrix with infinitesimal elements, and aµ is an infinitesimal constant
four-vector. Since ωµν = −ωνµ, the matrix ωµν has six real independent elements. In
the vicinity of the unit element (I, 0), any element of the Poincaré group is determined
by the real parameters ωµν and aµ. Thus, the Poincaré group is the ten-parametric
Lie group.

2.4 Tensor representation

We defined a group representation as a map of the group into a group of matrices
acting in a linear space. The Lorentz and Poincaré groups express the special relativity
principles; therefore, the representations of these groups in the space of the fields define
the types of the fields compatible with the principles of relativity. In this and the
following sections, we consider the simplest representations of Lorentz and Poincaré
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groups. The general theory of the representations of these groups is well developed,
but its detailed consideration is beyond the scope of this book.

Let us start with the linear space of the tensor fields. Consider a set of all coordinate
systems related by the transformations

x′µ = Λµνx
ν + aµ, (2.34)

with matrices Λ satisfying the basic relation (2.7). We will call all such coordinate
systems admissible. Let us assume that, in some admissible coordinate system {xµ},
there is a set of 4m+n functions tµ1···µm

ν1···νn(x), while, in another admissible coordi-
nate system {x′µ}, there is a set of 4m+n functions t

′µ1···µm
ν1···νn(x′). If these two sets

are related to each other as

t′µ1···µm
ν1···νn(x′) =

∂x′µ1

∂xα1
. . .

∂x′µm

∂xαm

∂x′β1

∂xν1
. . .

∂x′βn

∂xνn
tα1···αm

β1···βn
(x), (2.35)

then these functions form a tensor (or a tensor field) of the type (m,n). The numbers
tµ1···µn

ν1···νn(x) are called the components of the tensor in the coordinate frame {xµ}.
Starting from the relation (2.34), we get

∂x′µ

∂xα
= Λµα. (2.36)

It is easy to see that

(Λ−1)αµΛµβ
∂xβ

∂x′ν
= (Λ−1)αµδ

µ
ν =⇒ ∂xα

∂x′ν
= (Λ−1)αν = (Λ−1)T ν

α
, (2.37)

where T means a matrix transposition.
Then, the definition (2.35) can be rewritten as

t
′µt···µm

ν1···νn(x′) = Λµ1
α1 . . .Λ

µm
αm

× (Λ−1)
T

ν1

β1

. . . (Λ−1)
T

νn

βn

tα1···αm
β1···βn

(x). (2.38)

This relation means that, for any element of the Poincaré group (Λ, a), there is a tensor
transformation (2.38). One can check that all conditions of the group representation are
fulfilled for the transformations (2.38). Therefore, Eq. (2.38) defines a representation
of the Poincaré group that is called the tensor representation.

Setting aµ = 0 in (2.38), we arrive at the tensor representation of the Lorentz
group. There are special cases of tensor representations for either Poincaré or Lorentz
groups. E.g., the tensor of rank zero, or type (0, 0), is called a scalar. The relation
(2.38) in this case is

ϕ′(x′) = ϕ(x), x′ = Λx+ a. (2.39)

A tensor with components tµ(x) is called a contravariant vector. The defining relation
(2.38) in this case has the form

t′µ(Λx+ a) = Λµνt
ν(x). (2.40)
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A tensor with components tµ is called a covariant vector. The defining relation (2.38)
in this case looks like

t′µ(Λx+ a) = (Λ−1)T µ
ν
tν(x). (2.41)

Remark. Using a metric, one can convert a covariant index into a contravariant, and
vice versa. For example, for vectors, we have tµ = ηµνtν and tµ = ηµνt

ν . Therefore, we
can simply call the corresponding geometric object a vector, which may have covariant
or contravariant components. Analogously, one can convert any upper tensor index into
a lower tensor index, and vice versa.

Our main purpose in this section is to find an infinitesimal form of the Lorentz
transformation of tensor components. Let us write

x′µ = xµ + ωµνx
ν + aµ, (2.42)

where ωµν = −ωνµ is a matrix with infinitesimal elements, and aµ is an infinitesimal
vector. In what follows, we may omit the indices, when it is possible to do so without
causing confusion.

Let us consider the transformation law for the scalar field,

ϕ′(x+ ωx+ a) = ϕ(x) or ϕ′(x) + ∂µϕ(x)(ωµνx
ν + aµ) = ϕ(x). (2.43)

Denote ϕ′(x) − ϕ(x) = δϕ(x), where δϕ(x) is a variation of a scalar field under the
infinitesimal coordinate transformations. Let us introduce the operators Pµ and Jαβ
by the rule

Pα = i∂α , Jαβ = ηανx
νPβ − ηβνxνPα. (2.44)

Pµ and Jαβ are called the generators of spacetime translations and the Lorentz rota-
tions, respectively, in the scalar representation. Using these operators, the variation of
the scalar field can be written as follows:

δϕ(x) =
[
iaαPα −

i

2
ωαβJαβ

]
ϕ(x). (2.45)

Let us consider the infinitesimal transformations of a vector field. We have

t′µ(x+ ωx+ a) = (δµν + ωµν)tν(x),

which can be written as

t′µ(x) + ∂νt
µ(x)

[
ωνλx

λ + aν
]

= tµ(x) + ωµνt
ν(x)

and, finally, as

δtµ(x) = −∂νtµ(x)ωνλx
λ − ∂νtµ(x)aν + ωµνt

ν(x) = iaα(i∂α)δµνt
ν(x)

+
i

2
ωαβ

[
i(δµβηαν − δµαηβν) + i(δα

γηβλx
λ − δβγηαλxλ)∂γ

]
tµ(x)

=
[
iaα(Pα)µν −

i

2
ωαβ(Jαβ)

µ
ν

]
tν(x), (2.46)



20 Relativistic symmetry

where the following notations were used:

(Pα)µν = δµν(i∂α),

(Jαβ)
µ
ν = (Mαβ)

µ
ν + (Sαβ)

µ
ν , (2.47)

(Mαβ)µν = δµν

(
xαPβ − xβPα

)
,

(Sαβ)µν = i
(
δµαηβν − δµβηαν

)
. (2.48)

The operator (Pα)µν is the generator of spacetime translations in the contravariant
vector representations, and the operator (Jαβ)

µ
ν is the generator of Lorentz rotations

in the covariant vector representation. Finally, Pα and Jαβ are the Poincaré group
generators in vector representations.

Similar considerations can be made for any tensor. For instance, in the particular
case of the (1, 1)-type tensor, the result can be written in the symbolic form

δtA
′

B′(x) =
[
iaα(Pα)A

′

B′A
B − i

2
ωαβ(Jαβ)A

′

B′A
B
]
tAB(x),

where A′ ≡ (µ′1, . . . , µ
′
m), B′ ≡ (ν′1, . . . , ν

′
n), A ≡ (µ1, . . . , µm) and B ≡ (ν1, . . . , νn).

As before, the operators Pα and Jαβ are the generators of translations and the Lorentz
rotations of the Poincaré group representation in the space of tensors tAB. The explicit
form can be found in a way similar to that used in the case of a vector. If the vector
aα = 0, one gets the tensor transformation law under the infinitesimal homogeneous
Lorentz transformations.

2.5 Spinor representation

Along with tensors, there are other objects associated with the Lorentz group, called
spinors. As we will see, in some sense, they are simpler than tensors.

Consider a set of 2 × 2 complex matrices N with unit determinants. Since N is
not degenerate, there is an inverse matrix N−1, and detN−1 = ( detN)−1 = 1. For
the two matrices N1 and N2 with detN1 = detN2 = 1, we have det (N1N2) =
detN1 × detN2 = 1. The set of such matrices N forms a group which is called the
two-dimensional special complex linear group and is denoted as SL(2|C). We will
show that there is a map of group SL(2|C) into group L+

↑. Namely, for each matrix
N ∈ SL(2|C), there exists a matrix Λ ∈ L+

↑, and vice versa. Moreover,

Λ(N1N2) = Λ(N1)Λ(N2) and Λ(N1) = Λ(N2) =⇒ N1 = ±N2.

