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Preface

These days there are many excellent textbooks ranging from the introductory to the
advanced, and which cover all the core parts of a traditional physics curriculum. The
Solved problems in . . . books (this being the second) were written to fill a gap for
those students who prefer self-study. Hopefully, the format is sufficiently appealing to
justify entering an already crowded space where there isn’t much room for original
insight and new points of view.

This book follows its predecessor[1] both in style and approach. It contains nearly
300 questions and solutions on a range of topics in classical electromagnetism that
are usually encountered during the first four years of a university physics degree.
Most questions end with a series of comments that emphasize important conclusions
arising from the problem. Sometimes, possible extensions of the problem and additional
aspects of interest are also mentioned. The book is aimed primarily at physics students,
although it will be useful to engineering and other physical science majors as well. In
addition, lecturers may find that some of the material can be readily adapted for
examination purposes.

Wherever possible, an attempt has been made to develop the theme of each chapter
from a few fundamental principles. These are outlined either in the introduction or in
the first few questions of the chapter. Various applications then follow. Inevitably, the
author’s personal preferences are reflected in the choice of subject matter, although
hopefully not at the expense of providing a balanced overview of the core material.
Questions are arranged in a way which leads to a natural flow of the key concepts and
ideas, rather than according to their ‘degree of difficulty’. Those marked with a **
superscript indicate specialized material and are most likely suitable for postgraduate
students. Questions without a superscript will invariably be encountered in middle
to senior undergraduate-level courses. A * superscript denotes material which is on
the borderline between the two categories mentioned above. In all cases, students are
encouraged to attempt the questions on their own before looking at the solutions
provided.

It is widely recognized that learning (and teaching !) electromagnetism is one of
the most challenging parts of any physics curriculum. In the preface to his book
Modern electrodynamics, Zangwill explains that ‘another stumbling block is the non-
algorithmic nature of electromagnetic problem-solving. There are many entry points
to a typical electromagnetism problem, but it is rarely obvious which lead to a quick
solution and which lead to frustrating complications’. These remarks rather clearly

[1] O. L. de Lange and J. Pierrus, Solved problems in classical mechanics: Analytical and numerical
solutions with comments. Oxford: Oxford University Press, 2010.
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vi Preface

outline the challenge. Certainly, it is my firm belief that students benefit from a high
exposure to problem solving. Topics which require the use of a computer are especially
valuable because one is forced to ask at each stage in the calculation: ‘Is my answer
reasonable?’ For the most part, the computer cannot assist in this regard. Other con-
siderations play a role. Experience definitely helps. So does that somewhat elusive yet
much-prized attribute which we call ‘physical intuition’.

All the computational work is carried out using MathematicaR©, version 10.0. The
relevant code (referred to as a notebook) is provided in a shadebox in the text. For
easy reference, those questions involving computational work are listed in Appendix J.
Readers who use different software for their computer algebra are nevertheless encour-
aged to read these notebooks and adapt the code—wherever necessary—to suit their
own environment. That is to say, students using alternative programming packages
should not be ‘put off’ by our exclusive use of Mathematica ; this book will certainly
be useful to them as well. Also, readers without prior knowledge of Mathematica can
rapidly learn the basics from the online Help at www.Wolfram.com (or various other
places; try a simple internet search). From my experience, students learn enough of
the basic concepts to make a reasonable start after only a few hours of training. All
graphs of numerical results have been drawn to scale using Gnuplot.

For a book like this there are, of course, certain prerequisites. First, it is assumed
that readers have previously encountered the basic phenomena and laws of electricity
and magnetism. Second, a working knowledge of standard vector analysis and calculus
is required. This includes the ability to solve elementary ordinary differential equations.
An acquaintance with some of the special functions of mathematical physics will also
be useful. Because readers will have diverse mathematical backgrounds and skills,
Chapter 1 is devoted to setting out the important analytical techniques on which the
rest of the book depends. As a further aid, nine appendices containing some specialized
material have been included. In keeping with the modern trend, SI units are adopted
throughout. This has the distinct advantage of producing quantities which are familiar
from our daily lives: volts, amps, ohms and watts.

Usually one of the first decisions the author of a physics book must face is the
important matter of notation: which symbol to use for which quantity. A cursory
look at several standard textbooks immediately reveals notable differences (Φ or V
for electric potential, dv or dτ for a volume element, S or N for the Poynting vector,
and so on). Because the choice of notation is somewhat subjective, colleagues in the
same department often possess divergent opinions on this topic. So my own preferences
and prejudices are reflected in the notation used in this book. For easy reference, a
comprehensive glossary of symbols is appended.

Chapters 2–4 focus primarily on static electricity and magnetism. Then in Chapters
5 and 6 we begin the transition from quasi-static phenomena to the complete time-
dependent Maxwell equations which appear from Chapter 7 onwards. For the most part
this is a book that deals with the microscopic theory, except in Chapters 9 and 10,
which touch on macroscopic electromagnetism. We end in Chapter 12 with a collection
of questions which connect Maxwell’s electrodynamics to Einstein’s theory of special
relativity.

http://www.Wolfram.com
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Although the questions and solutions are reasonably self-contained, it may be
necessary to consult a standard textbook from time to time. University libraries will
usually have a wide selection of these. Some of my favourites, listed by their date of
publication, are:

☞ Classical electrodynamics, J. D. Jackson, 3rd edition, John Wiley (1998).

☞ Introduction to electrodynamics, D. J. Griffiths, 3rd edition, Prentice Hall (1999).

☞ Electricity and magnetism, E. M. Purcell and D. J. Morin, Cambridge University
Press (2013).

☞ Modern electrodynamics, A. Zangwill, Cambridge University Press (2013).

Without the help, guidance and assistance of many people this book would never
have reached publication. In particular, I extend my sincere thanks to the following:

☞ Allard Welter for drawing the circuit diagrams of Chapter 6, for his advice on
various Mathematica queries and for resolving (usually in a good-natured way!)
some pedantic issues with LATEX.

☞ Karl Penzhorn for attending to my other computer-related problems and also for
helping with the CorelDRAW software which was used to produce many of the
diagrams in this book.

☞ Professor Owen de Lange who conceived the format of these Solved problems in . . .
books, and with whom I co-authored Ref. [1]. Hopefully, at least some of Owen’s
professionalism and attention to detail has rubbed off onto me since we began
collaborating in the early 1990s.

☞ Professor Roger Raab for his encouragement and advice. Roger’s research interests
have strongly influenced my career, and I still recall our first discussion on the use
of Cartesian tensors and the importance of symmetry in problem solving. Indeed,
most of Appendix A and several questions at the beginning of Chapter 1 are based
on some of his original lecture material.

☞ Former lecturers and colleagues who, in one way or another, helped foster my
continuing enjoyment of classical electromagnetic theory. In approximate chrono-
logical order they include: Peter Krumm, Dave Walker, Manfred Hellberg, Max
Michaelis, Roger Raab, Clive Graham, Paul Jackson, Tony Eagle, Owen de Lange,
Frank Nabarro and Assen Ilchev.

☞ Several generations of bright undergraduate and postgraduate students who have
provided valuable feedback on lecture notes, tutorial problems and other material
from which this book has gradually evolved.

Pietermaritzburg, South Africa J. Pierrus
December 2017
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1

Some essential mathematics

Nearly all of the questions in this introductory chapter are designed to introduce the
essential mathematics required for formulating the theory of electromagnetism. All
of the techniques discussed here will be used repeatedly throughout this book, and
readers will hopefully find it convenient to have the important mathematical material
summarized in a single place. Topics covered include Cartesian tensors, standard vector
algebra and calculus, the method of separation of variables, the Dirac delta function,
time averaging and the concept of solid angle. Our primary emphasis in this chapter
is not on physical content, although certain comments pertaining to electricity and
magnetism are made whenever appropriate.

Although the scalar potential Φ, the electric field E and the magnetic field B are
familiar quantities in electromagnetism, it is not always known that they are examples
of a mathematical entity called a tensor. Furthermore, it is sometimes necessary to
introduce more complicated tensors than these. This chapter begins with a series of
questions involving the use of Cartesian tensors. We will find that the compact nature
of tensor notation greatly facilitates the solution of many questions throughout this
book. Readers who are unfamiliar with tensors and the associated terminology, or who
need to revise the background material, are advised to consult Appendix A before
proceeding. At the end of this appendix, we include a ‘checklist for detecting errors
when using tensor notation’. This guide will be helpful for both the uninitiated and
the experienced tensor user.

Question 1.1

Let r = xx̂+ yŷ+ zẑ be the position vector of a point in space. Use Cartesian tensors
to calculate:

(a) ∇irj ,

(b) ∇ · r,
(c) ∇r,

(d) ∇rk where k is rational,
(e) ∇i(rj/r

3),

( f ) ∇i{(3rjrk − r2δjk)/r
5} and,

(g) ∇eik·r where k is a constant vector.

Solved Problems in Classical Electromagnetism. J. Pierrus, Oxford University Press (2018).
c© J. Pierrus. DOI: 10.1093/oso/9780198821915.001.0001
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Solution

(a) The operation ∇irj (= ∂rj
/
∂ri) produces a tensor of rank two with nine com-

ponents. Six of these components have i �= j, and for them ∂rj
/
∂ri = 0. The

remaining three components for which i = j all have the value one. Thus

∇irj = δij , (1)

where δij is the Kronecker delta defined by (III) of Appendix A.

(b) Expressing ∇·r in tensor notation and putting i = j in (1) gives ∇·r = ∇iri = δii.
Using the Einstein summation convention

(
see (I) of Appendix A

)
yields

∇ · r = δxx + δyy + δzz = 3. (2)

(c) Writing r =
√
r · r =

√
rjrj and differentiating give

∇ir =
∂r

∂ri
=

∂

∂ri
(rjrj)

1/2 = 1
2
(rjrj)

−1/2
(
∂rj
∂ri

rj + rj
∂rj
∂ri

)
=

rj
r

∂rj
∂ri

=
rj
r
δij

because of (1). Using the contraction property of the Kronecker delta gives

∇ir =
rj
r
δij =

ri
r
. (3)

But (3) is true for i = x, y and z, and so

∇r =
r

r
= r̂. (4)

(d) Consider the ith component. Then [∇rk]i = ∇ir
k =

∂rk

∂ri
=

∂rk

∂r

∂r

∂ri
= krk−2 ri

because of (3). The result is

∇rk = krk−2r or ∇rk = krk−1r̂. (5)

Putting k = −1 gives an important case

∇
(
1

r

)
= − r

r3
or ∇

(
1

r

)
= − r̂

r2
(6)

(see also Question 1.6).

(e) ∇i(rj/r
3) =

∇irj
r3

+ rj∇ir
−3 =

∇irj
r3

+ rj
∂r−3

∂ri
=

∇irj
r3

+ rj
∂r−3

∂r

∂r

∂ri

=
r2δij − 3rirj

r5
, (7)

where in the last step we use (1) and (3).
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( f ) Similarly,

∇i(3rjrkr
−5)−∇i(r

−3δjk) = 3rkr
−5δij + 3rjr

−5δik − 15rirjrkr
−7 + 3rir

−5δjk

=
3r2(riδjk + rjδki + rkδij)− 15rirjrk

r7
. (8)

(g) ∇je
ik·r = eik·r

∂(iklrl)

∂rj
= ieik·rklδjl = ieik·rkj , and so ∇eik·r = ikeik·r. (9)

Comments

(i) Since ∇irj = ∇jri we can write δij = δji (i.e. the Kronecker delta is symmetric
in its subscripts). It possesses the following important property:

Aiδij = Axδxj +Ayδyj +Azδzj = Aj . (10)

In the final step leading to (10), j is either x, y or z. Of the three Kronecker deltas
(δxj , δyj and δzj) two will always be zero, whilst the third will have the value one.
Because of this, δij is sometimes also known as the substitution tensor.

(ii) Subscripts that are repeated are said to be contracted. So in (10), i is contracted
in Aiδij . Equivalently, one can say that Aiδij is contracted with respect to i.

(iii) A tensor is said to be isotropic if its components retain the same values under
a proper transformation.‡ δij is an example of an isotropic tensor: any second-rank
isotropic tensor Tij can be expressed as a scalar multiple of δij (i.e. Tij = α δij).[1]

Question 1.2

(a) Consider the cross-product c = a× b. Show that

ci = εijkajbk , (1)

where εijk is the Levi-Civita tensor defined by

εijk =

⎧
⎪⎨

⎪⎩

1 if ijk is taken as any even permutation of x, y, z
−1 if ijk is taken as any odd permutation of x, y, z
0 if any two subscripts are equal.

(2)

(b) Prove that
∇× r = 0, (3)

where r = (x, y, z).

‡Proper and improper transformations are described in Appendix A.

[1] H. Jeffreys, Cartesian tensors, Chap. VII, pp. 66–8. Cambridge: Cambridge University Press,
1952.
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Solution

(a) The Cartesian form c = x̂(aybz − azby) + ŷ(azbx − axbz) + ẑ(axby − aybx) has
x-component cx = aybz − azby = εxyzaybz + εxzyazby as a result of the properties
(2)1 and (2)2. Because repeated subscripts imply a summation over Cartesian
components, we can write cx = εxjkajbk using (2)3. Similarly, cy = εyjkajbk and
cz = εzjkajbk. Now the ith component of c is (a× b)i which is (1).

