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Preface

In writing this book the intention has been to provide support for lec-
ture courses on general quantum physics for university undergraduates
in the final year(s) of a physics degree programme. The audience would
be expected to have taken the courses in introductory quantum physics
and in basic quantum mechanics that are normally met in the first or
second years of a physics degree programme. The first chapter is a re-
view of the basic quantum mechanics needed for getting the best out of
the text. Instructors are then free to concentrate on a group of chap-
ters, or select components from all chapters, whichever suits their needs.

Thanks to the sheer variety and rapid advance of research across the
discipline, the average course in the later years of a physics degree pro-
gramme is designed to address one area of physics. Instead, this text
covers key themes of quantum physics, taking the perspective achieved
after more than a century of research, and emphasizing the effectiveness
and the subtlety of quantum concepts in explaining diverse physical
phenomena. The book is used to bring out these unifying ideas and
illustrate them with important examples from modern experiments and
applications.

The themes developed in the text, and listed next, are the essence of
quantum physics.

One theme contrasts boson condensation and fermion exclusivity. Bose–
Einstein condensation is basic to superconductivity, superfluidity and
gaseous BEC. Fermion exclusivity leads to compact stars and to atomic
structure, and thence to the band structure of metals and semiconduc-
tors with applications in material science, modern optics and electronics.

A second theme is that a wavefunction at a point, and in particular
its phase is unique (ignoring a global phase change). If there are sym-
metries, conservation laws follow and quantum states which are eigen-
functions of the conserved quantities. By contrast with no particular
symmetry topological effects occur such as the Bohm–Aharonov effect:
also stable vortex formation in superfluids, superconductors and BEC,
all these having quantized circulation of some sort. The quantum Hall
effect and quantum spin Hall effect are ab initio topological.

A third theme is entanglement: a feature that distinguishes the quan-
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tum world from the classical world. This property led Einstein, Podolsky
and Rosen to the view that quantum mechanics is an incomplete phys-
ical theory. Bell proposed the way that any underlying local hidden
variable theory could be, and was experimentally rejected. Powerful
tools in quantum optics, including near-term secure communications,
rely on entanglement. It was exploited in the the measurement of CP
violation in the decay of beauty mesons.

A fourth theme is the limitations on measurement precision set by
quantum mechanics. These can be circumvented by quantum non-
demolition techniques and by squeezing phase space so that the un-
certainty is moved to a variable conjugate to that being measured. The
boundaries of precision are explored in the measurement of g-2 for the
electron, and in the detection of gravitational waves by LIGO; the latter
achievement has opened a new window on the universe.

The fifth and last theme is quantum field theory. This is based on
local conservation of charges. It reaches its most impressive form in the
quantum gauge theories of the strong, electromagnetic and weak interac-
tions, culminating in the discovery of the Higgs. Where particle physics
has particles condensed matter has a galaxy of pseudoparticles that ex-
ist only in matter and are always in some sense special to particular
states of matter. Emergent phenomena in matter are successfully mod-
elled and analysed using quasi-particles and quantum theory. Lessons
learned in that way on spontaneous symmetry breaking in superconduc-
tivity were the key to constructing a consistent quantum gauge theory
of electroweak processes in particle physics.

Care has been taken to maintain a level of presentation accessible to
undergraduates reading physics, and to provide exercises and solutions
to reinforce the learning process.

Solutions to the exercises are accessible via the OUP webpage link for
this text.



Acknowledgements

I thank two Heads of the School of Physics and Astronomy at Birming-
ham University, Professors Andy Schofield and Martin Freer, and also
Professor Paul Newman, Head of the Elementary Particle Physics Group
at Birmingham, for their support and encouragement during the lengthy
preparation of this textbook. Dr Sonke Adlung, the senior science edi-
tor at Oxford University Press, has always been unfailingly helpful and
courteous in dealing with the many aspects of the preparation, and my
thanks go to him for making my path easier. I am also grateful to his
colleagues at Oxford University Press and SPi Global for the smooth
management of copy editing, layout, production, and publicity.

Many colleagues have been more than generous in finding time in busy
lives to read and comment on material for which they have a particular
interest and expertise. My thanks go to Professor Ted Forgan, who was
kind enough to read the chapters dealing with metals and semiconduc-
tors: his guidance and suggestions on particular points were very helpful.
Thanks too, to Professor Peter Jones for reading the chapter on Tran-
sitions and his helpful comments on suitability. I am indebted to both
Dr Rob Smith and Dr Martin Long, who generously found time on nu-
merous occasions for patient explanations on condensed matter physics:
their insights clarified many difficult points. In addition, Rob went the
extra mile in reading the chapter on superconductivity, unearthing an
embarassing number of subtle misunderstandings. I am under a further
obligation to him for reading and commenting on the chapter on sym-
metry and topology. Thanks to Dr Elizabeth Blackburn for reading and
making useful comments on the chapter on photon physics. I am very
much indebted to Professor Vinen, who read and cross-questioned me
on the liquid helium and superfluidity chapter, subjects about which
he is a world authority. Dr Giovanni Barontini indoctrinated me in
the subtleties of atomic Bose–Einstein condensates, and afterwards re-
viewed the chapter on BEC with great care: his input was indispens-
able. I much appreciate the interaction with Dr Hannah Price, who
considerably sharpened my understanding of the quantum Hall effects,
in particular, the role of topological quantization. Professor Alberto
Vecchio took valuable time off from discovering gravitational waves to
look over the chapter on quantum measurement, for which I am most
grateful. I much appreciate Dr Alastair Rae offering to read three chap-
ters where he has particular expertise: those on entanglement, the EPR
controversy, and quantum measurement. He helped me appreciate a



viii Acknowledgements

number of important points that had escaped my attention. My col-
leagues in the particle physics group have helped enormously in many
ways. Kostas Nikolopoulos and Miriam Watson provided access to AT-
LAS publications and event displays. In addition, Miriam and Chris
Hawkes took on the task of reading and commenting on the chapters on
particle physics. Their valuable critique is highly appreciated. Thanks
too, to David Charlton and Mark Colclough who looked over sections
where their expertise was particularly useful. Ian Styles of the Computer
Science Department scrutinized the chapter relating to the potential for
quantum cryptography and computing, for which I am most grateful.
I am equally grateful to Dr Brooker who carefully searched the whole
text for errors on behalf of Oxford University Press. Last, and defi-
nitely not least, I thank Mark Slater warmly for rescuing the text from
a problem with missing fonts in the figures, which could have required
the redrawing of 120 figures: his prompt and expert help was invaluable.

The input from all these colleagues removed misunderstandings on
my part, helped me to clarify arguments, and brought points to my at-
tention that I would otherwise have missed. The responsibility for any
remaining errors should be laid at my door.

My thanks also go to the authors and publishers who have allowed
me to use published figures, or adaptations of figures, or tables, each ac-
knowledged individually in the text. I am grateful on this account to the
American Physical Society, the American Society for the Advancement
of Science, the American Chemical Society, the Royal Society, Elsevier
publishers, Springer Nature, and Springer Verlag.