The construction of matrix Λ(N) consists of several steps:
1. Consider a linear space of Hermitian 2× 2 matrices X , X = X+, where X+ =

(X∗)T , where ∗ means the complex conjugation. A basis in this space can be taken as
σµ = (σ0, σj), where

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (2.49)

Here σ0 is the unit 2× 2 matrix, and σj are the Pauli matrices. It is evident that all
matrices σµ are Hermitian. Also, we introduce the matrices σ̃µ = (σ0,−σj). Then it
is easy to check that the following relation takes place:
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tr
(
σ̃µσν

)
= 2ηµν . (2.50)

Let X be an arbitrary 2× 2 Hermitian matrix, written in the basis σµ as

X = xµσµ. (2.51)

Since the matrices X and σµ are Hermitian, the xµ are real numbers which can be
identified with coordinates in Minkowski space. The relations (2.50) and (2.51) lead
to

xµ =
1

2
tr
(
σ̃µX

)
. (2.52)

2. Let N ∈ SL(2|C). Consider the matrix

X ′ = NXN+.

It is easy to see that X ′ is a Hermitian matrix. In addition, detX ′ = det (NXN+) =
detX . Matrices X ′ and X can be expanded in the basis of σµ, providing X ′ = x′µσµ
and X = xµσµ. The coefficients x′µ can be obtained according to (2.51) as

x′µ =
1

2
tr
(
σ̃µX ′

)
=

1

2
tr
(
σ̃µNσνN

+
)
xν .

Denoting

Λµν =
1

2
tr
(
σ̃µNσνN

+
)
≡ Λµν(N), (2.53)

we arrive at the transformation law

x′µ = Λµν(N)xν . (2.54)

3. The detX can be exactly calculated using an explicit form of the matrices σµ,

X = xµσµ =

(
x0 0
0 x0

)
+

(
0 x1

x1 0

)
+

(
0 −ix2
ix2 −0

)
+

(
x3 0
0 −x3

)

=

(
x0 + x3 x1 − ix2
x1 + ix2 x0 − x3

)
.

Therefore,

detX = (x0 + x3)(x0 − x3)− (x1 − ix2)(x1 + ix2)

= (x0)2 − (x1)2 − (x2)2 − (x3)2 = ηµνx
µxν .

Similarly, detX ′ = ηµνx
′µx′ν . Hence, since the two determinants are equal, we get

ηµνx
′µx′ν = ηαβx

αxβ . (2.55)

This is just the condition of preserving the interval (2.3).
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4. Substitute (2.53) into (2.55) and get ΛT ηΛ = η. Therefore, the matrices Λ(N)
(2.53) satisfy the basic relation, and hence they realize the Lorentz transformations.
Thus, the numbers xµ from (2.52) can indeed be treated as the Minkowski space
coordinates. Also, the matrix Λµν(N) (2.53) satisfies the relation det Λ(N) = 1. In
addition,

Λ0
0(N) =

1

2
tr σ̃0Nσ0N

+ =
1

2
tr (NN+) > 0.

As a result, the matrices Λ(N) (2.53) belong to the proper Lorentz group L+
↑.

5. We proved that, for each matrix N ∈ SL(2|C), there is a matrix Λ(N) ∈ L+
↑.

One can also prove the inverse statement. For each matrix Λ(N) ∈ L+
↑, there exists

some matrix N ∈ SL(2|C). Let

Λ(N1) = Λ(N2) ⇐⇒ tr σ̃µN1σνN1
+ = tr σ̃µN2σνN2

+ ⇐⇒ N1 = ±N2.

There are two matrices N corresponding to a given matrix Λ. Performing two conse-
quent transformations X ′ = N1XN

+
1 and X ′′ = N2X

′N+
2 , one gets x′α = Λαν(N1)xν

and x′′µ = Λµα(N2)x′α. Therefore x′′µ = Λµα(N2)Λαν(N1)xν . On the other hand,

X ′′ = N2N1XN1
+N2

+ = (N2N1)X(N2N1)+.

Hence, x′′µ = Λµν(N2N1)xν . As a result, Λµν(N2N1) = Λµα(N2)Λαν(N1). Thus, we
have the mapping

SL(2|C) −→ L+
↑,

N2N1 ∈ SL(2|C) −→ Λ(N2N1) = Λ(N2)Λ(N1) ∈ L+
↑,

Λ2 = Λ1 −→ N2 = ±N1.

We see that the group SL(2|C) is closely related to the proper Lorentz group L+
↑. The

coordinate transformations in Minkowski space, generated by the elements from the
proper Lorentz group, create the transformations X ′ = NXN+, which are generated
by the matricesN ∈ SL(2|C). Thus, we can consider the transformationsX ′ = NXN+

to be equal footing with the Lorentz transformations x′µ = Λµνx
ν .

The matrices N act in the two-dimensional complex space formed by the elements
ϕ ≡ {ϕa}, with a = 1, 2. The rule looks like

ϕ′a = Na
bϕb. (2.56)

Since, for each matrix N , there is a matrix Λ(N) ∈ L+
↑, one can say that (2.56) is the

transformation law of a complex two-component vector under the Lorentz transfor-
mation. The vectors ϕ = {ϕa}, transforming according to (2.56), are called left Weyl
spinors, and a is called the spinor index. The representation of the SL(2|C) group in
the linear space of the left Weyl spinors is called the fundamental representation of
the Lorentz group. Next, we introduce the matrix ε = (εab) by the rule

ε =

(
0 −1
1 0

)
=⇒ ε−1 =

(
0 1
−1 0

)
(2.57)
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and consider the expression

fab = Na
cNb

dεcd = Na
1Nb

2ε12 +Na
2Nb

1ε21 = Na
2Nb

1 −Na1Nb2.

It is evident that f11 = f22 = 0, f12 = −f21 and we can calculate

f12 = N1
2N2

1 −N1
1N2

2 = − detN = −1.

Then f21 = 1, and hence fab = εab. As a result, one gets Na
cNb

dεcd = εab, or NεNT =
ε. This relation shows that the matrix ε (2.57) is an invariant matrix for group SL(2|C).

Let us introduce the inverse matrix ε−1 with elements εab, εabεbc = δac, εabε
bc =

δa
c. If ε in (2.57) is an invariant quantity, ε−1 is also invariant, and one can prove that

ε−1 = NT ε−1N. (2.58)

The matrices ε and ε−1 can be used for raising and lowering the spinor indices

ϕa = εabϕb, ϕa = εabϕ
b. (2.59)

Let us show that the expression ϕ1
aϕ2a is invariant. Indeed,

ϕ′1
a
ϕ′2a = εabϕ′1bϕ

′
2a = εabNb

dϕ1dNa
cϕ2c

= (NT )caε
abNb

dϕ1dϕ2c = εcdϕ1dϕ2c = ϕ1
cϕ2c.

Thus, we have learned how to construct a Lorentz invariant object from spinors.
Let N be an arbitrary matrix from SL(2|C) and let the matrix N∗ have complex

conjugate elements. The elements of this matrix are denoted by definition as N∗ȧ
ḃ;

ȧ, ḃ = 1̇, 2̇. This matrix realizes the transformation

χ′ȧ = N∗ȧ
ḃχḃ. (2.60)

The two-dimensional complex vector χ ≡ {χȧ}, which transforms according to (2.60),
is called the right Weyl spinor, and ȧ is a spinor index. The representation of the
SL(2|C) group in the linear space of right Weyl spinors is called the conjugate repre-
sentation.

It proves useful to introduce the matrices

εȧḃ =

(
0 −1
1 0

)
, εȧḃ =

(
0 1
−1 0

)
,

which satisfy the relations

εȧḃ = N∗ȧ
ċN∗ḃ

ḋεċḋ , εȧḃ = N∗ċ
ȧN∗ḋ

ḃεċḋ. (2.61)

This means that εȧḃ and εȧḃ are invariant tensors of the group SL(2|C). These matrices
can be used for raising and lowering the dotted spinor indices:

χȧ = εȧḃχḃ, χȧ = εȧḃχ
ḃ.

