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P R E F A C E T O S E C O N D E D I T I O N 

In this edition I have corrected some errors, and expanded and clarified some 
of the exposition of the first edition. I have added a few problems and I have 
expanded the section on Notation. 

The main change is the addition of 4 chapters extending the application of 
tensors and manifolds made in Chapters 15-17 on geometry to connections on 
fiber bundles and culminating with a brief description of gauge theory and the 
very elegant model of elementary particle physics based on this mathematics. In 
the new chapters I have tried to keep the mathematical level and style the same 
as in the first edition. 

I would like to thank Prof. Wayne Repko for helpful discussions on elementary 
particle physics. Again I am very grateful to Cathy Friess for doing a remarkable 
job with the typing. 

June, 2003 
ft. H. W. 





P R E F A C E 

This book is based on courses taken by advanced undergraduate and beginning 
graduate students in mathematics and physics at Michigan State University. 

The courses were intended to present an introduction to the expanse of mod
ern mathematics and its application in modern physics. The book gives an in
troductory perspective to young students intending to go into a field of pure 
mathematics, and who, with the usual "pigeon-holed" graduate curriculum, will 
not get an overall perspective for several years, much less any idea of application. 
At the same time, it gives a glimpse of a variety of pure mathematics for applied 
mathematics and physics students who will have to be carefully selective of the 
pure mathematics courses they can fit into their curriculum. 

Thus, in brief, I have attempted to fill the gap between the basic courses 
and the highly technical and specialized courses that both mathematics and 
physics students require in their advanced training, while simultaneously trying 
to promote, at this early stage, a better appreciation and understanding of each 
other's discipline. 

A third objective is to try to harmonize the two aspects which appear at 
this level, variously described on the one hand as the "classical," "index," or 
"local" approach, and on the other hand as the "modern.;5 "intrinsic," or "global" 
approach. 

An underlying theme is an emphasis on mathematical structures. To model 
a physical phenomenon in general we use some kind of mathematical "space" on 
which various "physical properties" are defined. For example, in fluid mechanics 
we make a model in which the fluid consists of points or regions of a space with 
a certain structure ("ordinary Euclidean space"), and pressure, rate of strain, 
etc. are mappings into other spaces with certain structures. In general, to model 
a physical phenomenon, Wn won't suffice for the domains and images of our 
mappings - we have to start with manifolds. Moreover, these manifolds have to 
have additional structures the basic ingredients of which are tensor algebras. 

We begin with the algebraic structures we will need and go briefly to Wn with 
these in Chapter 7. Manifolds are introduced in Chapter 9 and these structures 
come together as tensor fields on manifolds in Chapter 11. Chapters 12-14 cover 
the rudiments of analysis on manifolds, and Chapters 15-17 are devoted to ge
ometry. Finally, a modern treatment of the major ideas of classical analytical 
mechanics is given in Chapters 18-19, and the remaining chapters are dedicated 
to an exposition of special and general relativity. 

A few words about terminology and notation are needed. I have tried to stick 
as closely as possible to the most popular current usages, sometimes inserting 
parenthetically strongly competing alternatives. However, since our text borrows 
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from many different branches of mathematics and physics, we require terminol
ogy and notation for a very large variety of concepts and their interrelations. 
Consequently, the usual problem of how to tread between high precision and 
readability occurs in aggravated form. Sometimes dropping some notation which 
is really needed for precision can make it easier to read a given, discussion and get 
the main ideas. On the other hand, sometimes keeping extra terminology and/or 
notation makes it easier by reminding us of certain important distinctions which 
might otherwise be temporarily forgotten. A separate section on "Terminology 
and Notation" is included for convenient reference to some of the conventions 
used in this book. 

Finally, with respect to general style, I have endeavored to steer a safe course 
between the Scylla of rigor, and the Charybdis of informality. By my not being 
too heavy-handed with some of the details (including taking some notational 
liberties as indicated above), hopefully the young student will be able to sail 
through this passage to enjoy a panorama of interesting mathematics and physics. 

This book owes a great deal to the efforts of many classes of students who 
struggled with earlier classnote versions, and helped hone it into this final form. 
I was also fortunate to have the services of excellent typists, in particular, Cathy 
Friess who did the entire final version. 

East Lansing, Michigan 
November, 1991 

R. H. W. 
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Since tensor algebras axe built from vector spaces we will recall some of the 
theory of the latter. We will review the basic properties of vector spaces, their 
representations and mappings, and mention a generalization. 

Definition If V is an Abelian group with elements v, w...., if a, 6, . . . are 
elements of a, field, K, and if a mapping IK x V —> V called "scalar multiplication" 
and denoted by 

(a, v) i-* av 6 V 

is defined for all elements a € K and all v € V such that 

lv = v 

a(v + w) = av 4- aw 

(a + b)v = av + bv 

(ab)v = a(bv) 

then V is a vector space, 

From these properties one can prove the additional properties 

Ov — 0 for all v € V 

aO = 0 for all o € K 

and, conversely, if av = 0 then either a = 0 or i; = 0. 

Deflnitious Let S be any set (not necessarily finite) of elements in a vector 
space, V. Then the intersection of all subspaces of V which contain S and the 
set of all (finite) linear combinations of elements of S are the same. This set is 
a subspace, < S >, of V called the linear closure of S. If a subspace, W, of V is 
the linear closure of some set S C V then we say S spans, or generates W, and 
S is a set of generators of W. 

Deflnitious Let {W$} be any set (not necessarily finite) of subspaces of a 
vector space, V. Then the intersection of all subspaces of V containing (JW^, 
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and the set of all finite sums of the form Wj 4- Wk + • • • 4- wp where Wj € Wj, 
Wk € Wfc,... ,wp G Wp are the same. This set is a subspace, J3^7i» °^ ̂  called 
the .stiTO of the subspaces, Wi ofV. ]P Wj- is direct if W^ Pi Ylk^j ^ * = ^ ^or a ^ 
j , (Note, there is no restriction on the cardinality of the index set we are using.) 

Definitions If for all (finite) sums ]T\ a^Vf with vt; G 5 we have that YL-i aivi = 0 
implies that en = 0 for all i, then 5 is a linearly independent set This property 
is equivalent to 0 g S and every finite sum of subspaces of the form (v = {av : 
a € K} is direct. Finally, if W is a subspace of V, and if S spans IT, and is a 
linearly independent set, then S is a basis of IT. This property is equivalent to 
the property that for each w G W corresponding to each vi G S there exists a 
unique element a-i G K (with en = 0 for all but a finite number of i's) such that 

i 

Clearly, these definitions allow for the possibility that a vector space may 
contain an infinite linearly independent set, and an infinite basis. 

EXAMPLES, (i) {(al,a2,...,an,...) : a* € M} with "component wise" ad
dition and scalar multiplication with M is a vector space over R. The set S — 
{(0,0,..., . 1,0,...) : 1 is in the ith place, i = 1,2,3, . . . } is a linearly independent 
set but is not a basis. 

(ii) {(a1, a 2 , . . . , a™,...) : only a finite number of the o's are nonzero} with 
operations as in (i) is a vector space and now S is a basis. 

(iii) The set of continuous real-valued functions on [0, IT] with the usual op
erations: {sinnx : n = 1,2,... } is a linearly independent set but not a basis. 

(iv) The set of all ordered n-tuples of real numbers, Kn, is an important 
example of a vector space having a finite basis. {((), 0 , . . . , 1 , . . . , 0) : 1 in the ith 
place, i — 1 , . . . , n} is called the natural basis of M™. 

(v) As generalizations of (i) (iv) we can consider the set Ms, the set of all 
(real-valued) functions on an arbitrary set, S, and Ef the set of all (real-valued) 
functions on an arbitrary set which vanish at all but a finite number of points. 
Again with pointwise addition and multiplication with R these are both vector 
spaces over M. Rf is called the free vector space over S. For each x G S we can 
define the function fx by 

. , . II when y — x 

I 0 when y=px 

Then we have an injection i : S —• Rs defined by x H^ fx. The image set of 
i, i(S) € R 5 is a linearly independent set. It is a basis of Ef C R s but not of 
Ms. Every / G Rf has the unique representation 
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(Only a finite number of terms of this sum are nonzero). R.f will be important 
in the construction of tensor product spaces in Chapter 3. 

Theo rem 1.1 If I is a linearly independent set, andG is a set of generators of 
a vector space, V, and I c G, then there exists a basis B such thai I C B € G, 
In other words, every linearly independent set can be extended to a basis, and 
every set of generators contains a basis. 

Proof (1) If G is finite, we can let G = f wi , . . . , vn} and proceed by induction 
on n. That is, let Vk be any element of G and consider the subspace, W, generated 
by G — Vk- By the induction hypothesis, W has a basis B with B c G — ?%. If 
Vk € W. thee W = V and we are done. If vt $ W, then B U Vk is a linearly 
independent set and spans V and is thus a basis of V, 

(2) If 0 is infinite, we can use Zorn's Lemma, Problem 1.5. • 

In particular, since ever}'- (nontrivial) vector space has a linearly independent 
set and a set of generators with I C G, every vector space has a basis. 