(b) Following the solution of (a) we write (∇× r)i = εijk∇jrk = εijkδjk = εijj = 0.
Here we use the contraction εijkδjk = εijj and the property εijj = 0

(
the same

conclusion also follows from (4) of Question 1.5
)
. This result is true for i = x, y

and z. Hence (3).

Comments

(i) The Levi-Civita tensor is a third-rank tensor. It is clear from (2) that it is anti-
symmetric in any pair of subscripts.

(ii) εijk is also known as the alternating tensor or isotropic tensor of rank three: any
third-rank isotropic tensor Tijk can be expressed as a scalar multiple of εijk (i.e.
Tijk = α εijk).[1]

Question 1.3

(a) Consider the product of two Levi-Civita tensors which have a subscript in
common. Show that

εijkε�mk = δi�δjm − δimδj� . (1)

Hint: The product εijkε�mk is an isotropic tensor of rank four. Prove (1) by making
a linear combination of products of the Kronecker delta.

(b) Use (1) to prove the identity

AiBj −AjBi = εijk(A×B)k , (2)

where A and B are arbitrary vectors.

Solution

(a) Because of the hint, εijkε�mk = a δijδ�m + b δi�δjm + c δimδj� where the constants
a, b and c are determined as follows:

i = x, j = x, � = x, m = x : εxxkεxxk = 0 = a+ b+ c.

i = x, j = y, � = x, m = y : εxykεxyk = εxyzεxyz = 1 = b.

i = x, j = y, � = y, m = x : εxykεyxk = εxyzεyxz = −1 = c.

Thus a = 0 and we obtain (1).
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(b) Equations (1) and (2) of Question 1.2 give (A ×B)k = εk�mA�Bm = ε�mkA�Bm.
Multiplying both sides of this equation by εijk and using (1) yield εijk(A×B)k =
εijkε�mkA�Bm = (δi�δjm − δimδj�)A�Bm. Contracting subscripts gives (2).

Comments

(i) Notice the following contractions that follow from (1):

εijkεij� = 2 δk� and εijkεijk = 6. (3)

(ii) Making the replacements A → ∇; B → F in (2) gives

∇iFj −∇jFi = εijk(∇× F)k , (4)

and if ∇× F = 0 then
∇iFj = ∇jFi . (5)

Question 1.4

Suppose A(t) and B(t) are differentiable vector fields which are functions of the
parameter t. Prove the following:

(a) d

dt
(A ·B) = B · dA

dt
+ A · dB

dt
, (1)

(b) d

dt
(A×B) =

dA

dt
×B + A× dB

dt
, (2)

(c) d

dt

[
α(t)A

]
= A

dα

dt
+ α

dA

dt
. (3)

(
Here α(t) is a differentiable scalar function of t.

)

Solution

These results are all proved by applying the product rule of differentiation.

(a)
d

dt
(A ·B) =

d

dt
(AiBi) = Bi

dAi

dt
+Ai

dBi

dt
which is (1).

(b) From (1) of Question 1.2 it follows that
d

dt

[
(A×B)

]
i
=

d

dt

(
εijkAjBk

)
. So

d

dt

[
(A×B)

]
i
= εijk

dAj

dt
Bk + εijkAj

dBk

dt
=

(
dA

dt
×B

)

i

+

(
A× dB

dt

)

i

.

Since this is true for i = x, y and z, equation (2) follows.
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(c) The result is obvious by inspection.

Comment

The parameter t often represents time in physics. Thus A(t) and B(t) are time-
dependent fields, and accordingly the derivatives (1)–(3) represent their rates of change.

Question 1.5

Suppose sij and aij represent second-rank symmetric and antisymmetric tensors
respectively. Using the definitions

sij = sji and aij = −aji , (1)
prove that

sijaij = 0. (2)

Solution

The subscript notation is arbitrary, and so

sijaij = sjiaji . (3)

Substituting (1) in (3) gives sijaij = −sijaij or 2sijaij = 0, which proves (2).

Comment

Equation (2) is a special case of a general property: the product of a tensor sijk�... sym-
metric in any two of its subscripts with another tensor amkni... that is antisymmetric
in the same two subscripts is zero. That is,

sijk�... amkni... = 0. (4)

Question 1.6

Suppose r = (x, y, z) and r′ = (x′, y′, z′) represent position vectors‡ of points P and
P′ respectively. Prove the following results:

∇
(

1

|r− r′|

)
= − (r− r′)

|r− r′|3 and ∇′
(

1

|r− r′|

)
=

(r− r′)

|r− r′|3 , (1)

where ∇ = x̂
∂

∂x
+ŷ

∂

∂y
+ ẑ

∂

∂z
and ∇′ = x̂

∂

∂x′ +ŷ
∂

∂y′ + ẑ
∂

∂z′ denote differentiation

with respect to the unprimed and primed coordinates respectively.

‡The common origin O of these vectors is completely arbitrary.
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Solution

It is convenient to let R = r− r′. Then

∇i

(
1

R

)
=

∂R−1

∂ri
=

∂R−1

∂R

∂R

∂ri
= − 1

R2

∂R

∂ri
. (2)

But
∂R

∂ri
=

∂

∂ri
(r2 + r′2 − 2rjr

′
j)

1/2 =
2ri − 2r′jδij

2R
=

ri − r′i
R

=
Ri

R
using (1) and (3)

of Question 1.1. Substituting this last result in (2) gives (1)1. Similarly, (1)2 follows,
since ∂R/∂ri = −∂R/∂r′i.

Comment

In electromagnetism, it is important to distinguish between the unprimed coordinates
of a field point P and the primed coordinates locating the sources� of the field. As we
have seen in the solution above, mathematical operations such as differentiation and
integration can be with respect to coordinates of either type.

Question 1.7

Express the Taylor-series expansion of a function f(x, y, z) about an origin O in the
form

f(x, y, z) = [f(x, y, z)]0 + [∇if(x, y, z)]0 ri + 1
2
[∇i∇jf(x, y, z)]0 rirj + · · · . (1)

Solution

The Taylor-series expansion of f(x, y, z) about O is

f(x, y, z) = [f(x, y, z) ]0 +

[
∂f(x, y, z)

∂x

]

0

x+

[
∂f(x, y, z)

∂y

]

0

y +

[
∂f(x, y, z)

∂z

]

0

z +

1

2

{[
∂2f(x, y, z)

∂x2

]

0

x2 +

[
∂2f(x, y, z)

∂x∂y

]

0

xy +

[
∂2f(x, y, z)

∂x∂z

]

0

xz +

[
∂2f(x, y, z)

∂y∂x

]

0

yx+

[
∂2f(x, y, z)

∂y2

]

0

y2 +

[
∂2f(x, y, z)

∂y∂z

]

0

yz +

[
∂2f(x, y, z)

∂z∂x

]

0

zx+

[
∂2f(x, y, z)

∂z∂y

]

0

zy +

[
∂2f(x, y, z)

∂z2

]

0

z2

}
+ · · · , (2)

which, in terms of the Einstein summation convention, is (1).

�These being electric charges and currents.
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Comments

(i) Note the compact form of the tensor equation (1), and compare this with (2).

(ii) Sometimes the function f is itself a component of a vector (say, the electric field
y-component Ey). Then, using tensor notation to express the component of a
vector, we have

Ei = [Ei]0 + [∇jEi]0rj + 1
2
[∇j∇kEi]0rjrk + · · · . (3)

Question 1.8

Let A, B, C, f and g represent continuous and differentiable‡ vector or scalar fields
as appropriate. Use tensor notation to prove the following identities:

(a) A ·(B×C) = (A×B) ·C and all other cyclic permutations, (1)

(b) (A×B) ·(A×B) = A2B2 − (A ·B)2, (2)

(c) A× (B×C) = B(A ·C)−C(A ·B), (3)

(d) ∇(fg) = g∇f + f∇g, (4)

(e) ∇ · (fA) = A ·∇f + f(∇ ·A), (5)

( f ) ∇× (fA) = ∇f ×A+ f(∇×A), (6)

(g) ∇ · (A×B) = (∇×A) ·B− (∇×B) ·A, (7)

(h) ∇× (A×B) = (B ·∇)A− (A ·∇)B+A(∇ ·B)−B(∇ ·A), (8)

( i ) ∇ · (∇×A) = 0, (9)

( j ) ∇×∇f = 0, (10)

(k) ∇× (∇×A) = −∇2A+∇(∇ ·A), (11)

( l ) ∇ · (∇f ×∇g) = 0, (12)

(m) ∇(A ·B) = (A ·∇)B+A× (∇×B) + (B ·∇)A+B× (∇×A). (13)

Solution

(a) The various permutations in (1) may all be proved by invoking the cyclic nature of
the subscripts of the Levi-Civita tensor. Consider, for example, (1)1. Using tensor
notation for a scalar product and (1) of Question 1.2 gives

A · (B×C) = Ai(B×C)i = AiεijkBjCk = εijkAiBjCk .

Now εijk = εkij , and so A · (B ×C) = εkijAiBjCk = (A ×B)kCk, which proves
the result. The remaining cyclic permutations can be found in a similar way.

‡Suppose these fields have continuous second-order derivatives, so ∇i∇jAk = ∇j∇iAk, etc.
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(b) Clearly, (A×B) ·(A×B) = (A×B)i(A×B)i

= εijkAjBk εilmAlBm

= (δjlδkm − δjmδkl)AjAlBkBm

= AiAiBjBj −AiBiAjBj (subscripts are arbitrary)

= (A ·A)(B ·B)− (A ·B)2. Hence (2).

(c) It is sufficient to show that [A× (B×C)]i = Bi(A ·C)−Ci(A ·B). From (1) of
Question 1.2

[A× (B×C)]i = εijkAj(B×C)k

= εijkAjεklmBlCm = εijkεlmkAjBlCm = (δilδjm − δimδjl)AjBlCm ,

using the cyclic property of εklm and (1) of Question 1.3. Contracting the right-
hand side gives AmBiCm −AlBlCi = Bi(A ·C)− Ci(A ·B) as required.

(d) Consider the ith component. Then ∇i(fg) = g∇if + f∇ig by the product rule of
differentiation and the result follows.

(e) ∇ · (fA) = ∇i(fA)i = ∇i(fAi) = Ai∇if + f∇iAi = A ·∇f + f(∇ ·A).

( f ) Consider the ith component. Then

[∇× (fA)]i = εijk∇j(fAk) = εijk(Ak∇jf + f∇jAk) = (∇f ×A)i + f(∇×A)i .

(g) ∇ · (A×B) = ∇i(A×B)i = ∇iεijkAjBk

= εijk(Bk∇iAj +Aj∇iBk)

= (εkij∇iAj)Bk − (εjik∇iBk)Aj (properties of εijk)

= (∇×A)kBk − (∇×B)jAj

= (∇×A) ·B− (∇×B) ·A.

(h) [∇× (A×B)]i = εijk∇jεklmAlBm

= (δilδjm − δimδjl)∇j(AlBm)

= ∇m(AiBm)−∇l(AlBi) (contract subscripts)

= Bm∇mAi +Ai∇mBm −Bi∇lAl −Al∇lBi (product rule)

= (B ·∇)Ai − (A ·∇)Bi +Ai(∇ ·B)−Bi(∇ ·A),

which proves the result.

( i ) ∇ · (∇×A) = ∇i(∇×A)i = ∇iεijk∇jAk = εijk∇i∇jAk = 0,
since ∇i∇jAk is symmetric in i and j, whereas εijk is antisymmetric in these
subscripts (see Question 1.5). Hence (9).

( j ) [∇×∇f ]i = εijk∇j∇kf = 0 as in (i). Hence (10).
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(k) [∇× (∇×A)]i = εijk∇jεklm∇lAm

= εijkεlmk∇j∇lAm (cyclic property of εijk)

= (δilδjm − δimδjl)∇j∇lAm (contracting subscripts)

= (∇i∇mAm −∇2Ai) = ∇i(∇ ·A)−∇2Ai

as required.

( l ) This result follows immediately from (7) and (10) above.

(m) ∇i(A ·B) = ∇i(AjBj)

= Aj∇iBj +Bj∇iAj

= Aj [∇jBi + εijk(∇×B)k] +Bj [∇jAi + εijk(∇×A)k],

where in the last step we use (4) of Question 1.3. This proves the result.

Comments

(i) Equations (1) and (3) are the well-known scalar and vector triple products
respectively. We note the following:
☞ In (1) the positions of the dot and cross may be interchanged, provided that

the cyclic order of the vectors is maintained.
☞ The identity (3) is used often and is worth remembering. For easy recall, some

textbooks call it the ‘BAC–CAB rule’. See, for example, Ref. [2].
(ii) Suppose A, B and C are polar vectors.‡ The transformation A · (B × C)

p→
−A · (B ×C) results in the scalar triple product changing sign under inversion,
and so it is a pseudoscalar.� If A, B and C are the spanning vectors of a crystal
lattice, then A · (B×C) is the pseudovolume of the unit cell.†

(iii) In electromagnetism (1)–(13) are very useful identities. Although proved here for
Cartesian coordinates, the results are valid in all coordinate systems.�

Question 1.9

Consider the scalar functions f(r) and g
(
r(t), t

)
. Suppose r = r(t) is a time-dependent

position vector. Show that

df

dt
=

(
dr

dt
·∇

)
f and

dg

dt
=

∂g

∂t
+

(
dr

dt
·∇

)
g. (1)

‡The distinction between polar and axial vectors is described in Appendix A.
�See also Appendix A. In the above, p is the parity operator described on p. 598.
†In this example, the volume of the unit cell is |A · (B×C)|.
�This also applies to other results in this chapter, such as Gauss’s theorem and Stokes’s theorem.

