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Preface

This book is a basic introduction to multivariable calculus, intended for a one-
semester course. For the student, my hope is that it sparks an appreciation and (dare

I say?) enthusiasm for both this subject and further investigations in mathematics. For
the instructor, my hope is that this book serves as a resource to augment the irreplaceable
contribution your own energy and expertise makes to your students’ education. For all
who use it, I hope you engage with and benefit from this text.

The transition to three dimensions is a significant hurdle for most students of mul-
tivariable calculus. Students spend years learning about two dimensions, from plotting
points and connecting the dots in middle school to using derivatives to discuss concavity
in calculus. Upon entering a course in multivariable calculus students have had substantial
exposure to, and experience with, all things planar. As a result, students have developed a
fair intuition for thinking in two dimensions, an intuition and comfort level that is usually
underdeveloped in dimension three. Several features of this text are intended to facilitate
the transition to three dimensions.

One of these features is that the first chapter is an attempt to familiarize students with
three dimensions. Curves and surfaces are studied from a variety of perspectives, and
students should come away with the ability to relate analytic formulas to the geometric
objects they represent. A wide range of descriptions for curves and surfaces are presented,
not all of which need emphasis, and a judicious choice of techniques to focus on will
streamline this chapter. Since the graph of a function is a special case of a parametric
surface, formulas for graphs (e.g. normal vectors, flux integrals, etc.) are presented as
special cases of those for parametric surfaces later in the text.

A second feature that helps develop three-dimensional acumen is the use of Math Apps
regularly throughout the text. Math Apps are interactive graphics, developed using Maple
software, that highlight geometric aspects of the topic under discussion. Readers must
have Maple Player (a free download), or a full version of Maple, to take advantage of the
Math Apps. Math Apps can be downloaded from the companion website, please see below
for further instructions.

In addition to the geometric appeal of multivariable calculus, the subject has many
applications to other fields of study. This text uses applications to motivate and illustrate
mathematical techniques. Streamlines from an ideal fluid flow, for example, are used to
illustrate level curves, while the integral of a vector field on a surface is motivated by the
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flux of a flow. Bézier curves, used in computer imaging, are introduced as an application
of vector algebra, and the physical notion of work as an application of the dot product.
Applications, while not the focus of this text, are sprinkled throughout to demonstrate
the utility of the subject. Students understanding the material here should be well-poised
to pursue interests in related fields.

Students: It has been my goal to make this a text you can read and learn from, and I hope
that I have accomplished that to a certain extent. My recommendation is to grab a coffee
and allow yourself the luxury of ruminating over the topics in this (and any other) text.
There are a lot of formulas in this text, which I’ve tried to motivate to varying degrees.
Do not content yourselves with memorization, rather ponder the concept behind the
formalism. Some of the ideas might require two cups of coffee, and that’s Ok.

Faculty: I’ve tried to produce a valuable resource to supplement your course. The topics
are standard, and hopefully the text is flexible enough for you to put your own spin on it,
and to take advantage of the plethora of other resources now available to educators.

Maple Player: A word about viewing Math Apps is in order before we get started. Maple
Player is a free application that allows you to use the Math Apps you encounter in this
text. There are downloadable versions of Maple Player for Windows, Macintosh, and
Linux which can be found on the Maplesoft website (a quick search for Maple Player
will find it for you). After downloading the application, go to where it is downloaded
and double-click to start the installation wizard. Following the prompts should get you
up and running.

Math Apps: The Math Apps accompanying this text must be downloaded from the
companion website:

https://global.oup.com/booksites/content/9780198835172/

Once downloaded, eBook users should make sure the text and the Math App files
are in the same folder. Simply clicking the figure hyperlink in the text will open the
corresponding Math App in Maple Player. As they encounter a Math App in the text,
hardcopy users will have to open the corresponding Math App file manually on their
computer.

I apologize in advance for the mistakes that undoubtedly lurk in the following pages
(hopefully they don’t “glare”), and thank you in advance for forwarding corrections to
me, and for your patience.
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1 Introduction to Three
Dimensions

In this chapter we begin our foray into multivariable calculus by getting comfortable
with three dimensions. Section one introduces coordinate systems for describing

points in three space. We see that Cartesian and polar coordinates in the plane extend
naturally to Cartesian and cylindrical coordinates for space. A third coordinate system,
spherical coordinates, is also introduced, rounding out those systems most used in this
text. Sections 1.2, 1.3 and 1.5 study three different methods of describing surfaces in
R

3. Section 1.2 focuses on surfaces arising from graphs of functions of two variables,
using level curves to aid understanding. Level curves turn out to be the equivalent of a
topographic map for the graph of z = f (x, y). Solution sets of equations in three variables
also give rise to surfaces inR3, and these are considered in Section 1.3. Parametric curves
are the topic of Section 1.4, and parametric surfaces are that of Section 1.5. Each method
of defining surfaces yields a different insight into the geometry of R

3, and will be used
regularly when discussing differentiation and integration. The chapter ends with a section
on describing regions in space using systems of inequalities. This skill will be useful when
determining limits of integration for multiple integrals.

1.1 Describing Points in 3-Space

Before describing coordinate systems in three dimensions we recall what we know about
points in R

2, the Cartesian plane. The common coordinate systems in R
2 will extend

naturally to coordinates for R3.

Coordinates for R2 In two dimensions there are two familiar methods for describing
points. The most common coordinate system is Cartesian coordinates in which a point is
described by how far horizontally and vertically it is from the origin. To walk to the point
(x, y) from the origin (0, 0) simply walk x units horizontally, then y units vertically.



OUP CORRECTED PROOF – FINAL, 9/10/2019, SPi

2 | Introduction to Three Dimensions

–3 –2 –1 1 2 3

1

2

3
3π
4

y = –1.5
–1 1 2 3 4 5

–1

1

2

3

4

5

r
y

P

x

θ

r = 2

θ =

–1

–2

–3

(a) (b) (c)

2π
3

–1–2 1 20
–1.5

2
3 3

–1

1

2

3

3

Figure 1.1.1 Review of planar coordinates

Polar coordinates also describe points in the plane. Rather than using horizontal and
vertical distances, polar coordinates tell you how far to walk and in what direction. To
walk from (0, 0) to the point with polar coordinates (r,θ), simply walk r units at an angle
θ with the positive x-axis. Thus in polar coordinates, r is the distance to the origin and θ

is the angle with the positive x-axis.
There is some ambiguity when using polar coordinates to describe points in the plane.

Typically one chooses r ≥ 0, but we also make the convention that if r < 0, go |r| units
in the opposite direction from θ . Thus

(
3, 2π

3
)

and
(−3, 5π

3
)

represent the same point in

polar coordinates, namely, the point with Cartesian coordinates
(
− 3

2 , 3
√

3
2

)
. You’ll also

remember that polar coordinates with the same r and angles that differ by a multiple of
2π represent the same point. In general this ambiguity will not cause confusion.

Constant Coordinate Curves: Equations for curves in the plane can be given in either
coordinate system, and we recall some particularly simple ones here. In particular, con-
sider the curves obtained by fixing just one of the coordinates. Solution sets to the
Cartesian equations x = c and y = d are vertical and horizontal lines, respectively (here
c and d are constants). Moreover, since r denotes the distance to the origin, the polar
equation r = c denotes a circle centered at (0, 0) of radius c. Finally, the polar equation
θ = d defines a ray emanating from the origin and making an angle of d with the positive
x-axis (we assume r ≥ 0). Since we get these curves by fixing one coordinate and letting
the other vary, we call them constant coordinate curves.

Finally, the triangle pictured in Figure 1.1.1(c) verifies the relationships between
Cartesian and polar coordinates. Trigonometry leads to the familiar change of coordinate
formulas:

Change of Coordinates

Polar to Cartesian Cartesian to Polar
x = r cosθ r = √

x2 + y2

y = r sinθ θ = tan−1 ( y
x
)
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The conversionθ = tan−1 (
y/x

)
is valid as long as x > 0, since the range of the arctangent

is −π/2 < θ < π/2. If x < 0, you must use θ = tan−1 (
y/x

) + π .

Coordinates for R3 To describe points in three dimensions, it stands to reason that a
third coordinate is needed. The most direct way is to add a third coordinate to the
two-dimensional coordinate systems just discussed. The result will be Cartesian and
cylindrical coordinates for R3. We will describe a third coordinate system for R3, called
spherical coordinates, which is useful as well.

