


T H E Q UA N T U M C O O K B O O K





The Quantum Cookbook

Mathematical Recipes for the Foundations
of Quantum Mechanics

Jim Baggott

1



3
Great Clarendon Street, Oxford, OX2 6DP,

United Kingdom

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,

and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries

© Jim Baggott 2020

The moral rights of the author have been asserted

First Edition published in 2020
Impression: 1

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above

You must not circulate this work in any other form
and you must impose this same condition on any acquirer

Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data
Data available

Library of Congress Control Number: 2019942517

ISBN 978–0–19–882785–6 (HBK)
ISBN 978–0–19–882786–3 (PBK)

DOI: 10.1093/oso/9780198827856.001.0001

Printed and bound by
CPI Group (UK) Ltd, Croydon, CR0 4YY

Links to third party websites are provided by Oxford in good faith and
for information only. Oxford disclaims any responsibility for the materials

contained in any third party website referenced in this work.



To myself, aged 18,

when I took my first course on quantum
mechanics





Preface

So this was the situation which I found at Cornell. Hans [Bethe] was using the old cookbook
quantum mechanics that Dick [Feynman] couldn’t understand.Dick was using his own private
quantum mechanics that nobody else could understand. They were getting the same answers
whenever they calculated the same problems.

Freeman Dyson∗

There are a number of reasons why quantum mechanics is a difficult subject, both to
teach and to learn. For sure, the subject is mathematically very challenging. But it is also
philosophically challenging, forcing as it does a complete rethink of our naïve classical
preconceptions concerning the ways in which we seek to represent physical reality in a
scientific theory, and what we might expect such a representation to be telling us about
it. The first challenge is recognized, and respected. The second perhaps less so.

I firmly believe that presentations of quantum mechanics that focus on formalism at
the expense of all experimental, historical, and philosophical context run great risks of
losing all but the most able students. Of course, science does not—it cannot—respect
history. We make progress in science by moving on, by building on what we’ve learned
without worrying overmuch precisely how we learned it. But the simple truth is that
quantum mechanics did not suddenly materialize overnight in the minds of its creators,
fully formed, complete with all its axioms and principles. It was instead tortured from
much more familiar classical physical descriptions, such as thermodynamics, statistical
mechanics, electromagnetic theory, special relativity, and atomic theory, over a period of
decades, as physicists struggled to interpret a series of ever more baffling experimental
results.

Only later was a much higher level of abstraction introduced into quantum mechanics,
in an attempt to establish a secure mathematical foundation that would eradicate all the
confusing classical misconceptions inherited from its birth and early childhood. This
was a process begun by Paul Dirac in The Principles of Quantum Mechanics (1930) and
John von Neumann in Mathematical Foundations of Quantum Mechanics (first published
in German in 1932). Such was their success that we tend to overlook just how alien
their approach was at the time. For example, in his review of Principles, Wolfgang Pauli
warned that Dirac’s rather abstract formalism and focus on mathematics at the expense

∗ From Disturbing the Universe by Freeman Dyson, copyright © 1981. Reprinted with permission of Basic
Books, an imprint of Perseus Books, LLC, a subsidiary of Hachette Book Group, Inc.



viii Preface

of physics held ‘a certain danger that the theory will escape from reality’.∗ I fear he was
right to be concerned.

Many students find the formalism completely baffling when they encounter it for the
first time. Lectures and textbooks that dive straight into discussions of wavefunctions
or vector spaces without any historical or philosophical context can leave students
stranded, left to ponder: ‘Just how did they get that?’, and ‘Where did that come from?’†

If the formalism is delivered to students as though the philosophical problems of its
interpretation do not exist or are irrelevant, this can give the misleading impression that
we really do understand what quantum mechanics is all about. Those students who then
fail to penetrate the fog of confusion are left to brood on their own inadequacy. This is
unfortunate, as the charismatic American physicist Richard Feynman was closer to the
truth with his famous quote: ‘I think I can safely say that nobody understands quantum
mechanics.’‡

To expose the real nature of the challenge, I believe it is helpful first to demonstrate
that, despite appearances, mathematical complexity is not the principal problem. The
second step is to provide some historical context, if only to explain that quantum
mechanics was derived from real physics, not abstract mathematics. It also helps to
explain how, from the very beginning, the physicists who helped to establish the theory were
obliged to wrestle with its interpretation, arguing very energetically among themselves
as they did so. Then we get the real insight. Nobody understands quantum mechanics
because of its deep philosophical problems: we really don’t understand what it means,
possibly because we’re not meant to.

The Quantum Cookbook is an attempt to provide a unique bridge between a popular
exposition and a formal textbook presentation. The former tend to be necessarily
extremely light on mathematical details, whereas the latter tend to be formalism-heavy,
often paying little or no heed to problems of interpretation (though there are some
notable exceptions). For curious readers with some background in physics and sufficient
mathematical capability, neither popular exposition nor textbook provides them with
what they need.

The book’s mission is to expose the real nature of the problems with quantum
mechanics by walking readers step-by-step through the derivation of its most important
foundational equations, including one result from special relativity (E = mc2) because of
its importance at key points in the story. It aims to provide sufficient context to enable
readers to come to their own conclusions about its interpretation and meaning. In the
process of demystifying the mathematics as much as possible, I hope also to demon-
strate how flexibly mathematics is often applied in science, through simplified models,

∗ Wolfgang Pauli, Die Naturwissenschaften, 19 (1931), 188–9, quoted in Helge Kragh, Dirac: A Scientific
Biography, Cambridge University Press, Cambridge, UK, 1990, p. 79.

† Especially those who, like me, were plunged into quantum mechanics without first being introduced
(even superficially) to classical Hamiltonian mechanics and special relativity. My first encounter with quantum
mechanics was as a student studying for a degree in chemistry, and these topics did not belong in a chemistry
curriculum.