It is evident that the expression χ1ȧχ2
ȧ is Lorentz invariant; hence, we obtain, once

again, a recipe for how to construct the Lorentz invariants from spinors.
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Generalization of the undotted ϕa and dotted χȧ spinors is a general spin tensor
ϕa1,...,am,ȧ1,...,ȧn , defined by the transformation law under the Lorentz transformation
as follows:

ϕ′a1,...,am,ȧ1,...,ȧn(x′) = Na1
b1 . . .Nam

bmN∗ȧ1
ḃ1 . . .N∗ȧn

ḃnϕb1,...,bm,ḃ1,..., ˙bn(x). (2.62)

Consider the matrices X ′ = x′µσµ and X = xµσµ, where X ′ = NXN+ and
x′µ = Λµν(N)xν . This means Λµν(N)xνσµ = NσνN

+xν . Therefore,

σµ = (ΛT )−1µ
ν
NσνN

+. (2.63)

This relation shows that the matrices σµ form invariant objects of the group SL(2|C).
The matrix elements of σµ are denoted as (σµ)aȧ. Rising the spinor indices, one gets

(σµ)aȧ = εabεȧḃ(σµ)bḃ ≡ (σ̃µ)ȧa. (2.64)

Using the explicit form of σµ = (σ0, σj) and that of εab, εȧḃ, one can find σ̃µ =
(σ0,−σj). This matrix has already been introduced, at the beginning of section 2.5.

Starting from the spinors ϕa, χȧ, the matrices σµ and the relations (2.56), (2.60)
and (2.63), we can construct (complex) vectors under Lorentz transformations, e.g.,

ϕ′a(σµ)aȧχ
′ȧ = εabϕ′b(σ

µ)aȧε
ȧḃχ′

ḃ

= Λµνε
abNb

cϕc(Nσ
νN †)aȧε

ȧḃ(N∗)ḃ
ċχċ = Λµνϕ

d(σν)dḋχ
ḋ. (2.65)

Thus, we have obtained the transformation law for the contravariant vector under the
Lorentz transformation. Analogously, one can prove that the expression χȧ(σ̃µ)ȧaϕa
is also the contravariant vector. As a result, we arrive at a prescription for how to
construct Lorentz vectors from spinors and σ-matrices.

The matrices σµ, σ̃µ possess many useful properties that can be established by
direct calculations, e.g.,

(σµσ̃ν + σν σ̃µ)a
b

= 2ηµνδa
b , (σ̃µσν + σ̃νσµ)ȧ ḃ = 2ηµνδ

ȧ
ḃ

trσµσ̃ν = 2ηµν , σµaȧσ̃µ
ḃb = 2δa

bδȧ
ḃ. (2.66)

The matrices σµ, σ̃µ make it possible to convert the vector indices into a pair of
spinor indices, and vice versa. For example, if we have a vector tµ, we can construct
the object taȧ ∼ (σµ)aȧtµ. Consider an arbitrary spin tensor with an equal number of
dotted and undotted indices, ϕa1...anȧ1...ȧn . Then we can construct a tensor of rank
n as

ϕµ1...µn
= σµ1

a1ȧ1σµ2

a2ȧ2 . . . σµn

anȧnϕa1...anȧ1...ȧn (2.67)

and vice versa,

ϕa1...anȧ1...ȧn =
1

2n
σ̃µ1

ȧ1a1 . . . σ̃
µn

ȧnan ϕµ1...µn
. (2.68)
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For the spin tensors ϕa1...anaȧ1...ȧn and χa1...anȧ1...ȧnȧ , one can construct the quan-
tities

ϕµ1...µna = σµ1

a1ȧ1 . . . σµn

anȧnϕa1...anaȧ1...ȧn ,

χµ1...µȧ
n

= σµ1

a1ȧ1 . . . σµn

anȧnχa1...anȧ1...ȧnȧ . (2.69)

A tensor with the spinor components

ψµ1...µn
=

(
ϕµ1...µn

χµ1...µn

)
(2.70)

is called the Dirac tensor spinor.
The relations (2.56) and (2.60) make it possible to derive the generators of the

Lorentz group in the fundamental and conjugate representations. In the vicinity of the
unit element, the matrices N ∈ SL(2|C) have the form N = E+T , or Na

b = δa
b+Ta

b,
where E is the unit 2×2 matrix, and Ta

b is a 2×2 matrix with infinitesimal elements.
It is known that detN = 1 + trT is linear in T ; therefore, tr T = 0, since detN = 1.
The matrix T can be expanded in the basis σµ; however, since T is traceless, we can
write T = ziσi, where zi are the tree complex numbers. Thus, in the vicinity of the
unit element, each matrix N is parametrized by six real numbers, as it should be for
the Lorentz transformations.

On the other hand, the elements of the Lorentz group representation in the vicinity

of the unit element have the form e−
i
2ω

αβJαβ , where ωαβ = −ωβα and Jαβ are the
Lorentz group generators in the given representation. We will need these generators in
the fundamental and conjugate representations. For the fundamental representation in
the infinitesimal vicinity of the unit element, we have E+ ziσi = 1− i

2ω
αβJαβ , where,

in the case under consideration, 1 = E. Let us parameterize the complex numbers zi
as follows:

z1 = −1

2
(ω01 + iω23), z2 = −1

2
(ω02 + iω31), z3 = −1

2
(ω03 + iω12). (2.71)

In this notation, ziσi = − i
2ω

αβ(iσαβ), where

(σαβ)a
b =

1

4
(σασ̃β − σβ σ̃α)a

b . (2.72)

Therefore, the generators of the Lorentz group in the fundamental representation are

J
(F )
αβ = iσαβ . (2.73)

Here, (F ) labels the fundamental representation. Similar consideration shows that the
generators of the Lorentz group in the conjugate representation have the form

J
(F̄ )
αβ = iσ̃αβ , (2.74)

where (σ̃αβ)ȧ ḃ =
1

4
(σ̃ασβ − σ̃βσα)ȧḃ. (2.75)
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As a result, the transformations laws under infinitesimal Lorentz transformation for
two-component spinors have the form

δϕ = − i
2
ωαβ(iσαβ)ϕ, δχ = − i

2
ωαβ(iσ̃αβ)χ. (2.76)

The matrices σαβ and σ̃αβ possesses useful properties:

σαβ = −σβα, σ̃αβ = −σ̃βα, (2.77)

(σαβ)ab = (σαβ)ba, (σ̃αβ)ȧḃ = (σ̃αβ)ḃȧ.

The generators of the Lorentz group that is the representation of arbitrary tensor
spinors are found quite analogously by using the transformation law (2.62) and con-
sidering the infinitesimal forms of the matrices N and N∗. Also, we can derive the
transformations of tensor spinors under non-homogeneous Lorentz transformations.
We will not discuss this in detail but only formulate the final form. Consider an arbi-
trary spin tensor ϕa1...amȧ1...ȧn ≡ ϕa(m)ȧ(n). The variation of ϕa(m)ȧ(n)(x) under the
infinitesimal transformations x′µ = xµ + ωµνx

ν + aµ is written as follows:

δϕa(m)ȧ(n) =
[
iaα(Pα)a(m)ȧ(n)

b(m)ḃ(n) − i

2
ωαβ(Jαβ)a(m)ȧ(n)

b(m)ḃ(n)
]
ϕb(m)ḃ(n), (2.78)

with Poincaré group generators (Pα)a(m)ȧ(n)
b(m)ḃ(n)

and (Jαβ)a(m)ȧ(n)
b(m)ḃ(n)

, which
can be found in an explicit form in the same way as we derived (2.76).

2.6 Irreducible representations of the Poincaré group

Irreducible representations of the Poincaré group determine relativistic physical sys-
tems with given mass and spin. These systems can be called elementary and are asso-
ciated with elementary particles. The aim of this subsection is to formulate the basic
notions and results concerning these systems. Let us note that we do not pretend to
consider a complete description of the representations of the Poincaré group, which
can be found in more specialized literature.