In producing some 290 diagrams I made almost exclusive use of the
ROOT package developed by Dr Rene Brun and Dr Fons Rademakers
and described in ROOT – An Object Oriented Data Analysis Framework,
which appeared in the Proceedings of AIHENP ’96 Workshop, Lausanne,
Nuclear Instruments and Methods in Physics Research A389(1997)81-6.
ROOT can be accessed at http://root.cern.ch. I also thank Dr Brun for
help while learning to use this sophisticated tool.

http://root.cern.ch


To Valerie





Contents

1 Review of basic quantum physics 1
1.1 Introduction 1
1.2 The fundamental evidence 1
1.3 De Broglie’s hypothesis 3
1.4 The Bohr model of the atom 3
1.5 Wave–particle duality 5
1.6 The uncertainty principle 6
1.7 Outline of quantum mechanics 7
1.8 Schrödinger’s equation 8
1.9 Eigenstates 9
1.10 Observables and expectation values 10
1.11 Collapse of the wavefunction 12
1.12 Schrödinger’s cat 12
1.13 No-cloning theorem 13
1.14 Wavepackets 13
1.15 State vectors 15
1.16 Special relativity and electromagnetism 17
1.17 Further reading 20
Exercises 20

2 Solutions to Schrödinger’s equation 21
2.1 Introduction 21
2.2 The square potential well 21

2.2.1 Barrier penetration 23
2.3 The harmonic oscillator potential 26
2.4 The hydrogen atom 27
2.5 Intrinsic angular momentum 30
2.6 Fine structure 32

2.6.1 Hyperfine splitting 33
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The cover picture shows one end of a double dipole magnet from the
CERN LHC. Two counter-rotating beams are steered around a 27 km
closed path inside an evacuated tube by 1232 such magnets. For around
90 per cent of the year the particles in the beams are protons; for the
remainder of the year heavy ions (such as lead). The beams are brought
into collision at four locations on this circuit: around three of these inter-
action points the ATLAS, CMS, and LHCb detectors were built to study
the products of proton-proton collisions at 13TeV energy; around the
fourth the ALICE detector was built, explicitly to study heavy ion col-
lisions. In operation, the dipole current is carried by a superconducting
condensate of Cooper pairs. Liquid helium flowing through the magnet
coils provides the necessary cooling to 1.9K. The flow is dissipation-free
thanks to the superfluid condensate component of ultra-cold liquid he-
lium. A final condensate is the Higgs condensate in the vacuum, whose
particle excitations were discovered by the ATLAS and CMS experi-
ments. See Chapters 14, 15 and 19 respectively.



Review of basic quantum
physics 1
1.1 Introduction

This chapter reviews the evidence for quantization, and basic quantum
mechanics, including Schrödinger’s equation. The material should pro-
vide a refresher and a reference for students who have had exposure
to a first course on quantum physics. The uncertainty principle, wave
packets, wavefunction collapse and the no-cloning theorem are discussed.
State vectors in Hilbert space are introduced. A summary of useful for-
mulae from special relativity and electromagnetism closes the chapter.

1.2 The fundamental evidence

The three pieces of compelling evidence for the quantum nature of elec-
tromagnetic radiation were provided by the black body radiation spec-
trum, the photoelectric effect and Compton scattering. They are re-
viewed briefly here. The black body radiation spectrum, that is, the
radiation in thermal equilibrium within a closed volume, whose walls
are at a constant temperature, is shown in Figure 1.1 for three temper-
atures. The ingredients for calculating this spectrum are the count of
distinct modes of oscillation of the electromagnetic field, and the energy
per mode in thermal equilibrium. Of these, the mode density per unit
frequency per unit volume ρ(f) is given by1

ρ(f)df = [8πf2/c3]df, (1.1)

for frequency f , including both polarizations. Classical and quantum
predictions differ on how the energy per mode is assigned: in classical
thermodynamics all modes have energy kBT , where T K is the tempera-
ture and kB is Boltzmann’s constant, 1.381 10−28 JK−1. The predicted
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Fig. 1.1 Black body radiation spectra
at 3000K, 4000K and 5000K. Planck’s
quantum predictions which are indi-
cated with full lines fit the data. The
classical prediction for 3000K is shown
with a broken line.

energy spectrum therefore diverges at high frequencies and short wave-
lenths, as shown in Figure 1.1. This was the ultraviolet catastrophe.
Planck, in a step that signalled the birth of quantum physics, proposed
that in each mode electromagnetic radiation is emitted and absorbed in

1This is derived in Appendix B, eqn. B.12, together with similar mode calculations.
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energy packets, the quanta, of magnitude

E = hf = h̄ω, (1.2)

where ω is the angular frequency of the radiation and h is known as
Planck’s constant; h̄ is simply h/2π. The rest of the quantum calculation
proceeds as follows. If there are � quanta in the mode its energy is �hf .
The probability of � quanta in any mode within the enclosure is then
given by the Boltzmann distribution exp[−�hf/(kBT )]. Evaluating the
mean number gives

� = 1/ [ exp (hf/kBT )− 1 ]. (1.3)

Multiplying this expression by the density of modes given in eqn. 1.1,
the energy spectrum of black body radiation is predicted to be22In a material of refractive index n

there would be an additional factor n3

in the numerator. W (f)df = (8πhf3/c3)df/[exp (hf/kBT )− 1], (1.4)

with W (f) in Jm−3 Hz−1. This expression fits the the observed black
body spectra at all temperatures with one value of h, namely 6.626 10−34 J s.
When hf/kBT is very small, the quantum formula reduces to the clas-
sical expression.

The photoelectric effect occurs when visible or ultraviolet light falls
on a clean metal or an alkali metal surface causing electrons to be emit-
ted. By 1902, Lenard had shown that for each such metal there ex-
ists a threshold frequency below which no photoelectrons are produced,
however high the intensity of the incoming radiation. Classically, the
electrons would continuously acquire energy from incident radiation and
eventually break free from the surface, at any radiation frequency.

In 1905, Einstein proposed that in the photoelectric effect a single
electron absorbs one quantum of energy from the radiation and escapes
from the surface. Then electrons located at the surface will emerge with
kinetic energy equal to

KEmax = hf − φ, (1.5)

where φ is the work function of the metal surface. Electrons originating
deeper in the metal lose further energy through collisions on their way
out. Einstein’s proposal provides the required cut-off, with no photo-
electron emission for radiation of frequencies below fco = φ/h.

Millikan showed that the maximum kinetic energy of the photoelec-
trons fitted Einstein’s predicted linear relation. He extracted a value of
Planck’s constant from the data, which agreed with that found from the
fit to the black body spectrum. Forrester, Gudmundson and Johnson in
1955 studied the photoelectric effect using light modulated at high fre-
quencies and observed that the detector signal followed the modulation
faithfully, showing that any delay was much less than the modulation
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period of 10−10 s. According to the classical view, there would be a
delay before photoemission because the wave energy is supposed to be
spread uniformly over the whole surface, rather than being concentrated
in quanta that interact with individual atoms.

Compton followed through the consequences of the quantization of ra-
diation, realizing that when X-rays scatter from matter the underlying
process is the scattering of one quantum of electromagnetic radiation off
one electron that is initially at rest. Then treating the photon-electron
collision as an elastic two body collision, Compton arrived at an expres-
sion for the wavelength change of the scattered radiation

λ− λ0 = (h/mc)(1− cos θ), (1.6)

where m is the electron mass and θ the angle through which the photon
scatters. Compton found that the shift in wavelength fitted his predic-
tion precisely in magnitude, in its dependence on the scattering angle
and in its independence of the target material.

1.3 De Broglie’s hypothesis

In 1924, de Broglie realized that if electromagnetic waves possess particle
properties, then all material particles such as electrons must possess
wave properties. Equally, the relations connecting the wave and particle
properties of electromagnetic radiation apply also to material particles.
Thus the frequency of the wave f associated with a particle of total
energy E would be given by Planck’s relation

E = hf. (1.7)

The parallel relation for the momentum of a photon, p, also extends to
material particles

p = h/λ. (1.8)

This is called the de Broglie relation, and λ is known as the de Broglie
wavelength of material particles. De Broglie’s ideas were confirmed in
1926 when electron diffraction was observed from crystals.

Wave particle duality extends to gravitational effects. Einstein’s gen-
eral theory of relativity assigns an inertial mass of E/c2 to a photon of
energy E.