[2] D. J. Griffiths, Introduction to electrodynamics, Chap. 1, p. 8. New York: Prentice Hall, 3 edn,
1999.
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Solution

Since both proofs are similar, we consider that for (1)2 only. The total differential of
g(x, y, z, t) is

dg =
∂g

∂x
dx +

∂g

∂y
dy +

∂g

∂z
dz +

∂g

∂t
dt.

Then
dg

dt
=

∂g

∂t
+

(
dx

dt

∂

∂x
+

dy

dt

∂

∂y
+

dz

dt

∂

∂z

)
g,

which is (1)2 since dr/dt = (dx/dt, dy/dt, dz/dt) and ∇ = (∂/∂x, ∂/∂y, ∂/∂z).

Comments

(i) Equation (1)1 is the chain rule of differentiation. Equation (1)2 is often called the
convective derivative. It is composed of two parts: the local or Eulerian derivative
∂g
/
∂t and the convective term

(
v · ∇

)
g, where v = dr/dt is the velocity of an

element of charge or mass as it travels along its trajectory r(t).
(ii) Suppose T (r, t) represents a temperature field. The local derivative ∂T

/
∂t pro-

vides the change in temperature with time at a fixed point in space, whereas the
convective term

(
v ·∇

)
T accounts for the rate at which the temperature changes

in a fixed mass of air as it moves, for example, in a convection current.
(iii) For the vector fields f

(
r(t)

)
and g

(
r(t), t

)
, these derivatives are

df

dt
=

(
dr

dt
·∇

)
f and

dg

dt
=

∂g

∂t
+

(
dr

dt
·∇

)
g. (2)

Question 1.10
∗∗

The flux φ of an arbitrary vector field F(r, t) is

φ =

∫

s

F · da,

where s is any surface spanning an arbitrary contour c. Suppose the position, size and
shape of c (and therefore s) change with time. Show that

d

dt

∫

s

F · da =

∫

s

dF

dt
· da. (1)

Hint: Let r
(
u(t), v(t)

)
be a parametric representation of s where u1 ≤ u ≤ u2 and

v1 ≤ v ≤ v2
(
see Appendix H

)
. Then

φ =

∫ u2

u1

∫ v2

v1

F
(
r
(
u(t), v(t)

))
·
(
∂r

∂u
× ∂r

∂v

)
dudv. (2)
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Solution

Differentiating (2) gives

dφ

dt
=

d

dt

∫ u2

u1

∫ v2

v1

F
(
r
(
u(t), v(t)

))
·
(
∂r

∂u
× ∂r

∂v

)
dudv

=

∫ u2

u1

du

∫ v2

v1

[
dF

dt
·
(
∂r

∂u
× ∂r

∂v

)
+ F · d

dt

(
∂r

∂u
× ∂r

∂v

)]
dv. (3)

Consider the second term in square brackets in (3). Using (1)1 of Question 1.9 yields

d

dt

∂r

∂u
× ∂r

∂v
=

(
dr

dt
·∇

)(
∂r

∂u
× ∂r

∂v

)
. (4)

Using tensor notation, (4) can be written as
[(

dr

dt
·∇

)(
∂r

∂u
× ∂r

∂v

)]

i

= εijk
drl
dt

∂

∂rl

∂rj
∂u

∂rk
∂v

(5)

= εikj
drl
dt

∂

∂rl

∂rk
∂u

∂rj
∂v

(subscripts are arbitrary)

= −εijk
drl
dt

∂

∂rl

∂rk
∂v

∂v

∂u

∂rj
∂u

∂u

∂v
(εikj = −εijk)

= −εijk
drl
dt

∂

∂rl

∂rk
∂v

∂rj
∂u

= −εijk
drl
dt

∂

∂rl

∂rj
∂u

∂rk
∂v

(rearranging terms). (6)

Comparing (5) and (6) shows that
[(

dr

dt
·∇

)
∂r

∂u
× ∂r

∂v

]

i

= 0, which is true for all

components of this vector. Then (3) becomes

dφ

dt
=

∫ u2

u1

du

∫ v2

v1

[
dF

dt
·
(
∂r

∂u
× ∂r

∂v

)]
dv

=

∫

s

dF

dt
· da,

which is (1).

Comment

Equation (1) is a useful result for calculating emfs in non-stationary circuits or media.
See Question 5.4.



“EMBook” — 2018/6/20 — 6:21 — page 13 — #23

Some essential mathematics 13

Question 1.11

Use the relevant definition and the result that r is a polar vector to determine whether
the following vectors are polar or axial: (a) velocity u, (b) linear momentum p,
(c) force F, (d) electric field E, (e) magnetic field B and (f) E×B.

(Assume that time, mass and charge are invariant quantities).

Solution

(a) u = dr
/
dt is polar since t is invariant and r is polar.

(b) p = mu is polar since m is invariant and u is polar.

(c) F = dp
/
dt is polar since t is invariant and p is polar.

(d) E = F
/
q is polar since q is invariant and F is polar.

(e) Apply the parity transformation to the force

F
p→ F′ = −F = qu′ ×B′ = q (−u)×B′.

Clearly, F = qu×B′ requires B′ = B which shows that B is axial.

(f) E×B
p→ (−E)×B = −E×B which is polar. This vector represents the energy

flux per unit time‡ in the vacuum electromagnetic field
(
see (7) of Question 7.6

)
.

Comments

(i) The polar (axial) nature of the electric (magnetic) field established in the above
solution above can be confirmed by the following intuitive approach. We suppose
uniform E- and B-fields are created by an ideal parallel-plate capacitor and an
ideal solenoid respectively, and consider how these fields behave when their sources
are inverted. This is illustrated in the figures below; notice that E reverses sign,
whereas B does not.

E-field: cross-section through capacitor perpendicular to the plates

{source q at r}
p→ {source q at −r}

+

+-

-+

+-

-+

+-

-+

+-

-+

+-

-+

+-

-

E

Ep

‡Apart from a factor μ0, which is a polar constant of proportionality. See Comment (ii) on p. 14.
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B-field: cross-section through solenoid perpendicular to the symmetry axis

{source Idl at r}
p→ {source −Idl at −r}

p
B B

(ii) Suppose c = a× b. Clearly, c is:

☞ polar if either a or b is polar and the other is axial (see the E×B example
above).

☞ axial if a and b are either both polar or both axial.

(iii) Let a and b represent arbitrary vectors that satisfy laws of physics which we
express algebraically as:

b = α a and bi = βijaj . (1)

Here a is taken to be the ‘cause’ and b the ‘effect’. The constants of proportionality
α and βij are tensors of rank zero and two respectively.� Under rotation of axes,
they behave as follows:

☞ α and βij are polar if a and b are either both polar or both axial,
☞ α and βij are axial if either a or b is polar and the other is axial.

So, for example, in the Biot–Savart law
(
see (7)2 of Question 4.4

)
dB =

μ0

4π

Idl× r

r3
,

and we conclude that μ0 is a polar scalar since both dB and Idl× r are axial vec-
tors.

(iv) These results can be generalized to physical tensors and physical property tensors
of any rank.[3]

(v) Considerations of symmetry and the spatial nature of tensors can sometimes be
exploited to gain useful insight into a physical system. Consider, for example, a
sphere of charge which is symmetric about its centre O. Suppose the sphere is
spinning about an axis through O. Inversion through O obviously leaves the sphere
unchanged as well as all its physical tensors and physical property tensors.

�The following terminology is used in the literature (see, for example, Ref. [3]): a, b are called
physical tensors (here they are physical vectors) and α, βij are physical property tensors

(
see

also Comment (viii) of Question 2.26
)
.

[3] R. E. Raab and O. L. de Lange, Multipole theory in electromagnetism, Chap. 3, pp. 59–72.
Oxford: Clarendon Press, 2005.
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Because polar vectors change sign under inversion it follows that the electric field
at O is necessarily zero, whereas the magnetic field, being an axial vector, may
have a finite value at the centre. Symmetry arguments alone cannot reveal the
value of B at O; this can be determined either by solving the relevant Maxwell
equation or by measurement.

(vi) In addition to characterizing physical tensors and physical property tensors by
their spatial properties, it is also possible to consider how such quantities behave
under a time-reversal transformation T. In classical physics, time reversal changes
the sign of the time coordinate t

T→ t′ = −t. For motion in a conservative field
the time-reversed trajectory is indistinguishable from the actual trajectory;[3]

r
T→ r′ = r. With this in mind, we consider the effect of a time-reversal transfor-

mation on the following first-rank tensors:

☞ u = dr
/
dt

T→ dr
/
dt′ = −u.

☞ p = mu
T→ −p.

☞ F = dp
/
dt

T→ F.

☞ E = F
/
q

T→ E.

☞ qu×B = F
T→ q (−u)×B′ requires B

T→ B′ = −B.

Tensors which remain unchanged by time-reversal transformations are called time-
even (F and E above), whilst those which change sign are time-odd (u, p and B
above). The space-time symmetry properties of these five vectors are thus:

☞ u and p are time-odd polar vectors,

☞ E and F are time-even polar vectors, and

☞ B is a time-odd axial vector.‡

(In the bulleted lists above, it has been assumed implicitly that m and q are
time-even, polar scalars.[3]) Ref. [3] also provides interesting applications of these
symmetry transformations to physical systems. For example, it is shown that the
Faraday effect� in a fluid (whether optically active or inactive) is not vetoed by a
space-time transformation, whereas the electric analogue of this effect, which has
never been observed, is vetoed.[3]

(vii) The symmetries referred to in (vi) above are part of a much more general idea
based on Neumann’s principle which states that every physical property tensor of
a system must possess the full space-time symmetry of the system. (This is quite
apart from any intrinsic symmetry of the tensor subscripts themselves.)

‡An example of a time-even axial vector is torque, Γ = m
d

dt
(r× p).

�In this effect, a magnetostatic field B applied parallel to the path of linearly polarized light in a
fluid induces a rotation of the plane of polarization through an angle proportional to B.
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Question 1.12

Consider a vector field F(r) with continuous first derivatives in some region of space
having volume v bounded by the closed surface s. Use the definition of divergence‡ to
prove that

∮

s

F · da =

∫

v

(∇ · F)dv, (1)

where da is an element of area on s.

Solution

Imagine subdividing the macroscopic volume v into a
large number n of infinitesimal elements having vol-
ume dvi, where i = 1, 2, . . . , n (the elements might,
for example, be cuboids with six faces). For the ith
element the net outward flux is the sum over six faces.
Using the definition of divergence we write

∑

six
faces

Fi · dai = (∇ · F)idvi . (2)

j k

dvi

The total flux through v is obtained by summing over all volume elements. In this
summation the Fi · dai terms cancel in pairs for all interior surfaces.� The only terms
which survive are those on the exterior surfaces for which no cancellation can occur
and (2) becomes

∑

exterior
faces

Fi · dai =
∑

volume
elements

(∇ · F)idvi . (3)

In the limit n → ∞, the summation on the left-hand side of (3) becomes an integral
over s and that on the right-hand side becomes an integral over v, which is (1).

‡The divergence of F at any point P is defined as follows:

∇ · F = lim
v→0

1

v

∮

s
F · da.

Here P lies within an arbitrary region of space having volume v and bounded by the closed
surface s.

�Consider the common face of the volume elements labelled j and k in the above figure (shown,
in cross-section, as a dashed boundary line and assumed to be contained entirely within the
interior of v). Then the outward flux through this face for element j equals the inward flux
through this same face for element k. Since daj = −dak, then Fj · daj = −Fk · dak.
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Comments

(i) This important result is known as Gauss’s theorem (or sometimes the divergence
theorem). It is a mathematical theorem, and should not be confused with Gauss’s
law which is a law of physics.

(ii) We mention two useful corollaries of the divergence theorem. They are Green’s
first and second identities:

∮

s

(
f∇g

)
· da =

∫

v

(
∇f ·∇g + f∇2g

)
dv, (4)

and
∮

s

(
g∇f − f∇g

)
· da =

∫

v

(
g∇2f − f∇2g

)
dv, (5)

respectively. Here f and g are any two well-behaved scalar fields. Equation (4)
is easily proved by substituting F = f∇g in (1) and using (5) of Question 1.8.
Equation (5) follows directly from (4).

(iii) Another useful identity, which follows from Gauss’s theorem and (7) of Question
1.8, is

∮

s

(
A×B

)
· da =

∫

v

[(
∇×A

)
·B−

(
∇×B

)
·A

]
dv. (6)

Question 1.13

Consider a vector field F(r) having continuous first derivatives in a region of space, in
which c is an arbitrary closed contour and s any surface spanning c. Prove that

∮

c

F · dl =

∫

s

(
∇× F

)
· da, (1)

where da is an element of area on s.

Solution

To prove (1) we start by evaluating
∮

F · dl around an infinitesimal rectangular path

δc in the xy-plane:

(x, y, z) → (x+ dx, y, z) → (x+ dx, y + dy, z) → (x, y + dy, z) → (x, y, z).