Cartesian Coordinates

To obtain Cartesian coordinates forR3, start with an xy-plane and add a third axis through
the origin which is perpendicular to both the x- and y-axes. Call the third axis the z-axis.
Typically we think of the xy-plane as lying horizontally in space, and the z-axis as being the
vertical direction. Cartesian coordinates (x, y, z) of the point P in R

3 mean the same as
they did in two dimensions, with the z-coordinate giving the height of P above or below
the xy-plane.

Constant Coordinate Surfaces: In three dimensions, the Cartesian equation z = c repre-
sents all points a fixed height c from the xy-plane. Thus z = c is an equation for a plane
parallel to the xy-plane but c units from it. This is analogous to the two-dimensional
situation, where the equation y = c describes a line parallel to, and c units from, the x-axis.

There are three coordinate planes in R
3, the xy-, xz-, and yz-planes, which slice space

into octants, pictured in Figure 1.1.2(a). Can you think of equations for them (Hint:
the equation for the y-axis in R

2 is x = 0)? It should be clear that the three-dimensional
Cartesian equation x = c describes a plane parallel to, and c units from, the yz-plane. See
Figure 1.1.2(b) for the planes obtained by fixing a single Cartesian coordinate. Notice that

y = 0 y = 0
z = 0

y =–1
x = 1

z = 2
3

2

1

0
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–2
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–2–1 –10 01 12 23
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–1

–2

–3
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Figure 1.1.2 Cartesian Coordinates
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the solution set to the equation x = c depends on what dimension you’re in. In R
2 it is a

line while in R
3 it’s a plane. The context of the situation will dictate which interpretation

to use.

Example 1.1.1. Describing a plane in R3

The phrase “the horizontal plane two units above the xy-plane” describes the horizon-
tal plane in Figure 1.1.2 in English. Geometrically this surface is a plane, and analytically it
can be described as (the solution set of) the equation z = 2. We now know that equations
like z = c describe planes! �
Example 1.1.2. Describing a line in R3

The simplest lines to describe in R
3 are the coordinate axes. The x-axis can be

described as the set of all points whose y- and z-coordinates are both zero, so the set of
all points of the form (x, 0, 0). Similarly the y- and z-axes are all points of the form (0, y, 0)

and (0, 0, z), respectively. We now consider lines parallel to the coordinate axes.
In R

3, fixing one coordinate gives a plane. Fixing two coordinates, however, will give a
line. For example, the solution set of the Cartesian system of equations x = 1, y = −1 is
the set of all points (1,−1, z) where z is a variable. Thus it is a line parallel to the z-axis,
and is the intersection of the planes x = 1 and y = −1 pictured in Figure 1.1.2(b). It is
interesting that a single Cartesian equation yields a surface in R

3 (e.g. y = −1 is a plane),
while a system of two Cartesian equations yields a curve (e.g. x = 1, y = −1 describes a
line). We call C(t) = (1,−1, t), −∞ < t < ∞ parametric equations for the line. �
Example 1.1.3. Describing solids in space—Cartesian coordinates

We describe the portion of R3 defined by the system of inequalities

0 ≤ x ≤ 2
0 ≤ y ≤ 3
0 ≤ z ≤ 5

The restrictions on x indicate the solid is between the planes x = 0 and x = 2. Similarly
it is between the xz-plane and the plane y = 3, as well as between z = 0 and z = 5. Thus
it is a rectangular box (see Figure 1.1.3). �

We will usually think of the yz-plane as the plane of the paper, with the x-axis pointing
out of the paper toward you. This is helpful to keep in mind when viewing static pictures,
but software allows more flexibility.

We also mention that the distance formula forR3 is a natural generalization of the two-
dimensional one. Let

(
x1, y1, z1

)
and

(
x2, y2, z2

)
be points in space, then the distance d

between them is given by

d =
√

(x1 − x2)
2 + (

y1 − y2
)2 + (z1 − z2)

2.
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Figure 1.1.3 A rectangular box

Example 1.1.4. Equations for spheres

This distance formula gives rise to Cartesian equations for spheres in R
3. Indeed, a

sphere is all points a fixed distance from a given point. The equation for a sphere radius r
and centered at (a, b, c) is

(x − a)2 + (
y − b

)2 + (z − c)2 = r2,

where we squared the distance formula to simplify the equation. Note the similarity
between equations for spheres in three dimensions and those of circles in two. �

Cylindrical Coordinates

Cylindrical coordinates for R3 are obtained by adding the z-coordinate to polar coordi-
nates for the xy-plane in space. To get from the origin to the point (r,θ , z), first walk in the
xy-plane r units at an angle of θ with the x-axis. Then jump z units vertically. Note that,
while r represented distance to the origin in polar coordinates, it represents distance to the
z-axis in cylindrical coordinates. The right triangle pictured in Figure 1.1.4(a) indicates
that the distance from (r,θ , z) to the origin in R

3 is given by ρ = √
r2 + z2.

Constant Coordinate Surfaces: As in Cartesian coordinates, let’s analyze what we get
by fixing one cylindrical coordinate. Since Cartesian and cylindrical have the same z-
coordinate, fixing z yields a horizontal plane. Letting r be constant describes the set of
all points a fixed distance from the z-axis. To get a feel for what this is, recall that in
polar coordinates fixing r gave a circle. In three dimensions, that circle can be trans-
lated up and down the z-axis without changing the distance to the z-axis (i.e. without
changing r). Thus fixing r yields a cylinder in R

3 whose axis of symmetry is the z-axis.
Hence the name “Cylindrical” coordinates. Finally, if you fix θ in polar coordinates, you
get a ray emanating from the origin. As in the case of the cylinder, translate this up and
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Figure 1.1.4 Cylindrical coordinates

down the z-axis to find what you get in space. The result is a half-plane that makes an angle
of θ with the positive x-axis, and whose boundary is the z-axis.

Math App 1.1.1. Cylindrical constant coordinate surfaces

Throughout this text Math Apps will be used to enhance geometric understanding.
Please refer to Page vi of the preface for instructions on downloading Math Apps. Print
users then open the app manually while eBook users click the figure hyperlink below.

θ = π/2

θ = 0

r = 1

Since both Cartesian and Cylindrical coordinates for R3 extend coordinate systems
for R2, converting between them is the same as between Cartesian and polar. There is
the obvious addition that the z-coordinates are the same. Thus the Cartesian coordinates
for the cylindrical coordinates (r,θ , z) are

(x, y, z) = (r cosθ , r sinθ , z). (1.1.1)

Example 1.1.5. Constant Coordinate Surfaces

https://global.oup.com/booksites/content/9780198835172/
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We again emphasize the English, geometric, and analytic descriptions of a surface. The
infinite cylinder with radius one and z-axis as core is pictured in Figure 1.1.4(b). The given
cylinder is the solution set of the cylindrical equation r = 1.

Cylinders with z-axis as core are constant coordinate surfaces when using cylindrical
coordinates, as are half-planes with z-axis as boundary. The half-plane that contains the
positive y-axis is given by the equation θ = π/2. �

Example 1.1.6. Curves of intersection in cylindrical coordinates

In Cartesian coordinates we found the solution set to the system x = 1, y = −1 was
the line of intersection of the corresponding planes. Interesting curves also arise from
intersecting constant coordinate surfaces in cylindrical coordinates.

Figure 1.1.4(b) indicates that the system of cylindrical equations r = 1, θ = π/2
describes the intersection of the cylinder r = 1 and the half-plane θ = π/2. The result
is a vertical line. �
Remark: While discussing cylindrical coordinates, we should mention that there is
nothing special about using the z-axis as the third coordinate. We could have just as
easily used polar coordinates in the yz-plane, and the x-axis as the third coordinate.
Then r would be the distance to the x-axis, θ the angle with the positive y-axis and
x would just be x. Unless otherwise stated, however, cylindrical coordinates will mean
(r,θ , z).

We finish our initiation into cylindrical coordinates by looking at the solution set
of a system of inequalities. The idea of describing regions in space using a system of
inequalities will be useful when setting up limits of integration in triple integrals.