1.4 The Bohr model of the atom

In 1911, Rutherford’s colleagues used α-particles (bare 4He nuclei) to
bombard thin metal foils and observed that substantial numbers were
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Fig. 1.2 The energy levels in the hydro-
gen atom are displayed together with
transitions producing the Lyman and
Balmer series. For clarity only the first
few transitions are drawn. The spec-
tral lines are shown in the lower panel.
Each series converges to a limit: in the
case of upward transitions the limit is
reached when the electron just escapes
from the atom with zero kinetic energy.
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scattered into the backward hemisphere and some almost straight back-
ward. Rutherford showed that these observations could only be con-
sistently explained if the object within the atom that scatters the α-
particles carries most of the atomic mass, has positive charge and is
very much smaller than the atom. This scatterer is the nucleus, which
is typically 10−15m across. The electrons circulate around it in orbits
extending to 10−10m from the nucleus.

Classically the electrons in such an atom would accelerate into the
nucleus and radiate over a broad range of wavelengths. In fact, isolated
atoms radiate at discrete wavelengths, the spectral lines. Hydrogen has a
particularly simple atomic structure, with one electron orbiting a single
proton nucleus. Its spectrum consists of spectral lines whose wavelengths
are given by a single formula33The fine and hyperfine structure of

spectral lines are discussed in the next
chapter. 1/λ = RH(1/n

2 − 1/p2), (1.9)

where n and p are positive integers with the restriction that p > n. RH

is a constant known as the Rydberg constant, with value 1.09678107m−1.
Part of the spectrum is shown in Figure 1.2

In Bohr’s model of 1913, the electrons are pictured as travelling in
stable circular orbits around the nucleus. Here, his model is applied
to the hydrogen atom, for which it works best. The transition from an
orbit of higher energy to one of lower energy is accompanied by a photon
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being emitted. Equally, an electron in a lower energy orbit can absorb
a photon and jump to a higher energy orbit. In both cases, the photon
energy exactly matches the energy difference between the electron states
ΔE: the photon frequency, f , is thus given by

hf = ΔE. (1.10)

Bohr discovered the quantization condition that one complete electron
orbit contains an integral number n of de Broglie wavelengths; any other
orbit would interfere destructively with itself. This is a condition on the
phase of a stable quantum state: in a closed loop the phase must change
by an integral number of multiples of 2π. This simple, but powerful,
phase condition has applicability beyond the Bohr model and will be
met repeatedly. Bohr’s only other requirement was that the Coulomb
attraction of the nucleus provides the centripetal force to maintain the
electron in its stable orbit. This leads to an expression for the energy of
the nth orbit as

En = −(e2/4πε0)
2(m/2n2h̄2), (1.11)

where −e is the electron charge, m its mass and ε0 the permittivity of
free space. From this result the photon energy emitted/absorbed in a
transition between the pth and nth orbit is

ΔE = Rhc[1/n2 − 1/p2], (1.12)

where p > n is required for this to be positive. R is me4/[4πc(4πε0)
2h̄3]

so this reproduces the main features of the hydrogen spectrum with R
being equal to the experimental Rydberg constant. The radius of the
innermost orbit, called the Bohr radius, is

a0 = 4πε0h̄
2/(me2). (1.13)

Despite its undoubted success in the case of hydrogen, Bohr’s model
fails to explain the spectrum of neutral helium. Its hybrid nature is also
very unsatisfying and it lacks any means for calculating transition rates.
Further progress in understanding required the quantum mechanics de-
veloped by Born, Heisenberg and Schrödinger.

1.5 Wave–particle duality

The connection between the particle and wave properties for electro-
magnetic radiation, and for material particles, is statistical. Thus the
probability of finding a photon in a given volume dV is determined by
the instantaneous energy density, I, of the electromagnetic wave over
the same volume

PdV = IdV/

∫
IdV , (1.14)

where P is called the probability density. The integral is taken over the
whole of space to ensure that the total probability of the photon being
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found somewhere is unity.

Young’s two slit experiment will be used to illustrate the statistical
interpretation. Suppose the observation screen is a pixelated detector
with granularity much finer than the fringe widths, and that all the
pixels are equally efficient in detecting photons. Further, suppose that
an extremely low intensity source is used, so that at any given moment
there is only ever a single photon within the volume between source and
screen. Figure 1.3 shows typical histograms of the photon distribu-
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Fig. 1.3 Distribution of photons in the
detection plane in Young’s two slit ex-
periment for 10, 1000 and 20 000 pho-
tons. The broken curves indicate the
classical interference pattern.

tion across the detector after 10, 1000 and 20 000 photons have been
detected. For comparison the calculated wave intensity is superposed.
An individual photon may hit anywhere across the screen, other than
locations where the wave intensity is precisely zero. Only the probability
for arriving at each pixel is known, and the probabilities of reaching a
given pixel are identical for each and every photon emerging from the
source slit. The distribution with few photons is extremely ragged, but
as the number increases the resemblance becomes ever closer to the wave
intensity. If the number of photons expected to strike a pixel is n, then
the statistical uncertainty in this number is

√
n. Thus the fractional

uncertainty is 1/
√
n, which falls with increasing n.

The laws of classical physics are deterministic: statistical analysis is
used only in dealing with systems containing very large numbers of par-
ticles, as in the kinetic theory of gases. By contrast, statistical behaviour
is fundamental to quantum systems.

1.6 The uncertainty principle

Heisenberg considered the uncertainty when simultaneous measurements
are made of a position component y and corresponnding momentum py
and arrived at the limit

ΔpyΔy ≥ h̄/2, (1.15)

known as Heisenberg’s uncertainty principle. The equality would only be
achieved if the distributions of momentum and position were Gaussian,
and there were no instrumental errors. The uncertainty principle applies
to each dimension separately, from which it follows that simultaneous
measurements of the vector position r and vector momentum p have
uncertainties that satisfy

ΔpxΔpyΔpzΔxΔyΔz ≥ h̄3/8. (1.16)

The product on the left-hand side of this equation can be pictured as a
volume element in a six-dimensional space-momentum phase space.

Spatial coordinates and time are treated in a unified way within
the special theory of relativity: they define a single space-time loca-
tion (ct, x, y, z). Similarly, energy and momentum form an energy–
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momentum four-vector (E/c, px, py, pz), which transforms exactly like
a space-time vector under a Lorentz boost from one inertial frame to
another. This implies that there must exist an energy–time uncertainty
relation

ΔEΔt ≥ h̄/2. (1.17)

The interpretation differs subtly from that for space-momentum because
Δt is the time taken to measure the energy, and ΔE is the resulting
uncertainty in this measurement. To be precise, a quantity such as Δχ
is the standard deviation of the measurements of χ on a set of similarly
prepared states, that is, on an ensemble.

1.7 Outline of quantum mechanics

Experiment shows that the laws of conservation of energy, momentum
and angular momentum are universal.

The behaviour of electrons or other particles is described by a complex
wavefunction that contains all possible information that exists about the
system. This wavefunction, Ψ(qn, t), is a function of time and all the
independent variables, written as a set {qn}. These variables include the
spatial coordinates and its spin (intrinsic angular momentum) state. The
interpretation of the wavefunction will always be that the probability for
finding a system with variables in a range dV = dq1dq2. · · · around q1,
q2,· · · is

P (q1, q2, · · ·) dV = Ψ∗ΨdV. (1.18)

The wavefunction used is normalized, meaning that a numerical factor is
inserted so that integrating PdV over the full range of the independent
variables gives unity.

Quantities that are measurable for a particle or a system of particles
are known as observables. Position, momentum, orbital angular mo-
mentum, polarization and energy are all observables. These are there-
fore real, rather than complex, quantities. Each observable has a corre-
sponding operator that acts on the wavefunction describing the system
considered. The operators for momentum and the total energy are indi- Plane waves provide a simple exam-

ple for discussion and finite realistic
wavepackets are all linear sums of plane
waves. Plane sinusoidal waves extend
to infinity and the range L is needed to
give a normalizable wavefunction. The
values of measurable quantities are cor-
rectly predicted when the limit L → ∞
is taken. On occasion care is needed
when taking the limit.

cated by placing hats over the respective symbols for the observables

p̂ = −ih̄
∂

∂x
, Ĥ = +ih̄

∂

∂t
. (1.19)

Their action is most easily demonstrated by considering a free electron
moving in the x-direction. This has a plane wavefunction.

