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Preface

“More may have been written about hemoglobin than about any other molecule. Physicists, crys-
tallographers, chemists of all kinds, zoologists, physiologists and geneticists, pathologists, and 
hematologists have all contributed to a vast literature. In the erratic ways that scientific research 
shares with other human endeavors, the multifarious work of that great throng has provided us with 
an enormous store of knowledge from which one can extract data on subjects as diverse as the quan-
tum chemistry of iron and the buoyancy of fish.”

—Perutz (2001)
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In the chapters to follow, we will explore questions 
about protein structure and function, biochemical 
adaptation, and molecular evolution by focusing on 
lessons learned from research on a single, paradig-
matic protein. There are several reasons to focus spe-
cifically on hemoglobin (Hb) and other members of 
the globin superfamily; one is historical importance. 
During the last half century, Hb has played a star-
ring role in research efforts to understand relation-
ships between protein structure and function, and 
in efforts to identify the molecular underpinnings 
of physiological adaptation and pathophysiology. 
Hb and its cousin, myoglobin (Mb), were the first 
proteins to have their crystal structures solved, Hb 
serves as a paradigm for understanding principles of 
allosteric regulatory control, and clinical research on 
mutant Hbs ushered in the modern era of molecular 
medicine.

As stated by Dickerson and Geis (1983): “with this 
one family of macromolecules [Hb and related glo-
bin proteins] one can illustrate nearly every import-
ant feature of protein structure, function, and 
evolution: principles of amino acid sequence and 
protein folding, a mechanism of activity that resem-
bles that found in enzymes although not itself cata-
lytic, specificity in the recognition and binding of 
large and small molecules, subunit motion and allo-
steric control in regulating activity, gene structure 

and genetic control, and the effects of point muta-
tions on molecular behavior.” Dickerson and Geis 
also emphasized the merits of familiarity: “People 
for whom alpha-ketoglutarate has no charms imme-
diately recognize hemoglobin as the essential con-
stituent of blood, without which human life would 
be impossible.”

The other rationale for focusing specifically on Hb is 
based on the time-tested scientific practice of using a 
model system to extrapolate general principles. As 
foundational knowledge accumulates, the value of the 
model continues to increase. For example, solving the 
crystal structure of a protein can provide insights into 
the stereochemical basis of observed functional proper-
ties. These insights can then suggest new hypotheses 
about structure-function relationships which, in turn, 
motivate further experimental work. Research on Hb 
structure, function, and evolution illustrates how a 
well-chosen model system can enhance our investiga-
tive acuity and bring key questions into focus.

This book is aimed at an interdisciplinary audi-
ence, including evolutionary biologists with an 
interest in how mechanistic studies of protein func-
tion can be used to address fundamental questions 
about evolution, and biochemists and physiologists 
with an interest in how evolutionary approaches can 
broaden and enrich their field of study. Most previ-
ous book-length treatments of Hb structure and 



function have devoted much space to discussions of 
Hb disorders such as sickle-cell anemia and various 
forms of thalassemia (Dickerson and Geis,  1983, 
Bunn and Forget,  1986). The volume by Steinberg 
et al. (2009) provides an especially authoritative and 
complete compendium of information about 
Hb-related diseases. The present volume has a dif-
ferent aim, so I have not devoted much space to the 
discussion of pathophysiology except in cases where 
understanding the etiologies of particular Hb dis-
orders helps illustrate a broader point. Relative to 
previous books about Hb structure and function, I 
have sharpened the focus on conceptual issues of 
relevance to questions about biochemical adapta-
tion and mechanisms of protein evolution.