Example 1.1.7. Describing solids in space—cylindrical coordinates

We describe the portion of R3 defined by the system of inequalities

0 ≤ r ≤ 2

0 ≤ θ ≤ π

2
0 ≤ z ≤ 5

The restrictions on r, which is the distance to the z-axis, describe an infinite solid
cylinder with core along the z-axis and radius 2. The restrictions on z cut it down to a
solid cylinder radius 2 and height 5, with base in the xy-plane. Finally, the restriction on
θ reduces it to that portion which is in the first octant (See Figure 1.1.5). �

Spherical Coordinates

In cylindrical coordinates, two coordinates describe distances and one describes a direc-
tion. We now introduce spherical coordinates, in which two describe directions and only
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Figure 1.1.6 Spherical coordinates

one is a distance. Spherical coordinates are denoted (ρ,θ ,φ), where ρ is the distance to
the origin, θ is our old friend from polar and cylindrical coordinates, and φ is the angle
with the positive z-axis. See Figure 1.1.6.

Constant Coordinate Surfaces: Fixing θ just gives us a half-plane with boundary on the
z-axis and making an angle of θ with the positive x-axis, as before. Fixing ρ focuses on all
points a fixed distance from the origin; take a guess at what shape that might be. The set
of all points in R

3 satisfying φ = c is the set of all points making a fixed angle with the
positive z-axis. This is actually a cone with vertex at the origin and making an angle of c
with the positive z-axis.

Math App 1.1.2. Spherical constant coordinate surfaces
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Click the following hyperlink, or print users open manually, to view and manipulate a
Math App illustrating constant coordinate surfaces φ = c.

0.50.50.5

11

0.50.5
–0.5–0.5 –1–1–1

–1–1–1

ρ = 1

00000000000000000

ϕ = 3π/4

Now consider curves of intersection of constant coordinate surfaces. Fixing both θ and
φ results in a ray through the origin. Indeed, fixing θ results in a half-plane, while fixing
φ yields a cone. Fixing both is equivalent to taking the intersection of the half-plane and
cone (convince yourself I’m not lying), which is a ray in the half-plane that makes the
given angle with the z-axis.

Example 1.1.8. Spherical equation from geometric description

Find a spherical equation for the cone with vertex at the origin and that makes an angle
of π/3 with the positive z-axis.

Since the angle with the positive z-axis is the coordinate φ in spherical coordinates, the
spherical equation is φ = π/3. �
Example 1.1.9. Curve of intersection between constant coordinate surfaces

Describe, as carefully as possible, the curve of intersection of the surfaces φ = 3π/4
and ρ = 1.

The surfaces are pictured in Figure 1.1.6(b), and the intersection of the cone and sphere
will be a circle. Since the cone is pointing straight down, it will be a horizontal circle.
Further, using the trigonometry of the triangle corresponding to that of Figure 1.1.6(a)
we can determine the radius and height below the xy-plane. In the triangle we have
hypotenuse 1, since ρ = 1, and an angle of 3π/4 with the positive z-axis. Trigonometry
implies that r = √

2/2 and z = −√
2/2.

In summary, the intersection of φ = 3π/4 and ρ = 1 is a horizontal circle at height
z = −√

2/2 with radius r = √
2/2. �

Example 1.1.10. Describing solids in space—spherical coordinates

We describe the portion of R3 defined by the system of inequalities

2 ≤ ρ ≤ 3
0 ≤ φ ≤ π/2
0 ≤ θ ≤ 3π/2

https://global.oup.com/booksites/content/9780198835172/
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Figure 1.1.7 A solid shell

The restrictions on ρ indicate that the solid is between spheres of radius 2 and 3
centered at the origin. The region ofR3 described by 0 ≤ φ ≤ π/2 is the top half of space,
while the restriction 0 ≤ θ ≤ 3π/2 lets you got three-quarters of the way around the z-
axis. Thus it is the solid pictured in Figure 1.1.7. �

Coordinate Conversion: Converting between spherical and other coordinates is easily
achieved using trigonometry and the right triangle illustrated in Figure 1.1.6(a). Notice
that r = ρ sinφ and z = ρ cosφ, giving the conversion from spherical to cylindrical.
A simple substitution then gives (x, y, z) = (ρ sinφ cosθ ,ρ sinφ sinθ ,ρ cosφ). We sum-
marize converting between the different coordinate systems in the following table.

Converting between coordinate systems

Cartesian Cylindrical Spherical
x = r cosθ = ρ sinφ cosθ
y = r sinθ = ρ sinφ sinθ

z = z = ρ cosφ

Other useful conversions

r2 = x2 + y2, ρ2 = x2 + y2 + z2, r = ρ sinφ

It will frequently be helpful to translate between coordinate systems, and these conver-
sions facilitate that translation.

Example 1.1.11. Verifying a conversion analytically

By direct substitution, and simplification, we verify x2 + y2 + z2 = ρ2.

x2 + y2 + z2 = (ρ sinφ cosθ)2 + (ρ sinφ sinθ)2 + (ρ cosφ)2

= ρ2 sin2 φ cos2 θ + ρ2 sin2 φ sin2 θ + ρ2 cos2 φ
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= ρ2 sin2 φ
(

cos2 θ + sin2 θ
) + ρ2 cos2 φ = ρ2 sin2 φ + ρ2 cos2 φ

= ρ2. �

Example 1.1.12. Equations in different coordinate systems

The conversions in the above table allow one to translate an equation from one
coordinate system to another. For example, the Cartesian equation for a sphere centered
at the origin radius 2 is x2 + y2 + z2 = 4. Using the appropriate above conversion, we
replace x2 + y2 + z2 with ρ2 to get the spherical equation ρ2 = 4, which simplifies to
ρ = 2.

Similarly, we can derive cylindrical and spherical equations for the Cartesian equation
x = 5. Replacing x with r cosθ we obtain the cylindrical equation r cosθ = 5 for the
plane x = 5. Using the appropriate spherical substitution we find the spherical equation
is ρ sinφ cosφ = 5. �
Example 1.1.13. Equations for surface described geometrically

Find an equation in each coordinate system for the plane parallel to the xz-plane, and
7 units to the right of it.

Since such planes have Cartesian equations y = c for some constant c, we have y = 7
as the Cartesian equation of the plane. Substitutions yield:

Cartesian y = 7
Cylindrical r sinθ = 7
Spherical ρ sinφ sinθ = 7 �

In this section we’ve introduced coordinate systems in three dimensions. We now
summarize the important points.

Things to know/Skills to have
• The interpretation of each coordinate in Cartesian, cylindrical and spherical

coordinates (e.g. z is the height above the xy-plane, while r is the distance to
the z-axis).

• Converting between different coordinate systems, and why they work using trig.
• Be able to sketch and describe in English constant coordinate surfaces in each

coordinate system.
• Be able to describe in English and sketch the intersection of two constant

coordinate surfaces.
• Be able to give equations in each coordinate system for constant coordinate

surfaces.
• Be able to use a system of inequalities to describe solids in R

3.
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Exercises

1. Sketch the following constant coordinate surfaces; include the coordinate planes in
your sketch.
(a) z = −2.
(b) x = 4.
(c) y = −5.

2. Sketch the following constant coordinate surfaces; include the coordinate axes in
your sketch.
(a) z = −2.
(b) r = 4.
(c) θ = −3π/4.

3. Sketch the following constant coordinate surfaces; include the coordinate axes in
your sketch.
(a) ρ = 2.
(b) φ = π/3.
(c) θ = −3π/4.

4. Sketch the constant coordinate surfaces x = −1, x = 0, and x = 3 on the same set of
axes.

5. Sketch the constant coordinate surfaces r = 1, r = 3, and r = 5 on the same set of
axes.

6. Sketch the constant coordinate surfaces θ = 0, θ = π/4, and θ = 3π/4 on the same
set of axes.

7. Sketch the constant coordinate surfaces φ = π/6, φ = π/2, and φ = 3π/4 on the
same set of axes.

8. Sketch the constant coordinate surfaces ρ = 1, ρ = 2, and ρ = 5 on the same set of
axes.

9. Give a one-sentence English description of each of the following constant coordinate
surfaces:
(a) z = 5.
(b) r = 4.
(c) ρ = 2.
(d) φ = π/3.
(e) θ = −3π/4.

10. Find Cartesian equations for the following surfaces.
(a) ρ = 2.
(b) φ = π/2.
(c) r = 3.
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11. Find cylindrical equations for the following surfaces.
(a) x2 + y2 = 9.
(b) z = 3.
(c) ρ sinφ = 6.

12. Find spherical equations for the following surfaces.
(a) r2 + z2 = 4.
(b) z = 3.
(c) x2 + y2 + z2 = 9.

13. Find a Cartesian equation for the set S of all points 6 units above the xy-plane. Now
find cylindrical and spherical equations for S.