If we label the corners of this rectangle 1, 2, 3 and 4, then
∮

δc

F · dl =

(∫

1→2

+

∫

2→3

−
{∫

1→4

+

∫

4→3

})
F · dl

= Fx(x, y, z)dx+ Fy(x+ dx, y, z)dy − Fy(x, y, z)dy − Fx(x, y + dy, z)dx
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=

(
∂Fy

∂x
− ∂Fx

∂y

)
dxdy

= (∇× F)z dxdy

= (∇× F) · n da, (2)

where n is a unit vector perpendicular to the rectangular element of area da.
(
There

is a sign convention (a right-hand rule) implicit in (2), relating the sense in which δc
is traversed and the direction of n; see the figure below.

)
Equation (2) is independent

of the choice of coordinates, and applies to an element of any orientation. An
arbitrary finite surface s with boundary c can be subdivided into infinitesimal
rectangular elements δci (i = 1, 2, . . .). Then

∫

c

F · dl =
∑

i

∮

δc
i

F · dl, (3)

because on common segments of adjacent elements the dl point in opposite directions.
So the contributions of F · dl to the sum in (3) cancel, whereas no such cancellation
occurs on the boundary c. Equations (2) and (3) yield (1). The figure below illustrates
the right-hand convention that is assumed here.

cs

da

Comment

Equation (1) is known as Stokes’s theorem (or sometimes the curl theorem), and it is
another very important result.

Question 1.14
(
This question and its solution are based on Questions 5.7 and 5.8 of Ref. [4].

)

Use Stokes’s theorem to prove that a necessary and sufficient condition for a vector
field F(r) to be irrotational‡ (or conservative) is that ∇× F = 0. Split the proof into
two parts:

‡That is, F(r) is derivable from a single-valued scalar potential V (r) as F = −∇V .

[4] O. L. de Lange and J. Pierrus, Solved problems in classical mechanics: Analytical and numerical
solutions with comments. Oxford: Oxford University Press, 2010.
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necessary

Assume F = −∇V then show that ∇× F = 0. (1)

sufficient

Assume ∇× F = 0 then show that F = −∇V . (2)

Solution

the necessary condition

If F = −∇V , then Stokes’s theorem
(
see (1) of Question 1.13

)
yields

∫

s

(∇× F) · da =

∮

c

F · dl = −
∮

c

∇V · dl = −
∮

dV (r) = 0, (3)

because V (r) is a single-valued function. The surface s in (3) is arbitrary, and therefore
it follows that ∇× F = 0 everywhere.

the sufficent condition

This part of the proof is less obvious than the preceding ‘necessary’ part because one
has to prove the existence of the function V (r). If ∇ × F = 0 everywhere, it follows
from Stokes’s theorem that

∮

c

F · dl = 0 (4)

for all closed curves c. According to (4):
∫

1

F · dl =

∫

2

F · dl, (5)

where 1 and 2 are any two paths from point A to point B. Therefore, the line integral
between any two such points is independent of the path followed from A to B: it
depends only on the endpoints A and B. Thus, F · dl must be the differential of some
single-valued scalar function V (r), which we call a perfect differential:

F · dl = −dV (r), (6)

where a minus sign has been inserted to conform with the standard convention. But

dV (r) =
∂V

∂x
dx+

∂V

∂y
dy +

∂V

∂z
dz = (∇V ) · dl. (7)

The line element dl in (6) and (7) is arbitrary, and therefore F = −∇V .
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Question 1.15
(
This question and its solution are based on Questions 5.22 and 5.23 of Ref. [4].

)

Use both Stokes’s theorem and Gauss’s theorem to prove that a necessary and sufficient
condition for a vector field F(r) to be solenoidal‡ is that ∇ · F = 0. Split the proof
into two parts:

necessary

Assume F = ∇×A then show that ∇ · F = 0. (1)

sufficient

Assume ∇ · F = 0 then show that F = ∇×A. (2)

Solution

the necessary condition

Divide the closed surface s into two ‘caps’, s1 and s2, bounded by a common closed
curve c, as shown in the figure on p. 21. According to Stokes’s theorem

∫

s1

F · da1 =

∫

s1

(∇×A) · da1 =

∮

c

A · dl =

∫

s2

(∇×A) · da2 =

∫

s2

F · da2 ,

where the sense in which c is traversed and the directions of da1 and da2 are fixed by
the right-hand rule. Therefore�

∮

s

F · da =

∫

s
1

F · da1 +

∫

s
2

F · (−da2) = 0,

which by Gauss’s theorem means that

∫

v

(∇ · F) dv = 0.

Because s1 and s2 are arbitrary, so is the volume v that they enclose. It therefore
follows that ∇ · F = 0.

‡That is, F(r) is derivable from a vector potential A(r) as F = ∇×A.

�Note that da2 is along an inward normal, as shown in the figure on p. 21, and therefore the
element to be used in Gauss’s theorem is −da2.
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the sufficient condition

The initial part of the proof involves the inverse of the reasoning used in the necessary
condition above. If ∇ · F = 0 everywhere, then it follows from Gauss’s theorem that

∮

s

F · da = 0 (3)

for all closed surfaces s. That is, for ‘caps’ s1 and s2 that share a common bounding
curve c, as depicted in the above figure, we have

∫

s2

F · da2 =

∫

s1

F · da1 , (4)

meaning that the flux of F through a cap is unchanged by any deformation of the cap
that leaves the bounding curve c unaltered. Therefore, the fluxes in (4) can depend
only on the curve c and not on other details of s1 and s2. These fluxes can be expressed
as the line integral around c of some vector field A(r):

∫

s
i

F · dai =

∮

c

A · dl (i = 1, 2) (5)

=

∫

s
i

(∇×A) · dai (i = 1, 2) , (6)

where Stokes’s theorem is used in the last step. Since the surface si in (6) is arbitrary,
we conclude that

F = ∇×A. (7)

Question 1.16

(a) Consider the spherically symmetric vector field F(r) = f(r) r̂
/
rn. Use the

divergence operator for spherical polar coordinates
(
see (XI)2 of Appendix C

)

to prove that
∇ · F = 0 ⇒ f(r) = αrn−2, (1)

where α is a constant.
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(b) Consider the cylindrically symmetric vector field G(r) = g(r) r̂
/
rn. Use the

divergence operator for cylindrical polar coordinates
(
see (VIII)2 of Appendix

D
)

to prove that

∇ ·G = 0 ⇒ g(r) = βrn−1, (2)

where β is a constant.

Solution

(a) ∇ · F =
1

r2
∂

∂r

(
r2Fr

)
=

1

r2
d

dr

(
r2−nf

)
= 0, implying that the term in brackets is

a constant. Hence (1).

(b) ∇ ·G =
1

r

∂

∂r

(
r Gr

)
=

1

r

d

dr

(
r1−ng

)
= 0, implying that the term in brackets is a

constant. Hence (2).

Comments

(i) Because ∇r−(n−1) = −(n−1)r−n, it follows that
1

rn
=

1

1− n
∇
(

1

rn−1

)
, assuming

n �= 1. Hence ∇× F = ∇× G = 0, since the curl of any gradient is identically
zero.

(ii) With n = 2 and α = q
/
4πε0, F(r) is the electric field E of a stationary point

charge q. Here ∇ · E = 0 (which is one of Maxwell’s equations in a source-free
vacuum) is valid everywhere except at the location of the charge.

(iii) With n = 1 and β = λ
/
2πε0, G(r) is the electric field E of an infinite electric line

charge having uniform density λ. As before, ∇ ·E = 0 is valid everywhere except
at r = 0.

Question 1.17

Below we prove that magnetic fields are always zero. The ‘proof’ is based on two
fundamental equations from electromagnetism (both of which are discussed in later
chapters of this book): ∇ ·B = 0 and B = ∇×A. Read the ‘proof’ and then explain
where the (fatal) flaw lies.

‘proof’

Maxwell’s equation: ∇ ·B = 0 ⇒ B = ∇×A. (1)

Gauss’s theorem and (1)1 give:
∫

v

∇ ·B dv =

∫

s

B · da = 0. (2)
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Substituting (1)2 in the surface integral (2) and using Stokes’s theorem yield
∫

s

(∇×A) · da =

∮

c

A · dl = 0. (3)

Now (3) implies that A = ∇φm, (4)

where φm is a scalar potential. Equations (1)2 and (4) then give B = ∇×∇φm. Since
the curl of any gradient is identically zero it necessarily follows that B ≡ 0.
Q.E.D.

Solution

In Gauss’s theorem s must be a closed surface
(
see (2) where the theorem is applied

incorrectly
)
, but in Stokes’s theorem s is open. Therefore, one cannot conclude that

the circulation of A in (3), which follows from (2), is always zero.

Comment

Pay careful attention to all the details in every calculation. Do not assume that nuances
in notation are simply a matter of pedantry. This question illustrates how careless
execution can lead to incorrect physics (clearly, in this case, spectacularly incorrect).

Question 1.18

Laplace’s equation ∇2Φ = 0 is a second-order partial differential equation which arises
in many branches of physics. Although there are no general techniques for solving
this equation, the ‘method of separation of variables’ sometimes works. This method
is based on a trial solution in which the variables of the problem are separated from
one another

(
see, for example, (1) below

)
. If this trial solution can be made to fit the

boundary conditions of the problem (assuming that these have been suitably specified),
then its uniqueness is guaranteed.‡

(a) Suppose Φ = Φ(x, y, z). Attempt solutions to Laplace’s equation of the form

Φ(x, y, z) = X(x)Y (y)Z(z), (1)

where X, Y and Z are all functions of a single variable. Show that (1) leads to

Φ(x, y, z) = Φ0e
±k1xe±k2ye±k3z , (2)

where the k2
i are real constants.

(b) Find the form of (2) for k2
1 and k2

2 both negative.

(c) Find the form of (2) for k2
1 and k2

2 both positive.

‡See also Question 3.3(d).
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Solution

(a) Substituting (1) in ∇2Φ = 0 and dividing by XY Z give

1

X

d2X

dx2
+

1

Y

d2Y

dy2
+

1

Z

d2Z

dz2
= 0. (3)

The first term in (3) is independent of y and z, the second term is independent
of x and z and the third term is independent of x and y. Now the sum of the
terms in (3) is identically zero for all x, y and z. This requires that each term is
independent of x, y and z and is therefore a constant. So

1

X

d2X

dx2
= k2

1,
1

Y

d2Y

dy2
= k2

2 and
1

Z

d2Z

dz2
= k2

3, (4)

where
k2
1 + k2

2 + k2
3 = 0. (5)

These three ordinary differential equations have the solutions

X = X0e
±k1x, Y = Y0e

±k2y and Z = Z0e
±k3z,

and together with (1) they yield (2) where Φ0 = X0Y0Z0.

(b) Let k2
1 = −α2 and k2

2 = −β2 where α and β are real constants. Substituting
k1 = iα and k2 = iβ in (5) gives k2

3 = −k2
1 − k2

2 = α2 + β2 = γ2 say. Then k3 = γ
is also clearly real, and (2) becomes

Φ(x, y, z) = Φ0e
±iαxe±iβye±γz. (6)

(c) Now we let k2
1 = α2 and k2

2 = β2 (again the constants α, β are real). Then k1 = α,
k2 = β and k2

3 = −k2
1 − k2

2 = −α2 − β2 = −γ2 ⇒ k3 = iγ (as before γ is real).
Substituting these ki in (2) gives

Φ(x, y, z) = Φ0e
±αxe±βye±iγz. (7)

Comments

(i) The k2
i are known as the separation constants and they may be positive or

negative. Their signs are determined by the physics of the problem via the bound-
ary conditions. Choosing k2

1 and k2
2 with opposite signs reproduces solutions of

the form (6) and (7), but with different permutations of the axes.

(ii) If any one of the various combinations in (6) and (7) is to be ‘the’ solution to
a particular physical problem, then it must be made to satisfy all the boundary
conditions of that problem. Furthermore, the boundary conditions can be used
to select which (if any) of these possible combinations is a suitable solution. For
example, if Φ → 0 as z → ±∞ then a choice involving e∓γz must be made.
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(iii) Linear combinations of these product solutions also satisfy Laplace’s equation,�
and alternative forms of (6) and (7) are therefore

Φ(x, y, z) = Φ0

{
cosαx
sinαx

{
cosβy
sinβy

{
cosh γz
sinh γz

(8)

and

Φ(x, y, z) = Φ0

{
coshαx
sinhαx

{
coshβy
sinhβy

{
cos γz
sin γz ,

(9)

respectively. Because the boundary conditions impose restrictions on the possible
values of α, β and γ, they often have a further role in determining the value of
the constant Φ0.

(iv) Separable solutions of Laplace’s equation can also be found for other coordinate
systems, as for example in spherical polar coordinates. See Question 1.19.

(v) We end these comments with two descriptions of the method of separation of
variables. The first, rather colourful, account describes the method ‘as one of the
most beautiful techniques in all of mathematical physics’.[5] The second descrip-
tion explains that

the method of separation of variables is perhaps the oldest systematic method
for solving partial differential equations. Its essential feature is to transform
the partial differential equation by a set of ordinary differential equations. The
required solution of the partial differential equation is then exposed as a product
u(x, y) = X(x)Y(y) �= 0, or as a sum u(x, y) = X(x) + Y (y), where X(x)
and Y (y) are functions of x and y, respectively. Many significant problems
in partial differential equations can be solved by the method of separation of
variables. This method has been considerably refined and generalized over the
last two centuries and is one of the classical techniques of applied mathematics,
mathematical physics and engineering science. . . . In many cases, the partial
differential equation reduces to two ordinary differential equations for X and Y .
A similar treatment can be applied to equations in three or more independent
variables. However, the question of separability of a partial differential equation
into two or more ordinary differential equations is by no means a trivial one.
In spite of this question, the method is widely used in finding solutions of
a large class of initial boundary-value problems. This method of solution is
also known as the Fourier method (or the method of eigenfunction expansion).
Thus, the procedure outlined above leads to the important ideas of eigenvalues,
eigenfunctions, and orthogonality, all of which are very general and powerful
for dealing with linear problems.[6]

�This property is proved in Question 3.3(a).