To lay the foundation, Chapter  1 reviews basic 
principles of protein structure—the nature of proteins 
as polymers of amino acids, the variety of amino acids, 
and the way in which the physicochemical proper-
ties of amino acid side chains influence the folding 
of a polymer into a three-dimensional protein with 
specific functional properties. Chapter  2 then pro-
vides an overview of Hb function and its physio-
logical role in respiratory gas transport. Much of the 
chapter is devoted to explaining the physiological 
significance of cooperative O2 binding by Hb and 
therefore provides a point of departure for Chapter 3, 
which provides a brief overview of allosteric theory. 
Chapter 4 provides an overview of Hb structure and 
explains the mechanistic basis of  allosteric effects. 
Chapter 5 provides an overview of the evolutionary 
history of the globin gene superfamily and places 
the evolution of vertebrate-specific globins in phylo-
genetic context. The remaining chapters explore the 
physiological significance of gene duplication and 
Hb isoform differentiation (Chapter  6), the evolu-
tion of novel Hb functions and physiological innov-
ation (Chapter 7), and mechanisms of biochemical 
adaptation to environmental hypoxia (Chapter  8). 
Finally, Chapter 9 discusses conceptual issues in 
protein evolution and provides a synthesis of les-
sons learned from studies of Hb.

During the preparation of this book, I have been 
fortunate to receive helpful suggestions from friends 
and colleagues over the world: Andrea Bellelli (Sapi
enza University of Rome, Italy), Michael Berenbrink 
(University of Liverpool, UK), Colin J. Brauner 
(University of British Columbia, Canada), Thorsten 

Burmester (University of Hamburg, Germany), 
Kevin L. Campbell (University of Manitoba, Canada), 
Angela Fago (Aarhus University, Denmark), Chien 
Ho (Carnegie Mellon University), Federico G. 
Hoffmann (Mississippi State University), David 
Hoogewijs (University of Duisburg-Essen, Germany), 
Frank B. Jensen (University of Southern Denmark, 
Denmark), Amit Kumar (State University of New 
York-Buffalo), Hideaki Moriyama (University of 
Nebraska), Chandrasekhar Natarajan (University 
of Nebraska), John S. Olson (Rice University), Juan 
C. Opazo (Universidad Austral de Chile, Chile), 
William E. Royer (University of Massachusetts Medical 
School), Graham R. Scott (McMaster University, 
Canada), Anthony V. Signore (University of Nebraska), 
Jeremy R. H. Tame (Yokohama City University, Japan), 
Tobias Wang (Aarhus University, Denmark), Roy E. 
Weber (Aarhus University, Denmark), and Mark A. 
Wilson (University of Nebraska). I am also very 
grateful to F.  G.  Hoffmann, A. Kumar, and C. 
Natarajan for their help with figures.

I thank Angela Fago and Roy Weber for their part 
in maintaining a fun and productive transatlantic 
collaboration built on strong friendship. Our work 
together inspired me to write this book.

Finally, I thank my wife, Eileen, our kids, Jessie 
and Cody, and our dog, Gwydion, for helping to 
ensure that time spent writing was well-balanced 
with other pursuits!

Jay F. Storz
Lincoln, Nebraska
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Plate 1.  Structures of human Hb. (A) Crystal structure of deoxy Hb (PDB code 2DN2); (B) Crystal structure of HbCO (2DN3); (C) Ten lowest energy 
solution structures of HbCO obtained by NMR spectroscopy (2M6Z); (D) Superimposition of different R-type crystal structures of HbCO (2DN3, red; 
1BBB, magenta; 1MKO, green; and 1YZI, cyan) with the average solution structure obtained by means of NMR (light gray). Structures were aligned 
according to the α1β1 dimer.

Reproduced from Yuan et al. (2015), with permission from the American Chemical Society. See Chapter 2, section 2.1.

Plate 2.  Skeletal drawing of the myoglobin protein by the pioneering scientific illustrator, Irving Geis (1908–1997). This illustration, which 
appeared in a 1961 issue of Scientific American, was the first full side-chain drawing of any protein molecule. Today, such renderings are created 
by computer.