‡ Richard Feynman, The Character of Physical Law, MIT Press, Cambridge, MA, 1967, p. 129. The italics
are mine.
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and limiting assumptions and approximations. Despite its ‘unreasonable effectiveness’,
mathematics is still a language, one that leaves plenty of room for interpretation (and
doubt).

The first nine chapters build these results more or less chronologically, unfold-
ing pretty much as they were presented by those physicists who left their finger-
prints all over quantum mechanics. These are the quantization of energy (Planck); the
equivalence of mass and energy (Einstein); quantum numbers and quantum jumps
(Bohr); wave–particle duality (de Broglie); operators, eigenfunctions, and eigenvalues
(wave mechanics—Schrödinger); quantum probability (Born); the uncertainty principle
(Heisenberg and Robertson); the exclusion principle and electron spin (Pauli and
Heisenberg); and relativistic quantum mechanics (electron spin and antimatter—Dirac).
Chapter 10 will be a little different in structure as it deals with the establishment of the
standard quantum formalism based on the concepts of state vectors in Hilbert space
(Dirac and von Neumann).

The noted contemporary theorist Lee Smolin told me recently that as an under-
graduate student he had been extraordinarily fortunate. In the spring semester of his
first year at Hampshire College in Amherst, Massachusetts, he learned about quantum
mechanics from Herbert Bernstein, by Smolin’s account a great physics teacher. The
course concluded with detailed discussions of something called the EPR argument,
named for Einstein, Boris Podolsky, and Nathan Rosen, and a famous theorem devised by
John Bell. ‘Bell’s paper was not yet widely known and had by that time very few citations,’
Smolin explained to me. ‘That was probably the first and only quantum mechanics
course for undergraduates that included EPR and Bell.’∗

So, the final two chapters of The Quantum Cookbook cover topics that would not
normally form part of an introductory course on quantum mechanics, though I would
argue that they should (and Smolin would agree). These deal with the treatment of
measurement in the quantum formalism (von Neumann) and the challenge posed by the
interpretation of quantum entanglement and non-locality (Einstein, Bohm, and Bell).

Now, in setting out the book’s ambitions I need to be absolutely clear. It is not my
intention to provide a detailed historical analysis of these physicists’ original publications,
many of which are in any case intentionally obscure, as they sought to cover up under-
lying violence to the mathematics, unjustified assumptions, and occasional conceptual
leaps of faith. After all, science doesn’t much care how a theory is arrived at: what’s
important is how well the theory accommodates existing empirical facts and how well its
predictions fare in the light of new examination.

The intention is rather to present the simplest possible derivations that are broadly
consistent with the originals, which make use of current nomenclature, and which can
be followed relatively easily. It’s important that readers can appreciate the logic, the nature
of the challenges, and the occasional bit of mathematical sleight-of-hand.

Demystifying the mathematics means taking nothing for granted. Each derivation
is presented as a ‘recipe’ with listed ingredients, including standard results from the

∗ Lee Smolin, personal communication, 7 September 2017.
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mathematician’s toolkit, such as the odd trigonometric identity, Stirling’s formula, a
standard integral or two, or a Taylor series expansion. Each recipe is then set out in a
series of hopefully easy-to-follow steps, such that readers with limited ability in algebra
and differential calculus and a background in physics should be able to cope. I’ve tried
to write these recipes sympathetically, for readers who—like me—will often struggle to
follow the logic of a derivation which misses out steps that are ‘obvious’ to the author, or
which use techniques that readers are assumed to know. More mathematically competent
readers who do not need everything spelled out in this way may therefore prefer to skip
the intermediate steps.

Either way, I’m hopeful that readers will agree with my conclusion. There are obvious
exceptions, but for the most part these derivations are triumphs of physical intuition over
mathematical rigour and consistency.

The purpose of The Quantum Cookbook is not to teach readers how to do quantum
mechanics, and it is not intended as a course textbook (it doesn’t include any worked
examples or problems). My hope is that this might prove to be a useful supplementary
text for an introductory course, one that helps readers understand how to think about
quantum mechanics.

My personal relationship with quantum mechanics now spans more than 40 years.
Aside from making me feel quite old, this means that my debt of thanks by now extends
to innumerable teachers, researchers, and authors whose efforts have helped bring light
and inspiration in equal measure. I’d like to acknowledge personal debts to Peter Atkins,
whose lectures and textbook Molecular Quantum Mechanics provided much technical
clarity and insight, and Ian Mills, my erstwhile colleague at the University of Reading,
who provided essential guidance as my understanding of the philosophical dimensions
of the theory began its long, slow awakening. I must also give thanks to Lee Smolin and
Carlo Rovelli, with whom more recent discussions helped to remind me why this is such
an endlessly fascinating subject, and which encouraged me to return to it.

And, of course, I owe eternal gratitude to Sonke Adlung, Ania Wronski, Lucia Perez,
and the production team at Oxford University Press for (once more) giving me the
opportunity to get this lot off my chest.

Jim Baggott
September 2019
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Prologue

What’s Wrong with This Picture?
The Description of Nature at the End of the Nineteenth Century

Anyone already familiar with some of the more bizarre implications of quantum
mechanics—its phantoms of probability; particles that are waves and waves that are
particles; cats that are at once both alive and dead; its uncertainty, non-locality, and
seemingly ‘spooky’ goings-on—might look back rather wistfully on the structure of
classical mechanics. We might be tempted to think that classical mechanics offers a much
more appealing or comforting description of nature, one that is unambiguous, definite,
and certain.