[5] Source unknown: possibly R. P. Feynman.
[6] L. Debnath, Differential equations for scientists and engineers, Chap. 2, pp. 51–2. Boston:

Birkhäuser, 4 edn, 2007.
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Question 1.19

Suppose Φ is an axially symmetric potential which satisfies Laplace’s equation.

(a) Using ∇2 for spherical polar coordinates, show that

Φ(r, θ) = R(r)Θ(θ) (1)

accomplishes a separation of variables, and leads to the decoupled equations

d

dr

(
r2

dR

dr

)
− kR = 0

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ kΘ = 0

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (2)

where k is a constant.

(b) Hence show that in spherical polar coordinates the general solution of Laplace’s
equation for boundary-value problems with axial symmetry is

Φ(r, θ) =
∞∑

n=0

[
Anr

n + Bnr
−(n+1)

]
Pn(cos θ), (3)

where An, Bn are constants and Pn(cos θ) is the Legendre polynomial of order n
in cos θ (see Appendix F).

Hint: Begin with the substitution R(r) = U(r)/r and assume that the separation
constant k = n(n+ 1) where n is a non-negative integer.

Solution

(a) Because of the axial symmetry ∂Φ
/
∂φ = 0 in ∇2Φ

(
see (XI)4 of Appendix C

)
,

and so

1

r2
∂

∂r

(
r2

∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
= 0. (4)

Substituting (1) in (4) and dividing by RΘ gives

1

R

d

dr

(
r2

dR

dr

)
= − 1

Θ sin θ

d

dθ

(
sin θ

dΘ

dθ

)
. (5)

Now the left-hand side of (5) is a function of r only, and the right-hand side is a
function of θ only. So each must be equal to a constant, k say. Hence (2).
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(b) Because of the hint, (2)1 becomes

d2U

dr2
− n(n+ 1)

r2
U = 0,

whose general solution is U(r) = Arn+1 +Br−n. Thus

R(r) = Arn +Br−(n+1). (6)

Next we turn to equation (2)2. Its solutions (as outlined in Appendix F) are of
the form

Θ(θ) = Pn (cos θ), (7)

apart from an overall constant (which can later be absorbed into other constants).
Substituting (6) and (7) in (1), and recalling that the Legendre polynomials form
a complete set of functions on the interval 0 ≤ θ ≤ π, it follows that Φ can be
expanded as an infinite series

Φ(r, θ) =

∞∑

n=0

[
Anr

n Pn(cos θ) + Bnr
−(n+1)P−(n+1)(cos θ)

]
.

Now
P−(n+1)(cos θ) = Pn(cos θ)

as we show below.‡ Hence (3).

Question 1.20

Let da be an infinitesimal area element of some surface
s and O any point. The solid angle dΩ subtended by da
at O is defined as

dΩ =
da · r̂
r2

, (1)

where r is the vector from O to da.

(a) Suppose s is the unit sphere centred at O. What is the solid angle Ω subtended
by s at O?

(b) Suppose s is a closed surface of arbitrary shape. Show that

Ω =

∮

s

dΩ =

{
4π if O lies inside s

0 if O lies outside s.
(2)

‡If integer n satisfies k = n(n+1), then so does n′ = −(n+1), since n′(n′+1) = −(n+1)(−n) = k.
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Solution

(a) Ω =
surface area

radius squared
= 4π. (3)

(b) The rays from O passing through the periphery of da generate an infinitesimal
cone with apex at O. Similar cones can be generated for all the surface elements
of s (say N in total where N → ∞).

O inside s

Fig. (I) shows origin O chosen arbitrarily inside s. Also shown is the unit sphere
centred at O. The area element daA of s subtends the same solid angle dΩ1 at O
as the area element daB of the unit sphere. This is true for all the other cones
and Ω = dΩ1 + dΩ2 + · · ·+ dΩN = 4π because of (3).

O outside s

The cone shown in Fig. (II) intersects the surface twice. The solid angles subtended
at O by the area elements da1 and da2 are dΩ and −dΩ‡ respectively, and the
sum of these two contributions is zero. This cancellation occurs in pairs for all the
other cones and in this case Ω = 0.

Comments

(i) In the SI system the unit of measure of solid angle is called the steradian which
is a dimensionless quantity (compare with plane angles which are measured in
radians and are also dimensionless).

(ii) Equation (2) can be conveniently expressed as

‡By convention the area element da is directed along the outward normal.
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∮

s

da · r̂
r2

= 4π

∫

v

δ(r) dv, (4)

where δ(r) is the Dirac delta function. See (X) of Appendix E.

(iii) Consider the vector field F(r) = F (r) r̂ where F (r) = k
/
r2.� The flux ψ of F

through any closed surface s follows directly from (1) and (2) and is

ψ =

∮

s

F · da = kΩ =

{
4πk if the source point O lies inside s,
0 if the source point O lies outside s.

(5)

This equation (known as Gauss’s law†) is a very important law in physics. It
relates the flux of F to its source(s). Familiar examples are:

☞ the gravitational acceleration of a planet having mass M (where k = GM),
and

☞ the electric field of a point charge q in vacuum (where k = q
/
4πε0).

(iv) The generality implied by (5) is the reason why Gauss’s law is so useful. The flux
through the closed surface is independent of the location of O. For the source point
anywhere inside s we have ψ = 4πk, and ψ = 0 if the source point is anywhere
outside s.

(v) The two features of F(r) upon which Gauss’s law critically depends are:

☞ the inverse-square nature of the field, and
☞ the central nature of the field (i.e. F directed along r̂).

The spherical symmetry present in Newton’s law of gravitation and Coulomb’s
law is not a necessary condition for (5). We show in Question 12.15 that Gauss’s
law also holds for the non-spherically symmetric, inverse-square, central electric
field of a point charge moving relativistically at constant speed.

Question 1.21

Use Gauss’s theorem and the definition of solid angle to prove that the Laplacian of
r−1 (i.e. the divergence of the gradient of r−1) is

∇2

(
1

r

)
= −4πδ(r), (1)

where δ(r) is the Dirac delta function (see Appendix E).

�F is called ‘spherically symmetric’ because F (r) depends only on the magnitude of r and not on
the direction of r.
†As previously mentioned

(
see Comment (i) of Question 1.12

)
, Gauss’s law and Gauss’s theorem

are separate entities and should not be confused.
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Solution

Substituting F = −∇
(
1

r

)
=

r

r3
in

∮

s

F · da =

∫

v

(∇ · F) dv gives

∮

s

r · da
r3

= −
∫

v

∇ ·∇
(
1

r

)
dv = −

∫

v

∇2

(
1

r

)
dv. (2)

Then from (4) of Question 1.20

∫

v

∇2

(
1

r

)
dv = −4π

∫

v

δ(r) dv, (3)

and hence (1) because the volume v is arbitrary.

Comments

(i) Shifting the singularity from r = 0 to r = r′ gives the more general form of (1):

∇2

(
1

|r− r′|

)
= −4πδ(r− r′). (4)

The proof given in the solution above is standard, but see also Ref. [7].

(ii) The form of (1) raises the question: will other derivatives such as ∇i∇j

(
1
/
r
)
‡ also

contain a delta function? They do.[8] For example,

∇i∇j

(
1

r

)
=

3rirj − r2δij
r5

− 4π

3
δij δ(r) (5)

(
a non-rigorous proof of this result is provided in Ref. [9]

)
. The first term on the

right-hand side of (5) applies at points away from the origin, whilst the second
term is zero everywhere except at the origin.� For an application involving (5),
see Comment (iii) of Question 2.11.

‡They should, because the Laplacian of r−1 is just a special case of ∇i∇j

(
1
/
r
)

when i = j.

�Apart from the minus sign, the first term of (5) is (7) of Question 1.1. Evidently, explicit differ-
entiation fails to reveal the δ-function contribution.

[7] V. Hnizdo, ‘On the Laplacian of 1/r’, European Journal of Physics, vol. 21, pp. L1–L3, 2000.
[8] See, for example, R. Estrada and R. P. Kanwal, ‘The appearance of nonclassical terms in the

analysis of point-source fields’, American Journal of Physics, vol. 63, p. 278, 1995.
[9] C. P. Frahm, ‘Some novel delta-function identities’, American Journal of Physics, vol. 51,

pp. 826–9, 1983.
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Question 1.22

Suppose f and F represent suitably continuous and differentiable scalar and vector
fields respectively. Let b be an arbitrary but constant vector. Using the hint provided
alongside each, prove the following integral theorems:

(a)
∮

s

f da =

∫

v

(∇f) dv (in Gauss’s theorem let F = fb), (1)

(b)
∮

s

F× da = −
∫

v

(∇× F) dv (in Gauss’s theorem let F → b× F), (2)

where the region v is bounded by the closed surface s.

(c)
∮

c

f dl = −
∫

s

∇f × da (in Stokes’s theorem let F = f b), (3)

(d)
∮

c

F× dl = −
∫

s

(da×∇)× F (in Stokes’s theorem let F → b× F), (4)

where the closed contour c is spanned by the surface s.

Solution

(a) Gauss’s theorem becomes
∮

s

f b ·da =

∫

v

(b ·∇f) dv which, because b is a constant

vector, can be written as b ·
[∮

s

f da−
∫

v

(∇f) dv

]
= 0. Now |b| �= 0 and since b

is arbitrary, the cosine of the included angle is not always zero. This equation can
only be satisfied if the term in brackets is zero, which proves (1).

(b) Gauss’s theorem becomes
∮

s

(b×F) · da = −
∫

v

b · (∇×F) dv by (7) of Question

1.8 and ∇× b = 0. Using the cyclic property of the scalar triple product
(
see (1)

of Question 1.8
)
, this can be written as b ·

[∮

s

F× da +

∫

v

(∇× F) dv

]
= 0. As

before, this equation can only be satisfied if the term in square brackets is zero,
which proves (2).

(c) Stokes’s theorem becomes
∮

c

f b ·dl =
∫

s

(∇f ×b) ·da because ∇×b = 0
(
see (6)

of Question 1.8
)
. Use of the non-commutative property of the cross-product and

the cyclic nature of the scalar triple product yields
∮

c

f b ·dl = −
∫

s

b ·(∇f×da),

or b ·
[∮

c

f dl +

∫

s

∇f × da

]
= 0. As in (a) and (b), this equation can only be

satisfied if the term in square brackets is zero, which proves (3).
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(d) Stokes’s theorem becomes
∮

c

(b×F) ·dl = −
∫

s

[∇×(b×F)] ·da. Applying (1) and

(8) of Question 1.8 to this result, and because b is a constant vector, we obtain

b ·
∮

c

F× dl =

∫

s

[b(∇ · F)− (b ·∇)F] · da =

∫

s

bi∇kFkdai −
∫

s

(bi∇iFj)daj

= bi(δijδkl − δilδkj)

∫

s

daj∇lFk = bi εmik εmjl

∫

s

daj∇lFk

= bi εmik

∫

s

(da×∇)mFk = −bi εimk

∫

s

(da×∇)mFk

= bi

∫

s

[(da×∇)× F]i = b ·
∫

s

[(da×∇)× F] .

Thus b ·
[∮

c

F× dl−
∫

s

(da×∇)× F

]
= 0, which leads to (4) in the usual way.

Comment

From (4) we can derive a useful result for the (vector) area a of a plane surface s:

a = 1
2

∮

c

(r× dl). (5)

The proof of (5) is straightforward. Let F = r in (4) and use Cartesian tensors to show

that
∫

s

(da×∇)× r = −2

∫

s

da. The details are left as an exercise for the reader.

Question 1.23

A vector field F(r) is continuous at all points inside a volume v and on a surface s
bounding v, as are its divergence and curl

∇ · F = S(r)

∇× F = C(r)

}

. (1)

(Note that ∇ ·C = 0 for self-consistency.)

(a) Prove that F is a unique solution of (1) when it satisfies the boundary condition

F · n̂ is known everywhere on s, (2)

where n̂ is a unit normal on s.
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(b) Repeat (a) for the boundary condition

F× n̂ is known everywhere on s. (3)

Hint: Construct a proof by contradiction. Begin by assuming that F1(r) and F2(r) are
two different vector fields having the same divergence and curl and satisfying the same
boundary condition. Then let W = F1 −F2 and use the results of Question 1.12

(
use

Green’s identity (4) for (a); use (6) for (b)
)

to prove that W = 0.