In section 2.3 we denoted the elements of the Poincaré group as (Λ, a). The multi-
plication rule in this group has the form (2.32), where the matrix Λ satisfies the basic
relation (2.7). Let us denote the operators of some representation of the Poincaré group
as U(Λ, a). According to the definition of a representation, we have

U(Λ1, a1)U(Λ2, a2) = U((Λ1, a1) · (Λ2, a2)) = U(Λ1Λ2,Λ1a2 + a1). (2.79)

As we know, the infinitesimal non-homogeneous Lorentz transformation is (2.33),
with the parameters aµ and ωµν . Denoting the generators of the Poincaré group as
Pα and Jαβ , in the vicinity of the unit element, one can write

U(Λ, a) = eia
αPα− i

2ω
αβJαβ . (2.80)

The operator Pα is the generator of spacetime translations, and the operator Jαβ is
the generator of Lorentz rotations. Examples of these generators for scalar and vector
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representations were given in section 2.3. Eqs. (2.79) and (2.80) allow one to derive,
in a purely algebraic way, the commutation relations

[Pα, Pβ ] = 0,

[Pµ, Jαβ ] = i(ηµαPβ − ηµβPα),

[Jµν , Jαβ ] = i(ηµαJνβ + ηνβJµα − ηµβJνα − ηναJµβ). (2.81)

These equations define the Lie algebra of the Poincaré group, which is sometimes called
the Poincaré algebra. The last line defines the Lie algebra of the Lorentz group.

One can show that the algebra (2.81) has two operators, C1, C2, which commute
with all generators. These are the Casimir operators

C1 = PµPµ and C2 = WµWµ , (2.82)

where Wµ is the Lubanski-Pauli vector

Wµ = −1

2
εµναβPνJαβ . (2.83)

One can check that the invariants (2.82) satisfy the relations

[Pµ, C1] = [Pµ, C2] = 0, [Jαβ , C1] = [Jαβ , C2] = 0, [C1, C2] = 0. (2.84)

One can distinguish two kinds of physically acceptable irreducible representations
of the Poincaré group: massive and massless. The basis vectors |p,m, s〉 of a massive
irreducible representation are defined by the following equations:

Pµ|p,m, s〉 = pµ|p,m, s〉,
PµPµ|p,m, s〉 = m2|p,m, s〉,
WµWµ|p,m, s〉 = −m2s(s+ 1)|p,m, s〉. (2.85)

The first two equations mean that p2 = p20 − p2 = m2, which is the well-known rela-
tion (1.1). Thus, massive irreducible representations of Poincaré group are naturally
associated with free massive relativistic particles. The parameter m plays a role in
mass and should be positive. One can prove that the parameter s takes the values
s = 0, 12 , 1,

3
2 , 2, . . . . For each fixed s, there are 2s+ 1 different vectors |p,m, s〉, and s

is called the spin of a massive relativistic particle.
For the massless irreducible representation, the basis vectors of the state |p, λ〉 are

defined by the equations

Pµ|p, λ〉 = pµ|p, λ〉, PµPµ|p, λ〉 = 0, WµWµ|p, λ〉 = 0. (2.86)

The first two of these equations mean that p2 = p20 − p2 = 0. This is the relation be-
tween the energy and the three-dimensional momentum of a free massless relativistic
particle. Thus, the massless irreducible representations of the Poincaré group are natu-
rally associated with free massless relativistic particles. One can prove that, in the case
under consideration, Wµ = λPµ, where λ takes the values λ = 0,± 1

2 ,±1,± 3
2 ,±2, . . . .
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This parameter is called the helicity of the massless elementary particle. Sometimes
the value |λ| is called the spin of a massless particle.

One can show that the Poincaré algebra can be realized in the linear space of the
tensor fields ϕµ1...µn

or the tensor spinor fields ψµ1...µn
, as defined by Eq. (2.70). The

fields ϕµ1...µn
or ψµ1...µn

, corresponding to the massive irreducible representations of
the Poincaré algebra, are characterized by their masses and spin. The relativistic field
with the given mass m and an integer spin s = n, is defined by the system of equations

ϕµ1...µs
(x) = ϕ(µ1...µn)(x), (� +m2)ϕµ1...µs

(x) = 0,

∂µ1ϕµ1µ2...µs
(x) = 0, ηµ1µ2ϕµ1µ2µ3...µs

(x) = 0. (2.87)

Consider the following few examples:

1) s = 0 (� +m2)ϕ = 0, (2.88)

2) s = 1 (� +m2)ϕµ = 0, ∂µϕµ = 0, (2.89)

3) s = 2 (� +m2)ϕµν = 0, ∂µϕµν = 0, ηµνϕµν = 0, ϕµν(x) = ϕ(µν). (2.90)

In the last formula, ϕ(µ1...µn) means a total symmetrization of the indices.
Eq. (2.88) is the Klein–Gordon equation (1.5), corresponding to a free massive

scalar field. Eqs. (2.89) define the free massive vector field equations of motion.
Eqs. (2.90) define the equation of motion of a massive symmetric second-rank ten-
sor field. Equations for massless relativistic fields with integer spin can be obtained
from Eqs. (2.87) at m = 0.

The relativistic fields with given mass m and given half-integer spin s = n+ 1
2 are

defined in terms of the Dirac tensor spinors ψµ1...µn
(2.70) by the system of equations

ψµ1...µn
= ψ(µ1...µn), (iγµ∂µ −m)ψµ1...µn

= 0,

∂µ1ψµ1µ2...µn
= 0, γµ1ψµ1µ2...µn

= 0, (2.91)

where Dirac matrices γµ are defined in terms of the matrices σµ and σ̃µ, as defined in
section 2.5,

γµ =

(
0 σµ

σ̃µ 0

)
, (2.92)

satisfying the basic relation (also called the Clifford algebra)

γµγν + γνγµ =

(
0 σµ

σ̃µ 0

)(
0 σν

σ̃ν 0

)
+

(
0 σν

σ̃ν 0

)(
0 σµ

σ̃µ 0

)

=

(
σµσ̃ν + σν σ̃µ 0

0 σ̃µσν + σ̃νσµ

)
=

(
2ηµν 0

0 2ηµν

)
= 2ηµνI, (2.93)

where I is the four-dimensional unit matrix.
Some examples of the construction described above, are

s =
1

2
, (iγµ∂µ −m)ψ(x) = 0, (2.94)

s =
3

2
, (iγµ∂µ −m)ψν(x) = 0 , with ∂νψν(x) = 0, γνψν(x) = 0. (2.95)



Exercises 29

Equation (2.94) is a free, massive, spin- 12 equation of motion. It is called the Dirac
equation. The four-component field ψ is called the Dirac spinor field, or the Dirac
fermion. The relations (2.95) define the massive spin- 32 field equation of motion, which
is called the Rarita-Schwinger equation. Massless relativistic fields with half-integer
spins are described by Eqs. (2.91) in the limit m = 0.

Exercises

2.1. Let G be the group of n × n matrices O such that OTO = E, where T means
transposition, and E is the unit matrix. Prove that this set forms a group where the
multiplication law is the matrix product. This group is called the rotation group and
is denoted O(n). Consider a subset of the matrices from O(n) with a unit determinant.
Show that this subset is a subgroup of O(n), called SO(n).

2.2 Prove that the groups SO(2) and U(1) are isomorphic.

2.3. Consider the coordinate transformation x′µ = fµ(x). Prove that the Eq. (2.3)
leads to fµ(x) = Λµνx

ν + aµ, where the matrix Λµν satisfies the basic relation (2.7).

2.4. Let Λ be a matrix realizing the Lorentz transformation. Show that Λ−1 = η−1ΛT η.

2.5. Consider a set 5× 5 of matrices of the form
(

Λµν a
µ

0 1

)
.

Show that the group of these matrices is a realization of the Poincaré group.

2.6. Consider a matrix A = E + αX, where α is an infinitesimal parameter, and
detA = 1. Show that trX = 0.

2.7. Let A ∈ SO(n) and A = E + αX, where α is an infinitesimal real parameter.
Show that XT = −X.
2.8. Let A ∈ SU(n) and A = E + iαX, where α is an infinitesimal real parameter.
Show that X† = X.

2.9. Consider the Lie algebra with generators Ti, where [Ti, Tj ] = ifijkTk and the
structure constants are totally antisymmetric. Prove that C = TiTi is the Casimir
operator.

2.10. Prove that the vector product in the three-dimensional Euclidean space possesses
all of the properties of the multiplication law in the Lie algebra.

2.11. Consider a phase space of some dynamical system with phase coordinates qi,
pi. Assuming that f(q, p) and g(q, p) are functions on the phase space, prove that the
Poisson bracket

{f, g} =

n∑

i=1

(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)

possesses all of the properties of the multiplication law in the Lie algebra.