Φk = (1/
√
L) exp [i(kx− ωt)], (1.20)

where L is the range in x to which the electron is restricted and can be
increased to infinity as required. Then

p̂Φk = h̄kΦk = pΦk, ĤΦk = h̄ωΦk = EΦk. (1.21)
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The quantities p and E appearing on the right-hand side, without hats,
are the values that can be obtained in measurements of the momentum
and kinetic energy respectively. This prediction of an exact value for the
momentum of a plane wave does not violate the uncertainty principle
because the location is undetermined.

Operators are complex and the quantities measured are real, so it
follows that the waves for electrons and other material particles must
themselves be complex, unlike magnetic and electric fields, which are
always real. We now come to the equation that is the equivalent for
non-relativistic electrons of the wave equation for electromagnetic waves.

1.8 Schrödinger’s equation

Starting from the equation for conservation of energy for non-relativistic
motion in a potential V ,

E = V + p2/2m,

Schrödinger constructed an operator equation acting on a wavefunction.
The total energy and the momentum are replaced by the operator forms
from eqn. 1.19, giving

ih̄∂Ψ(r, t)/∂t = V (r, t)Ψ(r, t)− (h̄2/2m)∇2Ψ(r, t)., (1.22)

This is Schrödinger’s time-dependent equation for non-relativistic mo-
tion in a potential V (r, t). Solutions for the motion in square, harmonic
and Coulomb potentials are calculated in Chapter 2.

In the case of a static potential the solution factorizes to give

Ψ(r, t) = ψ(r) exp (−iEt/h̄), (1.23)

which, when substituted in Schrödinger’s equation, gives its time inde-
pendent form

Eψ(r) = V (r)ψ(r) − (h̄2/2m)∇2ψ(r), (1.24)

where E is the electron total energy, kinetic plus potential.

Schrödinger’s equation is linear in ψ so that the superposition principle
applies to wavefunctions that satisfy the equation: adding these wave-
functions with constant coefficients produces another valid wavefunction.
There are several crucial differences between, on the one hand, Maxwell’s
equations for electromagnetic waves, and on the other, Schrödinger’s
equation for electron waves. Schrödinger’s equation is non-relativistic,
and complex, so the electron waves are complex and not directly mea-
surable: Maxwell’s equations are relativistic, and the electromagnetic
fields are directly measurable. A basic understanding of atomic states
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and their radiation is achieved by applying Schrödinger’s equation.

Any solution of Schrödinger’s equation must satisfy several simple
requirements. Firstly, the wavefunction must be finite and continuous
everywhere. If instead the wavefunction jumped discontinuously, the
derivative, and hence the momentum, would become infinite. Similarly,
the first derivative must be continuous everywhere to avoid an infinite
term in the energy. These requirements on continuity are essential tools
when joining up solutions of Schrödinger’s equation at boundaries where
the potential changes.

The non-relativistic density of particles is

ρ = Ψ∗Ψ, (1.25)

so that
∂ρ/∂t = Ψ∗∂Ψ/∂t+ [∂Ψ∗/∂t]Ψ. (1.26)

There is a corresponding vector flux, or current, j, defined to be the
number of particles crossing unit area in unit time. That is the real part
of Ψ∗[p/m]Ψ:

j = (ih̄/2m)(Ψ∇Ψ∗ −Ψ∗∇Ψ). (1.27)

Flux and density obey the standard continuity equation

∂ρ/∂t+∇ · j = 0, (1.28)

which ensures that the number of particles is conserved.

1.9 Eigenstates

The wavefunctions that are solutions of Schrödinger’s equation are known
as energy eigenfunctions. The corresponding energies are called energy
eigenvalues and the electron is said to be in an eigenstate of energy. An
eigenstate may be an eigenstate of several observables with each taking
unique values for a given eigenstate. These are then known as compat-
ible or simultaneous observables: examples are the energy, the angular
momentum and a component of the angular momentum of an electron
in a hydrogen atom. The measurement of an observable leaves the elec-
tron in an eigenstate of that variable and its compatible variables. As
explained later, the eigenvalues of energy are discrete when the potential
localizes the electron in a potential well, but continuous from zero up to
any conceivable positive value when an electron is free.

The existence and the properties of eigenstates generalize to systems
of electrons and other material particles. Such a system has a set of
eigenstates {φi} of observables, such as A, with eigenvalues {ai}, re-
spectively. With the standard notation the operator corresponding to A
is Â, and this acts on the wavefunction φi in the following way:

Âφi = aiφi, (1.29)
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meaning that any measurement of the observable A on the eigenstate φi

always gives the eigenvalue ai.

An intrinsic property of eigenstates is their orthogonality in the sense
that the overlap integrals between the wavefunctions of any pair of them
over all the free variables vanish. Suppose φi and φj are two such eigen-
functions of an electron; then∫

φ∗jφi dV = 0, if j �= i. (1.30)

Eigenfunctions are usually normalized for convenience so that∫
φ∗jφidV = δji, (1.31)

where δji is the Kronecker δ defined by

δji = 0 for j �= i; δji = 1 for j = i. (1.32)

In the case of a free particle φ(x) = exp(ikx), where k is a continuous
variable rather than an integer label, then

1

2π

∫ ∞

−∞

φ∗(x′)φ(x)dk =
1

2π

∫ ∞

−∞

exp[i(kx− kx′)]dk = δ(x−x′). (1.33)

where δ is the Dirac delta function This has the property that for any
function f(x) ∫

f(x)δ(x − x′)dx = f(x′), (1.34)

provided the range of integration includes the point x = x′; otherwise
it vanishes. The Dirac δ-function δ(x − x′) is effectively an infinitely
narrow and tall spike at x = x′ such that the area under this spike is
exactly unity.

1.10 Observables and expectation values

In the more general case that a system is not in an eigenstate of an
observable, the value that is obtained by measuring the observable can
only be predicted statistically. Quantum mechanics predicts the expec-
tation value of an observable A, which is written 〈Â〉, is obtained using
the equation

〈Â〉 =
∫

ψ∗Âψ dV , (1.35)

where ψ is normalized. The equation is to be interpreted in this way.
This is the average value found if A is measured on a large number of
systems which have been prepared in exactly the same way so that they
have identical wavefunctions ψ – such a hypothetical collection of sys-
tems is called an ensemble. In the case of an eigenstate of the observable
A the expectation value is simply the eigenvalue of A for that eigenstate.
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Any wavefunction ψ of a system which has an observable A can always
be expanded as a linear superposition of the normalized eigenfunctions
{φi} of A. Assuming for simplicity that the eigenvalues are discrete,

ψ =
∑
i

ciφi. (1.36)

Then the expectation value of A in a state with wavefunction ψ is

〈Â〉 =
∑
j

c∗jcjaj . (1.37)

where c∗jcj is the probability that the system is found to be in the eigen-
state φj with eigenvalue aj of A. When the eigenvalues are continuous,
as for example the momentum h̄k of a free electron described by eqn.
1.20,

ψ =

∫
c(k)φk dk, (1.38)

and

〈Â〉 =
∫

c∗(k)c(k)a(k) dk, (1.39)

where a(k) is the value obtained when A is measured on the eigenstate
with momentum k. In particular c∗(k)c(k) dk is the probability that the
measurement gives a momentum eigenvalue lying between k and k+dk.