Solution

Since W = F1 − F2 and because of the hint, it is clear that

∇ ·W = 0

∇×W = 0

}

. (4)

We consider each of the two boundary conditions separately:

(a) Equation (4)2 implies that (apart from a possible minus sign)

W = ∇V, (5)

where V (r) is a scalar potential. It then follows immediately from (4)1 that

∇2V = 0. (6)

Substituting f = g = V in Green’s first identity
(
see (4) of Question 1.12

)
gives

∮

s

V ∇V · da =

∮

s

V
∂V

∂n
da =

∫

v

(∇V ·∇V + V ∇2V ) dv, (7)

since in (7) da = n̂da and ∇V · n̂ = ∂V
/
∂n is the normal derivative of V over

the boundary surface s. Because of (6), this identity simplifies to
∮

s

V
∂V

∂n
da =

∫

v

|∇V |2 dv. (8)

Now F1 and F2 both satisfy the same boundary condition. Hence from (5)

(F1 − F2) · n̂ = W · n̂ = ∇V · n̂ =
∂V

∂n
= 0,

and (8) becomes
∫

v

|∇V |2dv = 0. (9)

The integrand in (9) is clearly non-negative, which requires that ∇V = 0 through-
out v. Thus W = 0 and F1 = F2 everywhere. A vector field F(r) which satisfies
the boundary condition (2) is therefore a unique solution of (1).
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(b) Equation (4)1 implies that

W = ∇×A, (10)

where A(r) is a vector potential, and so from (4)2

∇× (∇×A) = 0. (11)

Substituting B = ∇×A in the identity (6) of Question 1.12 gives

∮

s

[
A× (∇×A)

]
· da =

∫

v

{
(∇×A) · (∇×A)−A ·

[
∇× (∇×A)

]}
dv. (12)

Now
[
A × (∇×A)

]
· da = −

[
n̂ × (∇×A)

]
·A da follows from the properties

of the scalar triple product. Then (11) and (12) yield

−
∮

s

[
n̂× (∇×A)

]
·A da =

∫

v

(∇×A)2dv. (13)

From (10), and since both F1 and F2 satisfy the same boundary condition, we
have

−n̂× (∇×A) = n̂× (F2 − F1) = 0.

Therefore, (13) becomes
∫

v

(∇×A)2dv = 0. (14)

Using similar reasoning as in (a), we conclude that W = ∇×A = 0. Therefore
F1 = F2 everywhere, and any vector field F(r) satisfying the boundary condition
(3) is a unique solution of (1).

Comments

(i) The quantities S(r) and C(r) are known as the source and circulation densities
respectively. In electromagnetism, S(r) is the electric charge density and C(r) the
current density.

(ii) Clearly, the boundary conditions (2) and (3) specify the normal component and
the tangential component of F on s respectively.
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Question 1.24
∗

Suppose F(r) is any continuous vector field which tends to zero at least as fast as 1/r2
as r → ∞.

(a) Prove that F(r) can be decomposed as follows:

F(r) = −∇V + ∇×A, (1)

where V = V (r) is a scalar potential and A = A(r) is a vector potential.

Hint: Begin with (XI)2 of Appendix E and make use of the vector identity (11)
of Question 1.8: ∇× (∇×w) = −∇2w +∇(∇ ·w).

(b) Hence show that

V (r) =
1

4π

∫

v

S(r′)

|r− r′| dv
′

A(r) =
1

4π

∫

v

C(r′)

|r− r′| dv
′

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (2)

where S(r′) = ∇′ · F(r′) and C(r′) = ∇′×F(r′).

(c) Prove that the decomposition (1) is unique.

Solution

(a) Because of the hint,

F(r) =

∫

v

F(r′) δ(r− r′) dv′, (3)

where v is any region that contains the point r. But δ(|r−r′|) = − 1

4π
∇2(|r−r′|)−1,

and so (3) becomes

F(r) = − 1

4π

∫

v

F(r′)∇2(|r− r′|)−1 dv′

= −∇2

[
1

4π

∫

v

F(r′)

|r− r′| dv
′
]
, (4)

since ∇2F(r′) is zero.‡ Applying the given identity to (4) yields

F(r) = −∇
(
∇ · 1

4π

∫

v

F(r′)

|r− r′| dv
′
)
+ ∇×

(
∇× 1

4π

∫

v

F(r′)

|r− r′| dv
′
)
,

‡Reason: F(r′) does not depend on the unprimed coordinates of ∇2.
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which is (1) with

V (r) = ∇ · 1

4π

∫

v

F(r′)

|r− r′| dv
′

A(r) = ∇× 1

4π

∫

v

F(r′)

|r− r′| dv
′

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (5)

(b) In the proofs below, we will use the following results repeatedly:

1. ∇ · (fw) = f∇ ·w+w ·∇f or alternatively ∇′· (fw) = f∇′·w+w ·∇′f ,

2. ∇(|r− r′|)−1 = −∇′(|r− r′|)−1,

3. ∇ acts on a function of r only; ∇′ acts on a function of r′ only.

☞ V (r)

From (5)1 it follows that:

V (r) =
1

4π

∫

v

F(r′) ·∇
(

1

|r− r′|

)
dv′ = − 1

4π

∫

v

F(r′) ·∇′
(

1

|r− r′|

)
dv′

= − 1

4π

∫

v

∇′ ·
(

F(r′)

|r− r′|

)
dv′ +

1

4π

∫

v

∇′ · F(r′)
|r− r′| dv′

= − 1

4π

∮

s

F(r′) · da′

|r− r′| +
1

4π

∫

v

∇′ · F(r′)
|r− r′| dv′,

where, in the last step, we use Gauss’s theorem. Now if v is chosen over all space,
s is a surface at infinity and the surface integral is zero.� Hence (2)1.

☞ A(r)

From (5)2 it follows that:

A(r) =
1

4π

∫

v

∇
(

1

|r− r′|

)
× F(r′) dv′ = − 1

4π

∫

v

∇′
(

1

|r− r′|

)
× F(r′) dv′

= − 1

4π

∫

v

∇′ ×
(

F(r′)

|r− r′|

)
dv′ +

1

4π

∫

v

∇′ × F(r′)

|r− r′| dv′

=
1

4π

∮

s

F(r′)× da′

|r− r′| +
1

4π

∫

v

∇′ × F(r′)

|r− r′| dv′,

�Recall that F scales as 1
/
r2+ε (here the parameter ε ≥ 0) and da scales as r2. So, for a distant

surface,
F · da′

|r− r′|
� F · da′

r
scales as 1

/
r1+ε which tends to zero as r → ∞.
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where, in the last step, we use the version of Gauss’s theorem (2) of Question
1.22. The surface integral is zero as before and hence (2)2.

(c) The same reasoning used in (a) of the previous question can be used to prove that
the decomposition of F(r) is unique. We again assume two different solutions F1

and F2 and consider their difference W = ∇V = F1 − F2, arriving at the result
∮

s

V
∂V

∂n
da =

∫

v

|∇V |2 dv. (6)

If the limit is taken in which v becomes infinite, the integral over the surface s at
infinity vanishes.† Then (6) yields

∫

v

|∇V |2dv = 0.

Thus W = ∇V = 0 everywhere so that F1 = F2 and F is unique.

Comments

(i) Equation (1) shows that any well-behaved vector field can be expressed as the
sum of an irrotational field −∇Φ(r) and a solenoidal field ∇× A(r). This is a
fundamental result of vector calculus and is known as Helmholtz’s theorem. Its
relevance to electromagnetism through Maxwell’s equations, expressed as they are
in terms of divergences and curls, is apparent.

(ii) The quantities ∇ · F = S(r) and ∇× F = C(r) serve as source functions which
completely determine the field F(r). Ref. [10] explains that Helmholtz’s theorem
‘establishes that these serve as complete sources of the field,and that all continuous
vector fields can be classified by the two mathematical types, the conservative and
the solenoidal’.

Question 1.25

Prove that a uniform vector field F0 can be expressed as:

(a) an irrotational field

F0 = −∇V, (1)

where V (r) = −r · F0.

† ∂V

∂n
, being the normal component of ∇V , scales as 1

/
r2+ε and therefore V scales as 1

/
r1+ε. So

V
∂V

∂n
da scales as 1

/
r1+2ε → 0 as r → ∞.

[10] B. P. Miller, ‘Interpretations from Helmholtz’ theorem in classical electromagnetism’, American
Journal of Physics, vol. 52, pp. 948–50, 1984.
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(b) a solenoidal field
F0 = ∇×A, (2)

where A(r) = − 1
2
(r× F0).

Solution

Considering the ith component of ∇V and ∇×A respectively, and recalling that the
F0i are spatially constant, give:

(a) ∇i(r ·F0) = ∇i(rjF0j) = F0j∇irj = F0j δij , which contracts to F0i as required.

(b) (∇×A)i = − 1
2
εijk∇j(r×F0)k = − 1

2
εijkεklmF0m∇jrl = − 1

2
(δilδjm−δimδjl)F0mδjl.

Contracting subscripts gives F0i as required.

Comments

(i) The results V (r) = −r ·F0 and A(r) = − 1
2
(r×F0) are often convenient potentials

for representing uniform electrostatic and magnetostatic fields respectively.

(ii) Because a uniform field does not satisfy the conditions of Helmholtz’s theorem
(it does not tend to zero at infinity), F0 has no unique representation. It is easily
verified that F0 can be expressed as a linear combination of (1) and (2) in infinitely
many ways.

Question 1.26

Consider a sphere having radius r0 centred at an arbitrary origin O. Let r′ be the
position vector of any point P′ inside or on the surface of the sphere; let r be the
position vector of a fixed field point P. Prove the following results:

(a)

∮

s

da′

|r− r′| =

⎧
⎨

⎩

4πr20
r

r ≥ r0

4πr0 r ≤ r0 ,

(1)

(b)

∫

v

dv′

|r− r′| =

⎧
⎪⎨

⎪⎩

4π

3

r30
r

r ≥ r0

2π(r20 − 1
3
r2) r ≤ r0 ,

(2)

(c)

∮

s

da′

|r− r′| =

⎧
⎪⎪⎨

⎪⎪⎩

4π

3

(r0
r

)3
r r ≥ r0

4π

3
r r ≤ r0 .

(3)
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Solution

Orient Cartesian axes so that the point P is located on the z-axis. Then the integrand
is axially symmetric about the z-axis and for the point P′ it is convenient to use the
spherical polar coordinates (r′, θ′, φ′).

(a) Here r′ = r0 and the element of area da′ = r20 sin θ
′dθ′dφ′. By the cosine rule,

|r− r′| =
√

r2 + r20 − 2rr0 cos θ′, and so

∮

s

da′

|r− r′| =

∫ π

0

∫ 2π

0

r20 sin θ′dθ′dφ′
√

r2 + r20 − 2rr0 cos θ′
=

∫ 1

−1

2πr20 d cos θ
′

√
r2 + r20 − 2rr0 cos θ′

. (4)

With the substitution u2 = r2 + r20 − 2rr0 cos θ
′, equation (4) becomes

2πr20
1

r0r

∫ √
(r+r0 )2

√
(r−r

0
)2

du . (5)

For r > r0 the lower limit is r − r0; for r < r0 the lower limit is r0 − r. These
limits in (5) yield (1).

(b) We proceed as in (a). Taking the volume element dv′ = r′2sin θ′dr′dθ′dφ′ and
substituting u2 = r2 + r′2 − 2rr′ cos θ′ give
∫

v

dv′

|r− r′| =

∫ r
0

0

∫ π

0

∫ 2π

0

r′2 sin θ′dr′dθ′dφ′
√
r2 + r′2 − 2rr′ cos θ′

=

∫ r
0

0

r′2
∫ √

(r+r′)2

√
(r−r′)2

2π

rr′
du dr′. (6)

r ≥ r0

The lower limit for the integration over u is r− r′
(
see (a) above

)
and integration

of (6) yields (2)1.

r ≤ r0

The point P now lies inside the sphere, which we partition as
shown in the figure alongside. The lower limit for the integration
over u is either r − r′ for r′ < r or r′ − r for r′ > r

(
see the

discussion in (a) above
)
. Equation (6) becomes

P

r

r0

∫

v

dv′

|r− r′| = 2π

∫ r

0

r′2
∫ (r+r′)

(r−r′)

1

rr′
du dr′ + 2π

∫ r0

r

r′2
∫ (r+r′)

(r′−r)

1

rr′
du dr′

=
4π

r

∫ r

0

r′2dr′ + 4π

∫ r
0

r

r′dr′

=
4π

3
r2 + 2π(r20 − r2),

which is (2)2.
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(c) We use (1) of Question 1.22,
∮

s

f da′ =

∫

v

(∇′f) dv′, and put f = |r− r′|−1. Then

∮

s

da′

|r− r′| =

∫

v

∇′
(

1

|r− r′|

)
dv′ = −∇

∫

v

dv′

|r− r′| (7)

since ∇′f = −∇f . Substituting (2) in (7) and differentiating give (3).

Comment

Alternative forms of (1)–(3) are sometimes required. For example, if r ≤ r0 and the
integration is relative to unprimed coordinates, then

∮

s

da

|r− r′| =

⎧
⎪⎪⎨

⎪⎪⎩

4π

3

(r0
r′

)3
r′ r′ ≥ r0

4π

3
r′ r′ ≤ r0 .