14. Find a Cartesian equation for the set S of all points 3 units to the left of the xz-plane.
Now find cylindrical and spherical equations for S.

15. Find a cylindrical equation for the set of all points in R
3 that are 4 units from the

z-axis.
16. Find a spherical equation for the set S of all points 5 units from the origin. Now find

Cartesian and cylindrical equations for S.
17. Find a Cartesian equation for the sphere centered at (0, 0, 1) with radius 1. Now find

a cylindrical equation for it.
18. Describe, as carefully as you can, the intersection of the constant coordinate surfaces

given below. Include what geometric shape it is (e.g. a line, ray, circle, etc.), and how
it sits in R

3 (e.g. horizontally, parallel to the y-axis, etc.).
(a) y = 3, z = −2.
(b) z = 5, r = 2.
(c) z = −2, θ = 3π

4 .

(d) r = 5, θ = −π
3 .

(e) ρ = 3, φ = π
4 .

(f) ρ = 3, φ = π
2 .

(g) ρ = 5, θ = 4π
3 .

(h) φ = π
6 , θ = π

6 .

19. Use the Pythagorean theorem to prove the distance formula in R
3.

20. Justify in English the conversion z = ρ cosφ. (Hint: use Figure 1.1.6)
21. Justify in English the conversion r = ρ sinφ. (Hint: use Figure 1.1.6)
22. Justify, analytically and in English, the conversion r2 = x2 + y2.
23. Justify, in English, the conversion ρ2 = x2 + y2 + z2.
24. Sketch the solid determined by the system of inequalities:

0 ≤ x ≤ 3; 0 ≤ y ≤ 5; 0 ≤ z ≤ 1.
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25. Sketch the solid determined by the system of inequalities:

0 ≤ x ≤ 4; −2 ≤ y ≤ 0; 0 ≤ z ≤ 3.

26. Sketch the solid determined by the system of inequalities:

0 ≤ r ≤ 4; 0 ≤ θ ≤ π ; 0 ≤ z ≤ 3.

27. Sketch the solid determined by the system of inequalities:

2 ≤ r ≤ 3; 0 ≤ θ ≤ π/2; 0 ≤ z ≤ 4.

28. Sketch the solid determined by the system of inequalities:

0 ≤ ρ ≤ 2; 0 ≤ θ ≤ π/2; 0 ≤ φ ≤ π .

29. Sketch the solid determined by the system of inequalities:

1 ≤ ρ ≤ 2; 0 ≤ θ ≤ π ; 0 ≤ φ ≤ π/2.

30. A cylindrical can has radius 5 and height 2. A coordinate system is introduced so that
the center of mass of the can is at the origin, and its axis is the z-axis. What system of
inequalities on cylindrical coordinates describes the region of space occupied by the
can?

31. A spherical shell is centered at the origin. Its inner radius is 2 and it is half a unit thick.
What system of inequalities in spherical coordinates describes the region of space
occupied by the shell?

32. Define a different set of cylindrical coordinates, where r is the distance to the x-axis
and θ is the angle made with the positive y-axis. What are the change-of-coordinate
functions from this system to Cartesian coordinates?

33. Let T be rotation of space counterclockwise around the z-axis through an angle of π
2 ,

and let (ρ,θ ,φ) = (
2,−π

3 , π
4
)

be the spherical coordinates of the point P. Find the
spherical coordinates of the rotated point T(P).
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1.2 Surfaces from Graphs

In single-variable calculus, considerable effort is spent on studying curves defined as
graphs of functions y = f (x). The derivative f ′(x) is the instantaneous rate of change
of f , and can be used to determine when the graph of f is increasing or decreasing,
the concavity of f , and extreme values of f . The integral of f can represent area or
distance traveled, and can be used to find physical quantities like arclength and centers
of mass. Indeed, much of single-variable calculus is concerned with analyzing properties
of functions f (x) and their graphs. In multivariable calculus we will be concerned with
functions of several variables, and we begin our study in this section with analyzing graphs
of functions of two variables.

Recall that the graph of a function, say

f (x) = sinh x = ex − e−x

2
,

is the set of all points of the form
(

x, f (x)
)

as pictured in Figure 1.2.1.
In this context the domain of the function is the horizontal axis—a subset of the plane.

The range consists of y-values, which are on the vertical axis. Combining the domain and
range in the same space is so familiar, we rarely think about it. We take our cue from the
two-dimensional case, and make the following definition:

Definition 1.2.1. The graph of a function f (x, y) is the set of all points in R
3 of the form(

x, y, f (x, y)
)

.

To sketch the graph of z = f (x, y), consider the domain to be the xy-plane in R
3 and

the function value f (x, y) determines the height above it. For example, if f (x, y) = x2 − y2,
the point (2, 1, f (2, 1)) = (2, 1, 3) is on the graph of f . We illustrate the graphs of two
functions below, then describe the level curve technique for understanding the graph of
a function of two variables.

3

2

2

1

10
–1

–1

–2

–2

–3

Figure 1.2.1 The hyperbolic sine function
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(a) (b)

f (x, y) = x2 + y 2f (x, y) = x2 – y 2

Figure 1.2.2 The graphs of two functions

Example 1.2.1. The graphs of two functions

We give, without justification, the graphs of two functions. These surfaces represent all
points in R

3 of the form
(

x, y, f (x, y)
)

for the respective functions. �
Our current task is to develop a method for determining the pictures of Figure 1.2.2

from the formulas. This method uses level curves, which we will want to understand
analytically, geometrically, and conversationally. We motivate level curves by considering
topographic maps.

A topographic map is one that also illustrates the topography of a region using what
are called contour lines. Contour lines are constant altitude curves, or curves that connect
points of the same altitude. Figure 1.2.3 is a topographic map of the area around Longs
Peak in Rocky Mountain National Park, Colorado. The contour lines, together with
shading and colors, help give us an idea of what the terrain is like. For example, consecutive
darker curves represent an altitude gain of 250 feet. The closer they are together, the
steeper the terrain in that area. The label on a curve tells you its altitude, and we can use
them to determine which peak is higher, Longs Peak in the lower center of the region, or
Mount Meeker, south east of Longs. One could also use contour lines to determine the
direction a hiker at the middle of the map should walk to get downhill the fastest. A lot of
information is encoded in a topographic map.

We wish to use similar techniques to understand graphs of functions z = f (x, y).
The “mathematical mountain” in Figure 1.2.4(a), for example, is represented by the
topographic map in Figure 1.2.4(b). Notice that the contour lines are labeled with their
corresponding altitudes. If we had a big can of paint and a lot of time we could paint the
curves on the mountain that correspond to the contour lines on the map, as in Figure
1.2.4(c). The contour lines of the map are not actually on the mountain, they live in two
dimensions. However, looking only at the topographic map, the contour lines do give us
an idea of what the mountain looks like.

To construct a topographic map from a formula, note that the constant altitude curves
on the mountain in Figure 1.2.4(c) can be thought of as the curve of intersection of the
mountain and a horizontal plane. For example, the highest curve is 630 feet above sea
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Figure 1.2.3 Longs Peak area

Mathematical mountain Topographic map Curves on mountain
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2 4

(a) (b) (c)

Figure 1.2.4 Topographic maps motivate level curves

level, and can be thought of as the intersection of the mountain with the plane z = 630.
Thus constant altitude curves on the mountain z = f (x, y) at height c can be thought of
as the solution set in R

3 of the system of equations

{
z= f (x, y)
z= c. (1.2.1)
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The contour lines of Figure 1.2.4(b) are obtained by dropping the curves on the mountain
down into the xy-plane.

This “dropping” is more precisely called projecting into the xy-plane, and is accom-
plished analytically by eliminating the z-coordinate. To eliminate the z-coordinates from
the system of equations 1.2.1, merely turn them into a single equation by substituting c
for z, obtaining c = f (x, y). Thus we have accomplished our goal. We have determined
how to find equations for contour lines from a formula for the function f ! Let’s look at a
concrete example before going further.

Example 1.2.2. A contour line, or level curve

Let f (x, y) = x2 + y2, and find a contour line at height 4 for the graph of z = x2 + y2.
As described above, the curve on the “mountain” z = x2 + y2 at height 4 is the solution

set to the system of equations

{
z= x2 + y2

z= 4

To find the contour line, merely substitute 4 for z in the first equation yielding

x2 + y2 = 4.