2.12. Prove that the commutator of the operators possesses all of the properties of
the multiplication law in the Lie algebra.
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2.13. Let A be an n× n matrix and detA 6= 0. Prove that detA = e tr logA.

2.14. Let Jαβ = xαP β − xβPα + Sαβ . Show that Wα = − 1
2εαβγδP

βSγδ.

2.15. Calculate the commutator [Jαβ , Jµν ] in the scalar representation.

2.16. Calculate the commutator [Sαβ , Sµν ], where Sαβ are defined by (2.48).

2.17. Show that all matrices σµ are Hermitian.

2.18. Prove the identity σiσj = σ0δij + iεijkσk.

2.19. Prove the identity (σn1)(σn2) = (n1n2) + i
(
n1 × n2

)
σ.

2.20. Prove the identity tr (σ̃µσν) = 2ηµν .

2.21. Prove that the matrices iσµν satisfy the commutation relation for the generators
of Lorentz rotations.

2.22. Let vaȧ = (σµ)aȧvµ. Find the vµ from this relation.

2.23. Prove the relation W 2 = − 1
2

(
SβγS

βγP 2 + SβγS
αβPαP

γ + SβγS
γαPαPβ

)
.

2.24. Consider W 2ϕµ(x), where ϕµ(x) is an arbitrary vector field. Using the result of
the previous exercise and the relation (2.48), formulate the conditions for W 2ϕµ(x) =
−2m2ϕµ(x). Explain on the basis of the last relation how the spin of a massive vector
field is equal to 1.

Comments

There are many excellent books on special relativity, e.g., the eminent book by L.D.
Landau and E.M. Lifshitz [202] as well as the ones by W. Rindler [264], P.M. Schwarz
and J.H. Schwarz [275] and G.L. Naber [228]. Many details of special relativity are
usually considered in books on general relativity and gravitation, e.g., in the books
by S. Weinberg [340], C.W. Misner, K.S. Thorne and J.A. Wheeler [219] and J.B.
Hartle [175].

Group theory for physicists is considered in many books, e.g., in those by W. K.
Tung [320], A.O. Barut, R. Raczka [29] and P. Ramond [257]. There are also excellent
lecture notes on group theory for physicists available on-line (see e.g., the notes by H.
Osborn [236]).

Representations of Lorentz and Poincaré groups are considered with different levels
of detail in, e.g., the books by I.M. Gelfand, R.A. Minlos and Z.Ya. Shapiro [156], W.
K. Tung [320], A.O. Barut and R. Raczka [29], I.L. Buchbinder and S.M. Kuzenko [81].

Group theory is considered in the physical context in books on quantum field
theory, e.g., S. Gasiorowicz [152], S. Schweber [276] and S. Weinberg [345]. Our con-
siderations here followed, in a simplified form, those in [81].
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Lagrange formalism in field theory

In this chapter, we briefly present the minimal amount of information required about
classical fields for the subsequent treatment of quantum theory in the rest of the book.

3.1 The principle of least action, and the equations of motion

Consider Minkowski space with the coordinates x = xµ. As we already know, the
function of coordinates φ ≡ φ(x) defined in Minkowski space is called a field. The field
can be real or complex, one component or multi component and it can be a scalar, a
tensor or a spinor. In particular, this means that the field can have various indices.
Then it can be written as φi(x), where i is a set of all indices (tensor, spinor or any
other). Usually, we will not use indices if there is no special reason to do so.

It is supposed that the dynamics of the field φ is described in terms of the action
functional S = S[φ]. It is postulated that the action has the following form:

S =

∫

Ω

d4xL . (3.1)

Here Ω is a domain in Minkowski space bounded by two space-like hypersurfaces,
σ(x) = σ1 and σ(x) = σ2, as shown in the figure below. Remember that a hypersurface

is called space-like if its normal vector nµ(x) = ∂σ(x)
∂xµ is time-like at any point xµ,

i.e., nµn
µ > 0. In this case, there is an inertial reference frame such that these two

hypersurfaces are written as t = t1, and t = t2, where t is a time coordinate.

x0

x1

σ2

σ1
nµ

Usually, it is assumed that the domain Ω coincides with the whole Minkowski space,
meaning t1 → −∞ and t2 →∞. It is postulated that the function L in (3.1) is a real
scalar field under the Lorentz transformations. This guarantees that the action S[φ] is
a real Lorenz invariant.

It is generally assumed that the model of field theory is defined when the set of
fields φi(x) and the function L are specified.

Introduction to Quantum Field Theory with Applications to Quantum Gravity. Iosif L. Buchbinder
and Ilya L. Shapiro, Oxford University Press (2021). © Iosif L. Buchbinder and Ilya Shapiro.
DOI: 10.1093/oso/9780198838319.003.0003
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The function L is called Lagrangian. In the special reference frame described above,
the action (3.1) can be presented in the form

S =

∫ t2

t1

dt

∫
d3xL =

∫ t2

t1

dt L,

where L =
∫
d3xL is the Lagrange function, similar to the one in classical mechanics.

In this framework, the Lagrangian is nothing else but the density of the Lagrange
function.

Let us discuss the analogy with classical mechanics. The field φ(x) = φi(x) can
be regarded as φi(t,x) ≡ φix(t), with space coordinates x playing the role of indices.
Thus, one can understand a relativistic field as a mechanical system with generalized
coordinates φix(t), characterized by discrete indices i and by the three-dimensional
vector x. This means that we can consider a field as a system with an infinite (contin-
uous) number of degrees of freedom.

The Lagrangian is postulated to be a real function of the field and of its spacetime
derivatives taken at the same spacetime point xµ,

L = L(φ(x), ∂µφ(x), ∂µ1∂µ2φ(x), . . . , ∂µ1∂µ2 . . . ∂µn
φ(x)). (3.2)

Usually, it is assumed that the Lagrangian includes only first derivatives of the field.
However, there are models containing derivatives of order higher than first. Such mod-
els are called higher-derivatives theories. We will mainly consider the models with only
the first derivatives of the fields in Lagrangian, at least in Part I of this book.

The integral in (3.1) is convergent if it requires that L → 0 at the space infinity,
when |x| → ±∞. In most cases, it is sufficient to consider that φ(x)→ 0 at |x| → ±∞.
To get the convergent integral in (3.1), when Ω coincides with the whole Minkowski
space, we demand that φ(x) → 0 at t → ±∞. As a result, one gets the standard
boundary conditions φ(x) → ∞ at xµ → ±∞. However, in some cases, we need to
deal with theories of fields that are defined on some domains in Minkowski space,
which are bounded in the space directions. In this case, the boundary conditions for
the field require a special consideration.

Field dynamics is defined by the least action principle: physically admissible con-
figurations correspond to the minimum of the action. The mathematical formulation
of this principle is as follows. Let φi(x) be some field and φ′i(x) be another field with
the same set of indices. The difference δφi(x) = φ′i(x)−φi(x) is called a field variation.
We assume that the difference S[φ+ δφ]− S[φ] can be represented in the form

S[φ+ δφ]− S[φ] =

∫

Ω

d4xA(x) δφ(x) + . . . ,

where the dots mean the terms with higher than the first power of δφ. The expression

δS[φ] =

∫

Ω

d4xA(x) δφ(x) (3.3)

is called a variation of the functional S[φ]. The function A(x) is called a variational or

functional derivative and it is denoted δS[φ]
δφ(x) . Hence, we get
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δS[φ] =

∫

Ω

d4x
δS[φ]

δφi(x)
δφi(x). (3.4)

Let us use the following theorem from the variational calculus: if the field φ(x) cor-
responds to an extremum of the functional S[φ], then the corresponding variation
δS[φ] = 0 for any δφi(x). Since δφi(x) is arbitrary, Eq. (3.4) leads to

δS[φ]

δφi(x)
= 0. (3.5)

Eq. (3.5) is called a classical equation of motion or simply the field equation. The so-
lutions of this equation determine the physically admissible field configurations φi(x).