All measurements yield real values so that the expectation value of an
observable, A, is always real; hence it equals its complex conjugate so
that ∫

ψ∗ÂψdV =

∫
(Âψ)∗ψ dV . (1.40)

Operators with this mathematical property are called hermitean.

Eigenstates of a system are usually eigenstates of several observables,
and it requires knowledge of all of these to completely specify an eigen-
state. Here we consider the case where there are just two of these com-
patible observables, A and B. There is a set of eigenfunctions {φ} for
which

Âφj = ajφj ; B̂φj = bjφj .

Suppose some eigenfunctions are degenerate, that is to say they share the
same eigenvalue for A, while each has an eigenvalue of B different from
that of all the others. A measurement of A may then leave the system in
a state described by a superposition of the degenerate eigenfunctions. A
subsequent measurement of B will result in the wavefunction collapsing
into a single eigenfunction from this superposition, for example φk. Fur-
ther measurements thereafter of A and B yield ak and bk respectively.
The expectation value for the product of compatible observables∫

ψ∗ÂB̂ψ dV =
∑
j

c∗jcjajbj =

∫
ψ∗B̂Âψ dV ,
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holds true whatever arbitrary state ψ of the system is being considered.
Consequently the expectation value of ÂB̂ − B̂Â always vanishes. This
operator is called the commutator of A and B and is written with square
brackets [Â, B̂]. In the case of compatible observables

[Â, B̂ ] = 0 : (1.41)

Â and B̂ are said to commute.

Pairs of conjugate variables like p̂x and x̂ are not compatible observ-
ables. It follows from eqn. 1.19 that

[x, px]ψ = x(−ih̄∂/∂x)ψ + ih̄∂(xψ)/∂x

= −ixh̄(∂ψ/∂x) + ih̄(∂x/∂x)ψ + ih̄x(∂ψ/∂x)

= ih̄ψ. (1.42)

There are corresponding relations for the commutators of other pairs of
conjugate variables.

1.11 Collapse of the wavefunction

A most surprising feature of quantum mechanics has been left for dis-
cussion here. Any measurement of the observable A on a system in a
superposition of eigenstates of A with wavefunction ψ =

∑
i φi gives

some eigenvalue aj . The system is thereafter in the eigenstate with
wavefunction φj , and no longer in the state with wavefunction ψ. A
second measurement of the observable A will again give aj, and so
would further measurements. The result of the first measurement is
profoundly different from anything met in classical mechanics. There is
a discontinuity: up to the exact moment of the measurement the system
is evolving according to the wavefunction ψ and immediately afterwards
its wavefunction has become φj . This step is known as the collapse of
the wavefunction. It is clearly a very drastic step because, for example
when a photon is absorbed on an atom in the photoelectric effect, the
photon wavefunction over all space collapses simultaneously.

1.12 Schrödinger’s cat

Schrödinger highlighted a logical difficulty arising out of the collapse of
the wave function. A cat is locked in a box together with a mechanism
which will release a lethal gas if and when a single radioactive nucleus
decays. It is then argued that the wavefunction of the contents of the
box should contain two terms: the first term describing an undisturbed
mechanism and a live cat; the second describing an activated mecha-
nism and a dead cat. Later Schrödinger opens the box and observes the
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contents. At this instant the wavefunction of the contents collapses to
either one that contains a live cat, or to another that contains a dead
cat. A popular resolution of this paradox of having a cat simultane-
ously alive and dead is through what is called decoherence. Broadly
speaking any interaction of a quantum system with its surroundings, for
example gas molecules striking the cat, is supposed to cause the collapse
its wavefunction.4 A counter view is that the interactions only cause 4See, for example, ‘Decoherence and

the the Transition from Quantum to
Classical’ by W. H. Zurek, Physics To-
day, October 1991.

loss of phase coherence between the macroscopic states and leave them
superposed.5

5See A. Bassi, K. Lochan, S. Satin, T.
P. Singh, and H. Ulbricht, Reviews of
Modern Physics 85, 471 (2013).

1.13 No-cloning theorem

Quantum mechanics forbids the creation of exact replicas of arbitrary
quantum states. If it were possible to do so then one observable could
be measured on the original and the conjugate observable measured on
the clone, both with high precision. As a result, both observables would
be precisely known for the parent quantum state, which would violate
the uncertainty principle. Suppose we attempt to clone a state labelled
‘1’, which is an arbitrary superposition of two pure states

ψ(1) = αψa(1) + βψb(1), (1.43)

where α and β are some unknown constants. Then making a copy la-
belled ‘2’ gives

Copy[ψ(1)] = α Copy[ψa(1)] + β Copy[ψb(1)]

= αψa(1)ψa(2) + βψb(1)ψb(2) (1.44)

whereas true cloning6 would produce ψ(1)ψ(2). 6Obviously a single pure state can be
copied but we have to know that it is
a pure state in the first place. It is
cloning of an arbitrary and therefore
unknown quantum state that is forbid-
den. See W. K. Wootters and W. H.
Zurek, Nature 299, 802 (1982).

1.14 Wavepackets

Wavepackets considered here are finite wavetrains of electromagnetic
waves emitted by a source, and contain a number of photons deter-
mined by the physical situation. Wavepackets exist equally for any par-
ticle species. In free space wavepackets travel without change of shape
because all the frequency components travel at the same velocity, c.
However, in dispersive media the velocity depends on the frequency. For
example the electric field

E(z, t) =

∫
ε(ω) exp[i(kz − ωt)] dω, (1.45)

k being the wavenumber and ε(ω) is the wave distribution in angular
frequency centred on ω0. This is portrayed at a given location in the
upper plot of Figure 1.4. Rewriting this waveform to first order in (ω−
ω0)

E(z, t) = exp[i(k0z−ω0t)]

∫
ε(ω) exp[i(ω−ω0)(z dk/dω−t)] dω, (1.46)
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where ω0 and k0 are the central values. The first term describes the
rapidly oscillating waves within the envelope that have the wave veloc-
ity vw = ω0/k0. The integral describes the envelope. Its maximum is
located where all the waves are in phase, that is, where z dk/dω = t.
Thus the envelope has the group velocity, vg = dω/dk. Photons, and
energy and information, all travel at the group velocity. Suppose theE
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Fig. 1.4 The time and angular fre-
quency distributions for a Gaussian
wavepacket. In this case the full width
at half maximum is 2.36 times the stan-
dard deviation.

wave velocity is less than the group velocity, then to an observer moving
at the group velocity the waves would appear to travel backward within
the envelope in the upper plot.

Measurements on photons from identically prepared wavepackets must
satisfy time/angular frequency and position/wave-vector uncertainty re-
lations:

ΔtΔω ≥ 1/2, ΔxΔk ≥ 1/2, (1.47)

where Δx, etc. are standard deviations in measurements. The most
convenient wavepackets for use in analysis are Gaussian in shape, and
approximations to this shape are met often enough to be of practical
interest. An example is drawn in Figure 1.4, first as a function of time
at a fixed location and then as a function of angular frequency: these are
both amplitude plots. The corresponding intensity plots, proportional
to the probability of finding a photon, are shown in Figure 1.5. These are
also Gaussians, narrower than the amplitude envelopes by a factor

√
2.

Only the envelope is shown because detectors of light, which typically
have nanosecond resolution, cannot follow the wave oscillations under
the envelope at 1014Hz. Explicitly the intensity distributions areIn the case of microwaves of much

lower frequency, it is the electric field
that is detected. Very large numbers of
photons make up the signal detected,
so that a classical analysis is generally
adequate.

I(t− t0) =
1√
2πσt

exp[−(t− t0)
2/(2σ2

t )], (1.48)

I(ω − ω0) =
1√
2πσω

exp[−(ω − ω0)
2/(2σ2

ω)]. (1.49)

These are related through Fourier transforms

I(ω) =

∫ ∞

−∞

I(t) exp(iωt) dt,

I(t) =

∫ ∞

−∞

I(ω) exp(−iωt) dω. (1.50)

These distributions have standard deviations σω and σt related by σωσt =
1/2. Projections of the wavepacket in position and wave-vectors are also
Gaussian and these too are Fourier transforms of one another.