Note, however, that for many important spaces the bases are uncountable. 
In particular, every basis of the vector space of example (i) is uncountable (for 
method of proof, see Problem 1.12), every basis of the vector space of example 
(iii) is uncountable (it is an infinite-dimensional Banach space with norm max / ) , 

[O.TfJ 

and if X is an infinite set, then the bases of example (v) are uncountable. 
In all the examples above, the field, K, of scalars was R, the field of real 

numbers. Many of the subsequent results are valid for an arbitrary field (of char
acteristic 0), in particular for the field of complex numbers, C, It is often useful 
to bring in complex vector spaces in physical applications. Relations between real 
and complex vector spaces are indicated in Problems 1.7, 1.8, and 1.14. However, 
with rare exceptions all our vector spaces in the following will be real. 

There is a generalization of the concept of a vector space which we will need 
when we get to vector fields in Chapter 11. In the definition of vector space 
we simply replace the field, K, by a ring, A (with a unit). Such a structure is 
called an A-module. All the definitions above in their various equivalent forms 
are valid for A-modules. However, there are A-modules that do not have a basis. 
For example, the module consisting of the elements 0, vi, v%, v% over the integers, 
and with addition given by Vi + Vi = 0, i = 1,2,3 and Vi + Vj = vu for i,J,,k 
all different, contains no linearly independent set, and hence has no basis. This 
example also shows that the property stated right after the definition of a vector 
space is not valid for modules. 

An A-module with a basis is called a free module. The A-module we will be 
studying has a basis. There, A will be the algebra of (real-valued) functions on 
a certain set M; i.e., R 5 with the structure of an algebra and with 5 = M. 
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Definition If a vector space V has a lineaiiy independent set of n elements 
and no linearly independent set of n + 1 elements, then V has dimension n, or 
dim V — n. 

Theorem 1.2 If V has dimension n, then every linearly independent set of n 
elements is a basis, and every basis has exactly n elements, 

Proof Problem 1.6. D 

(Note: Theorem 1.2 can be extended to the "infinite-dimensional" case. In 
particular, ever}'- two bases of V have the same cardinality (cf. Lang, 1965, p. 
86).) 

PROBLEM 1.1. Ill the definition of the linear closure of S we actually gave 
two different characterizations of this concept. Prove they are the same. 

PROBLEM 1.2. The same as Problem 1.1 for the definition of the sum of 
subspaces. 

PROBLEM 1.3. The same as Problem 1.1 for the definition of linearly inde
pendent set. 

PROBLEM 1.4. The same as Problem 1.1 for the definition of basis, 

PROBLEM 1.5. Prove Theorem 1.1 for the case G is an infinite set (cf., Greub, 
1981, pp. 12 - 13). 

PROBLEM 1.6. Prove Theorem 1.2. 

PROBLEM 1.7. The set of all ordered n-tuples of complex numbers, €'",. with 
"component-wise" addition and scalar multiplication with C is an n-dimensional 
vector space with the natural basis S — {((),. . . , 1,0,... ,0) : 1 is in the kth 
place, k = 1 , . . . ,?i} (cf., Example (iv)). Show that the same set of n-tuples is a 
real vector space with basis S U {(0 , . . . , i, 0 , . . . , 0) : i = \f—\ is in the fcth place, 

PROBLEM 1.8. Starting with a real vector space, V, we can construct a com
plex vector space, Fc, the complexification ofV, whose elements are the elements 
of V xV with "component-wise" addition and with scalar multiplication defined 
by z(v, w) = (av — bw, aw + bv) where z = a + ib. Show that dim V = dim Vc 

(cf., Problem 1.14). 
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1.2 Representa t ion of vector spaces 

For an n-dimensional vector space, Vn (over R), Theorem 1.2 implies that in the 
representation (1.1) we can choose the same finite set of basis elements Vi for all 
v 6 Vn so that (1.1) defines a 1 — 1 correspondence between elements v € Vn 

and ordered n-tuples ( a 1 , . . . , an) € W1. In particular, t% i~+ ( 0 , . . . , 1 , . . . , 0) with 
1 in the ith place. With different bases we have different correspondences. That 
is, once a basis is chosen we can represent any n-dimensional vector space by the 
particular space, K"', of example (iv) above. 

If {e i , . . . , en} and {e i , . . . , en} are two bases for F w , the relation between 
them can be written in the form 

eJ ~ 2-/ f lie* (1.2) 

For any v € Vn we have v = Ylv%€i mii^ v = Yl^^-i- Substituting (1.2) into the 
second representation for v, and then comparing the two expressions for t», we 
see that 

v« = ] r V a j (1.3) 
i 

Let 
/a\ 4 • • • 4 \ 

( a j )= 4 

Then (1.3) can be written in matrix notation as either 

(vx\ fvv 

= (aj) 

or 

= (a}) i \ — 1 (1.4) 

Writing (1.2) in "matrix notation" as 

\en) 

= (a}) i \ tr 
6j 

V̂ »/ 

(1.5) 

we see that the systems of basis vectors transform with the inverse transpose of 
the matrix of the transformation of the components of a vector. We call (a*-) the 
change-of-basis matrix. 
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Observe that we are using superscripts as well as subscripts in our notation. 
This enables us to use the "summation convention", which we will do from now 
on. That is, if in products, such as on the right side of (1.2), the same index 
occurs as a superscript and a subscript, we will sum on that index omitting the 
£ notation. Also, note that though in the matrix notation introduced above the 
superscript, is the row index and the subscript is the column index this will not 
always be the case. 

PROBLEM 1.9. Show that the matrix (ci*) defined above is nonsingular. 

PROBLEM 1.10. If Vn is the direct sum of two subspaces and a change of 
basis is made in each of the subspaces, what is the form of the change of basis 
matrix for F'rl? 

1.3 Linear mappings 

Definitions If V and W are two vector spaces, a mapping (p : V —+ W is a 
linear mapping if <f>(v\ + V2) = 4»(vi) + 4>{v2) and <fi(av) = o(p(v) for all vi,V2, 
and v in V and a in the common held of V and W. For such a mapping we write 
(p(v) = (p-v. (p(V) is the image space of V under #, dim <f>(V) is the rank of 0, and 
<£_1(0) is the inverse image of 0 <G IF, or the null space, N^, of c/», or the kernel, 
kerc/», of <f>. 4>(V) is a subspace of W and (f>^k(0) is a subspace of V. If W = R, 
then (p is called a linear function., or a linear functional, or a linear form., or a 
covcctor. If W = V then <p is called a linear transformation or a linear operator, 

Again, we can generalize the preceding and much of the following to A-
OIOCIUICS. 

We can construct many different linear mappings between two vector spaces 
(or, A-modules) as the following theorem shows. 

Theorem 1.3 Given vector spaces V and W and a basis S of V, then there 
exists a unique linear mapping, <p : V —» W such that <p • t% = u?i where Vf € 5 
and Wi are arbitrarily chosen elements of W. 

Proof (i) Define (j> by "extending the given conditions linearly", that is, let 
(f)(v) = otWi for v = alVi. Then it is easy to verify the properties required by 
the definition, (ii) If if) is another linear mapping such that p • Vi — Wi, then by 
linearity p • v — alWi for v = o%Vi. Hence i() • v = (p • v for all v so if) — <f>. D 

Corollary Jf dim F = dim IF, then V and W are isomorphic. 
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The converse of this corollary is also true; if 4> is an isomorphism of V and 
W then they have the same dimensions. More generally, we have the following 
result for the dimension of V. 

Theorem 1.4 If 4> : F —• W is linear, then 

dim F = rank q> + dim ker 0 

Proof Let {e-i,..., ep} be a basis of 4>~~l(0), and let { e i , . . . , eF, e-i,..., eq) be 
a basis of V. (See Problem 1.5.) Then dim^_ 1(0) = p and dim V = p + q. 
Now we need only to show that {<p • &i,... ,(p • eq} is a basis of 4>(V), that is 
that dim 0(F) = q. A direct calculation shows that <f> • e~\,..., 0 • eq is a linearly 
independent set and spans 0(F) . D 

If W is a subspace of F , and v € F , we can form the subset {v + w : w € IF}. 
The set of all such subsets (as v ranges over F) is a factor, or quotient space, 
V/W. vi and V2 are both in the same subset if and only if v\ — v% € IF, The set 
(i.e., equivalence class) containing v is denoted by [v]. The dimension of V/W is 
called the codimension ofW. The linear mapping w : V —> V/W given by v (-+ [v] 
is onto, has the property 7r-1(0) = W, and is called the natural projection of F 
onto F / IF . From this and Theorem 1.4 we have codim IF = diniF — dim IF. 

Conversely, starting with a linear mapping, 0 : V —• IF, we have 0_1(O) 
and we can construct a factor space V/<j>~l(Q) and an induced isomorphism 
V/<j>~l{0) = 0(F). There is also the factor space W/<f>(V) called the cokemel of 
0, and rank 0 + dim coker 0 = dim IF. 

PROBLEM 1.11. Let F and IF be vector spaces, (i) Define operations in V x W 
so that it becomes a vector space (called the exterior direct sum of V and W and 
denoted by V © W). (ii) Show that the projections given by p\ : (w, w) H-» (V, 0) 
and j?2 : (u,w) •—• (0, w) are linear, (iii) Show that F ® I F = kerpi#(pi (F®IF)) 5 

where the first © on the right is the direct sum defined in Section 1.1. 