Copyright 1961 by Scientific American. See Chapter 2, section 2.1.
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Plate 4.  Hb allostery was originally viewed in terms of a rigid two-structure model (A), but is now interpreted in terms of a dynamic ensemble of 
structures (B). Panel A shows superimposed structures of human Hb in the T-state (unliganded conformation, PDB code 4HHB, blue) and in the 
R-state (liganded, conformation, PDB code 2DN3, red). Panel B shows the ten lowest energy solution structures of HbCO obtained via NMR (PDB 
code 2M6Z, gray) superimposed with the canonical T and R structures determined by X-ray crystallography. Structures were aligned according to 
the α1β1 dimer.

Reproduced from Yuan et al. (2015), with permission from the American Chemical Society. See Chapter 4, section 4.3.
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Plate 3.  Icefish in the family Channichthyidae inhabit the 
freezing, ice-laden waters surrounding the continental shelf of 
Antarctica. These physiologically enigmatic fish do not express Hb 
and therefore have colorless blood. (A) Icefish larva (Uwe Kils, 
Wikimedia Commons) and (B) adult crocodile icefish, Chionodraco 
hamatus (Marrabbio2, Wikimedia Commons). See Chapter 
2, section 2.6.
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Plate 5.  Network of atomic contacts at interdimer (α1β2/α2β1) interfaces involving the C and G helices and FG corner. These interdimer “sliding” 
contacts involve α1C-β2FG and α1FG-β2C, and the minor contacts involve α1C-β2C and α1FG-β2FG. The complete set of subunit contacts are 
detailed in Table 4.1. During the oxygenation-linked transition from the T-state to the R-state, some interactions at the α1β2/α2β1 interface are 
broken and new interactions are formed. As stated by Perutz (1978), this intersubunit interface “acts as a snap-action switch, with two alternative 
stable positions, each braced by a different set of hydrogen bonds.” Intermediate positions of the interface are sterically prevented, consistent with 
the all-or-nothing conformational transition envisioned by the MWC model. See Chapter 4, section 4.3.
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conserved macrosynteny demonstrates that the Cygb, Mb, Hb, and Gb– paralogons trace their duplicative origins to the same proto-chromosome 
of the chordate common ancestor and provides conclusive evidence that each of the four paralogons are products of a genome quadruplication in 
the stem lineage of vertebrates. Shared gene duplicates that map to secondarily translocated segments of the Mb paralogon (on chromosome 12) 
and the Hb paralogon (on chromosomes 7 and 17) are not pictured.

Reproduced from Hoffmann et al. (2012b). See Chapter 5, section 5.8.
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Modified from Gell (2017). See Chapter 5, section 5.3.
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Reproduced from Hoffmann et al. (2008b).

Mammalian Hb clusters

α-globinβ-globin

Human

Owl monkey

Mouse lemur

Mouse

Rat

Guinea pig

Rabbit

Pika

Tree shrew

Cow

Dolphin

Horse

Flying fox

Little brown bat

Dog

Cat

Shrew

Pygmy hedgehog

Hyrax

Elephant

Tenrec

Armadillo

~100 Ma

Avian Hb clusters

α-globin β-globin

Medium ground �nch

Zebra �nch

American crow

Peregrine falcon

Bald eagle

Downy woodpecker

Little egret

Crested ibis

Adelie penguin

Emperor penguin

Killdeer

Hoatzin

Anna’s hummingbird

Chimney swift

Common cuckoo

Rock pigeon

Chicken

Turkey

Tinamou

Ostrich

Mallard

Golden-collared manakin

~115 Ma

Hba-αE

Hbb-ρ Hbb-βH

Hba-αD Hba-αA Pseudogene Pseudogene

Hbb-βA Hbb-ε
Hba-ζ
Hbb-ε Hbb-γ

Hba-αD Hba-αA Hba-θ

Hbb-η Hbb-δ Hbb-β
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Reproduced from Zhang et al. (2014). See Chapter 5, section 5.9.1.
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Reproduced from Opazo et al. (2015). See Chapter 6, section 6.6.1.
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Reproduced from Opazo et al. (2015). See Chapter 6, section 6.6.1.
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Modified from Berenbrink (2007). See Chapter 7, section 7.2.1.
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CHAPTER 1