When measurements are made on photons from a Gaussian wavepacket,
taking the errors in the detectors to be negligible, the distributions
would have standard deviations σt and σω. In this special case of Gaus-
sian wavepackets with negligible intrinsic measurement errors, we have
uniquely an equality

ΔωΔt = σωσt = 1/2. (1.51)

In any other conditions, with intrinsic errors and/or a non-Gaussian
wavepacket, ΔωΔt is larger.
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1.15 State vectors

States of systems have so far been described by wavefunctions. A more
flexible description is provided by state vectors, which are indispensable
when dealing with quantum fields. State vectors are presented here

I(
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0ω Angular freq.

Fig. 1.5 The time and angular
frequency intensity distributions for
the Gaussian wavepacket amplitudes
shown in 1.4.

using the notation introduced by Dirac. For a system with a set of
orthonormal wavefunctions {φi}, any normalized wavefunction can be
expanded as

ψ =
∑
i

ciφi, (1.52)

in which the cis are complex coefficients. Then the integral∫
ψ∗ψ dV =

∑
ij

c∗i cj

∫
φ∗iφj dV =

∑
i

c∗i ci. (1.53)

The right-hand side of this equation can be expressed in matrix notation
as

( c∗1 c∗2 c∗3 · · · )

⎛
⎜⎜⎜⎝

c1
c2
c3
.
.

⎞
⎟⎟⎟⎠ , (1.54)

which is identical to the scalar product of two vectors with coordinate
lengths referred to the same set of orthogonal axes (c∗1, c

∗
2, c

∗
3, · · ·) and

(c1, c2, c3, · · ·). We define the unit vector along the ith axis to be |φi〉.
This space is known as a Hilbert space and all the vectors, including |φi〉,
are called kets. The state vector for the column matrix above is then a
ket,

|ψ〉 =
∑
i

ci |φi〉, (1.55)

an equation equivalent to eqn. 1.52. Another type of state vector is
needed to correspond to the row matrix in eqn. 1.54. These are called
bra vectors, and are written 〈ψ| and 〈φi|. Note that the vectors |ψ〉 and
〈ψ| describe exactly the same state.7 For the bra vectors 7The Hilbert spaces containing the bra

and ket vectors are actually separate
vector spaces known as dual spaces. If
wavefunctions were real then only one
vector space would suffice.

〈ψ| =
∑
i

c∗i 〈φi|. (1.56)

The scalar product 〈φi|φj〉 is the overlap of these states given by

〈φi|φj〉 =
∫

φ∗i φj dV = δij . (1.57)

Correspondingly,

〈ψ|φi〉 = c∗i , and 〈φi|ψ〉 = ci. (1.58)

Then the state vectors |ψ〉 and 〈ψ| can be expanded in this way

|ψ〉 =
∑
i

〈φi|ψ〉 |φi〉, and 〈ψ| =
∑
i

〈ψ|φi〉 〈φi|. (1.59)
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We can rewrite the first equation as

|ψ〉 =
∑
i

|φi〉〈φi|ψ〉, (1.60)

which demonstrates that

∑
i

|φi〉 〈φi| = I =

⎛
⎜⎜⎜⎝

1 0 0 . .
0 1 0 . .
0 0 1 . .
. . . . .
. . . . .

⎞
⎟⎟⎟⎠ , (1.61)

where I is the identity matrix. This useful result is called the closure
relation. The expectation value of an observable A in the state described
by |ψ〉 is given by

〈Â〉 =
∫

ψ∗Âψ dV =
∑
ij

c∗i cj 〈φi|Â|φj〉, (1.62)

which contains matrix elements Aij = 〈φi|Â|φj〉. Observables are real
and Aij is hermitian: A∗ij = Aji. The complex conjugate transpose of a

matrix A is written A† so that for observables A† = A.

The state vector |r〉 describes a state whose wavefunction is a delta
function at the point r in space. In this case the connection between the
spatial wavefunction and the state vector is

ψ(r) = 〈r|ψ〉. (1.63)

In momentum space the wavefunction would be

ψ(p) = 〈p|ψ〉, (1.64)

where |p〉 is a delta function at momentum p. In the case of free par-
ticles the Hilbert space with unit vectors |r〉 has infinite dimensions.
Rephrasing eqn. 1.63 is useful: when a state vector is projected onto
eigenstates of, for example, r the outcome is a wavefunction, in this case
ψ(r).

Rotations can be made in Hilbert space which leave any product of
state vectors 〈ψ|ξ〉 unaffected. These transformations differ from rigid
rotations in cordinate space because the length of a vector in Hilbert
space is a complex number. Suppose U is such a unitary transformation,

〈ψ|ξ〉 = 〈Uψ|Uξ〉. (1.65)

From this it follows that

U †U = I and U † = U−1. (1.66)
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Energy being an observable and real, the corresponding operator, the
Hamiltonian operator Ĥ is Hermitian. Hence the time evolution opera-
tor exp(−iĤt) is unitary:

[exp(−iĤt)]† = exp(iĤ†t) = exp iĤt, (1.67)

so that states originally orthogonal remain orthogonal and retain their
separate identities.

1.16 Special relativity and
electromagnetism

The space-time four-vector for a point at r at time t is (ct,r) or X with
components

X0 = ct, X1 = x, X2 = y, X3 = z. (1.68)

The energy-momentum four-vector for a system of energy E and mo-
mentum p is P = (E/c,p). Under a Lorentz transformation from one
inertial frame to another (primed) frame with relative velocity v = βc
parallel to the x(x′)-axis four-vectors all transform in the same way:

E′ = γ(E − pxv); t′ = γ(t− xv/c2);

p′x = γ(px − Ev/c2); x′ = γ(x− vt);

p′y = py; y′ = y;

p′z = pz; z′ = z; (1.69)

where γ =
√

1/(1− β2). Quantities like X and P are four-vector rep-
resentations of the Lorentz group. For four-vectors we introduce the
subscript labelling 0, 1, 2, 3 for the time component, x-component, y-
component, z-component respectively. We also introduce the Einstein
convention that if a subscript is repeated it should be summed over,
aμbμ is to be read a0b0 − a1b1 − a2b2 − a3b3. The scalar product of
four-vectors is defined by

A ·B = gμνAμBν , (1.70)

The metric tensor appearing here is

gμν =

⎡
⎢⎢⎣

+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ , (1.71)

where the indices run from 0 to 3. These products are scalar represen-
tations of the Lorentz group and are invariant under Lorentz transfor-
mations. The scalar product of (ct,r) with itself is:

X2 = c2t2 − x2 − y2 − z2 = c2t2 − r2. (1.72)
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This is the new form of Pythagoras’ theorem after taking special rel-
ativity into account. If X2 is positive the separation in space-time is
time-like, if it is negative the separation is space-like and if it is zero the
separation is light-like. No signals can travel over space-like separations,
since signals would then be travelling faster than light. Figure 1.6 illus-
trates by the gray shading the regions of the past that can influence an
event (at the centre), and the regions of the future that the event can
influence.