There is a persistent myth that, towards the end of the nineteenth century, such was
the appeal of the classical structure that it seemed to physicists that all the most pressing
problems had now been solved. In a lecture delivered to the British Association for the
Advancement of Science in 1900, the great physicist Lord Kelvin (William Thomson)
is supposed to have declared: ‘There is nothing new to be discovered in physics now. All
that remains is more and more precise measurement.’1

Except there is no evidence that Kelvin ever said this.2 It’s true that in Light Waves and
Their Uses, a book based on a series of lectures delivered in 1899 to the Lowell Institute
in Boston, Massachusetts, American physicist Albert Michelson wrote:3

Many other instances might be cited, but these will suffice to justify the statement that
‘our future discoveries must be looked for in the sixth place of decimals.’ It follows that
every means which facilitates accuracy in measurement is a possible factor in a future
discovery.

It is perhaps not surprising that Michelson would want to extol the virtues of just the
kind of precise measurement on which he’d built an international reputation. But in
April 1900, Kelvin was warning that all was not well. A storm was gathering in the
dynamical theory of heat and light.4 We now know that the classical structure breaks
down in the microscopic realm of atoms and subatomic particles, and Isaac Newton’s
laws of motion can’t handle objects moving at or near light speed. However, within its
domain of applicability, classical mechanics is surely free of mystery and much less prone
to endless bickering about what it’s all supposed to mean?

Except that it isn’t, really.

The Quantum Cookbook. Jim Baggott, Oxford University Press (2020). © Jim Baggott.
DOI: 10.1093/oso/9780198827856.001.0001



2 The Interpretation of Space and Time

Make no mistake, despite its intuitive appeal, classical mechanics is just as fraught
with conceptual difficulties and problems of interpretation as its quantum replacement.
The problems just happen to be rather less obvious, and so more easily overlooked (or,
quite frankly, ignored). Quantum mechanics was born not only from the failure wrought
by trying to extend classical physical principles into the microscopic world of atoms and
molecules, but also from the failure of some of its most familiar and cherished concepts.
To set the scene and prepare us for what follows, I thought it might be worth highlighting
some of the worst offenders.

The Interpretation of Space and Time

The classical system of physics that Newton had helped to construct, by ‘standing on the
shoulders of giants’,5 consists of three laws of motion and a law of universal gravitation.
The Mathematical Principles of Natural Philosophy, first published in 1687, uses these
laws to bring together aspects of the terrestrial physics of everyday objects and the
‘celestial’ mechanics of planetary motion, in what was nothing less than a monumental
synthesis, fully deserving of its exalted status in science history. So closely did the
resulting description agree with and explain observation and experiment that there could
be little doubting its essential ‘truth’. By the end of the nineteenth century it had stood,
unrivalled, for more than two hundred years.

Unrivalled, but by no means unquestioned. Newton’s mechanics might be intuitive
but it demands a number of fairly substantial conceptual or philosophical trade-offs.
Perhaps the most fundamental is that Newton’s physics is assumed to take place in an
absolute space and time. This is a problem because, if it existed, an absolute space would
form a curious kind of container, presumably of infinite dimensions, within which some
sort of mysterious cosmic metronome marks absolute time. Actions impress forces on
matter and things happen within the container and all motion is then referred to a fixed
frame, thereby making all motion absolute.

If we could take all the matter out of Newton’s universe, then we would be obliged to
presume that the empty container would remain, and the metronome would continue to
tick. The existence of such a container implies a vantage point from which it would be
possible to look down on the entire material universe, a ‘God’s-eye view’ of all creation.

But a moment’s reflection tells us that, despite superficial appearances, we only ever
perceive objects to be moving towards or away from each other, changing their relative
positions. This is relative motion, occurring in a space and time that are in principle
defined only by the relationships between the objects themselves. If the motion is uniform,
then there is in principle no observation we can make that will tell us if this object is
moving relative to that object, or the other way around. In the Mathematical Principles,
Newton acknowledged this in what he called our ‘vulgar’ experience.

If we can never perceive motion in an absolute space and time then we arguably
have no good reason to accept that these exist. And if there is no absolute coordinate
system of the universe; no absolute or ultimate inertial frame of reference against which
all motion can be measured, then there can be no such thing as absolute motion. Newton’s
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arch-rival, German philosopher Gottfried Wilhelm Leibniz, argued: ‘the fiction of a finite
material universe, the whole of which moves about in an infinite empty space, cannot be
admitted. It is altogether unreasonable and impracticable.’6 Now, any concept that is not
accessible to observation or experiment in principle, a concept for which we can gather no
empirical evidence, is typically considered to be metaphysical (meaning literally ‘beyond
physics’).

Why, then, did Newton insist on a system of absolute space and time, one that we
can never directly experience and which is therefore entirely metaphysical? Because
by making this metaphysical pre-commitment he found that he could formulate some
very highly successful laws of motion. Success breeds a certain degree of comfort,
and a willingness to suspend disbelief in the grand but sometimes rather questionable
foundations on which theoretical descriptions are constructed.

Classical Mechanics and the Concept of Force

Classical mechanics is the physics of the ordinary. Suppose we apply a force F for a
short time interval, dt, to an object that is stationary or moving with constant velocity, v,
in a straight line. In the Mathematical Principles, Newton explains that the force is simply
an ‘action’, exerted or impressed upon the object, which effects a change in its linear
momentum (p, given by the object’s mass m multiplied by v), by an amount dp. If we
assume that mass is an intrinsic property of the object and does not change with time
or with the application of the force, then dp is then simply the mass multiplied by the
change in velocity: dp = mdv.

Applying the force may change the magnitude of the velocity (up or down) and/or it
may change the direction in which the object is moving. Newton’s second law of motion
is then expressed as Fdt = dp (= mdv). This equation may not look very familiar, but
we can take a further step. Dividing both sides by dt gives

F = dp
dt

. (P.1)

Logically, the greater the applied force, the greater the rate of change of linear momentum
with time. But, as we’ve seen, dp/dt = mdv/dt. Obviously, dv/dt is the rate of change of
velocity with time, or the object’s acceleration, usually given the symbol a. Hence Newton’s
second law can be restated as the much more familiar

F = ma. (P.2)

Force equals inertial mass times acceleration, and we think of inertial mass as the measure
of an object’s resistance to acceleration under an applied force. This is a statement of
Newton’s second law equation of motion.

Though famous, this result actually does not appear in the Mathematical Principles,
despite the fact that Newton must have been aware of this particular formulation, which
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features in German mathematician Jakob Hermann’s treatise Phoronomia, published in
1716.∗ It is sometimes referred to as the ‘Euler formulation’, after the eighteenth-century
Swiss mathematician Leonhard Euler.

Newton’s version of classical mechanics is expressed in terms of forces which result
from the application of various mechanical ‘actions’. Whilst it is certainly true to say
that the notion of mechanical force still has much relevance today, the attentions of
eighteenth- and nineteenth-century physicists switched from force to energy as the more
fundamental concept. My foot connects with a stone, this action impressing a force on
the stone. But a better way of thinking about this is to see the action as transferring energy
to the stone.

Like force, the concept of energy also has its roots in seventeenth-century mechanical
philosophy. Leibniz wrote about vis viva, a ‘living force’ expressed as mv2, and he
speculated that this might be a conserved quantity, meaning that it can only be transferred
between objects or transformed from one form to another—it can’t be created or
destroyed. The term ‘energy’ was first introduced in the early nineteenth century and
it gradually became clear that kinetic energy—the energy of motion—is not in itself
conserved. It was important to recognize that a system might also possess potential energy
by virtue of its physical characteristics and situation. It was then possible to formulate
a law of conservation of the total energy—kinetic plus potential—largely through the
efforts of physicists concerned with the principles of thermodynamics, which we will go
on to examine later in this Prologue.

If we denote the kinetic energy as T and the potential energy as V , then the total
energy is simply T + V . The kinetic energy T is given by

T = 1
2

mv2 = p2

2m
. (P.3)

It’s helpful to understand how this relates to Newton’s force, F . Differentiating (P.3) with
respect to time gives

dT
dt

= 1
2

m
d

(
v2

)

dt
= 1

2
m

(
v

dv
dt

+ v
dv
dt

)
= mv

dv
dt

= mva. (P.4)

In (P.4) we have assumed the mass m to be independent of time and we have applied the
product rule d(uv)/dx = v (du/dx) + u (dv/dx) to the evaluation of d

(
v2

)
/dt. We can

now make use of the second law F = ma and the chain rule

∗ Newton published a third edition of the Mathematical Principles in 1726 and, if he had been so minded,
could have incorporated this version of the second law.
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dT
dt

= Fv and so dT = Fvdt = F
dx
dt

dt = Fdx. (P.5)

Integrating then allows us to express the kinetic energy in terms of force as follows:

T =
∫

Fdx. (P.6)

We can now put Newton’s conception of force on a much firmer basis. We define the
potential energy V as

V = −
∫

Fdx. (P.7)

This shift in emphasis from force to energy in the eighteenth and nineteenth centuries
meant that it made more sense to define the secondary property of force in terms of the
primary property of potential energy:

F = −dV
dx

. (P.8)

Equations (P.7) and (P.8) make perfect sense. Lifting a heavy weight from its initial
position on the floor to shoulder height involves the application of a force which changes
the potential energy of the weight. The force applied is negative (as its acts against
gravity), and transfers energy from the gravitational field into the potential energy
of the weight. Letting go of the weight exposes it to the force of gravity, converting
the gravitational potential energy it contains into kinetic energy, and it falls back to
its initial position on the floor. The force is directed in such a way as to reduce the
potential energy—hence the negative sign in (P.7)—driving the system ‘downhill’. And
the ‘steeper’ the shape of the potential energy curve (the faster the potential energy
changes with position), the greater the resulting force, (P.8).

Setting up the relationship between force and potential energy in this way means that
in a closed system which cannot exchange energy with the outside world the rate of
change of total energy with time balances to zero—energy can be moved back and forth
between potential and kinetic forms but the total energy is conserved:

dT
dt

+ dV
dt

= mva + dV
dx

dx
dt

= mva + v
dV
dx

= v
(

ma + dV
dx

)
= v (ma − F). (P.9)

We can see from this that the time derivatives of the expressions for kinetic and potential
energy sum to zero—the total energy doesn’t change with time.

This shift of emphasis led to a substantial and profound reformulation of classical
mechanics, first by Italian mathematician and astronomer Joseph-Louis Lagrange (in
1764) and subsequently by Irish physicist William Rowan Hamilton (in 1835). This
wasn’t simply about recasting Newton’s laws in terms of energy. Hamilton in particular
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greatly elaborated and expanded the classical structure and the result, called Hamiltonian
mechanics, extended the number of mechanical situations to which the theory could be
applied.

Newton’s equation of motion F = ma is formulated in terms of position coordinates
(such as Cartesian coordinates x, y, z) and time. This is fine in principle for very simple
systems involving at most one or two objects, but it quickly becomes problematic for
systems involving large numbers of objects. To define the physical ‘state’ of a system
consisting of, say, N objects, such that we can predict how the system will evolve in
time, we would need to specify the position and the velocity of each of the N objects in
three-dimensional space, at specific moments in time. It’s not enough just to specify the
positions—Newton’s second law applies to objects that are already in a state of rest or
uniform motion, so to predict what happens next we also need to know how fast and in
which directions the objects are moving as the force is applied. In other words we need
a total of 6N coordinates for each object.

We can think of the motion of the system as a ‘trajectory’ in an abstract 6N-
dimensional configuration space. Instead of positions and velocities, Hamilton’s reformu-
lation makes use of the positions of the objects and their momenta. If we keep things
simple by restricting ourselves to a single object with inertial mass m moving along a
single position coordinate x, then these canonical coordinates are (x, p), where p is again the
object’s linear momentum. Hamilton’s choice defines what would subsequently become
known as phase space.