Principles of protein structure

1.1  Introduction

In the chapters to follow, we will explore the oxygen­
ation properties of Hb and its physiological role in 
respiratory gas transport. Hb is a complex and exquis­
itely constructed molecular machine. The circulatory 
conveyance of chemically bound O2 is its raison d’être 
and it also has physiologically important interactions 
with carbon dioxide (CO2) and nitric oxide (NO). In 
each of the four subunits of the tetrameric Hb protein, 
a single O2 molecule binds reversibly to an iron atom 
that is coordinated by four coplanar nitrogens at the 
center of a flat porphyrin ring (the heme group). Each 
heme is enclosed in a folded protein chain (the glo­
bin), to which it is bound via a coordinate covalent 
bond. How does the protein chain modulate O2 bind­
ing by the iron atom? And what is the benefit of 
enclosing the iron atom in a protein cage in the first 
place? To provide a foundation for addressing these 
questions and others, we will first briefly review rele­
vant principles of protein structure.

1.2  The hierarchy of protein structure

Proteins are polymers of amino acids that are linked 
in a specific linear sequence by peptide bonds. The 
20 standard amino acids have different side chains 
with different physicochemical properties (Fig. 1.1), 
and these properties dictate how the polymer folds 
into a three-dimensional structure—the native con­
formation. The way in which the linear chain of 
amino acids spontaneously folds into a functionally 
intact, three-dimensional molecule, and the rules 

that govern this origami-like process, are founda­
tional problems in the field of structural biology.

The primary structure of a protein refers to the lin­
ear sequence of amino acids comprising a single 
polypeptide chain. This is the only level in the hier­
archy of protein structure that can be directly pre­
dicted from gene sequence. The genetic code indicates 
which particular amino acid is specified by each trip­
let of mRNA nucleotide bases (Fig. 1.2), and there­
fore serves as a Rosetta Stone for translating DNA 
sequence into amino acid sequence. The secondary 
structure of a protein refers to the spatial arrange­
ment of residues that are close together in the linear 
sequence, and which give rise to regular, repeating 
patterns of hydrogen-bonded main chain conform­
ations such as α-helices and β-sheets. The tertiary 
structure of a protein refers to the spatial assembly of 
helices and sheets and the interactions between 
them. It describes the three-dimensional folding pat­
tern of the polypeptide chain. Finally, quaternary 
structure refers to the spatial arrangement of indi­
vidual subunit polypeptides, and is therefore only 
applicable to multimeric proteins like Hb.

1.3  The peptide bond

“A protein molecule has the advantage of constructional 
simplicity that comes from being built from backbone 
parts of standardized dimensions.”

—Dickerson and Geis (1983)

Each amino acid consists of a central carbon atom 
(called the α-carbon or “Cα”) with an attached amino 
group (NH3

+), a carboxylic acid group (COO−), a 

1
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Reproduced from McKee and McKee (2012) with permission from Oxford University Press.
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hydrogen atom, and a characteristic side chain 
(Fig.  1.3A). Amino acids are covalently linked 
together in a protein chain via peptide bonds that are 
formed by the reaction between the carbon atom of 
the carboxylic acid group of amino acid “n” and the 
amino group of amino acid “n + 1,” resulting in the 
loss of a water molecule (Fig. 1.3B). Individual amino 
acids are linked together end-to-end to form the main 
chain or backbone of a protein polypeptide with 20 
different possible types of side chain protruding from 
the α-carbon of each residue (Fig.  1.4). The amino 
group of the first residue in the chain and the carb­

oxylic acid group of the last residue remain intact, so 
the polypeptide chain is described as extending from 
the amino (N) terminus to the carboxy (C) terminus. 
Individual residues in the chain are numbered 
accordingly, from the N- to the C-terminus. This is 
also the order in which polypeptides are synthesized 
at the ribosome, as each new amino acid is added to 
the free carboxy terminus of the growing chain.