The curve in the xy-plane defined by this equation is the desired contour line, and we
will call it the level curve of the function z = x2 + y2 at level 4. It is obtained by projecting
into the xy-plane the curve of intersection of the surface z = x2 + y2 and the plane z = 4.
Figure 1.2.5 illustrates what’s going on geometrically. �

After this concrete example, we are ready to make a general definition. We remark
that, although the term “contour line” is used in the context of topographic maps, we will
transition to using the term level curve.

4

3–

2–

1–

–2 –1 0 1
1

0
–1

–2

contour line
or

level curve

0–

Figure 1.2.5 Geometric understanding of the R
3 problem
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Definition 1.2.2. The level curve of f (x, y) at level c is the curve in the xy-plane given by the
equation c = f (x, y).

We found that the level curve of f (x, y) = x2 + y2 at level c = 4 is the circle x2 + y2 = 4
(see Figure 1.2.5). The equation for the level curve is found by setting f (x, y) equal to the
given level. Equivalently, we substitute the level c for z in the equation z = f (x, y). Let’s
investigate this further with some examples.

Example 1.2.3. Level curves of f (x, y) = x2 + y2

Using the above strategy we find that the level curve at level c = 0 is the solution set of

x2 + y2 = 0,

which is a single point—the origin. Thus a level curve need not be a curve at all, but can be
a single point. In fact, the situation can be more extreme. Level curves can be intersecting
lines, multiple curves, or even fail to exist. For example, the level curve of f (x, y) = x2 + y2

at level c = −1 does not exist since it is the solution set of the equation

x2 + y2 = −1.

If one is considering several level curves simultaneously, it is sometimes convenient to
summarize the equations in tabular form. For example, we see the following equations
corresponding to different levels:

Level Level Curve

c = −1 x2 + y2 = −1

c = 0 x2 + y2 = 0

c = 0.5 x2 + y2 = 0.5

c = 1 x2 + y2 = 1

c = 2 x2 + y2 = 2

c = 4 x2 + y2 = 4

Analytically, then, it is easy to find equations for level curves—just let the function
equal the level. To develop a greater geometric understanding of the graph of z = f (x, y),
we plot the level curves in the xy-plane. When plotting level curves in the plane, it is
customary to label each curve with its corresponding level, as in a topographic map
(see Figure 1.2.6). It is also common to consider several level curves at the same time.
Doing this allows us to analyze the surface z = f (x, y). For example, the level curves in
Figure 1.2.6 are concentric circles centered at the point at level zero. Take a moment to
compare the surface in Figure 1.2.5 with its corresponding level curves in Figure 1.2.6.�
Math App 1.2.1. Visualizing level curves
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c = 4 c = 2

c = 1

c = 0

c = .5
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–2 –1 1 2

Figure 1.2.6 Level curves of f(x,y) = x2 + y2

Click the hyperlink below, or print users open manually, to visualize the process of
slicing the surface z = f (x, y) and graphing the level curve side by side. Use the slider to
change the level, and see how the level curves change.

10

Surface with Plane

5

–2–2

Example 1.2.4. Level curves of f (x, y) = x2 − y2

Let’s now analyze the surface in Figure 1.2.2(a). The level curve of f (x, y) = x2 − y2

at level c = 1 is the hyperbola x2 − y2 = 1. It has asymptotes y = ±x, vertices (±1, 0),
and opens sideways. The level curves of f (x, y) = x2 − y2 at levels c = −1, 0, 1, 2 are the
curves in the xy-plane given by the equation f (x, y) = c. They are

Level Level Curve

c = −1 x2 − y2 = −1

c = 0 x2 − y2 = 0

c = 1 x2 − y2 = 1

c = 2 x2 − y2 = 2

https://global.oup.com/booksites/content/9780198835172/
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c = –1
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c = –1c = –1c = –1

c = 1c = 1c = 1

c = 2c = 2c = 2 –1–1–1
c = 1

c = 2c = 2c = 2c = 0c = 0c = 0

y

–1–1–1
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Figure 1.2.7 Level curves of f(x,y) = x2 − y2

Most of these curves are hyperbolas in the plane, with one exception. At level c = 0,
the level curve is given by x2 − y2 = 0. The left-hand side factors to (x + y)(x − y) = 0,
which holds when either y = x or y = −x. Thus the level curve at level zero is really a pair
of intersecting lines. Plotting the level curves in the xy-plane yields Figure 1.2.7. �
Math App 1.2.2. Level curves of quadratic functions

The previous two examples have both involved quadratic functions. Click the
hyperlink below, or print users open manually, to explore level curves of the function
f (x, y) = Ax2 + Bxy + Cy2 for different values of A, B, C. It turns out that the
discriminant 4AC − B2 is a magic number! See if you can tell what the level curves
look like when 4AC − B2 is positive, negative, and zero.

0

120

The Surface z = 3 x2 + xy + 5 y2

100

–4
–4
–2 –2 0 2 4

x

You now have two examples of level curves under your belt, and it’s time to see how
to use them to visualize the surface z = f (x, y). Recall that Figures 1.2.6 and 1.2.7 are
topographic maps of their corresponding surfaces. To use these maps to visualize your

https://global.oup.com/booksites/content/9780198835172/
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surface, you just need to add the third dimension. We now illustrate how level curves can
tell us when a surface is above or below the xy-plane.

Example 1.2.5. Interpreting level curves of f (x, y) = x2 − y2.

In Figure 1.2.7 the level curves at level 0 cut the plane into four pieces: the left, right,
top, and bottom. On each piece the function f (x, y) = x2 − y2 is either always positive or
always negative, telling us if the graph of f is above or below that portion of its domain.
The levels are positive on the left and right pieces, indicating the graph is above the xy-
plane over those regions. Similarly, the graph of f is below the xy-plane in the top and
bottom regions. �

The surface of Figure 1.2.2(a) is called a saddle (it kinda looks like one, doesn’t it: the
sides go down but the front and back go up), and the origin is a saddle point of the surface.
Now if a circus wanted to design a saddle for a monkey who rode horses in the show,
they’d have to consider its tail. A monkey saddle would have to go down in the back so its
tail could relax and the monkey would be comfortable. The surface given by f (x, y) =
x(y − x)(x + y) is a monkey saddle. What are the level curves at level c = 0 for the
monkey saddle? These curves divide the xy-plane into regions on which the graph of f
is always above or always below the xy-plane. Over which regions is it above? below?

We now include an example where a little algebra is helpful before sketching level
curves.

Example 1.2.6. Level curves of f (x, y) = x2 − 2x + y2 + 4y + 1

1.00.5
–0.5

–0.5

–0.5

0.5

0.0
–1.0

1.0

0.5

0.0

0.0

1.0

–1.0
–1.0

Figure 1.2.8 A monkey saddle
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Sketch the level curves of f (x, y) = x2 − 2x + y2 + 4y + 1 at levels c = −1, 0, 1. First,
we complete the square on x and y to see that f (x, y) = (x − 1)2 + (y + 2)2 − 4. Setting
the function equal to each level gives the equation for the level curve in the xy-plane. We
have

Level Level Curve Simplified Equation

c = −1 −1 = (x − 1)2 + (y + 2)2 − 4 3 = (x − 1)2 + (y + 2)2

c = 0 0 = (x − 1)2 + (y + 2)2 − 4 4 = (x − 1)2 + (y + 2)2

c = 1 1 = (x − 1)2 + (y + 2)2 − 4 5 = (x − 1)2 + (y + 2)2

Thus the level curves are all circles centered at the point (1,−2) with radii
√

3, 2,
√

5,
respectively. See Figure 1.2.9(a) for a sketch of the level curves. It turns out that this
surface is again a paraboloid, seen in Figure 1.2.9(b), but be forewarned that not every
surface with circular level curves is a paraboloid! �
Example 1.2.7. Level curves and optimization

In the previous example we sketched some level curves of f (x, y) = x2 − 2x + y2 +
4y + 1. In this example we show how level curves can be used to solve constrained opti-
mization problems. In a constrained optimization problem there is an objective function,
which needs to be maximized or minimized. The “constrained” part of the problem means
we want to optimize our objective function, but subject to some constraint equation.
A general method for doing so, called the method of Lagrange multipliers, will be outlined
in Section 3.8. For now we content ourselves with an example.
We address the following question:

An ant crawls on the surface z = f (x, y) = x2 − 2x + y2 + 4y + 1 directly “above” the
unit circle in the xy-plane. What is the maximum altitude that the ant achieves? This is
a constrained optimization problem, where the objective function is f (x, y), and we want
to maximize it on the unit circle. The constraint equation is therefore x2 + y2 = 1 (see
Figure 1.2.9(a) for the level curves together with the constraint equation).