Consider the calculation of the variational derivative of the functional S[φ] (3.1),
assuming that L = L(φ, ∂µφ). In this case, we have

S[φ] =

∫

Ω

d4xL
(
φ(x), ∂µφ(x)

)
. (3.6)

Here Ω is a domain in Minkowski space, bounded by ∂Ω, that consists of the space-like
hypersurfaces σ1 and σ2, where the hypersurface σ2 lies in the future, relative to the

hypersurface σ1. Let φ(x)
∣∣∣
σ1

= φ1(x), and φ(x)
∣∣∣
σ2

= φ2(x), where φ(x)
∣∣∣
σ

= φ(x)
∣∣∣
x∈σ

,

σ = σ(x) is a space-like hypersurface and x is the vector formed by independent three-
dimensional coordinates on this hypersurface. Let φ(x) be the field corresponding to
an extremum of the functional S[φ], and φ′(x) an arbitrary field. We assume that
both φ(x) and φ′(x) satisfy the same boundary conditions. Then, for the variation
δφ(x)=φ′(x)-φ(x), we get δφ(x)

∣∣
σ1

= δφ(x)
∣∣
σ2

= 0. On the top of that, we assume

δφ→ 0 at xi → ±∞.
Consider

S[φ+ δφ]− S[φ] =

∫

Ω

d4x
{
L
(
φ+ δφ, ∂µφ+ ∂µδφ

)
− L

(
φ, ∂µφ

)}
. (3.7)

Since the field variation is not related to the change of coordinates, ∂µδφ = ∂µφ
′ −

∂µφ = δ∂µφ(x). Expanding the integral in (3.7) in the Taylor series in δφ up to the
first order, we arrive at

δS[φ] =

∫

Ω

d4x
{∂L
∂φ

δφ+
∂L
∂∂µφ

∂µδφ
}

=

∫

Ω

d4x
{∂L
∂φ

δφ+ ∂µ

( ∂L
∂∂µφ

δφ
)
−
(
∂µ

∂L
∂∂µφ

)
δφ
}

=

∫

Ω

d4x
[∂L
∂φ
− ∂µ

( ∂L
∂∂µφ

)]
δφ+

∫

∂Ω

dσµ

( ∂L
∂∂µφ

)
δφ . (3.8)

Here dσµ is an element of the surface ∂Ω, and the Gauss theorem has been used.
According to the boundary conditions, δφ→ 0 on ∂Ω. Therefore,

δS[φ] =

∫

Ω

d4x
[∂L
∂φ
− ∂µ

( ∂L
∂∂µφ

)]
δφ(x) = 0, (3.9)
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and hence the variation of the action has the form (3.4). Thus, the functional derivative
of the action is

δS[φ]

δφ(x)
=
∂L
∂φ
− ∂µ

( ∂L
∂∂µφ

)
, (3.10)

and the equations of motion take the form of the Lagrange equations for the field φ,

∂L
∂φ
− ∂µ

( ∂L
∂∂µφ

)
= 0. (3.11)

Two observations are in order. First of all, the LagrangianL is not uniquely defined.
For instance, the two Lagrangians L and L + ∂µR

µ(φ) lead to the same equations of
motion (3.11).

The second observation is that, in some field models, we need to define a field φ
in the space with boundaries, assuming that at least some of the space coordinates
xi take their values in the finite domains. Then the equations of motion (3.11) take
place under the boundary conditions of the modified form. Usually these boundary
conditions are defined by the requirement δφ

∣∣
∂Ω

= 0, and then the variation δS[φ] has
the standard form (3.3).

3.2 Global symmetries

Following the analogy with classical mechanics, let us explore global symmetries of the
Lagrangian approach for the fields, and its relation with the conservation laws.

Consider a theory of the fields φ = φi(x) with the action (3.6). The infinitesimal
transformations of coordinates and fields

x′µ = xµ + δxµ, (3.12)

φ ′i(x′) = φi(x) + ∆φi(x) (3.13)

are symmetry transformations if they leave the action invariant, i.e.,

S[φ] = S′[φ ′], (3.14)

or, in the detailed form,

∫

Ω

d4xL
(
φ(x), ∂µφ(x)

)
=

∫

Ω′
d4x′ L

(
φ′(x′), ∂′µφ

′(x′)
)
, (3.15)

where Ω′ is a domain of integration in terms of coordinates x′µ. The last means that
the equations defining Ω′ are obtained from the equations defining Ω by the coordinate
transformations xµ = x′µ − δxµ.

The transformations (3.13) can be reformulated as follows. Rewriting Eq. (3.13) as

φ ′i(x+ δx) = φ ′i(x) + ∂µφ
i(x)δxµ = φi(x) + ∆φi(x), (3.16)

we arrive at
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∆φi(x) = φ ′i(x)− φi(x) + ∂µφ
iδxµ.

The quantity φ ′i(x)−φi(x) = δφi(x), where δφi(x) is a field variation, separated from
the variation of the independent coordinates. Therefore,

∆φi(x) = δφi(x) + ∂µφ
i(x)δxµ. (3.17)

One can assume that the transformations (3.13) are characterized by a finite set
of parameters ξ1, ξ2, . . . , ξN , such that

δxµ = Xµ
I(x)ξI ,

δφi(x) = Y iI
(
x, φ(x), ∂µφ(x)

)
ξI , (3.18)

where I = 1, 2, ..., N and there is summation over the index I. The transformations
(3.18) are called the N -parametric global transformations. The term global means
that the parameters ξI are coordinate-independent. In the opposite case, the transfor-
mations are called local, as it is the case for the gauge transformations. For now, we
consider only global transformations.

Taking into account Eq. (3.18), one can rewrite Eq. (3.13) as follows,

φ ′i(x′) = φi(x) + ∆φi(x), where

∆φi(x) =
[
Y iI

(
x, φ(x), ∂µφ(x)

)
+ ∂µφ

i(x)Xµ
I(x)

]
ξI . (3.19)

Thus, in order to specify the global symmetry transformations, one should identify a
field model and define the functions Xµ

I(x) and Y iI
(
x, φ(x), ∂µφ(x).

The global symmetry transformations can be classified into spacetime transfor-
mations and internal symmetry transformations. In the last case, δxµ = 0 and
Y iI = Y iI

(
φ(x)

)
. This means that the internal symmetry transformations are trans-

formations of the fields with fixed coordinates.

Spacetime symmetry transformations. Consider this type of symmetry transforma-
tions by dealing with two important examples.

As we already mentioned above, the Lagrangian should be a scalar under the
Lorentz transformations, i.e., the action must be Lorentz invariant. The infinitesimal
Lorentz transformations of coordinates have the form

δxµ = ωµνx
ν , (3.20)

where ωµν = −ωνµ are the transformation parameters.
Usually, it is assumed that the fields are tensors or spinors under the Lorentz

transformations. The reason for this is that, for such types of fields, it is easy to control
the transformation rules, including constructing the Lagrangian as a Lorentz scalar. In
the most general case, one can assume that all the fields are spin tensors φA(x), where
A is a collection of tensor and spinor indices. Then, under Lorentz transformations,
the fields φA transform as follows:

δφA = − i

2
ωαβ(Jαβ)A

BφB, (3.21)

with the generators of the Lorentz transformations (Jαβ)A
B in the corresponding

representation. The transformations, (3.20) and (3.21), represent an example of trans-
formations related to the spacetime symmetry.
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Another example is the symmetry under spacetime translations x′µ = xµ + aµ,
which is equivalent to a shift of the reference frame as a whole. Since all points of the
Minkowski space are physically equivalent, a transformed field in a transformed point
must coincide with the initial field in the initial point, which is φ ′i(x′) = φi(x), and the
action S[φ] should be invariant. Then φ ′i(x)+∂µφ

iaµ = φ′(x) or δφi(x) = −∂µφi(x)aµ.
This transformation, together with x′µ = xµ + aµ, gives us another example of a
spacetime symmetry transformation.

Internal symmetries. Consider the field φrA(x), where A is a set of all Lorentz indices
(tensor or spinor) and r = 1, 2, . . . , n. The field φrA(x) can be treated as a vector in
some n-dimensional linear space. Let this vector transform according to

φ ′rA(x) = φrA(x) + δφrA(x),

δφrA(x) = i(T I)rsφ
s
A(x)ξI , (3.22)

where ξI are constant parameters, I = 1, 2, . . . , N . The matrices (T I)rs are assumed
to satisfy the condition

[T I , T J ] = if IJ KT
K , (3.23)

where f IJ K = −fJI K , and f IJ K are constants. The relations (3.22) and (3.23) mean
that we have a representation of some Lie group, in the linear space of vectors φrA.
The matrices (T I)rs are generators of the group, and the quantities f IJ K are the
corresponding structure constants, while ξ1, ξ2, . . . , ξN are the group parameters. One
can compare this relation to Eq. (2.22).