The motion of the object is then represented by the trajectory of a point in the phase
space coordinates. This gives us an advantage in more complex systems because instead
of specifying the initial positions and velocities of all the objects in a 6N-dimensional
configuration space, in Hamiltonian mechanics we just need to specify the system’s initial
position in phase space. It then becomes possible to predict the future time evolution of
the system from any starting point on its phase space diagram.

As we will draw on many of these concepts in what follows, it’s worth taking the
time here for a very brief and somewhat superficial look at Hamiltonian mechanics. The
Hamiltonian of a classical system is simply the total energy, E, and is defined as

H (= E) = T + V . (P.10)

In Hamiltonian mechanics we’re obviously interested to know the behaviour of the
Hamiltonian H with respect to the canonical coordinates, which in a single dimension
are given by (x, p). This behaviour is summarized in Hamilton’s equations of motion:

dp
dt

= −∂H
∂x

and
dx
dt

= ∂H
∂p

. (P.11)

These equations may appear somewhat unfamiliar, but the second establishes a fairly
straightforward connection between momentum and velocity. Remember, we assume
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that the potential energy V is independent of p, and from (P.3) we know that T = p2/2m:

∂H
∂p

= ∂T
∂p

= ∂

∂p

(
p2

2m

)
= p

m
= v = dx

dt
. (P.12)

And the first is simply a restatement of Newton’s second law:

−∂H
∂x

= −∂V
∂x

= F = dp
dt

(= ma). (P.13)

It’s worth noting in passing that we’ve traded Newton’s single equation of motion, which
is a second-order differential equation (remember, a = d2x/dt2), for Hamilton’s two first-
order partial differential equations, (P.11).

We can get some sense for how this works by considering a simple example. In one-
dimensional simple harmonic motion (such as a low-amplitude pendulum or an object
suspended on a spring), an object of mass m oscillates back and forth with an angular
frequency ω under the action of a ‘restoring’ force F = −mω2x. The Hamiltonian for
this system is, therefore,

H = p2

2m
+ 1

2
mω2x2 (P.14)

(remember, V = − ∫
Fdx), and Hamilton’s equations of motion are

dp
dt

= −∂H
∂x

= −mω2x and
dx
dt

= ∂H
∂p

= p
m

. (P.15)

If we define the initial position (x0) to be the origin at time t = 0 (i.e. x0 = 0), then the
solutions of these equations have the particularly simple form

p = p0 cos ωt and x = p0

mω
sin ωt, (P.16)

where p0 is the initial momentum. In a phase space with canonical coordinates (x, p), the
motion describes an elliptical trajectory:

x2

(p0/mω)2 + p2

p2
0

= 1. (P.17)

Switching to a phase space description allows us to represent the mechanics in terms of
the single trajectory of a point in a multidimensional space, summarizing the motion
of the entire system, not the individual objects. This was a generalization discovered
by French mathematician Henri Poincaré in 1888, from his study of the infamous
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three-body problem (and which also led him to appreciate the sensitivity of dynamical
systems to initial conditions, later to become an obsession of chaos theory).

A year later, Poincaré noted a rather curious phenomenon. In an ideal mechanical
system with a finite upper bound on the volume of available phase space (one in which
no objects can escape the system and in which energy is conserved), within a sufficiently
long, but finite, time the phase space trajectory will return to its starting point.∗ This
is called Poincaré recurrence. No matter how many objects are involved, if the dynamics
unfold from some starting configuration and we have sufficient patience, the system will
return to this configuration.

The Troublesome Concept of Mass

The development of our understanding of potential energy in the nineteenth century
allowed us to put Newton’s concept of force on a much firmer basis, as we’ve seen. There
would appear to be no reason to question our understanding of any of the other concepts
which appear in Hamilton’s equations. We haven’t forgotten the problems of absolute
space and time but we surely know what we mean when we talk about acceleration,
momentum, and mass.

But what, precisely, is inertial mass? Newton provides a handy definition very early in
the Mathematical Principles:7

The quantity of matter is the measure of the same,arising from its density and bulk conjunctly . . .
It is this that I mean hereafter everywhere under the name body or mass. And the same
is known by the weight of each body; for it is proportional to the weight, as I have found
by experiments on pendulums, very accurately made, which shall be shewn hereafter.

If we interpret Newton’s use of the term ‘bulk’ to mean volume, then the mass of an
object is simply its density multiplied by its volume. It doesn’t take long to figure out that
this definition is entirely circular, as Austrian physicist Ernst Mach pointed out many
years later:8

With regard to the concept of “mass”, it is to be observed that the formulation of Newton,
which defines mass to be the quantity of matter of a body as measured by the product
of its volume and density, is unfortunate. As we can only define density as the mass of a
unit of volume, the circle is manifest.

We have to face up to the rather unwelcome conclusion that in classical mechanics we
don’t really know what inertial mass is.

∗ Poincaré’s theorem also requires that phase volume is conserved as the system evolves, which is true for
all Hamiltonian systems by virtue of Joseph Liouville’s 1838 theorem.
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The Force of Gravity

In Newton’s law of universal gravitation, two objects with masses m1 and m2 experience
a force of gravity that is proportional to the product of their masses (are these the same as
inertial mass?) and inversely proportional to the square of the distance between them, r,
or F = Gm1m2/r2, where G is Newton’s gravitational constant.

This was another great success, but it also came with another hefty price tag. Although
the symbol F might be the same, Newton’s force of gravity is distinctly different from
the kinds of forces involved in his laws of motion. The latter forces are impressed; they are
caused by actions such as kicking, shoving, pulling, or whirling. They require physical
contact between the object at rest or moving uniformly and whatever it is we are doing
to change the object’s motion. Newton’s gravity works very differently. It is presumed
to pass instantaneously between the objects that exert it, through some kind of curious
action at a distance. It was not at all clear how this was supposed to work. Leibniz was
again dismissive: ‘This, in effect, is going back to qualities which are occult or, what is
more, inexplicable.’9

Newton himself had nothing to offer. In a general discussion (called a ‘general
scholium’), which he added to the 1713 second edition of the Mathematical Principles,
he wrote:10

Hitherto we have explain’d the phænomena of the heavens and of our sea, by the power
of Gravity, but have not yet assign’d the cause of this power . . . I have not been able
to discover the cause of those properties of gravity from phænomena, and I frame no
hypotheses.

Light Waves and the Ether

Newton sought to extend the scope of his mechanics to include light, and in his treatise
Opticks, first published in 1704, he concluded that light is essentially ‘atomic’ in nature,
consisting of tiny particles, or corpuscles. Two of his contemporaries, English natural
philosopher and experimentalist Robert Hooke and Dutch physicist Christiaan Huygens,
had argued compellingly in favour of a wave theory of light, and Newton’s incendiary
disputes with Hooke led him to postpone publication of Opticks until after Hooke’s death
in March 1703. Such was Newton’s standing and authority that the corpuscular theory
held sway for more than a hundred years.

But in a series of papers read to the Royal Society of London between 1801 and
1803, nearly eighty years after Newton’s death, an English medical doctor (and part-time
physicist) called Thomas Young revived the wave theory as the only logical explanation
for the phenomena of light diffraction and interference. In one experiment, commonly
attributed to Young (although historians are divided on whether he actually performed
it), he showed that when passed through two narrow, closely spaced holes or slits, light
produces a pattern of bright and dark fringes. These are readily explained in terms of
a wave theory of light in which the peaks and troughs of the light waves from the two
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slits start out in phase, spread out beyond, and overlap. Where a peak of one wave is
coincident with a peak of another, the two waves add and reinforce to produce construc-
tive interference, giving rise to a bright fringe. Where a peak of one wave is coincident
with a trough of another, the two waves cancel to produce destructive interference, giving
a dark fringe.

Today this logic seems inescapable, but Young’s conclusions were roundly criticized,
with some condemning his explanation as ‘destitute of every species of merit’.11

Nevertheless, as the nineteenth century progressed, the wave theory gained a slow, if
somewhat grudging, acceptance. Then, as is so often the case in science, perhaps the
most compelling arguments in favour of the wave theory emerged from a seemingly
unrelated discipline.

The intimate connection between the phenomena of electricity and magnetism
was established over a long period of study in the nineteenth century, most notably
through the extraordinary experimental work of Michael Faraday at London’s Royal
Institution. Drawing on analogies with fluid mechanics, over a ten-year period from 1855
Scottish physicist James Clerk Maxwell developed a theory of electromagnetic fields whose
properties are described by a set of complex differential equations. These equations can
be manipulated to give expressions for the space and time dependences of the electric
field E and magnetic field B in a vacuum, as follows (again simplified to one dimension):

∂2E
∂x2 = ε0μ0

∂2E
∂t2 and

∂2B
∂x2 = ε0μ0

∂2B
∂t2 . (P.18)

In Eq. (P.18), ε0 and μ0 are the relative permittivity and permeability of free space,
respectively. The former is a measure of the resistance of a medium (in this case,
the ‘vacuum’) to the formation of an electric field—a certain fixed electric charge will
generate a greater electric flux in a medium with low permittivity. The latter is a measure
of the ability of a medium to support a magnetic field—applying a certain fixed magnetic
field strength will result in greater magnetisation in a medium with high permeability.

Maxwell had made no assumptions about how these fields are supposed to move
through space. But his equations not only demonstrate rather nicely the symmetry of
the interdependent electric and magnetic fields, they also rather obviously describe wave
motion. For a wave travelling in one dimension with velocity v, a generalized wave
equation can be written as

∂2

∂x2 �(x, t) = 1
v2

∂2

∂t2 �(x, t), (P.19)

where �(x, t) is a generalized ‘wavefunction’. From (P.18) and (P.19) we can deduce
that v = 1/

√
ε0μ0. The velocity of Maxwell’s ‘electromagnetic waves’ could now be

determined from the experimental values of the relative permittivity and permeability of
free space, which had been reported by German physicists Wilhem Weber and Rudolf
Kohlrausch in 1856. Maxwell found that:12
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This velocity is so nearly that of light, that it seems we have strong reason to conclude
that light itself (including radiant heat, and other radiations if any) is an electromagnetic
disturbance in the form of waves propagated through the electromagnetic field according
to electromagnetic laws.

But an electromagnetic disturbance in what? If we throw a stone into a lake, and watch
as the disturbance ripples across the surface of the water, we conclude that the waves
travel in a ‘medium’—the water in this case. There could be no escaping the conclusion:
electromagnetic waves had to be waves in some kind of medium. Maxwell himself didn’t
doubt that electromagnetic waves must move through the ether, a purely hypothetical,
tenuous form of matter thought to fill all of space.

And here’s another price to be paid. All the evidence from experimental and observa-
tional physics suggested that if the ether really exists, then it couldn’t be participating in
the motions of observable objects. The ether must be stationary. If the ether is stationary,
then it is also by definition absolute: it fills precisely the kind of container demanded by an
absolute space. A stationary ether would define the ultimate inertial frame of reference.

Newton required an absolute space that sits passively in the background and which,
by definition, we can never experience. Now we have an absolute space that is supposed
to be filled with ether. That’s a very different prospect.

If the Earth spins in a stationary ether, then we might expect there to be an ether wind
at the surface (actually, an ether drag, but the consequences are the same). The ether is
supposed to be very tenuous, so we wouldn’t expect to feel this wind like we feel the wind
in the air. But, just as a sound wave carried in a high wind reaches us faster than a sound
wave travelling in still air, we might expect that light travelling in the direction of the
ether wind should reach us faster than light travelling against this direction. A stationary
ether suggests that the speed of light should be different when we look in different
directions.

Any differences were expected to be very small, but nevertheless still measureable
with late-nineteenth-century optical technology. In 1887, American physicists Albert
Michelson and Edward Morley performed experiments to look for such differences using
a device called an interferometer, in which a beam of light is split and sent off along two
different paths. The beams along both paths set off in phase, and they are then brought
back together and recombined. Now, if the total path taken by one beam is slightly longer
than the total path taken by the other, then when the beams are recombined, peak may
no longer coincide with peak and the result is destructive interference. Alternatively, if
the total paths are equal but the speed of light is different along different paths, then the
result will again be interference.

But they could detect no differences. Within the accuracy of the measurements, the
speed of light was found to be constant, irrespective of direction, suggesting that there is
no such thing as a stationary ether. This is one of the most important ‘negative’ results
in the entire history of experimental science.

Newton’s laws of motion demand an absolute space and time that we can’t experience
or gain any empirical evidence for. Maxwell’s electromagnetic waves demand a stationary
ether to move in, but we can’t gain any evidence for this either.
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Atoms and the Second Law

The second law in question here is that of thermodynamics, the science born from the
study of engines, and particularly the relationship between heat and work. French physi-
cist and engineer Sadi Carnot is credited with establishing the basis for thermodynamics
with his 1824 publication Reflections on the Motive Power of Fire, although some ten years
passed before the merits of Carnot’s work were realized by his fellow countryman Émile
Clapeyron, who helped rid Carnot’s theory of the concept of heat as a fluid, called caloric.
Nine years later English physicist James Joule identified the mechanical equivalent of
heat—motion and heat are equivalent and interchangeable—and helped to establish the
law of conservation of energy. When Kelvin coined the term ‘thermodynamics’ in 1854,
the conservation of energy was summarized as its first law.

Carnot had imagined that useful work can be derived as heat ‘falls’ from a higher
temperature to a lower temperature, just as falling water will turn a paddle wheel.
But Carnot imagined that heat would be conserved, meaning that all the usable heat
is transferred into work without loss, allowing the possibility of perpetual motion
and obviously in conflict with the conservation of energy. In 1850, German physicist
Rudolf Clausius resolved this problem by declaring as a principle that heat cannot
spontaneously flow from a cold object to a hot object, with the rest of the universe
remaining unchanged.∗ For a system undergoing a closed cyclic process in which heat
is transformed into work which is then transformed back into heat, Clausius expressed
this principle mathematically as an inequality:

∮
δQ
T

≤ 0. (P.20)

In this equation the increments δQ represent the net amount of heat added to a system
from an external reservoir at temperature T . For processes that are cyclical and reversible,
meaning that infinitesimal changes that maintain thermodynamic equilibrium can in
theory restore the initial state, the equality holds. But for processes that are irreversible the
inequality holds. The logic here is fairly simple. In an irreversible process the (positive)
heat input divided by the higher temperature will always be smaller than the (negative)
heat output divided by the lower temperature. Summing (or integrating) over the cycle
means δQ/T < 0.

Clausius was able to show that the ratio δQ/T is a quantity which depends only on
the physical state of the system, and not on the details of the path taken to produce it.
Hence it is a property of the system, also called a function of state (or state function). In
1865 he went a little further, and identified this property as the entropy (symbol S) of
the system, which he now defined for reversible open paths connecting some initial state
i with a final state f , as

∗ Kelvin formulated a similar principle at around the same time.
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�Srev = Sf − Si =
∫ f

i
dSrev =

∫ f

i

(
δQ
T

)

rev
. (P.21)

The property of entropy accounts for the dissipative loss of heat (or energy) from the
system, but to get a real sense for what this means we need to look at how Eqs. (P.20)
and (P.21) can be combined. Equation (P.20) applies to a closed cycle which may involve
paths that are reversible and/or irreversible, whereas (P.21) applies only to open paths
that are reversible. So, imagine a closed cycle in which the path from initial to final state
is irreversible, but the return path from final to initial state is reversible. From (P.20) we
have

∮
δQ
T

=
∫ f

i

δQ
T

+
∫ i

f

(
δQ
T

)

rev
≤ 0. (P.22)

But the return path is reversible, and so from (P.21) we know that

∫ i

f

(
δQ
T

)

rev
= Si − Sf . (P.23)

Hence,

∫ f

i

δQ
T

+ Si − Sf ≤ 0, or �Sirr = Sf − Si ≥
∫ f

i

δQ
T

. (P.24)

We see that the change in entropy from initial to final state in an irreversible process is
always greater than the corresponding change for a completely reversible process, which is
a direct consequence of applying Clausius’ inequality. Heat transfer to a system increases
its entropy, and heat transfer from a system will decrease its entropy, but factors that
result in irreversibility (such as friction and other loss mechanisms) will always increase
the entropy. We can see this more clearly by generalizing (P.24) for any irreversible process
in an isolated system (one which doesn’t exchange energy with the external environment).
In such a situation δQ = 0 and

�Sirr ≥ 0, (P.25)

which is a statement of the second law of thermodynamics.
This version of the second law was deduced by German physicist Max Planck in

his 1879 doctoral thesis. He regarded it as a much more general statement, and so
more fundamental and profound. For an isolated system energy will be conserved (first
law) but entropy will inexorably increase to a maximum (second law) as the system
achieves thermal equilibrium. Irreversibility and the increase in entropy are intimately
linked, defining an ‘arrow of time’ such that any reverse process, spontaneously decreasing
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entropy, implies running backwards in time, ‘so that a return of the world to a previously
occupied state is impossible’.13