(8)

Question 1.27

The time average of a dynamical quantity Q(t) is defined as

〈Q(t)〉 = 〈Q〉 = lim
t→∞

1

t

∫ t

0

Q(t′) dt′. (1)

(a) Suppose Q(t) is periodic having period T . That is, Q(t + nT ) = Q(t) where
n = 0, ±1, ±2, . . . . Prove that

〈Q〉 =
1

T

∫ T

0

Q(t′) dt′. (2)

(b) Use (2) to prove the following:

〈cosωt〉 = 〈sinωt〉 = 0

〈cos2 ωt〉 = 〈sin2 ωt〉 = 1
2

〈cos2(kr − ωt)〉 = 〈sin2(kr − ωt)〉 = 1
2

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (3)

Here ω = 2π/T , k is a constant and r is the position vector of a point on a plane
wavefront.
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Solution

(a) From the definition (1) it follows that

〈Q〉 = lim
n→∞

1

nT

∫ nT

0

Q(t) dt

= lim
n→∞

1

nT

[∫ nT

(n−1)T

Q(t) dt +

∫ (n−1)T

(n−2)T

Q(t) dt + · · · +

∫ T

0

Q(t) dt

]

= lim
n→∞

1

nT

[∫ nT

(n−1)T

Q
(
t− (n− 1)T

)
dt +

∫ (n−1)T

(n−2)T

Q
(
t− (n− 2)T

)
dt +

· · · +

∫ T

0

Q(t) dt

]

. (4)

Making the substitutions t′ = t−mT where m = n− 1, n− 2, . . . , 0 in (4) gives

〈Q〉 = lim
n→∞

1

nT

[∫ T

0

Q(t′) dt′ +

∫ T

0

Q(t′) dt′ + · · · +

∫ T

0

Q(t′) dt′
]

=
1

T

∫ T

0

Q(t′) dt′,

as required.

(b) 〈cosωt〉 and 〈sinωt〉

These results are obvious by inspection since the definite integrals of cos θ and
sin θ between 0 and 2π are zero.

〈cos2 ωt〉 and 〈sin2 ωt〉

Substituting Q(t) = cos2 ωt in (2) and using the identity cos2 θ = 1
2
(1 + cos 2θ)

yield

〈Q〉 =
1

2π/ω

∫ 2π/ω

0

cos2 ωt dt =
ω

2π

∫ 2π/ω

0

1
2
(1 + cos 2ωt) dt.

Inserting the limits and cancelling terms give (3)2. Similarly for 〈sin2 ωt〉.

〈cos2(kr − ωt)〉 and 〈sin2(kr − ωt)〉

cos(kr − ωt) = cos kr cosωt+ sin kr sinωt, and so

〈cos2(kr − ωt)〉 = 〈(cos kr cosωt+ sin kr sinωt)2〉
= cos2 kr〈cos2 ωt〉+ sin2 kr〈sin2 ωt〉+ 1

2
sin 2kr〈sin 2ωt〉

= 1
2
(cos2 kr + sin2 kr) = 1

2
,
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where, in the penultimate step, we use (3)1 and (3)2. Similarly for 〈sin2(kr−ωt)〉.

Comments

(i) This question provides a formal derivation of (3), although these results are really
intuitively obvious if one thinks of a graph (that of cos2 ωt vs t, say).

(ii) Averages like (3) are frequently encountered in electromagnetism, where the time
average of a harmonically varying quantity Q(t) is often of more interest than its
instantaneous value (e.g. Poynting vectors and dissipated/radiated power).

Question 1.28

Suppose A = A0e
−iωt and B = B0e

−iωt are time-harmonic fields whose amplitudes
A0 and B0 are in general complex. Show that

(a)
〈
(ReA)2

〉
= 1

2
A ·A∗, (1)

(b)
〈
(ReA) · (ReB)

〉
= 1

2
A ·B∗ = 1

2
A∗ ·B. (2)

(Here A∗ and B∗ are complex conjugates.)

Solution

(a) Clearly (ReA) = 1
2
(A + A∗), and so (ReA)2 = 1

4
(A2 + A∗2 + 2A · A∗). Now

A2 and A∗2 are both time-harmonic functions of frequency 2ω, whereas A ·A∗ is
time-independent. From (3) of the previous question we obtain 〈A2〉 = 〈A∗2〉 = 0,
and hence (1).

(b) Now (ReA) ·(ReB) = 1
2
(A+A∗) · 1

2
(B+B∗) = 1

4
(A ·B+A ·B∗+A∗·B+A∗·B∗).

Performing a time average of this last result and using the same reasoning as before
give

〈
(ReA) · (ReB)

〉
= A ·B∗ +A∗ ·B = A ·B∗ + (A ·B∗)

∗

= 2Re (A ·B∗) = 2Re (A∗ ·B).

Hence (2).

Comment

It is often convenient to represent time-dependent quantities (e.g. voltages, currents,
electric and magnetic fields, etc.) in terms of a complex exponential. This is done
mainly for reasons of algebra in a complicated expression, since it is usually easier to
manipulate exponential, rather than trigonometric, functions. It is understood that
the physically meaningful quantity will always be recovered at the end of a calculation
from either the real part (usually) or the imaginary part (less usually).
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Question 1.29
∗

The figure below shows vectors r and r′ both measured relative to an arbitrary origin
O.

Suppose P is a distant field point and that r′/r < 1. Use Cartesian tensors and the
binomial theorem‡ to derive the following expansions:

☞ |r−r′| = r− ri
r
r′i−

[
rirj − r2δij

2r3

]
r′ir

′
j−

[
3rirjrk − r2(riδjk+ rjδki+ rkδij)

6r5

]
r′ir

′
jr

′
k −

[
10rirjrkr� − 2(rirjδk� + rirkδj� + rir�δjk + rjrkδi� + rjr�δik + rkr�δij) r

2−
16r7

(δikδj� + δi�δjk) r
4

16r7

]
r′ir

′
jr

′
kr

′
� − · · · , (1)

☞ |r−r′|−1 =
1

r
+

ri
r3

r′i +
3rirj − r2δij

2r5
r′ir

′
j+

5rirjrk − r2(riδjk + rjδki + rkδij)

2r7
r′ir

′
jr

′
k+

[
35rirjrkr� − 5(rirjδk� + rirkδj� + rir�δjk + rjrkδi� + rjr�δik + rkr�δij) r

2+

8r9

(δijδk� + δikδj� + δi�δjk) r
4

8r9

]
r′ir

′
jr

′
kr

′
� − · · · . (2)

Hint: Exploit, wherever possible, the arbitrary nature of repeated subscripts to
express a term in its most symmetric form. So, for example, the symmetric form
of 3r2riδjkr′ir′jr′k is r2(riδjk + rjδki + rkδij)r

′
ir

′
jr

′
k.

‡The binomial expansion with x < 1 is: (1+x)n = 1+nx+ 1
2!
n(n−1)x2+ 1

3!
n(n−1)(n−2)x3+· · · .
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Solution

Applying the cosine rule to the triangle of vectors in the figure on p. 43 gives

|r− r′| =
√
r2 + r′2 − 2r · r′ = r

√

1 +
r′2 − 2r · r′

r2
.

We now use this result for each of the following expansions:

☞ |r− r′|

Substituting x =
r′2 − 2r · r′

r2
in (1+x)1/2 = 1+

x

2
− x2

8
+
x3

16
− 5x4

128
+· · · and expanding

in powers of r′/r yield:

|r− r′| = (r2 + r′2 − 2r · r′)1/2

= r

[
1− r · r′

r2
− (r · r′)2 − r2r′2

2r4
− (r · r′)3 − r2r′2(r · r′)

2r6
−

5(r · r′)4 − 6r2r′2(r · r′)2 + r4r′4

8r8
+ · · ·

]
. (3)

Using tensor notation in (3) and remembering the hint give (1).

☞ |r− r′|−1

Substituting x =
r′2 − 2r · r′

r2
in (1 + x)−1/2 = 1 − x

2
+

3x2

8
− 5x3

16
+

35x4

128
− · · · and

expanding in powers of r′/r yield:

|r− r′|−1 = (r2 + r′2 − 2r · r′)−1/2

=
1

r

[
1 +

r · r′
r2

+
3(r · r′)2 − r2r′2

2r4
+

5(r · r′)3 − 3r2r′2(r · r′)
2r6

+

35(r · r′)4 − 30r2r′2(r · r′)2 + 3r4r′4

8r8
+ · · ·

]
. (4)

Using tensor notation in (4) and again applying the hint give (2).

Comment

The results (1) and (2) are required in multipole expansions of the electric scalar and
magnetic vector potentials. See Chapters 2, 4, 8 and 11.
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Question 1.30
∗

Consider a bounded distribution of time-dependent charge and current densities ρ(r′, t)
and J(r′, t) in vacuum‡ which satisfy the equation

∇ · J+
∂ρ

∂t
= 0. (1)

Use (1) and Gauss’s theorem to prove the following integral transforms:

(a)
∫

v

Ji dv
′ =

∫

v

r′i ρ̇ dv
′, (2)

(b)
∫

v

r′j Ji dv
′ = − 1

2
εijk

∫

v

(r′ × J)kdv
′ + 1

2

∫

v

r′ir
′
j ρ̇ dv

′, (3)

(c)
∫

v

r′jr
′
kJidv

′ =− 1
3
εij�

∫

v

(r′ × J)�r
′
kdv

′− 1
3
εik�

∫

v

(r′ × J)�r
′
j dv

′+ 1
3

∫

v

r′ir
′
jr

′
kρ̇ dv

′. (4)

Hint: The identity r′iJj − r′jJi = εijk(r
′ × J)k, derived in Question 1.3, is required in

the proof of (3) and (4).

Solution

(a) Clearly ∇′ · (r′iJ) = ∇j(r
′
iJj) = (δijJj + r′i∇′

jJj) = (Ji − r′i ρ̇). So

∫

v

∇′ · (r′iJ) dv′ =

∫

v

(Ji − r′i ρ̇) dv
′.

Now converting the left-hand side of this equation to a surface integral using
Gauss’s theorem gives

∮

s

r′i J · da′ =

∫

v

(Ji − r′i ρ̇) dv
′.

But J·da′ = 0 everywhere on s and (2) follows immediately because v is arbitrary.

‡The term ‘bounded distribution’ implies that all electric currents are confined to a finite volume v,
and that J · da = 0 everywhere on the boundary surface s spanning v.
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(b) As before, ∇′· (r′ir′jJ) = ∇k(r
′
ir

′
jJk) = (δikr

′
jJk + δjkr

′
iJk + r′ir

′
j∇′

kJk). Integrating
over v, applying Gauss’s theorem and using J · da′ = 0 yield

∫

v

(r′jJi + r′iJj − r′ir
′
j ρ̇) dv

′ = 0,

or
∫

v

r′jJi dv
′ = −

∫

v

r′iJj dv
′ +

∫

v

r′ir
′
j ρ̇ dv

′.

Adding
∫

v

r′jJi dv
′ to both sides of this last equation gives

2

∫

v

r′jJi dv
′ =

∫

v

(r′jJi − r′iJj) dv
′ +

∫

v

r′ir
′
j ρ̇ dv

′.

Using the identity r′jJi− r′iJj = εjik(r
′×J)k = −εijk(r

′×J)k
(
see (2) of Question

1.3
)

yields (3).

(c) Apart from an additional term, this proof is identical to (b).

Comments

(i) In electromagnetism, (1) is an important result known as the continuity equation
for electric charge. It is discussed further in later chapters. See, for example,
Question 7.1.

(ii) The identities (2)–(4), and others like them, are used to transform multipole
expansions of both the static and dynamic vector potentials. We consider such
applications in Chapters 4 and 8.

(iii) The integrals (2)–(4) give the moments of J about an arbitrary origin. It is clear
from the emerging trend that one can write down, by inspection, the moment of
J in any order. So, for example, the next member of the series is:

∫

v

r′jr
′
kr

′
�Jidv

′ = − 1
4
εijm

∫

v

(r′ × J)mr′kr
′
�dv

′ − 1
4
εikm

∫

v

(r′ × J)mr′jr
′
�dv

′ −

1
4
εi�m

∫

v

(r′ × J)mr′jr
′
kdv

′ + 1
4

∫

v

r′ir
′
jr

′
kr

′
� ρ̇ dv

′. (5)
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Static electric fields in vacuum

The first observations of an electrical nature can be traced back to the ancient Greek
philosophers,‡ but it took until the middle of the eighteenth century for the basic
facts of electrostatics to be established: the presence in nature of two types of electric
charge (which long ago were given the arbitrary labels ‘positive’ and ‘negative’), the
conservation of charge� and the existence of conductors and insulators. During the
ensuing fifty years, investigators set about the important task of determining the law
of force between charges. Through a series of ingenious experiments involving torsion
balances and charged spheres, Coulomb generalized the work of Priestley and others.
The law of force that today bears Coulomb’s name applies to both like and unlike
charges. Formally, Coulomb’s law can be stated as follows: suppose q1 and q2 represent
two stationary point charges in vacuum having position vectors r1 and r2 respectively
(relative to some arbitrary origin O). The force F12 exerted by q1 on q2 is given by

F12 =
1

4πε0

q1q2
|r1 − r2|3

(r1 − r2). (I)

Notice that (I) depends inversely on the square of the distance between q1 and q2,
that it satisfies Newton’s third law (F12 = −F21) and that if the charges have the same
(opposite) sign then the force is repulsive (attractive). This important law is central
to the study of electrostatics.

After two preliminary questions, we begin this chapter with the derivation of
Maxwell’s electrostatic equations (in a vacuum) from Coulomb’s law. The integral
forms for the electric potential Φ and field E emerge naturally during this process.
These results are then used to determine Φ and E for various distributions of charge
where some inherent symmetry is usually present. Two important methods are used to
illustrate this: (1) direct application of Gauss’s law and (2) integrating a known charge
density over a line, surface or volume. Problems which require computer algebra soft-
ware (Mathematica) to facilitate their solutions are included. A series expansion of
Φ(r) leads to the various electric multipole moments of a static charge distribution,
and examples of calculating these moments are presented. Other important topics (like
origin independence) are treated along the way.