The scalar product of an energy-momentum four-vector with itself is:

s/c2 = E2/c2 − p2x − p2y − p2z = E2/c2 − p2. (1.73)

In the centre of mass frame of a system the vector sum of the momenta
is zero, so s is the centre of mass energy squared. In the case of an
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Fig. 1.6 Section through the light
cones at one point in space-time show-
ing one spatial dimension. A represen-
tation for two spatial dimensions can be
obtained by rotating the image around
the time axis.

isolated particle
m2c4 = E2 − p2c2, (1.74)

where m is its rest mass. At low energies such that cp 	 mc2 we can
expand this as

E = mc2 + p2/(2m) + · · · , (1.75)

and at high energies such that cp 
 mc2, as met for neutrinos,

E = cp+m2c3/(2p) + · · · , (1.76)

and in the limit for the massless photons E = cp. The scalar product
of space-time and energy-momentum four-vectors is equally invariant
under Lorentz transformations P ·X = Et− p · r. This appears in the
wave function of free particles:

Ψ(r, t) = exp[−i(Et− p · r)] = exp[i(k · r− ωt)h̄], (1.77)

where k = p/h̄ is the wave-vector and ω = E/h̄ the angular frequency.

Any quantities that are representations of the Lorentz group are known
as Lorentz covariant. Relationships between covariant quantities do not
change their form under Lorentz transformations and are also Lorentz
covariant. Maxwell’s equations are a fundamental example.

In the presence of an electromagnetic field the energy and momentum
of a particle need to be specified more carefully. Suppose the Lorentz
four-vector potential describing the field is (φ/c, A) with electric and
magnetic fields −∇φ − ∂A/∂t and ∇ ∧ A. Then the components of a
particle’s energy-momentum vector become:

E/c+ qφ/c and mv = p− qA, (1.78)

with q being the particle’s charge. The symbol e is only used in this
textbook in the electron’s charge −e. The quantity mv is the usual
physical momentum of a particle of massm with velocity v. The quantity
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p is the canonical momentum conjugate to the coordinate: in operator
form [x, px] = ih̄. For completeness note that the corresponding non-
relativistic Lagrangean is

L = mv2/2− qφ+ qA · v, (1.79)

and p = ∂L/∂v = mv + qA. (1.80)

The Hamiltonian (energy) is

H = [p− qA]2/(2m) + qφ. (1.81)

In addition, the current carried by particles of charge q becomes, in the
presence of an electromagnetic field, the real part of (q/m)[Ψ∗(p−qA)Ψ],
that is

j =
q

2m
[Ψ(ih̄∇− qA)Ψ∗ −Ψ∗(ih̄∇+ qA)Ψ]. (1.82)

This reduces to

j =
iqh̄

2m
[Ψ∇Ψ∗ −Ψ∗∇Ψ]− q2

m
A|Ψ|2. (1.83)

The four-vector potential is not unique: under what is called a local
gauge transformation the physical electric and magnetic fields are un-
changed. With α(t,r) being any smoothly varying scalar function of
position and time, the corresponding local gauge transformation is

A → A−∇α; φ → φ+ ∂α/∂t. (1.84)

The four-vector form of, for example, the momentum operator is

P̂ = (Ê/c, p̂) = ih̄

[
∂

c∂t
,− ∂

∂x
,− ∂

∂y
,− ∂

∂z

]
, (1.85)

or in shorthand notation: ih̄ ∂
∂xμ

and ih̄∂μ.

The wave equation of electromagnetism in the presence of a current
j, obtained from Maxwell’s equations, will also be needed:8 8Page 410 in Classical Electrodynamics

by W. Greiner, published by Springer
(1996), but using S.I. units.∇2A− 1

c2
∂2A

∂t2
= −μ0j. (1.86)

This requires a choice of gauge fields such that

1

c

∂φ

∂t
+∇ ·A = 0, (1.87)

known as the Lorentz gauge.

Finally a relativistic equivalent of Schrödinger’s equation is obtained,
starting with eqn. 1.74. The kinematic quantities are replaced by oper-
ators and the result applied to a wavefunction φ representing a massive
material particle. This gives the Klein–Gordon equation,

m2c4φ = −h̄2∂2φ/∂t2 + h̄2c2∇2φ. (1.88)
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All particles must satisfy this equation. However, on its own, because
it lacks any reference to spin, it is inadequate to describe relativistic
electrons. Dirac’s relativistic description of electrons is covered in Ap-
pendix G. This takes account of both spin and, equally important, the
existence of antiparticles . Paralleling this approach the Klein–GordanNote the standard use of the symbol φ

as the wavefunction of a scalar particle
and as the electric potential.

equation provides an adequate description of spinless (scalar) particles.

1.17 Further reading

There are numerous good introductions to quantum mechanics. A well-
tried example is Quantum Mechanics, 5th edition, by A. I. M. Rae,
published by Taylor and Francis, London (2007). More sophisticated is
Lectures on Quantum Mechanics, by the Nobel Laureate Steven Wein-
berg, published by Cambridge University Press (2012).

Exercises

(1.1) In the case of a particle having high energy com-
pared to its rest mass energy, show that the ap-
propriate expansion of the energy equation is E =
pc+m2c3/(2p) + ...

(1.2) Where ψ is some scalar that varies smoothly with
position, show that the simultaneous transforma-
tions of the electromagnetic vector field (A,φ/c)

A → A+∇ψ
φ → φ− ∂ψ/∂t

do not affect measureable quantities.

(1.3) Calculate the particle density and flux in a plane
wave exp[i(k · r−ωt)]/√V and check that the con-
tinuity equation holds.

(1.4) Evaluate the commutator of the energy and time
operators [E, t].

(1.5) Time dilation has Δt′ = γΔt and the Lorentz con-
traction has Δx′ = Δx/γ. In each case spell out
what is being measured in which frame. Then de-
duce these results.

(1.6) Show that in a rigid rotation in normal space the
product of the transformation matrix and its trans-
pose equals the identity matrix.

(1.7) |ξi〉 is one of a set of orthonormal eigenstates. What
is the operator that projects out the contribution
of this eigenstate from a normalized state |φ〉?

(1.8) Two lasers illuminate one each of the pair of slits
in a Young’s two slit interference experiment. They
are tuned to the same frequency. Would interfer-
ence fringes be seen? If so, explain how it is pos-
sible when any given photon originates from only
one laser?

(1.9) A light source at a frequency f with a spectral
width Δf has lateral dimensions r. What are the
dimensions of the volume over which the light is
coherent at a distance L from the source? L � r.
Light at one point in the coherence volume has a
fixed phase with respect to light at another point
in the same coherence volume. Light from two
such points can be superposed by means of mirrors,
lenses, etc. and will show interference. Light from
two points not within the same coherence volume
have time varying relative phases and intereference
fringes are not seen. Take L to be 1m, Δf to be
1010 Hz, r to be 1μm, and the wavelength to be
0.5μm.

(1.10) A vertically polarized beam of light is incident in
sequence on a polaroid that transmits light with
its polarization at 45 degrees to the vertical and
a polaroid that transmits light that is horizontally
polarized. Using quantum mechanics explain how
light initially vertically polarized can pass through
the second horizontal polarizer.



Solutions to Schrödinger’s
equation 2
2.1 Introduction

Solutions to Schrödinger’s equation are presented for square, harmonic
and Coulomb wells. Barrier penetration in nuclear α-decay is used to
illustrate the use of the solution for the square well potential. The
solution for the harmonic well potential provides a first step toward
the quantum theory of electromagnetic fields. Finally, the solution for
the Coulomb potential provides the basis for explaining the states of
the hydrogen atom. This is supplemented by a discussion of fine and
hyperfine splitting of atomic energy levels.

2.2 The square potential well

The potential is drawn in Figure 2.1, it has a value −V0 over the region
−a/2 < x < a/2 and is zero elsewhere. Within the attractive well
Schrödinger’s equation is

(−h̄2/2m)d2ψ/dx2 = (E + V0)ψ (internal), (2.1)

while outside the potential it becomes

(−h̄2/2m)d2ψ/dx2 = Eψ (external). (2.2)

Bound states of the particle, say an electron, for which E is negative and
the kinetic energy, (E + V0), is positive are considered first. A solution

Energy

0-V

0

a

x-coord.