The stability and polarity of peptide bonds is 
attributable to resonance, the delocalization of 
electrons over adjoining chemical bonds (Martin, 
2001, Voet and Voet, 2011). Because of resonance, 
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Fig. 1.2.  The standard genetic code. The coding sequence of a gene specifies the order in which amino acids are linked together in the encoded 
protein, with each unique triplet of nucleotide bases (codon) specifying a particular amino acid or a punctuation mark (e.g., a stop codon that 
signals the end of the protein chain).
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Modified from Lesk (2010) with permission from Oxford University Press.
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Reproduced from McKee and McKee (2012) with permission from Oxford University Press.
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the double-bond character of the C=O bond is 
shared with the adjoining C-N bond (Fig  1.5A), 
thereby preventing free rotation about that bond. 
Consequently, the three non-hydrogen atoms that 
make up each individual peptide bond (the car­
bonyl oxygen O, the carbonyl carbon C, and the 
amide nitrogen N) lie in the same two-dimensional 
“amide plane.” Consecutive amide planes can only 
rotate about the single N-Cα and Cα-C bonds, so the 
α-carbons represent swivel points in the polypep­
tide chain. The angle of rotation around the N-Cα 
bond is called the Φ (phi) torsion angle and that 
around the Cα-C bond is called the Ψ (psi) torsion 
angle (Fig.  1.5B). The allowable angles of rotation 
around the N-Cα and Cα-C bonds are constrained 
by steric hindrance between main chain atoms and 
side chain atoms. Thus, rotatable (but sterically con­
strained) covalent N-Cα and Cα-C bonds alternate 
with comparatively rigid peptide bonds along the 
main chain, and this imposes limits on the number 
of possible folded conformations a polypeptide chain 
can adopt (Ramachandran et al., 1963, Richardson 
and Richardson, 1990).

1.4  Folded proteins are mainly stabilized 
by weak, non-covalent interactions

The main chain polypeptide is linked together by 
covalent bonds, but the three-dimensional structure 
of native state proteins is mainly stabilized by a 

multitude of non-covalent, weakly polar interactions 
(Burley and Petsko, 1988, Jaenicke, 2000). These 
weakly polar interactions depend on the electro­
static attraction between opposite charges. The 
strength of association between positively and nega­
tively charged atoms or groups of atoms depends 
on the distance between them and whether the 
interaction involves full or partial charges.

Van der Waals interactions involve a weak attractive 
force between atoms caused by fluctuations in elec­
tron density around their nuclei (Fig. 1.6A). The inter­
action is strongest between groups that are the most 
polarizable, such as the methyl groups and methylene 
groups of hydrophobic amino acid side chains. Van 
der Waals interactions are exclusively short range, 
generally involving atoms less than 5 Å apart.

Hydrogen bonds are formed between atoms of 
nitrogen (N) and oxygen (O) via an intermediate 
hydrogen atom (H): For example, N-H . . . N, 
NH . . . O, OH . . . O, or OH . . . N, where in each case 
the hydrogen is covalently bonded to the atom on 
the left (the donor) and more weakly bonded to the 
negatively polarized, non-bonded atom on the right 
(the acceptor) (Fig. 1.6B). The most common hydro­
gen bonds in proteins involve the N-H and C=O 
groups of the polypeptide main chain. In this hydro­
gen bond, N-H . . . O=C, the typical H . . . O distance is  
1.9–2.0 Å, whereas the covalent N-H distance is ~1 
Å. The hydrogen atom that is covalently bound to 
the more electronegative donor atom has a partial 
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Fig. 1.6.  Summary of non-covalent interactions that stabilize polypeptides. Interatomic distances for the different interactions are highly 
context-dependent, so the values shown here should be regarded as approximate averages.