If the action S[φ] is invariant under the transformations (3.22), the last correspond
to internal symmetry. Later on, we shall discuss the concrete examples of internal
symmetries.

3.3 Noether’s theorem

Noether’s theorem gives a general method for finding the conserved quantities cor-
responding to the symmetries of the theory. Additive conserving quantities are also
called dynamical invariants.

Theorem. Each N -parameters continuous symmetry transformation corresponds
to N dynamical invariants.

Proof. Consider the transformations (3.12), (3.13) in the form (3.18), and assume
the action is invariant, δS[Φ] = 0. The variation of action δS[φ] = S′[φ′]−S[φ] follows
from

S[φ] =

∫

Ω

d4xL(φ(x), ∂µφ(x)) and S′[φ′] =

∫

Ω′

d4x′L(φ′(x′), ∂′µφ
′(x′)). (3.24)

Making the change of variables x′µ = xµ + δxµ in the r.h.s. of the expression for
S′[φ′], the domain Ω′ is transformed into the domain Ω. In the linear order in δxµ, the
Jacobian of this change of variables is
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det

(
∂x′µ

∂xν

)
= det (δµν + ∂νδx

µ) = 1 +
∂δxµ

∂xµ
. (3.25)

Here we have taken into account that all the terms out of the main diagonal of the
matrix in the l.h.s. enter the determinant in at least second order in ξI , and therefore
these terms are irrelevant for the first-order expression. Thus, we get

S′[φ′] =

∫

Ω

d4x (1 + ∂µδx
µ)L

(
φ′(x + δx),

∂xν

∂x′µ
∂νφ

′(x+ δx)
)
. (3.26)

According to the definition of symmetry transformations, φ′(x+ δx) = φ(x) + ∆φ(x).
Furthermore, in the lowest order,

∂xν

∂x′µ
= δνµ − ∂µδxν and

∂x′µ

∂xα
= δµα + ∂αδx

µ. (3.27)

Finally,

S′[φ′] =

∫

Ω

d4x (1 + ∂µδx
µ)L

(
φ+ ∆φ, (δνµ − ∂µδxν)(∂νφ+ ∂ν∆φ)

)
. (3.28)

The Lagrangian in the r.h.s. of the last expression can be expanded into the power
series up to the linear terms in ∆φ and δxν , to give

S′[φ′] =

∫

Ω

d4x
{
L(φ, ∂µφ)

[
1 + ∂µδx

µ
]

+
∂L
∂φi

∆φi +
∂L
∂∂µφi

(
∂µ∆φi − ∂νφi∂µδxν

)}

=

∫

Ω

d4x
{
L+ L∂µδxµ +

∂L
∂φi

δφi +
∂L
∂∂µφi

∂µδφ
i ∂L
∂φi

∂µφ
iδxµ +

∂L
∂∂νφi

∂ν∂µφ
iδxµ

}

+

∫

Ω

d4x
{
L+ L(∂µδx

µ) + (∂µL)δxµ +
∂L
∂φi

δφi +
∂L

∂∂µφi
∂µδφ

i
}
, (3.29)

where we used the feature of coordinate-independent variations, δ∂µφ
i = ∂µδφ

i. Using
the equations of motion (3.11) in the expression (3.29), we obtain

S′[φ′] =

∫

Ω

d4x

{
L+ ∂µ(Lδxµ) + ∂µ

(
∂L
∂∂µφi

δφi
)}

. (3.30)

Next, substituting (3.18) and (3.19) into the last expression yields, for the first varia-
tion of the action,

δS[φ] = S′[φ′]− S|φ| =
∫

Ω

d4x∂µ

{
∂L

∂∂µφi
δφi + Lδxµ

}

=

∫

Ω

d4x ∂µ

{ ∂L
∂∂µφi

Y iI + LXµ
I

}
ξI = 0, (3.31)
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since (3.18) corresponds to the symmetry transformations. Then, taking into account
that the parameters ξI are linear independent and an arbitrariness of the domain Ω,
one gets

∂µJ
µ
I = 0, for I = 1, 2, . . . , N , (3.32)

where we have introduced the notation for the Noether’s current, or generalized cur-
rent,

JµI = −
( ∂ L
∂ ∂µφi

Y i I + LXµ
I

)
. (3.33)

The relation (3.32) is the local conservation law of generalized current. Starting
from this identity, we can get the integrated form of the conservation law. Using the
Gauss theorem, one gets

∫

∂Ω

dσµ J
µ
I = 0. (3.34)

Since the fields φi(x) are vanishing at the space infinity, the identity (3.34) implies
that

∫

σ2

dσµ J
µ
I −

∫

σ1

dσµ J
µ
I = 0, (3.35)

where the change of sign is stipulated by the change of direction of the vector nµ
normal to the hypersurface σ(x) = σ1.

One can introduce the functionals depending on the hypersurface σ,

CI [σ] =

∫

σ

dσµ J
µ
I , I = 1, 2, . . . , N. (3.36)

Then Eq. (3.35) gives, for the two space-like hypersurfaces σ1 and σ1,

CI [σ1] = CI [σ2], I = 1, 2, . . . , N. (3.37)

Thus, the functionals CI [σ] do not depend on choice of the hypersurface σ, such that
CI [σ] = const. Choosing a constant time hypersurface, σ(x) = t, we arrive at

CI [t2] = CI [t1], where CI [t] =

∫
d3xJ0

I(x). (3.38)

The conditions CI [σ] = const mean that the functionals (3.36) are conserved quanti-
ties. Thus, we have shown that there is a conservation law for each continuous sym-
metry transformation with a fixed parameter ξI . Since the functionals CI [σ] are given
by the integrals over hypersurfaces, they are additive quantities, which completes the
proof.

Remark 1. Since Eq. (3.37) was derived using the equations of motion, the
quantities CI [σ] in (3.37) are conserved only on shell (or on the mass shell), when the
fields φi(x) are solutions to the equations of motion.
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Remark 2. It s important that the generalized current is defined in a non-unique
way. For instance, let JµI be a generalized current. One can introduce the quantity

J̃µI = JµI + ∂νf
µν
I , (3.39)

where fµνI = −fνµI is an arbitrary function of the fields and their derivatives, that
is antisymmetric in the indices µ and ν. Obviously,

∂ν J̃
µ
I = ∂µJ

µ
I + ∂µ∂νf

µν
I = ∂µJ

µ
I . (3.40)

In other words, if ∂µJ
µ
I = 0, then ∂µJ̃

µ
I = 0 too. Thus, the local conservation law

for the current (3.32) does not change under the modification of the current (3.39).
Consequently, the dynamical invariants CI [σ] remain conserved quantities under the
same operation. This arbitrariness can be used to impose additional conditions on the
generalized current.

As an application of the general Noether’s theorem, consider the conservation law
corresponding to internal symmetries, when δxµ = 0. According to (3.18) and (3.22),

Xµ
I = 0, Y rI = i(T I)rsφ

s. (3.41)

Then, the Noether’s current is

JµI = − i ∂L
∂ ∂µφr

(T I)rsφ
s . (3.42)

The conserving quantities associated with internal symmetries are called charges and
are denoted as QI . Using (3.36) and (3.42), one gets

QI =

∫
d3xJ0

I = −i
∫
d3x

∂L
∂ φ̇r

(T I)rsφ
s. (3.43)

3.4 The energy-momentum tensor

One of the most important conservation laws is related to the invariance under the
spacetime translations x′µ = xµ + aµ, where aµ is an arbitrary constant four-vector.
It is clear that if the Lagrangian does not depend explicitly on the coordinates, the
spacetime translations are the symmetry transformations. In this case,

δxµ = aµ = δµνa
ν , (3.44)

i.e., Xµ
I = δµν in the general relation δxµ = Xµ

Iξ
I , and aµ plays the role of parameters

ξI . As we already know, the field transforms under translation as

δφi = −∂µφiaµ = −δµν∂µφiaν . (3.45)

It means that the role of the function Y iI in the general relation δφi = Y iIξ
I is

played by −δµν∂µφi. The generalized current, corresponding to the symmetry under
the spacetime translations described above, is called the canonical energy-momentum
tensor and is denoted as T µν . Let us note in passing that in Part II we shall introduce
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another (dynamical) definition of the energy-momentum tensor. The two definitions
are equivalent in all known cases, but the general proof of this fact is not known yet.