PROBLEM 1.12. The set of linear functions, £(F,R). on F is a vector space 
(this is a special case of Theorem 2.1). Use Theorem 1.3 to show that if V has a 
countably infinite basis, then the basis of £(F, R) is uncountably infinite. 

(Hint: By Theorem 1.3, if V has a countably infinite basis, then every se
quence of real numbers determines a unique element / 6 £(F, K). For each 
positive number, r, let fr be the element determined by ( l , r , r 2 , r 3 , . . . ) . Con
sider the set of all such functions, and show that for any finite subset {f\,..., fn} 
a1 f\ + a?f<2 + • • • + dnfn = 0 implies a1 = a2 ~ • • • = an = 0.) 

PROBLEM 1.13. If (a, b) € R2, let W = {t(a, b) : t € R}, a subset of the vector 
space R2. Give a geometrical interpretation of R 2 / IF . 
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PROBLEM 1.14. Corresponding to each a € K there is a linear operator <p 
on V given by (p : V —+ aV. In particular, for the space €™, corresponding to 
i = y/^1 we have a linear operator, J with the property that J2v = —v. On the 
real vector space R2w, the linear operator J defined by 

efe»-»-6fc_n fc = n + l , . . . , 2 n 

where {e-j . . . . , e<2«} is the natural basis of M2n, has this property. Show that for 
any real vector space which admits such an operator, called a complex structure, 
the same set of elements can be made into a complex vector space by defining 
multiplication by a complex scalar by (a + bi)v = cm -f bJv (cf., Problems 1.7 
and 1.8). 

PROBLEM 1.15. A set, S, on which there is defined a vector space, V, of 
transformations is called an affine space of V, if (i) 0 € F is the identity mapping, 
if (ii) for v 4" 0 and p € S, v(p) ^ p, if (iii) u + v is the composition, and if (iv) 
for each ordered pair (p, q) of elements of S, there is an element v <G V such 
that v(p) = <?. Show that (—v)(q) = p if v(p) = q. Show that (p, q) determines a 
unique vector, so we can write it as pq and call it a free vector, or translation of 
S. If S = {(a, 6, c) € R3 : c = a + 5 + l} and V is the vector space R2, show that 
S is an affine space of R2 (cf., Problem 1.13). 

1.4 Representa t ion of linear mappings 

Just as we have a 1 - 1 correspondence between vectors in a real n-diraensional 
vector space, Vn, and elements of Rn once a basis is chosen in Vn, we can now, 
after choosing bases { e i , . . . , en} in Vn and {E\,...,i?r} in Vr, set up a 1 — 1 
correspondence between the set of linear mappings from Vn to Vr and the set 
of r by n matrices. Thus, given a linear mapping, 4>, then for each i = 1 , . . . , n, 
there is a unique set of components, <pf, j = 1 , . . . , r, of the image of ê  under <£. 

</>• €i = #|i?j (1.6) 

If K; — <̂  • v, then putting t» = vlei and w — ix^ii7,' we have w^Ej — w — <p«v%e% — 
vl(p • ei = vl(j>lEj, so 

w3^'if4 t^1-'----n (i.7) 
'% j — 1 , . . . ,/r • J 

or, in matrix notation, writing 
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(#) = 

f(f>i # | • • • 0i\ 
,0 

we have 

\<f>\ 

= (4i) 

Vnf 

fvr 

\,f\ 
(1.8) 

(Notice that the matrix of coefficients of the system (1.6), as it stands, is the 
transpose of ($•). Also, compare eqs, (1.6) - (1.8) respectively with eqs. (1.2) -
(1.4).) 

If n = r, then the mapping can be represented by a square matrix. For 
example, if Vn — Vr = M2n, and <p is the linear operator J in Problem 1.14, 

then in the natural basis of R2n g> — I r ( 1 where J is the TO X TO identity 
- 1 0 

matrix 
If r — 1, then the mapping can be represented by a 1 x n matrix, or a row 

vector. Thus, linear functions, or covectors. can be represented by row vectors. 
Conversely, starting with an arbitrary r by r matrix. (</>"/). we can let the 

columns be the components, in the {E,} basis of l"r. of the images of the basis 
elements, c-,, of Yn. i.e.. c, i - o)E\ i ojE-2 i • • • \ d^E,.. An arbitrary choice of 
these imagers determines a unique linear mapping by Theorem 1.3. 

With the representation of vectors by elements of cartesian spaces and the 
representation of linear mappings by matrices, we see that the specific "concrete" 
examples of linear mappings of the form o : R" - '?J' given by 

(vl,...,vn) »-+ ( < £ t v , . . . , $ y ) I X # *J I 

or, in matrix notation 

are really all there are. 

/ V \ / # ! • • • 0 i \ (vl\ 

\vnJ \®\ • • • (ffn) \vn) 

Just as a vector will have two different sets of components in two different 
bases, a linear mapping will have different matrices if different bases are chosen 
in Vn and Vr, 
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Definition Two r by n matrices are equivalent if they represent the same linear 
mapping <j>, relative to different bases in Vn and Vr. 

From matrix theory we know that two matrices are equivalent if and only if 
they have the same rank. 

An important special case of the ideas above occurs when I''" -- V". i.e., 
o is a linear transformation, in this case, two n by n matrices representing 0 
are called similar, and matrices (67) and (c?) are similar if and only if there 
exists a nonsingular matrix. M such that (i>'j - M~l((j>' )M. Al is the change-
of-basis matrix. For a linear transformation wo also have the important concepts 
of eigenvectors, eigenvalues, invariant subspaces. etc. We will conic1 back to these 
ideas later when we need them in Chapter 5. 

PROBLEM 1.16. (i) Show that the correspondence e* H-*- (0 , . . . 1 , . . . ,0) be
tween Vn and Wn described in Section 1.2 is an isomorphism, (ii) What is the 
form of (1.8) for this linear mapping if we choose in R™ (a) the natural basis, (b) 
an arbitrary basis {(an,...., Oin) : i — 1 , . . . , n}? 



M U L T I L I N E A R M A P P I N G S A N D D U A L S P A C E S 

We will discuss the important space, V*, of linear functions on a vector space, 
V. We will describe isomorphisms between spaces of multilinear mappings, and, 
finally, we will focus on special properties of bilinear functions. 

2.1 Vector spaces of linear mappings 

In Section 1.3 we discussed briefly the idea of a linear mapping between vector 
spaces V and W. Now we consider the set of all linear mappings from V to W, 

Theorem 2.1 The set, C(V}W), of all linear mappings from V to W with op
erations <j) + if) and a<j> defined by 

((f) + p) • V — (j) • V + if) • V 

(a(f)) - v — a(<f) • v) 

is a vector space, 

Proof (p + tp is a linear mapping since 

(d) + tp) - (av + bw) = (p • (av 4- bw) 4- tj) • (av + bw) 

= a<p • v + b(f> • w + mp • v + btp • w 

= o(</> + tp) • v + b{(j> + tp) • w. 

Similarly for a<f>. Each of the vector space properties of £{F, W) comes from the 
corresponding property of W. D 

T h e o r e m 2.2 With the standard definitions of addition and scalar multiplica
tion, the set of r by n matrices is a vector space, and the 1 — 1 correspondence 
described in Section 1.4 between £(Vn , Vr) and the vector space of r by n ma
trices is an isomorphism, 

Thus, in particular, the set of n x n matrices, A4n,t forms a vector space 
isomorphic to the vector space of linear transformations of Vn. 

T h e o r e m 2.3 Suppose {e^} and {Ej} are bases of finite-dimensional spaces V 
and W respectively. Then the elements ej of C(V, W) defined by e* : v i-> V%EJ 
form a basis for £(F, W). Moreover,, for <f> € £(F, W), 

where M are given by (p • eu = (j^Ej. 

11 
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Proof First of all, note that the definition of e* is equivalent to e* : e& i-» <J|i/j 
with €j extended to V by linearity. 

(i) ajeUek) — af5lEj — a?kEj so afe* = 0 implies that a|.i?j — 0 for all k, 
and since {£%} is linearly independent, a\ — 0. 

(ii) Given <̂> in £(¥, IT), let (p-eu = <p\Ej. Then < |̂e*(efe) = (pfSlEj = ^.fij = 
<̂ (cfe) so <p = #fej. D 

There are two important special eases of £(¥, IT); namely, £(R, IT) and 

C(V, R). We will devote our attention exclusively to the second case after giving 

one result for the first-

Theorem 2.4 £{R, W) is isomorphic with W, 

Proof Note that every nonzero element of R is a basis of M. In particular, 1 
is the natural basis of R. By Theorem 1.3 for each w <G IT, there is an element 
w of C(M,W) given by w : I f—• w. Two different w's must clearly lead to two 
different mappings, so the correspondence W —* £(R, W) is one-to-one. On the 
other hand, given any (j> 6 £(R, W).r <p • 1 € IF determines a mapping ^ given by 
1 h-> 0-1. By the "uniqueness" part of Theorem 1.3 0 = </> so the correspondence 
is onto. The linearity follows from the definition of the operations in £(R, W). 

This isomorphism will be invoked to make a certain "identification" when we 
study tangent maps in Section 7.3. 

The space, £(F, R), of linear functions on V is also denoted by V*. As noted 
in Section 1.3, its elements, / , are also called linear forms (or linear functionals, 
or covectors). 

As a concrete example of a space of linear forms we have £(E n ,R) , whose 
elements, / , are given by / : (a1,... ,an) i—> fid*, or, in matrix form, 

Clearly the elements of £(R n ,R) are just special cases of the linear mappings, 
(1.9). As there, this example can be thought of as being quite general, in the 
sense that once we choose a basis, {e^}, in any n-dimensional space, Vn, and 

/ V \ 

a basis, E 6 Ii, then v 6 Vn can be represented by : , / G Vn* can be 

\vn) 
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represented by a 1 x n matrix (or row vector), (/i, • • • f n ) , where the fi are given 
by / • e.j = fiE (cf., eq. (1.8)), and 

(J i 

represents the image of v under / . 
Prom the fact that Vn* is isomorphic to the set of 1 x n matrices, it is clear 

the dim Vn* = n; i.e., dim Vn* = dim Vn. It follows as a special case of Theorem 
2.3 that the elements el € Vn* defined by el -e^ = 8\E i,k = 1 , . . . , n, E G R, 
form a basis for Vn* and 

for any / in Vn*, 

Definition If we choose? E = 1, then the basis {e^} of F n * given by 

e% • €k — 8\, i k — 1 , . . . ,n 

is called tte dual &a,sis of {ej}. 

Since, when V is finite-dimensional, dim V = dim V*, it follows that we have 
a result for £(F, K) analogous to Theorem 2.4 for £(R, W)\ namely, £(F, K) is 
isomorphic to F . 

In general, however, if F is not finite-dimensional, F* is not necessarily iso
morphic with V. It is generally larger than V. See Problem 1.12. However, there 
is a subspace of F* which is isomorphic with V. 

Definition Let {e*} be a basis of V. We denote the set {/ 6 V* : f • e* = 0 for 
all but a finite number of the ei's} by F0*. 

Theorem 2.5 Tlie se£, {£*}, of elements ofV* defined by et: -e^ = <f| is a &a.si$ 
forVf, andV^V. 

Proof (i) Consider any linear combination a^£*. Then 

(die*) • e/b = o^e* • efe) = «fc 

so a,i€% — 0 implies that at — 0. (ii) Given / in F0*. let / « et; = / i , and look at 
fi£l, {fi£%) • €j = fidj=fj=f- tj for all e.j, so / = /ie'1. (i) and (ii) show that 
{e1} is a basis for F0*. (iii) Notice? that the condition ef' • eu — 8\ defines a 1 — 1 
correspondence between the basis sets {ei} and {e*}; namely, e^ •—• £\ the basis 
element of F0* which takes ê  to 1 and all the others to zero. If we extend this 
correspondence by linearity, then the resulting mapping is 1 — 1 and onto F0*. 
D 

Having constructed a new vector space V* from F we can now ask about 
linear transformations on V*\ in particular, we can study the set £(F*. R) = F**. 
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Theorem 2.6 Let v be any arbitrarily chosen (fixed) element of V. Then the 
map v : V* —+ R defined by v : f *-+ f - v is in V**. 

Proof Problem 2.4, D 

Since for each v € V we have a v € V** by Theorem 2.6, that theorem gives 
us a mapping I : V —> V . With the notation ot .Theorem 2.6, X(v) = « and 
the map defined in that theorem can be written 

I ( v ) . / = / . v (2.1) 

Theorem 2.7 27ie mapping X :V —> X(V) C V** is an, isomorphism, 

Proof 

(i) J(avi 4- bv->) • f — f • (av[ ~, bc->) by (2.1) 

— of • r\ 4 />/ • r-j by linearity of / 

— aJ(rj) • / + b!(r-2) • f by (2.1) 

— {oX{r\) - hX{r->)) • f 

by definition of operations in F**. Hence X{av\ + bv2) = al{v\) + bXfa), so I 
is linear. 

(ii) X(vi) = X(v2) implies / « v\ = / • v«2 for ah / € F% so vi = v-j and J 
is 1 — 1. (See Problem 2.7.) D 

Corollary IfVis finite-dimensional, then V** is isomorphic with V, Thus, if 
we identify V and V** we can think ofV as the space of linear functions on V*. 
(See Section 2.2.) 

Definition X is called the natural injection ofV into V**. 

PROBLEM 2.1. (i) Prove Theorem 2.1 with £(F, W) replaced by Wv, the set 
of all maps from V to W, (ii) Prove Theorem 2.1 with C(V,W) replaced by Ws 

where 5 is an arbitrary set. (Compare with Ms in Section 1.1.) 

PROBLEM 2.2. Prove Theorem 2.2. 

PROBLEM 2.3. Suppose {ei} and {ii} are bases of V, i — 1,..., n, and suppose 
{<s*} and {s1} are corresponding dual bases of V*. Show that if 

(a\ 
(ei •••en) = (ei••• e„) : 
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then : = : : : 

where aWk = (f|. That is, the change-of-basis matrix (M) is the inverse of the 
change-of-basis matrix (a!-). Write the relation between the components, fo and 
fi, of an element of V* in the two bases in terms of (a*). 

PROBLEM 2.4. Write out the matrix of the linear transformation e\ in The-
orem 2.3. 

PROBLEM 2.5. In Theorem 2.5 we got a basis for a space of linear forms on 
a vector space which was permitted to be either finite- or infinite-dimensional. 
In Theorem 2.3 we got bases for spaces of mappings, and the proof given for 
Theorem 2.3 resembles that of Theorem 2.5. If in Theorem 2.3 V and/or W are 
infinite-dimensional we can define A as in the finite case. Precisely where will the 
proof fail if we try to prove Theorem 2.3 if V and/or W are infinite-dimensional? 

PROBLEM 2.6. Prove Theorem 2.6. 

PROBLEM 2.7. In the proof of part (ii) of Theorem 2.7 we stated that f -v\ = 
/ • t»2 for all / € V* implies that v\ — v%- This is equivalent to the statement 
that if v\ •=£ V2, then there is an / in F* such that / • v\ / / • V2, or if v / 0, 
then there is an / in V* such that / • v / 0. Prove this. 

PROBLEM 2.8. Prove that two matrices (<£*•) and (ipj) represent (with respect 
to two bases in V and their duals in V*) the same linear mapping of V to V* if 
and only if there is a matrix M such that (tM) — M<:r(<^*)M, and M is the change 
of basis matrix, (atA. Two such matrices are called congruent (cf., definition of 
similar matrices in Section 1.4). 

2,2 Vector spaces of multi l inear mappings 

Definition Given vector spaces V\, V2,.. •, Vp, W. A mapping <f>: V\ x • • • x Vp —+ 
W from the cartesian product V\ x • • • x Vp to W is multilinear if it is linear in 
each argument. 

Examples (i) We get an important example of a bilinear function (p = 2, 
W = E) if we choose V\ = E n , V2 = RTO. Then, given any CHJ i = 1, . . . , n , 
j — 1 , . . . , TO, the map <£ : E n x RTO —> R defined by 

((v1,..., vn), (w1,..., v/71)) •-• Oijtfv? (2.2) 

is bilinear. Moreover, every bilinear function <p : R'rl x Rm —• R can be written 
in this form. For, given <p, then 

(p : ( (0 , . . . , 1 , . . . , ())(0,... , 1 , . . . , ())) f-> aij 
iih place jth place 
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for some o^ and then by bilinearity 4>{{vl
y..., vn), (w1,..., wm)) = ciijifwK 

Clearly, these bilinear functions are generalizations of the dot product of vector 
analysis. 

(ii) Another example of a bilinear function (in a certain sense both more 
and less general than the previous one) which we will see again in Chapter 3 is 
obtained if V\ and Vi are two vector spaces and we are given / 6 C(Vj,M) and 
g <G C(V2, R). Then <f>: \\ x V2 —* E given by {v\, V2) ̂  ( / • Vi)(§ • V2) is bilinear. 

(iii) finally, the "oriented volume" of a parallelepiped in "ordinary" space (a 
normed determinant function) is an example of a trilinear function, 

The bilinear functions of example (i) are analogous to the "concrete" ex
amples given by eq, (1.9) in the sense that every linear map is represented by 
the latter when bases are chosen in V and W, and every bilinear function is 
represented by the former when bases are chosen in V, W, and E. 

Theorem 2.8 Given vector spaces V\,..., Vp, W and bases Si ofVi, i = 1 , . . . ,p, 
then there exists a unique multi linear mapping <p : Vi x • - • xVp —*• W such that 
4>{vkx->Vk2, • •., Vfcp) = Wfcj•••&,, where Vkt 6 Si, and Wk%..-kp o.re arbitrary elements 
ofW. 

Proof See Theorem 1.3. • 

Theorem 2.9 The set, £(Vi,V2,. •. ,VP\ W) of all p-linear maps from 
V\ x ' — x Vp to W (with the obvious definitions for the operations) is a vec
tor space. 

Proof Problem 2.9. D 

If the vector spaces Vi , . . . ,VP,W are finite-dimensional, then 
£(Vj, . . . . , Vp\ W) has a basis in terms of those of V\,..., Vp, W and the 
dimension of £(Vi , . . . ,VP\ W) is the product of the dimensions of V\,...,. Vp, W, 
More explicitly, we have the following special case. 

Theorem 2.10 Suppose {e%\ and {Efj are bases ofV andW respectively. Then 
the functions pi : V x W —+ E defined by pi : (v, w) H-» v%wi where if and w% 

are the components of v and w in the chosen bases, form a basis for £(F, W; R). 
Moreover, for b € Z(V, W: E) 

where bij = b(ei,Ej) (cf. Theorem, 2.3). 

Proof First of all, note that the definition of/iJ" is equivalent to pi : (e^, Ei) (-+ 
8l

kSj with f%i extended to V x W by bilinearity. 

(i) b,jf'J{rk.Ei) - />,/*<*/ _ hi s« h,jf'J ~ 0 implies that hk, - 0 for all h.L 
Hence the ftJ form a linearly independent set. 

(ii) If / /e C(\'.\\':R) then b(r.w) - r'»'•>&(r,./•;,) - h(eh E^f'Hww) for all 
v L V and w <L II", so b — b(( k, Ej)fJJ. • 
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In the sequel we will be dealing with a variety of special cases of these spaces 
of multilinear mappings. It will be important to observe that these special cases 
are not all really different from one another that certain spaces of mapping can 
be identified with certain others. What we mean by saying that two spaces can be 
"identified" with one another is that an isomorphism can be constructed between 
the two which does not require any choice of bases. Note that the isomorphisms 
established in Theorem 2.2 and Theorem 2.4 do require a choice of a basis. In 
the finite-dimensional case, isomorphisms between V and F* require choosing 
bases, but the isomorphism X between V and V** in the corollary of Theorem 
2.7 does not. Hence we do not identify V and F*, but we do identify V and F**. 

Definition A linear mapping of vector spaces which is independent of the 
choice of bases is called natural (or canonical). 

Theorem 2.11 There is a natural isomorphism between £(Fi,F2*.fF) and 
£(Fi,£(F2,rF/)). 

Proof Let b be an element of £(Fi, V2I W). We define a map (p : £(Vi, 14; W) —> 
£(Vi,£(V2, W)) by b (-+ <fi(b) € £(Fi,£(F2,IF)) where <f>(b) is the linear map 
whose values, <p(b) • v-\ <G £(¥3, IF) are linear mappings given by 

(j)(b) • vi : V'2 ^ 6(vi,t»2) <£ W. (2.3) 

That is, <p(b) is defined by its values, (p(b) • v\, on Vj, each of which (i.e., for each 
fixed vi) is a linear function from Fj to W defined by (2.3). 

We also write, for given b, and vi, the partial map, b(viy—) : i>j *-*• b(v\,V2), 
so with this notation <j>(b)-v\ is defined to be 6(i>i, —), that is, <f>(b)-vi = 6(«i, —). 

We will prove that 0 is 1 — 1 and onto. (The linearity of <p comes by fol
lowing through the definitions.) Let A € £(Fi,£(V4, W)). We define a map 
tjj : Z(VUZ(V2.W)) - Z(VUV2;W) by 4(A) : (vi,v2) ~ (A • vi) • v-2 (Figure 
2.1). Now we form the compositions ipop and (jyoip^ and evaluate them 011 their 
respective domains. 

Figure 2.1 
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(i) For all b, v\, vi 

ijj(4>(b))(vi,V2) = (<P(b) • «i) • t'2 (by the definition of ip) 

— Kv'i y~)' v2 (by the definition of <ft(b)) 

= b(vuv2) 

Hence p(<p(b))(vi/U2) — b(vi,v>2) for all t»i, V2, and b, so ij}(<f>(b)) = b for all b and 
p o (p — identity on £(Vj, F2; W) which implies that 0 is 1 — 1. 

(ii) For all v4, ui,U2 

< (̂i/;(»4)) • v\) • V'2 = i>{A){viy —) • ^2 (by the definition, of #(6)) 

= i>(A)(vi,V2) 
= (»4 • ui) • t»2 (by the definition of ?/>) 

Again, since this is valid for all v\, v-2 and .4, we have <p o ip = identity on 
£(Fi, £(F2, IF)) which implies that (f> is onto. D 

By Theorem 2.11 to each bilinear function b <E- £(F. IFrlC) there corre
sponds a unique linear map A\ - Q\ • b e £(F. £(JF.K) = £0*, 11'*) where 
cJ>i : £ ( r . i r ; l ) > £ (F .£( IFH)) . Since, £ ( F £(IF. 1)) ^ £(!!'. £(F. E)). (see. 
Problem 2.14) corresponding to 6 there is also a unique linear map A2 — 0-2 -b C; 
£(TF.£(F.P:)) ~ £(TF.F*) where o2 : £(FTF:3L) * £(IF. £ (F I i ) ) . Oi-b : F • 
\Y* is given by c 1— fr(/\ —) and 62 • b : IF — F* is given by ?r 1— />(—. ?r). 

If Y and II' are finite-dimensional and {fj} is a basis of F and {A'/} is a 
basis of II*. then cJ>i • 6 : c, 1 - (iijEJ where {EJ} is tIi<" basis dual to {E,}. But 
c!>i • b : 1 j *- > b((;. ). so (iij"E.3 • E\- — b{e-,.Ek) and a^ — })((•;. E\-) — />,/.-. That 
is the iktli conipoiienf of b in the {/''''} basis is the ikth element of the matrix 
of the linear map A\. Similarly, if 0-2 • b : E, t— d,j^J• then a,i,, - b/,-,. which 
says that the /A*th component of b in the {f'k} basis is the /A*th element of the 
transpose^ of the matrix of the linear map ^ 2 . 

More generally, we have the following. 

Theorem 2.12 There is a natural isomorphism between £(Fj , F j , . . . ,. Fp; W) 
and £(Fj, £ ( F i , . . . , F j , . . . , Vp; W]). (% means that argument is to be omitted.) 

Proof Problem 2.13. D 

On the basis of these and other similar types of isomorphisms (see, e.g., 
Problem 2.14), we will be able to describe tensor spaces in a variety of equivalent 
ways - which can be convenient and also confusing. Moreover, such isomorphisms 
axe used for the construction of "vector-valued forms" which we will encounter 
in geometry (cf., Section 4.1). 
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PROBLEM 2.10. Prove the general result stated below Theorem 2.9. 

PROBLEM 2.11. We mentioned above Theorem 2.8 that every bilinear func
tion is represented by the mapping (2.2) when bases are chosen. What are the 
coefficients of (2.2) for the fli of Theorem 2.10? 

PROBLEM 2.12. Verify the statements in Theorem 2.11 that ipo<p. — identity 
on £(F1 ; F2; W) implies that 0 is 1 — 1, and <potjj — identity on £(Fi : £(^2, W)) 
implies that 0 is onto. 

o. rrove lneorem 2.12. 

PROBLEM 2.14. Prove that there is a natural isomorphism between 
£ ( F j , . . . , Vp; W) and &{Vh,..., Vis; £ ( F W l , . . . , Vip; IF)) where i j , . . . , ip is a 
permutation of 1 , . . . ,p. 

PROBLEM 2,15. The cartesian product W\ x • • • x 1F„ of vector spaces with 
the operations 

\W\,..., it?n) + (a,*i,..., xn) = (tt'j. + #15 • • • 5 'tt
?n + #n) 

a{w\,..., ti)„) = (flwi,. . . , awn) 

is a vector space denoted by Wi®W'2®- • -®Wn and called the exterior direct sum 
(see Problem 1.11). Notice that the sets Wi = {(0 , . . . , w,;,... ,0)} are subspaces 
of W\ © • • • © Wn and W\ © • • • © Wn is the (interior) direct sum of Wi as defined 
in Section 1.1. Show that if dim F = n, then £(F, IF) = W © • • • © W, the direct 
sum of n copies of W (see Theorem 2.4). 

2.3 Nondegenera te bilinear functions 

Starting with a vector space F , we constructed a second vector space F* each 
of whose elements is a mapping from V to JR. Instead of fixing an element of F* 
and letting v vary in V to get a mapping with values in R, we can, as we did 
in Theorem 2.8, fix an element v <G V and let / vary in F* and get a mapping 
f *-* f • v with values in R. These two mappings appear in more symmetrical 
roles as partial mappings of a mapping F* x F —• R of the cartesian product of 
V* and V to 1 . 

Deflnitiou The function £ : F* x F —»• R denned by (/, v) (-»• f • v is called the 
Kronecker delta, or the natural pairing of V* and V into R. We write 8'(/, t?) = 
(/, v), and 5 = (—, —); i.e., (/, v) = f • v. 

The partial function (/, —) : F —• R given by v 1—»• / • v is the same as / itself. 
The partial function (—yv) : V* —• R given by / H^ / • v is the function v in 
Theorem 2.6. It is easy to see that 5 is a bilinear function, i.e., £ 6 £(F*, F;R) . 
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By Theorem 2,10, if V is finite-dimensional and {e^} and {e%} are dual bases, 
then / / : (ek,ei) H-> 5fSf define a basis for £(F% V;R) and 

J has a property which defines an important class of bilinear functions. 

Definitions A bilinear function b : V x W —*• R is (weakly) nondegenerate if 
§(«, w) = 0 for all v 6 V implies w = 0, and b(v, w) = 0 for all w € W implies 
v = 0. If 6 is a nondegenerate bilinear function on V x W, then F and W are 
dual spaces with respect to b. 

The Kronecker delta is nondegenerate, for the fact that {/, v) = 0 for all v 
implies / = 0 is just the definition of / = 0. The fact that {/, v) = 0 for all 
/ implies v = 0 was already used in Theorem 2.6. See Problem 2.7. Thus, the 
natural pairing (—, —) of F* and V is just one particular nondegenerate bilinear 
function, and V* and F are dual with respect to (—, —}. 

Recall that in Section 2.2. we gave two examples of bilinear functions. In 
the first example, the bilinear function is nondegenerate and IBP and Km are 
dual with respect to this function if and only if m — n, and the matrix (a^) 
is nonsingular. In this case b is a nondegenerate bilinear function of the form 
b : V x V —*• W and V is self-dual (with respect to that bilinear function). We 
will study important examples in Section 5.4. 

PROBLEM 2.1b. Prove the nocessary and sufficient conditions stated for the 
nondogeneraey of the bilinear function RTC x l m —> R of the example given above. 

PROBLEM 2.17. If F and W are dual with respect to b, then the maps A\ 
and A2 in Section 2.2 are injective. 

PROBLEM 2,18. Choose a basis in F . (i) Express (f,v) in terms of this basis 
and its dual in V*. (ii) What are the matrices, relative to these bases, of the 
linear maps (pi • b and 4>2 • b in Section 2.2 where b is the natural pairing of F 
and F*? 

PROBLEM 2,19. Give an example of a vector space with two nonisomorphic 
dual spaces. 

<<s»4 Ortriogoiijil complements unci trie t ranspose of o, liiiesj* muppiiig 

Definitions Suppose 6 is a bilinear function on V x IF, and S C V and T C W. 
S1- = {w € W : b(v, w) = 0 for all v € S} is called the orthogonal complement, 
or annihilator of S with respect to b. ±T — {v € F : b(v, w) = 0 for all w £ T} 
is the orthogonal complement, or annihilator of T with respect to b. 

Theorem 2.13 For any set S € V. Sx is a subspace of W, and, for any set 
T C W, ±T is a subspace of V. 
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Proof Problem 2.20. • 

Theo rem 2.14 N'\ = LW and i¥2 = F x where N\ € V is the null space of 
(pi • b and N>2 € W is the null space of 4>% • b. 

Proof Problem 2.21. D 

Corollary b is nondegenemte if and only if N% = 0 and N-2 = 0. 

T h e o r e m 2.15 If finite-dimensional vector spaces V and W are dual with re
spect to b, then W ^ V* and F ^ IF*. 

Proof Since N\ — N2 — 0 the linear maps 4>\ * b and fo • b are 1 — 1. Hence 
dim F<_ dim IF* = dim W< dim V* = dim F . So dim V = dim IF* and dim W = 
dim V* and the maps are onto. • 

Corollary If V and W are dual with respect to b, then dim V — dim IF, 

On the basis of Theorem 2.15 we frequently say that V* is the dual space of 
V, and V** = F is the dual space of V*. 

(Note that in the infinite-dimensional case the conclusion of Theorem 2.15 
is not necessarily valid. If it is, we say that b is strongly nondegenerate, or 
nonsingular.) 

T h e o r e m 2.16 If S CV and T c W, (S) C 1(S1) and (T) C (LT)L. 

Proof If v € (5), then for all w G 5±,6(«.w) = a,;l>(f/, w) = 0 so v G L{SL). 
Similarly for the second part. D 

We can strengthen this result, and get other interesting relations in the case 
W = V* and, b = 5. Hence, the orthogonal complement will be with respect to 8 
from now on. 

Theorem 2.17 J / 5 C F , then (S) = J-(5-L). 

Proof From Theorem 2.16 we know (S) C J-(5-L). Now suppose v 6 1(S±) 
and v g- (5). We can choose the v to be one of the basis elements of V by 
Theorem 1.1. Let / be the element of V* which maps v to 1, and the other basis 
elements to zero. / exists and is unique by Theorem 1.3. In particular, for all 
v € (£ ) , ( / , 1?) = 0. That is, f € (S)1. But S € {S)> so / € S1. Hence, for all 
v G J-(5"L), (/,«} = 0. In particular, since by assumption v € 1(S±)i we must 
have (/,£>) = 0, but this contradicts / • v = 1, so "L(5)~L c (5). • 

Theorem 2.18 If V is finite-dimensional and S is a subspace of V then 
dim S1" — dim F — dim 5 fX is with respect to $). 

Proof Problem 2.23. • 

Now suppose we have two bilinear functions 61 : V\ x W\ —• R and 
b'2 • V2 x W'2 —* R and a linear mapping # : V\ —* F2. # determines a cfwa/ 
linear mapping, #*, from IF2 to W\ by 

61 (vi, #* • w2) = &2(# • wi, w2) (2,4) 

We will confine ourselves to the special case 61 = 62 = 6. 
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Definition If # : V —> IF, then the transpose,, or A M ! 0/ # is the map #* : 
j,y* _+ y* defined by #* : IU* (-*• w* o # where IU* € IF*. 

We can think of #* as taking functions defined on W and "pulling them 
back" to functions defined on V. 

R 

#*(w*) = w* 

V 
# 

IF 

Theorem 2.19 #* is linear. 

Proof We evaluate ^*(aw\ + JEŵ ) at an arbitrary v € V, Thus, 

^*{aw\ 4- &w|) • v = ((awj + bwf2) o #) • « by definition of #* 

= {aw\ + bt-4) • (#-v) = a(wl-(^-v)) + 6(w|-(#-t;)) 

= a(^*(wl)'v) 4- l)(#*(w|)-'y) by definition of <J>* 

= (a#*(w0 + &#*(w2))-v 

by definition of operations in V* 

So #*(awf + frw|) = o#*(wf) + bW*(w^). D 

We discussed an example of a mapping and its transpose near the end of 
Section 2.2. More precisely, if A\ = 4>\ • b : V —> W* and .4.2 = #2 • & : IF —* V*, 
then *42 = *^i\w- That is, (*42 * w) • v = (*4J • iu**) • v when w** = w (by 
the isomorphism J ) . This is seen by rewriting the right side: («4f • «;**) • v = 
[w;** o ( ^ • b)](v) = w** • w* = '«;* • w = (4>\ • h) • v • w = («fc • &) * w • v. Moreover, 
that discussion (in Section 2.2) shows that the transpose of the matrix of a linear 
map is the matrix of the transpose of that rnap. 

•2\v Theorem 2.20 Jf #1 : V —> W and if #2 = $i> then #1 = #«j| 

Proof Problem 2.24. D 

Theorem 2.21 <J>* is the transpose of # if and only if 

($*-w*yv) = (w*,#-v) (2.5) 

/or ail v € F and w* € IF*. 

Proof If we evaluate #* • w* = w* o # at t; we get (2.5) immediately. D 

Theorem 2.22 If $ : V —> W and #* is its transpose, then 
(i) ker#* = (# (F ) ) ± 

(ii) # (F ) = ±(ker#*) 
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(iii) ker# = x(#*(l¥*)) 
(iv) $*(t^*) = ker($)-L 

See Figure 2.2. 

ker # 

= (ker #) 1 

0 
#(F) 

i(ker #*) 

jf/ 

ker #* 

py* 

Figure 2.2 

Proof (i) If w* € ker #% then #* • w* = 0 and by eq. (2.5) {«;*, # • v) - 0 for all 
i; € F , so w* € # ( F ) X . On the other hand, if w* € # ( F ) X , then («/*, #-v) = 0 for 
all v € F . By eq. (2.5) (#* -W*,v) = 0 for all v € V. Since (—, —) is nondegenerate 
$*.w* = 0soW* Gker#*. 

(ii) By Theorem 2.17 # (F) = ± (#(F)1- ) which is ±(ker#*) by part (i). 
(iii) and (iv): Problem 2.26. D 

Corollary # is onto if and only if #* is 1 
onto. 

1. # is 1 — 1 if ared 07% «/ #* is 

Some of the results above are the algebraic abstractions of important results 
in other areas of mathematics. Thus. e.g.. Theorem 2.22(h) has the interpretation 
that a nouhomogeneons system of linear equations has a solution if and only if the 
nouhomogcneous port is orthogonal to every solution of the adjoint homogeneous 
system. This is known as the Trodhohn Alternative" in the theory of integral 
equations, or. more generally, in functional analysis (A. Friedman, p. 189 ff). 

PROBLEM 2,20. Prove Theorem 2.13. 

PROBLEM 2.21. Prove Theorem 2.14. 
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PROBLEM 2.22. Prove that 1{LS*) = X(V) n ±(S*) for 5* C V*. 

PROBLEM 2.23. Prove Theorem 2.18. 

PROBLEM 2.24. Prove Theorem 2.20. 

PROBLEM 2.25. In the finite-dimensional case with given bases, write (2.4) 
in matrix notation and find the relation between the matrices of # and #*. 

PROBLEM 2.28. Prove parts (iii) and (iv) of Theorem 2.22. 

PROBLEM 2.27. Using parts (iii) and (iv) of Theorem 2.22 prove that if 
T C W, then (T) = ^T)1. 

PROBLEM 2.23. In the general case of the dual linear mapping, #*, prove 
that #* satisfies parts (i) and (iii) of Theorem 2.22. 

PROBLEM 2.29. (Abstract homology, ef.. Whitney, p. 346 ff or Greub, p. 178 
ff). Suppose W = V and # is a linear transformation on V with the property 
# 2 = 0. (# is called a differential operator). Show (i) # (F ) C ker#, (ii) #*2 = 0, 
(iii) #*(¥*) c ker#*. Finally, the factor spaces k e r # / # ( F ) and ker #*/#*(¥*), 
called the homology and cohomology spaces of V, respectively, are isomorphic. 
These ideas will arise in a more specific context in Chapter 12. 
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T E N S O R P R O D U C T S P A C E S 

We will describe the space of bilinear functions on a pair of finite-dimensional 
vector spaces as the tensor product space of the duals of those two vector spaces. 
We then consider tensor product spaces of more than two vector spaces. Finally 
we define tensor product spaces in the general case so that they reduce to spaces 
of multilinear functions in finite dimensions. From now on we will denote vectors 
by v, w,,,., which may have subscripts, and linear functions by Greek letters 
a, r , . . . , which may have superscripts. 

3.1 T h e tensor p roduc t of two finite-dimensional vector spaces 

Consider the set of bilinear functions £( \", IT: A). with I ' and IF finite-dimensional 
Notice that this set has certain elements of the following type. Let a C. V and 
r E W*. Then with each fixed pair (a.r) £ F* x W we have the function 
F x W -A given by 

(v, w) t-»- (a • v)(r • w) (3.1) 

By the linearity of a and r this function is bilinear, so it is in £(F, IF;R). (See 
example (ii) in Section 2.2.) Since the values of this function are products of the 
values of a and r, we use the product notation a ® r for this function. That is, 
a % T : V x W —> M is the element of £(F, IF; K) given by (3.1). 

For an example, consider the case where V — Mn and W = RTO. Then a € Rn* 
will have the form a : (vl,... ,vn) H^ OY?/, and r € Rm* will have the form 
T : ( to 1 , . . . , wm) H-» TiW1, (See below Theorem 2.4.) According to (3.1) cr0r will 
be given by a <g> r : ( (v 1 , . . . , vn), (wl,..., wm)) *-* <JiTjVlwK Note that this is a 
special case of example (i) in Section 2.2. Note also, that with bases in V and 
W every element in £(F, W; R) of the form cr <g> r can be represented by such 
examples. 

Now, for each pair (er, r ) £ V* x IT* we have an element a ® r of £(F, IT; R). 
Thus, £(F, IF; R) contains a set of "products", the image set of a mapping 

% : F* x IF* -+ £(F, IF; R) 

given by 

(<x, r) ^ d <g> T (3.2) 
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One easily verifies that ® is bilinear. Thus, a ® r plays two roles: it is a bilinear 
function given by (3.1), and it is in the image of a bilinear map, ®, given by 
(3.2). 

The image set of ® is not a subspace of £(F, IF; R) and, in particular, not 
£(F, IFr;E), since a1 0 r 1 + a2 0 r 2 is not always of the form a <8>T. However, 
when V and W are finite-dimensional spaces, if {e*} is a basis of V* and {5*} is a 
basis of W% then {ei % =?} = {/*'} is a basis of £(F, IF; R) (cf., Theorem 2.10), 
so the set of products does span £(F, W:M). This accounts for the following 
terminology and notation. 

Definition If V and W are finite-dimensional spaces, then the vector space 
£(F,TF:R) is called the tensor (or Kronecker) product of F* and IF*. We write 
£(F, IF: R) — F* ® IF*. (Note that we are using the notation <g> in three different 
ways.) 

Similarly, since in £(F*, W*;R) we have the "product" elements 

« ® w : (er, r ) f-» (<7 • v)(r • w), 

(cf., corollary of Theorem 2.7), the vector space £(F*, W*;R) is the tensor (or 
Kronecker) product of F and IF, and we write £(F*, IF*: R) = F ® IF. 

£(F,F*;R) — V* <g> F is an example of a tensor product space. So is 
£ (F* ,F ;R) = V ® F*. The natural pairing, (—,—) (Section 2.3) is an element 
of F ® F * . 

Theorem 3.1 Given two finite-dimensional rector spaces F and IF. Form 
V : W - £(F". IF~:2) mid tin map . : F x IF • V W with {v.iv) 
defined as above. The pair (F IF ,) has the following properties: 

(i) is bilinear, and .(F x IF) spans F IF 
(ii) If Z is any vector span, and b is ant/ bilinear map. &: I ' / l ! " • Z. tli< n 

then exists a unique linear map. C> : F . I F - Z. onto (6(F x IF)), the linear 
closure of the range of b. and such that h - o r> .; i.e.. on a bilinear map. b. has 
a unique factorization into the product of and a linear map. (1'he fact that 
every bilinear map. b, can be factored into a linear map and a particular unique 
map is referred to as the tin ire rsal property of bilinear maps.) 

Proof (i) These two properties of , : F x II' —• F IF are precisely analogous 
to those of the mapping given by eq. (3.2). (ii) Let \v, w}\ be a basis of 
F IF. Define- o by mapping r, . wf i * 6(r£.»\) and then extending this 
correspondence to all of F . I F by linearity. Every z <-I (&(F x IF); can be 
written : — ei'Jb(r,, iVj). But this is the image of o'Jr, , tv} under <">. so 6 is onto 
i,b{Y x IF)). If 0\ o , - o-i o ,. then (o\ - o-±) • .(»'. w) - 0 for all v. ir. But. 
since { .(/*. m) - v , w : v ^ F. w f- IF} spans F , IF. (o\ — O-i) • A - 0 for all 
A C F . IF. which implies that 0\ o2. L 
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V X Vv • "™̂  r w rr 

z 
Corollary For a bilinear map, h, in Theorem 8.1 (ii) with the additional prop
erty thai the dimension of the linear closure {b(Vx W)) of Us range is dim V x W, 
the corresponding linear map, <j>, is an isomorphism, ofVx W with (b(V x IF)), 

Proof By the theorem, (f> is onto {b(V x IF)). This plus the fact that 
dim(6(V x IF)) — dim V x W makes <f> an isomorphism. D 

Corollary Given spaces F, IF, and Z, there is a natural isomorphism between 
the space £(F, W; Z) of bilinear mappings and the space £ ( F <g> W, Z) of linear 
mappings. 

Proof Problem 3.4. D 

At the beginning of this section we saw that if {e%} is a basis of F* and {5*} 
is a basis of IF*, thee {e* <g> 5 J } form a basis of V* cg» IF*, so for any A € V* <8> W* 
we can write 

,4 = Aij€% ® S7' (3.3) 

and since, by eq. (3.1), e% %> 5J~(u, w) = vlw^ A has values 

4(v,w) = AijV%wi. (3.4) 

Similarly {e$ ® -fcj} form a basis of V ® IF, so for any i G F ® IF, 

A = .4ij'ci <8> £?j (3.5) 

and, since e\ %> Ej(afT) = arr-j., A has values 

^(<T,r) = ^ W j . (3.6) 

PROBLEM 3.1. Write the explicit form of the product v ® w € V ® W as a 
bilinear function if F = Wn and IF = ETO. 

PROBLEM 3.2. Give a specific example in which a1 ®T1 4-<j2®r2 in V*®W* 
is not a product. 

PROBLEM 3.3. Prove part (i) of Theorem 3.1. 

PROBLEM 3.4. Prove the second corollary of Theorem 3.1. 
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3.2 General izat ions, isomorphisms, and a character izat ion 

We can generalize the development of the last section and construct tensor prod
ucts of any finite number of vector spaces. For example, we note that with every 
triple {a,T,UJ) € V* x W* x X* we have an element, of £(F, IV,X;E) 

(v, W,X) f~H* (<T • V)(T - W){UJ • x) 

and we call this function <J®T®CJ. That is, we have a map 0 : V* x W* x X* —* 
£(F. W, X; M) whose images are of the form a 0 r 0 u). We have a theorem 
analogous to Theorem 3.1. In particular. 0 is trilinear and ®(F* x W* x X*) 
spans £(V, W, X; R), which we now denote by F* 0 W* 0X*. Also, any trilinear 
map has a unique factorization into the product of 0 and a linear map, 

We can generalize eqs. (3.3) - (3.6). In particular, if {s\}, {e|}? a n d {e|} 
are bases respectively of V*,W*, and X*, then {e| <g> c | 0 £§} is a basis of 
V* 0 W* 0 X* and for any 4 € F* <g> IF* <g> X*, 

A = Aijk^i 0 ^2 ® % (3.7) 

and A has values 

/t(u, w, x) = AijkV%tiPxk (3.8) 

Generally, given m vector spaces F t , . . . , FTO, we can construct Fi 0 • • • 0 FTO. 
If {e* } . . . . , {e™ } are bases of V\,..., Fm(ife = 1 , . . . , «& where n-k = dim 14) 
then \e\ 0 • • - 0 e™ } is a basis of V\ 0 • • • 0 Vm and for any A € V\ 0 • • • 0 FTO, 

A = ^ i l -* -eJ 1 0 - - - 0 e ™ (3.9) 

and 4̂ has values 

^(cr1
5 . . . , erm) = A^"'ima\ • • • < ; , (3.10) 

Note that dimFi 0 • • • <g> FTO = ?i-j • • • n m . This is a special case of the general 
result stated above Theorem 2.10. (See Problem 2.10.) 

Since we can construct the tensor product of any two spaces, we can form 
the tensor product of tensor products. In general, the operations of taking tensor 
products and/or duals can be iterated, resulting in an apparently bewildering 
proliferation of vector spaces. The following theorems help to keep things under 
control. 

Theorem 3.2 The vector spaces V 0 W 0 X, (V 0 W) 0 X, and V 0 (W 0 X) 
are naturally isomorphic. 

Proof A bilinear map b : (V 0 W) x X —> V 0 W 0 X is determined by 
(v 0 w, x) !-»• v 0 w 0 x. (For each fixed v 0 w this prescription determines 
a linear map from X to F 0 W 0 X, and for each fixed x, by Theorem 3.1, 
since (v, w) *-* v 0 w 0 x is bilinear, it determines a linear map from V 0 W to 
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V % W <g> X.) Then by Theorem 8.1 we have the linear map (p '• v(<g>w) ® x 
V Qy XU %t) X. 

( V r ® f ) x l l ( F § l f ) § I 

V 0 W <g> X 

From the trilinear map t:VxWxX^>(V® W) <g> X given, by (v, w, x) 
(v 0 w) ® x we have the linear map -ip : v %> w ® x H~• (v ® w) ®x 

V x W x X 6& V %W®X 

•Ip 

{V®W)<8> X 

But (pop and xpcxp are both identities so <ft is an isomorphism. A similar argument 

shows that V % (W % X) and V % X % X are isomorphic. • 

T h e o r e m 3.3 V 0 W and W ® V are naturally isomorphic. 

Proof Problem 3.7. D 

We saw that .- is bilinear, and. in particular, distributive with respect to 
-* . We might be tempted to infer from Theorems 3.2 and 3.3 that is also 
associative and commutative. However, in general, these1 properties are not even 
defined for and, when they are. they are not generally true (see Problem 3.8). 
When wo define a closely related mapping in Section 1.3 this situation will be 
partially rectified (sex1 Theorem 4.G). 

Theorem 3.4 (1~ ':, W)* i* naturally isomorphic to F" •'[ W*\ 

Proof The result follows immediately from the second corollary of Theorem 
3.1 for the case Z - ?„. J 

Corollary (V* <g> W*)* is naturally isomorphic to V 0 W. 

Theorem 3.4 implies that V % W and V* <g> W* are dual spaces with respect 
to the natural pairing. It is an example of "duality" in tensor product spaces (see 
Section 4.1). It is important to note that Theorem 3.4 is not necessarily valid if 
V and W are not both finite-dimensional. 

We have seen that when V and W are finite-dimensional, the pair {V® W, <g>) 
has the properties listed in Theorem 3.1, which with its corollaries, in turn, lead 
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to the isomorphisms described above. Xow suppose we abstract this situation a 
bit: suppose F, IF. and X are any vector spaces, and $ is any map I ' x IF • X. 
and suppose the pair ('A'.$) satisfies the properties listed in Theorem 3.1. It 
turns out that (A".$) is really no more general than (F • 11". ): that is, the 
properties of Theorem 3.1 essentially uniquely determine the pair (A". $). 

Theorem 3.5 If (X. 5) has th< properties of Theorem ,i.l. then X y F •: IF 
and $ - 6 r-> .; where o is the isomorphism V ;Tl' —-A'. 

Proof Letting # have the role of h in Theorem 3.1 we have # = (f> o 0 where 
<£ : F ® IF —* X. Then letting ® have the role of b in Theorem 3.1 we have 
0 = ^ o | where ip : X —• V ® IF. Combining these two equalities we get 
| = f o ̂  o | and <g> = ?/> o </> o <g>. Since | ( F x IT) spans A, # o t/i is the identity 
on A, so 4> is onto. Since ®(F x IT) spans F 0 IF, iftocfiis the identity on F <g> IF 
so 0 is 1 — 1. Hence (p is an isomorphism. D 

On the basis of Theorem 3.5 we can now say that given two finite-dimensional 
vector spaces, there is one and only one tensor product space with the properties 
of Theorem 3.1, and that tensor product space is the space V %> W defined in 
Section 3.1. The major significance, however, of the characterization of Theorem 
3.1 is that it can be extended to any two vector spaces, not necessarily finite-
dimensional. The uniqueness requirement is shown exactly as in the proof of 
Theorem 3.5, as in that proof the nature of F %> W is irrelevant. The existence 
requirement will be satisfied by construction, in the next section. Clearly, the 
constructed space will have to reduce to F ® IF = £(F*,IF*;K) in the finite-
dimensional case. 

PROBLEM 3.5. Prove that £(Fi? • • •, Vn, IF*; 1) ^ £(Fi ® • • • <g> Vn, W). 

PROBLEM 3.8. The proof of Theorem 3.2 requires only that the tensor prod
ucts satisfy Theorem 3.1 and its generalizations. Hence it is valid for arbitrary 
vector spaces (not necessarily finite-dimensional). Give a simpler proof of The
orem 3.2 by using Theorem 3.4. (Note, however, that Theorem 3.4 is only valid 
in the finite-dimensional case.) 

PROBLEM 3.7. Prove Theorem 3.3 for arbitrary vector spaces (not necessarily 
finite-dimensional). 

PROBLEM 3.8. If F and W are the same, then F 0 W and W % V axe the 
same space, but in general v <g> w / w <g> v. 

PROBLEM 3.9. Generalize Theorem 3.4 to (Fi <g> F2 <g> • • • % Vpf ^ V? <g> F | <R> 
•••®v;. 
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In Section 3.1. we defined tensor products of finite-dimensional vector spaces. 
In the general case where V and/or W may not be finite-diineiisioiial we still 
have the maps . ;• : F"* x \V* — £(\\ \V:R) given by cq. (3.2) and . ;• : F x IF — 
£(F*. 1F*:E) in Theorem 3.1. However, now the sets . .(F* x l\"f) and . . (Fx 11*) 
do not necessarily span the spaces £(FH";R) and £(F r ,H* r ;R) . These latter 
spaces may be too large. 

It turns out that there are a space and a mapping which satisfy Theorem 3.1. 
As we have already pointed out, this can be the only such pair. We will denote 
it by (F . II*. . . ) . That is. the tensor product of F and II*. (F .. 11". .), will be 
defined by the properties of Theorem 3.1. 

CJiveii F and W to get a space F •: W. and a mapping. which satisfy 
Theorem 3.1, we start out by considering the vector space. ~Rn

 x . of all real-
valued functions with domain I ' x II' which vanish at all but a finite number 
of points. As we saw in Section 1.1. then1 is a 1 1 correspondence between 
elements (r. w) E F x IT and functions ,f((Mri E !R„ " which are 1 on (i\ir) 
and 0 otherwise, and {f{r.1r) '• (*'• "') r. F x 11"} is the basis of RQ "1! . We can 
think of I ' x W >'. R0 ' , and we will use the notation (i\ ir) for /.,..„.). 

Now consider the set of all elements of 3LU " of the form 

(olV] — o2t'2J>1n<i — b2ir->) — o1!)1 {r\. ir\ ) 

- alb2(v1,w2) - a2bl(v2,wi) - a2b2{v2,w2) 

with v\,V2 € F, w\,W2 € IF and al,a2,bl,b2 £ R. They generate a subspace, 
iV. Then we put 

V®W = MlgxWfN. 

That is, V ® W is a set of equivalence classes of functions from V x W to M. The 
map 

K>; — Til 

is the restriction to F x IT of the projection I I : R | x w —> RQ X W' /Ar. 

Theorem 3.6 2%e pair (V ® IT, <g>) defined above has the properties of Theorem 
3,1. 

Proof (i) Since IT is linear and maps all of N to 0, 

Ii{alvi + a2V2,b1wi + b2W2) — alblH(vi^wi) + a1&2n(t,i, W2) 

+a2b1Il(v2,w-1) + a2b2U(v2,w2) 

so ®(alvi + a2V2,bl'Wi + b2W2) — albl ® (#1,1^2) + ••• for all v\,V2 £ V, 
W1./W2 € IF, and a1 ,a?,bl,b2 £ M. That is, ® is bilinear. Also, since II is linear 
and V x W spans E F x W / , ®(F x IF) = Il(V x IT) spans F <g> IF. 

(ii) Now suppose we have 6 : F x W —• Z, We delne a linear map 
# : lip xW'~>• Z by aP{vi,,Wj) H-» o^b(vi,Wj). Then we define a map 0 :F®IF ~™> Z 