And therein lies another problem.
As the science of thermodynamics was being worked out in the nineteenth century,

so too was an elaborate mechanical theory of atoms. Hard, impenetrable, indestructible
atoms, no more sophisticated than those imagined by the atomist philosophers of ancient
Greece, had been an accepted metaphysical pre-commitment of seventeenth-century
mechanical philosophers such as Newton. This despite the fact that they were not really
necessary and did not feature in the classical mechanics that these philosophers helped to
establish. Newton’s atomism was quite influential in the eighteenth century, but as atoms
appeared to lie well beyond the scope of any available experimental or observational
technology, they remained firmly speculative.14

In 1738, the Swiss physicist Daniel Bernoulli had argued that the properties of gases
could be understood to derive from the rapid motions of the innumerable atoms or
molecules that constitute the gas (hereafter referred to simply as ‘atoms’). Gas pressure
then results from the impact of these atoms on the surface of the vessel that contains
them. Gas temperature is the result of the motions of the atoms. This kinetic theory of gases
bounced around for a few decades before being refined by Clausius in 1857. Two years
later Maxwell developed a mathematical formula for the distribution of the velocities
of the atoms in a gas. As it is obviously impossible to keep track of the motions of
large numbers of individual atoms, Maxwell was obliged to resort to probabilities and
so derived a probability distribution. This was generalized in 1871 by Austrian physicist
Ludwig Boltzmann, and is now known as the Maxwell–Boltzmann distribution.

Boltzmann built further on Maxwell’s ideas, applying probabilities to the distribution
of energy instead of velocity, as he worked to derive all the most important thermodynamic
quantities based on the underlying motions of the system’s constituent atoms. In 1877 he
derived the expression for the entropy of an ideal gas which is carved on his gravestone,

S = kB ln(W ), (P.26)

where kB is Boltzmann’s constant and W is the number of microstates (the number of
individual configurations of atomic positions and velocities or momenta that are possi-
ble). If it is assumed that all these microstates are equally probable, then the probability
for each microstate is simply 1/W . Bulk quantities such as pressure, temperature, and
entropy summarize the macrostate of the system.

The second law can now be interpreted as the natural evolution of an isolated system
towards the largest number of available microstates. If we pump a gas into one corner of
an otherwise empty container, we anticipate that this system will evolve dynamically: the
gas will expand and become diluted so that it fills all of the available space. The number
of microstates (atomic positions and momenta) that are available in the final equilibrium
situation is much greater than in the initial situation. Entropy increases.

We can now see how Hamiltonian mechanics is perfectly suited to the interpretation
of thermodynamics in terms of complex systems involving the motions of large numbers
of atoms. In his Lectures on Gas Theory, published in 1896, Boltzmann himself defined
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‘phase’ to mean the collective state of a gas derived from the positions and momenta of
all its constituent atoms, though he held back from calling it phase space.15

But towards the end of the nineteenth century the existence of atoms was still largely
a matter for metaphysical speculation and many physicists were inclined to be rather
stubborn about them. It’s perhaps difficult for readers who have lived with the fallout
from the ‘atomic age’ to understand why perfectly competent scientists should have been
so reluctant to embrace atomic ideas, but we must remember that by 1900 there was very
little evidence for their existence. Some physicists, such as the arch-empiricist Mach,
rejected them completely. To make matters considerably worse, the statistical mechanical
interpretation of thermodynamics produced conclusions which some physicists found
extremely discomforting.

Statistics have a dark side. They deal with probabilities, not certainties. What thermo-
dynamics argues to be unquestionably irreversible and a matter of irresistible natural law,
statistics argues that this is only the most probable of many different possible alternatives.
The conflict was most stark in the interpretation of the second law and in 1895, with
Planck’s approval, his research assistant Ernst Zermelo took the argument directly to the
atomists in the pages of the German scientific journal Annalen der Physik.

If we were to release two gases of different temperature in a closed container, the
second law predicts that the gases will mix and the temperature will become uniform, with
the entropy of the mixture increasing to a maximum. However, according to the atomists,
the behaviour of the gases is a consequence of the underlying mechanical motions of the
atoms of each gas, and the equilibrium state of the mixture is simply the most probable of
many possible states. Furthermore, such dynamical systems could be expected to exhibit
Poincaré recurrence, implying that, if we wait long enough, the system will eventually
return to its initial far-from-equilibrium state, with the gases once more separated at
different temperatures. Such a possibility runs directly counter to the second law, which
insists that in an isolated system undergoing spontaneous change, entropy can never
decrease, Eq. (P.25).

Boltzmann had no real alternative but to accept what statistical mechanics implied.
Entropy does not always increase, he argued, in contradiction to the most common
interpretation of the second law. It just almost always increases. Statistically speaking,
there are many, many more states of higher entropy than there are of lower entropy,
with the result that the system spends much more time in higher entropy states. In effect,
Boltzmann was saying that if we do indeed wait long enough, we might eventually catch a
system undergoing a spontaneous reduction in entropy. This is as miraculous an event as
a smashed cocktail glass spontaneously reassembling itself, to the astonishment of party
guests.

To Planck, this stretched the interpretation of his cherished second law to breaking
point. It may have been that Planck was not averse to the atomic theory per se—he
was certainly well aware of the theory’s successes. But he judged that it was unlikely to
offer a productive approach to a deeper understanding of thermodynamics. In a letter
to Wilhelm Ostwald in 1893 he declared that the atomic theory was nothing less than
a ‘dangerous enemy of progress’.16 Matter is continuous, not atomic, he insisted. He
had no doubt that atomic ideas would eventually have to be abandoned, despite their
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success, ‘in favour of the assumption of continuous matter’.17 In his historical analysis,
American philosopher Thomas Kuhn argues that Planck’s ‘continuous medium’ would
subsequently become the ether.18

In seeking to find a way to refute Boltzmann’s statistical arguments, Planck chose as
a battleground the physics of ‘black body’ radiation. And this is where our story really
begins.
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