The expression for generalized current (3.33), in the case of (3.44), yields

T µν =
∂L
∂∂µφi

∂νφ
i − Lδµν , (3.46)

while the local conservation law has the form

∂µT
µ
ν = 0. (3.47)

The dynamical invariants corresponding to the symmetry under the spacetime
translations are denoted Pν . According to (3.36), they have the form

Pν =

∫

σ

dσµ T
µ
ν . (3.48)

Consider the expression (3.48) in more detail. Let the hypersurface σ in (3.48) be a
surface of a constant time t. In this case,

Pν =

∫
d3xT 0

ν =

∫
d3x
( ∂L
∂∂0φi

∂νφ
i − Lδ0ν

)
. (3.49)

In particular, the component P0 has the form

P0 =

∫
d3x
( ∂L
∂φ̇i

φ̇i − L
)
. (3.50)

By analogy with classical mechanics, one defines the momenta πi = ∂L
∂Φ̇i

, canonically

conjugate to the fields φi. Then, the component P0 becomes

P0 =

∫
d3x(πiφ̇

i − L) = H. (3.51)

The expression H is analogous to the classical Hamilton function, or energy. Thus, the
component P0 of the vector Pν is energy. Then, due to relativistic covariance, Pν is
the energy-momentum vector.

Exercises

3.1. Consider the higher-derivative theory with the Lagrangian depending on higher
derivatives of the fields,

L = L(φ, ∂µφ, ∂µ1∂µ2φ, . . . ∂µ1∂µ2 . . . , ∂µn
φ). (3.52)

Formulate the boundary conditions for the variations of the field and its derivatives,
which enable one to derive the Lagrange equations from the least action principle.
Calculate the variational derivative of the action and obtain the equations of motion.
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3.2. Prove, without taking a variational derivative of the actions, that the Lagrangians
L(φ, ∂αφ) and L(φ, ∂αφ) + ∂µR

µ(φ) lead to the same equations of motion.

3.3. Prove that the Lagrangians L(φ, ∂µφ) and L̃ = L(φ, πµ) + ̺µ(πµ − ∂µφ) lead to
the same equations of motion. Here πµ = πµ(x) and ̺µ = ̺µ(x) are arbitrary vector
functions.

3.4. Formulate the conditions under which the equations of motion for a theory with
the Lagrangian L(φi, ∂µφ

i) have the form

Aµνij ∂µ∂νφ
j +Bµij∂µφ

j + Ci = 0

with constant coefficients, and find the explicit form for the Aµνij , Bµij , Ci in this case.

3.5. Let the symmetry transformations be δxµ = Xµ(x, φ, ∂αφ). Construct the proof
of Noether’s theorem in this case.

3.6. Let the condition of invariance (3.15) have the alternative form

∫

Ω′
d4x′ L

(
φ ′(x′), ∂′µφ

′(x′)
)

=

∫

Ω

d4x
[
L
(
φ(x), ∂µφ(x) + ∂µR

µ(φ)
]
,

with an arbitrary function Rµ(φ). Construct a proof of Noether’s theorem in this case.
Explore whether the conserved charges depend on Rµ(φ).

Comments

Different aspects of Lagrange formalism in field theory are considered in practically
all books on relativistic field theory, e.g., in [187], [250], [304], [274], [256], [215], [155],
[345], [105] [109], [293], [276], [59].



4

Field models

In this chapter, we consider the constructions of Lagrangians for various field models
and discuss the basic properties of these models.

4.1 Basic assumptions about the structure of Lagrangians

Consider an arbitrary theory with a set of fields φi(x) and with the action (3.6). In
what follows, we do not need to specify the choice of Ω, and deal with the action

S[φ] =

∫
d4xL

(
φ(x), ∂µφ(x)

)
. (4.1)

The choice of the field model is related by the specification of the set of fields and the
Lagrangian L. Usually, it is assumed that fields φi are the spin tensors, e.g., we will
explore scalar, vector and spinor field models, higher-rank tensors, etc. Models with
different types of fields in the same Lagrangian are also possible.

As to the choice of Lagrangian, it is assumed that it should be a function of fields
and their derivatives, being taken in the same point xµ (this is called an assumption
of locality), that can be always divided into the sum of the two terms

L = L0 + Lint, (4.2)

where L0 is bilinear in fields and their derivatives, while Lint contains powers of
the fields and the derivatives higher than the second. The part L0 is called the free
Lagrangian, and Lint is called the interaction Lagrangian.

The equations of motion for the theory with the Lagrangian L can be written in
the form

∂L0
∂φi
− ∂µ

∂L0
∂(∂µφi)

= −
[∂Lint
∂φi

− ∂µ
∂Lint
∂(∂µφi)

]
. (4.3)

Since the Lagrangian L0 is quadratic in fields and their derivatives, the l.h.s. of the
equations (4.3) is a linear equation, containing no more than two derivatives of fields.
If Lint = 0, the corresponding equations of motion will be linear partial differential
equations, typically of the order not higher than the second. If Lint 6= 0, then the equa-
tions of motion will be non-linear. This feature explains the terms “free Lagrangian”
and “interacting Lagrangian.”

Equations to the free Lagrangian are called free equations of motion, which are
linear partial differential equations for spin tensors. Requiring that the fields transform
under irreducible spin-tensor representations of the Poincaré group, the corresponding
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equations of motion must be compatible with the relations (2.87) and (2.91) or with
their massless versions, defining the irreducible representations of the Poincaré group
in the linear space of fields. Due to the Lorentz covariance, the Lagrangian can be
constructed from fields and their derivatives, and other covariant objects of the Lorentz
group, such as ηµν and spinor quantities, such as (σµ)aȧ, εab and so on.

In principle, the free Lagrangian for any kind of spin-tensor fields can be restored
based on the above relations. The main problem in the construction of the Lagrangian
L consists of finding the Lint. There is no general prescription for this. The construc-
tion of an interacting Lagrangian for a concrete field model is based on the use of
additional physical and mathematical assumptions, including the arguments based on
the quantum consistency of the theory.

4.2 Scalar field models

Consider the simplest example of a field model, namely, a scalar field.

4.2.1 Real scalar fields

According to (2.87), the real scalar field ϕ describes the massive or massless irreducible
representation of the Poincaré group with spin s = 0 under the Klein–Gordon equation

(� +m2)ϕ = 0. (4.4)

The free Lagrangian L0 for the field ϕ is constructed as follows. Since the equation
(4.4) is linear, the corresponding Lagrangian should be quadratic in ϕ and ∂µϕ. Hence
the most general expression for L0 is

L0 =
1

2
c1η

µν∂µϕ∂νϕ+
1

2
c2m

2ϕ2, (4.5)

where c1, c2 are some arbitrary numerical coefficients. The term ϕ∂µϕ is ruled out by
Lorentz covariance. Derive the equations of motion for the Lagrangian (4.5) gives

∂L0
∂ϕ
− ∂µ

∂L0
∂(∂µϕ)

= c2m
2ϕ− c1�ϕ = 0. (4.6)

The comparison of this equation with Eq. (4.4) shows that c2 = −c1, and we obtain
the Lagrangian L0 in the form

L0 =
c1
2

(
ηµν∂µϕ∂νϕ−m2ϕ2

)
. (4.7)

To fix the coefficient c1, one has to derive the energy (3.50) corresponding to the
Lagrangian (4.7),

E = P0 =

∫
d3x

(
∂L
∂ϕ̇i

ϕ̇i − L
)

=
c1
2

∫
d3x

(
ϕ̇2 + ∂jϕ∂jϕ+m2ϕ2

)
, (4.8)

where j = 1, 2, 3. Requiring that the energy is positively defined, we arrive at a positive
value of c1. The absolute value of this constant can be modified by rescaling ϕ→ kϕ