Fig. 2.1 The energy levels of eigen-
states in the square potential well.

inside the well, which is symmetric about the origin is

ψi = Ai cos (kix), (2.3)

where ki =
√

2m(E + V0)/h̄ and Ai is some constant. Externally

ψe = Ae exp (∓kex) (2.4)

where ke =
√−2mE/h̄ and Ae is another constant. The upper sign in

the exponent is taken for x > a/2 and the lower sign for x < −a/2. The
opposite choices of sign for the exponentials would give wavefunctions
growing exponentially with the distance from the well. These can be
rejected because they grow infinitely.

Quantum 20/20: Fundamentals, Entanglement, Gauge Fields, Condensates and Topology.
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Applying the requirements that the wavefunction and its first deriva-
tive are continuous at the wall at x = a/2 gives

Ai cos (kia/2) = Ae exp (−kea/2) and

Aiki sin (kia/2) = keAe exp (−kea/2).

Dividing one equation by the other gives

ke = ki tan (kia/2). (2.5)

From the definitions of ki and ke we also have

(kia/2)
2 + (kea/2)

2 = ma2V0/(2h̄
2). (2.6)

The last two equations can be solved simultaneously either by computer
or graphically as exhibited in Figure 2.2 where (kea/2) is plotted as a
function of (kia/2) for a given potential V0.The relation found in eqn.
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Fig. 2.2 Graphical method of solving
Schrödinger’s equation for the square
well potential.

2.5 is represented by the full lines, while the quarter circle represents
eqn. 2.6 with ma2V0/(2h̄

2) taken to be 100. Simultaneous solutions to
eqns. 2.5 and 2.6 lie at the points where these curves intersect.

A second set of wavefunctions that are antisymmetric about the origin
also satisfy Schrödinger’s equation for the square well. The waves inside
the well have the form

ψi = Bi sin (kix), (2.7)

where Bi is some constant. Outside the well

ψe = Be exp (∓kex) (2.8)

where Be is another constant. For these wavefunctions the continuity
conditions lead to a different transcendental equation

ke = −ki cot (kia/2). (2.9)

This equation is plotted with broken lines in Figure 2.2. On this plot
the simultaneous solutions to eqns. 2.9 and 2.6 lie at the intersections
of the broken lines and the quarter circle. Then on Figure 2.1 the en-
ergy levels of all seven solutions are shown using full and broken lines
for the states with even and odd wavefunctions respectively. Finally the
wavefunctions of the four lowest energy (most tightly bound) states are
plotted in Figure 2.3.

The preceding analysis shows that bound states are restricted to dis-
crete energies. Only then can the sinusoidal waves inside the well join
smoothly onto a wave that decays exponentially outside the well. At
other energies the requirement of continuity at the boundary makes it
necessary to have a sum of a decaying and an increasing exponential
outside the well. No matter how little the electron’s energy differs from
the discrete value picked out by the solution of Schrödinger’s equation in
Figure 2.2, the exponentially increasing component of the wave outside
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the well will tend to infinity at an infinite distance. Such a wavefunction
cannot describe electron states localized in the well. This restriction, in
some situations, to states with discrete energies is a feature specific to
quantum mechanics. Discrete energy states are met in atoms, molecules,
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Fig. 2.3 The four wavefunctions of low-
est energy satisfying the square well
boundary conditions. The node count
is given. Broken lines mark limits of
classical motion.

nuclei and elementary particles. Particles with positive energies have
wavefunctions that are oscillatory both inside and outside the potential
well. The continuity conditions at the boundary can now be satisfied
at any positive energy and so there is a continuum of allowed states
extending from zero energy upwards.

2.2.1 Barrier penetration

In contrast to the classical prediction, electrons and other particles, can
penetrate regions where their kinetic energy is negative. The particle
wavefunction decays exponentially as it penetrates such a region. When,
as in Figure 2.4, the potential barrier is of finite width, the particle’s
wavefunction penetrates the potential barrier and emerges as an oscilla-
tory wave that travels away from the boundary. Particles can therefore
travel through a region where their kinetic energy is negative and pen-
etrate to the far side. This purely quantum process is called barrier
penetration or tunnelling.

The penetration of evanescent electromagnetic waves through inter-
faces at which total internal reflection is expected is also due to barrier
penetration. Its exploitation in monomode optical fibre underpins the
telecomms industry: near-infrared radiation is guided along the glass
core by total internal reflection between the core and the glass cladding.
Nonetheless, around half the energy is carried by the evanescent wave
travelling in the cladding. This parallel between the behaviour of elec-
trons and photons can be better appreciated when their wave equations
are compared. The electromagnetic wave equation is

d2ψ/dx2 = −[ωμ(x)/c]2ψ, (2.10)

with μ(x) being the refractive index of the material at x and ω the wave’s
angular frequency. Writing Schrödinger’s equation again

d2ψ/dx2 = −(2m/h̄2)[E − V (x)]ψ, (2.11)

we can recognize the equivalence

μ(x) =
√

2m[E − V (x)]/(h̄k), (2.12)

where k = ω/c is the wave number in vacuum. Barrier penetration
corresponds to an imaginary refractive index and hence to decay of the
electromagnetic wave. What is expressed here is of general significance:
namely, that the electromagnetic wave equation has the same relation
to photons that Schrödinger’s equation has to non-relativistic electrons.
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Nuclear species emitting α-particles have a huge range in lifetimes but
surprisingly small differences in the energy released: for example 238U
has a half life of 4.47 109yr for an energy release of 4.27 MeV, while
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Fig. 2.4 Potential barrier and wave-
function penetration.

226U has a half life of 0.35s for an energy release of 7.70 MeV. This
striking variation in lifetimes can only be explained by quantum barrier
penetration. The α-particle is pictured as bouncing to and fro inside
the attractive nuclear potential well shown in Figure 2.5. Outside this
nuclear potential there is a Coulomb barrier due to the charge on the
nucleus. A dotted line indicates the energy of the α-particle which has
to penetrate this barrier between radii r1 and r2. The solution to eqn.
2.11 for barrier penetration where the kinetic energy is negative is

ψ(r + dr) = exp (−gdr)ψ(r), (2.13)

where g =
√

(2M/h̄2)(V (r) − E) over a region of length dr where the

potential is V (r), M is the α-particle mass and E is the energy of the
α-particle. Integrating across the barrier

ψ(r2) = ψ(r1) exp[−
∫ r2

r1

g(r) dr] = ψ(r1) exp[−G], (2.14)

and the probability of transmission through the barrier is

T = exp (−2G). (2.15)

If the α-particle has a velocity vi inside the nucleus the rate of collisions
with the barrier is [vi/(2r1)] and the decay probability is

P = [vi/(2r1)]T = [vi/(2r1)] exp (−2G). (2.16)

The Coulomb potential energy of the α-particle is

V (r) = 2Ze2/(4πε0r), (2.17)

where the atomic number of the daughter nucleus is Z. The energy E
equals V (r2), so we can replace both E and V (r) in eqn. 2.14 to give

G =

√
[MZe2/(πε0h̄

2)]

∫ r2

r1

√
(1/r − 1/r2) dr. (2.18)

Making the approximation that r2 is much larger than r1 this yields

G =

√
[MZe2/(πε0h̄

2)] [π
√
r2/2−√

r1]. (2.19)

Applying eqn. 2.17 and using the equality of E and V (r2) again, we
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Fig. 2.5 The potential seen by the α
particle. Its kinetic energy is negative
between r1 and r2.

have
r2 = 2Ze2/(4πε0E). (2.20)

The radius r1 varies little between the nuclei considered and this fact
allows some simplification from here onward. Then using eqn. 2.16 and
substituting for r2 in G gives

P = [vi/(2r1)] exp {−
√
(M/2E) [Ze2/ε0h̄)] + c1}, (2.21)