‡For instance, it was discovered that a rubbed amber rod acquired the ability to attract a variety
of very light objects like human hair, pieces of straw, etc.
�Experiments which established that charge was also quantized and invariant came much later.

Solved Problems in Classical Electromagnetism. J. Pierrus, Oxford University Press (2018).
c© J. Pierrus. DOI: 10.1093/oso/9780198821915.001.0001
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Question 2.1

Consider a distribution of n stationary point charges q1, q2, . . . , qn located in vacuum
at positions r′1, r′2, . . . , r′n relative to an arbitrary origin O. Let P be a point in the
field whose position vector (relative to O) is r. Use Coulomb’s law and the principle
of superposition to show that the electric field‡ E at P is given by:

E(r) =
1

4πε0

n∑

i=1

qi
(r− r′i)

|r− r′i|3
. (1)

Solution

The force exerted on the positive test charge q0 at P due to any one of these n charges

(qi, say) is given by Coulomb’s law:� Fi0 =
qiq0
4πε0

(r− r′i)

|r− r′i|3
. The net force F on the test

charge is the sum of these n two-body forces. Thus

F = F10 + F20 + · · · + Fn0 =
1

4πε0

n∑

i=1

qiq0
(r− r′i)

|r− r′i|3
. (2)

The definition E = F
/
q0 yields (1) with F given by (2).

Comments

(i) It is a remarkable fact that the two-body interaction between the test charge q0
and any other charge (qi, say) is unaffected by the presence of the remaining
(n − 1) charges. This is the crux of the principle of linear superposition which
asserts that the net force F on q0 is the vector sum of these n two-body forces.

(ii) Crucially, the superposition principle applies to time-dependent electric and mag-
netic fields as well, and classical electromagnetism, based on Maxwell’s equations,
is a linear theory. Ref. [1] explains that

at the macroscopic and even at the atomic level, linear superposition is remark-
ably valid. It is in the subatomic domain that departures from linear super-
position can be legitimately sought. As charged particles approach each other
very closely, electric field strengths become enormous. . . . The final conclusion
about linear superposition of fields in vacuum is that in the classical domain of
sizes and attainable field strengths there is abundant evidence for the validity
of linear superposition and no evidence against it. In the atomic and subatomic
domain there are small quantum-mechanical nonlinear effects whose origins are
in the coupling between charged particles and the electromagnetic field.

‡The electric field at P is defined as the force per unit stationary test charge placed at P. That is,
E(r) = F(on a test charge q0 at r) ÷ q0 .

�In the presence of more than two charges, it is not obvious that Coulomb’s law applies. It turns
out that it does. See also Comment (i) above.

[1] J. D. Jackson, Classical electrodynamics, Chap. I, pp. 9–13. New York: Wiley, 3 edn, 1998.



“EMBook” — 2018/6/20 — 6:21 — page 49 — #59

Static electric fields in vacuum 49

(iii) Suppose n becomes so large that the charge is effectively distributed continuously
over some region v of space. Replacing qi in (1) by dq and converting the sum to
an integral give

E(r) =
1

4πε0

∫
(r− r′)

|r− r′|3 dq . (3)

(iv) Depending on the geometrical nature of the problem (e.g. three-, two- or one-
dimensional), the infinitesimal charge dq in (3) may be written as ρ dv′, σ da′ or
λ dl′.† The electric field can then be expressed in alternative forms, such as

E(r) = k

∫

v

ρ(r′)(r− r′)

|r− r′|3 dv′ or k

∫

s

σ(r′)(r− r′)

|r− r′|3 da′ or k

∫

c

λ(r′)(r− r′)

|r− r′|3 dl′, (4)

where k = (4πε0)
−1. Equation (4) provides a means of determining E for a known

charge distribution, assuming that the relevant integral can be evaluated.

Question 2.2

Express the electric-charge density ρ for the following charge distributions in terms of
delta functions (if necessary, review Appendix E now).

(a) Charge q is distributed uniformly along the z-axis of Cartesian coordinates from
− 1

2
L to 1

2
L.

(b) Charge q is distributed uniformly over the surface of a spherical shell of radius a
centred on the origin of spherical polar coordinates.

(c) Charge q is distributed uniformly over the surface of a cylinder of length L and
radius a aligned along the z-axis of cylindrical polar coordinates.

(d) Charge q is distributed uniformly around the circumference of a circle of radius a
centred on the origin of spherical polar coordinates.

(e) Repeat (b) for cylindrical polar coordinates.
(f) Charge q is distributed uniformly over the surface of a circular disc of radius a

centred on the origin of cylindrical polar coordinates.

Solution

(a) The charge density is zero everywhere except on the z-axis between ± 1
2
L. So we

let
ρ(x′, y′, z′) = α δ(x′) δ(y′)H( 1

2
L− |z′|), (1)

†Suppose dq is the charge contained in an infinitesimal volume element dv′ located at r′. The
charge per unit volume or charge density is defined as ρ(r′) = dq

/
dv′. Analogous definitions for

the surface and line densities are σ = dq
/
da′ and λ = dq

/
dl′, where da′ and dl′ are elements of

area and length respectively.
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where α is a constant to be determined and H(u) is the Heaviside function
(
see

(VIII) of Appendix E
)
.

Since q =

∫

v

ρ dv′ by definition, it follows that

q = α

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(x′) δ(y′)H( 1

2
L− |z′|) dx′ dy′ dz′.

Now the two integrals involving x′ and y′ above each have the value one, and so

q = α

∫ 1
2
L(1− ε)

− 1
2
L(1− ε)

dz′ ⇒ α =
q

L− ε
,

where ε is a parameter very much less than unity. In the limit ε → 0 we obtain
α = q/L. Substituting this result in (1) gives

ρ(x′, y′, z′) =
q

L
δ(x′) δ(y′)H( 1

2
L− |z′|) . (2)

(b) Proceeding as in (a) we let ρ(r′) = α δ(r′ − a). Then

q = α

∫ 2π

0

∫ π

0

∫ ∞

0

δ(r′ − a) r′2 sin θ′dr′dθ′dφ′ ⇒ α =
q

4πa2
,

and so
ρ(r′) =

q

4πa2
δ(r′ − a) . (3)

(c) We let ρ(r′) = α δ(r′ − a) which gives

q = α

∫ L

0

∫ 2π

0

∫ ∞

0

δ(r′ − a) r′dr′dθ′dz′ ⇒ α =
q

2πLa
,

and hence

ρ(r′) =
q

2πLa
δ(r′ − a) . (4)

(d) Now ρ(r′, θ′) = α δ(r′ − a) δ(θ′ − 1
2
π), and so

q = α

∫ 2π

0

∫ π

0

∫ ∞

0

δ(r′ − a) δ(θ′ − 1
2
π) r′2 sin θ′dr′dθ′dφ′

= 2πα

∫ 1

−1

∫ ∞

0

δ(r′ − a) δ(cos θ′) r′2dr′d(cos θ′) ⇒ α =
q

2πa2
.

Therefore ρ(r′, θ′) =
q

2πa2
δ(r′ − a) δ(θ′ − 1

2
π), or
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ρ(r′, θ′) =
q

2πa2
δ(r′ − a) δ(cos θ′) . (5)

(e) As before, ρ(r′, z′) = α δ(r′ − a) δ(z′) which gives

q = α

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

δ(r′ − a) δ(z′) r′dr′dθ′dz′ ⇒ α =
q

2πa
,

and hence

ρ(r′) =
q

2πa
δ(r′ − a) δ(z′) . (6)

(f) Now ρ(r′, z′) = αH(a− r′) δ(z′), and so

q = α

∫ ∞

−∞

∫ 2π

0

∫ ∞

0

H(a− r′) δ(z′) r′dr′dθ′dz′

= α

∫ ∞

−∞

∫ 2π

0

∫ a

0

δ(z′) r′dr′dθ′dz′ ⇒ α =
q

πa2
.

Hence

ρ(r′, z′) =
q

πa2
H(a− r′) δ(z′) . (7)

Question 2.3
∗

Use (3) of Question 2.1 to derive the equations

∇ ·E =
ρ(r)

ε0
and ∇×E = 0, (1)

which apply at a point in vacuum.

Solution

Substituting ∇
(

1

|r− r′|

)
= − r− r′

|r− r′|3
(
see (1) of Question 1.6

)
in (4) of Question

1.1 gives

E(r) = − 1

4πε0

∫

v

ρ(r′)∇
(

1

|r− r′|

)
dv′

= −∇
[

1

4πε0

∫

v

ρ(r′)

|r− r′| dv
′
]
. (2)

In the last step we use the fact that the operator ∇ differentiates the field (unprimed)
coordinates only, and so ∇ρ(r′) = 0. Equation (2) can be written as
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E(r) = −∇Φ(r) , (3)
where

Φ(r) =
1

4πε0

∫

v

ρ(r′)

|r− r′| dv
′. (4)

In (4), Φ(r) is the electrostatic potential at the field point r and here it is determined
up to an arbitrary additive constant.

☞ Taking the divergence of (2) yields

∇ ·E = −∇2

[
1

4πε0

∫

v

ρ(r′)

|r− r′| dv
′
]

= − 1

4πε0

∫

v

ρ(r′)∇2

(
1

|r− r′|

)
dv′ (

since ∇2ρ(r′) = 0
)

=
1

4πε0

∫

v

4πρ(r′) δ(r− r′) dv′ (
using (4) of Question 1.21

)

=
ρ(r)

ε0

(
using (XI)2 of Appendix E

)
,

as required.

☞ Equation (1)2 follows immediately from (3) because the curl of a gradient is
identically zero

(
see (10) of Question 1.8

)
.

Comments

(i) It follows from (3) that E·dl = −∇Φ·dl = −
(
∂Φ

∂x
dx+

∂Φ

∂y
dy +

∂Φ

∂z
dz

)
= −dΦ,

or
∫
dΦ = −

∫
E · dl. Now if a and b represent two arbitrary points in the field,

then
Φ(b)− Φ(a) = −

∫ b

a
E · dl. (5)

The difference in potential Φ(b)− Φ(a) is the potential of b relative to a and we
write it as Φab.

(ii) Equation (1) reveals that electrostatic fields are not, in general, solenoidal but
they are always conservative (see also Questions 1.14 and 1.15).

(iii) ☞ Integrating (1)1 over an arbitrary volume gives
∫

v

∇ ·E dv′ =
1

ε0

∫

v

ρ(r′) dv′.

Because of Gauss’s theorem this becomes
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∮

s

E · da′ =
1

ε0

∫

v

ρ(r′) dv′ =
1

ε0
× qnet , (6)

where qnet =

∫

v

ρ(r′) dv′ is the net charge enclosed by s. Known as Gauss’s law,

(6) is a fundamental result.‡

☞ It is evident from (5) that around any closed loop
∮

c

E · dl = 0. (7)

(iv) Sometimes (4) is required in the alternative forms

Φ(r) =
1

4πε0

∫
σ da′

|r− r′| or Φ(r) =
1

4πε0

∫
λ dl′

|r− r′| , (8)

where σ and λ are surface- and line-charge densities respectively.

(v) The differential equations (1) apply at a point in vacuum, whereas the integral
equations (5)–(8) apply over a finite region of space.

Question 2.4

A charge q is distributed uniformly over the surface of a spherical shell of radius a
having negligible thickness and centred at the origin O. Calculate the electric field at
an arbitrary point P in space using (a) Gauss’s law and (b) direct integration.

Solution

(a) Clearly, E is a spherically symmetric� field. We therefore choose a spherical
Gaussian surface G of radius r centred on O and passing through P. The electric
flux through G is

∮

s

E · da =

∮

s

E(r)r̂ · da r̂ =

∮

s

E(r)da = 4πr2E, (1)

‡Stated in words: the outward electric flux ψ through any closed surface s lying in vacuum equals
ε0−1 × (the net charge enclosed by s).

�Meaning that E has the following properties. It is:
1. central (i.e. the field is directed towards or away from the origin).
2. dependent, in magnitude, only on the distance from the origin. That is,

E(r) = E(r)r̂.
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where in the last step we use the formula for the surface area of a sphere. Two
cases are of interest:

r ≥ a

Here qnet = q and Gauss’s law and (1) give 4πr2E = q/ε0, or

E(r) =
1

4πε0

q

r2
r̂. (2)

r ≤ a

Here qnet = 0, and so

E(r) = 0. (3)

(b) Two alternative solutions are provided:

Method 1

We begin by calculating the electric potential and then obtain E by differentiation.

From (8)1 of Question 2.3, Φ(r) =
1

4πε0

∫
σda′

r′
where here r′ is the distance to P

from an infinitesimal band of charge (see the figure) and σda = σ(2πa sin θ)(adθ).
Thus,

Φ(r) =
2πa2σ

4πε0

∫ π

0

sin θ

r′
dθ. (4)

Now by the cosine rule, r′2 = r2 + a2 − 2ar cos θ. So 2r′dr′ = 2ar sin θdθ and
∫ π

0

sin θ

r′
dθ =

1

ar

∫ r+a

|r−a|
dr′, (5)

where the lower limit is either r − a if P lies outside the sphere or a − r if P is
inside the sphere. Substituting (5) in (4) gives

Φ(r) =
aσ

2ε0r

∫ r+a

|r−a|
dr′ =

1

4πε0

q

2ar

∫ r+a

|r−a|
dr′, (6)

because σ = q
/
4πa2. As before, we consider the two cases separately:


