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Preface

Start by doing what is necessary, then do what is possible and suddenly you are doing
the impossible.

(Saint Francis of Assisi)

Preface 2018

Since the appearance of my previous book (The lattice Boltzmann equation, Oxford
U.P, 2001), Lattice Boltzmann has known an exponential growth of methodologies and
applications, especially in connection with the simulation of complex and soft-matter
flows. Providing a complete and in-depth account of such burgeoning developments
is probably beyond the scope of any self-contained book and by all means beyond
the capability, knowledge and time-energy of the present author. As a result, this
second book remains more modest in scope: it just provides an account of the major
developments, with no aim of completeness. At the same time, it is also more ambitious,
because it aims at discussing research items beyond Navier-Stokes hydrodynamics,
with special focus on interfaces between fluid dynamics and allied disciplines, such as
material science, soft matter and biology. Moreover, it also ventures into the realm of
quantum and relativistic fluids.

As with the first book, the only major criticism I have heard of, is lack of self-
containedness for readers not trained in physics. A single chapter of kinetic theory,
apparently, did not fill the bill. In response to this just criticism, I have considerably ex-
panded the pedagogical part on continuum kinetic theory. To the point that, with some
doses of wishful thinking, I hope that this part can be used to stand-alone as an introduc-
tory text to the kinetic theory of fluids. In response to significant developments which
have occurred in the last decade, I have also expanded the quantum-relativistic part,
hoping that this may help capture the attention of the growing community dealing with
the fascinating confluence between fluid dynamics, condensed matter and high-energy
physics which we are witnessing these days.

This book splits naturally into three main components: the first one deals with basic
notions continuum kinetic theory, the fundamentals of early-day lattice kinetic theory, a
few applications thereof, and finally a few more advanced topics in lattice kinetic theory.
All in all, this first part is basically concerned with macroscopic fluid dynamics.

Thes second part deals with lattice kinetic theory for generalized hydrodynamics be-
yond Navier-Stokes, basically the territory where the physics of flowing matter makes
contact with its allied disciplines, soft matter in the first place.

Finally, the third part deals with fluids beyond Newtonian mechanics, namely relativ-
istic and quantum fluids. This latter part is less voluminous, but it holds its own place
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in view of the amazing developments at the frontier between fluid dynamics, condensed
matter and high-energy physics, which have taken place in the last decade, holographic
fluids and graphene on the frontline. It is still much less developed than the mainstreams
covered in the two parts above, but very rich in promise, I believe.

As usual, I tried to keep math at a minimum, but hopefully never below the threshold
where equations cannot be traded for “words and pics.”

As a result, I am reasonably confident that reading this book is not “like chew-
ing glass,” as Sydney Chapman once commented on his wonderful but demanding
Chapman-Cowling cornerstone.

I also tried to watch against another danger, wittily described by Sir Winston
Churchill: “By its very length, this report defends itself against the risk of being read.”
Not sure I managed, but I did my best.

For any mistakes, typos and/or inconsistencies which, I’m afraid, are inevitably left in
a near-800 pages, single-handed book, I have no chance but appealing to the reader’s
benevolent understanding and cooperation.

Enjoy!
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Part I

Kinetic Theory of Fluids

The first Part of this Book is entirely devoted to pedagogical material, namely the kinetic
theory of fluids.

Since the Lattice Boltzmann method was historically devised to solve the equations
of continuum fluid mechanics, in Chapter I we present a rapid survey of such equations
and introduce the motivations for a microscopic approach to fluid dynamics, namely the
kinetic theory of fluids.

Chapter II presents the basic notions of kinetic theory, with special focus on its
mathematical cornerstone: Boltzmann’s kinetic equation. In Chapter III we discuss the
approach to equilibrium and the attendant notions of entropy and irreversibility. Chapter
IV provides an elementary illustration of transport phenomena and their link to the un-
derlying microphysics. In Chapter V we discuss the hydrodynamic limit of Boltzmann’s
kinetic theory, taking to the Navier-Stokes equations of continuum fluid mechanics,
while in Chapter VI we illustrate Grad’s formulation of generalized hydrodynamics,
beyond the Navier-Stokes picture. Chapter VII deals with extensions of Boltzmann’s
kinetic theory to the case of dense fluids. Chapter VIII illustrates simplified versions
of the Boltzmann’s equation, so called Model Boltzmann equations, which have been
devised in order to facilitate its analytical and numerical solution. Finally, Chapter IX
provides a cursory view of stochastic processes of direct relevance to the kinetic theory
of fluids, such as Brownian motion and the associated Langevin equations.

The above material was prompted in response to the only substantial criticism re-
ceived by the previous book, namely lack of self-containedness for readers with no
specific training in statistical physics, and particularly in kinetic theory. This material
is meant precisely to those readers, hopefully providing a satisfactory fix to the gap they
have kindly highlighted. Those with no urge of filling such gap, can safely skip to Part 2.
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Why a Kinetic Theory of Fluids?

In this chapter we present the Navier–Stokes equations of fluid mechanics and
discuss the main motivations behind the kinetic approach to computational fluid
dynamics.

For, sometimes, the longest tour is the shortest way home.

(C.S. Lewis)

1.1 The Navier–Stokes Equation

Fluid flows are a pervasive presence across most branches of human activity and daily life
in the first place. Although the basic equations governing the motion of fluid flows have
been known for nearly two centuries, since the work of Claude-Louis Navier (1785–
1836) and Gabriel Stokes (1819–1903), these equations still set a formidable challenge
to our quantitative, and sometimes even qualitative, understanding of the way fluid mat-
ter flows in space and time. Climate and meteorological phenomena are among the most
popular examples in point, as expressed by Bob Dylan’s vivid metaphor “The answer,
my friend, is blowing in the wind.”

At a first glance, the Navier Stokes equations (NSEs) look relatively harmless. In
conservative Eulerian form (1):

{
∂tρ + ∇ · (ρ�u) = 0
∂t(ρ�u) + ∇ · (ρ�u�u + p) = ∇ · ��σ + �f ext (1.1)

In (1.1), n and ρ = nm are the fluid number and mass density (m is the mass of
the molecules), respectively, p is the fluid pressure, �u is the fluid velocity and �f ext is the
external force per unit volume. Whenever such force can be derived from a potential,
say �, the latter adds to the total fluid pressure, ptot = p + n�. The shear-stress tensor ��σ
represents dissipative effects, as induced by the deformation of the fluid elements.

The Lattice Boltzmann Equation. Sauro Succi, Oxford University Press (2018).
© Sauro Succi. DOI: 10.1093/oso/9780199592357.001.0001
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The first of these two equations is simply a statement of mass conservation, as applied
to a small but finite volumlet of fluid. The change in time of the mass in the volumlet
is due to the unbalance between the incoming and outgoing mass fluxes. The second
equation is basically Newton’s equation in reverse, m�a = �F , as applied to the same
volumlet. In this, “small” means much smaller than the typical scale of change of the
macroscopic fields, and yet, large enough to allow the neglect molecular fluctuations.

The first term on the left-hand side of the second equation is the change per unit
time of the momentum in the fluid volumlet at a fixed position in space (Eulerian rep-
resentation). The second term on the right-hand side is the flux of momentum across
the surface of the volumlet due to the fluid motion itself, namely the inertial forces per
unit volume. The third term on the left-hand side is the force per unit volume exerted
by the adjacent fluid along the normal surface (pressure gradient). The first term on the
right-hand side represents the contact forces tangential to the surface, the main source
of strain, hence dissipation, on the fluid.

The NSE represents four equations for eleven unknowns, density, pressure, three
components of the velocity field and six components of the (symmetric) stress tensor.
Hence, to close the system, they must be supplemented with seven extra-relations.

The first is the equation of state, relating pressure to density and temperature

p = p(ρ,T) (1.2)

For an ideal gas, pressure depends linearly on the density

p = nRT (1.3)

whereR is the universal gas constant. For non-ideal gases, the relation is no longer linear
due to the contribution of potential energy.

The other six constraints come from the so-called constitutive relations, namely an
expression of the stress tensor in terms of the gradient of the velocity field.

In the simplest instance, the so-called Newtonian fluids, this relation takes the
following linear form:

��σ = λ(∇ · �u)I + μ(∇�u + �u∇) (1.4)

where μ is the shear viscosity and λ is related to the bulk viscosity, μb, via

μb = λ +
2
3
μ. (1.5)

On stability grounds, both viscosities must be non-negative, although the bulk viscosity
is often taken to be zero (Stoke’s hypothesis).

Note that these constitutive relations are heuristic in nature; they state that the strain
of the fluid resulting from a given applied stress is linearly proportional to the stress
itself.
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Although fairly reasonable (for small enough strains), this does not follow from
any fundamental law of Newtonian mechanics. Indeed, constitutive relations are not
universal, i.e., they take different forms depending on the specific class of fluid
considered.

The simplest case, λ and μ constant, designates so-called Newtonian fluids.1 For
more complex fluids, typically endowed with internal structure, the constitutive relations
may become nonlinear, nonlocal in space and time, and non-isotropic as well.

Regardless of the specific form of the constitutive relations, the physical content of the
NSE remains quite transparent, basically mass and momentum conservation as applied
to a small, yet finite, volume of fluid (volumlet).

1.1.1 Elementary Derivation of the Navier–Stokes Equations

Having noted that the continuity equation is simply a statement of mass conserva-
tion, while the second NSE is basically Newton’s law plus a statement of strain-stress
linearity, we now proceed to an elementary derivation of the statements based on sim-
ple arguments of continuum mechanics. With reference to the square volumlet of size
�V = �x�y depicted in Figures 1.1 and 1.2 (in two dimensions for simplicity), the
change of mass in the volumlet over a time interval δt is given by

δ(ρ�x�y)
δt

=
[
(ρux)

(
x –

�x
2

, y
)
– (ρux)

(
x +

�x
2

, y
)]
�y (1.6)

+
[
(ρuy)

(
x, y –

�y
2

)
– (ρuy)

(
x, y +

�y
2

)]
�x

where the right-hand side is the sum of the incoming and outgoing mass fluxes.

ρ(x, y)

uy  x, y +     
Δy

2
ux  x, y +     

Δy

2

ux  x, y −     
Δy

2
uy  x, y −     

Δy

2

ux  x +       , y
Δx

2

uy x +       , y
Δx

2

uy x –       , y
Δx

2

ux  x –       , y
Δx

2 Figure 1.1 The mass balance illus-
trating the elementary derivation of
the continuity equation. For sim-
plicity, the two-dimensional case is
considered.

1 This is a bit ironic, given that constitutive equations represent precisely the only component of the NSEs
which goes beyond a plain transcription of Newtonian physics from the microscopic to the macroscopic level!
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F(x, y)

Pyy  x, y +     
Δy

2

Pxx  x +      , y
Δx

2

Pyx  x, y +      
Δy

2

Pxy x –       , y
Δx

2

Pxx x –       , y
Δx

2

Pyx  x, y –      
Δy

2
Pyy  x, y –      

Δy

2

Pxy  x +      , y
Δx

2

Figure 1.2 The momentum balance
illustrating the elementary derivation
of the NSEs.

Dividing by �x�y, and taking the continuum limit δt→ 0 and �x→ 0, we obtain

∂tρ = –∂x(ρux) – ∂y(ρuy) (1.7)

which is precisely the continuity equation.
By the same token, the change of momentum along the x direction in the volumlet

over a time interval δt is given by

δ(ρux�x�y)
δt

=
[
(ρuxux)

(
x –

�x
2

, y
)
– (ρuxux)

(
x +

�x
2

, y
)]
�y (1.8)

+
[
(ρuxuy)

(
x, y –

�y
2

)
– (ρuxuy)

(
x, y +

�y
2

)]
�x

The first two terms on the right-hand side represent the flux of momentum along x,
entering across the left facelet at x – �x/2, minus the same flux exiting across the right
facelet at x +�x/2. The other two terms represent the mass flux along x, entering along
y across the top and bottom boundaries, respectively (see Fig. 1.1). Dividing by �x�y,
and taking the continuum limit δt→ 0 and �x→ 0, delivers

∂t(ρux) = –∂x(ρu2x) – ∂y(ρuxuy) (1.9)

This accounts for the convective term on the left-hand side of the momentum equation.
Pressure and dissipative effects are represented by the contact forces acting on the

four surfaces of the two-dimensional volumlet. By summing the forces, i.e., change of
momentum per unit time, acting upon the four faces of the volumlet along x, we obtain
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fx�x�y =
[
Pxx

(
x –

�x
2

, y
)
– Pxx

(
x +

�x
2

)]
�y

+
[
Pxy

(
x, y –

�y
2

, y
)
– Pxy

(
x, y +

�y
2

)]
�x

Using the standard definition of the pressure, namely

p = Pxx = Pyy = Pzz

and dividing again by the area of the volumlet, we obtain

fx = ∂xp – ∂yPxy (1.10)

Summing this to (1.9) delivers precisely the x component of the NSEs.
This shows that the NSEs are essentially Newton’s equations

d
dt
(m�N�u) = �V�f (1.11)

as applied to the finite volumlet of volume �V and mass m�N = ρ�V .
The forces on the right-hand side of the NSE are most conveniently split into

conservative and dissipative components, respectively.
The former is given by

�f con = –∇(p + n�) (1.12)

where we have assumed that the external force derives from a potential�, i.e., �F = –∇�.
The overall pressure

ptot = p + n� (1.13)

plays the role of a generalized potential. The most familiar case is perhaps the one of a
fluid in a gravitational field, in which case � = –mgz, g being the gravitational accelera-
tion and z the elevation of the fluid element (minus sign indicates that lower-lying fluid
layers experience higher hydrostatic pressure).

For perfect fluids, i.e., (idealized) fluids with strictly zero dissipation, NSE go by the
name of Euler equations. Even though Euler fluids represent a very useful idealization,
any real fluid is bound to display some form of dissipation, especially in the vicinity of
solid walls (we dispense here with quantum effects leading to superfluidity).

According to the NSE, the dissipative force is given by

�f dis = ∇ · ��σ (1.14)

As anticipated, this is not implied by Newtonian physics.
Indeed, at the level of continuummechanics, it cannot be derived from first principles,

but must be postulated based on general heuristics guidelines. As we shall see, such
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first-principle microscopic derivation comes quite naturally at the level of the kinetic
theory of fluids.

Notwithstanding the heuristic nature of the dissipative force, the NSEs prove
amazingly robust, whence their spectacular success in describing the physics of fluids
under an impressively broad range of conditions.

The reason is that they encode very basic principles of Newtonian mechanics, plus
a (very reasonable) assumption of linearity between the applied stress and the resulting
strain. This immunizes them against the vagaries of the underlying microscopic inter-
actions, a strong manifestation of what statistical physicists use to call by the beautiful
name of Universality.

1.1.2 Navier–Stokes Equations in Lagrangian Form

The NSEs, as given in eqns (1.1), come in mathematically conservative form, in that the
time change of density and momentum is driven by the divergence of a corresponding
vector or tensor.

For many fluid-dynamic problems it proves expedient to recast them in a form which
emphasizes the transport along the material-fluid lines, i.e., the lines whose tangent
identifies with the fluid velocity itself.

Using the identities: ∇ · (ρ�u) = �u · ∇ρ + ρ∇ · �u and ∇ · (ρ�u�u) = �u · ∇(ρ�u) + ρ�u · ∇�u,
the NSE can be cast in so-called Lagrangian form, namely (2):

Dtρ ≡ ∂tρ + �u · ∇ρ = –ρ ∇ · �u (1.15)

Dt�u ≡ ∂t�u + �u · ∇�u = –
∇p
ρ

+
1
ρ
∇ · ��σ (1.16)

The Lagrangian representation emphasizes the role of the material derivative Dt; both
density and velocity are advected by the velocity itself, with no change along the fluid
trajectory. Changes, on the other hand, are described by the terms on the right-hand side.

The qualitative difference between the Eulerian and Lagrangian viewpoints is
sketched in Fig. 1.3.

For instance, the continuity equation describes a process whereby the density is car-
ried with no change “on the back” of a fluid element, from position �x to �x+ �udt in a time
lapse dt. Changes then occur due to the compressibility term on the right-hand side.

For the case of incompressible fluids, characterized by a divergence-free (solenoidal)
flow velocity:

∇ · �u = 0 (1.17)

the density looses the status of a space-time dependent field and can be set to a constant,
conventionally ρ = 1. In this case, the solenoidal condition (1.17) takes the role of a
kinematic constraint on the velocity field.

Since the material derivative is nothing but the acceleration in a frame moving with
the fluid, the Lagrangian form of the Euler equation (zero-dissipative force) best reveals
its genuine relation to Newtonian mechanics. The left-hand side is the acceleration, and
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t1

t2

t3

Figure 1.3 The Eulerian (top-left) and the Lagrangian
(bottom-right) approaches to the physics of fluids. In the Eulerian
approach, the observer stands still at a given space location and
watches the fluid moving in and out of the observing box. In the
Lagrangian approach the observer “goes with the flow.”

the right-hand side is the force per unit mass stemming from the generalized potential
ptot = p + n�.

In fact, leaving only ∂t�u on the left-hand side identifies three type of conservative
forces per unit mass, namely:

• Inertial: �F
ine

m = –�u · ∇�u
• Pressure: �F

pre

m = –(∇p)/ρ
• External: �F

ext

m = –n∇�

The inertial forces account for the kinetic energy of the fluid. In the absence of
dissipation, the total energy per unit volume

h = ρ
u2

2
+ p + n� (1.18)

is conserved along a fluid trajectory. This important statement of conservation is known
as Bernoulli theorem, a cornerstone of hydrostatics.

Finally, we note that for an observer living in a local frame moving with the fluid,
i.e., �u ≡ 0, the inertial forces disappear altogether. This substantial simplification lies at
the heart of an important family of Lagrangian techniques for the numerical solution of
the NSEs.
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1.1.3 Navier–Stokes Equations in Coordinate Form

For the purpose of deriving hydrodynamics from kinetic theory, a task that shall be
undertaken in chapter 5, it proves expedient to cast the NSE in coordinate form, that is

∂tρ + ∂a(ρua) = 0 (1.19)

∂t(ρua) + ∂b(ρuaub + pδab – σab) = nFexta (1.20)

where Latin indices denote the spatial coordinates x, y, z and δab is the Kronecker delta.
As usual, repeated indices are summed upon.

This form emphasizes the conservative nature of the NSEs, while the coordinate no-
tation lends transparency to the algebraic manipulations required to derive it from the
underlying Boltzmann kinetic equation.

In particular, the momentum-flux tensor

Pab ≡ ρuaub + pδab – σab (1.21)

will be shown to play a key role in the kinetic theory of fluids.
It is left as an exercise for the reader to verify that expressions (1.1) and (1.19–20)

are basically the same wine in two different bottles.

1.2 Computational Aspects of the Navier–Stokes Equations

The NSEs rest on the representation of the fluid as continuum media, a pervasive field
filling up space, with “no holes” in between. For more than a century, and with special
thanks to Ludwig Boltzmann (1844–1906), we know that, at the atomic scale, matter
is granular, made up of tiny atoms or molecules of sub-nanometric size. Being so tiny,
these atoms are also very many, of the order of the Avogadro numberNav ∼ 6×1023 in a
little more than a centimeter cube of water (in fact, about 20Nav). As a result, it would be
foolish, and needless as well, to attempt a quantitative description of a macroscopic fluid
as collection of Avogadro numbers of atoms! The continuum representation achieves a
spectacular compression of information: from Avogadro’s number of molecules, to just
a fistful of continuum fields, density, velocity and pressure.

Beware, though, that such simplification is subtler than it seems. Indeed, by definition,
a continuum field contains an infinite amount of information, and consequently this
compression is, strictly speaking, an infinite inflation instead!

Of course, whenever analytical techniques are available to deal with such infinities,
theory comes into its zenith.

However, as for most nonlinear theories, such glorious achievements are mostly
confined to idealized situations.

As a result, the actual import of the previous compression of information is basically
dictated by the discrete scale at which numerical solutions can be worked out.

Be that as it may, the continuum picture is the dominant one, to the point that
the quantitative study of fluid dynamics is still often taken as a by-name for solving
the NSEs.
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This has spawned a very successful and still fast-growing discipline known as Compu-
tational Fluid Dynamics (CFD), a leading forefront of Computational science. CFD has
made tremendous progress over the last half century, with a distinguished tradition trac-
ing back to the famous John von Neumann’s (1903–57) 1949 “breaking-the-deadlock”
report, where he advocated the use of digital simulation to gain knowledge on a variety
of fluid phenomena (3).

Von Neumann’s bold vision is well captured by his famous statement: “[W ]hat we
cannot control, we shall predict, what we cannot predict, we shall control.”

In actual facts, such bold vision was depleted by the discovery of chaos and, more
specifically, by the phenomenon of turbulence, which is a prominent reason (but surely
not the only one) why fluid dynamics cannot be declassified under the rubric of “old
science.”

Indeed, along with major progress, CFD has also taught us a very down-to-earth
lesson: despite their harmless look, the NSEs prove exceedingly hard to solve on digital
computers (let alone analytics).

As anticipated, one of the main reasons is turbulence, the name of nonlinearity when
it comes to the physics of fluids.

Let us consider for simplicity the case of incompressible flows, for which the continuity
equation reduces to the solenoidal condition on the velocity field given by (1.17). For
such flows, the density is constant in space and time and, consequently, it can be scaled
out from the equations by setting it to the conventional value ρ = 1.

The momentum equation then simplifies as follows:

∂t�u + �u · �∇�u = ν��u – ∇p (1.22)

where ν = μ/ρ is the kinematic viscosity.
Turbulence results from the competition between large-scale advection, the term

�u · ∇�u, and small-scale dissipation, the term ν��u.
This ratio is measured by the Reynolds number

Re =
UL
ν

(1.23)

This number easily exceeds a million in many daily-life fluid phenomena, such as a car
at a standard speed of 100 Km/h.

1.2.1 Why Is the Reynolds Number so Large?

The next natural question is: why is the nonlinearity so overwhelming over dissipation?
The reason is best highlighted by recasting the Reynolds numbers as follows:

Re =
U
cs

L
lμ

=
Ma
Kn

(1.24)

an expression also known as the Von Karman relation (after Theodor von Karman,
1981–63).
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In (1.24), cs is the speed of sound and lμ = ν/cs is the mean-free path, i.e., the average
distance traveled by a molecule before colliding with another molecule. Furthermore,

Ma =
U
cs

(1.25)

is the Mach number (Ernst Mach, 1838–1916), the ratio of fluid to sound speed, and

Kn =
lμ
L

(1.26)

is the Knudsen number, after the Danish scientist Martin Knudsen (1871–1949).
In air, molecules travel about one-tenth of a micron before colliding, which means

that for an ordinary macroscopic object, say a car, featuring L ∼ 1 m, the ratio L/lμ is
about 10 million: here we are with huge Reynolds numbers!

Indeed, the Mach number U /cs is typically in the order of unity or less; a car traveling
at 100 Km/h features Ma ∼ 0.1, since the speed of sound in air in standard conditions
is about cs ∼ 300 m/s.

In summary, the Reynolds number is large because it measures the length of the car in
units of the mean-free path! The point is that advection acts at macroscopic scales, while
dissipation takes over at much shorter scales, known as the dissipative or Kolmogorov
scale, after the famous scaling theory formulated by the Russian mathematician A.N.
Kolmogorov (1903–87) back in 1941.

According to this theory, the smallest dynamically active scale in a turbulent flow at a
given Reynolds number Re is given by

ld =
L

Re3/4
(1.27)

Thus, the number of degrees of freedom in a turbulent flow of size L is approximately:

Ndof =
(
L
ld

)3

∼ Re9/4 (1.28)

For an ordinary flow at Re = 106, this makes about Ndof ∼ 1014 degrees of freedom, still
way less than the some 50 Avogadro’s number of molecules contained in a cubic meter of
air, and yet far in excess of those affordable even on the most powerful supercomputers
(current leading-edge simulations of fluid turbulence are handling of the order of ten
billion degrees of freedom).

This, combined with the fact that fluids of practical interest typically move in highly
complex geometries (cars, airplanes and the like), makes the ordeal of solving the NSE
an extremely difficult one. This is essentially the reason behind the relentless pursuit of
innovative computational methods for fluid flows.

The overwhelming majority of CFD methods focus on various discretizations of the
NSE, as a set of nonlinear partial differential equations. That is, one starts from the NSE
in their continuum form, and devises different methods to represent such equations on
a discrete grid, be it fixed in space (Eulerian approach) or moving along with the fluid
(Lagrangian approach).
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In order for the simulation to be spatially resolved, the grid spacing must be smaller
than the Kolmogorov dissipative scale, namely

�x < ld (1.29)

This shows that the actual number of grid points, Ngrid = (L/�x)3, must necessarily
exceed the number of physical degrees of freedom. These bounds are dictated by the
basics physics of turbulence; hence they do not depend on the specific discretization
procedure. However, they speak clearly for computational requirements of CFD.

As we shall see, the Lattice Boltzmann equation falls in the line of a major para-
digmatic shift, first opened up by its forerunner, the Lattice Gas Cellular Automata
(LGCA) method.

That is computational fluid dynamics without directly discretizing the NSEs.
Instead of discretizing partial differential equations, the idea is to track the dynam-

ics of a fictitious set of representative particles, supporting macroscopic fluid behavior
described by the NSEs, as an emergent phenomenon.

In other words, one does not solve the emergent equation itself (Navier–Stokes), but
the underlying stylized microscopic dynamics instead.

The obvious question is: what’s the point of such an indirect approach?
The answer, which we shall spell out in the sequel, is indeed not completely obvious.

1.3 The Benefits of Kinetic Extra Dimensions

The advantage is that, as we shall expound in the course of this book, particle dynamics
can be made much simpler than the dynamics of hydrodynamic fields.

For instance, force-free particles move along straight trajectories, while material lines
follow the fluid velocity itself, which is typically highly complex field even in a force-free
fluid.

Let’s expand on the point.
As we shall see, the basic object of Boltzmann’s kinetic theory (see Fig. 1.4) is the

one-particle distribution function (4): f (�x, �v; t), which represents the probability density
of finding a molecule at position �x in space at time t, with a given velocity �v.

In actual practice,

�N = f��x��v (1.30)

is the mean number of particles in the phase-space element of volume��x��v. From amere
fluid dynamic perspective, f (�x, �v; t) is a highly redundant object, as the information on
the molecular velocity has no explicit bearing on the fluid equations, which only depend
on space and time. As a result, at first sight, the Boltzmann equation looks like a total
overkill when it comes to fluid dynamics, six dimensions: three in ordinary space and
three in velocity space, against just three!
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Figure 1.4 The meaning of the Boltzmann distribution func-
tion. Fifteen particles lying in the segment �x each with its own
velocity in the range –�v2 < v < �v

2 are represented by fif-
teen points in the phase-space element �x�v. The distribution
function is the density of particles in this six-dimensional phase
space (two dimensional in the figure).

1.3.1 Molecular Streaming versus Fluid Advection

However, precisely because velocity and space coordinates are independent variables,
in phase space the information travels in a much simpler way than in ordinary configuration
space.

In fact, the Boltzmann distribution f (�x, �v; t) moves along straight lines defined by the
molecular speed, namely

d�xv = �vdt, (1.31)

where �v carries no dependence on space or time.
This is what we refer to as molecular free-streaming, as opposed fluid advection, which

proceeds along the material lines in ordinary space (see Fig. 1.5).

t1

t2

t3

Figure 1.5 Fluid trajectory (curved line) versus molecular
streamlines, here represented by just four directions for simplicity.
The four directions are independent of the spatial location of the
fluid element.
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The latter are defined by

d�xu = �u(�x; t)dt, (1.32)

The inertial term �u · ∇�u in the NSE is just the acceleration along a material line.
In general, the flow field �u may be a fairly complicated function of space and time,

in contrast to the simple straight molecular trajectories. In the kinetic picture, all this
complexity is absorbed by the Boltzmann distribution f (�x, �v; t), while the streaming of
molecules keeps going along straight lines, no matter how complex the macroscopic field.

In slightly more technical language, hydrodynamic transport in ordinary space, i.e.,
advection, is nonlinear because the material lines are defined by the flow velocity itself,
while molecular transport in phase space, i.e., streaming, is linear because the molecular
trajectories do not depend on the transported quantity, namely f (�x, �v; t).

1.3.2 Molecular Relaxation versus Momentum Diffusivity

The kinetic representation also has profound implications on the description of dissi-
pative effects. In the Navier–Stokes picture, these are described by the divergence of a
gradient, i.e., the Laplace operator. This is because, at a macroscopic level, dissipation
is due to momentum diffusivity across the fluid and the equivalence between space and
time has to be broken to describe irreversible behavior. Consider a fluid driven by a
moving wall; the layers near the wall are set in motion by direct contact with the wall,
and transmit these motions thanks to the diffusion of momentum in the direction per-
pendicular to the wall. If the momentum would not diffuse, the wall would move on its
own with no effect on the fluid. Conversely, the fluid would move along a fixed wall with
no friction (superfluid).

Kinetic theory, on the other hand, does not know about diffusion (an emergent phe-
nomenon); it only knows about molecular collisions. These collisions act in such a way
as to relax the Boltzmann distribution to a local equilibrium, on a time scale which is
basically the average time traveled by a molecule before colliding with another molecule.
The local equilibrium is a Gaussian (Maxwell–Boltzmann) distribution in velocity space,
which depends parametrically on the local fluid density, velocity and temperature. Here,
local means the same spatial position �x and time t at which the Boltzmann distribution
is evaluated.

By definition, fluid quantities show appreciable variations on space and time scales
well above those associated with molecular relaxation. Such scale separation is quintes-
sential to obtain hydrodynamics as the asymptotic limit of kinetic theory as the Knudsen
number is sent to zero.

It can be shown that momentum diffusivity is precisely the macroscopic manifestation
of molecular relaxation. However, since momentum diffusivity emerges from collisions,
and since Boltzmann’s collisions are completely local in space and time, they do not
involve any space-time communication, such communication being in full charge of the
streaming operator only. Nor do they demand any symmetry breaking between space
and time, since relaxation to local equilibrium takes place through molecular collisions.
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As a result, the kinetic formalism does not need any Laplacian operator to represent
diffusion processes, which is again a significant simplification, both from the conceptual
and computational points of view.

1.4 Summary

Summarizing, the NSEs of continuum fluid mechanics prove exceedingly difficult to
solve, as they assemble two nightmares of computational physics: strong nonlinearity
and complex geometry, within a fully three-dimensional, time-dependent formulation.

The kinetic picture trades three extra-velocity dimensions for linearity and locality:
linear streaming versus nonlinear advection and local relaxation versus non-local momen-
tum diffusion. More precisely, it disentangles non-locality and nonlinearity: nonlocality
(streaming) is linear and nonlinearity (collisions) is local. It turns out that lattice ver-
sions of the Boltzmann-kinetic equation make a very attractive computational bargain of
such disentanglement. This is the bottom line of the lattice Boltzmann story to be told
in this book.
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EXERCISES

1. Prove the equivalence between eqns (1.1) and (1.19).
2. The ratio ld /lμ measures the separation between the smallest hydrodynamic and the

microscopic scale. Does this ratio increase or decrease in the limit of infinite Reynolds
number?

3. Derive the equations for incompressible flows from the general eqns (1.1). Hint: use
the identities ∇ · (ρ�u) = �u · ∇ρ + ρ∇ · �u and ∇ · (ρ�u�u) = �u · ∇(ρ�u) + ρ�u · ∇�u.



2

Boltzmann’s Kinetic Theory

Kinetic theory is the branch of statistical physics dealing with the dynamics of
non-equilibrium processes and their relaxation to thermodynamic equilibrium. Es-
tablished by Ludwig Boltzmann (1844–1906) in 1872, his eponymous equation
stands as its mathematical cornerstone. Originally developed in the framework of
dilute gas systems, the Boltzmann equation has spread its wings across many areas
of modern statistical physics, including electron transport in semiconductors, neu-
tron transport, quantum liquids, to cite but a few. In this chapter, we shall provide
a basic introduction to the Boltzmann equation in the context of classical statistical
mechanics.

I am conscious of being only an individual struggling weakly against the stream of
time. But it still remains in my power to contribute in such a way that, when the
theory of gases is again revived, not too much will have to be rediscovered.

(L. Boltzmann)

2.1 Atomistic Dynamics

Let us consider a collection of N molecules moving in a box of volume V at temperature
T and mutually interacting via a two-body intermolecular potential V (�r), �r being the
intermolecular separation between two generic molecules.2

If the linear size s of the molecules, basically the effective range of the short-range in-
teraction potential, is much smaller than their mean-interparticle separation d = (V /N)1/3,

2 The symbol V (�r) denotes the interparticle potential, not to be confused with plain V , the volume of the
system, and �V the barycentric velocity of the two-body problem.

The Lattice Boltzmann Equation. Sauro Succi, Oxford University Press (2018).
© Sauro Succi. DOI: 10.1093/oso/9780199592357.001.0001
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the molecules can, to a good approximation, be treated like point-like structureless
particles.

To the extent where the De Broglie length λ = h̄/mv of these particles is much smaller
than any other relevant length scale, their dynamics is governed by the classical Newton’s
equations: ⎧⎪⎪⎨

⎪⎪⎩
d�xi
dt

= �vi,
d�vi
dt

=
�Fi
m , i = 1,N

(2.1)

where �xi is the position coordinate of the i-th particle, �vi its velocity and �Fi is the force
experienced by the i-th particle as a result of intermolecular interactions and possibly
external fields (gravity, electric field, etc.).

Upon specifying initial and boundary conditions, equations (27.50) can in principle
be solved in time, to yield a fully exhaustive knowledge of the state of the system, namely
a set of 6N functions of time {�xi(t), �vi(t)}, i = 1,N .

This programme is totally unviable and, fortunately, needless as well. Unviability
stems from two main reasons: first, N is generally of the order of the Avogadro number
NAv ∼ 1023, far too big for any foreseeable computer. Second, even if one could store
it, tracking so much information for sufficiently long times would be utopia, since any
tiny uncertainity on the initial conditions would blow up in the long run because of dy-
namical instability of phase space. By dynamical instability, we refer to the fact that any
uncertainity δ0 on the initial positions and/or momenta grows exponentially in time as
δ(t) = δ0eλt. The coefficient λ, known as Lyapunov exponent, is a measure of the tem-
poral horizon of deterministic behavior of the N-body system, in that at times greater
than λ–1, the growth of uncertainity is such to prevent any deterministic prediction of the
state of the system. It is estimated that a centimeter cube of Argon in standard conditions
(300 K, 1 Atm) produces as much as 1029 digits of information per second. This means
that in order to keep an exact record of the state of the system over a 1s lifespan, we need
a number with nothing less than 1029 digits. Fortunately, we manage to survive with less
than that, reason being that we are much larger than the molecules our body is made of !

The physical observables we are interested in, say the fluid pressure, temperature, vis-
ible flow originate from a statistical average over a large number of individual molecular
histories.

A rigorous definition of what is meant by statistical average is not trivial, but here
we shall be content with the intuitive notion of spatial average over a thermodynamic
volume, namely a region of space sufficiently small with respect to the global dimensions
of the macroscopic domain, and yet large enough to contain a statistically meaningful
sample of molecules.

Typical numbers help getting the picture. The density of air in standard conditions is
about nL = 2.687 1025 molecules/m3 (known as as Loschmidt number). Hence, a centi-
meter cube of air contains about 2.7 1019 molecules, corresponding to a statistical error
of less than one part per billion.
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2.2 Statistical Dynamics: Boltzmann and the BBGKY
Hierarchy

Given the very huge numbers involved, it appears therefore wise to approach the
collective behavior of the ensemble of molecules from a statistical point of view.

This can be done at various levels of complexity, but, for a start, we shall begin with
the simplest one: the single-particle kinetic level.

The chief question of single-particle kinetic theory is:
What is the probability of finding a molecule around position �x at time t with velocity �v?

Let f (�x, �v, t) the probability density, more often simply denoted as distribution
function.

The quantity �N = f��x��v represents the mean number of molecules in a finite
volume ��x ��v, centered about (�x, �v) in the so-called single-particle phase space:


1 = {�z ≡ (�x, �v); �x, �v ∈ R3}

Integration upon the velocity degrees of freedom delivers the number of particles per
unit volume, i.e., the number density of the system at any given time t:

∫
f (�x, �v; t)d�v =

�N
�V

which recovers the continuum density n(�x, t) in the limit �V → 0.
As a result, integration upon the entire phase space delivers the total number of

molecules in the system at any given time t,

∫
f (�x, �v); t)d�xd�v = N(t)

The distribution function f (�x, �v; t) is the pivotal object of Boltzmann’s kinetic theory.
In 1872, Ludwig Boltzmann (1844–1906) was able to derive an equation describing

the evolution of f (�x, �v; t) in terms of the underlying microdynamic interactions. This is
the celebrated Boltzmann equation (BE), one of the greatest achievements of theoretical
physics of the nineteenth century (1).

The BE represents the first quantitative effort to attack the grand-issue of why time
goes “one-way only” on a macroscopic scale while the underlying microdynamics is
apparently perfectly reversible.3 In this book, we shall not be much concerned with fun-
damental issues, but rather keep the focus on the BE as a mathematical tool to investigate,
analytically or numerically, the properties of fluid flows far from equilibrium.

3 We shall stick to the common tenet that microscopic equations, either classical or quantum, are invariant
under time reversal.
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The kinetic equation for the one-body distribution function in the presence of an
external force �F(�x) reads as follows (2):

∂t f + �v · ∂�x f + �a · ∂�vf = C12 (2.2)

where �a = �F /m is the particle acceleration due to external and internal forces.
The left-hand side represents the streaming of the molecules along the trajectories

associated with the force field �F (straight lines if �F = 0) and C12 represents the effects
of intermolecular (two-body) collisions taking molecules in/out the streaming trajectory.

Let us comment on the two sides separately.
Once it is accepted that the cloud of N molecules moves like a lump of fluid in phase

space 
1, the streaming term reduces to a mere mirror of Newtonian mechanics.
To convince oneself, simply rewrite the streaming term as a Lagrangian derivative

along the trajectory �x(t),

df
dt
≡ ∂t f + d�x

dt
· ∂�xf + d�v

dt
· ∂�vf

Using Newton’s equations, d�xdt = �v, d�vdt = �F /m, this returns precisely the left-hand side of
the Boltzmann equation. The streaming term carries the information contained in the
distribution function untouched from place to place in phase-space.

Indeed, the solution of the collisionless Boltzmann equation df
dt = 0, with initial

conditions f (�x, �v, t = 0) = f0(�x, �v), is simply

f (�x, �v, t) = f0[�x(t), �v(t)], (2.3)

where �x(t) and �v(t) is the solution of the Newton’s equations with initial conditions
�x(t = 0) = �x and �v(t = 0) = �v. The key physical point is the following: the streaming
term moves the distribution function in phase space with no loss of information, hence
no loss of memory of the initial conditions: reversible motion.

2.3 The Born–Bogoliubov–Green–Kirkwood–Yvon (BBGKY)
Hierarchy

The right-hand side of the BE, on the other hand, takes care of exchanging information
across different trajectories, through intermolecular interactions.

The collision operator encodes two-body collisions, between, say molecule one, sitting
at point �x1 with speed �v1 and molecule two, sitting at �x2 with speed �v2, both at time t.

Formally, this information is stored in the two-body distribution function

f12(�x1, �v1, �x2, �v2; t),
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Figure 2.1 Sketch of the two-body distribution function f12. The two mo-
lecules are correlated to each other, so that if one moves the other must move
too. In the one-body representation, each molecule moves independently,
although it feels it the effects of the other molecules through short-range
collisions described by the collision operator C12.

expressing the joint probability of finding molecule one around �x1 with speed �v1 and
molecule two at �x2 with speed �v2, both at time t (see Fig. 2.1).

More precisely, the quantity

�N12 = f12 ��x1��v1��x2��v2
gives the average number of pairs of molecules sitting at points �z1 ≡ (�x1, �v1) and �z2 ≡
(�x2, �v2) of phase space at time t.

Living as it does in a (6 + 6 = 12)-dimensional phase space (13 with time), it goes
without saying that f12 is a very heavy-duty object to work with.

The one-body distribution is recovered by integrating over the second particle phase-
space coordinates:

f1(�x1, �v1; t) = 2
N – 1

∫
f12(�x1, �v1, �x2, �v2; t)d�x2d�v2 (2.4)

where the factor 2 accounts for the fact that there are N(N – 1)/2 symmetric pairs out of
a pool of N particles.

Clearly, this projection from 13 to 7 dimensions erases a huge amount of information,
the two-body correlations. The loss of this information prevents an exact reconstruction
of f12 from f1 ≡ f (�z1; t) and f2 ≡ f (�z2; t), separately.

However, as we shall see shortly, educated guesses on the physical nature of the sys-
tem under consideration, can (partially) make up for this fundamental limitation. In
principle, it is not difficult to write down the dynamic equation for f12, the only trouble
being that this equation calls into play the three-body distribution function f123, which in
turn depends on f1234 and so on, down an endless line known as the BBGKY hierarchy,
after Bogoliubov, Born, Green, Kirkwood and Yvon (4).

The physical origin of such open structure is that a N-body system can in principle
host molecular collisions at all orders, from binary onward up to order N . If one could
solve the BBGKY hierarchy, one would obtain a complete statistical knowledge of the
full N-body problem described by the Newtonian equations for the N molecules. This
is again utopia, only in statistical rather than dynamic vests!

Consequently, one must settle for less ambitious goals, i.e., approximate descriptions.
The loss of information inevitably associated with such approximations is responsible for
irreversibility, to be literally intended as our inability to reconstruct the initial conditions
exactly (loss of memory).
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Fortunately, powerful heuristics are available to guide the search for sensible approx-
imations to the BBGKY hierarchy.

Indeed, in actual practice, the probability of a simultaneous interaction between, say,
k molecules, decays very fast with k, approximately like (s/d)3k, where

d = 1/n1/3

is the mean-intermolecular separation and n is the number density, the two being related
via nd3 = 1, i.e., one particle on average in a cublet of volume d3.

The ratio

ñ =
( s
d

)3 ≡ ns3 (2.5)

sometimes called “granularity,” provides a direct measure of the degree of diluteness of
the system. Indeed, in a system at density n, each molecule inhabits a volume d3, and ñ
is the fraction of that volume occupied by the molecule itself (here a cublet of side s).

From its very definition, it is clear that ñ controls the strength of many-body inter-
actions, which fade away as ñ → 0. For instance, air at standard conditions features
ñ ∼ 10–3, so that many-body interactions are largely negligible. Water in standard con-
ditions, on the other hand, provides ñ ∼ 1, which surely calls for careful consideration
of many-body effects. Nevertheless, as we shall see in Chapter 3, the structure of the
Navier–Stokes equations of continuum fluid dynamics is to a large extent independent
of many-body effects. This is a great gift of mother nature, known as Universality.

2.4 Back to Boltzmann

The simple, yet basic, considerations previously suggested, set the stage for Boltzmann’s
clever way out of the BBGKY hierarchy.

To close equation (2.2), Boltzmann made a few stringent assumptions on the nature
of the physical system: a dilute gas of point-like, structureless molecules interacting via a
short-range two-body potential.

Under such conditions, intermolecular interactions can be described solely in terms
of localized binary collisions, with molecules spending most of their lifespan on free
trajectories (in the absence of external fields), merrily unaware of each other.

Within this picture, the collision term splits into Loss and Gain components:

C12 ≡ G – L =
∫
( f1′2′ – f12)vrσ (vr , ��)d ��d�v2 (2.6)

corresponding to direct(inverse) collisions taking molecules out(in) the volume element
d�v1d�v2 respectively (see Fig. 2.2).

The right-hand side requires a number of detailed comments.
First, the shorthand f12 stands for f12(�z1, �z2; t).
In the above, vr is the magnitude of the relative speed between particle 1 and particle

2 and �� denotes the solid angle associated with the scattering event (see Fig. 2.3). The
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Figure 2.2 Symbolic diagram of direct
and inverse collisions-. Inverse collisions
(Gain) place particles in state one, while
direct collisions (Loss) take them away
from it.

symbol σ denotes the differential cross section, i.e. the effective area presented by a
particle in the plane across its center and perpendicular to the relative velocity.

Likewise, f1′2′ stands for f12( �z′1, �z′2; t), where prime indicates the molecular positions
and velocities after a direct collision.

These two factors are purely statistical in nature. Note that all four spatial coordin-
ates, both pre- and post-collisional, lie within a sphere of radius s 	 d, on account
of the diluteness assumption. Therefore, in the Boltzmann limit s/d → 0, they can be
reconduced to the same spatial location �x = �x1 = �x′1 = �x2 = �x′2.

This is a major simplification of the Boltzmann equation, with far-reaching con-
sequences on theoretical as well as computational aspects.

The pre- and post-collisional velocities �v1, �v2 and �v′1, �v′2 are related through the three
basic Mass–Momentum–Energy conservation laws, that is

⎧⎨
⎩
m1 +m2 = m′1 +m

′
2

m1�v1 +m2�v2 = m′1 �v1′ +m′2 �v2′
m1v12 +m2v22 = m′1v

′
1
2 +m′2v

′
2
2.

(2.7)

Since mass can be assumed invariant across a collision, m′1 = m1 and m′2 = m2, the
first equation is basically a statement of number conservation, 2 = 2, two molecules
before collisions, two molecules after.

The other two conservation laws, however, deliver a great deal of information, as we
shall see in the sequel.

2.4.1 Two-Body Scattering

The two-body collision problem is best treated as the scattering of a single particle of
reduced mass mr impinging on a target particle of mass M = m1 + m2, sitting at the
median position �X , with median velocity �V , defined as follows:

{ �X = (m1�x1 +m2�x2)/M
�V = (m1�v1 +m2�v2)/M (2.8)

The reduced mass is given by

mr =
m1m2

m1 +m2
(2.9)
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and it is seen to coincide with the lightest mass, say m1, in the limit m2 
 m1. For equal
mass molecules, the case assumed hereafter, mr = m/2 andM = 2m.

The two-body scattering problem is best treated in a frame with the origin
located at �X .

Using a polar representation (r, θ) for the interparticle separation

�r = �x1 – �x2 (2.10)

the total energy writes as

E =
mrv2r
2

+
J2

2mrr2
+ V (r) (2.11)

where

J ≡ mrr2θ̇ = mrvrb (2.12)

is the angular momentum and V (r) the interparticle potential.
In (2.12), b is the so-called impact parameter, i.e., the distance of the colliding

molecule from the origin perpendicular to its relative velocity (see Fig. 2.2).
After noting that mass-momentum conservation yields

�V ′ = �V

it is readily appreciated that energy conservation implies that the relative velocity vector

�vr = �v2 – �v1 (2.13)

is conserved in magnitude.
As a result, the only effect of the collision is to rotate the relative velocity by an angle

χ in the scattering plane defined by �r and �vr .
The kinematic identity �vi = �V – (mj /M)�vr, i = 1, 2, j = 2, 1, delivers the following

mapping between post- and pre-collisional velocities:

{ �v′1 = �v1 – m2
M �vr�v′2 = �v2 + m1
M �vr

(2.14)

It can be checked that this one-to-one mapping preserves the volume element in
velocity space, i.e.,

|d �v′1d �v′2| = |d�v1d�v2| (2.15)

a property which shall prove very useful in the sequel.
With the two-body kinematics in place, one can compute the number of molecules,

dN , scattered around the solid angle d �� = sinχdχdα, where α fixes the orientation of
the scattering plane in three-dimensional space.
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Figure 2.3 Scattering angle associated with a binary
collision. The collision takes place in the plane defined
by the interparticle separation �x1 – �x2 and the relative
speed �vr = �v1 – �v2. The solid angle �� is defined by the
scattering angle χ in the collisional plane and by the
azimuthal angle φ around the collisional plane (not
shown).

The relation

dN = σ (vr , ��)d ��
defines the so-called differential cross section σ .

The next task is to compute the scattering angle χ = χ(b, vr) as a function of the
impact parameter and the relative velocity (see Fig. 2.3).

To this purpose, let us consider all impinging particles sitting in the annulus of radius
b and thickness db. The conservation of the number of these particles implies, namely:

2πbdb = 2πσ (χ , vr)sinχdχ (2.16)

σ (χ , vr) =
b

sinχ
db
dχ

(2.17)

This reveals that the differential cross section is fixed by the functional relation b =
b(χ , vr), which in turn depends on the details of the scattering potential V (r).

A quantity of major interest is the cross section:

σ (vr) =
∫
σ (χ , vr)sinχdχ (2.18)

and its integral version:

�(T) = 4π
∫
σ (vr)f (vr)v2r dvr = nσT (2.19)

also known as total cross section. Note that σT , as defined above, is generally a function
of the temperature T , so that one can write

σT = κ(T)s2 (2.20)

s being the size of the molecule, identified with the range of the potential. For short-range
potentials one can assume further assume κ(T) ∼ O(1), i.e., the effective cross section
does not differ drastically from the geometrical one.
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Figure 2.4 Geometrical representation of the mean-
free path. The molecule two travels a distance lμ
before colliding with molecule two. The associated
cross section defines the collisional cylinder, whose
volume is Vcol = σ lμ. In the dilute gas limit ñ→ 0,
the collisional cylinder collapses to a needle-like shape
with σ /lμ → 0.

The total cross section defines the molecular mean-free path (see Fig. 2.4):

lμ =
1
�

(2.21)

and the associated collisional timescale

τμ =
lμ
vT

=
1

nσTvT
. (2.22)

where

vT =

√
kBT
m

is the thermal speed.
The mean-free path is the mean distance traveled by a molecule before colliding with

another molecule and represents the pivotal lengthscale of kinetic theory and transport
phenomena.

2.4.2 Spatial Ordering in Dilute Gases

Based on the definitions (2.19) and (2.21), one obtains

nσT lμ = 1

indicating that by construction, the so-called collisional cylinder of volume σT lμ contains
just a single colliding molecule.

Recalling the definition of the mean-interparticle distance, nd3 = 1, the previous
section yields

lμ
d

=
d2

σT
.

Based on the relation (2.20) with κ ∼ 1, one further obtains

s	 d 	 lμ
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Figure 2.5 Geometrical representation of the dilute gas limit
in Boltzmann kinetic theory. By halving the size s, den-
sity quadruples and the total area ns2, inversely proportional
to the mean-free path, stays the same (at least this is the
intention of the picture.).

which is the typical scale ordering of dilute gases.
It is of interest to note that the proper meaning of “dilute gas” in the Boltzmann

framework does not correspond at all to a gas in the ordinary sense, i.e., a fluid of van-
ishingly small density. Quite on the contrary, the proper limit is the one where density
is formally sent to infinity! The point is that, at the same time, the size s is sent to zero,
in such a way as to keep the product ns2 constant. In other words, size goes to zero,
density goes to infinity and the mean-free path is left constant. Putting all together, the
mean-intermolecular distance scales like d ∼ n–1/3 while the molecular size scales like
s ∼ n–1/2, so that the diluteness parameter ñ = (s/d)3 scales like n–1/2 and goes to zero in
the limit n→∞, (see Fig. 2.5).

Summarizing, the dilute gas limit corresponds to the following limiting scenario:

s→ 0, n→∞, lμ = Const., ñ→ 0 (2.23)

This further witnesses the crucial role of the mean-free path as the fundamental length
scale of Boltzmann kinetic theory and shows that ñ is the appropriate smallness param-
eter describing many-body effects in dense gases and liquids. We shall return to these
matters in Chapter 7 devoted to the kinetic theory of dense fluids.

2.4.3 Two-Body Scattering Problem

To sort out the explicit dependence χ = χ(b, vr), one needs to solve the two-body scat-
tering problem. To this aim, it proves expedient to move to polar coordinates in the
scattering plane.

The equations of motion resulting from conservation of energy E and angular
momentum J read as follows:

E =
1
2
mrṙ2 +

m2
r v

2
r b

2

r2
+ V (r) =

mr

2
v2r (2.24)

J = mrr2θ̇ = mrvrb (2.25)

where the right-hand side corresponds to the limit r→∞.
Dividing the two, one obtains

dr
dθ

=
r2

b

[
1 –

b2

r2
φ(r)

]1/2
(2.26)
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where

φ(r) =
2V (r)
mrv2r

(2.27)

is the ratio of potential to kinetic energy in the rest frame.
For purely repulsive potentials, there exists a minimum-approach distance, rmin

defined by the condition dr
dθ = 0.

Some algebra delivers the implicit relation:

rmin
b

=

√
mrv2r /2

E – V (rmin)
(2.28)

Note that for repulsive potentials, V (r) > 0, rmin > b, while the opposite is true for
attractive ones.

Integrating upon r from rmin to infinity, one obtains

� ≡ θmin – θ∞ = bvr

∫ ∞
rmin

dr

r2
√
1 – φ(r)

(2.29)

which is known as the apse angle.
The scattering angle is finally derived as

χ = π – 2�. (2.30)

This procedure shows that the dependence of the scattering angle on the poten-
tials is generally pretty involved. As a general rule, however, small-impact parameters
correspond to large scattering angles.

2.4.4 Distinguished Potentials

Once the atomistic potential is known, the procedure already outlined permits us to
compute the scattering differential cross section σ , hence the collisional relaxation time
and the mean-free path, starting from the atomistic potentials. This accomplishes the
fundamental task of transferring information from the atomistic world of trajectories
and intermolecular potentials to the kinetic world of statistical distributions, scattering
cross sections and mean-free path.

Symbolically, the kinetic micro-meso bridge reads as follows:

V (r)→ σ (vr)↔ lμ. (2.31)

Given that some specific potentials stand out for their importance, either from the
mathematical point of view or for their applicability to realistic fluids, in the sequel we
provide a cursory coverage of such potentials.
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R

VHS(r)

r

Figure 2.6 The hard-sphere potential. For graphical pur-
pose the potential step has a finite amplitude, leading none-
theless to an infinite force (arrow) at r = R. This is basically
a solid wall, bouncing back the molecules the molecules which
impinge on it.

2.4.4.1 Hard Spheres

A particularly important and analytically solvable case is provided by the hard-sphere
potential,

VHS(r) =
{∞, r ≤ R
0, otherwise

(2.32)

where R is the sphere radius (see Fig 2.6).
Detailed calculations yield σ = πR2, i.e., the geometrical area of the particle cross

section, as it should be.
Despite their simplicity hard-sphere potentials have played a major role in the kinetic

theory of fluids and continue to provide valuable information for molecular dynamics
simulations with hard-core repulsive interactions.

2.4.4.2 Lennard-Jones potential

Another potential which plays a prominent role in the physics of non-ideal fluids, is
the so-called 12–6 Lennard-Jones potential, after the British physicist John Edward
Lennard-Jones (1894–1954):

VLJ(r) = 4ε[(r/R)–12 – (r/R)–6] (2.33)

This potential consists of a hard-core repulsion (-12 branch), plus soft-core attraction
(-6 branch) (see Fig. 2.7). The former stems for the strong repulsion between incipient
overlap of electronic orbitals, when nuclei get seriously close together at distances around
one third of nanometer and below. The latter is due to cohesive forces arising from
screened multipole electrostatic interactions (Van der Waals interactions) and plays a
defining role on the thermodynamic properties of the fluid.

The competition between short-range repulsion and long-range attraction leads to
a minimum of depth – ε at a distance r∗ = 21/6R, which fixes the typical scale of
intermolecular separation in the fluid.
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Figure 2.7 The Lennard-Jones 6 - 12 potential. In the figure, σ repres-
ents the range of interaction, called R in the text, to avoid confusion with
the cross-section. From http://chemistry.stackexchange.com/questions/342
14/physical-significance-of-double-well-potential-in-quantum-bonding.

The Lennard-Jones potential provides a microscopic basis for the celebrated van der
Waals equation of state of non-ideal fluids,

(
p +

a
V 2

)
(V – b) = NkBT (2.34)

where N is the number of molecules in the volume V .
The attractive branch a/V 2 echoes the soft-core tail (r/R)–6 and the covolume b is

related to the spatial scale, b1/3, of the hard-core repulsion (r/R)–12.

2.4.4.3 Maxwell molecules

A special case is provided by the so-called Maxwell molecules, characterized by a – 4
power-law decay:

VMM(r) ∝ r–4. (2.35)

The calculations show that for such power-law potential vrσ (vr) = Const., so that the
collision time scale is a constant, see eqn (2.22).

This constitutes a major simplification of the Boltzmann collision integral, whence
the special role of this potential in kinetic theory.
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Even though Maxwell’s molecules do not appear to have any realistic counterpart in
the physical world, they provide nonetheless a very fruitful theoretical idealization for
several mathematical developments in kinetic theory.

In particular, under appropriate simplifications, they permit us to obtain exact
solutions of the Boltzmann equation.

Calculations in three spatial dimensions for inverse power-law potentials of the form

V (r) ∼ 1/rα (2.36)

show that

vrσ (vr) ∼ v
α–4
α
r . (2.37)

This highlights that Maxwell molecules, α = 4, mark an qualitative borderline: for
α < 4, i.e., slower decay than for Maxwell molecules, the collision rate

γ = nvrσ (vr) (2.38)

turns from an increasing to a decreasing function of the relative speed vr, i.e., essentially
the fluid temperature.

A moment’s thought reveals that a collision frequency decreasing with the molecular
speed implies that fast molecules experience less friction than the slow ones, which is
clearly a portal to collective instability.

Indeed, this opens up non-hydrodynamic scenarios, whereby particles accelerated be-
yond a given critical speed by, say, a constant external field, do not experience a sufficient
collisional drag to be drained back to the bulk distribution. As a result, no local equilib-
rium can be established and the system enters various sorts of unstable regimes, some
of which are of great relevance to fusion and astrophysical plasmas and other states of
matter typically governed by long-range microscopic interactions.

2.4.4.4 Long-range potentials

An important example of strongly non-hydrodynamic conditions is provided by long-
range potentials, such as r–1 unscreened Coulomb electrostatics, or gravitation, formally
corresponding to α.

For such potentials, the calculations provide a divergent cross section, due to the
unbounded accumulation of many small-angle deflections (grazing collisions).

This is not surprising: the mean-free path is virtually zero, because owing to the
infinitely long range of the acting force, the molecules are constantly interacting and the
accumulation of very numerous small deflections leads to a logarithmic divergence of
the cross section.

In practice, such infrared divergence is regulated by imposing a long-range cut
off, typically via a so-called Debye screening, after the Dutch chemist Peter Debye
(1884 – 1966):
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1
r
→ e–r/λ

r
(2.39)

The Debye length, λ, marks the scale above which electrostatic interactions are screened
out due to polarization effects, a condition typical of quasi-neutral plasmas, composed
by a mixture of oppositely charged species, say ions and electrons.

The kinetic theory of such screened systems is described by a different collision op-
erator, due to Landau and Balescu–Lenard, after the Hungarian–Belgian physicist Radu
Balescu (1932–96) and the German, Philipp Lenard (one “n” only, not to be confused
with Lennard-Jones!) (1862–1947) (5).

This takes the following form:

CLBL = ∂�v ·
∫ ��B(�v, �v′) · [ ∂

∂�v –
∂

∂ �v′
]
f (�v)f ( �v′) d�vd �v′ (2.40)

where ��B(�v, �v′) is a suitable-tensorial collision kernel.
This expression is obtained from the Boltzmann collision operator by expanding upon

the velocity change, ��v = �v′ – �v, under the assumption of small deflections:

|��v| 	 vT (2.41)

as it is appropriate for soft-core grazing collisions.
The Balescu–Lenard collision operator belongs to the general class of Fokker–Planck

kinetic equations, which we shall discuss in chapter 9. For the case of unscreened
long-range interactions, say self-gravitating systems, the derivation of a suitable col-
lision operator is still an open issue in modern statistical mechanics, with important
implications in plasma physics, astrophysics, and cosmology.

2.4.5 Molecular Chaos (Stosszahlansatz)

Having discussed the details of the two-body scattering problem inherent to Boltzmann’s
collision operator, we next move on to consider the all-important statistical aspects of this
operator.

In the first place, in order to derive a closed equation, one has to express the two-body
distributions f ′12 and f12, in terms of the one-body ones f1 and f2.

The simplest such closure, which is precisely the one taken by Boltzmann reads as
follows:

f12 = f1f2 ≡ f (�z1; t)f (�z2; t) (2.42)

and same for f ′12 ≡ f1′2′ .
This closure is tantamount to assuming no correlations between molecules entering a

collision (molecular chaos or Stosszahlansatz).
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This assumption is fairly plausible for a dilute gas with short-range interactions,
in which molecules spend most of their lifetime traveling in free space, only to meet
occasionally for very short lived, in fact instantaneous, interactions.

Note that molecules are assumed to be correlated only prior to the collision, whereas
after collision, they become strongly correlated on account of mass, momentum and
energy conservation.

Within this picture, the probability for two molecules that met at time t, to meet again
at some subsequent time t + τ , with the same velocities �v1 and �v2, decays exponentially
with τ .

More precisely, this probability scales like e–τ /τint where τint is the duration of a colli-
sional event. Since in Boltzmann’s theory τint ∼ s/vT (the thermal speed vT is taken to be
a typical particle speed and s a typical effective molecular diameter) is negligibly small,
so is the (auto)correlation function at time τ .

The situation is obviously completely different in a liquid, where, due to the much
higher density, the molecules are in constant interaction.

Violations of Boltzmann’s molecular chaos can occur due to the onset of nonlinear
correlations. A most notable example are the famous long-time tails, first detected by
Alder and Wainwright (6), where molecular correlations exhibit anomalous persistence
due to self-sustained vortices generated by the molecular motion itself.4

Summarizing, in view of the molecular chaos assumption, the Boltzmann equation
takes the following form:

∂t f + �v · ∂�x f +
�Fext
m
· ∂�vf =

∫
( f1′ f2′ – f1f2)vrσ (vr , ��)d ��d�v2 (2.43)

The left-hand side is a mirror of reversible Newtonian single-particle dynamics, while
the right-hand side describes intermolecular interactions, under the Stosszahlansatz
approximation.

2.5 Local and Global Equilibria

Given that the collision operator naturally splits into a Gain minus Loss components, it
is only natural to ask under what conditions would the two antagonists come to an exact
balance.

This singles out a very special distribution function, characterizing the attainment of
local equilibrium, a notion which proves central to the purpose of deriving hydrodynamic
equations from Boltzmann’s kinetic theory.

Mathematically, the local equilibrium is defined by the condition

C( f e, f e) ≡ G( f e, f e) – L( f e, f e) = 0 (2.44)

where superscript “e” denotes “equilibrium.”

4 This is amazingly reminiscent of the mechanisms invoked by Aristoteles to explain the motion of arrows
in air!
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The identification of Gain and Loss follow straight from the expression of the collision
operator:

G ≡
∫
f1′ f2′vrσ (vr)d�v2 (2.45)

L ≡
∫
f1f2vrσ (vr)d�v2. (2.46)

This leads to the so-called detailed balance condition:

f ′1f
′
2 = f1f2 (2.47)

which holds regardless of the details of the molecular interactions.
This is a strong statement of universality: microscopic details affect the rate at which

local equilibrium is reached, not the equilibrium itself, which depends only on conserved
quantities.

Of course, detailed balance does by no means imply that molecules sit idle, but rather
that any direct (inverse) collision is dynamically balanced by an inverse (direct) partner
collision.

For instance, in a room at standard temperature, with no appreciable macroscopic
flow, the typical molecule moves at the speed of sound, that is, about three times faster
than a Ferrari!

For a fluid at rest, along any given spatial direction, there is, on average, another
molecule doing exactly the same along the opposite direction, so that no net macroscopic
flow results.

The detailed balance condition has far-reaching consequences on the shape of the
equilibrium distribution in velocity space.

To appreciate this, let us first take the logarithm of the eqn (2.47), to obtain

log f ′1 + log f
′
2 = log f1 + log f2 (2.48)

This shows that the quantity log f is an additive collision invariant, i.e., a microscopic
additive property which does not change under the effect of collisions.

The immediate consequence is that, at thermodynamic equilibrium, log f must be a
function of the five collision invariants

I(v) ≡ {1,m�v,mv2/2}

associated with the conservation of number (mass), momentum and energy.
This yields (repeated Latin indices, denoting spatial directions, are summed upon):

log f e(�x, �v; t) = A(�x; t) + Ba(�x; t)va +C(�x; t)v
2

2
(2.49)
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where A,Ba,C are five Lagrangian multipliers, carrying the entire dependence on the
space-time coordinates through the conjugate hydrodynamic fields

H ≡ ρ(�x, t), ρ(�x, t)ua(�x, t), ρ(�x, t)e(�x, t)

namely density of mass, momentum and energy.
These Lagrangian parameters can be computed by imposing conservation of mass-

momentum energy:

∫
f e
{
m,mva

mv2

2

}
d�v = {ρ, ρua, ρe} (2.50)

where, ρ = nm is the mass density, ua, a = x, y, z, is the macroscopic flow speed and ρe
is the energy density.5

Elementary quadrature of Gaussian integrals delivers the celebrated Maxwell–
Boltzmann equilibrium distribution.

In D spatial dimensions, this reads as follows:

f e =
n

(2πv2T)
D/2

e–c
2/2v2T (2.51)

where c is the magnitude of the peculiar speed

�c = �v – �u (2.52)

namely the relative speed of the molecules with respect to the fluid, and

vT =

√
kBT
m

(2.53)

is the thermal speed associated with the fluid temperature T , kB being the Boltzmann
constant. With this definition, each direction carries kBT /2 units of energy.

2.5.1 Local Equilibria and Equation of State

Local equilibria associate with perfect (or inviscid) fluids, i.e., fluids in which dissipative
effects can be neglected.

At equilibrium, density, temperature and pressure are related through an equation of
state:

p = p(ρ,T) (2.54)

5 The Latin subscript a denotes cartesian components of a vector, so that the notation va is an equivalent
substitute for �v and shall be used interchangeably throughout the text, see Appendix on Notation.
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From a kinetic point of view, the temperature is defined as the variance of the
equilibrium distribution:

ρD
kBT
2

=
∫
f (�x, �v; t)mc

2

2
d�v (2.55)

where c is the magnitude of the peculiar velocity and ρ = nm is the mass density.
The definition shows that temperature is basically the variance of the kinetic distri-

bution function, or, in different terms, the peculiar kinetic energy of the molecules with
respect to the mean-flow motion (see Figs. 2.8 and 2.9).

Another quantity of chief interest for hydrodynamics is the momentum-flux tensor,
often called pressure tensor for short:

Pab = m
∫
fvavbd�v (2.56)

The definition indicates that the component Pab of the pressure tensor represents the
amount of momentum mva along direction xa, fluxing across the unit surface with
normal oriented along direction xb.

The ordinary pressure is given by the diagonal components of the pressure tensor,
evaluated at zero-flow conditions ua = 0.
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Figure 2.9 Top: Maxwell–Boltzmann distribution at unit tempera-
ture, T = 1, at rest, U = 0, and with flow, U = 1. Bottom:
Maxwell–Boltzmann distribution at rest with T = 1 and T = 2.

For an isotropic fluid at rest (ua = 0), each component gives the same result, namely

p = Pxx = Pyy = Pyy (2.57)

It is now instructive to compute the value of the macroscopic quantities corresponding
to the local equilibrium distribution.

Elementary gaussian integration yields

ρe = ρ, uea = ua, Te = T , Peab = ρv
2
Tδab (2.58)
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This shows that local equilibrium only supports diagonal components of the pressure
tensor, with a corresponding ideal equation of state

p = ρv2T = nkBT

It is also of interest to note that, under such conditions, the thermal speed corresponds
exactly to the sound speed, defined as the derivative of the pressure with respect to the
density at a constant temperature, namely

c2s =
∂p
∂ρ
|T . (2.59)

Knowledge of the ratio of thermal to sound speed, θ ≡ vT
cs
, as a function of density and

temperature is just another way of specifying the equation of state of the fluid, θ = 1
denoting the ideal gas.

2.5.2 The Evershifting Battle

As shown in Section 2.5.1, local Maxwell equilibria are the result of a statistical balance
between forward and backward collisions.

This balance between gain and loss terms annihilates the effect of the collision
operator on the distribution function.

Quite remarkably, such balance holds true independently of whether or not the mac-
roscopic fields exhibit a variation in space and/or time (whence the label “local”), as long
as such variation occurs on scales longer than the mean-free path.

This property stems directly from the assumption that collisions take place in the limit
s→ 0, or, more precisely, s/lμ→ 0.

A natural, and indeed often-asked question is:
Do local equilibria annihilate the effects of the streaming operator too?
A moment’s thought reveals that this is not the case, unless the macroscopic fields are

totally flat, i.e., constant in space and time, a condition which defines global equilibria,
hence equilibrium thermodynamics.

To appreciate the point in a little more detail, let us compute the effect of the
streaming operator on local equilibria.

A simple application of the chain rule yields

df e

dt
=
∂f e

∂ρ

dρ
dt

+
∂f e

∂�u ·
d�u
dt

+
∂f e

∂T
dT
dt

. (2.60)

By evaluating the partial derivatives of f e with respect to ρ, �u and T , simple algebra
delivers

d log f e

dt
=
d logρ
dt

+ �ξ · d�u
dt

+
(
1 –

ξ2

2

)
d logT
dt

(2.61)
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where

�ξ ≡ �v – �u
vT

(2.62)

is the peculiar speed in units of the thermal speed.
Expression (2.62) clearly shows that, by construction, local equilibria are not pre-

served upon streaming, i.e., they can only be conserved if all macroscopic fields are
constant in space and time, which, by definition means they are no longer local, but
global ones.

Of course, this is all but a coincidence. The broken-invariance of local equilibria upon
streaming, reflects a profound physical mechanism: space-time inhomogeneity is the source
of non-equilibrium.

Differently restated, collisions act so as to achieve detailed balance, thereby couching
the distribution function into the universal local Maxwell–Boltzmann distribution.

Streaming, on the other hand, works exactly in the opposite direction; it destroys the
delicate (detailed) balance established by collisions, and revives non-equilibrium through
inhomogeneity.

This is the famous “evershifting battle” between equilibrium and non-equilibrium, as
evoked by Boltzmann, a battle which is not over until a featureless uniform macroscopic
scenario is attained.

For those versed in philosophical aspects of science, the evershifting battle between
equilibrium and non-equilibrium can be seen as a sort of metaphor of Life itself, which
depends crucially on the ability to function far from equilibrium in local and temporary
elusion of the Second Law (“life on borrowed time”).

It is sometimes heard that the depth of any given equation is measured by the con-
ceptual distance between its left- and right-hand side. If such criterion is anything to go
by, there is little doubt that the Boltzmann equation scores very highly indeed.

Back to the ground. Broken invariance of local equilibria under streaming reflects
the broken symmetries of classical mechanics. To this purpose, we note that Maxwellian
equilibria inherit two basic symmetries of Newtonian mechanics, namely (7):

— Space and time translational invariance{
x′a = xa – λa
t′ = t – τ

(2.63)

where τ and λa are arbitrary constants.
The invariance under such transformation reflects the homogeneity of space and time.

For the case where λa = Vaτ ,Va being a constant velocity, (2.63) reflect invariance under
Galilean transformations.

— Rotational invariance

x′a =
D∑
b=1

Rabxb (2.64)
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where Rab is a symmetric, unitary (norm-preserving) rotation matrix.
Rotational invariance, which applies to the particle velocities as well, is ensured by the

fact that the peculiar speed �c appears through its magnitude alone, so that any sense of
preferential direction is erased.

These symmetries are built-in in continuum kinetic theory, but it would be a gross
mistake to take them for granted also when space time and velocity are made discrete.

Actually, this is the leading theme of Discrete Kinetic Theory.
The hydrodynamic probe of rotational symmetry is the momentum-flux tensor Pab,

which plays a pivotal role in Discrete Kinetic Theory and most notably in Lattice Gas
Cellular Automata and Lattice Boltzmann theories.

2.6 Summary

Summarizing, Boltzmann kinetic theory describes the dynamics of dilute gases in terms
of a probability distribution function including, besides space and time. molecular ve-
locities. The result is a complicated quadratic integro-differential equation describing
the competition between free streaming and interparticle collisions. For sufficiently well-
behaved (short-ranged) atomistic potentials, such competition ultimately ends up into a
universal local equilibrium, which depends only on the local conserved fluid quantities,
mass, momentum and energy. This local equilibrium plays a crucial role in the derivation
of hydrodynamics from Boltzmann’s kinetic theory.
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EXERCISES

1. Prove the relation (2.15).
2. Prove the Maxwellian expression (2.51).
3. What fraction of molecules move faster than 2vT in a local Maxwellian? And how

many at 5vT?
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Approach to Equilibrium,
the H-Theorem and Irreversibility

Like most of the greatest equations in science, the Boltzmann equation is not only
beautiful but also generous. Indeed, it delivers a great deal of information without
imposing a detailed knowledge of its solutions. In fact, Boltzmann himself derived
most, if not all, of his main results without ever showing that his equation did admit
rigorous solutions. In this chapter, we shall illustrate one of the most profound
contributions of Boltzmann, namely the famous H-theorem, providing the first
quantitative bridge between the irreversible evolution of the macroscopic world
and the reversible laws of the underlying microdynamics.

(We cannot stop the arrow of time, but perhaps we can try to flight with it)

It is amazing to observe how much information can be extracted from a great equation,
without even knowing whether its solution(s) exist in the first place, but simply assuming
they do. In fact, one might argue that the greatness of an equation is to a large extent
measured precisely by its generosity, i.e., the amount of knowledge it delivers with no
requirements of explicit knowledge of its solution. There is hardly any doubt that the
Boltzmann equation is one of the greatest equations of all time; less known than the fa-
mous Einstein’s E = mc2, or Schrödinger’s wave equation, its practical and philosophical
implications are by no means any less. The Boltzmann equation tells us about profound
and universal ideas, which concern all of us, such as the connection between the invisi-
ble micro and the tangible macro, a story intimately related to the nature of time and the
way macrosystems evolve toward their equilibrium states, if any. The main import of the
H-theorem is to place such deep questions onto a systematic mathematical basis.

The Lattice Boltzmann Equation. Sauro Succi, Oxford University Press (2018).
© Sauro Succi. DOI: 10.1093/oso/9780199592357.001.0001
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3.1 Approach to Equilibrium: the Second Principle
of Thermodynamics

Heat flows from hot to cold bodies, we all know this. The question is why? At skim value,
one could simply observe that if it were otherwise, hot bodies would become increasingly
hot, and cold bodies increasingly cold, so that no equilibrium could ever be attained.
Thus, heat flow from hot to cold bodies is basically an instance of stability. Note that
not all systems behave like this, the financial market being a much debated example in
point these days. The way heat moves in space and time (Thermodynamics) was a major
concern to nineteenth-century scientists, primarily Nicolas Sadi Carnot (1796–1832) in
France and Rudolf Clausius in Germany (1822–88).

These scientists were eager to understand how to possibly optimize the “moving force
of heat,” i.e., the amazing ability of heat to convert into useful mechanical work (those
were the heydays of the industrial revolution). In the course of such studies, they realized
that while the heat exchanged between two bodies, name it δQ, depends on the specific
process in point, say constant pressure, or constant volume, the ratio δQ/T is process
independent, i.e., depends only on the initial and final states. In the above, T denotes the
temperature at which the heat exchange takes place. Such a ratio defines the change of
entropy in the process, i.e., dS = δQ/T , S being the entropy of the system. The symbol
dS stands for a true differential, one which depends only on the initial and final states, as
opposed to δ, which denotes a process-dependent change. The inquisitive reader might
have noticed that we are using a common temperature T for the hot and cold bodies,
which formally contradicts the very notion of hot and cold in the first place. The point is
that the heat exchange is supposed to take place under conditions where the difference
between the two temperatures is much smaller than any of the two. Having clarified the
point, the change of entropy in a process where a quantity δQ of heat flows from the hot
body at temperature TH to the cold body at temperature TC is simply given by the sum
of the two, namely

�S = –
δQ
TH

+
δQ
TC

(3.1)

where the minus sign indicates that the hot body loses entropy, while the cold one gains
it. The very fact that, by definition, TH > TC implies that

�S ≥ 0 (3.2)

In other words, entropy can only increase in the process, and stays the same only once
the two bodies come to a common temperature, for instance (TH +TC)/2 (see Fig. 3.1).

This defines the condition of thermal equilibrium. The inequality (3.2) is the mathe-
matically expression of the Second Law of Thermodynamics, allegedly one of the most
universal and inescapable constraints of the natural world, as we know it. Entropy is in-
exorably growing in time, a literal aging process which ends up in the bleaky “thermal
death” picture. Viewed from this side, it is easy to see why entropy was immediately con-
nected with the most enigmatic concept of all, Time, and colorfully named the “arrow
of time” by Sir Arthur Eddington (1882–1944).
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Figure 3.1 Thermal equilibration: the hot body (upper curve) lowers its temperature by transferring
heat to the cold body (lower curve). This process drives the system (hot body plus cold body) toward
thermal equilibrium characterized by the same temperature for the two bodies. Time-reversal symmetry
is clearly broken, the hallmark of irreversibility. The opposite process, spontaneous heat flow from cold
to hot bodies, albeit not forbidden by Newton’s laws, is not observed in the macroscopic world other
than under the effect of thermal instabilities.

It should be noted that the Second Principle makes no reference whatsoever to mi-
croscopic states of matter; as a matter of fact, in those days, the very existence of atoms
was far from being accepted, a controversy which costed Boltzmann much anxiety and,
according to some, might even have played a role in his tragic decision to take his life.

Leaving these fascinating matters to the historians of science, we next proceed to
sketch the way that Boltzmann managed to lay down a mathematical bridge between
the irreversible laws of Thermodynamics and the reversible equations of the underlying
Newtonian mechanics.

3.2 Approach to Equilibrium, the H-Theorem

Thermal equilibria speak a language of dull uniformity, no room for heterogeneity. We
have noted that at the level of global uniform equilibria, the fluid density ρ, the mean-
flow speed �u and temperature T must be constant throughout the physical domain. We
have also noted that this restriction stems from the streaming operator, which has no
effect once global uniformity is attained.

The collision operator, being local in space and time, does not place any such restric-
tion on the spacetime dependence of the flow density, speed and temperature, with the
only caveat that such dependence must occur on scales much longer than the molecular
mean-free path. Whenever such slow spatial dependence is allowed in the local thermo-
hydrodynamic fields, one speaks of local hydrodynamic equilibria, namely states which
attain thermodynamic equilibrium only on a local scale. Thus, the system supports a
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variety of local equilibria, each with its own local values of density, velocity and temper-
ature. On a longer timescale, global equilibration does then take place through the flux
of mass, momentum and energy across the different regions of the system (transport
phenomena).

This connects to the length scales lμ, the particle mean-free path, the mean distance
traveled by molecules between two subsequent collisions and lM the typical scale of var-
iation of macroscopic fields. Local equilibration takes places on a timescale τμ ∼ lμ/vT ,
whereas global equilibration requires much longer times, of the order of several τM =
lM /uM , uM being a macroscopic velocity, or l2M /D, D being a typical diffusivity of the sys-
tem. This identifies the transport regime in which hydrodynamic quantities diffuse and
advect along macroscopic distances within the fluid domain. It is of course a regime of
great practical relevance, since most real-life devices—to be of any use at all—must work
away from thermodynamic equilibrium, and, sometimes, even very far from it.

Transport is naturally associated with the notion of dissipation, hence to the elusive
concept of irreversibility, the subtle thread behind the Second Law of Thermodynamics.
As hinted earlier on, one of the most profound contributions of Boltzmann to statistical
mechanics rests with his discovery of a quantitative measure of irreversibility. We refer
to the celebrated H-function and the attendant H-theorem.

Boltzmann showed that the following functional (H-function)

H(t) = –
∫
f (�x, �v; t)log f (�x, �v; t) d�v d�x (3.3)

is a monotonically increasing function of time, regardless of the underlying microscopic
potential.

In equations

dH
dt
≥ 0 (3.4)

the equality sign holding at global equilibrium, when the evolutionary potential of the
system is exhausted and the entropy of the system (basically H itself) is maximal.

The role of H(t) as an evolutionary potential (the “time arrow”) is adamant and its
intellectual magic hardly escaped.

A full proof of the H-theorem can be found in most textbooks of kinetic theory.
Therefore, for the mere sake of self-containedness, in the following we only sketch the
main guidelines.

3.2.1 Sketch of the Proof of the H-Theorem

Let us begin by considering the force-free Boltzmann equation in the uniform case
(∇x f1 = 0):

∂t f1 =
∫
( f ′1f

′
2 – f1f2)vrσ (vr , ��)d ��d�v2 (3.5)

where f1 ≡ f is the one-body distribution function.
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Define a local H functional as

H(t) = –
∫
f1log f1d�v1 (3.6)

where space dependence is removed because of the uniformity assumption.
Let us multiply both sides of eqn (3.5) by 1 + log f1 and integrate upon �v1. The left-

hand side yields

∫
(1 + log f1)∂t f1d�v1 =

∫
∂t( f1log f1)d�v1 ≡ –dH /dt

As a result, by equating the left- and right-hand side, we obtain

–
dH
dt

=
∫
(1 + log f1)( f ′1f

′
2 – f1f2)vrσ (vr , ��)d ��d�v1d�v2 (3.7)

Since the previous expression does not change upon swapping the dummy subscripts
1↔ 2, we can further write

–
dH
dt

=
∫
(1 + log f2)( f ′2f

′
1 – f2f1)vrσ (vr , ��)d ��d�v2d�v1 (3.8)

By summing (3.7) and (3.8) and dividing by a factor 2:

–
dH
dt

=
1
2

∫
[2 + log( f1f2)]( f ′2f

′
1 – f2f1)vrσ (vr , ��)d ��d�v2d�v1 (3.9)

By the same token, we can swap primed and unprimed quantities to obtain

–
dH
dt

= –
1
2

∫
[2 + log( f ′1f

′
2)]( f

′
2f
′
1 – f2f1)v

′
rσ (v

′
r , ��)d ��d �v′2d �v′1 (3.10)

Upon summing (3.10) and (3.9) and dividing again by 2, we finally obtain

–
dH
dt

= –
1
4

∫
log

(
f ′1f
′
2

f1f2

)
( f ′2f

′
1 – f2f1)vrσ (vr , ��)d ��d�v2d�v1 (3.11)

where we have made use of the kinematic properties d �v′1d �v′2 = d�v1d�v2 and v′r = vr ,
whence σ (vr) = σ (v′r).

By callingX ≡ f1f2 andX ′ ≡ f ′1f ′2, we next observe that the function (X ′–X)log(X ′/X)
cannot be negative for any value of its arguments X and X ′ being both non-negative,
since it is the product of two equally signed functions. In fact, this function attains its
minimum, zero, at X ′ = X .
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As a result, one finally concludes that

dH
dt
≥ 0 (3.12)

q.e.d. The identification of H with entropy S immediately delivers the second law of
thermodynamics, namely

dS
dt
≥ 0 (3.13)

This proof relies upon a few ingenious tricks based on the symmetries of the Boltz-
mann equation, as combined with the kinematic properties of the two-body problem
underlying the collision operator. Remarkably, it does not depend on the details of the
molecular interactions, but only on the general conservation properties and symmetries
of the Boltzmann equation.

The extension to the non-uniform case takes the form of a conservative equation for
the local H-function h(�x; t),

∂th + ∇ · �Jh = Sh(�x; t) (3.14)

where �Jh = –
∫
f log f �vd�v is the entropy flux and Sh is the entropy production due to the

collisions.
Equation (3.14) shows that the local value h(�x; t) has no definite sign, since the posi-

tive contribution of the collisions can always be outbalanced by the flux term. However,
the second law is still recovered by integrating all over the spatial domain,

dH
dt

=
∫
Sh(�x; t)d�x ≥ 0 (3.15)

The inequality (3.15) stems from the fact that the right-hand side is negative definite and
the flux term does not contribute, since we have assumed zero flux at the boundaries of
the spatial domain (isolated system).

3.2.2 H-theorem and Irreversibility

TheH-theorem provides a formal basis for the emergence of macroscopic irreversibility:
the streaming is reversible, i.e., invariant under time reversal, while collisions are not.

In mathematical terms, time reversal is defined by the time-parity (T) transformation:

t→ t′ = –t (3.16)

We can think of t and t′ as of forward and backward times, respectively (see Fig. 3.2).
Note that since only time is inverted, while space remains untouched, the velocities are
also reversed under the T transformation:

�v→ �v′ = –�v (3.17)



48 Approach to Equilibrium, the H-Theorem and Irreversibility

0

1

2

t = tf  + tb 

V(tb  = t)

V(tb ) = –V(tf)

V(tb = t/2)

V(tf = 0)

V(tf = t)V(tb = 0)

V(tf = t/2)

Figure 3.2 Geometrical representation of microscopic-time rever-
sal. The time loop consists of a forward branch (0→ 1→ 2) and
a backward one (2 → 1 → 0). Both forward and backward
times lie in the range [0, t] and each point along the trajectory car-
ries both forward and backward time labels, with the constraint
t = tf + tb. One might think of each trajectory as two-time sided.
The time-parity transformation at tf = t ↔ tb = 0 implies the
condition �V (tf ) = – �V (tb) along the entire trajectory. This is a
formal statement of microscopic-time reversibility.

The physical meaning of time-reversal transformation is quite transparent. By stream-
ing a particle trajectory from �x(0) at time t = 0 to �x(t) at time t and then streaming back
from t to t – t = 0, with inverted velocity �v(t) → –�v(t), the particle regains exactly its
initial position �x(0), with inverted velocity –�v(0).

Exactly, here means literally exactly: no information is lost in the time loop: streaming
is reversible, a mirror of Newtonian mechanics. Collisions, on the other hand, do break
such symmetry, as they keep acting in the same direction, i.e., pull the local distribution
function back to a local Maxwellian, regardless of whether the system is in the forward or
backward branch of the time loop. The information lost in the loop is the one associated
with the initial conditions.

The H-theorem provides an elegant and powerful formalization of the fundamental
competition between reversible streaming (non-equilibrium) and irreversible collisions
(equilibrium).

Yet, the H-theorem presents one of the most debated and controversial issues in
the history of theoretical physics. We will not delve here into the details of the vari-
ous paradoxes which were raised against the H-theorem as a bridge between micro- and
macrodynamics. Beautiful accounts can be found in the literature (1; 2). Nor shall we
comment on the fact that Boltzmann derived his theorem without demonstrating that
his equation, a complicated integro-differential initial-value problem, does indeed have
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solutions in a rigorous mathematical sense.6 While leaving rigor somehow behind, the
H-theorem showed for the first time the way to the unification between two fundamental
and previously disconnected domains of science: Mechanics and Thermodynamics.

Even though none of the original paradoxes raised against theH-theorem could stand
the test of time, one should always keep in mind that Boltzmann’s H-theorem was de-
rived under very specific conditions, namely diluteness as discussed in Chapter 2. Such
conditions rule out many important states of matter, such as dense fluids and liquids, not
to mention more complex materials such as glasses, which exhibit anomalous (very long)
relaxation to equilibrium. Even though the Boltzmann equation in its original form does
not apply to the previous problems, suitable generalizations thereof (effective Boltzmann
equations) are indeed capable of providing useful insights into the physics of complex
states of matter out of equilibrium. This makes a very fascinating subject of modern
non-equilibrium statistical mechanics, to which we shall turn considerable attention in
the “Beyond Navier–Stokes” part of this book.

3.3 Collisionless Vlasov Equilibria

It should be mentioned that there exists a class of local equilibria which can be attained
through purely reversible motion, i.e., in the total absence of collisional processes. These
are called Vlasov equilibria, and play an important role in many contexts of statistical
mechanics, such as astrophysics and plasma physics.

By definition, Vlasov equilibria annihilate the streaming operator:

�v · ∇xf e,V + �a · ∇vf e,V = 0 (3.18)

Under the assumption that the force field derives from a potential, �F ≡ m�a =
–∇xV (�x), a simple quadrature yields the following separable solution:

f e,V (�x, �v) = An0e–βV (�x) e–β
mv2
2 (3.19)

where β = 1/kBT and A = (β/2π)D/2 is the normalization constant. As one can appre-
ciate, Vlasov equilibria are a specific instance of the canonical distribution Z–1(β)e–βH ,
where H = mv2

2 + V (�x) is the Hamiltonian and Z the partition function.
Here, they are most conveniently regarded as global Maxwellian equilibria in velocity

space, prefactored by a space-dependent density, the space dependence being dictated
by the potential, n(�x) = n0e–βV (�x).

These equilibria do not require any collisional relaxation and cannot exist in ordinary
configuration and momentum space separately, but only as the result of a dynamic bal-
ance of the two in the double-dimensional phase space. The molecules flowing in the

6 Rigorous proofs of the existence of solutions of the Boltzmann equation have made a rampant surge in
modern mathematics, earning two Fields Medals, arguably the highest honor in mathematical research, to
Pierre Louis Lions (1994) and Cedric Villani (2010).
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Figure 3.3 Vlasov equilibria result from a flux balance in
phase space. The flux gained(lost) along the spatial coordinate is
lost(gained) along the velocity coordinate. This can only happen if
the force derives from a potential.

phase-space element centered about (�x, �v) via free-streaming in real space are exactly
balanced by the molecules streaming away in velocity space under the effect of the ex-
ternal force (see Fig. 3.3). Note that such delicate balance can only occur if the force
derives from a potential.

It should be noted that Vlasov equilibria are generally incompatible with local
Boltzmann equilibria.

More precisely, they are compatible only for the velocities perpendicular to the flow
velocity �u, as one can readily check by decomposing the molecular velocity into a
longitudinal component �vl , aligned with the local-flow velocity �u and a transverse com-
ponent �vt, perpendicular to it. Upon such decomposition, one writes (�v – �u) · (�v – �u) =
v2t + u

2 + v2l – 2vlu, which shows that the kinetic energy u2 serves as a Vlasov potential
for the transverse component of the equilibrium distribution function. Along the longi-
tudinal direction, on the other hand, such splitting into a kinetic and potential energy is
no longer possible. Vlasov equilibria play an important role in plasma physics and astro-
physics where they offer the only mechanism to attain equilibria which would otherwise
be impossible due to the paucity of collisions.

3.4 The Boltzmann Equation in Modern Mathematics

We shall soon focus mainly on the practical use of the Boltzmann equation, namely its
capability to compute transport parameters, such as diffusivity, viscosity, and thermal
conductivity, which characterize the approach to equilibrium on a macroscopic scale.
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Before doing so, a few comments on more general issues related to the existence of
solutions of the Boltzmann equations are in order.

The Boltzmann equation is not an easy piece of math: a nonlinear integro-differential
equation living in 6 + 1 dimensions! No surprise that analytical solutions of such an
equation do not abound in the literature, the few available being sort of precious flowers
in the desert. Some of these precious flowers are listed in (3), as well as in (4).

In the sequel, we shall spend a few comments on a different sort of analytical work, the
one which does not preoccupy itself so much with the identification of specific solutions
of the Boltzmann equation, but rather with the general questions regarding its basic
properties, such as existence, regularity and time-asymptotic convergence (5). These
deep questions are the traditional hunting ground of pure mathematicians, with no im-
plications of “impurity” for the applied ones (does such distinction make really sense?).
Indeed the highest-caliber modern math has turned a close eye to the general properties
of the Boltzmann’s equation.

Forced by the author’s lack of specific competence, here we only convey a few min-
imal ideas on this elegant and sophisticated topic, not because it would bear any direct
connection to Lattice Boltzmann theory, but as a homage to its inherent beauty, in the
hope of stimulating the math-minded reader to find perhaps some for the future.

The tool of the trade is functional analysis, i.e., the mathematics of objects inhabit-
ing infinite-dimensional spaces. In such functional spaces, the distribution function f is
most conveniently regarded as a vector (sometimes called ray) with an infinite number
of components. This may sound like a very thin-air notion, but it is actually a most
concrete and operational idea. Indeed, similarly to the way an ordinary vector in three-
dimensional space is decomposed into three components along the x, y, z directions, a
function in (suitable) infinite-dimensional spaces can be expanded as an infinite series:

f (v) =
∞∑
n=1

fnHn(v) (3.20)

In (3.20), each Hn(v) represents a suitable “basis function” in Hilbert space, the analog
of unit vectors in ordinary space, and fn are the corresponding components of the “vec-
tor” f (v) along the direction associated with Hn(v). For a fully phase-space dependent
f (x, v; t), the basis functions remain the same and the space-time dependence is wholly
picked up by the coefficients fn(x; t). It is as if at each spatial location x, one would attach
a time-dependent infinite-dimensional vector.

In abstract notation, the Boltzmann equation reads as follows:

∂t f = B̂f (3.21)

where the Boltzmann evolution operator is formally given by

B̂ = Ĉ – Ŝ (3.22)



52 Approach to Equilibrium, the H-Theorem and Irreversibility

In (3.22), Ŝf ≡ �v · ∇xf + �a · ∇vf defines the streaming operator and Ĉf ≡ C( f , f ) stands
for the collision operator.

The formal solution of (3.21) is

ft = eB̂tf0 (3.23)

where f0 is the initial condition and ft is its image under the action of the Boltzmann
propagator

P̂t = eB̂t (3.24)

over a time span [0, t].
Such propagator obeys the following commutative and additive relations, also known

as semi-group properties:

P̂t1 · P̂t2 = P̂t2 · P̂t1 = P̂t1+t2 (3.25)

for any t1, t2 ≥ 0.
It also obeys P̂0 = I , I being the identity.
Note that t1, t2 are restricted to non-negative numbers. Indeed, the group is only semi

because it does not obey the time-reversal property P̂–tP̂t = I , which would imply

P̂–t = P̂–1
t (3.26)

This latter is a mathematical statement of reversibility; by rolling time backward, the
image ft maps exactly back into the starting point f0, which implies the non-singularity
of P̂t. For the case of irreversible evolution, the operator P̂t cancels information, which
cannot be retrieved by rolling time backward, whence its singularity. The “culprit” is, of
course, the collision operator and the previous semigroup property is a formal echo of
the H-theorem.

A major mathematical question concerns the main properties of the image ft, say
existence, finiteness, positivity, smoothness and so on, for any given class of initial
conditions f0.

As a first step in the rigorous study of such kind of questions, one has to define
the proper functional space to work with. Such functional space is typically metric, i.e.,
equipped with a measure of the distance between its elements, for otherwise one could
hardly address questions of convergence to any given limit.

In analogy with Euclidean space, a typical distance between two elements, say f and
g, takes the form

d( f , g) =
[∫

R3
| f (�v) – g(�v)|2d�v

]1/2
(3.27)

This defines ||φ||2, the norm of the displacement, φ ≡ f – g, in Hilbert’s space L2 (the
space of square-integrable functions).

In the case of kinetic theory, a more natural norm is Hilbert’s L1 defined by || f ||1 =∫
R3 | f |d�v. This space includes all distributions supporting a finite density.