This question can be completely rephrased in terms of level curves. The ant is one unit
up when it is above the intersection of the unit circle and the level curve c = 1. More
generally, the level of a level curve through a point on the unit circle tells you the height
of the ant there. Woah! Stop and ruminate on that sentence—it’s worth understanding.

To find its maximum height, then, one has to find the highest level of any level curve
intersecting the unit circle. Figure 1.2.9(b) shows the actual path of the ant on the surface
“above” the constraint curve.

In this case, level curves are concentric circles centered at (1,−2) and the levels are
increasing as the radius increases. If a level curve C intersects the unit circle, it either does
so in two points or one. If C intersects the unit circle in two points, then there are level
curves with slightly larger radius that still intersect the unit circle. Therefore the largest
level curve intersecting the unit circle will be the large one tangent to it. This occurs
when the radius of the large circle centered at (1,−2) goes through the center of the unit
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Figure 1.2.9 A shifted paraboloid

circle. Since the distance from (1,−2) to the origin is
√

5 units and the distance from the
origin to the unit circle is 1, we have that the radius of the level curve giving the maximum
altitude of the ant is 1 + √

5.
We now have to find the level associated with this radius. The equation of the level

curve at level c is c + 4 = (x − 1)2 + (y + 2)2. In general, then, the relationship between
the radius r and level c is given by r2 = c + 4. Substituting 1 + √

5 for r gives c = 2 +
2
√

5. Thus the maximum height achieved by the ant is 2 + 2
√

5.
We pause to point out the critical observation in solving this problem. We wanted

to maximize the function f (x, y) = x2 − 2x + y2 + 4y + 1, subject to the constraint that
x2 + y2 = 1. The key observation was that f (x, y) would be maximized at a point where
the constraint curve (the unit circle) was tangent to the level curve. More generally, the
maximum (or minimum) of a function subject to a constraint will occur at a point where
the constraint curve and level curves are tangent to each other. This will be expanded on
in Section 3.8. �

Level curves and critical points: One can look at a topographic map and tell where the
mountain peaks are. Similarly, level curves can tell us where relative maxima and minima
of our function are, as well as saddle points. More precisely, level curves near extreme
values look like concentric ellipses (for nice functions f (x, y)), while near a saddle they
look more like hyperbolas. We illustrate with two examples.

Example 1.2.8. Extreme values from level curves

Some level curves of the function f (x, y) = e−x2
(y3 − y) are given in Figure 1.2.10,

and are labeled with their corresponding heights. The points P and Q in this example are
degenerate level curves. Since the level curves are elliptical in shape around the points P
and Q , those points are relative extreme points for the surface. The levels are decreasing
toward P, so P is a relative minimum of the surface. Similarly, the levels are increasing
toward Q so it is a relative maximum. �

In the previous example we used the fact that if a level curve is a point (like P or
Q above), and the curves around them are elliptical in shape, the points correspond to
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Figure 1.2.11 Some level curves of f(x,y) = x3 + 6xy2 − 6x

relative extrema of f (x, y) (some additional assumptions on the function f are necessary,
but we ignore the details for now). We’ve also seen that near a saddle point the level curves
look like hyperbolas (see Figure 1.2.7). We use these facts to interpret the following level
curve diagram.

Example 1.2.9. Interpreting level curves, again

The level curves in Figure 1.2.11 are for the function f (x, y) = x3 + 6xy2 − 6x. Notice
that they are not connected. For example, in Figure 1.2.11(a) the level curves at level 5
appear in the upper and lower right, then close to the point P on the left. There are actually
only two components of the level curve 5 = x3 + 6xy2 − 6x, as in Figure 1.2.11(b), the
display just wasn’t wide enough to show it. In any case, this illustrates that level curves can
have several pieces.

Reasoning as in the previous example and discussion, we wish to classify the points
P, Q , R, S as relative maxima, minima, or saddles. Since levels are increasing toward P,
f (x, y) attains a relative maximum there. Similarly, f (x, y) has a relative minimum at Q .
The level curve at level 0 intersects itself at R and S, and look like hyperbolas nearby, so R
and S are saddles of f . �
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Fluid Flow: We introduce two-dimensional fluid flow here, since streamlines (the paths
of particles in the flow) are level curves of the stream function corresponding to the flow.
After defining some terminology from the field of fluid mechanics, we discuss a model for
ideal fluid flow around a corner (for a more thorough discussion see [9]).

Viscosity is a property of the fluid itself, rather than the flow, which basically describes
how thick it is. Pouring caramel on a bowl of ice cream or honey in a cup of tea illustrates
that these are high-viscosity fluids. Water and air are low viscosity fluids, and pour
quite readily. A second property of fluids is that of incompressibility. Air and helium are
compressible in that they can be forced into smaller spaces at the expense of increasing
pressure. Conversely, compressed gasses can expand to fill larger spaces, reducing pres-
sure. You witness this every time you inflate a balloon from a tank of helium. Water, on
the other hand, is incompressible. Viscosity and compressibility are properties that help
describe and distinguish fluids.

In order to understand a fluid flow one must also consider properties of the flow itself,
not just of the fluid. A flow can cause particles to both move along with it, as well as spin
while moving. An example illustrates what I mean. The surface of a pond can be thought
of as a two-dimensional fluid flow. In the fall, if you drop a leaf into the pond, the leaf will
begin to drift along with the flow. If the leaf starts spinning as well, the flow is rotational.
An irrotational flow is one in which all leaves drift along, but none spin.

It turns out that models that are both incompressible and irrotational closely imitate the
flow of low viscosity fluids. We will consider such models, which are called ideal fluid flows,
as they are excellent applications of much of the mathematics discussed in this book. (By
the way, the notions of incompressible and irrotational will be made quite precise when
we discuss divergence and curl in Section 5.5.)

Example 1.2.10. Ideal flow around a right-angle

With a bit of intuition in hand, we begin a more formal discussion of fluid flow. An ideal
fluid flow is described using two functions: the velocity potential and stream functions.
We focus on the two-dimensional ideal flow around a corner. The velocity potential and
stream functions for this situation are

ϕ(x, y) = x2 − y2, and
ψ(x, y) = 2xy,

respectively. The level curves of the stream function ψ are called streamlines, and are the
paths particles travel along in the flow. Thus the flow is along hyperbolas with equations
2xy = c, which we sketch in the first quadrant in Figure 1.2.12(a), thinking of the axes as
the corner the flow goes around. �

Before leaving this topic, we take a moment to generalize Example 1.2.10 to flows
around a corner with angle π/n as it is a particularly nice application of polar coordinates.

Example 1.2.11. Flows around arbitrary corners

To motivate the generalization, we first find polar equations for a right-angled flow.
Using double-angle formulas from trig, we see
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Right-angle flow 5π/4 – corner flow π/3 – corner flow

(a) (b) (c)

Figure 1.2.12 Streamlines of ideal fluid flow

ϕ(x, y) = x2 − y2 = r2(cos2 θ − sin2 θ) = r2 cos 2θ ,

ψ(x, y) = 2xy = r22 cosθ sinθ = r2 sin 2θ .
(1.2.2)

To generalize from a corner angle of π/2 to one of π/n, it would be great to change the
2’s to n’s in Equation 1.2.2. Somewhat miraculously, this is indeed the proper generaliza-
tion, so that an ideal flow around a corner π/n has velocity potential and stream function
given by:

ϕ(r,θ) = rn cos nθ ,
ψ(r,θ) = rn sin nθ .

(1.2.3)

To be more specific, let’s sketch some streamlines for an ideal fluid flow around a 60◦
corner (see Figure 1.2.12(c)). In this case, the angle is π/3 and the stream function is
ψ = r3 sin 3θ . Note that ψ = 0 when θ is 0 or π/3 (among other values), so those rays
are level curves of ψ at level 0. These curves represent the boundary of the flow, and for
this reason we only sketch the curves for 0 < θ < π/3.

For c > 0, the streamline equation ψ = c can be solved for r to be

r = 3

√
c

sin 3θ
.

For θ near 0 and π/3 the sine approaches 0 and r → ∞, so the streamlines are asymptotic
to the boundary of the flow. Additionally, the distance r is minimized when sin 3θ is
maximized at 3θ = π/2, or when θ = π/6, which is half-way through the domain. These
features are illustrated in Figure 1.2.12(c).

Finally, since one might be more comfortable with Cartesian coordinates, we use angle
sum identities to translate ϕ and ψ into Cartesian coordinates. While these may be more
familiar, they are definitely less illuminating, thereby illustrating the usefulness of polar
coordinates!
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ϕ = r3 cos 3θ = r3(cos 2θ cosθ − sin 2θ sinθ)

= r3 (
(cos2 θ − sin2 θ)cosθ − 2 sin2 θ cosθ

)

= r3 cos3 θ − 3r3 sin2 θ cosθ

= x3 − 3xy2,

ψ = r3 sin 3θ = r3 (sin 2θ cosθ + cos 2θ sinθ)

= r3 (
2 sinθ cos2 θ + (cos2 θ − sin2 θ) sinθ

)

= 3r3 cos2 θ sinθ − r3 sin3 θ

= 3x2y − y3. �

In the above generalization to flows around π/n-corners, n need not be an integer. As
an example, the streamlines for a 5π/4-corner and are shown in Figure 1.2.12(b).

Things to know/Skills to have
• Know the definition of the graph of a function of two variables.
• Be able to sketch level curves for a given function and level.
• Solve a constrained optimization problem using level curves.
• Be able to determine maxima, minima, and saddle points for a function from its

level curves. More generally, relate the level curves to the geometry of a surface.
• Sketch streamlines given the stream function for an ideal fluid flow.

Exercises

1. Decide whether each point P is a relative maximum, relative minimum, or a saddle
point. Give a one-sentence justification for your answer.

7

4
2

1

–4 –3 –2 –1

–1

1

2

3

0

y

x

P

2

0 1 2 3 4

y

x

1

–1

–2

2

–3

–1 –10
1

1

0P

(a) (b)

https://global.oup.com/booksites/content/9780198835172/


OUP CORRECTED PROOF – FINAL, 9/10/2019, SPi

Surfaces from Graphs | 29

2. Sketch the level curves of f (x, y) = xy at levels c = −1, 0, 1, 2. What kind of surface is
this?

3. Sketch the level curves of f (x, y) = x2 + 4y2 at levels c = 0, 4, 16. For what levels c
does the level curve f (x, y) = c not exist? What does this imply about the intersection
of the surface z = f (x, y) and the plane z = c for these levels?

4. Some level curves of the function f (x, y) = x3 − 3x + y2 are pictured below. Guess
whether the points P and Q represent maxima, minima, or saddles. What keeps you
from being definite in your answer?

3

2

y

x

1

0

–1

–2

–2 –1 1 222

–3

P Q

5. Sketch the level curves of f (x, y) = 3x + 2y + 7 for levels c = −2, 1, 8. Can you guess
at the shape of the surface?

6. Sketch the level curves of f (x, y) = x2 − y2 − 4x − 2y at levels c = −4,−3,−2, 0.
What kind of surface do you get?

7. Sketch the level curves of f (x, y) = √
16 − x2 − y2 for levels c = 0, 1, 2, 3, 4. Can you

describe the surface?
8. Sketch the level curves of f (x, y) = x2 + y2 − 2xy for levels c = 0, 1, 4. Can you guess

at the shape of the surface? (Hint: factor f (x, y) first)
9. Maximize f (x, y) = x − √

3y subject to the constraint x2 + y2 = 1.
10. Sketch the level curves for f (x, y) = 3x − 3y + 4 at levels c = 0, 4, 16. An ant is

crawling on the surface z = f (x, y) above the unit circle in the xy-plane. What are the
highest and lowest elevations the ant attains? Sketch the surface in R

3.
11. Sketch the level curves for f (x, y) = x2 + y2 − 6x + 16y at levels c = 0, 4, 16. An ant

is crawling on the surface z = f (x, y) above the unit circle in the xy-plane. What are
the highest and lowest elevations the ant attains? Sketch the surface in R

3.
12. Different surfaces can have very similar level curves!

(a) Sketch the level curves of f (x, y) = x2 + y2 at levels c = 0, 1, 2.
(b) Sketch the level curves of f (x, y) = √

x2 + y2 at levels c = 0, 1, 2.
(c) The level curves for both surfaces are concentric circles centered at the origin.

How can you tell the surfaces apart from their level curves?

https://global.oup.com/booksites/content/9780198835172/
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13. The saddle f (x, y) = (x − y)(x + y) has two portions sloping down and two sloping
up. The monkey saddle f (x, y) = x(x − y)(x + y) has three portions of the surface
sloping down (two for the legs and one for the tail) and three up. Can you guess a
formula for a surface with four upward and four downward sloping portions? Can
you generalize?

14. Sketch some level curves of h(x, y) = ln(x2 + y2 + 1). Describe the surface in a
sentence or two.

15. Sketch some level curves of h(x, y) = cos(x2 + y2). Describe the surface in a sentence
or two.

16. Sketch some level curves of h(x, y) = 1/(1 + x2 + y2), and describe what the surface
does near infinity.

17. An ideal fluid flow is modeled with the velocity potential ϕ = 4x − 3y and stream
function ψ = 3x + 4y. Sketch some streamlines for this flow. Can you describe this
flow in a sentence or two?

18. The velocity potential ϕ = x + 2y and stream function ψ = −2x + y model a two-
dimensional flow in the plane. Sketch a few streamlines for the flow.

19. Find the velocity potential and stream function for an ideal fluid flow around a π/4-
corner. Sketch some streamlines for the flow.

20. Guess what the streamlines around a π -corner would look like (write your guess
down first—AND why you think so!). Now find the velocity potential and stream
function for this case in polar and in Cartesian coordinates, and sketch some stream-
lines. Write a sentence or two comparing your guess to the analysis that followed.

21. A point source in two-dimensional ideal fluid flow emits fluid at a constant rate
μ uniformly in all directions (think of a fountain, for example). A point source at
the origin can be modeled in polar coordinates with velocity potential and stream
function

ϕ = μ

2π
ln r, ψ = μ

2π
θ .

Letting μ = 1, sketch some streamlines for the flow.
22. A vortex in a two-dimensional flow has velocity and stream functions

ϕ = Kθ , ψ = −K ln r.

Where K is the strength of the vortex. Letting K = 1, sketch some streamlines for the
flow. Compare the streamlines for a source to those of a vortex.
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1.3 Surfaces from Equations

In this section we present a potpourri of surfaces arising as the solution sets of equations,
and techniques to study them. We study slicing surfaces with planes, quadric surfaces,
generalized cylinders, planes, level surfaces, and equations in other coordinate systems.
The basic technique for studying quadric surfaces and level surfaces will be to slice the
surfaces with planes parallel to coordinate planes. Generalized cylinders turn out to be
easy to recognize from their equations, and easy to sketch. Geometric understanding will
help analyze surfaces given by equations in other coordinate systems. Enjoy the variety!

Planes: Lines are some of the first curves you learn to graph in the plane. Analogously,
we begin this section on surfaces with planes. The general form for an equation of a line
is Ax + By = C, so it is no surprise that any plane in R

3 has an equation of the form

Ax + By + Cz = D,

where A through D are constants and at least one of A, B, or C is not zero. The constants in
the equation Ax + By + Cz = D turn out to have significant geometric meaning, which
we will see after discussing vectors in Section 2.3. . . something to look forward to!

Example 1.3.1. The plane 5x + 2y + z = 10

An easy way to visualize the plane 5x + 2y + z = 10 is to plot the intersections with the
coordinate axes, connect the dots to form a triangle. When sketching planes, the triangle
might be enough to visualize it as long as you remember that the plane extends without
bound in all directions.

The y- and z-coordinates of points on the x-axis in R
3 are both zero. This implies that

letting y = z = 0 in the equation for the plane gives the x-coordinate, and we get the
intercept (2, 0, 0). Similarly, we get y-intercept (0, 5, 0) and z-intercept (0, 0, 10). Plotting
these points and connecting the dots gives a triangle that lives in the plane (see Figure
1.3.1(a)). Extending the triangle in all directions gives the plane itself, as in Figure
1.3.1(b). �
Example 1.3.2. Relating a planar equation to the graph

Let P be the plane given by Ax + By + Cz = D.

1. Suppose D = 0, what can you say about the plane?
If D = 0, then the origin (0, 0, 0) satisfies the equation, so P goes through the
origin. In this case the above technique for visualizing planes will not work, but
Section 2.3 will use vectors perpendicular to the plane.

2. Suppose A · B < 0 and D 	= 0, what can you say about the plane P?
Since A · B < 0, we know A and B have opposite signs. If the x-intercept is positive,
then the y-intercept will be negative, and vice versa. Thus we can say the x- and
y-intercepts have opposite signs. �
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Figure 1.3.1 Visualizing the plane Ax + By + Cz = D

Generalized Cylinders: We have already seen that the cylindrical coordinate equation
r = 2 describes a cylinder in space. Translating to Cartesian coordinates for R

3 this
corresponds to the equation

√
x2 + y2 = 2, or x2 + y2 = 4, which is missing the

z-coordinate entirely. One way to think of r = 2, then, is that it is the curve x2 + y2 = 4
in the xy-plane translated up and down along the z-axis. More generally, we’ll say that:

Definition 1.3.1. Any surface whose Cartesian equation is missing one variable is a general-
ized cylinder.

To visualize generalized cylinders:

1. Sketch the curve in the appropriate plane.
2. Translate the curve along the axis of the missing variable.

Example 1.3.3. A hyperbolic cylinder

Sketch the surface x2 − 4z2 = 1. We know this is a generalized cylinder since the y-
coordinate is missing from the equation. The first step is to sketch the curve x2 − 4z2 = 1
in the xz-plane. This is a hyperbola with vertices (±1, 0, 0), and asymptotes z = ±x/2
(see the dark curve of intersection in Figure 1.3.2). To get the surface, simply translate
the hyperbola back and forth along the y-axis, as in Figure 1.3.2. �
Example 1.3.4. A washboard

You can sketch the surface y = sin z in R
3 in two steps. First sketch the curve y = sin z

in the yz-plane, then translate the curve back and forth along the x-axis. This process is
illustrated in Figure 1.3.3. �

Plane Sections: In Section 1.2 we used level curves to make topographic maps for sur-
faces arising from the graphs of functions z = f (x, y). Geometrically, this corresponded
to considering the intersection of the surface z = f (x, y) with a horizontal plane z = c.
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xz-plane

Figure 1.3.2 The generalized cylinder x2 − 4z2 = 1

(a) (b)

Figure 1.3.3 A “cylinder”

We generalize Section 1.2 in two ways. One generalization is to consider surfaces that
need not be graphs of functions. This is analogous to considering curves in the plane
defined as solution sets to equations, such as the ellipse x2

9 + 4y2 = 1, which is not the
graph of a function. The second generalization is that the planes we slice them with need
not be horizontal. Allowing for this flexibility can give greater insight into the structure of
some surfaces. Which planes give you greatest insight into a surface is usually dictated by
the equation that defines it.

We begin with some examples of slicing graphs of functions with other planes, which
could be done using the level curve technique but are easier to understand by slicing with
other planes. We then proceed to surfaces whose defining equations are not functions of
one of the variables.

Example 1.3.5. Slicing surfaces for geometric understanding
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Level curves of the function f (x, y) = x3 − x + y2 are curves in the xy-plane defined by

x3 − x + y2 = c,

for some constant c. Since these curves are hard to visualize, it may be easier to find the
intersections with other planes instead. Let’s investigate the graph of f (x, y) = x3 − x + y2

by slicing it with planes parallel to the xz-plane.
First, the curve of intersection of the surface z = x3 − x + y2 with the plane y = 0 is

the solution to the system of equations

{
z= x3 − x + y2

y = 0.

An equation for the curve is obtained by substituting 0 for y in the first equation, yielding
z = x3 − x. One can plot this curve in the xz-plane, as in Figure 1.3.4(b). The intersection
with the plane y = −3 has equation z = x3 − x + (−3)2 = x3 − x + 9, and is pictured
in 1.3.4(a). Similarly the y = 2 cross-section is in 1.3.4(c), and they are put together in
Figure 1.3.5.

y = –3 

y = 0 y = 2

(a) (b) (c)

Figure 1.3.4 Plane sections of f(x,y) = x3 − x + y2
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Figure 1.3.5 The surface z = x3 − x + y2
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More generally, to describe the intersection of the surface with the plane y = c
analytically we substitute c for y, obtaining z = x3 − x + c2. This is a vertical translation
of the curve z = x3 − x by c2 units. So as you move back and forth along the y-axis, the
curve z = x3 − x gets translated up by the appropriate amount, sweeping out the surface
as in Figure 1.3.5. The grid lines on the surface that are “parallel” to the highlighted one in
the middle are all intersections with planes y = c. This technique is convenient because
the x’s and y’s in f (x, y) = x3 − x + y2 are added together, making the vertical translation
easy to see. �
Math App 1.3.1. Surface sections

This Math App gives more hands-on experience with plane sections. Click on the
hyperlink, or print users open manually, to improve your geometric intuition.
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Example 1.3.6. Fun with trigonometric functions

Equations for the level curves of f (x, y) = cos x + sin y are of the form

cos(x)+ sin(y) = c,

which are definitely not fun to work with. To make this example more enjoyable, we’ll
choose other planes to get some two-dimensional slices with. If we choose to slice the
surface z = cos x + sin y with planes parallel to the yz-plane, that amounts to replacing
x with a constant and analyzing the curves. The curve of intersection with the yz-plane
(or x = 0) is given by z = cos 0 + sin x = 1 + sin y, which is a translation of the sine curve
one unit up. In fact, slicing with the plane x = c gives the curve

z = cos c + sin y,

which is a vertical translation of z = sin y by the value cos c. The surface z = cos x +
sin y can be thought of, then, as taking the sine curve in the y-direction, and having it
ride along a roller coaster in the x-direction. The roller coaster is the cosine curve (see
Figure 1.3.6). �

https://global.oup.com/booksites/content/9780198835172/
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Figure 1.3.6 The surface z = cos x + sin y
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Figure 1.3.7 Planar cross-sections of x2

4 + y2 + z2

9 = 1

The preceeding two examples involved surfaces that were graphs of functions, but
didn’t have particularly nice level curves. The strategy was to get two-dimensional slices
by cutting with planes parallel to one of the coordinate planes, other than the xy-plane.
We now consider some surfaces arising from equations that can’t be solved for one of the
variables. We will find that slicing with a variety of planes gives geometric insight to the
surfaces.

A quadric surface is the solution to a quadratic equation in three variables. The
quadratic equations we will consider have the form

Ax2 + By2 + Cz2 + Dx + Ey + Fz = G

(we avoid equations with mixed terms xy, xz, or yz). Our basic strategy for understanding
such surfaces will be to sketch a “skeleton” by intersecting the surface with coordinate
planes, then “connect the curves”. We illustrate this with two examples.

Example 1.3.7. An ellipsoid

The solution set to x2

4 + y2 = 1 is an ellipse. Analogously, the solution set to the three-
variable equation x2

4 + y2 + z2

9 = 1 is an ellipsoid. To get a feel for what it looks like,
consider the intersections with coordinate planes. When first sketching these surfaces,
it might help to sketch the intersections in separate planes, as in Figure 1.3.7, then piece
them together. To find equations for these curves of intersection, set one of the variables to
zero and sketch the resulting curve in the appropriate coordinate plane. The intersection
of the surface x2

4 + y2 + z2

9 = 1 with the xy-plane is gotten by setting z = 0 (technically,
we’re solving the system of equations consisting of both, and getting the intersection of
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the surfaces). The intersection with the xz-and yz-planes are the ellipses x2

4 + z2

9 = 1
and y2 + z2

9 = 1, respectively. The planes pieced together form a “skeleton” for the whole
ellipsoid pictured in Figure 1.3.8. �
Example 1.3.8. The one-sheeted hyperboloid

The solution set to the equation x2 + y2 − z2 = 1 is called a hyperboloid of one sheet.
Intersecting it with the coordinate planes yields the circle x2 + y2 = 1 in the xy-plane,
and the hyperbolas x2 − z2 = 1 and y2 − z2 = 1 in the xz- and yz-planes, respectively
(see Figure 1.3.9).

3

2

1

0

0 0
2 1

–1

–1 –1 –2

–2

–3

3

2

1

0

0 0
2 1

–1

–1 –1 –2

–2

–3

Figure 1.3.8 An ellipsoid and its skeleton
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Figure 1.3.9 A one-sheeted hyperboloid


